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Asymptotics: Setting

Most modeling situations involve stochastic
regressors, nonlinear models or nonlinear estimation
technigues. The number of exact statistical results,
such as expected value or true distribution, that can
be obtained Iin these cases is very low. We rely,
Instead, on approximate results that are based on
what we know about the behavior of certain statistics
In large samples. Example from basic statistics: We
know a lot about X. What can we say about 1/ X ?
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Convergence

Definitions, kinds of convergence as n grows large:

1. To a constant; example, the sample mean, X
converges to the population mean.

2. To arandom variable; example, a t statistic with
n -1 degrees of freedom converges to a standard
normal random variable
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Convergence to a Constant

Sequences and limits.
Convergence of a sequence of constants, indexed by n:

n(n+1)/2+43n+5_$n°+35n+5 1

Ordinary limit: > >
n“+2n+1 n“+2n+1 2

(Note the use of the “leading term”)

Convergence of a sequence of random variables.
What does it mean for a random variable to converge to a
constant? Convergence of the variance to zero. The
random variable converges to something that is not
random.
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Convergence Results

Convergence of a sequence of random variables to a constant -
Convergence in mean square:
Mean converges to a constant, variance converges to zero.
(Far from the most general, but definitely sufficient for our
purposes.)

X =i3" x, E[X ]=u—u, Var[X ]=c6°/n—0

A convergence theorem for sample moments. _ _
Sample moments converge in probability to their population
counterparts.

Generally the form of The Law of Large Numbers. (Many forms; see
Appendix D in your text. This is the “weak” law of large numbers.)

Note the great generality of the preceding result.
(1/n)2,g(z;) converges to E[g(z))].
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Extending the Law of Large Numbers

Suppose x has mean p and finite variance * and x,, X,, ..., X
are a random sample. Then the LLN applies to X.

n

Letz, =x’. Then, z,,z,,...,Z, are a random sample from a population
with mean E[z] = E[x"] and Var[z] = E[x*"] - {E[x"]}*. The LLN
applies to Z as long as the moments are finite.
There is no mention of normality in any of this.
Example: If x ~ N[0,6°], then
E[xP] - {Opif Pis odd_ |
c (P-D!ifPiseven
(P —-1)!" = product of odd numbers up to P-1.
No power of x is normally distributed. Normality is irrelevant to the LLN.
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Probabllity Limit

Let 6 be a constant, € be any positive value, and n index the sequence.
If lim(n — «)Prob[|b, — 0] > €] =0 then, plim b_ =6.

b, converges in probability to 6. (A definition.)
In words, the probability that the difference between b_ and 6 is larger
than ¢ for any e goes to zero. b, becomes arbitrarily close to 6.

Mean square convergence is sufficient (not necessary) for convergence
in probability. (We will not require other, broader definitions of convergence,
such as "almost sure convergence.")
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Diensity

Mean Square Convergence

|

n = 10

n = 100

Estimator

FIGURE D.1 (Quadratic Convergence to a Constant, é.
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Probability Limits and Expecations

What is the difference between
E[b,] and plim b ?

A notation

pimb =060 < b ———0
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Consistency of an Estimator

If the random variable in question, b, IS an estimator (such
as the mean), and if

plim b, =6,

then b, is a consistent estimator of 6.
Estimators can be inconsistent for 0 for two reasons:

(1) They are consistent for something other than the
thing that interests us.

(2) They do not converge to constants. They are not
consistent estimators of anything.

We will study examples of both.
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The Slutsky Theorem

Assumptions: If

b, is a random variable such that plim b, = 6.

For now, we assume 0 is a constant.

g(.) Is a continuous function with continuous derivatives.
g(.) iIs not a function of n.

Conclusion: Then plim[g(b,)] = g[plim(b,)] assuming
g[plim(b,)] exists. (VVIR!)

Works for probability limits. Does not work for expectations.

