Econometrics I

Professor William Greene Stern School of Business Department of Economics

Econometrics I

Part 9 – Asymptotics for the Regression Model

Asymptotic Properties

Main finite sample results are not necessarily useful

- 1. Unbiased: Not very useful if the estimator does not improve as more information is added. (The mean of the first 10 observations in a sample of n observations is unbiased, but not a good estimator.)
- 2. Variance under narrow assumptions: Assumptions are often not met in realistic settings, so standard errors might be inaccurate.
- 3. Gauss-Markov theorem: Not necessarily interested in the most efficient estimator if we have to make unrealistic assumptions.
- **4. Normal distribution of estimator**: We would rather not make this assumption if not necessary. It is generally not necessary.
- Overriding principle: Robustness to loosened assumptions.

Asymptotic Properties of Interest

Consistent Estimator of β
 Asymptotic Normal Distribution
 Appropriate Asymptotic Variance

We develop properties that will hold in large samples then assume they hold acceptably well in finite observed samples. The objective is to relax the assumptions of the model where possible.

Core Results

The least squares estimator is $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})$ $= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\varepsilon}$ $= \boldsymbol{\beta} + \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}'_{i}\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\boldsymbol{\varepsilon}_{i}\right)$

So, it equals β plus the sampling variability = the estimation error

The question for the present is how does this sum of random variables behave in large samples?

Well Behaved Regressors

A crucial assumption: Convergence of the moment matrix **X'X**/n to a positive definite matrix of finite elements, **Q**.

For now, we assume that data on the rows of **X** act like a random sample of observations that are independent of the sample of observations on ε.

Crucial Assumption of the Model

What must be assumed to get plim $\left(\frac{1}{n} \mathbf{X'} \boldsymbol{\epsilon}\right) = \left(\frac{1}{n} \sum_{i=1}^{N} \mathbf{x}_{i} \boldsymbol{\epsilon}_{i}\right) = \mathbf{0}$?

(1) $\mathbf{x}_i = a$ random vector with finite means and variance and identical joint distributions.

(2) $\varepsilon_i = a$ random variable with a constant distribution with

 $E[\varepsilon_i | \mathbf{x}_i] = 0$ and $Var[\varepsilon_i | \mathbf{x}_i] = 0 \sigma^2$

(3) \mathbf{x}_{i} and ε_{i} statistically independent.

Then, $\mathbf{w}_i = \mathbf{x}_i \varepsilon_i$ = an observation in a random sample, with constant variance matrix and mean vector 0.

 $\bar{\mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{w}_{i}$ converges to its expectation by the law of large numbers. If plim[(1/n)**X'** ϵ] = 0, then plim **b** = β + **Q**⁻¹**0** = β .

Mean Square Convergence of **b**

We use convergence in mean square. Adequate for almost all problems.

$$\begin{aligned} \mathbf{b} &= \mathbf{\beta} + \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \times \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \varepsilon_{i}\right) \\ (\mathbf{b} - \mathbf{\beta})(\mathbf{b} - \mathbf{\beta})' &= \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \times \left[\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \varepsilon_{i}\right) \times \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}' \varepsilon_{i}\right)\right] \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \\ &= \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i} \varepsilon_{j} \mathbf{x}_{j}' \varepsilon_{j}\right) \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \end{aligned}$$

In E[(**b** - β)(**b** - β)'|**X**] in the double sum, terms with unequal subscripts have expectation zero.

$$E[(\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})' | \mathbf{X}] = \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1} \left(\frac{1}{n^2}\sum_{i=1}^{n}\mathbf{x}_i\mathbf{x}'_i \ E[\varepsilon_i^2 | \mathbf{X}]\right) \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1}$$
$$= \frac{\sigma^2}{n} \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1} \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right) \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1} = \frac{\sigma^2}{n} \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1}$$

Mean Square Convergence

E[**b**|**X**]=**β** for any **X**. Var[**b**|**X**] \rightarrow 0 for well behaved **X**

$$\frac{\sigma^2}{n} \left(\frac{1}{n} \mathbf{X}' \mathbf{X} \right)^{-1} \longrightarrow \mathbf{0} \times \mathbf{Q}^{-1}$$

b converges in mean square to $\boldsymbol{\beta}$

s² = e'e/n is a consistent estimator of σ^2 . The usual estimator is e'e/(n-K)

The estimator of the <u>asymptotic variance</u> of **b** is $(s^2/n)[\mathbf{X'X}/n]^{-1} = s^2(\mathbf{X'X})^{-1}$

Asymptotic Distribution

$$\mathbf{b} = \mathbf{\beta} + \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1} \times \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\epsilon_{i}\right)$$

The limiting behavior of **b** is the same as that of the statistic that results when the moment matrix is replaced by its limit. We examine the behavior of the modified sum

$$\boldsymbol{\beta} + \boldsymbol{Q}^{-1} \times \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{\epsilon}_{i}\right)$$

Asymptotic Distribution

- Finding the asymptotic distribution
- **b** $\rightarrow \beta$ in probability. How to describe the distribution?
 - 'Limiting' distribution
 - Variance \rightarrow **0**; it is O(1/n)
 - **•** Stabilize the variance? Var[\sqrt{n} **b**] ~ $\sigma^2 \mathbf{Q}^{-1}$ is O(1)

But, E[\sqrt{n} **b**]= \sqrt{n} **β** which diverges.

