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Asymptotics: Setting 

        Most modeling situations involve stochastic 

regressors, nonlinear models or nonlinear estimation 

techniques.  The number of exact statistical results, 

such as expected value or true distribution, that can 

be obtained in these cases is very low.  We rely, 

instead, on approximate results that are based on 

what we know about the behavior of certain statistics 

in large samples.  Example from basic statistics:  We 

know a lot about   .  What can we say about 1/    ?  xx
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Convergence 

Definitions, kinds of convergence as n grows large:  

 

1.  To a constant; example, the sample mean, 

converges to the population mean.  

 

2.  To a random variable; example, a t statistic with 

n -1 degrees of freedom converges to a standard 

normal random variable  

x
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Convergence to a Constant 

Sequences and limits. 

Convergence of a sequence of constants, indexed by n: 

 

 

 

(Note the use of the “leading term”) 

 

Convergence of a sequence of random variables. 

What does it mean for a random variable to converge to a 

constant?  Convergence of the variance to zero.  The 

random variable converges to something that is not  

random. 

21 1
2 2

2 2

n +3 n+5n(n+1)/2+3n+5 1
Ordinary limit: = ?   

n +2n+1 n +2n+1 2

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Convergence Results 

Convergence of a sequence of random variables to a constant - 
Convergence in mean square:  
Mean converges to a constant, variance converges to zero.  
(Far from the most general, but definitely sufficient for our 
purposes.) 

 

 

 

A convergence theorem for sample moments.   
Sample moments converge in probability to their population 
counterparts. 

 

Generally the form of The Law of Large Numbers. (Many forms; see 
Appendix D in your text.  This is the “weak” law of large numbers.)  

 

Note the great generality of the preceding result.   

       (1/n)Σig(zi) converges to E[g(zi)]. 

21
1 ,  [ ] ,  Var[ ]= / 0n

n i i n nn
x x E x x n    
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Extending the Law of Large Numbers 

2

1 2 n

P

i i 1 2 n

Suppose x has mean  and finite variance  and x , x , ..., x  

are a random sample. Then the LLN applies to x.

Let z x .  Then, z , z ,..., z  are a random sample from a population

with mean E[z] = E[x

 



P 2P P 2

2

P

] and Var[z] = E[x ] - {E[x ]} .  The LLN

applies to z as long as the moments are finite.  

There is no mention of normality in any of this.

Example:  If  x  ~  N[0, ], then

0 if P is odd         
E[x ]




P

        

(P 1)!!  if P is even

(P 1)!!  = product of odd numbers up to P-1.

No power of x is normally distributed.  Normality is irrelevant to the LLN.



 


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Probability Limit 

 

       



n n

n

Let  be a constant,  be any positive value, and n index the sequence.

If lim(n )Prob[|b |  > ] 0 then, plim b .

         b   to .  (A definition.)

In words, the probabilit

converges in probability



  

n

n

y that the difference between b  and  is larger 

than  for any  goes to zero.  b  becomes arbitrarily close to .

Mean square convergence is sufficient (not necessary) for convergence 

in probability. (We will not require other, broader definitions of convergence, 

such as "almost sure convergence.")
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Mean Square Convergence 



Part 8: Asymptotic Distribution Theory 8-10/55 

Probability Limits and Expecations 
 

What is the difference between  

E[bn] and plim bn? 

 

 

   P

n n

A notation

plim b     b
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Consistency of an Estimator 

If the random variable in question, bn is an estimator (such 
as the mean), and if 

 

    plim bn = θ, 
 

then bn is a consistent estimator of θ.   

Estimators can be inconsistent for θ for two reasons: 

    (1) They are consistent for something other than the 
thing that interests us. 

    (2)  They do not converge to constants.  They are not 
consistent estimators of anything. 

We will study examples of both. 
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The Slutsky Theorem 

Assumptions: If  

bn is a random variable such that plim bn = θ.   

For now, we assume θ is a constant. 

g(.) is a continuous function with continuous derivatives. 

g(.) is not a function of n. 

Conclusion:  Then  plim[g(bn)] = g[plim(bn)] assuming 
g[plim(bn)] exists.  (VVIR!) 

Works for probability limits. Does not work for expectations. 

 
   n n n nE[x ]= ; plim(x ) ,  E[1/x ]=?; plim(1/x )=1/



Part 8: Asymptotic Distribution Theory 8-13/55 

Slutsky Corollaries 

 

    

    

    

  

n n

n n

n n

n n

n n

x  and y  are two sequences of random variables with

probability limits  and .  

