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Abstract 
 

In “Efficient Estimation of Time Invariant and Rarely Changing Variables in Finite 
Sample Panel Analyses with Unit Fixed Effects,” Plümper and Troeger (2007), propose a 
three step procedure for the estimation of fixed effects models that, it is claimed, 
“provides the most reliable estimates under a wide variety of specifications common to 
real world data.” Their FEVD estimator is startlingly simple, involving three trivial steps, 
each requiring nothing more than ordinary least squares.  Large gains in efficiency are 
claimed for cases of time invariant and slowly time varying regressors.  A subsequent 
literature has compared the estimator to other estimators of fixed effects models, 
including Hausman and Taylor’s (1981) estimator, also (apparently) with impressive 
gains in efficiency. The article also claims to provide an efficient estimator for 
parameters on time invariant variables in the fixed effects model.  None of the claims are 
correct. The FEVD estimator simply reproduces (identically) the linear fixed effects 
(dummy variable) estimator then substitutes an inappropriate covariance matrix for the 
correct one. The consistency result follows from the fact that OLS in the FE model is 
consistent. The “efficiency” gains are illusory.  The claim that the estimator provides an 
estimator for the coefficients on time invariant variables in a fixed effects model is also 
incorrect. That part of the parameter vector remains unidentified.  The “estimator” relies 
upon turning the fixed effects model into a random effects model, in which case simple 
GLS estimation of all (now identified) parameters would be efficient among all 
estimators. 

 
 
 
 
 
*Helpful discussions of this paper with Neal Beck are gratefully acknowledged.  Any remaining 
errors are, of course, my own. 
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1.  Introduction 
 
 The presence of time invariant variables (TIVs) in a panel data regression model poses a 
vexing problem for the analyst.  The usual approach to handling unmeasured heterogeneity in a 
panel data regression is the fixed effects (FE) model, for which the estimator will be the “least 
squares dummy variable estimator” (LSDV). The fixed effects approach has some attractive 
virtues, notably robustness.  As is well known, however, it is not possible to include time 
invariant covariates in a model that is fit by least squares using the individual dummy variables.  
Using instead simple OLS without accounting for the common effects, “works,” but risks serious 
omitted variable bias if the fixed effects model (with common effects correlated with the 
regressors) is appropriate, which is usually the case.  A random effects (RE) approach, i.e., using 
GLS instead, allows TIVs but involves an assumption that is rarely palatable, that the common 
effects are uncorrelated with the regressors.  When this assumption fails (as it appears usually to 
do), the estimator is biased in the same way that OLS estimates are.  Plümper and Troeger (2007) 
(PT), have recently proposed an estimator, labeled FEVD, that appears to solve the longstanding 
problem of TIVs in an FE model. It is claimed that the procedure greatly improves on the 
efficiency of LSDV in the fixed effects model, and, along the way solves the problem of non-
identification of the coefficients on time invariant variables in this model.   
 The FEVD estimator is so simple it seems like magic.  Like magic, the estimator is 
illusory.  In this note, we will show that the new estimator is algebraically identical to the LSDV 
estimator so that the claimed efficiency gains cannot be correct.  The model and estimator are laid 
out in Sections 2 and 3.  In Section 4, we will prove the equivalence of the FEVD and LSDV 
estimators and derive the source of the apparent efficiency gains.  An example based on a well 
travelled data set is presented in Section 5 to illustrate the results.  The applicable theory of the 
estimator is developed in Section 6 after the application. 
 
2.  The Model 
 

The model is a FE linear regression that contains both time varying and time invariant 
covariates. Using PT’s notation, 
 
(1)  
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where xkit is a set of K time varying variables, zmi are M time invariant variables and ui is a set of 
N-1 unit specific effects.  There are N cross section units observed for T periods. The model 
proposed is a true FE model, so it is assumed, crucially, that E[ui|xkit,zmi] ≠ 0.  It will prove 
convenient in the discussion that follows to simplify the notation a bit.  First, rather than maintain 
an overall constant and N-1 unit effects, we will formulate the equation with N unit effects and no 
overall constant – the models are equivalent.  Second, we use a convenient matrix formulation.  
The suggested model becomes 
 