- Image of the second system of the syst
- **b** apx. β +1/ \sqrt{n} times that random variable

The Asymptotic Distribution

Limiting distribution of

$$\sqrt{n}(\mathbf{b}-\mathbf{\beta}) = \sqrt{n}\left(\frac{\mathbf{X'X}}{n}\right)^{-1}\left(\frac{\mathbf{X'\varepsilon}}{n}\right)$$

is the same as that of $\mathbf{Q}^{-1}\sqrt{n} \ \overline{\mathbf{w}} = \sqrt{n} \left(\frac{1}{n}\sum_{i=1}^{n} \mathbf{x}_{i}\varepsilon_{i}\right)$

 $\sqrt{n}\overline{\mathbf{w}} \xrightarrow{\mathbf{d}} N[\mathbf{0}, \sigma^2 \mathbf{Q}]$ (By Lindeberg-Feller CLT) Therefore,

$$\mathbf{Q}^{-1}\sqrt{n}\overline{\mathbf{w}} \xrightarrow{\mathbf{d}} \mathbb{N}[\mathbf{0}, \mathbf{Q}^{-1}(\sigma^{2}\mathbf{Q})\mathbf{Q}^{-1}] = \mathbb{N}[\mathbf{0}, \sigma^{2}\mathbf{Q}^{-1}]$$

Conclude : $\sqrt{n}(\mathbf{b} - \beta) \xrightarrow{\mathbf{d}} N[\mathbf{0}, \sigma^2 \mathbf{Q}^{-1}]$ Approximately : $\mathbf{b} \xrightarrow{\mathbf{a}} N[\beta, (\sigma^2/n)\mathbf{Q}^{-1}]$

Asymptotic Results

- **b** is a consistent estimator of β
- Asymptotic normal distribution of b does not depend on normality of ε; it depends on the Central Limit Theorem
- Estimator of the asymptotic variance (σ²/n)Q⁻¹ is (s²/n) (X'X/n)⁻¹. (Degrees of freedom corrections are irrelevant but conventional.)
- Slutsky theorem and the delta method apply to functions of **b** using Est.Asy.Var[**b**] = s²(**X'X**)⁻¹.

An Application: Cornwell and Rupert Labor Market Data Is Wage Related to Education?

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP	= work experience
WKS	= weeks worked
OCC	= occupation, 1 if blue collar,
IND	= 1 if manufacturing industry
SOUTH	= 1 if resides in south
SMSA	= 1 if resides in a city (SMSA)
MS	= 1 if married
FEM	= 1 if female
UNION	= 1 if wage set by union contract
ED	= years of education
LWAGE	= log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," *Journal of Applied Econometrics*, 3, 1988, pp. 149-155.

9-14/39

Regression with Conventional Standard Errors Reported Standard Errors are Square roots of Diagonal Elements of s²(**X'X**)⁻¹

Ordinary LHS=LWAGE Regressic Residual Total Fit Model tes	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square Sum of Square - Standard erro R-squared st F[10, 4154]	regression ation = ations = s = s = s = r of e = =	6.	67635 46151 4165 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar squared Prob F > F*	Mean square 37.09546 .12421 .21299 .35196 1 .41686 .00000
LWAGE	Coefficient	Standard Error	z	Prob z >Zŧ	. 95% Con * Inte	nfidence erval
Constant ED EXP EXP*EXP WKS OCC SOUTH SOUTH SMSA MS FEM UNION	5.24547*** .05654*** .04045*** 00068*** .00449*** 14053*** 07210*** .13901*** .06736*** 38922*** .09015***	.07170 .00261 .00217 .4783D-04 .00109 .01472 .01249 .01207 .02063 .02518 .01289	$\begin{array}{c} 73.15\\ 21.64\\ 18.61\\ -14.24\\ 4.12\\ -9.54\\ -5.77\\ 11.51\\ 3.26\\ -15.46\\ 6.99\end{array}$.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0011 .0000 .0000	5.10493 .05142 .03619 00077 .00235 16939 09658 .11534 .02692 43857 .06488	5.38600 .06166 .04471 00059 .00662 11167 04762 .16267 .10779 33987 .11542
nnnnn.D-x ***, **,	x or D+xx => mult * ==> Significan	iply by 10 ce at 1%, 5%	to -xx c %, 10% l	r +xx. evel.		

9-15/39

Robustness

- □ Thus far, the model is a specific set of assumptions.
- Consistency and asymptotic normality of b, and the form of the asymptotic covariance matrix follow from the assumptions.
- Robust Estimation and Inference
 - Estimators that "work" even if some of the assumptions are not met.
 - E.g., LS is robust to failure of normality of ε only the finite sample distribution is incorrect. It is still unbiased and Var[b|X]=σ²(X'X)⁻¹.
 - Is least squares robust to failures of other assumptions?
- Robustness to failures of other assumptions:
 - (E) Suppose $Cov[\mathbf{x}_i, \varepsilon_i] \neq 0$? (Endogeneity) No. Unbiasedness fails.
 - (H) Heteroscedasticity? Still unbiased. Variance is no longer $\sigma^2(X'X)^{-1}$.
 - (A) Autocorrelation? Same.
- We continue to use **b** but look for an alternative to s²(X'X)⁻¹ that will be appropriate in cases **H** and **A**. (Case **E** is not workable yet.)

A Robust Covariance Matrix

\square Crucial assumptions about ε

- Homoscedastic, $Var[\varepsilon_i] = \sigma^2$.
- Nonautocorrelation, $Cov[\varepsilon_i, \varepsilon_j] = 0$ for all i,j.

Leading cases

- Heteroscedasticity; $Var[\varepsilon_i] = \sigma_i^2$.
- Groupwise correlation; Cov[ε_{it},ε_{is}] ≠ 0 for observations t and s in group i, i = 1,...,C_i.
- Time series autocorrelation; $Cov[\varepsilon_t, \varepsilon_s] \neq 0$
- General result: b remains consistent and asymptotically normally distributed. Asymptotic covariance matrix is incorrect.

