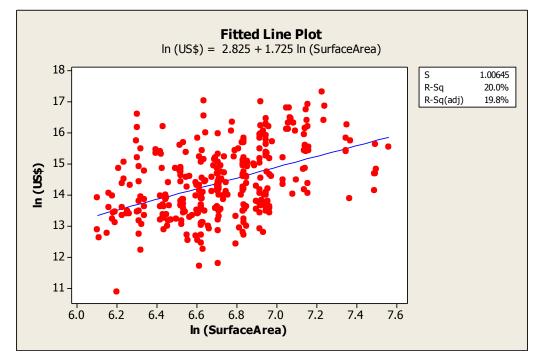

Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 6 – Dummy Variables and Functional Form


6-2/41

Agenda

- Dummy variables
- Interaction
- Categorical variables and transition tables
- Nonlinear functional form
- Differences
- Difference in differences
- Regression discontinuity
- Kinked regression

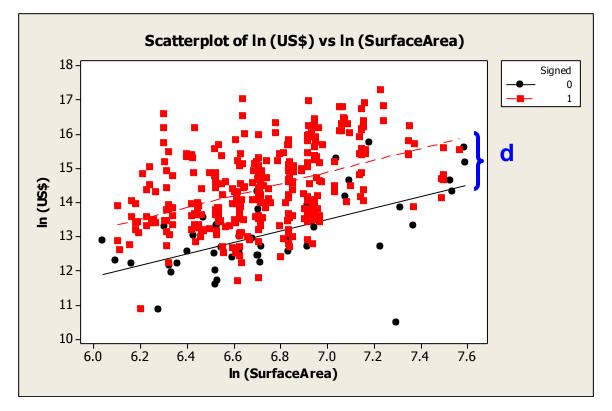
Monet in Large and Small

Sale prices of 328 signed Monet paintings

Log of \$price = a + b log surface area + e

Part 6: Functional Form

6-4/41


How Much for the Signature?

The sample also contains 102 unsigned paintings

Average Sale PriceSigned\$3,364,248Not signed\$1,832,712

Average price of a signed Monet is almost twice that of an unsigned one.

A Multiple Regression

Ln Price = $a + b \times ln$ Area + $d \times (0$ if unsigned, 1 if signed) + e

Part 6: Functional Form

6-6/41

Monet Multiple Regression

```
      Regression Analysis: ln (US$) versus ln (SurfaceArea), Signed

      The regression equation is

      ln (US$) = 4.12 + 1.35 ln (SurfaceArea) + 1.26 Signed

      Predictor
      Coef SE Coef T

      Predictor
      Coef SE Coef T

      Quant
      4.1222
      0.5585

      1n (SurfaceArea)
      1.3458
      0.08151

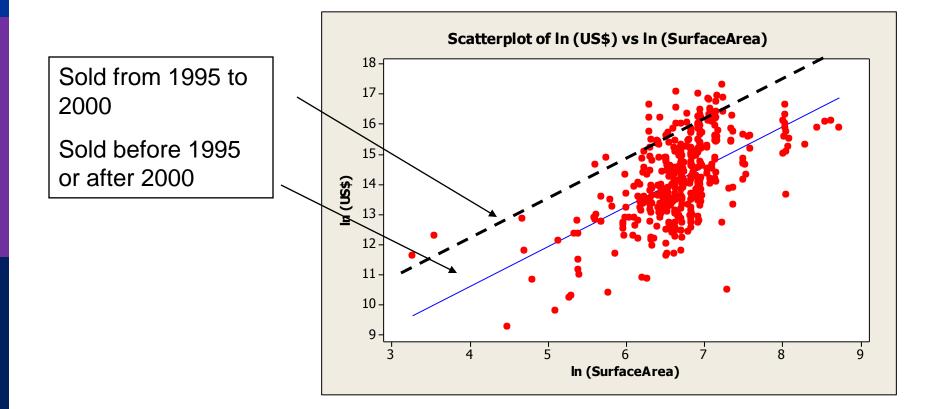
      1n (SurfaceArea)
      1.3458
      0.1249

      Signed
      1.2618
      0.1249

      S = 0.992509
      R-Sq = 46.2%
      R-Sq(adj) = 46.0%
```

Interpretation:

(1) Elasticity of price with respect to surface area is 1.3458 – very large


(2) The signature multiplies the price of a painting by exp(1.2618) (about 3.5), for any given size.

A Conspiracy Theory for Art Sales at Auction

Sotheby's and Christies, 1995 to about 2000 conspired on commission rates.

M	ONET.MTP ***	X
Ŧ	C19-T	2
	Auction House	
65	Christie's New York: Wednesday, May 9, 2001	
66	Christie's New York: Wednesday, May 9, 2001	
67	Christie's New York: Wednesday, May 9, 2001	
68	Christie's New York: Wednesday, May 9, 2001	
69	Phillips, de Pury & Luxembourg New York: Monday, May 7, 2001	
70	Christie's London: Wednesday, February 7, 2001	
71	Sotheby's London: Tuesday, February 6, 2001	
72	Sotheby's London: Monday, February 5, 2001	
73	Sotheby's London: Monday, February 5, 2001	
74	Sotheby's New York: Thursday, November 9, 2000	
75	Sotheby's New York: Thursday, November 9, 2000	
76	Sotheby's New York: Thursday, November 9, 2000	
77	Sotheby's New York: Thursday, November 9, 2000	
78	Christie's New York: Wednesday, November 8, 2000	
79	Christie's New York: Wednesday, November 8, 2000	
80	Christie's New York: Wednesday, November 8, 2000	
81	Christie's New York: Wednesday, November 8, 2000	
82	Christie's New York: Wednesday, November 8, 2000	
83	Christie's London: Wednesday, June 28, 2000	_
84	Christie's London: Wednesday, June 28, 2000	
85	Sotheby's London: Tuesday, June 27, 2000	
86	Sotheby's London: Tuesday, June 27, 2000	
87	Sotheby's New York: Wednesday, May 10, 2000	
00	Sathabu'a New York: Wadnacday, May 10, 2000	
•		. ,

If the Theory is Correct...