[1]   y  =  Xβ  +  Zγ  + Dα  +  ε, 
 
where the full NT observations on yit are stacked in y; X is the full NT×K matrix on xkit; the N 
observations on zmi are each repeated T times in each block of the NT×M matrix Z; and D is the 
NT×N matrix of unit specific dummy variables. (The model and all results to follow are the same 
if we assume that D contains a single column of ones and N-1 unit dummy variables.)  For 
convenience, we are assuming a balanced panel – fixed T. The same set of results apply to an 
unbalanced panel, but at the cost of increased complexity in the notation.  In what follows, 
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equation numbers in parentheses refer exactly to the equations in PT while equation numbers in 
square brackets are used for this paper. 
 Two distinct cases are suggested by PT.  In the case of primary interest here, Z consists 
of a set of TIVs.  Any TIV can be written as a linear combination of the N dummy variables in D.  
So, for this case, the equation suffers from multicollinearity between Z and D and γ cannot be 
estimated apart from α.  This is the familiar problem of TIVs in a fixed effects model and is a 
focus of the paper.  In the second case suggested by PT, the columns of Z are “slowly changing.” 
But by dint of their changing at all, the variables in Z cannot be written as linear combinations of 
the dummy variables in D, which means that the entire set of K+M+N parameters can be 
estimated consistently and efficiently by ordinary least squares, of necessity including the N 
dummy variables in the equation.  This case would simply be an FE model with a set of time 
varying variables, (X,Z) and the dummy variables, D. 
 The three step procedure and results suggested by PT are intended to apply to both cases.  
However, in the second case, the claim of increased efficiency for the three step procedure is 
incorrect.  The model is a classical linear regression model with a full rank regressor matrix that 
is governed by the Gauss-Markov Theorem – the slowly changing variables, Z, can be absorbed 
in X.  The claimed result in the paper with respect to the slowly changing variables case results 
from an inappropriate computation of the asymptotic covariance matrix.  This will become 
evident below, where the discussion will encompass both cases.  Briefly, the covariance matrix 
for the three step estimator is computed as if the equation did not contain the dummy variables.  
This greatly shrinks the elements of the estimated covariance matrix.  There is a third possibility 
suggested by PT.  In the slowly changing variables case, their estimator might be a biased 
estimator with a smaller variance than some competitors, such as Hausman and Taylor (1981).  
This is indeed a possibility, however in this paper, we are concerned only with the TIV case.  
 
3.  The Proposed Estimator 
 

The authors note “This article discusses a remedy to the related problems of estimating 
time-invariant and rarely changing variables in FE models with unit effects.  We suggest an 
alternative estimator that allows estimating time invariant variables and that is more efficient than 
the FE model in estimating variables that have very little longitudinal variance.  We call this 
superior alternative “fixed effects vector decomposition (fevd) model.” 

The proposal consists of three simple steps that involve manipulation of the original data 
set – no instrumental variables are introduced into the mix, not even the Hausman and Taylor 
(1981) approach of using the group means of the time varying variables as an additional 
instrument.  It purports to solve the problem of estimating γ while achieving efficiency gains at 
the same time.  In fact, the resulting estimator is algebraically identical to the familiar (original) 
within groups (dummy variable) estimator.  That raises the obvious question of how an identical 
estimator could become more efficient. Upon closer scrutiny, the efficiency gains claimed in this 
paper are illusory.  
 For this proposed estimator, since (we have promised) it can be shown that the estimator 
is nothing more than ordinary least squares, where do the efficiency gains come from?  And, how 
does an unidentified, inestimable parameter vector become identified and estimable? 
 The proposal involves the following three step estimation procedure: 
 

Step 1. Estimate α by least squares regression of y on X and D.  As they note (p. 5), “We 
run this FE model with the sole intention to obtain estimates of the unit effects ˆiu ,” 
which will be ai = ˆ iα in our notation.  We proceed from this point using  

 



 4
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“where FE

kβ is the pooled-OLS estimate of the demeaned model in equation (3).”  By 

construction, ie  = 0, so ˆiu  is ai from the original model.  What precisely is contained in 
ai depends on the assumptions of the model, as will emerge shortly. Under the strict 
assumptions in (1), with no further orthogonality assumptions, it must be the case that γ = 
0, and ai contains αi plus the sampling error which has mean zero and variance given by 
(9-18) in Greene (2008).  The transition to their (5), 

 
(5)   

1
ˆ ,M
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u z h

=
= γ +∑  

 
requires additional, quite strong assumptions.  We will consider this below. 
 
Step 2. Based on (5), the estimated unit effects are regressed on Z to obtain an estimator 
of γ.  The residual hi is computed from this regression; hi = ai - zi̒c*, where c* is the 
vector of least squares coefficients in this auxiliary regression.  Note, there is a conflict 
between (5) and this step.  The residuals from the regression are not hi in (5), which are 
based on the population parameters; the residuals are estimates of hi based on the least 
squares “estimates” of γ. 
 
Step 3. The overall constant, α, coefficient vectors, β and γ and a new parameter, δ in 
their 

 (7)   
1 1
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are now estimated by (pooled) ordinary least squares regression of y on a constant, X, Z, 
and an expanded NT×1 vector, h, in which each hi is repeated T times.  

