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I.  Introduction 
 We survey the intersection of two large areas of research in applied and theoretical econometrics. 

Panel data modeling broadly encompasses nearly all of modern microeconometrics and some of 

macroeconometrics as well.  Discrete choice is the gateway to and usually the default framework in 

discussions of nonlinear models in econometrics.  We will select a few specific topics of interest: 

essentially modeling cross sectional heterogeneity in the four foundational discrete choice settings: 

binary, ordered multinomial, unordered multinomial and count data frameworks.  

We will examine some of the empirical models used in recent applications, mostly in parametric 

forms of panel data models.  There are many discussions elsewhere in this volume that discuss discrete 

choice models.  The development here can contribute a departure point to the more specialized treatments 

such as Keane’s (2013, this volume) study of panel data discrete choice models of consumer demand or 

more theoretical discussions, such as Lee’s (2013, this volume) extensive development of dynamic 

multinomial logit models. Toolkits for practical application of most of the models noted here are built into 

familiar modern software such as Stata, SAS, R, NLOGIT, MatLab, etc.  We will not develop detailed 

descriptions of ‘how to’ for specific kinds of applications.  Space considerations also preclude extended 

numerical applications. 

 Formal development of the discrete outcome models described above can be found in numerous 

sources, such as Greene (2012) and Cameron and Trivedi (2005).  We will focus on extensions of the 

models to panel data applications.  The common element of the discussions that necessitates a separate 

treatment is the nonlinearity of the models.  Familiar treatments such as models of fixed and random 

effects and dynamic specifications in linear regression models provide only scant guidance in extensions 

to nonlinear models such as binary choice. 

 

A.  Analytical Frameworks for Panel Data Models for Discrete Choice 
 There are two basic threads of development of discrete choice models.  Random utility based 

models emphasize the choice aspect of discrete choice.  Discrete choices are the observable revelations of 

underlying preferences. For example, McFadden (1974) develops the random utility approach to 

multinomial qualitative choice.  A second group of models is quantitative in nature – regression models 

for counts of events.  For our purposes, it is useful to consider these as discrete choices as well.  The 

fundamental building block is the binary choice model, which we associate with an agent’s revelation of 

their preference for one specific outcome over another. Ordered and unordered choice models build on 

this basic platform. Regression models for counts of events fit into this study because of the style of 

model building typically used, which has much in common with the counterparts in the random utility 

framework.  Though counts are not typically modeled as revelations of preferences, some analysts have 
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done so, including Schmidheiny and Brülhart’s (2011) model of location choice and Bhat, Paleti and 

Castro’s (2013) analysis of out-of-home non-work episodes.  The familiar estimation platforms, 

univariate probit and logit, ordered choice (see Greene and Hensher (2010)), and multinomial logit for the 

former type and Poisson and negative binomial regressions for counts have been developed and extended 

in a vast literature.  The extension of panel data models for heterogeneity and dynamic effects, that have 

been developed for linear regression in an equally vast literature, into these nonlinear settings is a bit 

narrower, and is the subject of this essay. 

 Panel data models, beginning with discussions of the linear regression model, are documented in 

almost fifty years of literature beginning with Balestra and Nerlove’s (1966) canonical study of the U.S. 

natural gas market. Landmark treatments have built on this framework, including Arellano and Bond 

(1991) and Arellano and Bover (1995) and a generation of results on dynamic linear models.  (Some of 

that research is continued elsewhere in this handbook.)  The early extension of panel data methods to 

nonlinear models, specifically discrete choice models, is relatively more limited.  The treatment of binary 

choice begins (superficially) with Rasch’s (1960) and Chamberlain’s (1980, 1984) development of a fixed 

effects binary choice model and, for practical applications, Butler and Moffitt’s (1982) development of an 

algorithm for random effects choice models.  We will focus largely on these models and modern 

extensions that have appeared in the recent literature. 

 

B.  Panel Data  
 The second dimension of the treatment here is panel data modeling.  The modern development of 

large, rich longitudinal survey data sets such as the German Socioeconomic Panel (GSOEP), Household 

Income and Labor Dynamics in Australia (HILDA), Survey of Income and Program Participation (SIPP, 

US), British Household Panel Survey (BHPS), Medical Expenditure Panel Survey (MEPS, US) and 

European Community Household Panel Survey (ECHP) to name a few, has supported an ongoing interest 

in analysis of individual outcomes across households and within households through time.  The BHPS, 

for example, now in its 18th wave, is long enough to have recorded a significant fraction of the life cycle 

of many family members.  The National Longitudinal Survey (NLS, US) was begun in the 1960s, and 

notes that for some purposes, they have entered their second generation. Each of these surveys includes 

questions on discrete outcomes such as labor force participation, banking behavior, self assessed health, 

subjective well being, health care decisions, insurance purchase, and many others.  The discrete choice 

models already noted are the natural platforms for analyzing these variables.  For present purposes, a 

specific treatment of ‘panel data models’ is motivated by interesting features of the population that can be 

studied in the context of longitudinal data, such as cross sectional heterogeneity and dynamics in behavior 

and on estimation methods that differ from cross section linear regression counterparts.  We will narrow 



4 
 

our focus to individual data.  The analysis of market level data on aggregates such as pioneered in Berry, 

Levinsohn and Pakes (1995) and Goldberg (1995), do belong in the class of discrete choice analyses – 

though usually not in discussions of panel data applications.  Nonetheless, given our limited ambition and 

space constraints, we will confine attention to the sorts of discrete decisions analyzed using individual 

data. Contemporary applications include many examples in health economics: such as in Riphahn, 

Wambach and Million’s (2003) study of insurance takeup and health care utilization using the GSOEP 

and Contoyannis, Rice and Jones’s (2004) analysis of self assessed health in the BHPS. 

 

II.  Discrete Outcome Models 
 We will denote the models of interest here as discrete outcome models.  The data generating 

process takes two specific forms, random utility models and nonlinear regression models for counts of 

events.  In some applications, there is a bit of fuzziness of the boundary between these.  Bhat and 

Pulugurta (1998) treat the number of vehicles owned, naturally a count, as a revelation of preferences for 

transport services, i.e., in a utility based framework.  For random utility, the departure point is the 

existence of an individual preference structure that implies a utility index defined over states, or 

alternatives, that is, 

 Uit,j =  U(xit,j,zi,Ai,εit,j). 

