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Terms of Art 

 Estimates and estimators 

 Properties of an estimator - the sampling 

distribution 

 “Finite sample” properties as opposed to 

“asymptotic” or “large sample” properties 

 Scientific principles behind sampling 

distributions and ‘repeated sampling’ 
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Application: Health Care Panel Data 
German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods 

Data downloaded from Journal of Applied Econometrics Archive.  There are altogether 27,326 

observations.  The number of observations  per household ranges from 1 to 7.   

(Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).  

Variables in the file are 

                   DOCVIS     =  number of doctor visits in last three months 

                   HOSPVIS   =  number of hospital visits in last calendar year 

                   DOCTOR   =  1(Number of doctor visits > 0) 

                   HOSPITAL =  1(Number of hospital visits > 0) 

                   HSAT        =  health satisfaction, coded 0 (low) - 10 (high)   

                   PUBLIC     =  insured in public health insurance = 1; otherwise = 0 

                   ADDON  =  insured by add-on insurance = 1; otherswise = 0 

                   HHNINC  =  household nominal monthly net income in German marks / 10000. 

                                             (4 observations with income=0 were dropped) 

                   HHKIDS  =  children under age 16 in the household = 1; otherwise = 0 

                   EDUC  =  years of schooling  

                   AGE  =  age in years 

                   MARRIED  =  marital status 

For now, treat this sample as if it were a cross section, and as if it were the full population. 
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Population Regression of  

Household Income on Education 

The population value of  is +0.020 
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Sampling Distribution 

A sampling experiment:  Draw 25 observations at random from the 

population. Compute the regression.  Repeat 100 times.  Display 

estimated slopes in a histogram. 

   

Resampling y and x.  Sampling variability over y, x,  

 

 matrix ; beduc=init(100,1,0)$ 

 proc$ 

 draw ; n=25 $ 

 regress; quietly ; lhs=hhninc ; rhs = one,educ $ 

 matrix ; beduc(i)=b(2) $ 

 sample;all$ 

 endproc$ 

 execute ; i=1,100 $ 

 histogram;rhs=beduc; boxplot $ 
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How should we interpret this variation in the regression slope? 

Sample mean = 0.022 

The least squares estimator is random. In repeated random 

samples, it varies randomly above and below . 
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The Statistical Context  

of Least Squares Estimation 

The sample of data from the population:  

Data generating process is  y = x +  

The stochastic specification of the regression 

model:  Assumptions about the random . 

Endowment of the stochastic properties of the 

model upon the least squares estimator.  The 

estimator is a function of the observed 

(realized) data.  
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Least Squares as a Random Variable 
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Deriving the Properties of b 

b = a parameter vector + a linear combination of 
the disturbances, each times a vector. 

Therefore, b is a vector of random variables. 

We do the analysis conditional on an X, then show 
that results do not depend on the particular X in 
hand, so the result must be general – i.e., 
independent of X.  
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Properties of the LS Estimator:  

(1) b is unbiased 

Expected value and the property of unbiasedness. 

 

E[b|X] =  E[ + (XX)-1X|X]  

           =   + (XX)-1XE[|X] 

           =   + 0 

    =   

E[b]     =  EX{E[b|X]} (The law of iterated expectations.) 

            =  EX{} 

            =  . 
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A Sampling Experiment: Unbiasedness 

X is fixed in repeated samples 

Holding X fixed.   Resampling over  

 

draw;n=25  $  Draw a particular sample of 25 observations 

matrix   ; beduc = init(1000,1,0)$ 

proc$ 

? Reuse X, resample epsilon each time, 1000 samples. 

   create ; inc = .12609+.01996*educ + r nn(0,.17071) $ 

   regress; quietly ; lhs=inc ; rhs = one,educ $ 

   matrix ; beduc(i)=b(2) $ 

endproc$ 

execute ; i=1,1000 $ 

histogram;rhs=beduc ;boxplot$ 
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1000 Repetitions of b|x 
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Using the Expected Value of b 

Partitioned Regression 

A Crucial Result About Specification: 
 

     y  =  X11 + X22 +  
 

Two sets of variables.  What if the regression is 
computed without the second set of variables? 
 