 
 It is suggested that this three step procedure produces consistent estimators of all of the 
parameters.  Step 3 produces the “correct standard errors.”  “The third stage also allows 
researchers to explicitly deal with the dynamics of the time invariant variables.”  Some 
simulations demonstrate the superior performance of the estimator.  From the conclusions: 
“Under specific conditions, the vector decomposition model produces more reliable estimates for 
time invariant and rarely changing variables in panel data with unit effects than any alternative 
estimator of which we are aware.”  Once again, our focus at this point is the case of time invariant 
variables in Z. 
 
4   Least Squares Algebraic Results 
 
 In spite of the extra layer of interpretation in (5), the regression at Step 3 has the 
characteristics listed in Table 1, as a result of least squares algebra.  That is, the results are not 
model or data dependent; they will occur exactly as a consequence of the use of least squares.  
We will prove these results then demonstrate the effect with a familiar data set.  The 
computations are simple and can be replicated with ease with any data set, real or imagined 
(simulated), and with any modern software. 
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        Table 1.  Characteristics of the FEVD Estimator 
[a]  The overall constant term will be identically zero, in spite of it being attended by an 
 estimated standard error (which is meaningless); 
[b] The coefficient estimates on X are the original pooled OLS fixed effects coefficient 

estimates – the same ones obtained at Step 1; 
[c] The coefficients on Z will be identical to those computed at Step 2; 
[d] The coefficient on hi will identically equal one – as such, its standard error is also 

meaningless; 
[e] The sum of squared residuals and R2 in the regression at Step 3 are identical to those at 

Step 1; 
[f] The standard errors of the estimates of β at Step 3 will appear to be smaller, possibly far 

smaller, than those computed at Step 1.  This is not the result of sampling variability. 
The matrix computed at this step is systematically too small. We will pursue this result 
below. 

 
The following employs some basic results for partitioned regression in Greene (2008, pp. 

27-29).  The estimating equation behind the suggested population model in Step 3 is (7).  Our 
empirical counterpart is 

 
[2]   y  =  Xb  +  Zc  +  hd  + w. 
 
The (K+M+1) coefficients, (b,c,d) are what will be the least squares (FEVD) solutions, not the 
population parameters.  Thus, w is the set of least squares residuals, not the population 
disturbances.  (These constructs are mixed at several points in the PT paper, for example in their 
(4).)  The coefficients computed in Step 3 are the OLS solutions in [2].  Because [2] shows the 
least squares solutions, X′w = 0, Z′w = 0 and h′w = 0, algebraically, not in expectation.  First, 
convert the data in [2] to group mean deviations form by premultiplying by MD = I – D(D′D)-1D′. 
 
 [3]  MDy  = MDXb + MDZc + MDhd + MDw 
 
On the right hand side, MDZ = 0 and MDh = 0 because Z and h are time invariant so deviations 
from group means are all zero.  That leaves 
 
[4]  MDy =  MDXb  +  MDw. 
 
The implication is that b is the within groups (dummy variables) estimator – [b] in Table 1.  We 
also have that w = e from the within groups regression, which proves [e].   We omitted the  
overall constant in [2], so we have not proved item [a].  To accommodate this, we would add the 
column of ones to X.  But, MDX would annihilate this column, which would imply (as is obvious 
in the fixed effects linear regression with a full set of N group dummy variables), the overall 
constant would be zero. 
 We now solve for c in [2].   Since b is determined, the solution will obey 
 
[5]  y  -  Xb  = Zc  +hd  +  w. 
 
Premultiply by Z′ to obtain the normal equations and recall that w = e from [4].  Then, 
 
[6]     Z′(y – Xb)  =   Z′Zc  +  Z′hd  +  Z′e. 
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But, Z′h = 0 by construction, and Z′e = 0 because e is orthogonal to the columns of D and to 
every linear combination of the columns of D, including Z.  From the within groups regression,  
y – Xb = a* + e, where a* = Da, so 
 
[7]  Z′(a*  +  e)  =  Z′Zc. 
 
Since, Z′e = 0, we have 
 
[8]  Z′a* = Z′Zc, 
 
which establishes that c = (Z′Z)-1Z′a* = c*, item [c].  
 Finally, we now solve for d. Using [2] once again with known b and c = c*, we have 
 
[9]  y – Xb – Zc*  =  hd  +  w. 
 