Part 6: Functional Form

6-9/41

Evidence

The regression equation is								
ln (US\$) = 4.03 + 1.35 ln (SurfaceArea) + 1.28 Signed								
	+	0.201 com	nspiracy	1				
Predictor	Coef	SE Coef	Т	P				
Constant	4.0270	0.5585	7.21	0.000				
ln (SurfaceArea)	1.34756	0.08122	16.59	0.000				
Signed	1.2777	0.1247	10.25	0.000				
conspiracy	0.2009	0.1001	2.01	0.045				
S = 0.989012 R	-Sq = 46.7	% R−Sq(a	adj) = 4	6.3%				
Analysis of Vari	ance							
Source	DF S	s MS	F	P P				
Regression	3 365.4	4 121.81	124.53	0.000				
Residual Error	426 416.6	9 0.98						

The statistical evidence seems to be consistent with the theory.

Effects on Price	Unsigned	Signed
Not 1995 - 2000	exp(0.0000) = 1.0000	exp(1.2777) = 3.5884
1995-2000	exp(0.2009)=1.2225	$\exp(1.2777 + 0.2009) = 4.3868$

Women appear to assess health satisfaction differently from men.

Descriptive Statistics for HLTHSAT Stratification is based on FEMALE										
Subsampl	e	I	Mean	St	d.Dev.	Case	es Sum of wts	s Missing		
FEMALE FEMALE Full Sam	= 0 = 1 .ple	6.63	22699 33417 34198	2.	251837 329590 293907	1424 1308 2732	3 13083.00) 0		
Least squ LHS=HLTHS Regressio Residual Total Fit Model tes	Stand No. c on Sum c Sum c Sum c Stand R-squ	lard devi- of observ- of Square of Square of Square lard erro	ation ations s s r of e		2. 57 14 14 2.	78420 29391 27326 0.655 3214. 3784. 28939 00397 87633	DegFreedom 1 27324 27325 Root MSE R-bar square Prob F > F*			
HLTHSAT	Coeffic	ient	Standard Error		z	$\frac{Prob}{ z >Z}$		nfidence erval		
Constant FEMALE		28 ***	.01918 .02772		360.87 -10.43	. 0000 . 0000	6.88510 34362	6.96030 23494		

6-11/41

Or do they? Not when other things are held constant

Least squ LHS=HLTHS Regressio Residual Total Fit Model tes	- Standard devia - No. of observa on Sum of Squares Sum of Squares Sum of Squares - Standard erros R-squared	= ation = ations = s = s = s =	6. 2. 10 13 14 2.	755.6 3029. 3784. 20673 07480	DegFreedom 7 27318 27325 Root MSE R-bar squared Prob F > F*	
HLTHSAT	Coefficient	Standard Error	z	Prob. z >Z *		fidence rval
Constant FEMALE AGE EDUC HHNINC MARRIED HHKIDS WORKING	7.21588*** 02248 04118*** .07740*** .48500*** .07108** .13925*** .31704***	.10583 .02936 .00138 .00617 .08169 .03509 .03150 .03269	$\begin{array}{r} 68.19 \\77 \\ -29.82 \\ 12.54 \\ 5.94 \\ 2.03 \\ 4.42 \\ 9.70 \end{array}$.0000 .4438 .0000 .0000 .0000 .0428 .0000 .0000	7.00846 08003 04389 .06531 .32490 .00230 .07751 .25297	7.42330 .03506 03848 .08950 .64511 .13986 .20100 .38110

Dummy Variable for One Observation

A dummy variable that isolates a single observation. What does this do?

Define **d** to be the dummy variable in question.

 $\mathbf{Z} =$ all other regressors. $\mathbf{X} = [\mathbf{Z}, \mathbf{d}]$

Multiple regression of **y** on **X**. We know that

X'e = **0** where **e** = the column vector of

residuals. That means **d'e** = 0, which says that e_j = 0 for that particular residual. The observation will be predicted perfectly. Fairly important result. Important to know. I have a simple question for you. Yesterday, I was estimating a regional production function with yearly dummies. The coefficients of the dummies are usually interpreted as a measure of technical change with respect to the base year (excluded dummy variable). However, I felt that it could be more interesting to redefine the dummy variables in such a way that the coefficient could measure technical change from one year to the next. You could get the same result by subtracting two coefficients in the original regression but you would have to compute the standard error of the difference if you want to do inference.