Preferences are assumed to obey the familiar axioms – completeness, transitivity, etc. – we take the 

underlying microeconomic theory as given.  In the econometric specification, ‘j’ indexes the alternative, 

‘i’ indexes the individual and ‘t’ may index the particular choice situation in a set of Ti situations.  In the 

cross section case, Ti = 1...  In panel data applications, the case Ti > 1 will be of interest.  The index ‘t’ is 

intended to provide for possible sequence of choices, such as consecutive observations in a longitudinal 

data setting or a stated choice experiment.  The number of alternatives, J, may vary across both i and t – 

consider a stated choice experiment over travel mode or consumer brand choices in which individuals 

choose from possibly different available choice sets as the experiment progresses through time.  Analysis 

of brand choices for, e.g., ketchup, yogurt and other consumer products based on the scanner data is a 

prominent example from marketing research. (See Allenby Garrett and Rossi (2010).)  With possibly 

some small loss of generality, we will assume that J is fixed throughout the discussion.  

The number of choice situations, T, may vary across i.  Most received theoretical treatments 

assume fixed (balanced) T largely for mathematical convenience, although many actual longitudinal data 

sets are unbalanced, that is, have variation in Ti across i.  At some points this is a minor mathematical 

inconvenience – variation in Ti across i mandates a much more cumbersome notation than fixed T in most 

treatments.  But, the variation in Ti can be substantive.  If ‘unbalancedness’ of the panel is the result of 

endogenous attrition in the context of the outcome model being studied, then a relative to the problem of 
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sample selection becomes pertinent. (See Heckman (1979) and a vast literature.)  The application to self 

assessed health in the BHPS by Contoyannis, Jones and Rice (2004) described below is an example.  

Wooldridge (2002) and Semykina and Wooldridge (2013) suggests procedures for modeling nonrandom 

attrition in binary choice and linear regression settings. 

The data, xit,j, will include observable attributes of the outcomes, time varying characteristics of 

the chooser, such as age, and, possibly, previous outcomes; zi are time and choice invariant characteristics 

of the chooser, typically demographics such as gender; εit,j is time varying and/or time invariant, 

unobserved and random characteristics of the chooser.  We will assume away at this point any need to 

consider the time series properties of xit – nonstationarity for example.  These are typically of no interest 

in longitudinal data applications.  We do note that as the length of some panels such as the NLS, GSOEP 

and the BHPS grow, the structural stability of the relationship under study might at least be questionable.  

Variables such as age and experience will appear nonstationary and mandate some consideration of the 

nature of cross period correlations. This consideration has also motivated a broader treatment of 

macroeconomic panel data such as the Penn World Tables.  But, interest here is in individual, discrete 

outcomes for which these considerations are tangential or moot.)  The remaining element of the model is 

Ai which will be used to indicate the presence of choice and time invariant, unobservable heterogeneity.  

As is common in other settings, the unobserved heterogeneity could be viewed as unobservable elements 

of zi, but it is more illuminating to isolate Ai. 

We note the distinctions between  fully parametric models, such as the multinomial logit model or 

loglinear Poisson regression, and semiparametric approaches to binary choice modeling such as Manski’s 

maximum score (1975, 1985, 1986, 1987), Klein and Spady (1993) and Horowitz’s (1992, 1993) 

smoothed maximum score estimator .  Completely nonparametric approaches have been applied as well, 

such as Hoderlein at al.’s (2011) examination of life cycle income and retirement and Bontemp et al.’s 

(2009) comparison of parametric and nonparametric models of water demand.  In the latter study, the 

authors argue that patterns in the data that cannot be discerned using parametric models are revealed with 

the kernel based methods.  There are numerous applications of nonparametric methods for binary choice 

in cross sections, but relatively little extension to panel applications and to the other models of interest 

here.  (See, for example, Racine’s (2008) survey, which devotes but a single paragraph to the idea.)  The 

discussion to follow will include some description of non- and semiparametric methods, but, like the 

received empirical literature, will focus largely on parametric models. 

The observation mechanism defined over the alternatives can be interpreted as a revelation of 

preferences; 

 yit =  G(Uit,1,  Uit,2,  … , Uit,J) 
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The translation mechanism that maps underlying preferences to observed outcomes is part of the model.  

The most familiar (by far) application is the discrete choice over two alternatives, in which  

(3) yit =  G(Uit,1,  Uit,2)  =  1(Uit,2 - Uit,1>  0). 

Another common case is the unordered multinomial choice case in which G(.) indexes the alternative 

with maximum utility. 

 yit =  G(Uit,1,  Uit,2,  … , Uit,J)  =  j  such that Uit,j > Uit,k∀ j ≠ k;  j,k = 1,…,J. 

(See, e.g., McFadden (1974).)  The convenience of the single outcome model comes with some loss of 

generality.  For example, van Dijk, Fok and Paap (2007) examine a rank ordered logit model in which the 

observed outcome is the subject’s vector of ranks (in their case, of six video games), as opposed to only 

the single most preferred choice. Multiple outcomes at each choice situation, such as this one, are 

somewhat unusual.  Not much generality lost by maintaining the assumption of a scalar outcome – 

modification of the treatment to accommodate multiple outcomes will generally be straightforward.  We 

can also consider a multivariate outcome in which more than one outcome is observed in each choice 

situation.  (See, e.g., Chakir and Parent (2009.)   The multivariate case is easily accommodated, as well.  

Finally, the ordered multinomial choice model is not one that describes utility maximization as such, but 

rather, a feature of the preference structure itself; G(.) is defined over a single outcome, such that 

 yit =  G(Uit,1)  =  j such that Uit,1∈ the jth interval of a partition of the real line, [-∞,µ0,µ1,…,µJ,∞].  

 The preceding has focused on random utility as an organizing principle.  A second thread of 

analysis is models for counts.  These are generally defined by the observed outcome and a discrete 

probability distribution 

 yit= #(events individual i at time t). 

Note the inherently dynamic nature of the statement; in this context, ‘t’ means observed in the interval 

from the beginning to the end of a time period denoted t.  Applications are typically normalized on the 

length of the observation window, such as the number of traffic incidents per day at given locations, or 

the number of messages that arrive at a switch per unit of time, or a physical dimension of the observation 

mechanism, such as the incidence of diabetes per thousand individuals.  The ‘model’ consists, again, of 

the observed data mechanism and a characterization of an underlying probability distribution ascribed to 

the rate of occurrence of events.  The core model in this setting is a discrete process described by a 

distribution such as the Poisson or negative binomial distribution.  A broader view might also count the 

number of events until some absorbing state is reached – for example, the number of periods that elapses 

until bankruptcy occurs, etc.  The model may also define treatments of sources of random variation, such 

as the negative binomial model or normal mixture models for counts which add a layer of unobservable 

heterogeneity into the Poisson platform. There is an intersection of the two types of models we have 

described. A hurdle model (see Mullahy (1987) and, e.g., Harris and Zhao’s (2007) analysis of smoking 
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behavior) consists of a binary (utility based) choice of whether to participate in an activity followed by an 

intensity equation or model that describes a count of events.  Bago d’Uva (2006) for example, models 

health care usage using a latent class hurdle model and the BHPS data. 

