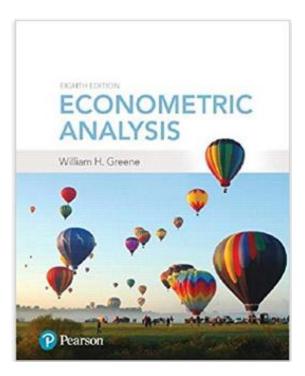
Econometrics I

Professor William Greene Stern School of Business Department of Economics



Econometrics I

Part 7 – Finite Sample Properties of Least Squares; Multicollinearity

Terms of Art

- Estimates and estimators
- Properties of an estimator the sampling distribution
- "Finite sample" properties as opposed to "asymptotic" or "large sample" properties
- Scientific principles behind sampling distributions and 'repeated sampling'

Application: Health Care Panel Data

German Health Care Usage Data, **7,293 Individuals, Varying Numbers of Periods** Data downloaded from Journal of Applied Econometrics Archive. **There are altogether 27,326 observations. The number of observations per household ranges from 1 to 7.** (**Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987**). Variables in the file are

DOCVIS	= number of doctor visits in last three months
HOSPVIS	= number of hospital visits in last calendar year
DOCTOR	= 1(Number of doctor visits > 0)
HOSPITAL	= 1(Number of hospital visits > 0)
HSAT	= health satisfaction, coded 0 (low) - 10 (high)
PUBLIC	= insured in public health insurance = 1; otherwise = 0
ADDON	= insured by add-on insurance = 1; otherswise = 0
HHNINC	= household nominal monthly net income in German marks / 10000.
	(4 observations with income=0 were dropped)
HHKIDS	= children under age 16 in the household = 1; otherwise = 0
EDUC	= years of schooling
AGE	= age in years
MARRIED	= marital status

For now, treat this sample as if it were a cross section, and as if it were the full population.

Population Regression of Household Income on Education

	least squares regression								
LHS=HHNINC	Mean	=		35208					
	Standard dev	iation =		17691					
	No. of obser	vations =		27326	DegFreedom	Mean square			
Regression	gression Sum of Squares =			.8591	1	58.85906			
Residual	Sum of Squar	f Squares = 79		6.319	27324	.02914			
Total	Sum of Squar	es =	85	5.178	27325	.03130			
	Standard err	or of e =		17071	Root MSE	.17071			
Fit	R-squared	=		06883	R-bar squared	1.06879			
	F[1, 27324 stimated on Ju		2019. t 02:20:		Prob F > F*	. 00000			
		Standard		Prob		nfidence			
HHNINC	Coefficient	Error	Z	z >Z⁴	* Inte	srvar			
HHNINC Constant	Coefficient 		z 24.56			.13615			

The population value of β is +0.020

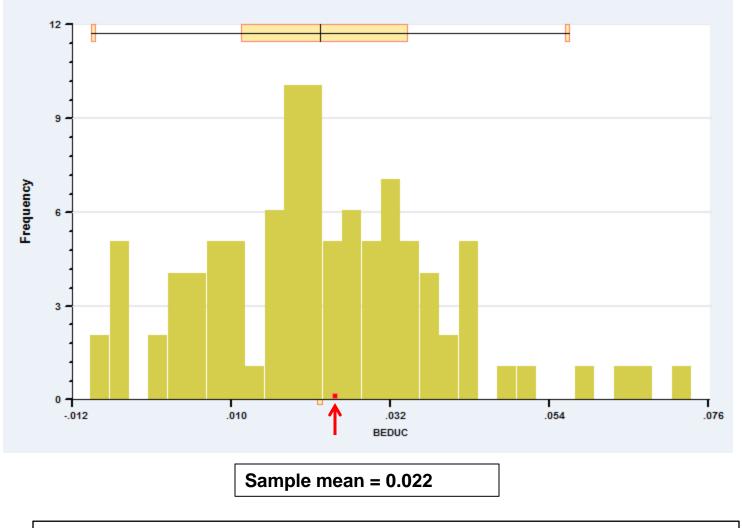
Sampling Distribution

A sampling experiment: Draw 25 observations at random from the population. Compute the regression. Repeat 100 times. Display estimated slopes in a histogram.

Resampling y and x. Sampling variability over y, x, ε

```
matrix ; beduc=init(100,1,0)$
proc$
draw ; n=25 $
regress; quietly ; lhs=hhninc ; rhs = one,educ $
matrix ; beduc(i)=b(2) $
sample;all$
endproc$
execute ; i=1,100 $
histogram;rhs=beduc; boxplot $
```

The least squares estimator is random. In repeated random samples, it varies randomly above and below β .



How should we interpret this variation in the regression slope?

The Statistical Context of Least Squares Estimation

The sample of data from the population: Data generating process is $y = \mathbf{x}'\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ The stochastic specification of the regression model: Assumptions about the random ε . Endowment of the stochastic properties of the model upon the least squares estimator. The estimator is a function of the observed (realized) data.

Least Squares as a Random Variable

 $\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$

 $= (\mathbf{X'X})^{-1}\mathbf{X'}(\mathbf{X}\beta + \epsilon) = \beta + (\mathbf{X'X})^{-1}\mathbf{X'}\epsilon$

b = The true parameter plus sampling error. Also

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\sum_{i=1}^{n}\mathbf{x}_{i}y_{i}$$

$$= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\varepsilon = \beta + (\mathbf{X}'\mathbf{X})^{-1}\sum_{i=1}^{n}\mathbf{x}_{i}\varepsilon_{i} = \beta + \sum_{i=1}^{n}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{i}\varepsilon_{i}$$

$$= \beta + \sum_{i=1}^{n}\mathbf{v}_{i}\varepsilon_{i}$$

b = The true parameter plus a linear function of the disturbances.

Deriving the **Properties** of **b**

 b = a parameter vector + a linear combination of the disturbances, each times a vector.

Therefore, **b** is a vector of random variables.

We do the analysis conditional on an **X**, then show that results do not depend on the particular **X** in hand, so the result must be general – i.e., independent of **X**.

Properties of the LS Estimator: (1) b is unbiased

Expected value and the property of unbiasedness.

$$E[\mathbf{b}|\mathbf{X}] = E[\beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\epsilon|\mathbf{X}]$$
$$= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E[\epsilon|\mathbf{X}]$$

$$= \beta + \mathbf{0}$$

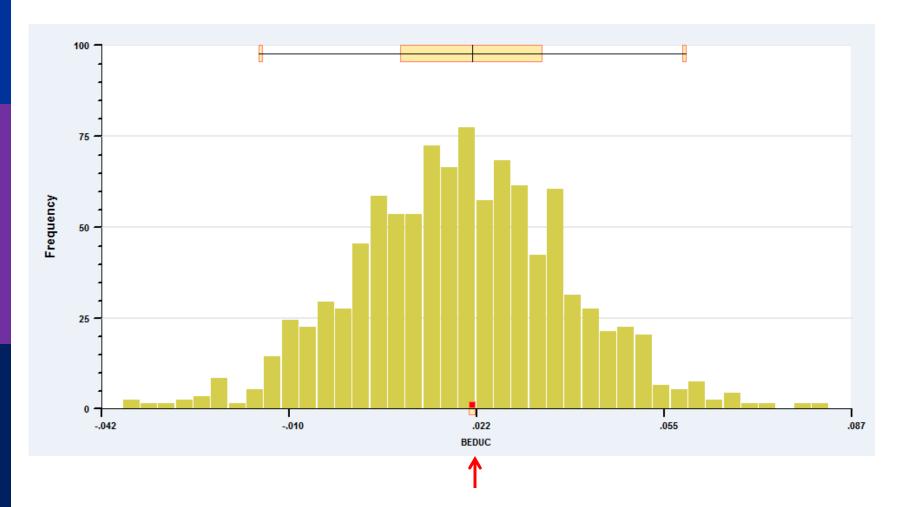
$$\begin{split} \mathsf{E}[\mathbf{b}] &= \mathsf{E}_{\mathbf{X}}\{\mathsf{E}[\mathbf{b}|\mathbf{X}]\} \text{ (The law of iterated expectations.)} \\ &= \mathsf{E}_{\mathbf{X}}\{\beta\} \\ &= \beta. \end{split}$$

