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Terms of Art

Estimates and estimators

Properties of an estimator - the sampling
distribution

“Finite sample” properties as opposed to
“asymptotic” or “large sample” properties

Scientific principles behind sampling
distributions and ‘repeated sampling’
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Application: Health Care Panel Data

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods
Data downloaded from Journal of Applied Econometrics Archive. There are altogether 27,326
observations. The number of observations per household ranges from 1 to 7.
(Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

Variables in the file are

DOCVIS = number of doctor visits in last three months

HOSPVIS = number of hospital visits in last calendar year

DOCTOR = 1(Number of doctor visits > 0)

HOSPITAL = 1(Number of hospital visits > 0)

HSAT = health satisfaction, coded 0 (low) - 10 (high)

PUBLIC = insured in public health insurance = 1; otherwise = 0

ADDON = insured by add-on insurance = 1; otherswise = 0

HHNINC = household nominal monthly net income in German marks / 10000.
(4 observations with income=0 were dropped)

HHKIDS = children under age 16 in the household = 1; otherwise =0

EDUC = years of schooling

AGE = age in years

MARRIED = marital status

For now, treat this sample as if it were a cross section, and as if it were the full population.
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Population Regression of
Household Income on Education

Ordinary lea=st =gquares regression ... .. ... ...
LHS=HHHIHNC Mean = a5208
Standard deviation = 17691
—————————— Ho. of observation= = 27326 DegFresdom Mean =guare
Fegres=sion Sum of Sguares = Le. 8591 1 58 .35906
Feszidual Sum of Sguares = 796,319 27324 02914
Total Sum of Sgquares = A55 . 178 27325 .03130
—————————— Standard error of & = 17071  Hoot HSE 17071
Fit F—=quared = 06883 ERE-bar =gquared 08379
Model test F[ 1. 27324] = 2019 62500 PFrob F » F= Loooon
Model wasz estimated on Jul 21, 2012 at 02:20:01 FH
| Standard Prob. 95% Confidence
HHHINC| Coefficient Error z |z | :Z= Interval
Con=tant | C12609%xx .ang13 24 56 0000 11603 13615
EDULC | 01996 %%* NIlIEY: 44 94 0000 .01909 .02na3
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The population value of 3 is +0.020
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Sampling Distribution

A sampling experiment: Draw 25 observations at random from the
population. Compute the regression. Repeat 100 times. Display
estimated slopes in a histogram.

Resampling y and x. Sampling variability over vy, X, €

matrix ; beduc=init(100,1,0)$

proc$

draw ; n=25$

regress; quietly ; Ihs=hhninc ; rhs = one,educ $
matrix ; beduc(i)=b(2) $

sample;all$

endproc$

execute ;i=1,100 $

histogram;rhs=beduc; boxplot $
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The least squares estimator is random. In repeated random
samples, it varies randomly above and below .

12 = [
[

Frequency
[=r]
1

0 u
I I I 1
=012 010 T 032 .054 078
BEDUC

Sample mean = 0.022

How should we interpret this variation in the regression slope?
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The Statistical Context
of Least Squares Estimation

The sample of data from the population:
Data generating processis y =X + ¢

The stochastic specification of the regression
model. Assumptions about the random &.

Endowment of the stochastic properties of the
model upon the least squares estimator. The
estimator is a function of the observed
(realized) data.
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Least Squares as a Random Variable

b= (X'X)'X'y
— (X'X)_IX'(X[S + 8) — ﬁ + (xlx)—lxl8
b = The true parameter plus sampling error.

Also

b=(X'X)'Xy  =XX)"Y xy,
= B+(XX)'X'e =B+(X'X)'D> x5 =P+ (XX)'Xg
=B+ Ve

b = The true parameter plus a linear function of the disturbances.
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Deriving the Properties of b

b = a parameter vector + a linear combination of
the disturbances, each times a vector.

Therefore, b Is a vector of random variables.

We do the analysis conditional on an X, then show
that results do not depend on the particular X in
hand, so the result must be general —i.e.,
iIndependent of X.
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Properties of the LS Estimator:
(1) b is unbiased

Expected value and the property of unbiasedness.

E[b|X] = E[B + (X'X)1X"g|X]
= B+ (X'X)X'E[g| X]
= B+0
=P

E[b] = EJ{E[b|X]} (The law of iterated expectations.)

= Ex{B}

B.
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A Sampling Experiment: Unbiasedness
X Is fixed In repeated samples

Holding X fixed. Resampling over ¢

draw;n=25 $ Draw a particular sample of 25 observations

matrix ; beduc = init(1000,1,0)$

proc$

? Reuse X, resample epsilon each time, 1000 samples.
create ; inc =.12609+.01996*educ + r nn(0,.17071) $
regress; quietly ; Ins=inc ; rhs = one,educ $
matrix ; beduc(i)=b(2) $

endproc$

execute ; i=1,1000 $

histogram;rhs=beduc ;boxplot$
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100 =

75 =

Frequency
=
|

1000 Repetitions of b|x
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BEDUC
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Using the Expected Value of b
Partitioned Regression

A Crucial Result About Specification:

y = XB; +X,B, + ¢

Two sets of variables. What if the regression is
computed without the second set of variables?

What is the expectation of the "short" regression

estimator? E[b,|(y = XB; + X,B, + €)]
b, = (X{'X)*X'y
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The Left Out Variable Formula

“Short” regression means we regress y on X, when
y =X.B; + X,B, +€andf,isnot0
(This is a VVIR!)
by = (X'X) X'y
= (X" X)X (XqBy + XoB; + )
= (X X)X X By + (X" X)Xy XB,
+ (XXX, 'g)
E[b,] = By + (X' X)X X;B,

Omitting relevant variables causes LS to be “biased.”
This result educates our general understanding about regression.
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Application

The (truly) short regression estimator is biased.
Application:
Quantity = B,Price + B,Income + ¢

If you regress Quantity only on Price and leave out
Income. What do you get?