E[X, ]=w; plim(x,) =, E[1/X,]=?; plim(1/x )=1/u
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Slutsky Corollaries

X_andy_ are two sequences of random variables with
probability limits 6 and p.

Plim (X, £ y,)=06 = p (sum)

Plim (X, x y.) =0 x p (product)

Plim (x./y.)=06/ u (ratio, if u = 0)

Plim[g(x.,y.)]= g(6, n) assuming it exists and g(.) is
continuous with continuous partials, etc.
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Slutsky Results for Matrices

Functions of matrices are continuous functions of the
elements of the matrices. Therefore,

If plimA,, = A and plimB, = B (element by element), then
plim(A 1) = [plim A ]! =A"1

and
plim(A,B,) = plimA_plim B, = AB
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Limiting Distributions

Convergence to a kind of random variable instead of to a
constant

X, IS a random sequence with cdf F,(x,). If plim x, =90 (a
constant), then F_(x,) becomes a point. But, x, may
converge to a specific random variable. The
distribution of that random variable is the limiting
distribution of x,. Denoted

x —4 5x < F(x)

n

>F(X)

N—oo
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A Limiting Distribution

X, X, ,..., X = arandom sample from N[u,c°]
For purpose of testing H, : =0, the usual test statistic Is

Yn 2 Zin:l(xi - Yn )2

t ., = where s

(Sn/\ﬁ), " n-1

The exact density of the random variable t__, Is t with n-1 degrees of
freedom. The density varies with n;

(@) _T0/2) 1 { 2, }”’2
" TI(n-1) /2] J(n-Dn

The cdf, F _(t) = j_ f._ (x)dx. The distribution has mean zero and

variance (n-1)/(n-3). Asn — oo, the distribution and the random variable

converge to standard normal, which is written t_, —%— N[0,1].
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A Slutsky Theorem for Random Variables
(Continuous Mapping Theorem)

If x. —2—x, and if g(x_) is a continuous function with
continuous derivatives and does not involve n, then

g(x,) ——g(x).
Example: t, = random variable with t distribution with
n degrees of freedom.
t? = exactly, an F random variable with [1,n]
degrees of freedom.
t —4 5N(0,1),
t2 —2 5[N(0,1)]* = chi-squared[1].
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An Extension of the Slutsky Theorem

If x, —%—x (x. has a limiting distribution) and
0 is some relevant constant (estimator) , and

g(x_,0)—2—g (i.e., g, has a limiting distribution
that is some function of 0)

and plim 6_ =, then g(x_,6 )——>g(x_,6)

(replacing 6 with a consistent estimator

leads to the same limiting distribution).
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Application of the Slutsky Theorem

Large sample behavior of the F statistic for testing restrictions
(e*'e*- e'e)} var)

_(e*'e*-e'e)/] _ Jo* ]
e'e/(N-K) 62} ;
5 >1
@)

Therefore, JF—%—+?[J] as N increases
Establishing the numerator requires a central limit theorem.
We will come to that shortly.
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Central Limit Theorems

Central Limit Theorems describe the large sample
behavior of random variables that involve sums
of variables. “Tendency toward normality.”

Generality: When you find sums of random
variables, the CLT shows up eventually.

The CLT does not state that means of samples
have normal distributions.
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A Central Limit Theorem

Lindeberg-Levy CLT (the simplest version of the CLT)
If x,,..., X, are a random sample from a population

with finite mean p and finite variance ¢°, then

Jn(X - p)

¢ »N(0,1)

Note, not the limiting distribution of the mean, since
the mean, itself, converges to a constant.
A useful corollary: if plim s = o, and the other conditions

are met, then

Jn(X - )
S

¢ 5N(0,1)

Note this does not assume sampling from a normal population.
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Lindeberg-Levy vs. Lindeberg-Feller

Lindeberg-Levy assumes random sampling —
observations have the same mean and same
variance.

Lindeberg-Feller allows variances to differ across
observations, with some necessary assumptions
about how they vary.