Premultiply by h′, so 
 
[10]  h′(y – Xb – Zc*) = h′hd  +  h′w 
 
but h′w = 0 from [2].  As before, y – Xb = a* + e.  Again, e is orthogonal to every linear 
combination of the columns of D, including h (which is time invariant), so 
 
[11]  h′(a* + e – Zc*) = h′hd 
 
or, since h = a* - Zc*, h′(h + e) = h′h = h′hd, or d = 1, item [d].  This last result appears in Table 
2, in the last row of column (5).   
 The derivation does not explain the efficiency payoff.  How did the standard errors get so 
small?  The appropriate covariance matrix to use for b is s2(X′MDX)-1.  The result at Step 3 is a 
submatrix of fs2(B̒B)-1 where B = (1,X,Z,h) and f = (NT-K-N)/(NT-1-K-M-1).  The sum of 
squares from the two regressions are the same, however the variance estimator used by PT 
appears (incorrectly) to have more degrees of freedom, so f is less than one if M+2 is less than N.  
In our example, N=595, T=7, K=8 and M=3, so f = 0.857.  The diagonal elements of this second 
moment matrix are also smaller than their counterparts in the first one.  It can be shown 
analytically that the second matrix is smaller than the first – the difference is positive definite – 
fairly easily. We will do so logically instead.  In the matrix X′MDX, the elements are the sums of 
squares and cross products of the residuals in regressions of the columns of X on all N of the 
columns of D.  In the submatrix of B̒B, the corresponding elements are the sums of squares and 
cross products of the residuals in the regressions of the columns of X on only M+2 linear 
combinations of the columns of D.  As long as M+2 is less than N, the sums of squares must be 
larger – in our example, N is 595 and M+2 is only 5.  The sums of squares in these smaller 
regressions of X on (1,Z,h) which are only some linear combinations of the columns of D, must 
be larger than their counterparts when X is regressed on all of the columns of D. When the 
matrices are inverted, the larger moment matrix becomes the smaller inverted moment matrix.   
The end result is that fs2(B′B)-1 << s2(X′MDX)-1 because f < 1 and the matrix is systematically 
smaller.  No precise comparison of how much smaller the second matrix is than the first is 
possible, but the ranking is unambiguous.  It is, however, not an appropriate estimator of the 
asymptotic covariance matrix of bFEVD = bFE. 

That would seem to leave the asymptotic covariance matrix of c, the estimator of the 
coefficients on Z, to be examined.  However, no analysis is possible because γ is not yet an 
identifiable parameter vector, so no estimator of a covariance matrix for it makes sense.  That 
does not preclude computation of c* in Step 2 – it is certainly physically possible to compute the 
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regression.  However, there is no meaningful interpretation of the results of this regression in the 
context of the fixed effects model.  If the focus is shifted to a random effects model with time 
invariant variables, then the appropriate comparison would be of this estimate to that obtained by 
GLS, or some two step method assuming the variance components need to be estimated. 
 
5  A Demonstration 
 
 To demonstrate the estimator at work, we will use a simulation based on a “real world” 
panel data set, that used in the labor market study by Cornwell and Rupert (1988).  The data are a 
balanced panel of observations on 595 individuals for 7 years.  The dependent variable of interest 
in the study is  
 
 y =  lwage = log wage.   
 
The time varying variables are  
 
 x =  exp = experience,  
  wks = weeks worked,  
  occ = a dummy variable for certain types of occupations,  
  ind = a dummy variable for working in industry,  
  south, smsa = dummy variables for living in the south and in an smsa,  
  ms = marital status,  
  union = a union membership dummy.  
 
The time invariant variables are  
 
 z =  (fem = gender, blk = race and ed = education).   
 
The advantage of pivoting the simulation off a real workd data set is that it is not necessary to 
make unrealistic (or trivial) assumptions about the interactions among the independent variables.  
The data on the right hand side of the equation display the characteristics one is likely to 
encounter in practice. 
 To produce a simulation with known results but based on a realistic data set, we will 
proceed as follows:  We will use the X and Z from the observed data.  But, we will simulate the 
dependent variable.  By this construction, we will make the data conform exactly to the fixed 
effects model assumed in the paper, and we will know in advance what the true values of all the 
parameters in the model are.  The specific steps to generate the simulated data are as follows: 
 
 (1) Fixed effects linear regression of y on X and D.  We retain the predictions from this 
      regression, yfitFE(i,t) and the estimated residual standard deviation, s. The coefficient 
      vector from this regression will be the true coefficients in the model. 
 (2) Random effects linear regression of y on 1,X,Z.  We retain the coefficients on Z from 
                  this regression, cRE.  Note that the actual values used for these coefficients are not 
      material; we just seek a value that is consistent with the data. 
 (3) Generate a simulated observation, ysim(i,t) = yfitFE(i,t) + cRE′zi + sFE×ε(i,t), 
      where ε(i,t) is a random draw from the standard normal distribution.    
 