7-16/72 Part 7: Finite Sample Properties of LS



7-17172

Estimated ‘Demand’ Equation
Shouldn’t the Price Coefficient be Negative?

Simple Regression of G on a Constant and PG
— m_ *
] Fitted G
i @ = +154 0304
2'.'5—_ b= +31,1075
Rsq= 5324
250-]
225
L ]
200-]
1?5—-
o +*
E *
1 .
150 *
] "
*
+
— 126
L I I 1 I I 1 I
S0 1.00 1.50 2.00 2.50 200 3.50 4.00 4 .50
PG
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Application: Left out Variable

Leave out Income. What do you get?

Cov[Price,Income]j
2

Elb] =P, +( Var[Price]

In time series data, B; < 0, B, > 0 (usually)
Cov[Price,Income] > 0 in time series data.

So, the short regression will overestimate the price
coefficient. It will be pulled toward and even past zero.

Simple Regression of G on a constant and PG
Price Coefficient should be negative.
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Multiple Regression of G on Y and PG.
The Theory Works!

Ordinary least squares regression ............
LHS=G Mean = 226.09444
Standard deviation = 50.59182
Number of observs. = 36
Model size Parameters = 3
Degrees of freedom = 33
Residuals Sum of squares = 1472.79834
Standard error of e = 6.68059
Fit R-squared = .98356
Adjusted R-squared = . 98256
Model test F[ 2, 33] (prob) = 987.1(.0000)
________ +_____________________________________________________________
Variable| Coefficient Standard Error t-ratio P[|T|>t] Mean of X
________ +_____________________________________________________________
Constant| -79.7535%%% 8.67255 -9.196 .0000
Y| .03692*** .00132 28.022 .0000 9232.86
PG| -15.1224*** 1.88034 -8.042 .0000 2.31661
________ +_____________________________________________________________
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The Extra Variable Formula

A Second Crucial Result About Specification:
y = X.B;+ X,B, + € but B, really is O.

Two sets of variables. One is superfluous. What if the
regression is computed with it anyway?

The Extra Variable Formula: (Thisis a VIR!)

E[b,,|B,=0] = B,

The long regression estimator in a short regression is
unbiased.)

Extra variables in a model do not induce biases. Why
not just include them? We will develop this result.
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(2) The Sampling Variance of b

Assumption about disturbances:

= g has zero mean and is uncorrelated with every other g;

m Var[g|X] = 6%. The variance of ¢, does not depend on
any data in the sample.

Var

7-21/72

| X

o
0
0

| 0

o o 9 o

o O O

Q

=o’l

Part 7: Finite Sample Properties of LS



7-22[72

Conditional VVariance
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Var
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Conditional Variance
of the Least Squares Estimator

b = (X'X) X'y
= OXCX)IX(XB +¢) =B+ (X'X) ' Xe
E[b|X]=p (We extablished this earlier.)
Var[b | X]=E[(b-B)(b-B)"| X]
=E [{(X'X)-1 X'e} {e' X(X'X) | x]
= (X"X) ' X'E[ge' | X] X(X"X)
= (X"X) 1 X'62I X(X'X)
= 2 (X" X) 1 X'T X(X'X) ™
= 2 (X" X) X' X(X'X)
=o*(X'X)™
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b
E[b

Var[

Var[

o

Unconditional Variance
of the Least Squares Estimator

— (X'X) X'y
=B
X] = c2(X'X)™
= E{Var[b| X]} + Var{E[b|X]}
= GE[(X'X)™] + Var{B}
= GE[(X'X)'] + 0

We will ultimately need to estimate E[(X'X)™].
We will use the only information we have, X, itself.
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Variance Implications of
Specification Errors: Omitted Variables

Suppose the correct model is
y = X.B; + X,B,+ €. l.e., two sets of variables.

Compute least squares omitting X,. Some easily
proved results:

Var[b,] is smaller than Var[b, ,]. Proof: Var[b,] = o2(X;'X,)*.

Var[b, ,] = 6%(X;’M,X,)t. To compare the matrices, we can
ignore . To show that Var[b,] is smaller than Var[b, ,],
we show that its inverse is bigger. So, is

[(X X)) larger than [(X, M, X,)1]1?
Is XX, larger than X;’X; — X" X,(X,’X,)1X,’X,;? Obviously.
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Variance Implications of
Specification Errors: Omitted Variables

l.e., you get a smaller variance when you omit X,.

Omitting X, amounts to using extra information (8, = 0).
Even if the information is wrong (see the next result),
It reduces the variance. (This is an important result.)
It may induce a bias, but either way, it reduces variance.

b, may be more “precise.”
Precision = Mean squared error
= variance + squared bias.

Smaller variance but positive bias. If bias is small, may
still favor the short regression.
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Specification Errors-2

Including superfluous variables: Just reverse the
results.

Including superfluous variables increases
variance. (The cost of not using information.)

Does not cause a bias, because If the variables In
X, are truly superfluous, then 8, = 0,

so E[b;,] =B, +CB, = B
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Linear Restrictions

Context: How do linear restrictions affect the properties of
the least squares estimator?

Model: Xp +
Theory (information) RB g =
Restricted least squares estimator:
b* = b - X'X)R'[R(X'X)1R'T(Rb - q)
Expected value: E[b*] = B - (X’X)'R'[R(X'X)1R'TY(RB - q)
Variance: c?(X'X)1 - 62 (X' X)IR'[R(X'X)1R'T1 R(X'X)1
= Var[b] — a nonnegative definite matrix < Var[b]

Implication: (As before) nonsample information reduces
the variance of the estimator.
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Interpretation

Case 1: Theoryiscorrect: RB - q =0
(the restrictions do hold).

b* Is unbiased
Var[b*] I1s smaller than Var[b]

Case 2: Theoryisincorrect: R - g # 0
(the restrictions do not hold).

b* IS biased — what does this mean?
Var[b*] is still smaller than Var[b]
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Restrictions and Information

How do we interpret this important result?
e The theory is "information”
e Bad information leads us away from "the truth"

e Any information, good or bad, makes us more certain
of our answer. In this context, any information reduces
variance.