Plim (x  y )    (sum)

Plim (x  y )    (product)

Plim (x / y )  /  (ratio, if   0)

Plim[g(x ,y )]  g(  , ) assuming it exists and g(.) is

continuous with continuous partials, etc.
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Slutsky Results for Matrices 

Functions of matrices are continuous functions of the 

        elements of the matrices.  Therefore, 

If plimAn = A and plimBn = B (element by element), then 

         plim(An
-1) = [plim An]

-1 = A-1 

and  

         plim(AnBn) = plimAnplim Bn = AB 
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Limiting Distributions 

Convergence to a kind of random variable instead of to a 

constant 

xn is a random sequence with cdf Fn(xn).  If plim xn = θ (a 

constant), then Fn(xn) becomes a point.  But, xn may 

converge to a specific random variable.  The 

distribution of that random variable is the limiting 

distribution of xn.  Denoted 

d

n n n n
x x  F (x ) F(x)


  
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A Limiting Distribution 

 
 

2

1 2

0

2

2 1
1

1

, ,...,  = a random sample from N[ , ]

For purpose of testing H : 0,  the usual test statistic is

t  ,  where  s
1/

The exact density of the random variable t  is t with -1 

n

n

i nn i
n n

n

n

x x x

x xx

ns n

n






 

 


 





/2
2

1
1

1 1

degrees of 

freedom.  The density varies with n;

( / 2) 1
(t ) 1

[( 1) / 2] 1( 1)

The cdf, (t) = ( ) .  The distribution has mean zero and

variance ( -1)/( -3).  As  , t

n

n
n

t

n n

tn
f

n nn

F f x dx

n n n






 


 
  
     





1

he distribution and the random variable 

converge to standard normal, which is written  t  N[0,1].d

n 
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A Slutsky Theorem for Random Variables 

(Continuous Mapping Theorem) 
d

n n

d

n

n

If x x,  and if g(x ) is a continuous function with

continuous derivatives and does not involve n, then

g(x ) g(x).

Example :  t  = random variable with t distribution with

                      n deg





2

n

d

n

d2 2

n

rees of freedom.

               t  = exactly, an F random variable with [1,n] 

                      degrees of freedom.

               t N(0,1),  

               t [N(0,1)]  = chi-squared[1].







Part 8: Asymptotic Distribution Theory 8-18/55 

An Extension of the Slutsky Theorem 





 



d

n n

d

n n

If x x (x  has a limiting distribution) and

 is some relevant constant (estimator) , and

g(x , ) g (i.e., g  has a limiting distribution 

                        that is some function of ) 

and p      



d

n n n n
ˆ ˆlim ,  then g(x , ) g(x , ) 

(replacing  with a consistent estimator

leads to the same limiting distribution).
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Application of the Slutsky Theorem 




 



 



2
d

2

2
p

2

d 2

Large sample behavior of the F statistic for testing restrictions

( ) [J]

( )/J JJ
F=

/(N-K) ˆ
1

Therefore,    JF [J] as N increases

Establishing the numerator 

e * 'e * - e'e

e * 'e * - e'e

e'e

requires a central limit theorem.

We will come to that shortly.
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Central Limit Theorems 

Central Limit Theorems describe the large sample 

behavior of random variables that involve sums 

of variables.  “Tendency toward normality.” 

 

Generality: When you find sums of random 

variables, the CLT shows up eventually. 

 

The CLT does not state that means of samples 

have normal distributions. 
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A Central Limit Theorem 

 

 




1 n

2

d

Lindeberg-Levy CLT (the simplest version of the CLT)

If x ,..., x  are a random sample from a population

with finite mean  and finite variance ,  then

n(x )
             N(0,1)

Note,  not the limitin

 

 


n

d

n

g distribution of the mean, since

the mean, itself, converges to a constant.

A useful corollary:  if plim s ,  and the other conditions

are met, then

n(x )
            N(0,1)

s

Note this does not assume sampling from a normal population.
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Lindeberg-Levy vs. Lindeberg-Feller 

Lindeberg-Levy assumes random sampling – 

observations have the same mean and same 

variance. 

Lindeberg-Feller allows variances to differ across 

observations, with some necessary assumptions 

about how they vary. 