Robustness to Heteroscedasticity

$$\begin{aligned} \mathsf{E}[(\mathbf{b} - \boldsymbol{\beta})(\mathbf{b} - \boldsymbol{\beta})' \mid \mathbf{X}] &= \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \left(\frac{1}{n^2} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i' \; \mathsf{E}[\varepsilon_i^2 \mid \mathbf{x}_i]\right) \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \\ &= \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \left(\frac{1}{n^2} \sum_{i=1}^{n} \sigma_i^2 \mathbf{x}_i \mathbf{x}_i'\right) \left(\frac{1}{n} \mathbf{X}' \mathbf{X}\right)^{-1} \end{aligned}$$

In large samples,

$$= \frac{1}{n} \boldsymbol{Q}^{-1} \left(\frac{1}{n} \sum\nolimits_{i=1}^{n} \sigma_{i}^{2} \boldsymbol{\hat{Q}}_{i} \right) \boldsymbol{Q}^{-1}$$

We seek a matrix that will mimic this matrix whether σ_i^2 varies across observations or not. (I.e., a robust estimator.)

Heteroscedasticity Robust Covariance Matrix

The White Estimator

Est.Asy.Var[**b**] =
$$(\mathbf{X}'\mathbf{X})^{-1} \left[\sum_{i} e_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}'\right] (\mathbf{X}'\mathbf{X})^{-1}$$

 $e_i = least squares residual.$

Robust standard errors; (b is not "robust")

- Robust to: Heteroscedasticty
- Not robust to: (all considered later)
 - Correlation across observations
 - Individual unobserved heterogeneity

Incorrect model specification

- Robust inference means hypothesis tests and confidence intervals using robust covariance matrices
- Wisdom: Robust standard errors are usually larger, but not always.

Monet in Large and Small

Sale prices of 430 signed Monet paintings

Log of \$price = a + $b_1 \log surface area +$ $b_2 \operatorname{aspect} ratio + \varepsilon$

TABLE 4.4 Robust Standard Errors

	Estimated	LS Standard	Heteroscedasticity
Variable	Coefficient	Error	Robust Std.Error
Constant	-8.34237	0.67820	0.73342
InArea	1.31638	0.09205	0.10598
Aspect Ratio	-0.09623	0.15784	0.16706

9-20/39

Part 9: Asymptotics for the Regression Model

Heteroscedasticity Robust Covariance Matrix

Ordinary LHS=LWAGE Model siz	least squares Mean Standard dev: Number of obs Parameters Degrees of fr	s regression = iation = servs. = = reedom =	· · · · · · · · · 6. ·	67635 46151 4165 11 4154 50				
Residuals	Standard erro	or of e =	51	35243				
Fit Model tes	R-squared Adjusted R-so t Ff 10 4154	= quared = l (prob) =	298 7(41826 41686 0000)				
White het Br./Pagan	eroscedasticity LM Chi-sq [10]	robust covar (prob) = 1	ciance ma .05.71 (.	trix. 0000)			Uncorr	ected
LWAGE	Coefficient	Standard Error	z	Prob. z >Z ≭	95% Con Inte	nfidence erval	Standard Error	z
Constant	5.24547***	.07567	69.32	.0000	5.09715	5.39379	.07170	73.15
ED FYPI	.05654***	.00273 <	20.71	.0000	.05119	.06189	.00261	21.64
EXP*EXP	00068 ***	.4893D-04	-13.92	.0000	00078	00059	4783D-04	-14 24
WKS	.00449***	.00116	3.85	.0001	.00220	.00677	.00109	4.12
000	14053 ***	.01508	-9.32	.0000	17009	11098	.01472	-9.54
SOUTH	07210 ***	.01274	-5.66	.0000	09707	04714	.01249	-5.77
SMSA	.13901***	.01200	11.59	.0000	.11550	.16252	.01207	11.51
MS FFM	.06/35***	.02099	3.21	.0013	.02622	.10849	.02063	3.26
UNION	.09015***	.01246	7.23	.0000	.06572	.11458	.01289	-15.46 6.99
nnnnn.D-x ***, **,	x or D+xx => mult * ==> Significan	tiply by 10 nce at 1%, 5	to -xx o 5%, 10% l	r +xx. evel.				

Note the conflict: Test favors heteroscedasticity. Robust VC matrix is essentially the same.

9-21/39

Cluster Robust Covariance Matrix

The least squares estimator is

$$\mathbf{b} = \boldsymbol{\beta} + \left(\sum_{c=1}^{C} \mathbf{X}'_{c} \mathbf{X}_{c}\right)^{-1} \left[\sum_{c=1}^{C} \left(\sum_{i=1}^{N} \mathbf{x}_{i,c} \boldsymbol{\varepsilon}_{i,c}\right)\right] = \boldsymbol{\beta} + \left(\mathbf{X}' \mathbf{X}\right)^{-1} \left[\sum_{c=1}^{C} \left(\mathbf{X}'_{c} \boldsymbol{\varepsilon}_{c}\right)\right],$$

where \mathbf{X}_c is the $N_c \times K$ matrix of exogenous variables for cluster *c* and $\boldsymbol{\varepsilon}_c$ is the N_c disturbances for the group. Assuming that the clusters are independent,

$$\operatorname{Var}[\mathbf{b} | \mathbf{X}] = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left[\sum_{c=1}^{C} \mathbf{X}_{c} \mathbf{\Omega}_{c} \mathbf{X}_{c}'\right] \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

Like σ_i^2 before, Ω_c is not meant to suggest a particular set of population parameters. Rather, Ω_c represents the possibly unstructured correlations allowed among the N_c disturbances in cluster c. The construction is essentially the same as the White estimator, though Ω_c is the matrix of variances and covariances for the full vector ε_c . (It would be identical to the White estimator if each cluster contained one observation.) Taking the same approach as before, we obtain the asymptotic variances

Asy.Var[**b**] =
$$\frac{1}{C} \mathbf{Q}^{-1} \left[\text{plim} \frac{1}{C} \sum_{c=1}^{C} \mathbf{X}_{c} \mathbf{\Omega}_{c} \mathbf{X}_{c}' \right] \mathbf{Q}^{-1}$$

A feasible estimator of the bracketed matrix based on the least squares residuals is

$$\mathbf{W}_{cluster} = \frac{1}{C} \sum_{c=1}^{C} \left(\mathbf{X}_{c}' \mathbf{e}_{c} \right) \left(\mathbf{e}_{c}' \mathbf{X}_{c} \right) = \frac{1}{C} \sum_{c=1}^{C} \left(\sum_{i=1}^{N_{c}} \mathbf{x}_{ic} e_{ic} \right) \left(\sum_{i=1}^{N_{c}} \mathbf{x}_{ic} e_{ic} \right)'.$$

Then,

Est.Asy.Var[**b**] =
$$C(\mathbf{X}'\mathbf{X})^{-1}\mathbf{W}_{cluster}(\mathbf{X}'\mathbf{X})^{-1}$$
.