A Sampling Experiment: Unbiasedness X is fixed in repeated samples

Holding X fixed. Resampling over ε

```
draw;n=25 $ Draw a particular sample of 25 observations
matrix ; beduc = init(1000,1,0)$
proc$
? Reuse X, resample epsilon each time, 1000 samples.
    create ; inc = .12609+.01996*educ + r nn(0,.17071) $
    regress; quietly ; lhs=inc ; rhs = one,educ $
    matrix ; beduc(i)=b(2) $
endproc$
execute ; i=1,1000 $
histogram;rhs=beduc ;boxplot$
```

1000 Repetitions of b|x



7-13/72

Part 7: Finite Sample Properties of LS

Using the Expected Value of **b** Partitioned Regression

A Crucial Result About Specification:

 $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$

Two sets of variables. What if the regression is computed without the second set of variables?

What is the expectation of the "short" regression estimator? $E[\mathbf{b}_1 | (\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon})]$ $\mathbf{b}_1 = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{y}$

The Left Out Variable Formula

"Short" regression means we regress \mathbf{y} on \mathbf{X}_1 when

$$y = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$$
 and $\boldsymbol{\beta}_2$ is not **0**

(This is a VVIR!)

$$\begin{aligned} \mathbf{b}_{1} &= (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{y} \\ &= (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'(\mathbf{X}_{1}\beta_{1} + \mathbf{X}_{2}\beta_{2} + \varepsilon) \\ &= (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{1}\beta_{1} + (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{2}\beta_{2} \\ &+ (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\varepsilon) \end{aligned}$$
$$\begin{aligned} \mathsf{E}[\mathbf{b}_{1}] &= \beta_{1} + (\mathbf{X}_{1}'\mathbf{X}_{1})^{-1}\mathbf{X}_{1}'\mathbf{X}_{2}\beta_{2} \end{aligned}$$

Omitting relevant variables causes LS to be "biased." This result educates our general understanding about regression. 7-15/72 Part 7: Finite Sample Properties of LS

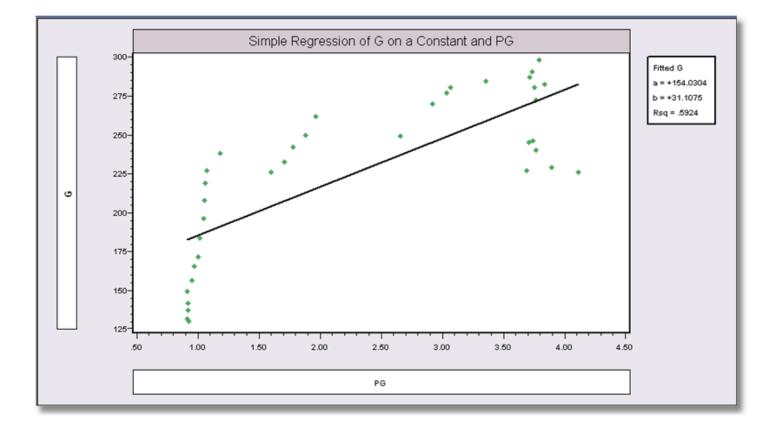
Application

The (truly) short regression estimator is biased. Application:

Quantity = β_1 Price + β_2 Income + ε

If you regress Quantity only on Price and leave out Income. What do you get?

Estimated 'Demand' Equation Shouldn't the Price Coefficient be Negative?



Application: Left out Variable

Leave out Income. What do you get?

$$E[b_1] = \beta_1 + \left(\frac{Cov[Price,Income]}{Var[Price]}\right)\beta_2$$

In time series data, $\beta_1 < 0$, $\beta_2 > 0$ (usually) Cov[*Price*, *Income*] > 0 in time series data. So, the short regression will overestimate the price coefficient. It will be pulled toward and even past zero.

Simple Regression of G on a constant and PG Price Coefficient should be negative.

Multiple Regression of G on Y and PG. The Theory Works!

Ordinary	least squares regre	ssion			
LHS=G	Mean		226.0944		
	Standard deviation	=	50.5918	2	
	Number of observs.	=	3	6	
Model size	Parameters	=	:	3	
	Degrees of freedom		3:	3	
Residuals	Sum of squares Standard error of e		1472.7983	4	
			6.6805	9	
Fit	R-squared	=	. 9835	5	
	Adjusted R-squared	=	. 9825	6	
	F[2, 33] (prob)	
Variable C	oefficient Standa	d Err	or t-ratio		Mean of X
-	-79.7535*** 8.0			.0000	
Y	.03692*** .(0132	28.022	.0000	9232.86
PG	-15.1224*** 1.8	8034	-8.042	.0000	2.31661

The Extra Variable Formula

A Second Crucial Result About Specification:

 $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$ but $\boldsymbol{\beta}_2$ really is **0**.

Two sets of variables. One is superfluous. What if the regression is computed with it anyway?

The Extra Variable Formula: (This is a VIR!)

 $E[\mathbf{b}_{1.2} | \beta_2 = \mathbf{0}] = \beta_1$

The long regression estimator in a short regression is unbiased.)

Extra variables in a model do not induce biases. Why not just include them? We will develop this result.

(2) The Sampling Variance of **b**

Assumption about disturbances:

- \mathbf{z}_i has zero mean and is uncorrelated with every other \mathbf{z}_i
- Var[$\varepsilon_i | \mathbf{X}] = \sigma^2$. The variance of ε_i does not depend on any data in the sample.

$$\operatorname{Var}\left[\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \dots \\ \varepsilon_{n} \end{pmatrix} | \mathbf{X} \right] = \begin{bmatrix} \sigma^{2} & 0 & \dots & 0 \\ 0 & \sigma^{2} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \sigma^{2} \end{bmatrix} = \sigma^{2} \mathbf{I}$$

Conditional Variance

$$\operatorname{Var}\begin{bmatrix} \left(\begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \\ \cdots \\ \varepsilon_{n} \end{array} \right) | \mathbf{X} \end{bmatrix} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix} = \sigma^{2} \mathbf{I}$$

Unconditional Variance

$$\operatorname{Var}\left[\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \dots \\ \varepsilon_{n} \end{pmatrix}\right] = \operatorname{E}\left\{\operatorname{Var}\left[\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \dots \\ \varepsilon_{n} \end{pmatrix} | \mathbf{X} \right]\right\} + \operatorname{Var}\left\{\operatorname{E}\left[\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \dots \\ \varepsilon_{n} \end{pmatrix} | \mathbf{X} \right]\right\}$$
$$= \operatorname{E}\left\{\sigma^{2}\mathbf{I}\right\} + \operatorname{Var}\left\{\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}\right\} = \sigma^{2}\mathbf{I}.$$