Most econometric estimators require Lindeberg-
Feller (and extensions such as Lyapunov).
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Order of a Sequence

Order of a sequence

‘Little oh’ o(.). Sequence h, is o(n°) (order less than nd) iff n® h, — 0.
Example: h, = nt4is o(n'®) since n"t>h, = 1/nt - 0.

‘Big oh’ O(.). Sequence h, is O(nd) iff n® h, — a finite nonzero constant.
Example 1: h, = (n? + 2n + 1) is O(n?).
Example 2: £x? is usually O(n?) since this is nxthe mean of x;?
and the mean of x.2 generally converges to E[x.?], a finite
constant.

What if the sequence is a random variable? The order is in terms of the
variance.

Example: What is the order of the sequence Yn iIn random sampling?
Var[in] = 0%/n which is O(1/n). Most estimators are O(1/n)
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Cornwell and Rupert Panel Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years
Variables in the file are

EXP = work experience ?ariablei Mean Std.Dev.
WKS = weeks worked TExp| | 19.85378  10.96637
OCC = occupation, 1 if blue collar, WES 46 .91152 5.129098
_ 1 TP 0cC 511164 499935
IND =1 !f ma_nufa_cturlng industry ND S3cian 489003
SOUTH =1 if resides in south SOUTH 290276 453944
1 PP - SHSA 653782 .475821
SMSA =1 !f re5|d_es in a city (SMSA) S 814406 '38889¢
MS = 1 if married FEM 1126065 316147
FEM _ 1 ff I UHTION JEI9OE 421202
= lirtemale _ LWAGE 6.676346 461512
UNION =1 if wage set by union contract YELR] 10 2000240
ED = years of education -
LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied
Econometrics, 3, 1988, pp. 149-155.
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Histogram for LWAGE

Log Wage - All Years

rrrr 1T 1r 1T 1111171117 1T 1 17 1T 1T 17T 17 17T 17T 17 17 1T T T T T T T T T T1T
4 .605 5167 5723 5.230 5252 T.414 T.975 2537

LwAGE
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Kernel Estimator for LWAGE

Log Wage - All Years

J1

A8
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X*
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Kernel Density Estimator

The curse of dimensionality

*

f(x )= %Z?%K{X‘ _me } for a set of points x_,

B ="bandwidth"

K =the kernel function
x* = the point at which the density is approximated.

f(x*) IS an estimator of f(x*)
CYLQx %) = Q00

But, Var[Q(x*)] # 1 Something. Rather, Var[Q(x*)] = B Something
n

3/5
n

L.e.,f(x*) does not converge to f(x*) at the same rate as a mean
converges to a population mean.
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Asymptotic Distributions

An asymptotic distribution is a finite sample approximation to the true
distribution of a random variable that is good for large samples, but not
necessarily for small samples.

Stabilizing transformation to obtain a limiting distribution. Multiply random
variable x., by some power, a, of n such that the limiting distribution of
nax, has a finite, nonzero variance.

Example, in has a limiting variance of zero, since the variance is g%/n. But,

the variance of Vn Y is 2. However, this does not stabilize the
distribution because. Elyn X1 = v ny.

The stabilizing transformation would be \/_(X 1)
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Asymptotic Distribution

Obtaining an asymptotic distribution from a limiting distribution
Obtain the limiting distribution via a stabilizing transformation
Assume the limiting distribution applies reasonably well in

finite samples
Invert the stabilizing transformation to obtain the asymptotic
distribution Jn(X =)/ 6—94—>N[0,1]
Assume holds in finite samples. Then,
Jn(X - ) —2—-N[0, 6]
(X —p)—=—>N[0,5* /n]
X—2->N[p,c” /n]
Asymptotic distribution.
c° /n = the asymptotic variance.

Asymptotic normality of a distribution.
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Asymptotic Efficiency

O Comparison of asymptotic variances

O How to compare consistent estimators? If both
converge to constants, both variances go to zero.