 For purposes of developing the methodology of discrete outcome modeling in panel data settings, 

it is sufficient to work through the binary choice outcome in detail.  Extensions to other choice models 

from this departure point are generally straightforward.  However, we do note one important point at 

which this is decidedly not the case. A great deal has been written about semiparametric and 

nonparametric approaches to choice modeling.  However, nearly all of this analysis has focused on binary 

choice models.  The extension of these methods to multinomial choice, for example, is nearly nonexistent.  

Partly for this reason, and with respect to space limitations, with only an occasional exception, our 

attention will focus on parametric models.  It also follows naturally that nearly all of the estimation 

machinery, both classical and Bayesian is grounded in likelihood based methods. 

 

III.  Individual Heterogeneity in a Panel Data Model of Binary Choice 
 After conventional estimation, in some cases, a so called ‘cluster correction’ (see Wooldridge 

(2003)) is often used to adjust the estimated standard errors for effects that would correspond to common 

unmeasured elements.  But, the correction takes no account of heterogeneity in the estimation step.  If the 

presence of unmeasured and unaccounted for heterogeneity taints the estimator, then correcting the 

standard errors for ‘clustering’ (or any other failure of the model assumptions) may be a moot point.  This 

discussion will focus on accommodating heterogeneity in discrete choice modeling.   

 The binary choice model is the natural starting point in the analysis of ‘nonlinear panel data 

models.’  Once some useful results are established, extensions to ordered choice models are generally 

straightforward and uncomplicated.  There are only relatively narrow received treatments in unordered 

choice – we consider a few below.  This leaves count data models which are treated conveniently later in 

discussions of nonlinear regression.   

The base case is  

 yit  =  1(Uit,2 - Uit,1> 0) 

 Uit,j =  U(xit,j,zi,Ai,εit,j), j = 1,2. 

A linear utility specification (e.g., McFadden (1974)) would be 

 Uit,j =  U(xit,j,zi,Ai,εit,j) =  αj + βj′xit,j + γ′zi + δAi + εit,j 

where εit,j are independent and identically distributed across alternatives j.  McFadden also assumed a 

specific distribution (type I extreme value) for εit,j.  Subsequent researchers, including Manski (1975, 
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1985), Horowitz (1992) and Klein and Spady (1993) weakened the distribution assumptions.  Matzkin 

(1991) suggested an alternative formulation, in which 

 Uit,j =  U(xit,j,zi,Ai,εit,j)  =  V(xit,j,zi,Ai)  +   εit,j 

with εit,j specified nonparametrically.  In each of these cases, the question of what can be identified from 

observed data is central to the analysis.  For McFadden’s model, for example, absent the complication of 

the unobserved Ai, all of the parameters shown are point identified, and probabilities and average partial 

effects can be estimated.  Of course, the issue here is Ai, which is unobserved.  Further fully parametric 

treatments, e.g., Train (2009), show how all parameters are identifiable.  Under partially parametric 

approaches such as Horowitz (1992) or Klein and Spady (1993), parameters are identified up to scale (and 

location, α).  This hampers computation of useful secondary results, such as probabilities and partial 

effects.  Chesher and Smolinsky (2012) and Chesher and Rosen (2012a,b) and Chesher (2010, 2013) 

examine yet less parameterized cases in which point identification of interesting results such as marginal 

effects will be difficult.  They consider specifications that lead only to set identification of aspects of 

preferences such as partial effects. (See also Hahn (2010).)  Chernuzhukov, Fernandez-Val, Hahn and 

Newey (2013) also show that without some restrictions, average partial effects are not point identified in 

nonlinear models; they do indicate estimable sets for discrete covariates.  As Wooldridge (2010) notes, 

what these authors demonstrate is the large payoff to the palatable restrictions that we do impose in order 

to identify useful quantities in the parametric models that we estimate.  Altonji and Matzkin (2005) 

develop the common case of exchangeability, for example.  (Other semiparametric specifications have 

been suggested, including Honoré and Kyriazidou (2000a,b)  that are in some sense immune to variation 

in functional form and heteroscedasticity.  These often require very narrow assumptions about the support 

of xit, for example, 2 periods, or 3 with same xit in two of them, etc. Some results have been obtained for 

nonparametric treatment of both V and ε. See, for example, Honoré (2002), Honoré and Kyriazidou (2000) 

and Altonji and Matzkin (2005).  For purposes of non- and semiparametric estimation, a significant virtue 

of these huge data sets is that the less than root n consistency of kernel based estimators becomes less of a 

problem when sample sizes are in the tens of thousands.  However, the necessary limits on the support of 

the data themselves continue to pose limitations.  It is difficult to find useful guidance for analyzing long 

and richly textured longitudinal data sets such as HILDA, MEPS or the BHPS.   

Parametric models such as McFadden’s have the virtue of strong point identification.  As a 

consequence, however, they are fragile with respect to robustness to violations of assumptions.  But, those 

violations often involve untestable assumptions such as the distribution of random terms (logistic vs. 

normal) or the existence of higher moments of the independent variables. Heteroscedasticity is less 

opaque, however.  Given the discrete nature of the outcome variable, it can be difficult to distinguish 

heteroscedasticity from nonlinearity of the utility index.  Moreover, in the presence of heteroscedasticity, 
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it is necessary to redefine the quantities of interest in estimation of the model.  There is some ambiguity as 

to how heteroscedasticity should enter the partial effects.  (See Chen and Khan (2003) and Wooldridge 

(2010) for discussion.)   

The generic model specializes in the binary case to 

 yit,j =  1[V(xit,j,zi,Ai,εit,j) > 0]. 

The objective of estimation is to learn about features of the preferences, such as partial effects and 

probabilities attached to the outcomes as well as the superficial features of the model, which in the usual 

case would be a parameter vector.  In the case of a probit model, for example, an overwhelming majority 

of treatment devoted to estimation of β when actual target is some measure of partial effect.  This has 

been emphasized in some recent treatments, such as Wooldridge (2010), Fernandez-Val (2009). 

Combine the Ti observations on (xi1,…, xiTi) in data matrix Xi.  The joint conditional density of yit 

and Ai is 

 f(yi1,yi2,…,yit, Ai|Xi)  =  f(yi1,yi2,…,yit|Xi,Ai) f(Ai|Xi). 