Is this a well known procedure? YES

Ordinary LHS=LWAGE	-	regression =		 67635			
LWAGE	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval	
Constant YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 ED	.09004*** .22154*** .32091*** .41128*** .48887*** .57557***	.03107 .02188 .02188 .02188 .02188 .02188 .02188 .02188 .02188	178.26 4.12 10.13 14.67 18.80 22.35 26.31 31.09	.0000 .0000 .0000 .0000 .0000 .0000 .0000	5.47672 .04716 .17867 .27803 .36840 .44600 .53270 .06109	5.59849 .13291 .26442 .36378 .45416 .53175 .61845 .06931	
Constant Q2 Q3 Q4 Q5 Q6 Q7 ED	.09004*** .13150*** .09936*** .09037*** .07759*** .08670***	.03107 .02188 .02188 .02188 .02188 .02188 .02188 .02188 .02188	178.26 4.12 6.01 4.54 4.13 3.55 3.96 31.09	.0000 .0000 .0000 .0000 .0000 .0004 .0001 .0000	5.47672 .04716 .08863 .05649 .04750 .03472 .04382 .06109	5.59849 .13291 .17438 .14224 .13325 .12047 .12958 .06931	

Example with 4 Periods

The estimated model with time dummies is

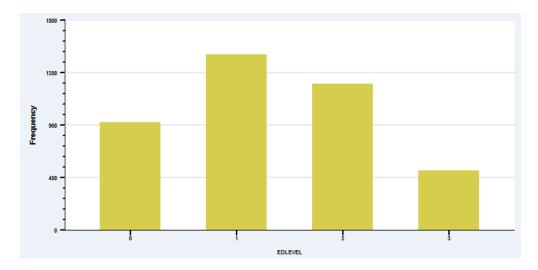
 $\mathbf{y} = \mathbf{a} + \mathbf{b}_2^* \mathbf{d}_2 + \mathbf{b}_3^* \mathbf{d}_3 + \mathbf{b}_4^* \mathbf{d}_4 + \mathbf{e}$ (possibly some other variables, not needed now). Estimated least squares coefficients are

 $\mathbf{b} = a, b_2, b_3, b_4$

Desired coefficients are

 $\mathbf{c} = \mathbf{a}, \mathbf{b}_2, \mathbf{b}_3 - \mathbf{b}_2, \mathbf{b}_4 - \mathbf{b}_3$

The original model is $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$.


The new model would be $\mathbf{y} = (\mathbf{XC})(\mathbf{C}^{-1}\mathbf{b}) + \mathbf{e} = \mathbf{QC} + \mathbf{e}$

The transformation of the data is $\mathbf{Q} = \mathbf{X}\mathbf{C}$. $\mathbf{c} = \mathbf{C}^{-1}\mathbf{b}$

The transformed **X** is $[1,d_2+d_3+d_4, d_3+d_4, d_4]$

$$\mathbf{C}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

A Categorical Variable

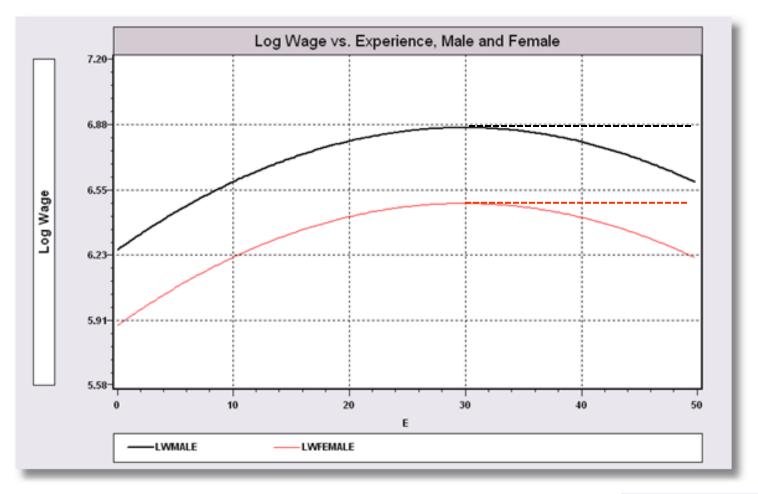
Ordinary LHS=LWAGE	least squares Mean Standard dev:	=	6.	67635 46151		
Regressic Residual Total Fit Model tes	- No. of observ on Sum of Square Sum of Square Sum of Square - Standard erro R-squared	vations = es = es = es = or of e = =	12 76 88	4165 2.335 4.570 6.905 42866 13793 92719	$\begin{array}{c} \text{DegFreedom} \\ & 3 \\ & 4161 \\ & 4164 \\ \text{Root MSE} \\ \text{R-bar squared} \\ \text{Prob F} > \text{F*} \end{array}$	Mean square 40.77838 .18375 .21299 .42845 1 .13731 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z*		nfidence erval
Constant	6.45177***	.01416	455.78	.0000	6.42402	6.47951
EDLEVEL 1 2 3	Base = 0 .15176*** .35319*** .53167***	.01797 .01865 .02377	8.44 18.94 22.37	. 0000 . 0000 . 0000	.11653 .31664 .48509	.18698 .38975 .57826

6-17/41

Simulation and partial effects based on categorical variable EDLEVEL Results computed by setting all observations to category value and comparing to base value.

Sample proportions apply to full sample before @ settings in command

Category Dummy Base value 0	Sample 917	Fraction 22017	Category LTHS
base value 0	1498	.35966	HIGHSCHL
2	1246	.29916	COLLEGE
3	504	.12101	GRAD