What about ignoring the information?

e Not using the correct information does not lead us
away from "the truth"

e Not using the information foregoes the variance
reduction - I.e., does not use the ability to reduce
‘uncertainty.”
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(3) Gauss-Markov Theorem

A theorem of Gauss and Markov: Least Squares is the
minimum variance linear unbiased estimator (MVLUE)

1. Linear estimator = B+Zin:1 Vg,
2. Unbiased: E[b|X] =

Theorem: Var[b*|X] — Var[b|X] is nonnegative definite for
any other linear and unbiased estimator b* that is not
equal to b.

Definition: b is efficient in this class of estimators.
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Implications of Gauss-Markov

O Theorem: Var[b*|X] — Var[b|X] is nonnegative
definite for any other linear and unbiased
estimator b* that is not equal to b. Implies:

o b, =the
Var[b,|X]

Kth particular element of b.
= the kth diagonal element of Var[b|X]

Var[b,|X]

< Var[b *|X] for each coefficient.

O c'b = any linear combination of the elements of
b. Var[c’'b|X] < Var|[c'b*|X] for any nonzero c
and b* that is not equal to b.
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Aspects of the Gauss-Markov Theorem

Indirect proof: Any other linear unbiased estimator has a
larger covariance matrix.

Direct proof: Find the minimum variance linear unbiased
estimator. It will be least squares.

Other estimators

Biased estimation —a minimum mean squared error
estimator. Is there a biased estimator with a smaller
‘dispersion’? Yes, always

Normally distributed disturbances — the Rao-Blackwell
result. (General observation — for normally distributed
disturbances, ‘linear’ is superfluous.)

Nonnormal disturbances - Least Absolute Deviations and
other nonparametric approaches may be better in small
samples
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(4) Distribution

Source of the random behavior of b=B+>"" v,

v, = (X'X)*x/ where x, is row i of X.
We derived E[b | X] and Var[b | X] earlier. The distribution
of b| X is that of the linear combination of the disturbances, «..

If & has a normal distribution, denoted ~ N[0,5%], then
b|X = B+ Ae wheree ~ N[0,6°I] and A = (X'X)'X..
b|X ~ N[B,Ac’IA']= N[B,c*(X'X)™"].

Note how b inherits its stochastic properties from e.
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Summary: Finite Sample Properties of b

(1) Unbiased: E[b]=P
(2) Variance: Var[b|X] = o2(X'X)?
(3) Efficiency: Gauss-Markov Theorem with all
Implications
(4) Distribution: Under normality,
b|X ~ Normal[B, c?(X'X) ]

(Without normality, the distribution is generally
unknown.)
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Estimating the Variance of b

The true variance of b|X is c?(X'X)1. We
consider how to use the sample data to estimate
this matrix. The ultimate objectives are to form
Interval estimates for regression slopes and to
test hypotheses about them. Both require
estimates of the variability of the distribution.

We then examine a factor which affects how
"large" this variance is, multicollinearity.
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Estimating o?

Using the residuals instead of the disturbances:

The natural estimator: e'e/n as a sample
surrogate for E[g’e/n]

Imperfect observation of g, e, = & - (B - b)'X,
Downward bias of e’e/n.
We obtain the result E[e’e|X]

(n-K)o?

7-37/72 Part 7: Finite Sample Properties of LS



Expectation of e'e

e =-y-Xb
=y -X(X'X)"'X'y
=[I-X(X'X)'X'ly
=My =M(XB + &) =MXp3 + Me =M¢
e'e = (Mg)'(Mg)
= g'M'Mg = ¢'MMg = ¢'Mg
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Method 1:

E[e'e | X] = E[¢'Me | X]
=E[ trace (¢'Meg | X) ] scalar = its trace
=E[ trace (Meg' | X) ] permute in trace
= [ trace E (Me¢' | X) ] linear operators
= [ trace ME (e¢'| X) ] conditioned on X

= [ trace Mc°I_ ] model assumption
= o°[trace M ] scalar multiplication and I matrix
=c’trace [I_ - X(X'X)™*X']
=c*{trace [I_] - trace[X(X'X)™* X' 1}
=o°{n - trace[(X'X)*X'X ]} permute in trace
=c°{n - trace[I, 1}
=o°{n - K}
Notice that E[e'e|X] is not a function of X.
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Estimating 02

The unbiased estimator is s? = e'e/(n-K).
(n-K) is a “degrees of freedom correction”

Therefore, the unbiased estimator of 2 is
s? = e’'e/(n-K)
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Method 2: Some Matrix Algebra

E[e'e| X] = c° trace M
What is the trace of M? Trace of square matrix = sum of diagonal elements.
(Result A -108) Mis idempotent, so its trace equals its rank.
(Theorem A.4) Its rank equals the number of nonzero characeristic roots.
Characteric Roots : Signature of a Matrix = Spectral Decomposition

= Eigen (own) value Decomposition
(Definition A.16) A = CAC' where

C = amatrix of columns such that CC'=C'C=1

A = a diagonal matrix of the characteristic roots

(Elements of A may be zero.)
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Decomposing M

Useful Result: If A = CAC' is the spectral
decomposition, then A* = CA*C' (just multiply)

M = M?, so A? = A. All of the characteristic

roots of M are 1 or 0. How many of each?

trace(A) = trace(CAC')=trace(AC'C)=trace(A)
Trace of a matrix equals the sum of its characteristic
roots. Since the roots of M are all 1 or 0, its trace is
just the number of ones, which is n-K as we saw.
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Example: Characteristic Roots of a
Correlation Matrix

Cell. 1 ﬂ E
1 2 3 4 ~
1 1 0.795578 0.908202 0.924205
2 0.795578 1 0.92875E 0.812462
3 0.908202 0.928755 1 0.963505
A 0.924205 0.812452 0.963605 1
3 0.903305 0.802773 0.954187 0.990628
B 0.886908 0.791689 0.956742 0.93902 0.987129

Hatrix REe=sult

—3» matrix;list;root{r}s

has 6 rows and

1
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5.53%1

.29845
13847
01478
00608
00260

1 colunn=.