What is the expectation of the "short" regression 
estimator?  E[b1|(y = X11 + X22 + )] 

                            b1  =  (X1X1)
-1X1y 
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The Left Out Variable Formula 

“Short” regression means we regress y on X1 when 

            y = X11 + X22 +  and 2 is not 0 

(This is a VVIR!)  

        b1  =  (X1X1)
-1X1y  

              = (X1X1)
-1X1(X11 + X22 + )  

              = (X1X1)
-1X1X11 + (X1X1)

-1X1 X22  

                                       + (X1X1)
-1X1)  

    E[b1]  =  1  +  (X1X1)
-1X1X22 

 

Omitting relevant variables causes LS to be “biased.” 

This result educates our general understanding about regression. 
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Application 

The (truly) short regression estimator is biased. 

Application:   

    Quantity  =  1Price  +  2Income  +   

If you regress Quantity only on Price and leave out 

Income.  What do you get? 
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Estimated ‘Demand’ Equation 

Shouldn’t the Price Coefficient be Negative? 
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Application: Left out Variable 

Leave out Income.  What do you get? 

  

  

 

In time series data, 1  <  0,  2  >  0  (usually) 

Cov[Price,Income]  >  0 in time series data. 

So, the short regression will overestimate the price 
coefficient.  It will be pulled toward and even past zero. 

 

Simple Regression of G on a constant and PG 

Price Coefficient should be negative. 

 
 
 

1 1 2

Cov[Price,Income]
E[b ] =β + β

Var[Price]
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Multiple Regression of G on Y and PG.   

The Theory Works! 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=G        Mean                 =      226.09444 

             Standard deviation   =       50.59182 

             Number of observs.   =             36 

Model size   Parameters           =              3 

             Degrees of freedom   =             33 

Residuals    Sum of squares       =     1472.79834 

             Standard error of e  =        6.68059 

Fit          R-squared            =         .98356 

             Adjusted R-squared   =         .98256 

Model test   F[  2,    33] (prob) =   987.1(.0000) 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -79.7535***      8.67255       -9.196   .0000 

       Y|     .03692***       .00132       28.022   .0000      9232.86 

      PG|   -15.1224***      1.88034       -8.042   .0000      2.31661 

--------+------------------------------------------------------------- 
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The Extra Variable Formula 

A Second Crucial Result About Specification: 

         y  =  X11 + X22 +   but 2 really is 0. 

Two sets of variables.  One is superfluous.  What if the 

regression is computed with it anyway? 

The Extra Variable Formula:  (This is a VIR!)   

     E[b1.2| 2 = 0]  =  1 

The long regression estimator in a short regression is 

unbiased.) 

Extra variables in a model do not induce biases.  Why 

not just include them?  We will develop this result. 
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(2)  The Sampling Variance of b 

     Assumption about disturbances: 

 i has zero mean and is uncorrelated with every other j  

 Var[i|X] = 2.  The variance of i does not depend on 

any data in the sample.  
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Conditional Variance  

of the Least Squares Estimator 
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Unconditional Variance  

of the Least Squares Estimator 
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Variance Implications of  

Specification Errors: Omitted Variables 

Suppose the correct model is  

        y = X11 + X22 + .  I.e., two sets  of variables.   

        Compute least squares omitting X2.  Some easily 

  proved results: 

Var[b1] is smaller than Var[b1.2]. Proof: Var[b1] = 2(X1’X1)
-1.  

Var[b1.2] = 2(X1’M2X1)
-1.  To compare the matrices, we can 

ignore 2.  To show that Var[b1] is smaller than Var[b1.2], 

we show that its inverse is bigger.  So, is 

[(X1’X1)
-1]-1 larger than [(X1’M2X1)

-1]-1? 