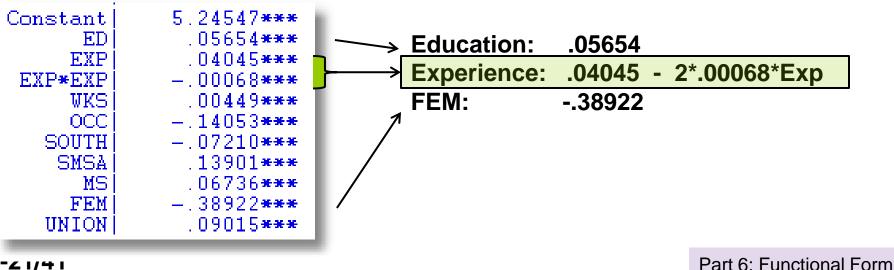

Partial Effects Analysis for Linear Regression Function

Effects of switches between categories in EDLEV=xx (dummy variables) Results are computed by average over sample observations LTHS = .2202 HIGHSCHL= .3597 COLLEGE = .2992 GRAD = .1210										
df/dEDLEV=xx From> To	Partial Effect	Standard Error	t	95% Confidence	Interval					
LTHS HIGHSCHL LTHS COLLEGE LTHS GRAD HIGHSCHL LTHS HIGHSCHL COLLEGE HIGHSCHL GRAD COLLEGE LTHS COLLEGE HIGHSCHL COLLEGE GRAD GRAD LTHS GRAD HIGHSCHL GRAD COLLEGE	.15176 .35319 .53167 15176 .20144 .37992 35319 20144 .17848 53167 37992 37992 17848	.01797 .01865 .02377 .01797 .01644 .02207 .01865 .01644 .02263 .02377 .02207 .02207 .02263	8.44 18.94 22.37 8.44 12.26 17.21 18.94 12.26 7.89 22.37 17.21 7.89	.11653 .31664 .48509 18698 .16923 .33665 38975 23365 .13413 57826 42318 22283	.18698 .38975 .57826 11653 .23365 .42318 31664 16923 .22283 48509 33665 13413					

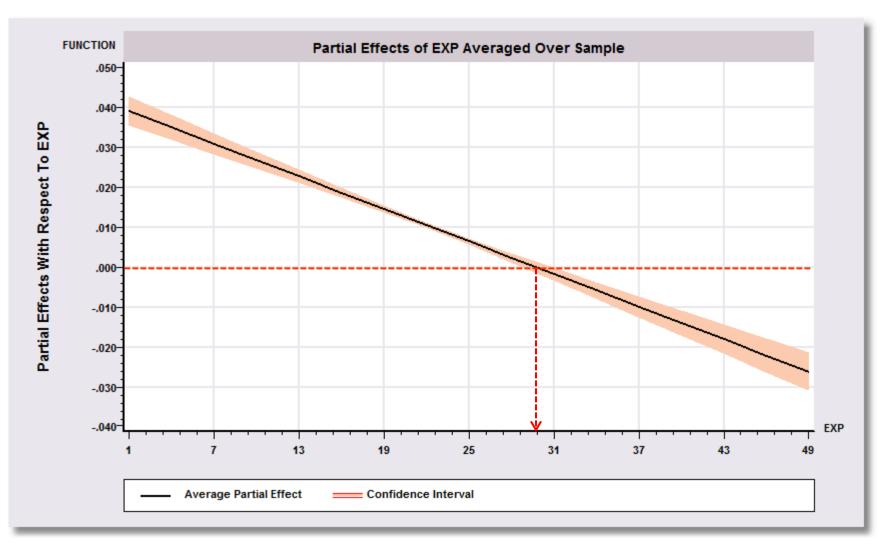
Nonlinear Specification: Quadratic Effect of Experience

Ordinary LHS=LWAG Regressio Residual Total Fit Model tes	No. of observ on Sum of Square Sum of Square Sum of Square Standard erre R-squared	= iation = vations = es = es = or of e = =	6.) 37) 51) 88)	67635 46151 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar square Prob F > F*			
LWAGE	Coefficient	Standard Error	z	Prob z >Z*		nfidence erval		
Constant ED	5.24547 *** .05654 ***	.07170	73.15 21.64	.0000	5.10493 .05142	5.38600 .06166		
EXP EXP*EXP	.04045*** 00068*** .00449***	.00217 .4783D-04 .00109	18.61 -14.24 4.12	.0000	.03619 00077 .00235	.04471 00059 .00662		
WKS OCC SOUTH SMSA	14053*** 07210*** .13901***	.01472 .01249 .01207	-9.54 -5.77 11.51	.0000 .0000 .0000	16939 09658 .11534	11167 04762 .16267		
MS FEM	.06736*** 38922***	.02063 .02518	3.26	.0011	.02692	.10779 33987		
UNION .09015*** .01289 6.99 .0000 .06488 .11542 								

Model Implication: Effect of Experience and Male vs. Female



6-20/41


Part 6: Functional Form

Partial Effect of Experience: Coefficients do not tell the story

Ordinary	least squares regres	sion .			
LHS=LWAGE	Mean	=	6.67635		
	Standard deviation	=	. 46151		
	No. of observations	=	4165	DegFreedom	Mean square
Regression	Sum of Squares	=	378.218	11	34.38347
Residual		=	508.687	4153	.12249
Total	-	=	886.905	4164	.21299
	Standard error of e	=	. 34998	Root MSE	. 34948
Fit	R-squared	=	. 42645	R-bar squared	
Model test	F[11, 4153]	=		Prob F > F*	.00000

Effect of Experience = .04045 - 2 * 0.00068*Exp Positive from 1 to 30, negative after.