Note sum = trace = 6.

| %
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B Matrix - R M=E3

[6. 6] Cell [1 X
1T | 2 | 3 | a4 | 5 | & |~
1 1 0.795573 0903202 0.924205 0.903905 (.856903
Z 0.795578 1 0.928756 0.8124562 0.802773 0.791689
3 0.905202 0.928756 1 0963605 0.954187 0956742
4 0.924205 0.812462 0963605 1 0990628 0.939062
LY 0903305 0802779 0.954187 0990628 1 0987139
G 0.805908 0.791629 0956742 0.989062 0.987129 i
b
6
—_ Cr . /
R=CA . MGG
1 2 3 4 5 6 e e
1 0.399548 0121844 0895708 -0.0406948 0127852 0.0722466 1] 5 53961
2 0.377099 0.840502 0.067997 0177137 0.0355656 0.337768 2| 29845
3 0.420955 0198986 0.132743 0.413014 -0.104492 .764252 3| .13847
4 0.419339 -0.258255 0.101987 0.0247916 0.862514 0.050123 4| .01478
5 0.416351 0.28231 0.222987 0750782  -0.325211 0166715 S| 00608
6 0.414441 03045 0339614 0491765  0348%7 056048 Ol 00260
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Gasoline Data (first 20 of 52 observations)

namnelist ;| = = one.log({gasp). log{pocincone), logipne), logipuc), log{ppt ) 5

Li=ting of current =ample
Line Ob=zerwvation logGASE logPCIHC logPHC logPlC logPPT
1 1 2.81349 9.08273 3.85439 3.28466 2.82138
2 2 2.83492 9.07761 3.83945 3.12236 2.89037
3 3 2.84549 9.12446 3.80221 3.06805 291777
4 4 2.87520 915377 3.83081 3.03013 2.95491
5 5 2.91761 9.15939 3.8815¢6 3.14415 2.99072
B B 2.90777 9.15197 3.91202 3.17805 3.03975
7 7 2.92187 9.17833 3.95508 3.28840 3.06805
a a 2.95032 9.18348 3.94158 3.21888 3.10009
9 9 2.94043 9. 20039 3.94158 3.25810 3.14415
10 10 2.94670 9. 23279 3.93789 3.34639 3.17805
11 11 2.94428 9. 254384 3.93183 3.35690 3.19048
12 12 2.93773 9. 31118 3.92938¢6 3.40120 3.20680
13 13 2.97487 9. 35824 3.90600 3.39451 3.22684
14 14 2.99763 9.39806 3.88773 3.36730 3.26194
15 15 3.03013 9.43004 3.89792 3.39786 3.31054
16 16 3.04476 9.46436 3.92593 3.42426 3.35690
17 17 3.07713 9.48517 3.94158 3.43076 3.43076
18 18 3.08603 9. 51510 3.97029 3.44042 3.56105
19 19 3.09331 9.54688 4. 01096 3.49651 3.63231
20 20 3.10620 9.58273 4. 00186 3.49953 3.67122
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X’X and its Roots

[ Miatrix - XX =R
[E. B] Cell |
1 | 2 | 3 | 1 | 5 | 6 |

1 A2 193.924 R03.093 22774 213.483 215,331

z 193.924 746713 1887.6 gE4.079 20842 ga2.7a2

3 h03.093 1887.6 487357 2211.09 2078.M 209316

4 227779 gE4.079 2211.09 1007.49 951,46 962 91

5 213,463 520,842 2075.01 551,46 504,166 517.147

b 215,331 a2 7ae 209316 962 91 N747 331.886

—» matriz:list.root{Ex)5

|
+
I 5474 .00
|
|
|
|

40,1954
1.10133
403257
116637
00102318
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Var[b|X]

Estimating the Covariance Matrix for b|X
The true covariance matrix is o2 (X’X)!
The natural estimator is s?2(X’X)1

“Standard errors” of the individual coefficients are
the square roots of the diagonal elements.
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[7.7] Cel: |
1 | 2 [ 3 | a4 | s | & | 7 |
1 3 83.398 332383 530 60.148 B4.371 38.815
2 83.398 248.04 838669 167867 164,992 251.2687 301,047
3 332383 833663 318054e+009 [ 64652e+005] 591993 859749 | 1.01845e+008
1 630 187867  6.4692e+006 14310 1277.71 197256 2384.18 XX
5 50.148 164.932 531599 1277.71 114542 171.935 205811
6 84.371 251.287 859749 197256 171.935 267.306 322011
7 38.815 301.047 | 1.01845e+006 2384.18 205.811 322011 391.845 @
. ; = : - - . | r : - : .
1 329516 158233 -0.0142015 345656 £.3863 2885512 5.3368
2 158233 0218408 0000315846  0.0830075 0665387 002755  0.287509
3 00142015 0.000315846 2.25808e-006 -0.000547423 0.000144603 -0.000330383  0.000935383 rv\-1
4 345656 00830075 0000547423 0136591 006195  0.0821448  -0.251126 (x X)
5 £3963 0665387 0000144603 -0.061965 862577 143238 1.23058
b 286512 002755 0000330383  0.0821448 143238 0540991 0350893
7 5338 0287509 0000995983 0261126 -1.23058  -0.360893 100971
< >
| 0.331335 92.8149 171.484 76,6652 143.303
0.00848103 22283 178668 -0.739767 7.72013 2 rv\-1
4993 0003883 -0.00887138 0.026744 S (X X)
52.8143 . : 220574 6.74318
171484 178668 0003883 —Tes% 38 421 -33.0434
766652 -0.739767  -0.00887138 220574 38464 :
143.303 772013 0026744 674318 33.0434 Qi v
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Ordinary
LHS=G
Model size
Residuals

Fit

Standard Regression Results

least squares regression

Mean

Standard deviation
Number of observs.