Part 9: Asymptotics for the Regression Model

9-22/39

http://cameron.econ.ucdavis.edu/research/Cameron_Miller_Cluster_Robust_October152013.pdf

A Cluster Estimator

Robust variance estimator for Var[**b** | **X**] Est.Var[**b** | **X**]

$$= \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \left[\left(\frac{\mathsf{N}}{\mathsf{N-1}}\right) \Sigma_{i=1}^{\mathsf{N}} \left(\Sigma_{t=1}^{\mathsf{T}_{i}} \boldsymbol{x}_{it} \hat{\boldsymbol{w}}_{it}\right) \left(\Sigma_{t=1}^{\mathsf{T}_{i}} \boldsymbol{x}'_{it} \hat{\boldsymbol{w}}_{it}\right) \right] \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}$$

$$= \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left[\left(\frac{\mathsf{N}}{\mathsf{N}-1}\right) \mathsf{\Sigma}_{i=1}^{\mathsf{N}} \left(\mathsf{\Sigma}_{t=1}^{\mathsf{T}_{i}} \mathsf{\Sigma}_{s=1}^{\mathsf{T}_{i}} \hat{\mathsf{W}}_{it} \hat{\mathsf{W}}_{is} \mathbf{X}_{it} \mathbf{X}'_{is}\right) \right] \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

 \hat{w}_{it} = a least squares residual.

(If $T_i = 1$, this is the White estimator.)

(The finite population correction [N/(N-1)] is ad hoc.)

(The further finite population correction,

$$\left(\frac{\Sigma_{i=1}^{N}T_{i}}{\left(\Sigma_{i=1}^{N}T_{i}\right) - N} \right) \text{is also ad hoc.)}$$

Example 4.5 Robust Inference About the Art Market

The Monet paintings examined in Example 4.3 were sold at auction over 1989–2006. Our model thus far is

$$\ln Price_{it} = \beta_1 + \beta_2 \ln Area_{it} + \beta_3 Aspect Ratio_{it} + \varepsilon_{it}$$

The subscript "*it*" uniquely identifies the painting and when it was sold. Prices in open outcry auctions reflect (at least) three elements, the common (public), observable features of the item, the public unobserved (by the econometrician) elements of the asset, and the private unobservable preferences of the winning bidder. For example, it will turn out (in a later example) that whether the painting is signed or not has a large and significant influence on the price. For now, we assume (for sake of the example), that we do not observe whether the painting is signed or not, though, of course, the winning bidders do observe this. It does seem reasonable to suggest that the presence of a signature is uncorrelated with the two attributes we do observe, area and aspect ratio. We respecify the regression as

$$\ln Price_{it} = \beta_1 + \beta_2 \ln Area_{it} + \beta_3 Aspect Ratio_{it} + w_{it} + u_{it},$$

where w_{it} represents the intrinsic, unobserved features of the painting and u_{it} represents the unobserved preferences of the buyer.

FIGURE 4.5 Repeat Sales of Monet Paintings.

9-25/39

Robust Asymptotic Covariance Matrices

TABLE 4.4	Robust Standard Er	rors		
	Estimated	LS Standard	Heteroscedasticity	Cluster Robust
Variable	Coefficient	Error	Robust Std.Error	Std.Error
Constant	-8.34237	0.67820	0.73342	0.75873
lnArea	1.31638	0.09205	0.10598	0.10932
Aspect Ratio	-0.09623	0.15784	0.16706	0.17776

Alternative OLS Variance Estimators

Cluster correction increases SEs

++ Variable ++	Coefficient St	andard Error	+ b/St.Er. +	++ P[Z >z] ++
Constant	5.40159723	.04838934	111.628	.0000
EXP	.04084968	.00218534	18.693	.0000
EXPSQ	00068788	.480428D-04	-14.318	.0000
OCC	13830480	.01480107	-9.344	.0000
SMSA	.14856267	.01206772	12.311	.0000
MS	.06798358	.02074599	3.277	.0010
FEM	40020215	.02526118	-15.843	.0000
UNION	.09409925	.01253203	7.509	.0000
ED	.05812166	.00260039	22.351	.0000
Robust				
Constant	5.40159723	.10156038	53.186	.0000
EXP	.04084968	.00432272	9.450	.0000
EXPSQ	00068788	.983981D-04	-6.991	.0000
OCC	13830480	.02772631	-4.988	.0000
SMSA	.14856267	.02423668	6.130	.0000
MS	.06798358	.04382220	1.551	.1208
FEM	40020215	.04961926	-8.065	.0000
UNION	.09409925	.02422669	3.884	.0001
ED	.05812166	.00555697	10.459	.0000

Namelist ; x=one,exp,expsq,occ,smsa,ms,fem,union,ed\$ Regress ; Lhs = lwage ; rhs=x ; cluster=7\$