Most econometric estimators require Lindeberg-

Feller (and extensions such as Lyapunov). 
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Order of a Sequence 

Order of a sequence 

‘Little oh’ o(.).  Sequence hn is o(n) (order less than n) iff n- hn  0. 

        Example: hn = n1.4 is o(n1.5) since n-1.5 hn =  1 /n.1  0. 

‘Big oh’ O(.).  Sequence hn is O(n) iff n- hn  a finite nonzero constant. 

        Example 1: hn =  (n2 + 2n + 1) is O(n2). 

        Example 2:  ixi
2  is usually O(n1) since this is nthe mean of xi

2 

        and the mean of xi
2 generally converges to E[xi

2], a finite 

        constant. 

What if the sequence is a random variable?  The order is in terms of the 
variance. 

Example:  What is the order of the sequence       in random sampling? 

        Var[     ] = σ2/n which is O(1/n).  Most estimators are O(1/n) 
nx

nx
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Cornwell and Rupert Panel Data 

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years 
Variables in the file are 

EXP  = work experience 
WKS  = weeks worked 
OCC  = occupation, 1 if blue collar,  
IND  = 1 if manufacturing industry 
SOUTH  = 1 if resides in south 
SMSA = 1 if resides in a city (SMSA) 
MS  = 1 if married 
FEM  = 1 if female 
UNION  = 1 if wage set by union contract 
ED  = years of education 
LWAGE  = log of wage = dependent variable in regressions 

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel 
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied 
Econometrics, 3, 1988, pp. 149-155.  
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Histogram for LWAGE 
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Kernel Estimator for LWAGE 

X* 

f̂(x*)
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Kernel Density Estimator 



 
  

 








n i m

m mi 1

*
* *x x1 1

f̂(x ) K , for a set of points x
n B B

B "bandwidth"

K the kernel function

x*  the point at which the density is approximated.

f̂(x*) is an estimator of f(x*)

1

The curse of dimensionality




  


n

ii 1

3/5

Q(x | x*) Q(x*). 
n

1 1
But, Var[Q(x*)] Something.  Rather, Var[Q(x*)] * Something

n n

ˆI.e.,f(x*) does not converge to f(x*) at the same rate as a mean

converges to a population mean.
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Asymptotic Distributions 

An asymptotic distribution is a finite sample approximation to the true 

distribution of a random variable that is good for large samples, but not 

necessarily for small samples. 

Stabilizing transformation to obtain a limiting distribution.  Multiply random 

variable xn by some power, a, of n such that the limiting distribution of 

naxn has a finite, nonzero variance. 

Example,      has a limiting variance of zero, since the variance is σ2/n.  But, 

       the variance of √n      is σ2.  However, this does not stabilize the 

distribution because E[        ] = √ nμ. 

       The stabilizing transformation would be  

 

nx
nx

nn x

n(x ) 
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Asymptotic Distribution 

Obtaining an asymptotic distribution from a limiting distribution 

    Obtain the limiting distribution via a stabilizing transformation 

    Assume the limiting distribution applies reasonably well in  

        finite samples 

    Invert the stabilizing transformation to obtain the asymptotic  

        distribution 

 

 

 

 

 

 

      Asymptotic normality of a distribution. 

d

a 2

a 2

a 2

2

n(x ) / N[0,1]

Assume holds in finite samples.  Then,

n(x ) N[0, ]

    (x ) N[0, /n]

           x N[ , /n]

Asymptotic distribution.

/n  the asymptotic variance.  

  

  

   

  

 
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Asymptotic Efficiency 

 Comparison of asymptotic variances 

 How to compare consistent estimators?  If both 

converge to constants, both variances go to zero.   

 Example:  Random sampling from the normal 

distribution,  

 Sample mean is asymptotically normal[μ,σ2/n] 

 Median is asymptotically normal [μ,(π/2)σ2/n] 

 Mean is asymptotically more efficient 
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The Delta Method 

The delta method (combines most of these concepts) 

 

Nonlinear transformation of a random variable:   
f(xn) such that plim xn =  but n (xn - ) is asymptotically normally 

        distributed (,2).  What is the asymptotic behavior of f(xn)? 