7-22/72

Conditional Variance of the Least Squares Estimator

 $\mathbf{b} = (\mathbf{X'X})^{-1}\mathbf{X'y}$

 $= (\mathbf{X'X})^{-1}\mathbf{X'}(\mathbf{X}\beta + \varepsilon) = \mathbf{\beta} + (\mathbf{X'X})^{-1}\mathbf{X'}\varepsilon$ $E[\mathbf{b}|\mathbf{X}] = \beta$ (We extablished this earlier.) $Var[\mathbf{b} | \mathbf{X}] = E[(\mathbf{b} - \beta)(\mathbf{b} - \beta)' | \mathbf{X}]$ $= \mathsf{E} \left| \left\{ (\mathbf{X'X})^{-1} \mathbf{X'} \varepsilon \right\} \left\{ \varepsilon' \mathbf{X} (\mathbf{X'X})^{-1} \right\} | \mathbf{X} \right|$ $= (\mathbf{X'X})^{-1}\mathbf{X'E}[\varepsilon\varepsilon' | \mathbf{X}]\mathbf{X}(\mathbf{X'X})^{-1}$ $= (\mathbf{X'X})^{-1}\mathbf{X'\sigma^{2}I}\mathbf{X}(\mathbf{X'X})^{-1}$ $= \sigma^{2} (\mathbf{X'X})^{-1} \mathbf{X'I} \mathbf{X} (\mathbf{X'X})^{-1}$ $= \sigma^{2} (\mathbf{X'X})^{-1} \mathbf{X'X} (\mathbf{X'X})^{-1}$ $= \sigma^{2} (X'X)^{-1}$

7-23/72

Unconditional Variance of the Least Squares Estimator

 $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ $E[\mathbf{b}|\mathbf{X}] = \beta$ $Var[\mathbf{b} | \mathbf{X}] = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}$ $Var[\mathbf{b}] = E\{Var[\mathbf{b} | \mathbf{X}]\} + Var\{E[\mathbf{b} | \mathbf{X}]\}$ $= \sigma^{2}E[(\mathbf{X}'\mathbf{X})^{-1}] + Var\{\beta\}$ $= \sigma^{2}E[(\mathbf{X}'\mathbf{X})^{-1}] + \mathbf{0}$

We will ultimately need to estimate $E[(X'X)^{-1}]$. We will use the only information we have, X, itself.

Variance Implications of Specification Errors: Omitted Variables

Suppose the correct model is

 $\mathbf{y} = \mathbf{X}_1 \mathbf{\beta}_1 + \mathbf{X}_2 \mathbf{\beta}_2 + \mathbf{\epsilon}$. I.e., two sets of variables.

Compute least squares omitting X_2 . Some easily proved results:

Var[\mathbf{b}_1] is smaller than Var[$\mathbf{b}_{1,2}$]. Proof: Var[\mathbf{b}_1] = $\sigma^2(\mathbf{X}_1'\mathbf{X}_1)^{-1}$. Var[$\mathbf{b}_{1,2}$] = $\sigma^2(\mathbf{X}_1'\mathbf{M}_2\mathbf{X}_1)^{-1}$. To compare the matrices, we can ignore σ^2 . To show that Var[\mathbf{b}_1] is smaller than Var[$\mathbf{b}_{1,2}$], we show that its inverse is bigger. So, is

 $[(X_1'X_1)^{-1}]^{-1}$ larger than $[(X_1'M_2X_1)^{-1}]^{-1}$? Is $X_1'X_1$ larger than $X_1'X_1 - X_1'X_2(X_2'X_2)^{-1}X_2'X_1$? Obviously.

Variance Implications of Specification Errors: Omitted Variables

I.e., you get a smaller variance when you omit X₂.

Omitting X_2 amounts to using extra information ($\beta_2 = 0$). <u>Even if the information is wrong (see the next result)</u>, <u>it reduces</u> <u>the variance</u>. (This is an important result.) It may induce a bias, but either way, it reduces variance.

b₁ may be more "precise."

Precision = Mean squared error

= variance + squared bias.

Smaller variance but positive bias. If bias is small, may still favor the short regression.

Specification Errors-2

- Including superfluous variables: Just reverse the results.
- Including superfluous variables increases variance. (The cost of not using information.)
- Does not cause a bias, because if the variables in X_2 are truly superfluous, then $\beta_2 = 0$, so $E[b_{1,2}] = \beta_1 + C\beta_2 = \beta_1$

Linear Restrictions

Context: How do linear restrictions affect the properties of the least squares estimator?

Model: $y = X\beta + \varepsilon$ Theory (information) $R\beta - q = 0$ Restricted least squares estimator: $b^* = b - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(Rb - q)$ Expected value: $E[b^*] = \beta - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\beta - q)$ Variance: $\sigma^2(X'X)^{-1} - \sigma^2(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}$ = Var[b] - a nonnegative definite matrix < Var[b] Implication: (As before) nonsample information reduces the variance of the estimator.

Interpretation

Case 1: Theory is correct: $R\beta - q = 0$ (the restrictions do hold). **b*** is unbiased

Var[**b***] is smaller than Var[**b**]

Case 2: Theory is incorrect: Rβ - q ≠ 0
 (the restrictions do not hold).
 b* is biased – what does this mean?
 Var[b*] is still smaller than Var[b]

Restrictions and Information

How do we interpret this important result?

- The theory is "information"
- Bad information leads us away from "the truth"
- Any information, good or bad, makes us more certain of our answer. In this context, any information reduces variance.

What about ignoring the information?

- Not using the correct information does not lead us away from "the truth"
- Not using the information foregoes the variance reduction - i.e., does not use the ability to reduce "uncertainty."

(3) Gauss-Markov Theorem

A theorem of Gauss and Markov: Least Squares is the **minimum variance linear unbiased estimator** (MVLUE)

1. Linear estimator =
$$\beta + \sum_{i=1}^{n} \mathbf{v}_{i} \varepsilon_{i}$$

2. Unbiased: $E[\mathbf{b}|\mathbf{X}] = \mathbf{\beta}$

Theorem: Var[b*|X] – Var[b|X] is nonnegative definite for any other linear and unbiased estimator b* that is not equal to b.

Definition: **b** is **efficient** in this class of estimators.

Implications of Gauss-Markov

- Theorem: Var[b*|X] Var[b|X] is nonnegative definite for any other linear and unbiased estimator b* that is not equal to b. Implies:
- **b**_k = the kth particular element of b.
 Var[**b**_k|**X**] = the kth diagonal element of Var[**b**|**X**]
 Var[**b**_k|**X**] ≤ Var[**b**_k*|**X**] for each coefficient.
- c'b = any linear combination of the elements of
 b. Var[c'b|X] < Var[c'b*|X] for any nonzero c and b* that is not equal to b.

Aspects of the Gauss-Markov Theorem

Indirect proof: Any other linear unbiased estimator has a larger covariance matrix.

Direct proof: Find the minimum variance linear unbiased estimator. It will be least squares.

Other estimators

Biased estimation – a minimum mean squared error estimator. Is there a biased estimator with a smaller 'dispersion'? Yes, always

Normally distributed disturbances – the Rao-Blackwell result. (General observation – for normally distributed disturbances, 'linear' is superfluous.)

Nonnormal disturbances - Least Absolute Deviations and other nonparametric approaches may be better in small samples

(4) Distribution

Source of the random behavior of $\mathbf{b} = \mathbf{\beta} + \sum_{i=1}^{n} \mathbf{v}_{i} \varepsilon_{i}$ $\mathbf{v}_i = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}'_i$ where \mathbf{x}_i is row i of \mathbf{X} . We derived E[**b** | **X**] and Var[**b** | **X**] earlier. The distribution of **b** | **X** is that of the linear combination of the disturbances, ε_i . If ε_i has a normal distribution, denoted ~ N[0, σ^2], then **b** | $\mathbf{X} = \boldsymbol{\beta} + \mathbf{A}\boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon} \sim N[0, \sigma^2 \mathbf{I}]$ and $\mathbf{A} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. **b** | **X** ~ N[β , A σ^2 **I**A'] = N[β , σ^2 (**X**'**X**)⁻¹]. Note how **b** inherits its stochastic properties from ε .