9-27/35

Fait 9. Asymptotics for the Regression Model

ROTTEN APPLES: AN INVESTIGATION OF THE PREVALENCE AND PREDICTORS OF TEACHER CHEATING

Brian A. Jacob Steven D. Levitt

Working Paper 9413 http://www.nber.org/papers/w9413

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138

Table 7: Patterns of Cheating within Classrooms and Schools

Dependent variable = Class suspected of cheating (Class is above the 95th percentile on both SCORE and ANSWERS on a particular subject test: mean=0.011)

Independent Variables	Full S	ample	Sample of school that e	classes and xisted in the
			prior	year
Classroom cheated on exactly one	0.105	0.103	0.101	0.101
other subject this year on this	(0.008)	(0.008)	(0.009)	(0.009)
Classroom cheated on exactly two	0.289	0.285	0.243	0.243
other subjects this year	(0.027)	(0.027)	(0.031)	(0.031)
Number of other subjects this			0.023	0.018
classroom cheated on last year			(0.004)	(0.004)
Cheating in this classroom ever in the				0.006
past				(0.002)
Cheating rate among other classrooms				0.090
in this school in past years				(0.040)
Full set of grade*subject*year	Vec	Vec	Vec	Vec
interactions included?	105	165	165	165
R-squared	0.090	0.093	0.109	0.109
Number of Observations	165,578	165,578	94,182	94,170

Notes: The dependent variable is an indicator for whether a classroom is above the stated cutoff on ANSWERS and SCORE on a particular subject test. Estimation is done using a linear probability model. Columns that include measures of cheating in prior years, observations where that classroom and/or school does not appear in the data in the prior year are excluded. Standard errors are clustered at the school level to take into account correlations across classroom as well as serial correlation.

Bootstrap Estimation of the Asymptotic Variance of an Estimator

- Known form of asymptotic variance: Compute from known results
- Unknown form, known generalities about properties: Use bootstrapping
 - Root n consistency
 - Sampling conditions amenable to central limit theorems
 - Compute by resampling mechanism within the sample.

Bootstrapping Algorithm

- 1. Estimate parameters using full sample: \rightarrow **b**
- 2. Repeat R times:

Draw n observations from the n, with replacement Estimate β with **b**(r).

3. Estimate variance with

$$\mathbf{V} = \frac{1}{R} \sum_{r=1}^{R} [\mathbf{b}(r) - \overline{\mathbf{b}}] [\mathbf{b}(r) - \overline{\mathbf{b}}]'$$

TABLE 4.4	Robust Standard Er	rors		
	Estimated	LS Standard	Heteros	cedasticity
Variable	Coefficient	Error	Robust	Std.Error
Constant	-8.34237	0.67820	0.7	73342
lnArea	1.31638	0.09205	0.1	10598
Aspect Rat	io -0.09623	0.15784	0.1	16706
Ordinary LHS=Y Regressio Residual Total Fit Model tes	least squares Mean Standard devi No. of observ n Sum of Square Sum of Square Sum of Square Sum of Square R-squared t F[2, 427]	regression ation = ations = s = s = r of e = = =	1 26 50 77 1. 112	39445 34395 430 6.785 8.079 4.864 09082 34430 10576
Y	Estimated Coefficient	Bootstrap Std.Error	t	Prob. t >T*
Constant LOGAREA ASPECT	-8.34237*** 1.31638*** 09623	.74193 .10560 .16555	-11.24 12.47 58	.0000 .0000 .5614
+ ***, **, Standard	* ==> Significan	ce at 1%, 5%	, 10% le	evel.

Log of \$price = a + b1 log surface area + b2 aspect ratio + e

Application to Spanish Dairy Farms

$lny=b_{1}lnx_{1}+b_{2}lnx_{2}+b_{3}lnx_{3}+b_{4}lnx_{4}+\mathcal{E}$

Input	Units	Mean	Std. Dev.	Minimum	Maximum
Y Milk	Milk production (liters)	131,108	92,539	14,110	727,281
X1 Cows	# of milking cows	2.12	11.27	4.5	82.3
X2 Labor	# man-equivalent units	1.67	0.55	1.0	4.0
X3 Land	Hectares of land devoted to pasture and crops.	12.99	6.17	2.0	45.1
X4 Feed	Total amount of feedstuffs fed to dairy cows (tons)	57,941	47,981	3,924.1 4	376,732

N = 247 farms, T = 6 years (1993-1998)

Example: Bootstrap Replications

🎹 Mat	rix - BOOTST	TRP		[×
[500, 5]	Cell: 1	1.5732			×	
	1	2	3	4	5	
1	11.5732	0.663365	-0.00172636	0.0274295	0.431544	NEI I
2	11.5782	0.540323	0.0364048	0.0270598	0.46497	
3	11.5756	0.604965	0.0337931	0.00543007	0.434848	
4	11.5767	0.607056	0.0139364	0.0120334	0.462593	
5	11.5775	0.615707	0.0265037	0.00852363	0.437757	
6	11.5797	0.612065	0.0295112	0.0088207	0.441855	
7	11.5793	0.585915	0.027172	0.0236685	0.455928	
8	11.5831	0.586222	0.0343727	0.0223925	0.448991	
9	11.5781	0.592765	0.0124331	0.0169125	0.459289	
10	11.5783	0.608996	0.0119008	0.0217884	0.444427	
11	11.5833	0.604306	0.0331359	0.0290024	0.439594	
12	11.5795	0.557114	0.0405298	0.0354376	0.456092	
13	11.5802	0.604786	0.0261206	0.027283	0.437104	
14	11.5779	0.581646	0.0314108	0.0289908	0.445211	
15	11.5811	0.604491	0.0225034	0.0356162	0.4571	
16	11.5761	0.582383	0.0344234	0.0125611	0.456585	
17	11.582	0.57254	0.0191405	0.0149456	0.460346	
18	11.5785	0.583227	0.0218739	0.040026	0.461734	
19	11.5716	0.577647	0.0256428	0.0110496	0.472882	
20	11.5692	0.601854	0.00907908	0.0298847	0.451332	
21	11 5775	0.627052	0.015275	0.0244473	0 44208	