6-22/41

Specification and Functional Form: Nonlinearity

Population

$$y = \beta_1 + \beta_2 x + \beta_3 x^2 + \beta_4 z + \varepsilon$$
Estimators

$$\hat{y} = b_1 + b_2 x + b_3 x^2 + b_4 z$$

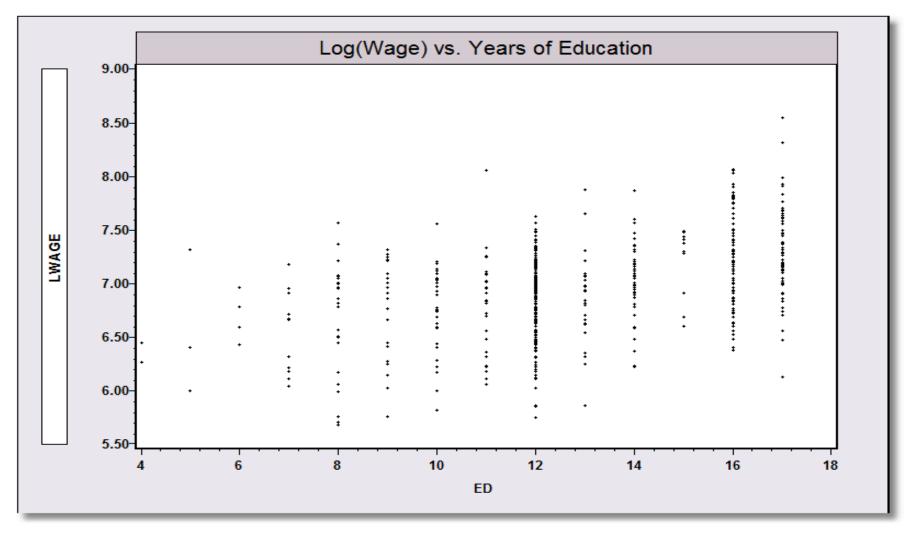
$$\delta_x = \frac{\partial E[y \mid x, z]}{\partial x} = \beta_2 + 2\beta_3 x$$

$$\hat{\delta}_x = b_2 + 2b_3 x$$

6-23/41

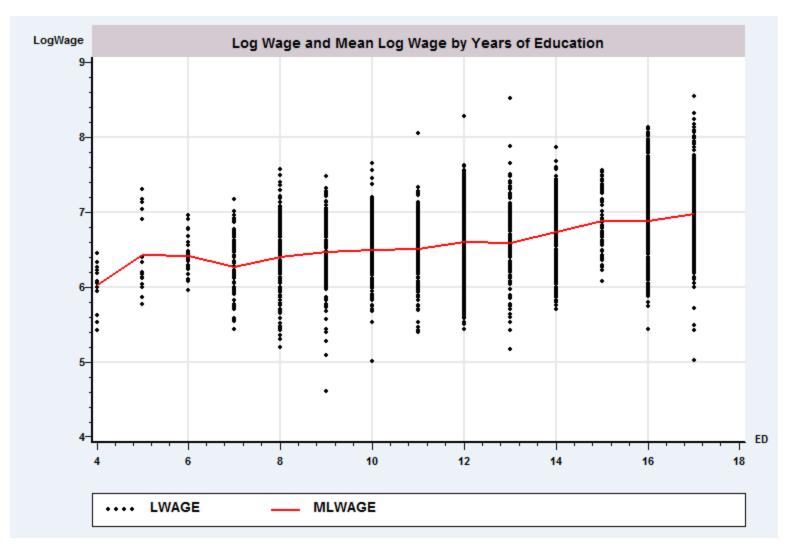
Log Income Equation

Ordinary	least squar	es regression .					
LHS=LOGY	Mean	=	-1.15740	5 I	Stimated Cov[b	1,b2]	
	Standard de	viation =	.49149				
	Number of c	bservs. =	27322	2	1	2	
Model size	e Parameters	=		/ 1	4.54799e-006	-5.1285e-008	-9
	Degrees of		27315				_
Residuals	-		5462.03686			9 91/07=.007	
	Standard er	ror of e =	.44717	, .	• I .9100206.005	991/11/2.007	
Fit	R-squared	=	.17237	7			
	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X		
AGE	.06225***	.00213	29.189	.0000	43.5272		
AGE SQ	00074***	.242482D-04	-30.576	.0000	2022.99		
Constant	-3.19130***	.04567	-69.884	.0000			
MARRIED	.32153***	.00703	45.767	.0000	.75869		
HHKIDS	11134***	.00655	-17.002	.0000	. 40272		
FEMALE	00491	.00552	889	.3739	.47881		
EDUC	.05542***	.00120	46.050	.0000	11.3202		

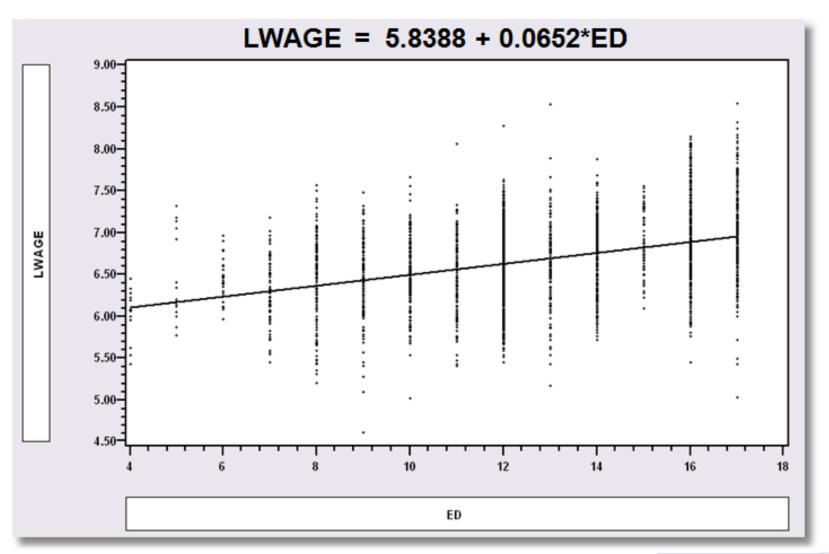

Average Age = 43.5272. Estimated Partial effect = .066225 - 2(.00074)43.5272 = .00018. Estimated Variance 4.54799e-6 + 4(43.5272)²(5.87973e-10) + 4(43.5272)(-5.1285e-8) = 7.4755086e-08. Estimated standard error = .00027341.