Parameters

Degrees of freedom
Sum of squares
Standard error of e

R-squared

Adjusted R-squared

226.

<= sqr[778.70227/(36 - 7)1

________ +_____________________________________________________________
t-ratio

Variable||Coefficient Standard Error

________ +_
Constant|
PG|
Y|
TREND |
PNC |
PUC |
PPT |

-7.73975
-15.3008***
NOZEIeEIMES
4.14359%~*
15.4387
-5.63438
-12.4378%*%*

7-49/72

P[|T|>t] Mean of X

8780

.0000 2.31661
.0050 9232.86
.0389 17.5000
.3188 1.67078
.2715 2.34364
.0236 2.74486
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Multicollinearity
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(Not a Monet)

7-51/72

Multicollinearity: Short Rank of X

Enhanced Monet Area Effect Model: Height
and Width Effects

Log(Price) = a+ B,log Area +
B, log Aspect Ratio +
B; log Height +
B, Signhature + €
=a+ ByXy + BX, + BaXg+ Bux, tE

(Aspect Ratio = Width/Height). This is a
perfectly respectable theory of art prices.
However, it is not possible to learn about
the parameters from data on prices, areas,
aspect ratios, heights and signatures.

Xz = (1/2)(X1-X,)
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Multicollinearity: Correlation of Regressors

Not “short rank,” which is a deficiency in the model.
Full rank, but columns of X are highly correlated.
A characteristic of the data set which affects the covariance matrix.

Regardless, B is unbiased.
Consider one of the unbiased coefficient estimators of B,. E[b,] = B,

Var[b] = a?(X’X)1 . The variance of b, is the kth diagonal element of ¢?(X’X)! .
We can isolate this with the result Theorem 3.4, page 39
Let [X,z] be [Other xs, X,] = [X{,X,]

The general result is that the diagonal element we seek is [2’Myz] ™t
the reciprocal of the sum of squared residuals in the regression of z on X.
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Variances of Least Squares Coefficients

Model: y =Xp + zy + ¢
_ b L[XX Xz]*
Variance of =c°| ,
C Z’X 7z
Variance of c is the lower right element of this matrix.
2

— 2[r 1 O
Var[c] = o[zZ'M,z] " = e
where z* = the vector of residuals from the regression of z on X.
: . z2'*z*
The R? in that regression is RZx = 1- —- , SO
Z- (Zi _7)2
i=1

2'*7%= (1-R%,)D." (z,—2)*. Therefore,

2

Vartel = oMl = s )g” 2 -2y
- hzIX ER
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Multicollinearity

2

o
L RL)Ye D

Var[c] = o’[zZM,z]" =

All else constant, the variance 9f the coefficient on z rises as the fit
in the regression of z on the othar variables goes up. If the fit is
perfect, the variance becomes infiRite.

"Detecting" multicollinearity?
1

Variance inflation factor: VIF(z) = ———.
(1-RZx)
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Regression Analysis: Expenditure versus Year, GasPrice, Income, P_NewCars, ...

Enalysis of Variance

Source
Regressicon
Year
GasPrice
Income
P NewCars
F UsedCars

BE PublicTrans

F_Durables

P Nondurables

P Services
Error
Total

Model Summary

5 BE-z3qg ER-=z3giad])

1.87000 99.91% 93,

Coefficients

Term
Constant
Year
GasPrice
Income

P NewCars

EF UsedCars

F PublicTrans
F_Durables

F Nondurables
P Serwvices

DF Rdj 55 Adj M5 F-Valus P-Va
9 168558 18728.7 5355.77 0.
1 42 41.7 11.91 0
1 1348 1347.7 SBE.SH 0
1 91 a0. 6 25.91 0
1 30 30.0 2.57 0
1 47 47.5 13.57 0
1 0 0.1 0.03 0
1 1z8 187.6 53.65 0
1 1 1.3 0.37 0
1 & 5.6 1.&80 0

42 147 3.5

51 1&B8705

E-szg(pred)

29% 99.83%
Coef SE Coef T-WValuse P-Value
1594 487 3.42 0.001
-0.540 0.243 -3.45 0.001
1.3404 0.0683 19.63 0.000
0.004522 0.000&888 5.09 0.000
0.645 0.220 2.93 0.00&

0.3079 0.0836 3.68 0.001

0.0142 0.0830 0.17 0.865

-1.4594 0.204 -7.32 0.000
0.132 0.216 0.8l 0.544
0.174 0.137 1.27 0.212

lue
ooa

.001
.000
.000
.008
.001
. 265
.000
.544
212

158.
a4.
354.
974,
265.
481.
g20.
la14.
1229.

43
62

o
o

93

F=]
o

06
a6

oo
oo

94
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The Longley Data

¥,¥1,¥%2 X3,X4,X5,¥6

60323 83.0 234289 2356 1590 107608 1947
61122 88.5 259426 2325 1456 108632 1948
60171 88.2 258054 3682 1616 109773 1949
61187 89.5 204599 3351 1650 110929 1950
63221 96.2 328975 2099 3099 112075 1951
63639 98.1 346999 1932 3594 113270 1952
64989 99.0 365385 1870 3547 115094 1953
63761 100.0 363112 3578 3350 116219 1954
bo019 101.2 397469 2904 3048 117388 1955
67857 104 .6 419180 2822 2857 118734 1956
68169 108 .4 442769 2936 2798 120445 1957
66513 110.8 444546 4681 2637 121950 1958
68655 112 .6 482704 3813 2552 123366 1959
69564 114.2 502601 3931 2514 125368 1960
69331 115.7 518173 4806 2572 127852 1961
70551 116.9 554894 4007 2827 130081 1962
TABLE 4.9 Longley Results: Dependent Variable Is Employment
1947-1961 Variance Inflation 1947-1962
Constant 1,459,415 1,169,087
Year —721.756 143.4638 —576.464
GNP Deflator —181.123 75.6716 —19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces —0.0749370 1.55319 —0.0101453