A crucial ingredient of the estimation methodology is:  

•  Conditional independence:  Conditioned on the observed data and the heterogeneity, the 
    Observed outcomes are independent.  The joint density of the observed outcomes and the  

                heterogeneity, Ai, can thus be written 

  fy1,…,yT (yi1,yi2,…,yit |Xi,Ai) fA (Ai|Xi)  = 
1

( | , ) ( | ).iT
y it i i A i it

f y A f A
=

 
 ∏ X X

 
Models of spatial interaction would violate this assumption.  (See Lee (2008) and Greene (2011a).)  The 

assumption will also be difficult to sustain when xit contains lagged values of yit.)  The conditional log 

likelihood for a sample of n observations based on this assumption is 

 logL = { }1 1
log ( | , ) log ( | )

= =
  + ∑ ∑ X Xin T

y it i i A i ii t
f y A f A  

If fA(Ai|Xi) actually involves Xi then this assumption is only a partial solution to setting up the estimation 

problem.  It is difficult to construct a substantial application without this assumption.  The challenge of 

developing models that include spatial correlation is the leading application.  (See Section V below.) 

The two leading cases are random and fixed effects.  We will specialize to a linear utility function 

at this point, 

 Uit = β′xit + γ′zi  +  Ai  +  εit 

and the usual observation mechanism 

 yit = 1[Vit  > 0]. 

We (semi) parameterize the data generating process by assuming that there is a continuous probability 

distribution governing the random part of the model, εit, with distribution function F(εit).  At least 

implicitly, we are directing our focus to cross sectional variation.  However, it is important to note 



10 
 

possible unsystematic time variation in the process.  The most general approach might be to loosen the 

specification of the model to Ft(εit).  This would still require some statement of what would change over 

time and what would not – the heterogeneity carries across periods for example.  Time variation is usually 

not the main interest of the study.  A common accommodation (again, see Wooldridge (2010)) is a set of 

time dummy variables, so that 

 Uit = β′xit + γ′zi  + Σtδtdit +  Ai  +  εit. 

Our interest is in estimating characteristics of the data generating process for yit.  Prediction of the 

outcome variable is considered elsewhere – e.g., Elliot and Leili (2005).  We have also restricted our 

attention to features of the mean of the index function and mentioned scaling, or heteroscedasticity only 

in passing.  (There has been recent research on less parametric estimators that are immune to 

heteroscedasticity.  See, for example, Chen and Khan (2009).)  The semiparametric estimators suggested 

by Honoré and Kyriazidou (2002) likewise consider explicitly the issue of heteroscedasticity.  In the 

interest of brevity, we will leave this discussion for more detailed treatments of modeling discrete 

choices. 

Two additional assumptions needed to continue are: 

 •  Random Sampling of the observation units: All observation units i and l are generated and 
   observed independently (within the overall framework of the data generating process). 

•  Independence of the random terms in the utility functions:  Conditioned on xit,zi,Ai, the unique 
   random terms, εit, are statistically independent for all i,t. 

 
The random sampling assumption is formed on the basis of all of the information that enters the analysis.  

Conceivably, the assumption could be violated, for example in modeling choices made by participants in 

a social network or in models of spatial interaction.  However, the apparatus described so far is wholly 

inadequate to deal with a modeling setting at that level of generality.  (See, e.g., Durlauf and Brock 

(2001a,b, 2002), Durlauf et al. (2010).)   Some progress has been made in modeling spatial correlation in 

discrete choices.  However, the random effects framework has provided the only path to forward progress 

in this setting.  The conditional independence assumption is crucial to the analysis. 

 

A.  Random Effects in a Static Model 
The binary choice model with a common effect is 

Uit = β′xit + γ′zi  + Σtδtdit +  Ai  +  εit, 

 fAt(Ai|Xi,zi)  =  fA(Ai), 

yit = 1[Uit  > 0]. 

Definitions of what constitutes a random effects model hinge on assumptions of the form of fA(Ai|Xi,zi).  

For simplicity, we have made the broadest assumption, that the DGP of Ai is time invariant and 
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independent of Xi,zi.  This implies that the conditional mean is free of the observed data; E[Ai|Xi,zi]  =  

E(Ai).  If there is a constant term in xit, then no generality is lost if we make the specific assumption E[Ai] 

= 0 for all t.  Whether  the mean equals zero given all (Xi,zi), or equals zero given only the current (period 

t) realization of xit, or specifically given only the past or only the future values of xit (none of which are 

testable) may have an influence on the estimation method employed. (See, e.g., Wooldridge (2010, 

chapter 15).)  We also assume that εit are mutually independent and normally distributed for all i and t, 

which makes this a random effects probit model.  Given the ubiquity of the logit model in cross section 

settings, we will return below to the possibility of a random effects logit specification. The remaining 

question concerns the marginal (and, by assumption, conditional) distribution of Ai.  For the present, 

motivated by the central limit theorem, we assume that Ai ~ N[0,σA
2]. 

The log likelihood function for the parameters of interest is 

{ }1 1 1
log ( , , | ,..., ) log ( | , , )iTn

n y it it ii t
L A A f y t A

= =
=∑ ∏ xβ γ δ . 

The obstacle to estimation is the unobserved heterogeneity.  The unconditional log likelihood is 

{ }
{ }

1 1

1 1

     log ( , , ) log ( | , )

                        log ( | , ) ( ) .

i

i

Tn
A y it it ii t

Tn
y it it i A i ii t

L E f y A

f y A f A dA

= =

∞

= =−∞

 =  

 =  

∑ ∏

∑ ∏∫

x

x

β γ δ
 

It will be convenient to specialize this to the random effects probit model.  Write Ai = σui where  

ui  ~ N[0,1].  The log likelihood becomes 

{ }1 1
log ( , , ) log [(2 1)( )] ( ) .iTn

it it i t t it i i ii t
L y d u u du

∞

= =−∞
 ′ ′σ = Φ − α + + +Σ δ +σ φ ∑ ∏∫ x zβ γ δ, β γ

 

(Note that we have exploited the symmetry of the normal distribution to combine the yit = 0 and yit = 1 

terms.)  To save some notation, for the present we will absorb the constant, time invariant variables and 

time dummy variables in xit and the corresponding parameters in β to obtain 

{ }1 1
log ( , ) log [(2 1)( )] ( ) .iTn

it it i i ii t
L y u u du

∞

= =−∞
 ′σ = Φ − +σ φ ∑ ∏∫ xβ β

 

Two methods can be used in practice to obtain the maximum likelihood estimates of the 

parameters, Gauss-Hermite quadrature as developed by Butler and Moffitt (1982) and maximum 

simulated likelihood as analyzed in detail in Train (2009) and Greene (2012).  The approximations to the 

log likelihood are 

{ }1 1 1
log ( , ) log [(2 1)( )]iTn H

H h it it hi h t
L w y W

= = =
 ′σ = Φ − +σ ∑ ∑ ∏ xβ β

 
for the Butler and Moffitt approach, where (w,W)h, h=1,…,H are the weights and nodes for an H point 

Hermite quadrature, and  
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1 1 1

1log ( , ) log [(2 1)( )] ,iTn R
S it it iri r t

L y u
R= = =

  ′σ = Φ − +σ   
∑ ∑ ∏ xβ β

 

for the maximum simulated likelihood approach, where uir, r = 1,…,R are R pseudo-random draws from 

the standard normal population.  Assuming that the data are well behaved and the approximations are 

sufficiently accurate, the likelihood satisfies the usual regularity conditions, and the MLE (or MSLE) is 

root-n consistent, asymptotically normally distributed and invariant to one to one transformations of the 

parameters.  (See Train (2009) for discussion of the additional assumptions needed to accommodate the 

use of the approximations to the log likelihood.  Bhat (1999) discusses the use of Halton sequences and 

other nonrandom methods of computing logLS.  The quadrature method is widely used in contemporary 

software such as Stata - see Rebe-Hesketh, Skrondal and Pickles (2005) - SAS and NLOGIT.)  Inference 

can be based on the usual trinity of procedures. 