Is X1’X1 larger than  X1’X1 – X1’X2(X2’X2)
-1X2’X1?  Obviously. 
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Variance Implications of  

Specification Errors: Omitted Variables 

       I.e., you get a smaller variance when you omit X2.  

   

       Omitting X2 amounts to using extra information (2 = 0).  

Even if the information is wrong (see the next result), 

it reduces  the variance.  (This is an important result.)  

It may induce a bias, but either way, it reduces variance. 

 

     b1 may be more “precise.”   

     Precision  = Mean squared error   

                      = variance + squared bias. 

    Smaller variance but positive bias.  If bias is small, may  
still favor the short regression. 
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Specification Errors-2 

 Including superfluous variables:  Just reverse the 

results. 

Including superfluous variables increases 

variance.  (The cost of not using information.) 

Does not cause a bias, because if the variables in 

X2 are truly superfluous, then 2 = 0,  

so E[b1.2] = 1+C2 = 1  



Part 7: Finite Sample Properties of LS 7-28/72 

Linear Restrictions 

Context:  How do linear restrictions affect the properties of 
the least squares estimator? 

         Model:      y  =  X  +   

         Theory (information)    R  -  q  =  0 

Restricted least squares estimator: 

          b*  =  b  -  (XX)-1R[R(XX)-1R]-1(Rb - q) 

Expected value: E[b*]  =    - (XX)-1R[R(XX)-1R]-1(Rβ - q) 

Variance:         2(XX)-1 - 2 (XX)-1R[R(XX)-1R]-1 R(XX)-1 

          = Var[b] – a nonnegative definite matrix < Var[b] 

Implication: (As before) nonsample information reduces 
the variance of the estimator. 
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Interpretation 

Case 1:  Theory is correct:   R  -  q  =  0  
           (the restrictions do hold). 

               b* is unbiased 

               Var[b*]  is smaller than Var[b] 

Case 2:  Theory is incorrect: R  -  q    0  
           (the restrictions do not hold). 

              b* is biased – what does this mean? 

              Var[b*]  is still smaller than Var[b] 
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Restrictions and Information 

How do we interpret this important result? 

  The theory is "information" 

  Bad information leads us away from "the truth" 

  Any information, good or bad, makes us more certain 
  of our answer. In this context, any information reduces 
  variance. 

What about ignoring the information? 

     Not using the correct information does not lead us 
   away from "the truth" 

  Not using the information foregoes the variance 
   reduction - i.e., does not use the ability to reduce 
  "uncertainty." 
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(3) Gauss-Markov Theorem 

A theorem of Gauss and Markov:  Least Squares is the 

minimum variance linear unbiased estimator (MVLUE) 

  

1.  Linear estimator 

2.  Unbiased:  E[b|X] = β 

  

Theorem:  Var[b*|X] – Var[b|X] is nonnegative definite for 

any other linear and unbiased estimator b* that is not 

equal to b. 

Definition: b is efficient in this class of estimators. 
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Implications of Gauss-Markov 

 Theorem: Var[b*|X] – Var[b|X] is nonnegative 

definite for any other linear and unbiased 

estimator b* that is not equal to b.  Implies: 

 bk = the kth particular element of b. 

Var[bk|X]  =  the kth diagonal element of Var[b|X] 

Var[bk|X]  < Var[bk*|X] for each coefficient. 

 cb = any linear combination of the elements of 

b. Var[cb|X]  < Var[cb*|X] for any nonzero c 

and b* that is not equal to b. 
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Aspects of the Gauss-Markov Theorem 

Indirect proof:  Any other linear unbiased estimator has a 
larger covariance matrix. 

Direct proof: Find the minimum variance linear unbiased 
estimator.  It will be least squares. 