Summary: Finite Sample Properties of b

- (1) Unbiased: E[**b**]=β
- (2) Variance: $Var[b|X] = \sigma^2 (X'X)^{-1}$
- (3) Efficiency: Gauss-Markov Theorem with all implications
- (4) Distribution: Under normality,
 b|X ~ Normal[β, σ²(X'X)⁻¹]
 (Without normality, the distribution is generally unknown.)

Estimating the Variance of **b**

The true variance of **b**|**X** is σ^2 (**X**'**X**)⁻¹. We consider how to use the sample data to estimate this matrix. The ultimate objectives are to form interval estimates for regression slopes and to test hypotheses about them. Both require estimates of the variability of the distribution. We then examine a factor which affects how "large" this variance is, multicollinearity.

Estimating σ^2

Using the residuals instead of the disturbances:
The natural estimator: e'e/n as a sample surrogate for E[ε'ε/n]
Imperfect observation of ε_i, e_i = ε_i - (β - b)'x_i
Downward bias of e'e/n.
We obtain the result E[e'e|X] = (n-K)σ²

Expectation of e'e

$$e = y - Xb$$

= y - X(X'X)⁻¹X'y
= [I - X(X'X)⁻¹X']y
= My = M(X\beta + \varepsilon) = MX\beta + M\varepsilon = M\varepsilon
e'e = (M\varepsilon)'(M\varepsilon)
= \varepsilon'M\varepsilon = \

Method 1:

 $\mathsf{E}[\mathbf{e}'\mathbf{e} \mid \mathbf{X}] = \mathsf{E}[\varepsilon'\mathsf{M}\varepsilon \mid \mathbf{X}]$

- = E[trace ($\epsilon' M \epsilon | X$)] scalar = its trace
- = E[trace ($M_{\epsilon\epsilon}$ ' | X)] permute in trace
- = [trace E ($M\epsilon\epsilon' | X$)] linear operators
- = [trace $\mathbf{M} \in (\epsilon \epsilon' | \mathbf{X})$] conditioned on X
- = [trace $\mathbf{M} \sigma^2 \mathbf{I}_n$] model assumption
- = σ^2 [trace **M**] scalar multiplication and **I** matrix

 $= \sigma^{2} \text{trace} \left[\mathbf{I}_{n} - \mathbf{X} (\mathbf{X'X})^{-1} \mathbf{X'} \right]$

 $= \sigma^{2} \{ trace [\mathbf{I}_{n}] - trace [\mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'}] \}$

= σ^2 {n - trace[(**X'X**)⁻¹**X'X**]} permute in trace

$$=\sigma^{2}\{n - trace[\mathbf{I}_{K}]\}$$

 $=\sigma^{2}\{n - K\}$

Notice that E[e'e|X] is not a function of X.

Estimating σ^2

The **unbiased estimator** is $s^2 = e'e/(n-K)$.

(n-K) is a "degrees of freedom correction"

Therefore, the *unbiased* estimator of σ^2 is $s^2 = \mathbf{e'e}/(n-K)$

Method 2: Some Matrix Algebra

$$\begin{split} \mathsf{E}[\mathbf{e'e} \mid \mathbf{X}] &= \sigma^2 \; \text{trace} \; \mathbf{M} \\ \text{What is the trace of } \mathbf{M}? \quad \text{Trace of square matrix} = \text{sum of diagonal elements.} \\ \textbf{(Result A - 108)} \; \mathbf{M} \text{ is idempotent, so its trace equals its rank.} \\ \textbf{(Theorem A.4)} \; \text{ Its rank equals the number of nonzero characeristic roots.} \\ \text{Characteric Roots} : \; \text{Signature of a Matrix} = \text{Spectral Decomposition} \\ &= \text{Eigen (own) value Decomposition} \\ \textbf{(Definition A.16)} \; \mathbf{A} \; = \; \mathbf{C} \Lambda \mathbf{C'} \; \text{where} \\ \mathbf{C} \; = \text{a matrix of columns such that} \; \mathbf{CC'} = \mathbf{C'C} = \mathbf{I} \\ &\Lambda = \text{a diagonal matrix of the characteristic roots} \\ &\quad (\text{Elements of } \Lambda \; \text{may be zero.}) \end{split}$$

Decomposing M

Useful Result: If $\mathbf{A} = \mathbf{C} \wedge \mathbf{C}'$ is the spectral decomposition, then $\mathbf{A}^2 = \mathbf{C}\Lambda^2\mathbf{C}'$ (just multiply) $\mathbf{M} = \mathbf{M}^2$, so $\Lambda^2 = \Lambda$. All of the characteristic roots of **M** are 1 or 0. How many of each? trace(\mathbf{A}) = trace($\mathbf{C}\Lambda\mathbf{C}$ ')=trace($\Lambda\mathbf{C}$ ' \mathbf{C})=trace(Λ) Trace of a matrix equals the sum of its characteristic roots. Since the roots of **M** are all 1 or 0, its trace is just the number of ones, which is n-K as we saw.

Example: Characteristic Roots of a Correlation Matrix

🎟 Matri	ix - R						X
[6, 6]	Cell: 1		✓ ×				
	1	2	3	4	5	6	^
1	1	0.795578	0.908202	0.924205	0.903905	0.886908	20
2	0.795578	1	0.928756	0.812462	0.802779	0.791689	
3	0.908202	0.928756	1	0.963605	0.954187	0.956742	
4	0.924205	0.812462	0.963605	1	0.990628	0.989062	
5	0.903905	0.802779	0.954187	0.990628	1	0.987139	
6	0.886908	0.791689	0.956742	0.989062	0.987139	1	
		<u>IIIIIII</u>					×

--> matrix;list;root(r)\$

Matrix Result has 6 rows and 1 columns.

 1
 5.53961

 2
 .29845

 3
 .13847

 4
 .01478

 5
 .00608

 6
 .00260

Note sum = trace =
$$6$$
.

7-43/72

🎟 Matri	ix - R						X
[6, 6]	Cell: 1		✓ ×				
	1	2	3	4	5	6	^
1	1	0.795578	0.908202	0.924205	0.903905	0.886908	7
2	0.795578	1	0.928756	0.812462	0.802779	0.791689	
3	0.908202	0.928756	1	0.963605	0.954187	0.956742	
4	0.924205	0.812462	0.963605	1	0.990628	0.989062	
5	0.903905	0.802779	0.954187	0.990628	1	0.987139	N
6	0.886908	0.791689	0.956742	0.989062	0.987139	1	
	////////	11111111	<u>UUUUUU</u>			11111111	\mathbf{v}

 $\mathbf{R} = \mathbf{C} \mathbf{\Lambda} \mathbf{C}' = \sum_{i=1}^{6} \lambda_i \mathbf{C}_i \mathbf{C}'_i$

	1	2	3	4	5	6	+
1	0.399548	-0.121844	-0.895708	-0.0406948	-0.127852	0.0722466	1 5.53961
2	0.377099	0.840502	0.067997	0.177137	0.0355656	0.337768	2 .29845
3	0.420955	0.198986	0.132743	-0.413014	-0.104492	-0.764252	3 .13847
4	0.419339	-0.258255	0.101987	0.0247916	0.862514	0.050123	4 .01478
5	0.416351	-0.28231	0.222987	0.750782	-0.325211	-0.166715	
6	0.414441	-0.3045	0.339614	-0.481765	-0.348967	0.516048	6 .00260

Gasoline Data (first 20 of 52 observations)