Bootstrapped Regression

Ordinary LHS=YIT Regressi Residual Total Fit Model tes	least squares Mean Standard devi No. of observ on Sum of Square Sum of Square Sum of Square Standard erro R-squared st F[4, 1 477]	regression ation = ations = s = s = r of e = = =	n 11. 58 29 61 7412.	57749 64344 1482 4.056 .0957 3.152 14035 95255 18529	DegFreedom 4 1477 1481 Root MSE R-bar squared Prob F > F*	Mean square 146.01403 .01970 .41401 .14012 d .95242 .00000
YIT	 Coefficient	Standard Error	z	Prob. z >Z*	95% Com Int	nfidence erval
Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***	.00365 .01958 .01122 .01303 .01078	3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290
Results of Model has Coefficien nodel est: Bootstrap Estimated Estimated	f bootstrap estima been reestimated nts shown below ar imates based on th samples have 1482 parameter vector variance matrix s	tion of mo 500 ti e the orig e full sam observati is B aved as VA	del. mes. inal ple. ons. RB.			
BootStrp	Coefficient	Standard Error	z	Prob. z >Z*	95% Com Inte	nfidence erval
B001 B002 B003 B004 B005	11.5775*** .59518*** .02305* .02319* .45176***	.00365 .02283 .01186 .01227 .01221	3174.06 26.07 1.94 1.89 36.99	.0000 .0000 .0520 .0588 .0000	11.5703 .55044 00020 00086 .42782	11.5846 .63992 .04630 .04724 .47569

-

9-34/39

ion Model

-

Quantile Regression

- **Q**($y|\mathbf{x},\alpha$) = $\beta'\mathbf{x}, \alpha$ = quantile
- Estimated by linear programming
- □ $Q(y|\mathbf{x},.50) = \beta'\mathbf{x}, .50 \rightarrow$ median regression
- Median regression estimated by LAD (estimates same parameters as mean regression if symmetric conditional distribution)
- □ Why use quantile (median) regression?
 - Semiparametric
 - Robust to some extensions (heteroscedasticity?)
 - Complete characterization of conditional distribution

Estimated Variance for Quantile Regression

Asymptotic Theory Based Estimator of Variance of Q - REG Model: $y_i = \boldsymbol{\beta}' \mathbf{x}_i + u_i$, $Q(y_i | \mathbf{x}_i, \alpha) = \boldsymbol{\beta}' \mathbf{x}_i$, $Q[u_i | \mathbf{x}_i, \alpha] = 0$ Residuals: $\hat{u}_i = y_i - \hat{\boldsymbol{\beta}}' \mathbf{x}_i$

Asymptotic Variance: $\frac{1}{n} (\mathbf{A}^{-1} \mathbf{C} \mathbf{A}^{-1})$

$$\mathbf{A} = \mathbf{E}[\mathbf{f}_u(0)\mathbf{x}\mathbf{x}'] \text{ Estimated by } \frac{1}{n}\sum_{i=1}^n \frac{1}{B}\frac{1}{2}\mathbf{1}[|\hat{u}_i| < \mathbf{B}]\mathbf{x}_i\mathbf{x}_i'$$

Bandwidth B can be Silverman's Rule of Thumb:

$$\frac{1.06}{n^{2}} Min\left(s_{u}, \frac{Q(\hat{u}_{i} \mid .75) - Q(\hat{u}_{i} \mid .25)}{1.349}\right)$$

$$\mathbf{C} = \alpha(1 - \alpha) E[\mathbf{xx'}] \text{ Estimated by } \frac{\alpha(1 - \alpha)}{n} \mathbf{X'X}$$

For $\alpha = .5$ and normally distributed u, this all simplifies to $\frac{\pi}{2} s_u^2 (\mathbf{X}'\mathbf{X})^{-1}$.

But, this is an ideal application for bootstrapping. 9-36/39 Part 9: Asymptotics fo