Note that the linear regression of ysim(i,t) on X,D,Z produces exactly the same coefficients and 
standard errors as the linear regression of ysim(i,t) on X,D because, as noted, Z is a linear 
combination of the columns of D, so least squares estimates its coefficients as zeros. 
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 Thus, ysim(i,t) satisfies exactly the assumptions of the model; it is generated by a true 
fixed effects model with time invariant variables that actually have nonzero coefficients.  The 
disturbances are true random noise, homoscedastic and uncorrelated across observations. The 
nonzero coefficients on Z cannot be estimated in the presence of the dummy variables, but they 
are embedded in the data nonetheless.  The true values of the coefficients used to simulate the 
data are shown in Table 2 in parentheses under the estimated parameters.   Note that the correct 
values for the standard errors of the fixed effects estimator are also known.  Since the 
disturbances were simulated from a normal distribution with a known standard deviation, sFE, the 
actual, correct covariance matrix for the fixed effects estimator (conditioned on X) is 
sFE

2(X′MDX)-1.  These true standard errors are also shown in parentheses in Table 2.  Computer 
code for simulating the data and computing the estimates is given in the Appendix.   
 The results that appear in Table 2 are to be expected – the equality of the coefficients at 
Step 3 to those in Steps 1 and 2 was shown algebraically.  The payoff is the comparison of the 
standard errors in the third regression compared to those in the first regression, that is, column (6) 
vs. column (2), and in the nonzero coefficients on Z in column 5.  The standard errors have fallen 
substantially, by factors ranging as high as 6.  The population values of γ are shown in column 
(1).  As noted, these are not estimable.  The coefficients in column (3) that arguably should be 
estimates of them are quite far off.  However, any resemblance would be coincidental. 
 The evidence of items [a]-[e] in the results in Table 2 is not a contrivance nor is it a 
peculiarity of these data.  Like results will reappear in any panel data set that is manipulated 
likewise.  We have encountered numerous applications of this method in the recently received 
literature, including, Akhter and Daly (2009), Alemán (2008), Brück and Peters (2009), Buckley 
and Schneider (2007), Caporale et al. (2009), Davis (2009), Hansen (2009), Mainwaring and 
Pérez-Liñán (2008), Sova et al. (2009) and Worrall (2008).  The striking reappearance of bFE in 
tables of results that present bFEVD seems not to attract any attention.  Likewise, the simple 
recreation of c* as c in the second and third step regressions seems unremarkable.  Attention in 
the studies we have seen is focused on the standard errors such as shown in column (6) of our 
table, which are unambiguously too small, regardless of the data set in use. 
 
6.  The Actual Model and Estimators of Its Parameters 

 The preceding established the equality of bFRVD and bLDDV  and that the second and third 
step “estimators” of γ are identical.  We also established algebraically that the asymptotic 
covariance matrix computed for the estimator of β at Step 3  

  Est.Var[bFEVD]  =  sFEVD
2 (X′M1,Z,hX)-1 

must be smaller – every diagonal element is smaller – than the covariance matrix computed at 
Step 1, 
  Est. Var[bLSDV]  =  sLSDV

2 (X′MDX)-1. 
 
The scale factor, sFEVD

2 is smaller than sLSDV
2 and the former matrix is unambiguously smaller 

than the latter.  The algebraic result is shown after [11].  Two issues remain to settle.  First, the 
much simpler of the two, the preceding results have not established that the estimator of the 
variance of the FEVD estimator is inappropriate; we have only established that it smaller than the 
one computed for the LSDV estimator.  Second, the appearance of an estimator of γ in a model in 
which, by construction, it should be unidentified is bemusing.   We consider both of these in turn.  
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 Table 2. FEVD Three Step Estimation.  (Population values in parentheses) 
 (1) (2) (3) (4) (5) (6) 
 Step 1 

OLS Fixed Effects 
Step 2 

OLS, No Constant 
Step 3 

OLS, 1:X,Z,h 
LHS Var. LWAGESIM ai LWAGESIM 
R2  0.95976 n/a*  0.95976 
e’e 79.37106 753.80535 79.37106 
s  0.14927 

  (0.153221) 
   1.12841 0.13826  

 (0.153221) 
Deg.Fr. 3562 592 4152 
 Estimate Std.Error Estimate Std.Error Estimate Std.Error 
Constant      0.00000  0.04508 

(0.00000) 
EXP   0.09517 

 (0.09658) 
 0.00116 
(0.00119) 

   0.09517  0.00059 
(0.00119) 

WKS   0.00081 
 (0.01114) 

 0.00059 
(0.00060) 

   0.00081  0.00043 
(0.00060) 

OCC  -0.02384 
(-0.02486) 

 0.01353 
(0.01389) 

  -0.02384  0.00585 
(0.01389) 

IND   0.02358 
 (0.02076) 

 0.01517 
(0.01557) 

   0.02538  0.00467 
(0.01557) 

SOUTH  -0.00572 
(-0.00320) 

 0.03368 
(0.03458) 

  -0.00572  0.00497 
(0.03458) 

SMSA  -0.01286 
(-0.04373) 

 0.01908 
(0.01958) 

  -0.01286  0.00485 
(0.01958) 

MS  -0.05438  
(-0.03026) 

 0.01864  
(0.01914) 

  -0.05438  0.00815 
(0.01914) 

UNION   0.01547 
 (0.03416) 

 0.01465  
(0.01504) 

   0.01547  0.00509 
(0.01504) 

FEM (-0.30293)  -0.38338 0.15101 -0.38338  0.01019 
ED  (0.10966)   0.47175 0.00381  0.47175  0.00224 
BLK (-0.22565)  -0.09035 0.18337 -0.09305  0.00891 
H  (0.00000)     1.00000  0.00650 

*The regression does not contain a constant term, so R2 is not computed. 
 