7-56/72

Part 7: Finite Sample Properties of LS



Condition Number and
Variance Inflation Factors

Characteri=tic Foot=s of X'X

Fe=sult | 1
________ +______________
1 24471 . 26 "
2 I 40 1927 Condition number
3 1.1014¢6 larger than 30 is
E 1169748
G | 00104e01 _
Condition Humber = =gr(8471. 26~ 00104601) What does this
= 7845 B111 mean?
VIFI = L2 B069923
WIFP( = 17 6932507
WIFPHC = 171 . 7227200
VIFPUOCZ = 115 . 3714230

VIFFFT

225.7317614
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Variance Inflation in Gasoline Market

Regression Analysis:

logG versus logIncome, logPG

The regression equation 1is

logG = - 0.468 + 0.966 logIncome - 0.169 logPG
Predictor Coef SE Coef T P
Constant -0.46772 0.08649 -5.41 0.000
logIncome 0.96595 0.07529 12.83 0.000 /
logPG -0.16949 0.03865 -4.38 0.000

S = 0.0614287 R-Sq = 93.6% R-Sq(adj) = 93.4%
Analysis of Variance

Source DF SS MS F P
Regression 2 2.7237 1.3618 360.90 0.000
Residual Error 49 0.1849 0.0038

Total 51 2.9086
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Gasoline Market

Regression Analysis: logG versus logIncome, logPG,

The regression equation is

logG = - 0.558 + 1.29 logIncome - 0.0280 logPG
- 0.156 1logPNC + 0.029 logPUC - 0.183 logPPT

Predictor Coef SE Coef T P

Constant -0.5579 0.5808 -0.96 0.342

logIncome 1.2861 0.1457 8.83 0.000/
logPG -0.02797 0.04338 -0.64 0.522

logPNC -0.1558 0.2100 -0.74 0.462

logPUC 0.0285 0.1020 0.28 0.781

logPPT -0.1828 0.1191 -1.54 0.132

S = 0.0499953 R-Sq = 96.0%
Analysis of Variance

Source DF SS
Regression 5 2.79360
Residual Error 46 0.11498
Total 51 2.90858

The standard error on

R-Sg(adj) = 95.6%

MS F P
0.55872 223.53 0.000
0.00250

logIncome doubles when the

three variables are added to the equation while
the coefficient only changes slightly.
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2StRD

The purpose of this project is to improve the accuracy of statistical software
by providing reference datasets with certified computational results that enable
the objective evaluation of statistical software.

Dataset Archives

e s

Background Information

Related Resources and Links

Project Members
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Analysis of Variance

Linear Regression

Markov Chain Monte Carlo

Nonlinear Regression

Univariate Summary Statistics
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NIST Longley Solution

Obh=erved Data

Hodel: Folynomial Class
? Parameters (EBO.B1.....E7?)
v = B0 + Bl=*xl + BZ=*x? + Bi*x3 + Bd*=zd + BLi#*xL + Bo*xbt + =
Certified Fegression Statistics
Standard Dewviation
Farameter Eztimate of Estimate
E0 —3482258 . 634595832 890420 . 383007373
El 15 . 0618722713733 a4 . 9149257747669
BZ —0.358191792925910E-01 0.334910077722432E-01
B3 2. 0202298038168 73 0.4883996816516949
E4 -1.03322686717359 0.214274163161675
ES —0.511041056535807E-01 0.226073200069370
BE& 1829 15146461355 405 4708499142212
Standard Frob. 95% Confidence
¥ Coefficient Error t |t | >T= Interval
Constant |—. 34823D4+07 %% 890420 .4 —-3.91 0036 —.54965D+07 —.146830D+07
i1 15. 06149 g4 .91493 .13 8631 =177 .0290 207 .1528
iz —. 03582 .03349 -1.07 3127 —-.11158 .03994
i3 —2 0202 3%%% .48840 -4 .14 0025 -3.12507 —-.91539
4 —1 . 03323%%x L21427 -4 .82 0009 -1.5179% —. 54851
i —. 05110 22607 —-.23 8262 —. 56252 46031
ie 1829 15%%%= 455 4785 4 02 .0030 798 .79 2859 52

'I—

7-61/72
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SUMMARY OUTPUT

Regression Statistics

Multiple F 0.997737

Excel Longley Solution

Estimate

-3482:258 . 63459582

15 . 0618722713733
—0.358191792925910E-01
-2.02022980381683
-1.03322686717359
—-0.511041056535807E-01

1829.15146461355

R Sguare 0.995479
Adjusted | 0.992465
Standard b 304.8541
Observati 16
ANOWVA
df 55 MS F gnificance F
Regressio 6 1.84E+08 30695400 330.2853 4.98E-10
Residual 9 B836424.1 92936.01
Total 15 1.85E+08
Coefficient:aandard Err t5tat | P-value lower 95%Upper 35%ower 95.0% pper 595.0%
Intercept -3482259 8%0420.4 -3.910&8 0.00356 -5496529 -14679583 -5496529 -1467988
A Variable 15.06187 B84.91493 0.177376 0.863141 -177.029 207.1528 -177.029 207.1528
X Variable -0.03582 0.033491 -1.06952 0.312681 -0.11158 0.039943 -0.11158 0.0359943
A Variable -2.02023 0.4884 -4.13p43 0.002535 -3.12507 -0.91539 -3.12507 -0.91539
X Variable -1.03323 0.214274 -4.82199 0.000944 -1.51795 -0.54351 -1.51795 -0.54351
A Variable -0.0511 0.226073 -0.22605 0.826212 -0.56252 0.460309 -0.56252 0.460309
X Variable 1829.151 455.4785 4.01589 0.003037 798.7875 2859.515 798.7875 2859.515
7-62/72
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The NIST Filipelli Problem

& filipellilim *

ﬂ Inzert Name:

=

READ; HOBS=82  HVAR=2 , HAMES=Y X%

0.8116 —6.8360120914 o
0.9072 —4. 324130045
0.9052 —4 . 358625055
0.9039 —4 358426747
0.8053 —6.9558523749
0.8377 -6 . 661145254 E
0.8667Y —6.3554629472
0.8809 —6.118102026
n.7975 -7 115148017
0.81e7 —6.315308569
remaining 7?7 obs=ervations
CREATE; X1=X ; XZ2=H=X ; H3=Hz=*¥ ; HK4=H3=I ;, HL=Ha=¥  Ho=EKG=I
|: E7=Xe=X . HB=X7*X ;. X9=X8*X : H10=X9=X3
REGRESS: LHS=Y ;FHS=0OHE X1 X2 X3, X4 X5 ¥e X7 8 X9 X103 il
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Certified Filipelli Results

Certified Regression Statistics
Standard Deviation

Parameter Estimate of Estimate

ED -14&7.48561422980 Z98.084530985537

Bl —2772.17959193342 559.779865474950

EZ -2316.37108160893 466.477572127796

B3 -1127.97394098372 227.204274477751

E4 —354_ 478233703349 71.6478660875927

BS -75.1242017393757 15.2897178747400

E& -10.8753180355343 2.23691159816033

BT -1.06221498588947 0.221624321934227

BB —0.670191154553408E-01 0.142363763154724E-01
BS —0.246781078275478E-02 0.535617408889821E-03
B10D —-0.402962525080404E-04 0.8%0632837373868E-05

Residual Standard Deviation 0.334801051324544E-02

R-Squared 0.996727416185620

Certified Analysis of Variance Table

Source of Degrees of Sums of Mean

Variation Freedom Squares Squares

Regression 10 0.242391619837339 0.242391619837339E-01
Fesidual 71 0.795851382172941E-03 0.112091743%968020E-04
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Minitab Filipelli Results

Regression Analysis: y versus X1, X2, x3, x4, x5, X6, x7, x8, x9, x10

* WABMNING * x3 i3 highly correlated with other predictors.
* WABRMNING * x4 is highly correlated with other predictors.
* WRAENING * x5 is highly correlated with other predictors.
* * i i i i .
: im;ﬂg . xg :!.s Elgiiy cnrreiazeg leE nzier prfgj..cznrs. Estimate
BB X7 iz highly correlated wi other predictors.
* WABMNING * x8 is highly correlated with other predictors. ~1467.48961422980
* WLENING * %9 i3 highly correlated with other predictors. ~2772.17959193342
™ , Ciom i -2316.37108160893
g regresdion equation is
y = - 1487 - 2772 x1 - 2316 ®x2 - 1128 x3 - 354 x4 - 75.1 x5 - 10.9 x6 - 1.068 x7 -1127.97394098372
- 0.0670 %8 - 0.00247 x9 - 0.000040 x10 -354.478233703349
Breds ot SF Cont . . -75.1242017393757
redictor oe oe
Conatant -14&7.5 288.1 -4.%92 0.000 -~10.8753180355343
x1 -2772.1 559.8 -4.95 0.000 -1.06221498588947
2 231623 16,5 497 0.000 -0.670191154593408E-01
X - . . -4, .
x4 -354.47 71.65 -4.95 0.000 -0.246781078275479E-02
x5 -75.12 15.29 -4.91 0.000 -0.402962525080404E-04
K& -10.875 2.237 -4.8& 0.000
xT -1.0622 0.2216¢ -4.79 0.000
xE -0.06702 0.01424 -4.71 0.000
xg -0.0024678 0.0005356 -4.61 0.000
Xx10 -0.00004030 0.00000897 -4.48 0,000

5 = 0.00334800 R-3g = 99.7% ER-Sg{adj) = 99.4%
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Source

Model
Residual

Stata Filipelli Results

.242114585
.00107287¢

8 .0302Zc4324
73 .000014687

Number of obs = g2
F( 8§, 73) = 2059.23
Prob > F = (0.0000
R-squared = 0.9585¢6
BAdj R-squared = 0.9951
Root MSE = .00383
Estimate

L — ~1467.48961422980

©.585386
(dropped)
-1.415%62
(dropped)
.305533
1216212
.0228691
.0023607
.0001291
2.94e-06
13.83021

Std. Err t
1.609771 5.95
L2137125 -6.0d
L.0417248 7.32
.01559331 7.63
.00z28893 7.92
.000z8%2 B.16
.0000154 8.37
2.44e-07 B.35
2.29365 6.03

=2772.17959193342
-2316.37108160893
-1127.97394098372
-354.478233703349
=15.1242017393757
-10.8753180355343
-1.06221498588947
-0.670191154593408E-01
-0.246781078275479E-02
-0.402962525080404E-04

In the Filippelli test, Stata found two coefficients so collinear that it dropped them from
the analysis. Most other statistical software packages have done the same thing, and
most authors have interpreted this result as acceptable for this test.

7-66/72
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Standard Frob. 953 Confidence

¥ Coefficient Error t |t ] >T* Interval
Con=tant 13 LLhBp*x= 2.28650 .93 .0ooo 9.0016 13 .11%5¢%
®1 9. 3931 6%%x 1.60468 .85 0000 &.19504 12.59129
#3 —1. 3941 3%%% 21302 -6 .54 0000 -1 81368 —. 96957
X5 L300 45 04159 P22 0000 21757 .38334
ih 1196 0%%x .015838 .54 0000 .08a03 15133
w7 02252 % .o0zas dO82  .0000 01673 02826
xa 0023 3= .oonze a.07 .00ooo0 00175 .ooz9n
#9 L0001 3% .15370-04 g.28 0000 .goo1o .0onle

H10| . 28946D-05%%x .34 25D-06 8.45 Qo000 . 22121D-05 . 35771D-05

x1 | 9.585386 1.609771
X2 | (dropped)
x3 | -1.419962 .2137125 _
x4 | (dropped) Even after dropping two (random

x5 | .305533  .0417248

<6 | .121€212 .0159331 colum_ng), results are only correct to 1

x7 | .0228691  .0028893 or 2 digits.

x8 | .0023607 .0002892
x9 | .0001291  .0000154
x10 | 2.94e-06 3.44e-07
_cons | 13.83021 2.29365
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Regression of x, on all other variables