6-24/41

Objective: Impact of Education on (log) Wage


- Specification: What is the right model to use to analyze this association?
- Estimation
- Inference
- Analysis

Application: Is there a relationship between (log) Wage and Education?



6-26/41

Group (Conditional) Means (Nonparametric)

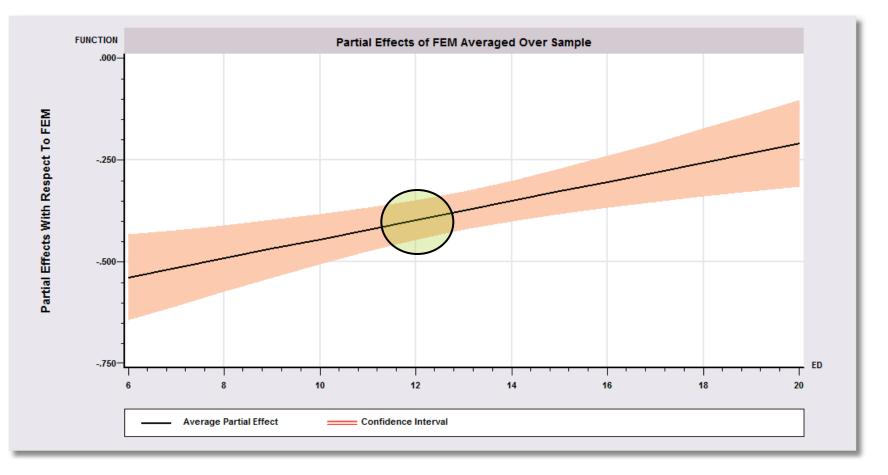
Simple Linear Regression (semiparametric)

6-28/41

Multiple Regression

Ordinary LHS=LWAGE Regression Residual Total Fit Model test	least squares Mean Standard devia No. of observa Sum of Squares Sum of Squares Sum of Squares Standard erros R-squared F[9, 4155]	= ation = ations = s = s = s =	6. - 34 54 88	67635 46151 4165 5.763 1.142 6.905 36089 38985 98231	DegFreedom 9 4155 4164 Root MSE R-bar squared Prob F > F*	Mean square 38.41812 .13024 .21299 .36045 1 .38853 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
Constant ED EXP WKS OCC SOUTH SMSA MS FEM UNION	5.44028*** .05682*** .01040*** .00525*** 14867*** 07024*** .13241*** .08568*** 37561*** .09995***	.07208 .00267 .00054 .00111 .01507 .01279 .01235 .02108 .02577 .01318	$\begin{array}{c} 75.48\\ 21.25\\ 19.37\\ 4.71\\ -9.87\\ -5.49\\ 10.72\\ 4.06\\ -14.58\\ 7.58\end{array}$.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	.05158 .00935 .00306 17819 09530 .10820 .04435 42611	5.58155 .06207 .01145 .00743 11914 04517 .15663 .12700 32511 .12579

Interaction Effect Gender Difference in Partial Effects


Ordinary LHS=LWAGE Regression Residual Total Fit Model test	Sum of Squares Sum of Squares - Standard erro: R-squared	= ation = ations = 3 = 3 = 3 =	34 53 88	 67635 46151 7.213 9.692 6.905 36045 39149 24949	DegFreedom 10 4154 4164 Root MSE R-bar square Prob F > F*	Mean square 34.72132 .12992 .21299 .35997 d .39002 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Z		
Constant	5.47075***	.07256	75.39	.0000	5.32853	5.61298
ED	.05458***	.00275	19.81	.0000	.04918	.05998
EXP	.01035***	.00054	19.29	.0000	.00930	.01140
WKS	.00528***	.00111	4.74	.0000		.00746
OCC	14659***	.01506	-9.73	.0000		11707
SOUTH	07176***	.01278	-5.61	.0000		04671
SMSA	.13351***	.01234	10.82	.0000		.15770
MS	.08392***	.02107	3.98	.0001		.12520
FEM	67961***	.09456	-7.19	.0000		49427
UNION	.09496***	.01325	7.17	.0000		.12093
ED*FEM	.02350***	.00703	3.34	.0008	.00971	.03729
***, **, * ==> Significance at 1%, 5%, 10% level.						

Partial Effect of a Year of Education $\partial E[\log Wage]/\partial ED = \beta_{ED} + \beta_{ED*FEM} *FEM$ Note, the effect is positive. Effect is larger for women.

Partial Effects Analysis for Linear Regression Function							
Effects on function with respect to ED Results are computed by average over sample observations Partial effects for continuous ED computed by differentiation Effect is computed as derivative = df(.)/dx							
df∕dED (Delta method)	Partial Effect		t	95% Confidence	Interval		
APE. Function	.05723	.00267	21.40	.05199	.06247		
FEM = .00 Average effect				.04918			
FEM = 1.00 Average effect		.00690	11.32	.06456	.09161		

6-31/41

Gender Effect Varies by Years of Education -0.67961 is misleading

Difference in Differences

With two periods,

 $\Delta y_{it} = y_{i2} - y_{i1} = \delta_0 + (\mathbf{x}'_{i2} - \mathbf{x}'_{i1})\mathbf{\beta} + u_i$ Consider a "treatment, D_i," that takes place between time 1 and time 2 for some of the individuals $\Delta y_i = \delta_0 + (\Delta \mathbf{x}_i)'\mathbf{\beta} + \delta_1 D_i + u_i$ D_i = the "treatment dummy"

This is a linear regression model. If there are no regressors,

 $\hat{\delta}_1 = \overline{\Delta y}$ | treatment - $\overline{\Delta y}$ | control

= "difference in differences" estimator.