= Example: Random sampling from the normal
distribution,
Sample mean is asymptotically normal[u,c?/n]

Median is asymptotically normal [p,(11/2)a?/n]
Mean is asymptotically more efficient
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The Delta Method

The delta method (combines most of these concepts)

Nonlinear transformation of a random variable:
f(x,,) such that plim x, = u but Vn (x,, - n) is asymptotically normally
distributed (u,02). What is the asymptotic behavior of f(x.)?

Taylor series approximation: f(x,) = f(n) + f'(n) (X, - w)

By the Slutsky theorem,  plim f(x,,) = f(u)
n[f(x,) - f(w)] = () [V (%, - W]
n[f(x,) - f(w)] = (1) x N[, o7

Large sample behaviors of the LHS and RHS sides are the same
Large sample variance is [f'(1)]? times large sample Var[\n (X, - w)]
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Delta Method
Asymptotic Distribution of a Function

If x. —2—-N[u,c”/n]and
f(x,) is a continuous and continuously differentiable
function that does not involve n, then

f(x,) ——N{f(), [f'(W)]°c” /n}
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Food Policy 50 (2015) 11-19

Contents lists available at ScienceDirect

Food Policy

journal homepage: www.elsevier.com/locate/foodpol

Does SNAP improve your health?
Christian A. Gregory **, Partha Deb "¢

* Diet, Safety and Health Economics Branch, Food Economics Division, Economic Research Service, USDA, Washington DC, United States
®Dept. of Economics, Hunter College, City University of New York, New York, United States

Table 2
Parameter estimates from ordered and count models.
SAH T
One Vehide Exempt per Adult 0.116"
Female 0.034 (0.049)
(0.021) (0.049)
Black 0.346"~ tanh(p) / A 0.305"
(0.028) (L047)
Hispanic -0018 -
0.029) In(3)
Other Race 0021°
(0.051) R 17.87°""
Married -0217" L il
(0.024) (0.000)
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The parameters p and Z represent the different measures of cor-
relation between the unobservables in the selection equation and
the outcome equation for self-assessed health and the count out-
comes, respectively. The value of the parameter p-the correlation
between bivariate normal errors in the two equations-indicates
that SNAP participants are more likely to report worse health
“before” entering SNAP-that is, selection is adverse rather than
beneficial.| This parameter is highly statistically significant.|The
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Delta Method

Author (Stata) reports atanh(p) = 0.305 (0.047). Note a typo in the paper.
The label in the table of results is tanh(p). (Hyperbolic tangent.) Stata
actually reports atanh(p), the hyperbolic arctangent. The difference is
substantive, but this is an obvious typo.

The estimate of p is never reported. Is the claim true? We use the
delta method to find out. Write T = atanh(p). This function is
T=(1/2)In[(1 + p)/(1 - p)].

You can solve this for

p = [exp(2t) — 1] / [exp(27) + 1]

So, plugging in the value of T (0.305), we get the estimate of p, 0.296.
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To get the estimated standard error, we need |dp/dt| times the estimated

standard error of T (which is 0.047). Doing the differentiation the hard way,
dp/dt ={[exp(21) + 1]2exp(27) - [exp(27) — 1] 2(exp(271)} / [exp(27) + 1]°
= 4exp(21)/[exp(21)+1]?, }Nhich evaluates to 0.912.

Finishing, the estimated standard error for the estimator of p is 0.912 x 0.047 = 0.043.
So, the claim is correct; the estimate of p is statistically significant; 0.296/0.043 = 6.88 > 1.96.
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Delta Method — More than One Parameter

If 6,,0,,...,6, are K consistent estimators of K parameters 6,,6,,...,0,

Vi, Vo o Vi
- - - - V21 V22 (RN V2K
with asymptotic covariance matrix V= ,

(Vi Voo e Vi

and if f(6,,9,,...,6,) = a continuous function with continuous derivatives,

then the asymptotic variance of f(6,,6,,...,6,) is

o)
) - 60,
V11 V12 V1K 8f()
g'Vg = of(.) of(.) () [|Var Vo v Vy 20,
00, 00, 00,
Vi Vg e Vg af()
| 30,
& s Of(L) of(.)
- Ty
kz;.zll o9, 0,
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Log Income Equation