	<pre>namelist ; x = one,log(gasp),log(pcincome),log(pnc),log(puc),log(ppt)\$ Listing of current sample</pre>										
Line	Observation	logGASP	logPCINC	logPNC	logPUC	logPPT					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2.81349 2.83492 2.83492 2.84549 2.87520 2.91761 2.90777 2.92187 2.95032 2.94043 2.94670 2.94428 2.93773 2.97487 2.99763 3.03013 3.04476 3.07713	9.08273 9.07761 9.12446 9.15377 9.15989 9.15197 9.17833 9.18348 9.20039 9.23279 9.25484 9.31118 9.35824 9.35824 9.39806 9.43004 9.46436 9.48517	3.85439 3.83945 3.80221 3.80221 3.83081 3.91202 3.95508 3.94158 3.94158 3.94158 3.93769 3.93183 3.92986 3.92986 3.90600 3.88773 3.89792 3.92593 3.94158	3.28466 3.12236 3.06805 3.03013 3.14415 3.17805 3.28840 3.21888 3.25810 3.34639 3.35690 3.40120 3.39451 3.39786 3.42426 3.43076	2.82138 2.89037 2.91777 2.95491 2.99072 3.03975 3.06805 3.10009 3.14415 3.17805 3.19048 3.20680 3.22684 3.26194 3.31054 3.35690 3.43076					
18 19 20	18 19 20	3.08603 3.09331 3.10620	9.51510 9.54688 9.58273	3.97029 4.01096 4.00186	3.44042 3.49651 3.49953	3.56105 3.63231 3.67122					

X'X and its Roots

🛄 Matrix	: - XX						• ×
[6, 6]	Cell:						
	1	2	3	4	5	6	
1	52	193.924	503.093	227.779	213.483	215.381	
2	193.924	746.713	1887.6	864.079	820.842	832.782	
3	503.093	1887.6	4873.57	2211.09	2078.01	2099.16	
4	227.779	864.079	2211.09	1007.49	951.46	962.91	
5	213.483	820.842	2078.01	951.46	904.166	917.147	
6	215.381	832.782	2099.16	962.91	917.147	931.886	

Result	1
1 2 3 4 5 6	$8474.00\ 40.1984\ 1.10133\ .403257\ .116637\ .00102318$

Var[**b**|X]

Estimating the Covariance Matrix for b|X

- The true covariance matrix is $\sigma^2 (\mathbf{X'X})^{-1}$
- The natural estimator is s²(X'X)⁻¹
 - "Standard errors" of the individual coefficients are the square roots of the diagonal elements.

[7, 7]	Cell:							
	1	2	3	4	5	6	7	^
1	36	83.398	332383	630	60.148	84.371	98.815	
2	83.398	248.04	838669	1878.67	164.992	251.287	301.047	
3	332383	838669	3.18054e+009	6.4692e+006	591999	859749	1.01845e+006	≣
4	630	1878.67	6.4692e+006	14910	1277.71	1972.56	2384.18	
5	60.148	164.992	591999	1277.71	114.542	171.935	205.811	
6	84.371	251.287	859749	1972.56	171.935	267.306	322.011	
7	98.815	301.047	1.01845e+006	2384.18	205.811	322.011	391.845	~
	· · · · ·	-		•		•	•	
1	92.9516	-1.58239	-0.0142015	3.45656	-6.3863	2.85512	-5.3368	
2	-1.58239	0.218408	0.000315846	-0.0830075	-0.665387	-0.02755	0.287509	
3	-0.0142015	0.000315846	2.25808e-006	-0.000547423	0.000144609	-0.000330383	0.000995983	
4	3.45656	-0.0830075	-0.000547423	0.136591	-0.061965	0.0821448	-0.251126	
5	-6.3863	-0.665387	0.000144609	-0.061965	8.62577	-1.43238	-1.23058	
6	2.85512	-0.02755	-0.000330383	0.0821448	-1.43238	0.940991	-0.360893	
7	-5.3368	0.287509	0.000995983	-0.251126	-1.23058	-0.360893	1.00971	~
<	\sim	_					>	:
1	2495.92	-42.49	-0.381335	92.8149	-171.484	76.6652	-143.303	
2	-42.49	5.86466	0.00848103	-2.2289	-17.8668	-0.739767	7.72013	
3	-0.381335	0.00848103	6.06335e-005	-0.0146993	0.003883	-0.00887138	0.026744	=
4	92.8149	-2.2289	0.0146993	3.6677	1.66387	2.20574	-6.74318	
5	-171.484	-17.8668	0.003883	-1.66387	231.618	-38.4621	-33.0434	
6	76.6652	-0.739767	-0.00887138	2.20574	-38.4621	25.2673	28082 ک	
7	-143.303	7.72013	0.026744	-6.74318	-33.0434	-9.69062	27.1126	~

X'X

(X'X)⁻¹

s²(X′X)⁻¹

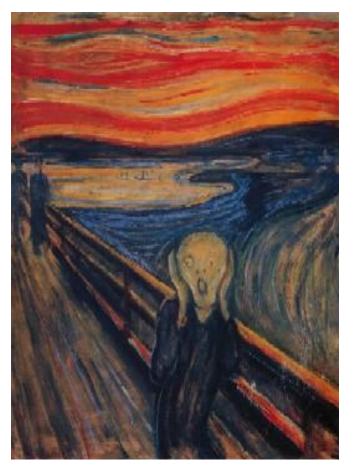
Standard Regression Results

Ordinary	least squares regre				
LHS=G	Mean		 6.09444		
9-0110	Standard deviation				
	Number of observs.				
Model size		=			
MODEL SIZE	Degrees of freedom		•		
Residuals	-				
Residuals	Sum of squares				0007/(26) 7)1
D : +	Standard error of e			sqr[//8./	02277(36 - 7)]
Fit	R-squared		.99131		
	Adjusted R-squared				
Variable	Coefficient Standa			P[T >t]	Mean of X
Constant	-7.73975 49.9		155	.8780	
PG	-15.3008*** 2.4	2171	-6.318	.0000	2.31661
Y	.02365*** .0	0779	3.037	.0050	9232.86
TREND	4.14359** 1.9	91513	2.164	.0389	17.5000
PNC	15.4387 15.2	21899	1.014	.3188	1.67078
PUC	-5.63438 5.0	2666	-1.121	.2715	2.34364
PPT	-12.4378** 5.2	20697	-2.389	.0236	2.74486
+_					

Multicollinearity

Part 7: Finite Sample Properties of LS

Multicollinearity: Short Rank of X



(Not a Monet)

Enhanced Monet Area Effect Model: Height and Width Effects

Log(Price) = $\alpha + \beta_1 \log Area + \beta_2 \log Area +$

β₂ log Aspect Ratio +

 β_3 log Height +

 β_4 Signature + ϵ

 $= \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$

(Aspect Ratio = Width/Height). This is a perfectly respectable theory of art prices. However, it is not possible to learn about the parameters from data on prices, areas, aspect ratios, heights and signatures.

 $x_3 = (1/2)(x_1-x_2)$

Multicollinearity: Correlation of Regressors

Not "short rank," which is a deficiency in the model. Full rank, but columns of X are highly correlated. A characteristic of the data set which affects the covariance matrix.

Regardless, β is unbiased. Consider one of the unbiased coefficient estimators of β_k . $E[b_k] = \beta_k$

Var[b] = $\sigma^2(\mathbf{X'X})^{-1}$. The variance of b_k is the *k*th diagonal element of $\sigma^2(\mathbf{X'X})^{-1}$.

We can isolate this with the result Theorem 3.4, page 39

Let **[X,z**] be [Other **x**s, x_k] = [**X**₁, x_2]

The general result is that the diagonal element we seek is $[\mathbf{z}'\mathbf{M}_{\mathbf{X}}\mathbf{z}]^{-1}$, the reciprocal of the sum of squared residuals in the regression of \mathbf{z} on \mathbf{X} .