A random effects logit model would build off the same underlying utility function, 

Uit = β′xit + ui  +  εit, 

 fu(ui)  =  N[0,1], fε(εit)  = 
2

exp( )
[1 exp( )]

ε
+ ε

it

it

 

yit = 1[Uit  > 0]. 

The change in the earlier log likelihood is trivial – the normal CDF is replaced by the logistic (change ‘Φ’ 

to ‘Λ’ in the theory).  It is more difficult to motivate the mixture of distributions in the model.  The 

logistic model is usually specified in the interest of convenience of the functional form, while the random 

effect is the aggregate of all relevant omitted time invariant effects – hence the appeal to the central limit 

theorem. As noted, the modification of either of the practical approaches to estimation is trivial.  A more 

orthodox approach would retain the logistic assumption for ui as well as εit.  It is not possible to adapt the 

quadrature method to this case as the Hermite polynomials are based on the normal distribution.  But, it is 

trivial to modify the simulation estimator.  In computing the simulated log likelihood function and any 

derivative functions, pseudo random normal draws are obtained by using uir = Φ-1(Uir) where Uir is either 

a pseudorandom U[0,1] draw, a Halton draw or some other intelligent draw.  To adapt the estimator to a 

logistic simulation, it would only be necessary to replace Φ-1(Uir) with Λ-1(Uir) = log[Uir/(1-Uir)].  (I.e., 

replace one line of computer code.)  The logit model becomes less natural as the model is extended in, 

e.g., multiple equation directions and gives way to the probit model in nearly all recent applications. 

 The preceding is generic.  The log likelihood function suggested above needs only to be changed 

to the appropriate density for the variable to adapt it to, e.g., an ordered choice model or one of the 

models for count data.  We will return briefly to this issue below. 

 

 



13 
 

A.1  Partial Effects 

Partial effects in the presence of the heterogeneity are 

( )( ) ( )B u B u
′∂ + σ ′ ′∆ = = +σ
∂
xx x
x

β
β β  

where B(.) is the function of interest, such as the probability, odds ratio, willingness to pay, or some other 

function of the latent index, β′x + σu.  The particular element of x might be a binary variable, D, in which 

case, the effect would be computed as B(β′x + βD + σu) - B(β′x + σu).  If the index function includes a 

categorical variable such as education coded in levels such as EDlow, EDhs, EDcollege, EDpost, the partial 

effects might be computed in the form of a transition matrix of effects, T, in which the ijth element is  

Tfrom,to  = B(β′x + βto + σu) - B(β′x + βfrom + σu). 

(See Contoyannis, Jones and Rice (2004) for an application of this type of computation.)  For 

convenience, we will assume that ∆(x) is computed appropriately for the application.  The coefficients, β 

and σ, have been consistently estimated.  The partial effect can be estimated directly at specific values of 

u, for example its mean of zero.  An average partial effect can also be computed. This would be 

[ ( , )] [ ( )]( , )( ) ∂ ∂∂     ∆ = = =    ∂ ∂ ∂    
x

x
x xxx

x x x
u

u
E B u BB uE  

where Bx (x) is the expected value of the function of interest.  The average partial effect will not equal the 

partial effect, as Bx(.) need not equal B(..).  Whether this average function is of interest is specific to the 

application.  For the random effects probability model we would usually begin with Prob(Y=1|x,u).  In 

this case, we can find B(x,u) = Φ(β′x + σu) while Bx(x) = Φ(β′x/(1 + σ2)1/2).  The average partial effect is 

then 

2

2 2

11( )
1 1

 ′
∂Φ   ′+ σ ∆ = = φ ∂ + σ +σ 

x

x
xx

x

β
β

β  

 With estimates of β and σ in hand, it would be possible to compute the partial effects at specific 

values of ui, such as zero.  Whether this is an interesting value to use is questionable.  However, it is also 

possible to obtain an estimate of the average partial effect, directly after estimation.  Indeed, if at the 

outset, one simply ignores the presence of the heterogeneity, and uses maximum likelihood to estimate 

the parameters of the ‘population averaged model,’ 

Prob(y = 1|x) = Φ(βx′x), 

Then the estimator consistently estimates βx = β′x/(1+σ2)1/2.  Thus, while conventional analysis does not 

estimate the parameters of the structural model, it does estimate something of interest, namely the 

parameters and partial effects of the population averaged model. 
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A.2.  Alternative Models for the Random Effects 

 The random effects may enter the model in different forms.  The so called GEE approach to this 

analysis is difficult to motivate rigorously, but it is (loosely) generated by a seemingly unrelated 

regressions approach built around 

yit  =  Φ(β′xit)  +  vit, 

where the probability is also the regression function.  A similar view is suggested by the panel probit 

model in Bertschuk and Lechner (1998), 

Uit = β′xit +  εit, 

Cov(εit,εjs)  = 1[i = j]σts. 

yit = 1[Uit> 0]. 

Here, the SUR specification applies to the latent utilities, rather than the observed outcomes.  The GEE 

estimator is estimated by a form of nonlinear generalized least squares.  The terms in the log likelihood 

function for Bertschuk and Lechner’s model are T-variate normal probabilities.  This necessitates 

computation of higher order normal integrals.  The authors devise a GMM estimator that avoids the 

burdensome calculations.  Recent implementations of the GHK simulator and advances in computation 

capabilities do make the computations more reasonable.  See Greene (2004a).   

Heckman and Singer (1984) questioned the need for a full parametric specification of the 

distribution of ui.  (Their analysis was in the context of models for duration, but extends directly to this 

one.)  A semiparametric, discrete specification based on their model would be 

F(ui)  = Prob(ui = αq) = πq, q = 1,…,Q. 

This gives rise to a ‘latent class’ model, for which the log likelihood would be 

{ }1 1 1
log ( , , ) log [(2 1)( )] .

= = =
 ′= π Φ − α + ∑ ∑ ∏ xiTn Q

q it q iti q t
L yα β π β

 
This would be a partially semiparametric specification – it retains the fully parametric probit model as the 

platform.  Note that this is a discrete counterpart to the continuous mixture model in (20). 