Ordinary least squares regression ............
LHS=LOGY Mean = -1.15746 Estimated Cov[bl,b2]
Standard deviation = .49149
Number of observs. = 27322 1 2
Model size Parameters = 7 1 4.54799=-006 -A.1285e-008 -9
Degrees of freedom = 27315 c
Residuals Sum of squares = 5462.03686 2 0.1285e- 008 | 587373010 3=
Standard error of e = .44717 2 A ANAA=00R T 891 AN NN r
Fit R-squared 17237
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X
________ +_____________________________________________________________
AGE | .06225*** .00213 29.189 .0000 43.5272
AGESQRD | -.00074**x* .242482D-04 -30.576 .0000 2022.99
Constant| -3.19130*** .04567 -69.884 .0000
MARRIED | .32153*** .00703 45.767 .0000 .75869
HHKIDS | -.11134*** .00655 -17.002 .0000 .40272
FEMALE | -.00491 .00552 -.889 .3739 .47881
EDUC | .05542*%** .00120 46.050 .0000 11.3202
________ +_____________________________________________________________
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Age-Income Profile:
Married=1, Kids=1, Educ=12, Female=1

Expected Income by Age: Married, Kids, Female, HS

— 3750
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Application: Maximum of a Function

AGE|
AGESQ|

8-40/55

.06225%** .00213 29.189 .0000 43.5272
-.00074**x* .242482D-04 -30.576 .0000 2022.99
1 z
1 4 54739e-006  -5.1285e-008 @ -9
2 -5.128Re-008 | 5EVI7 30100 9.t
2 ANMN24anns | 9 91 ANTan? |- 7

logY =pB,Age+B,Age’ +...
At what age does log income reach its maximum?

8|09Y :B1+2B2Agezo —_— Age*: _Bl — _06225 :42 1
oAge 28,  2(-.00074)
* . _
OAge™ 1 g 1 67568
B, 2B, 2(~.00074)
*
oAge* B, _ 06225 ..o

op, 2B J2 = 5 Z 00074y’
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Delta Method Using Visible Digits

1

2

1

2

g

4.54793e-006

-5.1285e-008 | -3

-0.1285e-003 | 557373010 9.°
ANMA=0nR | aolan7=nn? - or

675.68°(4.54799x10°) + 56838.9%(5.8797 x10*)

+2(675.68)(56838.9)(—5.1285x10°°)

=.0366952

standard error = square root
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Delta Method Results Built into Software

WALD procedure.

________ +__________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|2Z]|>z]
________ +__________________________________________________
Gl| 674 .399*** 30.575 .0000
G2 | 56623 .8**x* 31.505 .0000
AGESTAR| 41.9809*** 218.727 .0000
________ +_________________ o ———— — o — — ——————————— —

(Computed using all 17 interna rgits of regression results)
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Application: Doctor Visits

O German Individual Health Care data: n=27,236

0 Simple model for number of visits to the doctor:
= True E[v|income] = exp(1.412 - .0745*income)
= Linear regression: g*(income)=3.917 - .208*income

11111

g - - -

2788 —— _— - — — —

L LU L
3|/ 40 42 44 48 4B G50

DOCVIS
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A Nonlinear Model

E[docvis|x] = exp(B, + B,AGE + B,EDUC...)

pols ; 1f[year=1994]
: Lhs=docvis

= one,age.educ, married,female hhninc $

Poisson Regression

Dependent wvariable

Estimation based on N =
________ e e e e

: Rhs

I
DOCVIS|

Constant|
AGE|
EDUC|
MARRIED |
FEMALE |
HHNINC |

8-44/55

Coefficient

LTTT33%%x

L02006%*x*
. 0307 Gxxx
-. 02985

.399535% =%
-.39459% %=

DOCVIS
3377, K =

Standard
Error

95% Confidence
* Interval
64806 90661
01851 .02160
-.03928 -.02228
-,.07153 01183
36370 43505
-.48843 -.30135
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Interesting Partial Effects

Estimate Effects at the Means of the Data
E[docvis|x] =exp(b, +b,AGE +b,EDUC + ...