Variances of Least Squares Coefficients

Model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{z}\gamma + \boldsymbol{\varepsilon}$ Variance of $\begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} = \sigma^2 \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{z} \\ \mathbf{z}'\mathbf{X} & \mathbf{z}'\mathbf{z} \end{bmatrix}^{-1}$

Variance of c is the lower right element of this matrix.

$$Var[c] = \sigma^{2} [\mathbf{z}' \mathbf{M}_{\mathbf{x}} \mathbf{z}]^{-1} = \frac{\sigma^{2}}{\mathbf{z}' * \mathbf{z} *}$$

where \mathbf{z}^* = the vector of residuals from the regression of \mathbf{z} on \mathbf{X} .

The R² in that regression is
$$R_{\mathbf{z}|\mathbf{X}}^2 = 1 - \frac{\mathbf{z}' * \mathbf{z} *}{\sum_{i=1}^{n} (z_i - \overline{z})^2}$$
, so

 $\mathbf{z'} * \mathbf{z}^* = (1 - R_{\mathbf{z}|\mathbf{X}}^2) \sum_{i=1}^n (z_i - \overline{z})^2$. Therefore,

$$\operatorname{Var}[\mathbf{c}] = \sigma^{2} [\mathbf{z}' \mathbf{M}_{\mathbf{x}} \mathbf{z}]^{-1} = \frac{\sigma^{2}}{\left(1 - R_{\mathbf{z}|\mathbf{x}}^{2}\right) \sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}$$

Part 7: Finite Sample Properties of LS

7-53/72

Multicollinearity

$$\operatorname{Var}[\mathbf{c}] = \sigma^{2} [\mathbf{z}' \mathbf{M}_{\mathbf{x}} \mathbf{z}]^{-1} = \frac{\sigma^{2}}{\left(1 - R_{\mathbf{z}|\mathbf{x}}^{2}\right) \sum_{i=1}^{n} (z_{i} - \overline{z})^{2}}$$

All else constant, the variance of the coefficient on z rises as the fit in the regression of z on the other variables goes up. If the fit is perfect, the variance becomes infinite.

"Detecting" multicollinearity?

Variance inflation factor: VIF(z) = $\frac{1}{(1-R_{z|X}^2)}$.

Regression Analysis: Expenditure versus Year, GasPrice, Income, P_NewCars, ...

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	9	168558	18728.7	5355.77	0.000
Year	1	42	41.7	11.91	0.001
GasPrice	1	1348	1347.7	385.39	0.000
Income	1	91	90.6	25.91	0.000
P_NewCars	1	30	30.0	8.57	0.006
P_UsedCars	1	47	47.5	13.57	0.001
P_PublicTrans	1	0	0.1	0.03	0.865
P_Durables	1	188	187.6	53.65	0.000
P_Nondurables	1	1	1.3	0.37	0.544
P_Services	1	6	5.6	1.60	0.212
Error	42	147	3.5		
Total	51	168705			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.87000	99.91	99.89%	99.83%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	1596	467	3.42	0.001	
Year	-0.840	0.243	-3.45	0.001	198.49
GasPrice	1.3404	0.0683	19.63	0.000	64.62
Income	0.004522	0.000888	5.09	0.000	354.84
P_NewCars	0.645	0.220	2.93	0.006	974.93
P_UsedCars	0.3079	0.0836	3.68	0.001	265.78
P_PublicTrans	0.0142	0.0830	0.17	0.865	481.06
P_Durables	-1.494	0.204	-7.32	0.000	820.66
P_Nondurables	0.132	0.216	0.61	0.544	1614.88
P_Services	0.174	0.137	1.27	0.212	1229.94

The Longley Data

Y,X1,X2	,X3,X4,X	(5,X6				
60323	83.0	234289	2356	1590	107608	1947
61122	88.5	259426	2325	1456	108632	1948
60171	88.2	258054	3682	1616	109773	1949
61187	89.5	284599	3351	1650	110929	1950
63221	96.2	328975	2099	3099	112075	1951
63639	98.1	346999	1932	3594	113270	1952
64989	99.0	365385	1870	3547	115094	1953
63761	100.0	363112	3578	3350	116219	1954
66019	101.2	397469	2904	3048	117388	1955
67857	104.6	419180	2822	2857	118734	1956
68169	108.4	442769	2936	2798	120445	1957
66513	110.8	444546	4681	2637	121950	1958
68655	112.6	482704	3813	2552	123366	1959
69564	114.2	502601	3931	2514	125368	1960
69331	115.7	518173	4806	2572	127852	1961
70551	116.9	554894	4007	2827	130081	1962

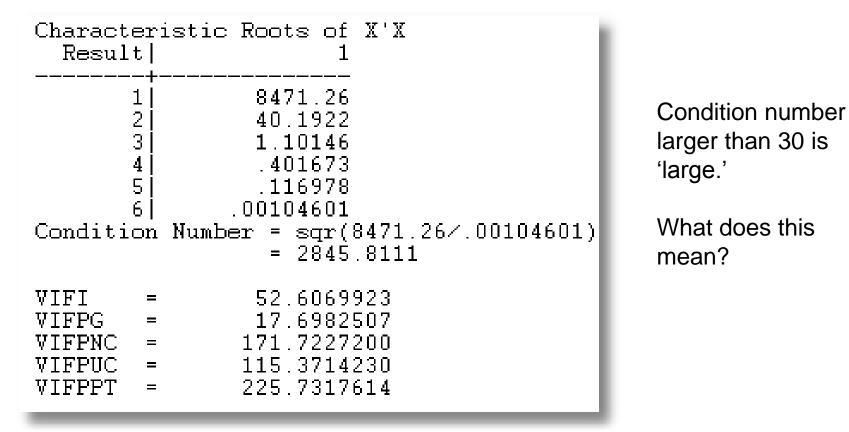
TABLE 4.9 Longley Results: Dependent Variable Is Employment

	1947–1961	Variance Inflation	1947–1962
Constant	1,459,415		1,169,087
Year	-721.756	143.4638	-576.464
GNP Deflator	-181.123	75.6716	-19.7681
GNP	0.0910678	132.467	0.0643940
Armed Forces	-0.0749370	1.55319	-0.0101453

7-56/72

Part 7: Finite Sample Properties of LS

Condition Number and Variance Inflation Factors



Variance Inflation in Gasoline Market

Regression Analysis: logG versus logIncome, logPG

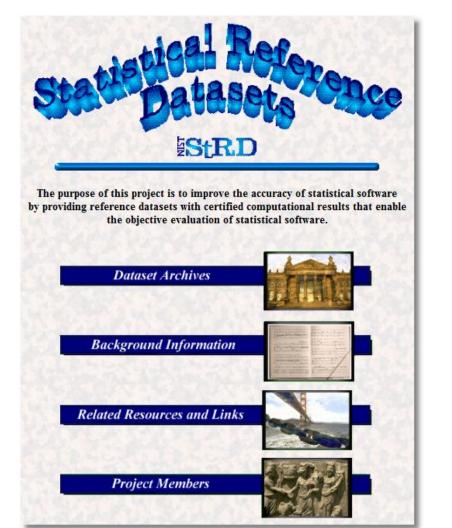
The regression equation is $\log G = -0.468 + 0.966 \log Income - 0.169 \log PG$ Predictor Coef SE Coef Т Ρ Constant -0.46772 0.08649 -5.41 0.000 logIncome 0.96595 0.07529 12.83 0.000 -0.16949 0.03865 -4.38 0.000logPG S = 0.0614287 R-Sq = 93.6% R-Sq(adj) = 93.4% Analysis of Variance Source DF SS MS F Ρ Regression 2 2.7237 1.3618 360.90 0.000 Residual Error 49 0.1849 0.0038 Total 51 2.9086

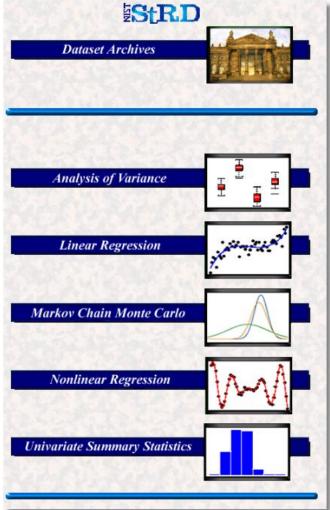
Gasoline Market

Regression Analysis: logG versus logIncome, logPG, ...