 The random effects model is, in broader terms, a mixed model.  A more general statement of the 
mixed model would be 

Uit = (β + ui)′xit + εit, 

F(ui|Xi,zi)  =  f(ui)  =  N[0,Σ],  

yit = 1[Uit  > 0]. 

The extension here is that the entire parameter vector, not just the constant term, is heterogeneous.  The 

mixture model used in recent applications is either continuous.  (See, e.g., Train (2009) and Rebe-

Hesketh, Skrondal and Pickles (2005) or discrete in the fashion suggested by Heckman and Singer 
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(1984); see Greene and Hensher (2010).  Altonji and Matzkin (2005) considered other semiparametric 

specifications.) 

 

A.3. Specification Tests 

 It would be of interest to test for the presence of random effects against the null of the ‘pooled’ 

model.  That is, ultimately, a test of σ = 0.  In the random effects probit model, direct approaches based 

on the Wald or LR tests are available.  The LM test has a peculiar feature; the score of the log likelihood 

is identically zero at σ = 0.  Chesher (1984), Chesher and Lee (1986) and Cox and Hinkley (1974) suggest 

reparameterization of such models as a strategy for setting up the LM test.  Greene and McKenzie (2012) 

derived the appropriate statistic for the random effects probit model.  The phenomenon would reappear in 

an ordered probit or ordered logit model as well.  Their approach could be transported to those settings as 

well. 

A second specification test of interest might be the distributional assumption.  There is no natural 

residual based test such as the Bera and Jarque (1982) test for the linear regression.  A test for the pooled 

(cross section) probit model based essentially on Chesher and Irish’s (1987) generalized residuals is 

suggested by Bera, Jarque and Lee (1984).   It is not clear how the test could be adapted to a random 

effects model,  however, nor, in fact, whether it could be extended to other models such as ordered choice 

models. 

 

A.4.  Other Discrete Choice Models 

Application of the random effects models described above to an ordered choice model requires 

only a minor change in the assumed density of the observed outcome.  See Greene and Hensher (2010, 

pp. 275-278).  All other considerations are the same.  The ordered probit model does contain an additional 

source of heterogeneity, in the thresholds.  Ongoing development of the ordered choice methodology 

includes specifications of the thresholds, which may respond to observed effects (Pudney and Shields 

(2000), Greene and Hensher (2010)) and to unobserved random effects (Harris, Hollingsworth and 

Greene (2012). 

Random effects in count data models would build on a familiar specification in the cross section 

form.  For a Poisson regression, we would have 

Prob(Y = yit|xit,ui)  =  
exp( ) ,  exp( ).

!

ity
it it

it it i
it

u
y
−λ λ ′λ = + σxβ  

Since λit is the conditional mean, at one level, this is simply a nonlinear random effects regression model.  

However, maximum likelihood is the preferred estimator.  If ui is assumed to have a log-gamma 

distribution (see Hausman, Hall and Griliches (HHG, 1984)), then the unconditional model becomes a 
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negative binomial (NB) regression.  Recent applications have used a normal mixture approach.  See, for 

example, Riphahn, Wambach and Million (2003).  The normal model would be estimated by maximum 

simulated likelihood or by quadrature based on Butler and Moffitt (1982).  (See Greene (1995) for an 

application.)  A random effects negative binomial model would be obtained by applying the same 

methodology to the NB probabilities.  One could argue that the RENB model arises by having two layers 

of heterogeneity, a unique component, wit, that transforms the base case Poisson and a second that 

embodies the common unobserved effect, ui.  HHG (1984) treat the NB model as a distinct specification 

rather than as the result of the mixed Poisson.  The normal mixed NB model is discussed in Greene 

(2012). 

There is an ambiguity in the mixed unordered multinomial choice model because it involves 

several utility functions.  A fully specified random effects multinomial logit model would be 

Prob(yit = j)  =  , ,

, ,1

exp( )

exp( )
=

′α + +

′α + +∑
x

x
j it j i j

J
j it j i jj

u

u

β

β
 

A normalization is required since the probabilities sum to one – the constant and the random effect in the 

last utility function equal zero.  An alternative specification would treat the random effect as a single 

choice invariant characteristic of the chooser, which would be constant across utility functions.  It would 

seem that this would be easily testable using the likelihood ratio statistic.  However, this specification 

involves more than a simple parametric restriction.  In the first specification, (we assume) the random 

effects are uncorrelated.  In the second, by construction, the utility functions are equicorrelated.  This is a 

substantive change in the preference structure underlying the choices.  (The intermediate case, of equal 

standard deviations on the J-1 random effects, seems difficult to interpret.)  Finally, the counterpart to the 

fully random parameters model is the mixed logit model, 

Prob(yit = j)  =  , ,

, ,1

exp( ( ) )

exp( ( ) )
=

′α + +

′α + +∑
u x

u x
j i i it j

J
j i i it jj

β

β
. 

See McFadden and Train (2000), Hensher, Rose and Greene (2005) and Hensher and Greene (2003). 

 

B.  Fixed Effects in a Static Model 
 The single index model is 

f(yit|xit,zi,αi)  =  f(yit, β′xit + γ′zi + αi) = f(yit,ait). 

For empirical purposes, the model is recast with the unobserved effects treated as parameters to be 

estimated; 

1=′ ′= + + Σ αx z n
it it i i i ita dβ γ , 
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where dit is a set of n group dummy variables. (Note, this is the estimation strategy.  The model 

specification does not imply that the common effects are parameters in the same way that elements of β 

are.  At this point, xit does not contain an overall constant term.)  The leading cases in the received 

literature are the fixed effects probit model, 

f(yit,ait) =  Prob(yit = 1|ait) = Φ[(2yit -1)ait], 

where Φ(w) is the standard normal CDF, and fixed effects logit model 

f(yit,ait) = Λ[(2yit - 1)ait] = exp[(2yit - 1)ait]/{1+ exp[(2yit - 1)ait]}. 

The fixed effects model is distinguished from the random effects model by relaxing the assumption that 

fA[Ai|Xi,zi]  =  fA(Ai).  In the fixed effects case, the conditional distribution is not specified and may depend 

on Xi.  Other cases of interest are the ordered choice models and the Poisson and negative binomial 

models for count data.  We will examine the binary choice models first, then briefly consider the others.  

Fixed effects models have not provided an attractive framework for analysis of multinomial unordered 

choices.  For most of the discussion, we can leave the model in generic form and specialize when 

appropriate. 

No specific assumption is made about the relationship between αi and xit.  The possibility that 

E[αi|xi1,…,xiT] = m(Xi) is not ruled out.  If no restrictions are placed on the joint distribution of the 

unobservable αi and the observed Xi, then the random effects apparatus of the previous sections is 

unusable – xit becomes endogenous by dint of the omitted αi.  Explicit treatment of αi is required for 

consistent estimation. 