OE[docvis | x]
oAGE

exp(b, +b, AGE+b EDUC + .. )b,

OE[docvis | x]
OEDUC

exp(b, +b, AGE+b EDUC + .. )b,

\\\

OE[docvis | x]
JINCOME

exp(b, +b,AGE +b,EDUC +...)b,
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Necessary Derivatives

(Jacobian)

OE[docvis |x] |

exp(b, + b, AGE +b,EDUC...)b,

- __(b,,b,,....b, | AGE,EDUC)

OAGE
Of pse O, eXp(b;, +b, AGE +b,EDUC...)
ob, ob,
Of pce b oexp(...)
- M2
ob,

ob,
of o Ob,exp(b, +b,AGE +b,EDUC...)
ob,

ob,
of e Ob,exp(b, +b,AGE +b,EDUC...)
ob,

ob,
of o Ob,exp(b, +b,AGE +b,EDUC...)
ob,

_ ob, exp(b, +b,AGE + b,EDUC...)

ob,
+ expl(...)—
p( )abz

ob,

a-I:AGE —
ob, ob,

8-46/55

=bh, exp(...) x1
=h,exp(...)xAGE +exp(..)1

=D, exp(...) x EDUC

=D, exp(...) x MARRIED
= b, exp(...) x FEMALE

= b, exp(...) x HHNINC
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| - simulate ; 1f [vear=14994] ; means 5

Uzer Function Function mtandard
+ (Delta method) Value Error || 95% Contidence Interval
Func. at means 3.54795 03334 106.40 3.48259 3.61330
| - partials ; 1f[yvear=1994] ; effects: age ; means 5
Partial Effects Analysis for Ezponential Regression Function
Effects on function with respect to AGE
Results ark computed at sample means of all wvariables
Partial effects for continuous AGE computed by differentiation
Effect i1s computed as derivative = df [.)-d=
dif . dAGE Partial mtandard
+ (Delta method) Effect Error |t| 95% Confidence Interval
FPE.Func (means 07116 00274 25,493 .06578 07654
8-47/55
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Partial Effects at Means vs.
Mean of Partial Effects

Partial Effects at the Means
oF@|x) Of (BIZLx,)
s

(B, X) =
(B, X) ~
Mean of Partial Effects
— 1<n of(B|X)
o(B, X)= =) . !
(ﬁ ) n lel 6Xi

Makes more sense for dummy variables, d:
Ai(Bx;,d) =T(B|x;,d=1) - T(B]x;,d=0)
A(B, X,d) makes more sense than §(B, X,d)
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Partial Effect for a Dummy Variable?

| -» Partials : if[vear = 1994 ] ; Effects: Female 5

Partial Effects Analvsis for Exponential Regression Function

Effects on function with respect to FEMALE

Fesults are computed by average over sample ohservatians
Partial effects for binary wvar FEMALE computed by first difference

df ~dFEMALE Partial mtandard
(Delta method) Effect Error |t| 95% Confidence Interwval
APE. Function 1.50z212 .0B856 21.91 1.36775 1.63649

| -» Partials : 1f[vear = 1994 | ; Effects: Female : meanss

Partial Effects Analvsis for Exponential Regression Function

Effects on function with respect to FEMALE

Fesults are computed at sample means ot all variables
Partial effects for continuous FEMALE computed by differentiation

Fffert 1= r“n'm'fm'l'::-:‘] as Aderivative = :‘]F{ ‘| e b

df “dFEMAELE Partial otandard

(Delta method) Effect Error |t| 95% Confidence Interval
PE.Func (means) 1.41695 Ade347 22,32 1.29256 1.5413%
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Partial Effects for Exponential Eegression Function
Partial Effects Averaged Over Ohservatiaons
*¥ == Partial Effect for a Binary Variahle