Quantile 1	Regression Model.	. Quantile	= .2	50000		
Linear Pro	ogramming estimat	tion method		57740		
LHS=Y11	Mean Standard dour	= 	11.	57749		
	Standard devi	lation =		14922		
	Minimum	servs. =	a	57568		
	+- 25000 gus	ntilo -	11	12856		
	Mawimum	anciie -	11.	12030		
Model cire	- Deremotoro		15.	49707		
Model SIZ	e raiameters Degrees of fr			1477		
Posiduals	Sum of cause		40	14//		
Restudats	Standard orre	so -	40.	14075		
E i +		- or or or		14075		
FIC	R-Squareu DooudoD2-1-Fi	(0) /F (b) =		79027		
Not using	OIS on no consta	(o)/r(b) = ant Poquer	od may bo	/002/		
Functions	E = Sum r(t) [x(i)]	lnc. KSquar)_v(i)bl =	eu may be 67	52015		
runctions	F = Sum T(t)[y(1)] F = Sum T(t)[x(i)]	(1) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	307	20213		
	r_{0} -Sum $r_{0}(r)$ [y]-t*y-y)=Qy(c)] = ;*[::/0] +=	307.	50000		
Acomptoti	r cov metrix bec	infuxoj.t- ood on kon	nol octim	30000 ator		
Hotopoor	decticity toot (seu on ker Skipt Al -	12 11 ESCIM			
necerosce	uasticity test, (42.44 F -	.000		
		Standard		Proh	95% Con	fidence
 VIT	Coefficient	Standard Error	7	Prob.	95% Con Inte	fidence
YIT	Coefficient	Standard Error	z	Prob. z >Z*	95% Con Inte	fidence rval
YIT	Coefficient	Standard Error	Z 	Prob. z >Z*	95% Con Inte 11 4806	fidence rval 11 5007
YIT Constant	Coefficient 11.4906*** 60321***	Standard Error .00511	z 2248.82 22.08	Prob. z >Z* .0000	95% Con Inte 11.4806 54967	fidence erval 11.5007 65676
YIT Constant X1	Coefficient 11.4906*** .60321***	Standard Error .00511 .02732 01652	z 2248.82 22.08 87	Prob. z >Z* .0000 .0000 3836	95% Con Inte 11.4806 .54967 - 01799	fidence rval 11.5007 .65676 04678
VIT Constant X1 X2 Y3	Coefficient 11.4906*** .60321*** .01440 03918**	Standard Error .00511 .02732 .01652 01857	z 2248.82 22.08 .87 2.06	Prob. z >Z* .0000 .0000 .3836 .0397	95% Con Inte 11.4806 .54967 01799 00179	fidence rval 11.5007 .65676 .04678 07457
VIT Constant X1 X2 X3 Y4	Coefficient 11.4906*** .60321*** .01440 .03818** 46244***	Standard Error .00511 .02732 .01652 .01857 01455	z 2248.82 22.08 .87 2.06 31.78	Prob. z >Z* .0000 .0000 .3836 .0397	95% Con Inte 11.4806 .54967 01799 .00179 43391	fidence erval 11.5007 .65676 .04678 .07457 49096
YIT Constant X1 X2 X3 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244***	Standard Error .00511 .02732 .01652 .01857 .01455	z 2248.82 22.08 .87 2.06 31.78	Prob. z >Z* .0000 .0000 .3836 .0397 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391	fidence erval 11.5007 .65676 .04678 .07457 .49096
YIT Constant X1 X2 X3 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244***	Standard Error .00511 .02732 .01652 .01857 .01455	z 2248.82 22.08 .87 2.06 31.78	Prob. z >Z* .0000 .0000 .3836 .0397 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391	fidence erval 11.5007 .65676 .04678 .07457 .49096
YIT Constant X1 X2 X3 X4 Constant	Coefficient 11.4906*** .60321*** .01440 .03818** .46244***	Standard Error .00511 .02732 .01652 .01857 .01455	z 2248.82 22.08 .87 2.06 31.78	Prob. z >Z* .0000 .0000 .3836 .0397 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391	fidence erval 11.5007 .65676 .04678 .07457 .49096
YIT Constant X1 X2 X3 X4 Constant	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** 57412***	Standard Error .00511 .02732 .01652 .01857 .01455	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94	Prob. z >Z* .0000 .0000 .3836 .0397 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 52711	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 62113
YIT Constant X1 X2 X3 X4 Constant X1 X1 Y2	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58	Prob. z >Z* .0000 .0000 .3836 .0397 .0000 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241
VIT Constant X1 X2 X3 X4 Constant X1 X1 X2 Y2	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .03547***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .00447 .02398 .01374	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 - 02989	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268
VIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .02398 .01374 .01596 .01321	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0000 .0099 .9301	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 43641	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819
VIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01455 .01455 .01455 .01374 .01596 .01321	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819
YIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .02398 .01374 .01596 .01321	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0000 .0099 .9301 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819
YIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 X4 Constant	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230*** 11.6738***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01374 .01398 .01374 .01596 .01321	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00 2855.24	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641 11.6658	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819 11.6818
VIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 X4 Constant X1	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230*** 11.6738*** .58170***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01374 .01398 .01374 .01596 .01321 .00409 .02245	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00 2855.24 25.91	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641 11.6658 .53769	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819 11.6818 .62570
VIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X2 X3 X4 X4 X2 X3 X4 X4 X2 X3 X4 X4 X2 X3 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .57412*** .03547*** .00140 .46230*** 11.6738*** .58170*** .04573***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01374 .01596 .01321 .01321 .00409 .02245 .01168	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00 2855.24 25.91 3.92	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000 .0000 .0000 .0000 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641 11.6658 .53769 .02285	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819 11.6818 .62570 .06862
VIT Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 Constant X1 X2 X3 X4 X1 X2 X3 X4 X3 X4 X1 X2 X3 X4 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X4 X1 X2 X3 X4 X4 X4 X4 X1 X2 X3 X4 X4 X4 X4 X1 X2 X3 X4 X4 X4 X4 X4 X1 X2 X3 X4 X4 X4 X4 X1 X2 X3 X4 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X1 X2 X3 X4 X4 X1 X2 X3 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .03547*** .03547*** .00140 .46230*** 11.6738*** .58170*** .04573*** .02409*	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01374 .01398 .01374 .01596 .01321 .00409 .02245 .01168 .01389	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00 2855.24 25.91 3.92 1.73	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0828	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641 11.6658 .53769 .02285 00313	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819 11.6818 .62570 .06862 .05131
YIT Constant X1 X2 X3 X4 Constant X4 X4 Constant X4 X4 X4 X4 X4 X4 X4 X4	Coefficient 11.4906*** .60321*** .01440 .03818** .46244*** 11.5897*** .03547*** .03547*** .00140 .46230*** 11.6738*** .58170*** .04573*** .02409* .43929***	Standard Error .00511 .02732 .01652 .01857 .01455 .01455 .01455 .01374 .01398 .01374 .01596 .01321 .00409 .02245 .01168 .01389 .01258	z 2248.82 22.08 .87 2.06 31.78 2595.57 23.94 2.58 .09 35.00 2855.24 25.91 3.92 1.73 34.92	Prob. z >Z* .0000 .3836 .0397 .0000 .0000 .0000 .0099 .9301 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0828 .0000	95% Con Inte 11.4806 .54967 01799 .00179 .43391 11.5809 .52711 .00853 02988 .43641 11.6658 .53769 .02285 00313 .41463	fidence erval 11.5007 .65676 .04678 .07457 .49096 11.5984 .62113 .06241 .03268 .48819 11.6818 .62570 .06862 .05131 .46394