 For the first result, from (1), 
 
  y = Xβ + Zγ + Dα + ε, E[ε|X,Z] = 0, E[εε′|X,Z] = σ2I. 
 
The LSDV estimator is 
 
  bLSDV  =  β + (X′MDX)-1X′MDε. 
 
It is immaterial whether α is correlated with Z and X or not (i.e., whether the model is an FE or 
an RE model).   The textbook result is that the correct covariance matrix is given by 
 
  Var[bLSDV|X,Z]  =  σ2(X′MDX)-1. 
 
As shown earlier, the FEVD estimator is using f×sLSDV

2 to estimate σ2 where  
f = (NT – N – K)/(NT – K – M – 2)< 1.  As N increases, f converges to (T-1)/T.  That is, the 
downward bias in the estimator of σ2 does not go away, and is worse the shorter is the panel.  As 
shown earlier, the matrix used for computing the variance of the FEVD estimator is also 
systematically smaller, and the downward bias does not vanish as N increases.  The end result is 
that the estimated covariance matrix for the FEVD estimator of β is always too small.  By how 
much is data and application specific. 
 The authors propose the “estimator” at Step 3 as a method of estimating the parameters γ 
in a fixed effects model that contains TIVs, i.e., their equation (1).  The point that seems to be 
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overlooked in the substantial literature that this proposed estimator has inspired is that in the fixed 
effects model, if α is assumed to exist as the set of fixed effects, then γ does not exist, so it cannot 
be estimated, efficiently or otherwise.   Reconsider the original model, 
 
[1]   y  =  Xβ  +  Zγ  + Dα  +  ε. 
 
As noted earlier, Z is a linear combination of the columns of D, which means that Z may be 
written as DA for some N×M matrix A with full column rank M < N.  Thus, the regression model 
is 
 
[1′]   y   =  Xβ  + DAγ + Dα + ε 
       =  Xβ  + D(Aγ + α)  +  ε 
           =  Xβ  + DαA  +  ε 
 
for some αA.  The well known implication is that it is not possible to estimate γ and α separately.  
Only the preceding linear mixture of the two is estimable.  This is a pure example of 
multicollinearity.  It is logically identical to the regression “model,” y  =  x1β + x2γ + ε, in which 
x2 = 2x1.  In such a case, even if the model were “correct,” it is not possible to fit it by least 
squares.  One must either assume that β = 0 or γ = 0 (or some other known fixed value) or that the 
simple regression of y on x1 estimates (β + 2γ).  No other construction is possible.  Returning to 
our [1], the solution always employed is to assume γ = 0, and drop Z from the model. 
 The unconvinced reader will now point to PT’s 
 
(6)    α  =  Zγ  +  h 
 
to argue the opposite.  The problem is that (6), like (7), is incorrect.  The vector of dummy 
variable coefficients in the fixed effects model is not equal to Zγ plus a disturbance that is 
uncorrelated with Z.  That is the point of the model.  It is not even the case if it is assumed that αi 
is uncorrelated with xit.  It will be the case if it is assumed that αi is uncorrelated with Z.  But, this 
is not an assumption in the fixed effects model – the crucial assumption of the FE model is that 
the common effects can be correlated with the regressors, all of them, TIV or not. 
 We can obtain a counterpart to (6) if it is assumed at the outset that 
 
[12]  yit  =  α + xit′β + αi + εit, 
  αi  =  zi̒γ  +  ηi, 
 
where ηi is uncorrelated with both xit and zi.  But, this is a random effects model with time 
invariant variables in it, not a fixed effects model.  The difference is crucial.  This is not a matter 
of using OLS vs. LSDV, or any other particular estimator.  It is an assumption of the model.  The 
reduced form is 
 