7-68/72

Drdinarv lea=st =guares regression ... ... ...
LHS=%Z Hean = 40 . 05875

Standard deviation = 13.37174
—————————— Ho. of ohzerwvations = 22 DegFresdom Hean sguares
Fegres=sion Sum of Sguares = 27339 .2 9 3037 . 68778
Fe=zidual Sum of Sguares = CB15124E-110 72 goooo
Total Sum of Sguares = 27339 .2 g1 337 52086
—————————— Standard error of 2 = 00000 Root MSE .goooo
Fit F—=gquared = 1.00000 ER-bar sguared 1.00000
Hodel test F[ 9. 72] SEEEEEEEEEEEEEEE  Prob F o> B .ooonn

Hodel was estimated on Jul 21,

2012 at 09:02:49 P

Standard FProb. 95% Confidence
X2 Co=fficient Error t |t | »T= Interval
Con=tant — . b3E02%xx 00419 —-152 40 0000 —. 64623 —.bB2982
i1 —1.19955%=* 00394 —304. .78 oooo —-1.20726 —-1.19184
Ha — 40600 0%xx 00159 —-305 .76 ooon —. 49000 —. 48376
Hd —.1533p%=* .Qo1o0 —-153 .37 oooo —.15532 —.15140
HE — 03267%=xx .Qoo3z  —-102 &7 ooon —. 03329 —. 03204
b —. 0047 7%xx .B159D-04 =77 .40 oooo —.00439 —. 00465
HY — . 0004 7%xx . 7EEED-05 —62 .28 0000 —.ooo49 —.0004a
HE|—.30124D—-0d%=* .B7eeD-06 —-52 25 0000 —.31254D-04 —.28994D-04
HO|— 11284D—-05%=xx C2501D-07 —-45 11 0000 -.11775D-05% —.10794D-05
H10 0. D 47250049 —-39.78 0000 —.19725D-07 —.17872D-07
Hote: nnnnn . D-xx or D4Ex =: multiply by 10 to —xx or +=E=.
Hote: #%xx, *% = ==: Significance at 1X, 55X, 10X lewel.
|- calc ; peelk ; 1 — 515124e-10-27339 . 23
[CALC] = .999999999999998310D+00
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Using QR Decomposition

— —
Ordinary least squares regression ............
LHS=Y Mean = 84958
Standard deviation = 05479
—_——————— Ho. of observations = 82 DegFreedom Mean square
Regression sum of Squares = .242392 10 02424
Residual Sum of Squares = . 795851E-03 71 Loonol
Total Sum of Sgquares = .243187 81 00300
—————————— Standard error of e = .00335 Root MSE .00312
Fit R—=squared = .99673 R-bar squared .99827
Hodel test F[ 10, 71] = 2162 .43959 Prob F > F= .0pono
' Standaxrd Prob. Estimate
Y Coefficient Error t |t|>T*| -1467.48961422980
Constant| -1467.49%%x 298 0845  -4.92 0000 | 2/72-17959193342
X1 —2772 . 18%%x 559.7799 -4.95 0000 |[—-2316.37108160893
X3| 3129 o7ese 239 2043  —4 96 0000 | Li2’.97394098372
- ) EE S 3 ) -4 . ) |
X4| -354.478wxx 71 64787  -4.95 pooo |>24-478233703349
X5 —75 . 1242%%% 15.28972 -4.91 0000 |—75.1242017393757
i6 =10.8753%%x 2.23691 -4.86 .0000 |-10.8753180355343
AN e e G BN
X9 — OD247%%x% 00054 -4 61 0000 |-0.670191154593408E-01
X10|-.40296D-04%%* .8966D-05 -4.49 0000 |-0.246781078275479E-02

¢ -0.402962525080404E-04
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Multicollinearity

There is no “cure” for collinearity. Estimating something else is not helpful
(principal components, for example).

There are “measures” of multicollinearity, such as the condition number of X
and the variance inflation factor.

Best approach: Be cognizant of it. Understand its implications for estimation.

What is better: Include a variable that causes collinearity, or drop the variable
and suffer from a biased estimator?

Mean squared error would be the basis for comparison.

Some generalities. Assuming X has full rank, regardless of the condition,
b is still unbiased
Gauss-Markov still holds
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How (not) to deal with multicollinearity in a
Translog Production Function

logy = a + B, logx, + B, logx, +B;logx, +
v, 109° X, +7v,, tlogx, logx, + v, tlogx, logx, +

2
Y5, 109" X, + vV, %Iog X, logx, +

2
V13 109° X,

1. Checking for variance inflation factor (VIF) and ensuring that it is less than 10 therefore, if VIF > 10,
eliminate the variables in a step-wise way?

2. Maintain either the squares or the cross products depending on which fits data best. However, this
might not be useful since most of the time the full model is a better fit.

3. Standardize the variables by the mean and estimating again. If there are still VIF>10, eliminate step-
wise by VIF?

How do | deal with the issue of multicollinearity in my dataset?
| know that translog is a better fit than Cobb-Douglas in my data but am faced with the multicollinearity
challenge. What would be a way forward in such cases?
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| have a sample of 24025 observations in a logit model. Two predictors are highly collinear
(pairwaise corr .96; p<.001); vif are about 12 for each of them; average vifis 2.63;
condition number is 10.26; determinant of correlation matrix is 0.0211; the two lowest eigen
vales are 0.0792 and 0.0427. Centering/standardizing variables does not change the
story.

Note: most obs are zeros for these two variables; | only have approx 600 non-zero obs for
these two variables on a total of 24.025 obs.

Both variable coefficients are significant and must be included in the model (as per
specification).

-- Do | have a problem of multicollinearity??

-- Does the large sample size attenuate this concern, even if | have a correlation of .967

-- What could | look at to ascertain that the consequences of multi-collinearity are not a
problem?

-- Is there any reference | might cite, to say that given the sample size, it is not a problem?

| hope you might help, because | am really in trouble!!!
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