Other estimators 

    Biased estimation – a minimum mean squared error 
estimator.  Is there a biased estimator with a smaller 
‘dispersion’? Yes, always 

Normally distributed disturbances – the Rao-Blackwell 
result.  (General observation – for normally distributed 
disturbances, ‘linear’ is superfluous.) 

Nonnormal disturbances - Least Absolute Deviations and 
other nonparametric approaches may be better in small 
samples 
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(4)  Distribution 
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Summary: Finite Sample Properties of b 

(1) Unbiased: E[b]= 

(2) Variance:  Var[b|X] = 2(XX)-1  

(3) Efficiency: Gauss-Markov Theorem with all 

implications 

(4) Distribution: Under normality,  

  b|X ~ Normal[, 2(XX)-1
 ] 

     (Without normality, the distribution is generally 

     unknown.) 
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Estimating the Variance of b 

    The true variance of b|X is 2(XX)-1 .  We 

consider how to use the sample data to estimate 

this matrix.  The ultimate objectives are to form 

interval estimates for regression slopes and to 

test hypotheses about them.  Both require 

estimates of the variability of the distribution.  

We then examine a factor which affects how 

"large" this variance is, multicollinearity. 
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Estimating 2 

 

Using the residuals instead of the disturbances:   

The natural estimator:  ee/n as a sample 

         surrogate for E[/n] 

Imperfect observation of i, ei  =  i  - ( - b)xi  

Downward bias of ee/n.   

We obtain the result E[ee|X]  =  (n-K)2 
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Expectation of ee 
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Method 1: 

E[ ] E

E[ trace ( ) ] scalar = its trace
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Estimating σ2 

The unbiased estimator is s2 = ee/(n-K).   

 

(n-K) is a “degrees of freedom correction” 

 

Therefore, the unbiased estimator of 2 is  

           s2 = ee/(n-K) 
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Method 2: Some Matrix Algebra 

2E[ ]  trace 

What is the trace of ?   Trace of square matrix = sum of diagonal elements.

 is idempotent, so its trace equals its rank.  

   Its rank equals the numb

e'e|X M 

M

(Result A - 108)  M

(Theorem A.4)



er of nonzero characeristic roots.

Characteric Roots :  Signature of a Matrix = Spectral Decomposition

                            = Eigen (own) value Decomposition

  =  ' where 

   

(Definition A.16)  A C C

                           = a matrix of columns such that ' = '  = 

                            = a diagonal matrix of the characteristic roots

                                  (Elements of  ma

C CC C C I



 y be zero.)
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Decomposing M 



  

2 2

2 2

Useful Result:  If  = ' is the spectral

decomposition, then '  (just multiply)

 = ,  so .  All of the characteristic

roots of  are 1 or 0.  How many of each?

trace( ) = trace( ')=trace(

A C C

A C C

M M

M

A C C





 ' )=trace( )

Trace of a matrix equals the sum of its characteristic

roots.  Since the roots of  are all 1 or 0, its trace is

just the number of ones, which is n-K as we saw.

C C

M

 
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Example: Characteristic Roots of a 

Correlation Matrix 

Note sum = trace = 6. 
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6

i1i
   i iR = CΛC cc
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Gasoline Data (first 20 of 52 observations) 
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X’X and its Roots 
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Var[b|X] 

Estimating the Covariance Matrix for b|X 

The true covariance matrix is   2 (X’X)-1  

The natural estimator is s2(X’X)-1  

 “Standard errors” of the individual coefficients are 

the square roots of the diagonal elements. 
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X’X 

(X’X)-1 

s2(X’X)-1 
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Standard Regression Results 
---------------------------------------------------------------------- 

Ordinary     least squares regression ........ 