 $\hat{\delta}_0$ = Average change in y_i for the "treated"

6-33/41

Difference-in-Differences Model

With two periods and strict exogeneity of D and T,

 $\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{D}_{it} + \beta_2 \mathbf{T}_t + \beta_3 \mathbf{T}_t \mathbf{D}_{it} + \varepsilon_{it}$

 D_{it} = dummy variable for a treatment that takes place between time 1 and time 2 for some of the individuals, T_t = a time period dummy variable, 0 in period 1,

1 in period 2.

This is a linear regression model. If there are no regressors,

Using least squares,

$$\mathbf{b}_3 = (\overline{\mathbf{y}}_2 - \overline{\mathbf{y}}_1)_{\mathsf{D}=1} - (\overline{\mathbf{y}}_2 - \overline{\mathbf{y}}_1)_{\mathsf{D}=0}$$

Difference in Differences

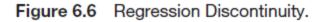
$$\begin{aligned} \mathbf{y}_{it} &= \beta_0 + \beta_1 \mathbf{D}_{it} + \beta_2 \mathbf{T}_t + \beta_3 \mathbf{D}_{it} \mathbf{T}_t + \mathbf{\beta}' \mathbf{x}_{it} + \varepsilon_{it}, t = 1, 2 \\ \Delta \mathbf{y}_{it} &= \beta_2 + \beta_3 \mathbf{D}_{i2} + \Delta(\mathbf{\beta}' \mathbf{x}_{it}) + \Delta \varepsilon_{it} \\ &= \beta_2 + \beta_3 \mathbf{D}_{i2} + \mathbf{\beta}'(\Delta \mathbf{x}_{it}) + \mathbf{u}_i \\ \left(\Delta \mathbf{y}_{it} \mid \mathbf{D} = \mathbf{1} \right) - \left(\Delta \mathbf{y}_{it} \mid \mathbf{D} = \mathbf{0} \right) \\ &= \beta_3 + \mathbf{\beta}' \Big[\left(\Delta \mathbf{x}_{it} \mid \mathbf{D} = \mathbf{1} \right) - \left(\Delta \mathbf{x}_{it} \mid \mathbf{D} = \mathbf{0} \right) \Big] \end{aligned}$$

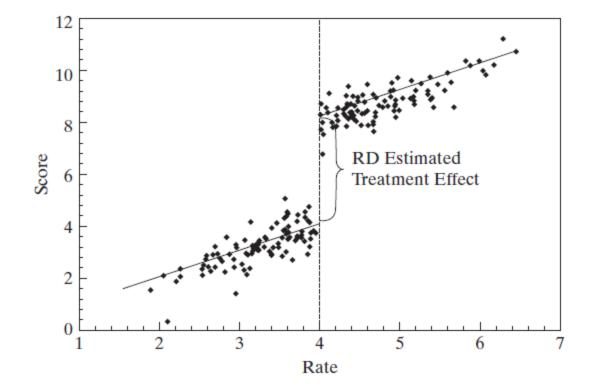
If the same individual is observed in both states, the second term is zero. If the effect is estimated by averaging individuals with D = 1 and different individuals with D=0, then part of the 'effect' is explained by change in the covariates, not the treatment.

SAT Tests

Example 6.8 SAT Scores

Each year, about 1.7 million American high school students take the SAT test. Students who are not satisfied with their performance have the opportunity to retake the test. Some students take an SAT prep course, such as Kaplan or Princeton Review, before the second attempt in the hope that it will help them increase their scores. An econometric investigation might consider whether these courses are effective in increasing scores. The investigation might examine a sample of students who take the SAT test twice, with scores y_{i0} and y_{i1} . The time dummy variable T_t takes value $T_0 = 0$ "before" and $T_1 = 1$ "after." The treatment dummy variable is $D_i = 1$ for those students who take the prep course and 0 for those who do not. The applicable model would be (6-3),


SAT Score_{*i*,*t*} = $\beta_1 + \beta_2$ 2ndTest_{*t*} + β_3 PrepCourse_{*i*} + δ 2ndTest_{*t*} × PrepCourse_{*i*} + $\varepsilon_{i,t}$.


The estimate of δ would, in principle, be the treatment, or prep course effect.

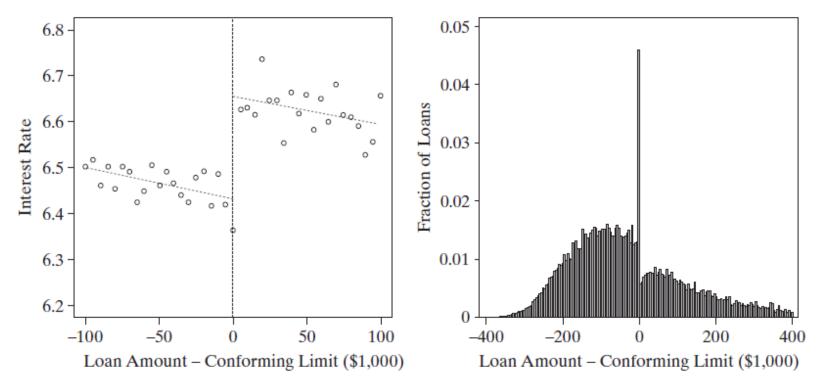
Using least squares, $d_3 = (\overline{\text{Score}}_2 - \overline{\text{Score}}_1)_{\text{TestPrep}=1} - (\overline{\text{Score}}_2 - \overline{\text{Score}}_1)_{\text{TestPrep}=0}$ Potential **x** = Income, Parents' Education, GPA