Any time invariant individual variables (TIVs), zi, will lie in the column space of the 

unobservable αi.  The familiar identification (multicollinearity) issue arises in the linear regression case 

and in nonlinear models.  Coefficients γ cannot be identified without further restrictions.  (See Plumper 

and Troeger (2007, 2011), Greene (2011b), Breusch et al (2011) and Hahn and Meinecke (2005).)   

Consider a model with a single TIV, zi.  The log likelihood is 

1 1
log log ( , )n T

it iti t
L f y a

= =
=∑ ∑  

The likelihood equations for αi and γ are 

1 1

1 1 1

( , ) /log 1 0,
( , )

log log 0.

it

it

T Tit it it
at t

i it it

n T n
a i ii t i

i

f y a aL g
f y a

L Lg z z

= =

= = =

∂ ∂∂
= × = =

∂α
∂ ∂
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∂γ ∂α

∑ ∑

∑ ∑ ∑
 

This produces the singularity in the second derivatives matrix for the full set of parameters that is a 

counterpart to multicollinearity in the linear case.  Gradient based maximization methods will fail to 

converge because of the singularity of the weighting matrix, however formed.  Bayesian methods 
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(Lancaster, 1999, 2000, 2001)) will be able to identify the model parameters on the strength of 

informative priors. (For an example of Bayesian identification of individual effects on the strength of 

informative priors, see Koop et al. (1997).  For a comment on diffuse priors, see Hahn (2004).)  The 

GMM approach suggested by Laisney and Lechner (2002) seems to provide a solution to the problem.  

The authors note, however,  

Thus the coefficients of the time invariant regressors are identified provided there is at 
least one time varying regressor, …. However, since this identification hinges on the 
local misspecification introduced by the Taylor series approximation, it seems preferable 
not to attempt an estimation of the coefficients of the time invariant variables, and to 
subsume the impact of the latter in the individual effect.  

This would be an extreme example of identification by the functional form of the model.  The fixed effects 

negative binomial model proposed in Hausman, Hall and Griliches (HHG,1984) is a surprising exception 

to this broad generality.  We defer that special case for the moment and assume that the model does not 

contain time invariant effects.  It is worth noting that for purpose of analyzing modern longitudinal data 

sets, the inability to accommodate time invariant covariates is a vexing practical shortcoming of the fixed 

effects model.  (See, again, Plumper and Troeger (2007).)  The hybrid formulations based on Mundlak’s 

(1978) formulation or on correlated random effects in the next section present a useful approach that 

appears in many recent applications. 

 Strategies for estimation of models with fixed effects generally begin by seeking a way to avoid 

estimation of n effects parameters in the fully specified model.  (See, e.g., Hahn (2009).)  This turns on 

the existence of a sufficient statistic, Si for the fixed effect such that the joint density, f(yi1,…yiT|Si,Xi) does 

not involve αi.  In the linear regression model, Σtyit provides the statistic – the estimator based on the 

conditional distribution is the within groups linear least squares estimator.  In all but a small few other 

cases (only two of any prominence in the contemporary literature), there is no sufficient statistic for αi in 

the log likelihood for the sample.  In the Poisson regression, and in the binary logit model, Σtyit provides 

the statistic.  (See Lancaster (2000) for a few additional cases (that are not discrete outcome models).  

Chamberlain (1984) mentions a counterpart for a form of the multinomial logit model.)  For the Poisson 

model, the marginal density is 

f(yit,ait) = 
exp( )

!

ity
it it

ity
−λ λ

, λit  =  exp(β′xit + αi) = exp(αi)exp(β′xit). 

The likelihood equation for αi is 

( ) ( )1 1

log 0i iT T
it itt t

i

L y
= =

∂
= −λ + =
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which can be solved for  
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1
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 Σα =  ′Σ xβ
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Note that there is no solution when yit equals zero for all t.  There need not be within group variation; the 

only requirement is that the sum be positive.  Such observation groups must be dropped from the sample. 

The result for αi can be inserted into the log likelihood to form a concentrated log likelihood.  The 

remaining analysis appears in HHG (1984).  (HHG did not consider the case in which Σi,tyit = 0, as in their 

data, yit was always positive.)  A second case, perhaps not surprisingly given its relationship to the 

Poisson model, would be the exponential regression model, 

G(yit,ait) = λit exp(-yitλit), λit  =  exp(β′xit + αi).   

Finally, for the binary logit model, the familiar result is 
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which is free of the fixed effects.  The denominator in the probability is the sum over all 
1

i
T
t it

T
y=

 
 Σ 

configurations of the sequence of outcomes that sum to the same Σtyit.  This computation can, itself, be 

daunting – for example, if Ti = 20 and Σtyit = 10, there are 20!/(10!)2  = 184,756 terms that all involve β.  

A recursive algorithm provided by Krailo and Pike (1984) greatly simplifies the calculations.  (In an 

experiment with 500 individuals and T= 20, estimation of the model required about 0.25 seconds on an 

ordinary desktop computer.)  Chamberlain (1980) details a counterpart of this method for a multinomial 

logit model.  We are unaware of any applications of this estimator for the multinomial logit case, 

however. 

In the probit model, which has attracted considerable interest, the practical implementation of the 

FEM requires estimation of the model with n dummy variables actually in the index function – there is no 

way to concentrate them out and no sufficient statistic.  The complication of nonlinear models with 

possibly tens of thousands of coefficients to be estimated all at once has long been viewed as a 

substantive barrier to implementation of the model.  See, e.g., Maddala, (1983).  The algorithm given in 

Greene (2004b, 2012) presents a solution to this practical problem.  Fernandez-Val (2009) reports that he 

used this method to fit an FE probit model with 500,000 dummy variables.  Thus, the physical 

complication is not a substantive obstacle in any problem of realistic dimensions.  (In practical terms, the 

complication of fitting a model with 500,000+K coefficients would be a covariance matrix that would 

occupy nearly a terabyte of memory.  Greene’s algorithm exploits the fact that nearly the entire matrix is 

zeros to reduce the matrix storage requirements to linear in n rather than quadratic.) 
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 The impediment to application of the fixed effects probit model is a persistent bias labeled the 

incidental parameters problem.  As has been widely documented in a long sequence of Monte Carlo 

studies and theoretical analyses, there is a persistent bias of O(1/T) in the maximum likelihood estimation 

of the parameters in many fixed effects model estimated by maximum likelihood.  (Again, the Poisson 

regression is the well known exception.)  The incidental parameters problem was first reported in Neyman 

and Scott (1948), where it is shown that the MLE of σ2 in a fixed effects linear regression model, e′e/nT, 

has plim s2 = σ2(T-1)/T. This is potentially far less than σ2 and does not improve as N increases.  The 

obvious remedy, correcting for degrees of freedom, does not eliminate the vexing shortcoming of a 

perfectly well specified maximum likelihood estimator in other internally consistent model specifications. 