9-37/39

Quantile Regressions

 $\alpha = .25$

 $\alpha = .50$

 $\alpha = .75$

🎟 Data Ed	itor					
28/900 Vars; 11111 Rows: 4165 Obs Cell: 0						
	LOGWAGE	EDUC				
1 »	5.56068	9				
2 »	5.72031	9				
3 »	5.99645	9				
4 »	5.99645	9				
5 »	6.06146	9				
6 »	6.17379	9				
7 »	6.24417	9				
8 »	6.16331	11				
9 »	6.21461	11				
10 »	6.2634	11				
11 »	6.54391	11				
12 »	6.69703	11				
13 »	6.79122	11				
14 »	6.81564	11				
15 »	5.65249	12				
16 »	6.43615	12				
17 »	6.54822	12				
18 »	6.60259	12				
19 »	6.6958	12				
20 »	6.77878	12				
21 »	6.86066	12				
1 22	C 15C00	10				

9-38/39

The bootstrap replication must account for panel data nature of the data set.

Bootstrap variance for a panel data estimator

- Panel Bootstrap =
 Block Bootstrap
- Data set is N groups of size T_i
- Bootstrap sample is N groups of size T_i drawn with replacement.

 LWAGE	Coefficient	Standard Error	z	Prob. z >Z*	95% Confidence Interval		
Constant OCC SMSA MS FEM ED EXP	5.66098*** 11220*** .15504*** .09569*** 39478*** .05688*** .01044***	.04686 .01464 .01234 .02133 .02603 .00268 .00054	120.81 -7.66 12.57 4.49 -15.16 21.24 19.26	.0000 .0000 .0000 .0000 .0000 .0000 .0000	5.56914 14090 .13086 .05387 44581 .05163 .00938	5.75282 08350 .17922 .13751 34376 .06213 .01150	Prototore
B001 B002 B003 B004 B005 B006 B007	5.66098*** 11220*** .15504*** .09569*** 39478*** .05688*** .01044***	.04683 .01326 .01205 .01953 .01863 .00325 .00053	120.89 -8.46 12.87 4.90 -21.19 17.52 19.67	.0000 .0000 .0000 .0000 .0000 .0000 .0000	5.56920 13820 .13143 .05742 43129 .05052 .00940	5.75276 08620 .17866 .13396 35827 .06324 .01148	Bootstrap Assumes no correlation within groups
Constant OCC SMSA MS FEM ED EXP	5.66098*** 11220*** .15504*** .09569** 39478*** .05688*** .01044***	.10026 .02653 .02540 .04657 .05319 .00568 .00132	56.46 -4.23 6.10 2.05 -7.42 10.01 7.93	.0000 .0000 .0000 .0399 .0000 .0000 .0000	5.46447 16421 .10526 .00442 49904 .04574 .00786	5.85750 06020 .20483 .18696 29052 .06802 .01302	Accounts for within group correlation
B001 B002 B003 B004 B005 B006 B007	5.66098*** 11220*** .15504*** .09569*** 39478*** .05688*** .01044***	.09497 .02617 .02351 .03542 .04287 .00536 .00138	59.61 -4.29 6.60 2.70 -9.21 10.61 7.57	.0000 .0000 .0000 .0069 .0000 .0000 .0000	5.47484 16349 .10897 .02627 47880 .04637 .00774	5.84712 06092 .20112 .16511 31077 .06739 .01314	Block Bootstrap Mimics results of panel correction
PROC REGRESS ; Quiet ; Lhs=lwage ; Rhs=x \$ ENDPROC EXEC ; N = 100 ; Bootstrap = b \$ EXEC ; N = 100 ; Bootstrap = b ; pds=7 \$							

9-39/39

..... the Regression Model

	Ordinary LHS=VIT Regressio Residual Total Fit Model tes	least squares Mean Standard devi - No. of observ n Sum of Square Sum of Square Sum of Square - Standard erro R-squared t F[4, 1477]	regression ation = ations = s = s = r of e = =	1	57749 64344 1482 De 0957 8.152 4035 Rc 95255 R- .8529 Pr	gFreedom 4 1477 1481 oot MSE -bar squared rob F > F*	Mean square 146.01403 .01970 .41401 .14012 .95242 .00000
	YIT	Coefficient	Standard Error	z	Prob. z >Z *	95% Con Inte	fidence rval
Conventional	Constant X1 X2 X3 X4	11.5775*** .59518*** .02305** .02319* .45176***	.00365 .01958 .01122 .01303 .01078	3175.52 30.39 2.05 1.78 41.89	.0000 .0000 .0400 .0751 .0000	11.5703 .55679 .00105 00235 .43062	11.5846 .63356 .04505 .04873 .47290
	YIT	Coefficient	Clustered Std.Error	z	Prob. z >Z *	95% Con Inte	fidence rval
Cluster Robust	Constant X1 X2 X3 X4	11.5775*** .59518*** .02305 .02319 .45176***	.00754 .04147 .02101 .02258 .02312	$1534.61 \\ 14.35 \\ 1.10 \\ 1.03 \\ 19.54$.0000 .0000 .2725 .3044 .0000	11.5627 .51389 01812 02107 .40644	11.5923 .67646 .06422 .06745 .49707
	***, **, * ==> Significance at 1%, 5%, 10% level. Standard errors clustered on FARM (247 clusters)						
	YIT	Estimated Coefficient	Bootstrap Std.Error	z	Prob. z >Z *	95% Confidence Interval	
Block Bootstrap	Constant X1 X2 X3 X4	11.5775*** .59518*** .02305 .02319 .45176***	.00723 .04249 .02188 .02568 .02567	1602.20 14.01 1.05 .90 17.60	.0000 .0000 .2920 .3664 .0000	11.5633 .51189 01983 02713 .40144	11.5916 .67846 .06593 .07352 .50207
***, **, * ==> Significance at 1%, 5%, 10% level. Standard errors based on 100 bootstrap replications. Bootstrap replications use 247 draws.							

9-40/39