  yit  = α  +  xit′β + zi̒γ  +  ui + εit, 
 
where εit is as before and now ui is a random effect. This model is estimable, consistently albeit 
inefficiently by OLS, and efficiently by GLS or feasible, two step FGLS.  When the model is 
stated with these assumptions, then the three step estimator proposed by Plumper and Troeger 
does, indeed, estimate β and γ.   But, that has only been made possible by the additional 
assumption that the common effects are uncorrelated with the time invariant variables, an 
assumption that is not part of the fixed effects specification. 
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 The proposed estimator of γ is enabled by assuming that the model is a hybrid of the 
fixed and random effects models.  The identifying restriction is that ηi in [12] is uncorrelated with 
zi.  It is not necessary to assume that ηi is uncorrelated with xit.  Thus, the PT model resembles the 
specification of Hausman and Taylor (1981) where it is assumed (equivalently) that the common 
effect is uncorrelated with some of the variables in xit and some of the variables in zi.  In the PT 
model, the counterpart is that the effect is uncorrelated with all of the variables in zi  - we use M 
orthogonality conditions to identify the M parameters in γ - and none of the variables in xit.  To 
pursue our earlier metaphor, this subtle assumption is how the rabbit gets into the magician’s hat.  
This is the device that identifies the otherwise unidentified γ.  Plümper and Troeger (2007, page 
6) make reference to this result where they state “ By design, hi is no longer correlated with the 
vector of z variables.  If the time invariant variables are assumed to be orthogonal to the 
unobserved unit effects – i.e., if the assumption underlying our estimator is correct – the estimator 
is consistent. If this assumption is violated, the estimated coefficients for the time invariant 
variables are biased...”  (Emphasis added.) This is, in fact, the crucial assumption, but it is not 
made at any point before this statement. (The discussion also mixes hi and ηi – in their 
construction, their hi is orthogonal to Z by construction as a least squares residual, but this does 
not establish the orthogonality of the true unit effects from Z.)  However, the central results of 
this paper hold regardless of this assumption: (1) the FEVD estimator is just LSDV and (2) there 
is no efficiency gain over LSDV regardless of whether this assumption is met or not. 
 The proposed estimator of γ is that in Step 3, using ordinary least squares.  The estimator 
of the asymptotic covariance matrix based on Step 3 is 
 

  V(3)  =  1
, ,( )

2NT K M
−′

′
− − − 1 X h

e e Z M Z  

where 
  1

, , ( )   = ( , , )−′ ′= −1 X hM I G G G G , G 1 X h . 
 
For our example, these are the standard errors shown at the bottom of column (6) in Table 2.  
However, the estimator of γ at Step 3 is numerically (algebraically) identical to the estimator 
computed at Step 2, once again using OLS.  Based on this regression, the estimated asymptotic 
covariance matrix for the Step 2 estimator would be 
 

  V(2)  =  1( )
1N M

−′
′

− −
h h Z Z . 

 
These would be the standard errors in column (4).  No obvious comparison of these two 
covariance matrices is possible.  The matrix part in V(2) is unambiguously smaller than that in 
V(3).  However, the scale factor could go either way.  Note in Table 2, the estimated standard 
errors in column (4) are considerably larger than their counterparts in column (6).  But, the 
comparison is a moot point.  Under the assumptions of the model in [12], neither of these 
matrices is appropriate. 
 The fixed effect estimator of αi is given by the result in (4), where ie  = 0 for every i and 
βFE is actually b.  Regardless of whether one views the model as the FEM in (1) or the REM in 
[12], ai is not a function of Z; Z has been swept out by taking deviations from means.  The 
estimator of αi is 
 
  ai  =  αi  +  sampling error 
       =  αi  +  vi 
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where the expected value of vi is 0 – since ai is unbiased.  If we now base our interpretation of the 
model on [12], then 
 
  ai  =  zi′γ  +  ηi  +  vi 
 
The variance of ai around its mean (which would be zi′γ+ηi) is given in Greene (2008), (9-18); 
 

[13]  
2

2 1[ | ] ( )i i iVar v
T

−ε
ε

σ ⎡ ⎤′ ′= + σ⎣ ⎦DX x X M X x . 

 
Combining terms, then, once again, under the model assumptions, 
 

[14]  Var[ai|X,Z]  =  2 2 11 ( )i iT
−

η ε
⎧ ⎫⎡ ⎤′ ′σ + σ ⎨ ⎬⎣ ⎦⎩ ⎭

D+ x X M X x  

  
The regression implied by PT’s reformulation of the model is heteroscedastic. The appropriate 
asymptotic covariance matrix would be 
 
  Asy.Var[c*|X,Z]  =  (Z′Z)-1Z′ΩZ(Z′Z)-1, 
 
based on the second step, where Ω is a diagonal matrix containing the elements in [14].  The 
matrix computed at Step 3 is irrelevant, and bears no resemblance to this or, necessarily, to V(2).  
The standard errors in Step 3 are inappropriate.  Those in Column (4) of Table 2 are also, but they 
may resemble the correct result.  Since the different variances do not actually contain Z, the 
computation assuming homoscedasticity with respect to Z may not be too far off.  To investigate 
for our example, we computed a White, heteroscedasticity corrected, robust covariance matrix for 
the regression in Step 2.  The estimated standard errors are (0.14308,0.00374,0.20643), which are 
quite close to the naive estimates of (0.15101,0.00381,0.18337) reported in Table 2.  They are, 
however, far larger than those reported in column (6) of Table 2.  
 The conclusion to this discussion is that the claimed precision of the estimator of γ based 
on Step 3 is incorrect.  The comparison is based on the wrong matrix; it should be based on Step 
2, not Step 3. 
 