 

Taylor series approximation:  f(xn)    f() + f() (xn - ) 

 

By the Slutsky theorem,      plim f(xn) = f() 

                                         n[f(xn) - f()]  f() [n (xn - )] 

                                         n[f(xn) - f()]  f()  N[, 2] 

 

Large sample behaviors of the LHS and RHS sides are the same 

Large sample variance is [f()]2 times large sample Var[n (xn - )] 



Part 8: Asymptotic Distribution Theory 8-32/55 

Delta Method 

Asymptotic Distribution of a Function 

a 2

n

n

a 2 2

n

If x  N[ , /n] and 

f(x ) is a continuous and continuously differentiable

function that does not involve n, then

f(x ) N{f( ),[f '( )] /n} 

  

   
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Delta Method – More than One Parameter 

     

 
 
 
 
 
 

  

1 1 K 1 2 K

11 12 1K

21 22 2K

K1 K2 KK

1 1 K

ˆ ˆ ˆIf  , ,...,  are K consistent estimators of K parameters , ,...,   

v v ... v

v v ... v
with asymptotic covariance matrix = ,

... ... ... ...

v v ... v

ˆ ˆ ˆand if f( , ,..., ) 

V

  




    
     




1 1 K

11 12 1K

21 22 2K

1 2 K

K1 K2 KK

= a continuous function with continuous derivatives, 

ˆ ˆ ˆthen the asymptotic variance of f( , ,..., ) is

v v ... v

v v ... vf(.) f(.) f(.)
 = ...

... ... ... ...

v v ... v

g'Vg

 

 
 
 
 
   
 
 
 
  

 


 


1

2

K

K K

kl
k 1 l 1 k l

f(.)

f(.)

...

f(.)

f(.) f(.)
        V
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Log Income Equation 

---------------------------------------------------------------------- 

Ordinary     least squares regression ............ 

LHS=LOGY     Mean                 =       -1.15746        Estimated Cov[b1,b2] 

             Standard deviation   =         .49149 

             Number of observs.   =          27322 

Model size   Parameters           =              7 

             Degrees of freedom   =          27315 

Residuals    Sum of squares       =     5462.03686 

             Standard error of e  =         .44717 

Fit          R-squared            =         .17237 

--------+------------------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X 

--------+------------------------------------------------------------- 

     AGE|     .06225***       .00213       29.189   .0000      43.5272 

 AGESQRD|    -.00074***     .242482D-04   -30.576   .0000      2022.99 

Constant|   -3.19130***       .04567      -69.884   .0000 

 MARRIED|     .32153***       .00703       45.767   .0000       .75869 

  HHKIDS|    -.11134***       .00655      -17.002   .0000       .40272 

  FEMALE|    -.00491          .00552        -.889   .3739       .47881 

    EDUC|     .05542***       .00120       46.050   .0000      11.3202 

--------+------------------------------------------------------------- 
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Age-Income Profile:  

Married=1, Kids=1, Educ=12, Female=1 
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Application: Maximum of a Function 

2

1 2

1
1 2

2

1

1 2

1
22

2 2

log ...

At what age does log income reach its maximum?

log .06225
2 0 => Age* = 42.1

2 2( .00074)

* 1 1
 = g =   =  675.68          

2 2( .00074)

*

2

Y Age Age

Y
Age

Age

Age

Age
g

   

 
      

  

  


  


  

  2

.06225
56838.9

2( .00074)




  AGE|     .06225***       .00213       29.189   .0000      43.5272 
 AGESQ|    -.00074***     .242482D-04   -30.576   .0000      2022.99 
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Delta Method Using Visible Digits 

2 6 2 10

8

675.68 (4.54799 10 ) 56838.9 (5.8797 10 )

2(675.68)(56838.9)( 5.1285 10 )

.0366952

standard error = square root = .1915599

 



  

  


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Delta Method Results Built into Software 

----------------------------------------------------------- 

WALD procedure.  

--------+-------------------------------------------------- 

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z] 

--------+-------------------------------------------------- 

      G1|    674.399***     22.05686       30.575   .0000 

      G2|    56623.8***     1797.294       31.505   .0000 

 AGESTAR|    41.9809***       .19193      218.727   .0000 

--------+-------------------------------------------------- 

 

(Computed using all 17 internal digits of regression results) 
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Application: Doctor Visits 

 German Individual Health Care data: n=27,236 

 Simple model for number of visits to the doctor: 

 True E[v|income] =         exp(1.412 - .0745*income) 

 Linear regression: g*(income)=3.917 - .208*income 
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A Nonlinear Model 

1 2 3E[docvis | x] exp( AGE EDUC...)   
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Interesting Partial Effects 

1 2 3

1 2 3 2

1 2 3 3

Estimate Effects at the Means of the Data

Ê[docvis | x]  exp(b b AGE b EDUC + ...)