Partial mtandard
(Delta method) Effect Error |t] 95% Confidence Interval
AGE .0B549 00100 b5.61 L0B353 06745
EDUIC -. 09123 00552 16.52 -. 10205 -.05041
IHCOME -1.68502 069596 24,049 -1.82213 -1.547491
* FEMALE .93019 02210 42.10 . 886385 .97 350
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Delta Method, Stata Application

Number of obs

Target of estimation is p =

Estimation strategy:
(1) Estimate a = logc®

Random-effects

Group variable:

Random effscts

Log likelihood

IDENT

u i ~ Gaussian

= -18180.523

probit regression

Number of groups

Cbs per group:

Wald chiZ (7)
Proch > chil2

41164
9578

8594.4¢
0.0000

(2) Estimate o =exp(a/2) —

(3) Estimate p= ¢°/(l+0c°) —

8-51/55

COOPERA Coef. Std. Err. z Bxlz| [95% Conf. Interwall]
coop_1 1.413728 .020e948 €8.31 0.000 1.3731¢7 1.454289
Prod_1 -.0220752 0100407 -2.20 0.028 —-.041754%5 -.0023958

ri_l .0996952 0071557 13.93 0.000 .085¢744 .1137241
lsize .1086429 .00B85745 12.67 0.000 .0918372 .1254487
GRUPO .2196952 .0Z24657 .91 0.000 .1713€e83 2680221
funds .6237657 .0193544 32.23 0.000 .5858318 .66le9%e

Foreign .00658793 .0291385 0.24 0.811 -.0501311 .064089¢

_cons -2.331907 .1321667 -17.64 0.000 -2.5%09%49 -2.072865
/1lnsig2u -1.123706 .0715548 -1.263%5 -.5983461
—> sigma u L.53701517 .0203985 .5315408 .6115672

—>» rho .2453245 .0132477 .220294¢6 27220
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Delta Method

& =-1.123706 V, =.0715548° =.00512009
6 =exp(a/2) =exp(—1.123706/ 2) = exp(—.561853) =.5701517
g=d6/da=2exp(a/2)=36=.2850758

G° =(d&/dé)” =.08126821
(d&/ déc)2 V, =.08126821(.00512009) =.0004161
Estimated Standard Error for 6 = +/.0004161 =.02039854
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Delta Method

Continuing the previous example, there are two approaches implied

for estimating p:

(1) p

(2) p

f(o) =

h(a)

2
o)

1+o°
exp(a)
1+ exp(a)

Use the delta method to estimate a standard error for each of the two
estimators of p. Do you obtain the same answer?
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Confidence Intervals?

OOPERA ef std. Exx 2 P>z [95% Conf. Inter

Insig2u -1.1237 0715548 -1.26395 -.9834

sigma_u | 701517 0203985 531540¢ 72
| 245324 2477  .2202¢ 4 2722

6 €.5701517 +£1.96(.0203985) = .5301707 to .61013287??

The center of the confidence interval given in the table is .571554!
What is going on here?

The confidence limits given are exp(-1.23695/2) to exp(-.984361/2)!
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Received October 6, 2012

Dear Prof. Greene,

| am AAAAAA, an assistant professor of Finance at the xxxxx university
of xxxxx, xxxxX. | would be grateful if you could answer my question
regarding the parameter estimates and the marginal effects in
Multinomial Logit (MNL).

After running my estimations, the parameter estimate of my variable of
interest is statistically significant, but its marginal effect, evaluated at the
mean of the explanatory variables, is not. Can | just rely on the
parameter estimates’ results to say that the variable of interest is
statistically significant? How can | reconcile the parameter estimates
and the marginal effects’ results?

Thank you very much in advance!

Best,

AAAAAA
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