7.  Conclusions 
 
 The FEVD estimator proposed by Plümper and Troeger (2007) is illusory.  The 
development of the estimator exploits an interesting algebraic result that reaches an old 
conclusion via a new path – the estimator is the original least squares dummy variable estimator. 
The claimed efficiency gains under their assumptions are produced by using an erroneous result, 
equation (7), to motivate an incorrect covariance matrix, both for estimation of β and for γ.  The 
existence of the estimator for γ hangs on a crucial orthogonality assumption that the analyst may 
or may not be comfortable with.  Assuming they are, then FEVD is a consistent estimator, but the 
researcher needs to be careful that the covariance matrix that seems to be appropriate (at Step 3) 
is unambiguously too small.  There is a simple remedy for this suggested in the preceding – 
namely using only Steps 1 and 2 and not computing Step 3 at all.  This conclusion is based on the 
assumptions of the model.  For more general cases in which the orthogonality conditions are not 
met, we must analyze FEVD as an inconsistent estimator with a possibly smaller variance than 
some competitors such as Hausman and Taylor (1981).  However, regardless of this extension, 
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the result remains that Step 3 takes an existing estimator and produces an incorrect covariance 
matrix – Step 3 should not be carried out regardless of the model assumptions.  The full set of 
results for FEVD are obtained at Steps 1 and 2.  The LSDV estimator of β and the asymptotic 
covariance matris are correctly estimated at Step 1.  The estimator of γ coupled with the White 
robust covariance matrix obtained at Step 2  are appropriate if the orthogonality assumption is 
met, and are meaningless if not. 
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Appendix:   NLOGIT Simulation and Estimation Commands 
 
 Commands for carrying out the computations are as follows: 
 
? Read in Cornwell and Rupert panel data set. Then generate simulated data. 
? X = time varying variables, Z = Time invariant variables 
  namelist ; x = exp,wks,occ,ind,south,smsa,ms,union $ 
  namelist ; z = fem,ed,blk $ 
? Obtain the predictions from the FEM. True coefficients by LSDV estimator. 
? Variable LWF is the prediction from this estimated equation 
  regress  ; lhs = lwage ; rhs = x ; panel ; pds=7 ; fixed effects ; keep = lwf $ 
  matrix   ; btruefe = b $  True coefficients 
  calc     ; list ;  struefe = s $  Display and catch true sigma for disturbances. 
? Obtain a set of coefficients for the TIVs from an REM. 
  regress  ; lhs = lwage ; rhs = z,one,x ; panel ; pds=7 ; random effects $ 
  matrix   ; btiv = b(1:3) $ 
? Simulated data are obtained by adding disturbances to prediction. 
? Add in an effect for the TIVs using the true coefficients. 
  calc     ; ran(1234567) $  Set seed for RNG for replicability 
  create   ; lwagesim = lwf + btiv(1)*fem + btiv(2)*ed + btiv(3)*blk + struefe*rnn(0,1)$ 
? True asymptotic covariance matrix differs only by s-squared. Show results 
  regress  ; lhs=lwagesim;rhs=one,x;panel;pds=7; fixed effects $ 
  matrix   ; truevc = {struefe^2/ssqrd}*varb $ 
  matrix   ; stat(btruefe,truevc)$  These are the theoretically correct values. 
? Now compute FEVD estimates using simulated data 
  regress  ; lhs=lwagesim;rhs=x;panel;pds=7;fixed effects $ (Step 1) 
  create   ; ai=alphafe(_stratum)$ (To stretch the a vector to NT length) 
  regress  ; lhs=ai;rhs=z;res=hi $ (Step 2 computes hi for Step 3) 
  regress  ; lhs=lwagesim;rhs=one,x,z,hi $  (Step 3 OLS regression) 
  reject   ; year > 1 $  (Redo step 2 for right s.e.s using only N obs.) 
  regress  ; lhs = ai ; rhs = z $  (Naive estimator of covariance matrix) 
  regress  ; lhs = ai ; rhs = z ; hetero $ (Use White estimator instead) 
 
The results can be reproduced with any contemporary software; they require only linear least 
squares regressions.  Some small differences will occur across implementations because we used 
simulated data and random number generators differ across programs.  Results that will be 
identical across packages can be obtained by skipping the simulation and using the original data.  
This is done in the preceding code by proceeding directly to the computation of the FEVD 
estimators and using lwage rather than lwagesim in the two regressions where it appears. 
 
 
 
 
 
 