The regression equation is $\log G = -0.558 + 1.29 \log Income - 0.0280 \log PG$ - 0.156 logPNC + 0.029 logPUC - 0.183 logPPT Coef SE Coef Predictor Т Ρ Constant -0.5579 0.5808 -0.96 0.342 logIncome 1.2861 0.1457 8.83 0.000 logPG -0.02797 0.04338 -0.64 0.522 logPNC -0.1558 0.2100 -0.74 0.462 logPUC 0.0285 0.1020 0.28 0.781 logPPT -0.1828 0.1191 -1.54 0.132 S = 0.0499953 R-Sq = 96.0% R-Sq(adj) = 95.6% Analysis of Variance Source SS DF MS F Ρ Regression 5 2.79360 0.55872 223.53 0.000 Residual Error 46 0.11498 0.00250 Total 51 2.90858

The standard error on logIncome doubles when the three variables are added to the equation while the coefficient only changes slightly.





7-60/72

Part 7: Finite Sample Properties of LS

NIST Longley Solution

Model:	Observed Data Polynomial Class 7 Parameters (B0,B1,,B y = B0 + B1*x1 + B2*x2 + Certified Regression Stat	B3*x3 + B4*x4 + B5*x5 + B6*x6 + e
	2	Standard Deviation
Parameter	Estimate	of Estimate
BO	-3482258.63459582	890420.383607373
B1	15.0618722713733	84.9149257747669
B2	-0.358191792925910E-01	0.334910077722432E-01
B3	-2.02022980381683	0.488399681651699
B4	-1.03322686717359	0.214274163161675
B5	-0.511041056535807E-01	0.226073200069370
B6	1829.15146461355	455.478499142212

Y	Coefficient	Standard Error	t	Prob. t >T*		nfidence erval
Constant	34823D+07***	890420.4	-3.91	.0036 -	54965D+07	14680D+07
X1	15.0619	84.91493	.18	.8631	-177.0290	207.1528
X2	03582	.03349	-1.07	.3127	11158	.03994
X3	-2.02023***	.48840	-4.14	.0025	-3.12507	91539
X4	-1.03323***	.21427	-4.82	.0009	-1.51795	54851
X5	05110	.22607	23	.8262	56252	.46031
X6	1829.15***	455.4785	4.02	.0030	798.79	2859.52

7-61/72

Excel Longley Solution

SUMMARY	OUTPUT								1
Regression	Statistics								
Multiple F	0.997737								
R Square	0.995479								
Adjusted I	0.992465								
Standard I	304.8541								
Observati	16								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regressio	6	1.84E+08	30695400	330.2853	4.98E-10				
Residual	9	836424.1	92936.01						
Total	15	1.85E+08							
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	
Intercept	-3482259	890420.4	-3.9108	0.00356	-5496529	-1467988	-5496529	-1467988	Estimate
X Variable	15.06187	84.91493	0.177376	0.863141	-177.029	207.1528	-177.029	207.1528	-3482258.63459582 15.0618722713733
X Variable	-0.03582	0.033491	-1.06952	0.312681	-0.11158	0.039943	-0.11158	0.039943	-0.358191792925910E-
X Variable	-2.02023	0.4884	-4.13643	0.002535	-3.12507	-0.91539	-3.12507	-0.91539	-2.02022980381683 -1.03322686717359
X Variable	-1.03323	0.214274	-4.82199	0.000944	-1.51795	-0.54851	-1.51795	-0.54851	-0.511041056535807E-
X Variable	-0.0511	0.226073	-0.22605	0.826212	-0.56252	0.460309	-0.56252	0.460309	1829.15146461355
V Variable	1829.151	455 4785	4.01589	0.003037	798.7875	2859.515	798.7875	2859.515	

The NIST Filipelli Problem

🖉 filipelli.lim *	
fx Insert Name:	
READ; NOBS=82; NVAR=2; NAMES=Y, X\$ 0.8116 -6.860120914 0.9072 -4.324130045 0.9052 -4.358625055 0.9039 -4.358426747 0.8053 -6.955852379 0.8377 -6.661145254 0.8667 -6.355462942 0.8809 -6.118102026 0.7975 -7.115148017 0.8162 -6.815308569	•
remaining 72 observations CREATE; X1=X ; X2=X*X ; X3=X2*X ; X4=X3*X ; X5=X4*X ;X6=X5*X ; X7=X6*X ; X8=X7*X ; X9=X8*X ; X10=X9*X\$ REGRESS;LHS=Y;RHS=ONE,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10\$	Ŧ

Certified Filipelli Results

C	certified	l Regression S	tatistics	
			Sta	andard Deviation
Parameter	E	Istimate		of Estimate
в0	-1467.	48961422980	29	8.084530995537
B1	-2772.	17959193342	55	9.779865474950
B2	-2316.	37108160893	46	6.477572127796
в3	-1127.	97394098372	22	7.204274477751
В4	-354.4	78233703349	71	.6478660875927
в5	-75.12	42017393757	15	.2897178747400
B6	-10.87	53180355343	2.3	23691159816033
в7	-1.062	21498588947	0.1	221624321934227
B8	-0.670)191154593408E	-01 0.3	142363763154724E-01
B9	-0.246	5781078275479E	-02 0.	535617408889821E-03
B10	-0.402	962525080404E	-04 0.	896632837373868E-05
Residual St	andard I	eviation 0.	334801051	324544E-02
R-Squared		0.	996727416	185620
Certified A	nalysis	of Variance T	able	
Source of I	egrees o	of Sums of		Mean
Variation	Freedom	Squares		Squares
Regression	10	0.2423916198	37339	0.242391619837339E-01
Residual	71	0.7958513821	72941E-03	0.112091743968020E-04

Minitab Filipelli Results

* WARNING * x3 is high	hlv correlated	with other predictors.		
		with other predictors.		
-	-	with other predictors.		
-	-	with other predictors.	Estimate	-
* WARNING * x7 is hig	hly correlated	with other predictors.		~
* WARNING * x8 is hig	hly correlated	with other predictors.	-1467.4896142298	0
* WARNING * x9 is hig	hly correlated	with other predictors.	-2772.1795919334	2
			-2316.3710816089	3
The regression equation	on is			
y = - 1467 - 2772 x1	- 2316 x2 - 112	8 x3 - 354 x4 - 75.1 x5 - 10.		
- 0.0670 x8 - 0.0	0247 x9 - 0.000	040 x10	-354.47823370334	9
			-75.124201739375	7
	f SE Coef		-10.875318035534	2
Constant -1467.	5 298.1	-4.92 0.000		
	1 559.8		-1.0622149858894	7
	3 466.5		-0.6701911545934	08E-01
x3 -1128.			-0.2467810782754	79E-02
x4 -354.4				
x5 -75.1			-0.4029625250804	04E-04
	5 2.237			
	2 0.2216			
x8 -0.0670		-4.71 0.000		
	8 0.0005356			
x10 -0.0000403	0 0.00000897	-4.49 0.000		