LHS=G        Mean                 =  226.09444 

             Standard deviation   =   50.59182 

             Number of observs.   =         36 

Model size   Parameters           =          7 

             Degrees of freedom   =         29 

Residuals    Sum of squares       =  778.70227 

             Standard error of e  =    5.18187 <= sqr[778.70227/(36 – 7)] 

Fit          R-squared            =     .99131 

             Adjusted R-squared   =     .98951 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X 

--------+------------------------------------------------------------- 

Constant|   -7.73975        49.95915        -.155   .8780 

      PG|   -15.3008***      2.42171       -6.318   .0000      2.31661 

       Y|     .02365***       .00779        3.037   .0050      9232.86 

   TREND|    4.14359**       1.91513        2.164   .0389      17.5000 

     PNC|    15.4387        15.21899        1.014   .3188      1.67078 

     PUC|   -5.63438         5.02666       -1.121   .2715      2.34364 

     PPT|   -12.4378**       5.20697       -2.389   .0236      2.74486 

--------+------------------------------------------------------------- 
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Multicollinearity 
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Multicollinearity:  Short Rank of X 

Enhanced Monet Area Effect Model: Height 

and Width Effects 

Log(Price)  =  α +  β1 log Area + 

                               β2 log Aspect Ratio + 

                               β3 log Height + 

                               β4 Signature + ε 

     = α + β1x1 + β2x2 + β3x3 + β4x4  + ε 

(Aspect Ratio = Width/Height).  This is a 

perfectly respectable theory of art prices.  

However, it is not possible to learn about 

the parameters from data on prices, areas, 

aspect ratios, heights and signatures. 

                       x3 = (1/2)(x1-x2) (Not a Monet) 
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Multicollinearity: Correlation of Regressors 

Not “short rank,” which is a deficiency in the model.   

Full rank, but columns of X are highly correlated. 

A characteristic of the data set which affects the covariance matrix. 

 

Regardless,  is unbiased.   

Consider one of the unbiased coefficient estimators of k.  E[bk] = k 

 

Var[b] = 2(X’X)-1 .  The variance of bk is the kth diagonal element of 2(X’X)-1 . 

 

We can isolate this with the result Theorem 3.4, page 39 

 

Let [X,z] be [Other xs, xk] = [X1,x2] 

 

The general result is that the diagonal element we seek is [zMXz]-1 ,  

the reciprocal of the sum of squared residuals in the regression of z on X.  
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Variances of Least Squares Coefficients 

1

2

2
2 1

Model :   =   +    +  

Variance of 
c

Variance of c is the lower right element of this matrix.

Var[c]  =  [ ]  
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





    
        


 


X

y Xβ z

b X X X z

z X z z

z M z
z z

z



 

 

2 2

n 2

ii 1

n2 2

ii 1

2
2 1

n2 2

ii 1

regression of  on .

* *
The R  in that regression is R  = 1 - ,  so 

(z z)

* *  1 R (z z) .  Therefore,

Var[c]  =  [ ]  
1 R (z z)













   


 

 







z|X

X

z|X

z X

z z

z z

z M z

z|X



Part 7: Finite Sample Properties of LS 7-54/72 

Multicollinearity 

 

2
2 1

n2 2

ii 1

Var[c]  =  [ ]  
1 R (z z)

All else constant, the variance of the coefficient on  rises as the fit 

in the regression of  on the other variables goes up.  If the fit is

perfect, the 






 
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X

z|X

z M z

z

z

 2

variance becomes infinite.

"Detecting" multicollinearity?

1
Variance inflation factor:  VIF(z)  =  .

1 R z|X
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The Longley Data 
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Condition Number and  

Variance Inflation Factors 

Condition number 

larger than 30 is 

‘large.’ 