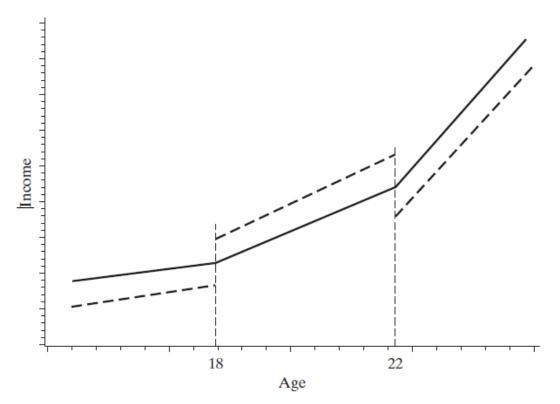
6-36/41


Abrupt Effect on Regression at a Specific Level of x

Part 6: Functional Form

6-37/41




FIG. 2.—Mean Interest Rate Relative to the Conforming Limit, Fixed-Rate Mortgages Only (2006). This figure plots the mean interest rate for fixed rate mortgages originated in 2006 as a function of the loan amount relative to the conforming limit. Each dot represents the mean interest rate within a given \$5,000 bin relative to the limit. The dashed lines are predicted values from a regression fit to the binned data allowing for changes in the slope and intercept at the conforming limit. Sample includes all loans in the LPS fixedrate sample that fall within \$100,000 of the conforming limit. See text for details on sample construction.

6-38/4 ı

FIG. 3.—Loan Size Distribution Relative to the Conforming Limit. This figure plots the fraction of all loans that are in any given \$5,000 bin relative to the conforming limit. Data are pooled across years and each loan is centered at the conforming limit in effect at the date of origination, so that a value of 0 represents a loan at exactly the conforming limit. Sample includes all transactions in the primary DataQuick sample that fall within \$400,000 of the conforming limit. See text for details on sample construction.

Useful Functional Form: Kinked Regression

6-39/41

effect. The function we wish to estimate is

Let

$$E[income | ag|e] = \alpha^{0} + \beta^{0} age \quad \text{if } age < 18,$$

$$\alpha^{1} + \beta^{1} age \quad \text{if } age \ge 18 \text{ and } age < 22,$$

$$\alpha^{2} + \beta^{2} age \quad \text{if } age \ge 22.$$

$$d_{1} = 1 \quad \text{if } age \ge t_{1}^{*},$$

$$d_{2} = 1 \quad \text{if } age \ge t_{2}^{*},$$

where $t_1^* = 18$ and $t_2^* = 22$. To combine the three equations, we use

income =
$$\beta_1 + \beta_2 age + \gamma_1 d_1 + \delta_1 d_1 age + \gamma_2 d_2 + \delta_2 d_2 age + \varepsilon$$
.

This produces the dashed function Figure 6.4. The slopes in the three segments are β_2 , $\beta_2 + \delta_1$, and $\beta_2 + \delta_1 + \delta_2$. To make the function *continuous*, we require that the segments join at the thresholds—that is,

$$\beta_1 + \beta_2 t_1^* = (\beta_1 + \gamma_1) + (\beta_2 + \delta_1) t_1^* \text{ and} (\beta_1 + \gamma_1) + (\beta_2 + \delta_1) t_2^* = (\beta_1 + \gamma_1 + \gamma_2) + (\beta_2 + \delta_1 + \delta_2) t_2^*.$$

These are linear restrictions on the coefficients. The first one is

 $\gamma_1 + \delta_1 t_1^* = 0 \quad \text{or} \quad \gamma_1 = -\delta_1 t_1^*.$

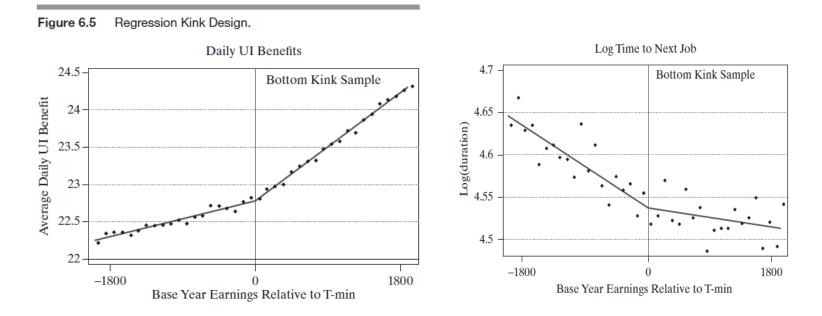
Doing likewise for the second, we obtain

income =
$$\beta_1 + \beta_2 age + \delta_1 d_1 (age - t_1^*) + \delta_2 d_2 (age - t_2^*) + \varepsilon$$
.

Constrained least squares estimates are obtainable by multiple regression, using a constant and the variables

$$x_1 = age,$$

 $x_2 = age - 18$ if $age \ge 18$ and 0 othewise,
 $x_3 = age - 22$ if $age \ge 22$ and 0 othewise.


Part 6: Functional Form

6-40/41

Kinked Regression and Policy Analysis: Unemployment Insurance

Example 6.12 Policy Analysis Using Kinked Regressions

Discontinuities such as those in Figure 6.4 can be used to help identify policy effects. Card, Lee, Pei, and Weber (2012) examined the impact of unemployment insurance (UI) on the duration of joblessness in Austria using a regression kink design. The policy lever, UI, has a sharply defined benefit schedule level tied to base year earnings that can be traced through to its impact on the duration of unemployment. Figure 6.5 [from Card et al. (2012, p. 48)]

6-41/41