7-65/72

Stata Filipelli Results

Residual +-	SS .242114595 .001072876 .243187471	8 .030 73 .000	264324 014697	F P R A	<pre>umber of obs = 82 (8, 73) = 2059.23 rob > F = 0.0000 -squared = 0.9956 dj R-squared = 0.9951 oot MSE = .00383</pre>
у	Coef.	Std. Err.	t	P> t	Estimate
x3	9.585386 (dropped) -1.419962 (dropped) .305533 .1216212 .0228691 .0023607 .0001291 2.94e-06 13.83021	3.44e-07	7.32 7.63 7.92 8.16	0.000 0.000 0.000 0.000 0.000 0.000	-2772.17959193342 -2316.37108160893 -1127.97394098372 -354.478233703349 -75.1242017393757 -10.8753180355343 -1.06221498588947 -0.670191154593408E-01 -0.246781078275479E-02 -0.402962525080404E-04

In the Filippelli test, Stata found two coefficients so collinear that it dropped them from the analysis. Most other statistical software packages have done the same thing, and most authors have interpreted this result as acceptable for this test.

7-66/72

Y	Standard			Prob.	95% Confidence	
	Coefficient Error t			t >T*	Interval	
Constant X1 X3 X5 X6 X7 X8 X9 X10	13.5586*** 9.39316*** -1.39413*** .30045*** .11968*** .02252*** .00233*** .00013*** .28946D-05***	2.28650 1.60468 .21302 .04159 .01588 .00288 .00029 .1537D-04 .3425D-06	5.93 5.85 -6.54 7.22 7.54 7.82 8.07 8.28 8.45	.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	9.0016 6.19504 -1.81868 .21757 .08803 .01678 .00175 .00010 .22121D-05	18.1156 12.59129 96957 .38334 .15133 .02826 .00290 .00016 .35771D-05

x1	1	9.585386	1.609771
x2	1	(dropped)	
x3	1	-1.419962	.2137125
x4	1	(dropped)	
x5	1	.305533	.0417248
x6	1	.1216212	.0159331
x7	1	.0228691	.0028893
x8	1	.0023607	.0002892
x9	1	.0001291	.0000154
x10	1	2.94e-06	3.44e-07
cons	1	13.83021	2.29365

Even after dropping two (random columns), results are only correct to 1 or 2 digits.

Regression of x_2 on all other variables

Ordinary LHS=X2 Regressic Residual Total Fit Model tes Model was	Sum of Square Sum of Square Standard erro R-squared	= iation = vations = es = es = or of e = =] = *	40. 18. 51512 27. 1.	05875 37174 82 339.2 4E-10 339.2 00000 00000 *****	DegFreedom 9 72 81 Root MSE R-bar square Prob F > F*		
¥2	Coefficient	Standard Error	t	Prob t >T		nfidence erval	
	63802*** -1.19955*** 48688*** 15336*** 03267*** 00477*** 00047*** 30124D-04*** 11284D-05*** 0.0***	.00419 .00394 .00159 .00100 .00032 .6159D-04 .7558D-05 .5766D-06 .2501D-07 .4725D-09	$\begin{array}{r} -152.40\\ -304.78\\ -305.76\\ -153.37\\ -102.67\\ -77.40\\ -62.28\\ -52.25\\ -45.11\\ -39.78\end{array}$.0000	-1.20726 49000	62982 -1.19184 48376 15140 03204 00465 00046 28994D-04 10794D-05 17872D-07	
Note: nnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. Note: ***, **, * ==> Significance at 1%, 5%, 10% level. -> calc ; peek ; 1515124e-10/27339.2\$ [CALC] = .999999999999999810D+00							

7-68/72

Using QR Decomposition

Ordinary LHS=Yleast squares regression Mean Standard deviation= No. of observations=RegressionSum of Squares=ResidualSum of Squares=TotalSum of Squares=Standard error of e=FitR-squared=Model testF[10, 71]=			. 79585 . 2	42392 1E-03 43187 00335 99673	DegFreedom Mea 10 71 81 Root MSE R-bar squared Prob F > F*	an square .02424 .00001 .00300 .00312 .99627 .00000
Y Constant X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 -	Coefficient -1467.49*** -2772.18*** -2316.37*** -1127.97*** -354.478*** -75.1242*** -10.8753*** -1.06222*** 06702*** 00247*** 40296D-04***	Standard Error 298.0845 559.7799 466.4776 227.2043 71.64787 15.28972 2.23691 .22162 .01424 .00054 .8966D-05	t -4.92 -4.95 -4.97 -4.96 -4.95 -4.91 -4.86 -4.79 -4.71 -4.61 -4.49	Prob. t >T* .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	Estimate -1467.4896142 -2772.1795919 -2316.3710816 -1127.9739409 -354.47823370 -75.124201739 -10.875318035 -1.0622149858 -0.6701911545 -0.2467810782 -0.4029625250	2980 3342 0893 8372 3349 3757 5343 8947 93408E-01 75479E-02

Multicollinearity

There is no "cure" for collinearity. Estimating something else is not helpful (principal components, for example).

There are "measures" of multicollinearity, such as the condition number of **X** and the variance inflation factor.

Best approach: Be cognizant of it. Understand its implications for estimation.

What is better: Include a variable that causes collinearity, or drop the variable and suffer from a biased estimator?
Mean squared error would be the basis for comparison.
Some generalities. Assuming X has full rank, regardless of the condition, b is still unbiased

Gauss-Markov still holds

How (not) to deal with multicollinearity in a Translog Production Function

$$\begin{split} &\log y = \alpha + \beta_1 \log x_1 + \beta_2 \log x_2 + \beta_3 \log x_3 + \\ & \left[\begin{array}{c} \gamma_{11} \log^2 x_1 + \gamma_{12} \frac{1}{2} \log x_1 \log x_2 + \gamma_{13} \frac{1}{2} \log x_1 \log x_3 + \\ \gamma_{22} \log^2 x_2 + \gamma_{23} \frac{1}{2} \log x_2 \log x_3 + \\ \gamma_{33} \log^2 x_3 \end{array} \right] \end{split}$$

 Checking for variance inflation factor (VIF) and ensuring that it is less than 10 therefore, if VIF > 10, eliminate the variables in a step-wise way?

2. Maintain either the squares or the cross products depending on which fits data best. However, this might not be useful since most of the time the full model is a better fit.

3. Standardize the variables by the mean and estimating again. If there are still VIF>10, eliminate stepwise by VIF?

How do I deal with the issue of multicollinearity in my dataset? I know that translog is a better fit than Cobb-Douglas in my data but am faced with the multicollinearity challenge. What would be a way forward in such cases?

7-71/72

I have a sample of 24025 observations in a logit model. Two predictors are highly collinear (pairwaise corr .96; p<.001); vif are about 12 for each of them; average vif is 2.63; condition number is 10.26; determinant of correlation matrix is 0.0211; the two lowest eigen vales are 0.0792 and 0.0427. Centering/standardizing variables does not change the story.

Note: most obs are zeros for these two variables; I only have approx 600 non-zero obs for these two variables on a total of 24.025 obs.

Both variable coefficients are significant and must be included in the model (as per specification).

- -- Do I have a problem of multicollinearity??
- -- Does the large sample size attenuate this concern, even if I have a correlation of .96? -- What could I look at to ascertain that the consequences of multi-collinearity are not a problem?
- -- Is there any reference I might cite, to say that given the sample size, it is not a problem?

I hope you might help, because I am really in trouble!!!