 

What does this 

mean? 
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Variance Inflation in Gasoline Market 

Regression Analysis:  

logG versus logIncome, logPG 
  

The regression equation is 

logG = - 0.468 + 0.966 logIncome - 0.169 logPG 

Predictor      Coef  SE Coef      T      P 

Constant   -0.46772  0.08649  -5.41  0.000 

logIncome   0.96595  0.07529  12.83  0.000 

logPG      -0.16949  0.03865  -4.38  0.000 

S = 0.0614287   R-Sq = 93.6%   R-Sq(adj) = 93.4% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       2  2.7237  1.3618  360.90  0.000 

Residual Error  49  0.1849  0.0038 

Total           51  2.9086 
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Gasoline Market 
Regression Analysis: logG versus logIncome, logPG, ...  

 

The regression equation is 

logG = - 0.558 + 1.29 logIncome - 0.0280 logPG 

               - 0.156 logPNC + 0.029 logPUC - 0.183 logPPT 

Predictor      Coef  SE Coef      T      P 

Constant    -0.5579   0.5808  -0.96  0.342 

logIncome    1.2861   0.1457   8.83  0.000 

logPG       -0.02797  0.04338 -0.64  0.522 

logPNC      -0.1558   0.2100  -0.74  0.462 

logPUC       0.0285   0.1020   0.28  0.781 

logPPT      -0.1828   0.1191  -1.54  0.132 

S = 0.0499953   R-Sq = 96.0%   R-Sq(adj) = 95.6% 

Analysis of Variance 

Source          DF       SS       MS       F      P 

Regression       5  2.79360  0.55872  223.53  0.000 

Residual Error  46  0.11498  0.00250 

Total           51  2.90858 

 

The standard error on logIncome doubles when the 

three variables are added to the equation while 

the coefficient only changes slightly. 
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NIST Longley Solution 
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Excel Longley Solution 
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The NIST Filipelli Problem 
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Certified Filipelli Results 



Part 7: Finite Sample Properties of LS 7-65/72 

Minitab Filipelli Results 
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Stata Filipelli Results 

In the Filippelli test, Stata found two coefficients so collinear that it dropped them from 

the analysis.  Most other statistical software packages have done the same thing, and 

most authors have interpreted this result as acceptable for this test. 
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Even after dropping two (random 

columns), results are only correct to 1 

or 2 digits. 
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Regression of x2 on all other variables 
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Using QR Decomposition 
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Multicollinearity 
There is no “cure” for collinearity.  Estimating something else is not helpful 

(principal components, for example). 

 

There are “measures” of multicollinearity, such as the condition number of X 
and the variance inflation factor.  

 

Best approach:  Be cognizant of it.  Understand its implications for estimation. 

 

What is better:  Include a variable that causes collinearity, or drop the variable 
and suffer from a biased estimator?   

       Mean squared error would be the basis for comparison.   

       Some generalities.  Assuming X has full rank, regardless of the condition, 

  b is still unbiased 

  Gauss-Markov still holds 
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How (not) to deal with multicollinearity in a  

Translog Production Function 

        

     
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

1 1 2 2 3 3

2 1 1
11 1 12 1 2 13 1 32 2

2 1
22 2 23 2 32

2

33 3

logy logx logx logx

          log x logx logx logx logx

          log x logx logx

          log x
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I have a sample of 24025 observations in a logit model. Two predictors are highly collinear 

(pairwaise corr .96; p<.001); vif are about 12 for each of them; average vif is  2.63; 

condition number is 10.26; determinant of correlation matrix is 0.0211; the two lowest eigen 

vales are 0.0792  and 0.0427.  Centering/standardizing variables does not change the 

story. 

  Note: most obs are zeros for these two variables; I only have approx 600 non-zero obs for 

these two variables  on a total of 24.025 obs. 

 

Both variable coefficients are significant and must be included in the model (as per 

specification). 

 

-- Do I have a problem of multicollinearity??  

-- Does the large sample size attenuate this concern, even if I have a correlation of .96?   

-- What could I look at to ascertain that the consequences of multi-collinearity are not a 

problem? 

-- Is there any reference I might cite, to say that given the sample size, it is not a problem? 

 

 

I hope you might help, because I am really in trouble!!! 