Ê[docvis | x]
exp(b b AGE b EDUC + ...)b

AGE

Ê[docvis | x]
exp(b b AGE b EDUC + ...)b

EDUC

...

Ê[docvis | x]
e

INCOME

  


  




  







1 2 3 6xp(b b AGE b EDUC + ...)b 
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Necessary Derivatives (Jacobian) 

1 2 3 2 AGE 1 2 6

AGE 2 1 2 3
2

1 1

AGE 2
2 2

2 2 2

Ê[docvis | x]
exp(b b AGE b EDUC...)b  = f (b ,b ,...,b | AGE,EDUC)

AGE

f b exp(b b AGE b EDUC...)
b exp(...) 1

b b

f bexp(...)
b exp(...)              b exp(...) AGE   exp(..

b b b


  



   
  

 

 
    

  

AGE 2 1 2 3
2

3 3

AGE 2 1 2 3
2

4 4

AGE 2 1 2 3
2

5 5

AGE 2 1 2 3

6

.)1

f b exp(b b AGE b EDUC...)
b exp(...) EDUC

b b

f b exp(b b AGE b EDUC...)
b exp(...) MARRIED

b b

f b exp(b b AGE b EDUC...)
b exp(...) FEMALE

b b

f b exp(b b AGE b EDU

b

   
  

 

   
  

 

   
  

 

   



2

6

C...)
b exp(...) HHNINC

b
 


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Partial Effects at Means vs.  

Mean of Partial Effects 

 n1
i 1 in

n i

i 1
i

i i i

Partial Effects at the Means

f |f ( | )
          ( , )

Mean of Partial Effects

f ( | )1
          ( , ) = 

n

Makes more sense for dummy variables, d:

          ( , ,d) f ( | ,d=





 
  

 






 



xx
x

x x

x
X

x

x x







  i1)  -  f ( | ,d=0)

          ( , d) makes more sense than ( , d) 

x

X, x,



 
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Partial Effect for a Dummy Variable? 
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Delta Method, Stata Application 

2

2

2

2 2

Target of estimation is  = 
1

Estimation strategy:  

(1)  Estimate   = log

(2)  Estimate   = exp( /2)

(3)  Estimate   =  / (1 )






 

 

  
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Delta Method 

 

 

2

ˆ

1 1
2 2

22

2

ˆ

ˆ 1.123706   V .0715548 .00512009

ˆˆ exp( / 2) exp( 1.123706 / 2) exp( .561853) .5701517

ˆ ˆˆ ˆ ˆ/ exp( / 2) .2850758

ˆˆ ˆ / .08126821

ˆˆ / V .08126821(.00512009) .0004161

Estimated S

g d d

g d d

d d





    

       

       

   

   

ˆtandard Error for   = .0004161 .02039854 
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Delta Method 

2

2

Continuing the previous example, there are two approaches implied 

for estimating :

(1)    =  f ( )  =  
1

exp( )
(2)    =  h( )    =  

1 exp( )

Use the delta method to estimate a standard error for 




 




 

 

each of the two 

estimators of .  Do you obtain the same answer?
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Confidence Intervals? 

ˆ .5701517 1.96(.0203985) = .5301707 to .6101328??

The center of the confidence interval given in the table is .571554!

What is going on here?  

The confidence limits given are exp(-1.23695/2) to exp(-.

 

984361/2)!
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Received October 6, 2012 

 

Dear Prof. Greene, 

I am AAAAAA, an assistant professor of Finance at the xxxxx university 

of xxxxx, xxxxx.  I would be grateful if you could answer my question 

regarding the parameter estimates and the marginal effects in 

Multinomial Logit (MNL).  

After running my estimations, the parameter estimate of my variable of 

interest is statistically significant, but its marginal effect, evaluated at the 

mean of the explanatory variables, is not. Can I just rely on the 

parameter estimates’ results to say that the variable of interest is 

statistically significant? How can I reconcile the parameter estimates 

and the marginal effects’ results? 

Thank you very much in advance! 

Best, 

AAAAAA 