The problem persists in nonlinear settings where there is no counterpart ‘degrees of freedom correction.’  

(See Lancaster (2000) for a detailed history.)  The extension of this result to other, nonlinear models has 

entered the orthodoxy of the field, though a precise result has actually been formally derived for only one 

case, the binomial logit model when T = 2, where it is shown that plim ˆ
MLβ = 2β.  (See, e.g., Abrevaya 

(1997) and Hsiao (2003).)  Although the regularity seems to be equally firm for the probit model and can 

be demonstrated with singular ease with a random number generator with any modern software, it has not 

been proved formally.  Nor has a counterpart been found for any other T, for the unbalanced panel case, 

or for any other model.  Other specific cases such as the ordered probit and logit models have been 

persuasively demonstrated by Monte Carlo methods. (See, e.g., Katz (2001) and Greene (2004b).  The 

persistent finding is that the MLE for discrete choice models is biased away from zero.  (Greene (2004b) 

finds (again, experimentally) that this result seems not to be general.  When the dependent variable is 

continuous, other outcomes can occur – lack of bias in the slope estimators in a tobit model and a 

downward bias in the MLE of β in a truncated regression model, for example. The result that does seem 

to persist is that when the incidental parameters problem arises, it does so with a proportional impact on 

some or all of the model parameters.)  The bias does not appear to depend substantively on the nature of 

the data support – it appears in the same form regardless of the process assumed to underlie the 

independent variables in the model.  Rather, it is due to the presence of n additional estimation equations.  

We do note, once again, the generality of the bias, away from zero, appears to be peculiar to discrete 

outcome models.  Moreover, the effect appears not to be confined to variance parameters in continuous 

outcome models – it shows up in both β and σ2 in a truncated regression model, but only in the variance 

terms in Tobit and stochastic frontier models.  (See Greene (2004b).) 

Solutions to the incidental parameters problem in discrete choice cases – that is, consistent 

estimators of β - are of two forms.  As discussed in Lancaster (2000), for a few specific cases, there exist 

sufficient statistics that will allow formation of a conditional density that is free of the fixed effects.  The 
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binary logit and Poisson regression cases are noted earlier. Lancaster notes a generic solution based on 

orthogonalization of the log likelihood – a reparameterization that produces a partition of the log 

likelihood function into two terms, one of which involves only β.  Orthogonalization has not proved to be 

a viable strategy in very many cases, however.  Lancaster notes a duration model based on the Weibull 

distribution. 

 Several recent applications have suggested a ‘bias reduction’  approach.  The central result as 

shown, for example, in Hahn and Newey (1994) and Hahn and Kuersteiner (2011) largely (again) for 

binary choice models is 

plim ˆ
MLβ  = β + B/T + O(1/T2). 

(See, as well, Arellano and Hahn. (2007).)  That is, the unconditional MLE converges to a constant that is 

biased of O(1/T).  Three approaches have been suggested for eliminating B/T, a penalized criterion 

(modified log likelihood), modified estimation (likelihood) equations and direct bias correction by 

estimating the bias, itself.  In the first case, the direct log likelihood is augmented by a term in β whose 

maximizer is a good estimator of –B/T.  (See Carro and Traferri (2011).)  In the second case, an estimator 

of -B/T is added to the MLE.  See, e.g., Fernandez-Val (2009).   (The received theory has made some 

explicit use of the apparent proportionality result, that the bias in fixed effect discrete choice models, 

which are the only cases ever examined in detail, appears to be multiplicative, by a scalar of the form 

1+b/T + O(1/T2).  The effect seems to attach itself to scale estimation, not location estimators.  The 

regression case noted earlier is obvious by construction.  The binary choice case, though less so, does 

seem to be consistent with this. Write the model as y = 1[β′x + αi + σwit  > 0].  The estimated parameters 

are β/σ, not β, where σ is typically normalized to 1 for identification.  But, the multiplicative bias of the 

MLE does seem to affect the implicit ‘estimate’ of the scale factor.  The same result appears to be present 

in the MLE of the FE tobit model. (See Greene (2004b).)  Fernandez-Val (2009) discusses this result at 

some length.   

There is a loose end in the received results. The bias corrected estimators begin from the 

unconditional, brute force estimator that also estimates the fixed effects.  However, this estimator, 

regardless of the distribution assumed (that will typically be the probit model), is incomplete.  The 

estimator of αi is not identified when there is no within group variation in yi.  For the probit model, the 

likelihood equation for αi is 

1
i

(2 1) [(2 1)( )]log L 0
[(2 1)( )]

iT it it it i
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If yit  equals one (zero) for all t, then the derivative is necessarily positive (negative) and cannot be equated 

to zero for any finite αi.  In the ‘Chamberlain’ estimator, groups for which yit is always one or zero fall 
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out of the estimation – they contribute log(1.0) = 0.0 to the log likelihood.  Such groups must also be 

dropped for the unconditional estimator. 

 The starting point for consistent estimation of FE discrete choice models is the binary logit 

model.  For the two period case, there are two obvious consistent estimators of β, the familiar textbook 

conditional estimator and ½ times the unconditional MLE.  For more general (different T) cases, the well 

known estimator developed by Rasch (1960) and Chamberlain (1980), builds on the conditional joint 

distribution, Prob(yi1,yi2,…,yi,Ti|Σtyit,Xi)  which is free of the fixed effects.  Two important shortcomings of 

the conditional approach are: (1) it does not provide estimators of any of the αi  so it is not possible to 

compute probabilities or partial effects (see Wooldridge (2010, p. 622)) and (2) it does not extend to other 

distributions or models.  It does seem that there could be a remedy for (1).  With a consistent estimator of 

β in hand, one could estimate individual terms of αi by solving the likelihood equation noted earlier for 

the probit model (at least for groups that have within group variation).  The counterpart for the logit 

model is Σt[yit - Λ(β′xit + αi)] = 0.   A solution exists for αi for groups with variation over t.  Each 

individual estimator is inconsistent as it is based on fixed T observations.  Its asymptotic variance is 

O(1/T). It remains to be established whether the estimators are systematically biased (upward or 

downward) when they are based on a consistent estimator of β.  If not, it might pay to investigate whether 

the average over the useable groups provides useful information about E[αi], which is what is needed to 

solve problem (1).  The bias reduction estimators, to the extent that they solve the problem of estimation 

of β, may also help to solve this subsidiary problem.  This was largely the finding of Hahn and Newey 

(2002).  The conditional MLE in the binary logit model would appear to be a solution.  This finding 

would be broadly consistent with Wooldridge’s arguments for the random effects pooled, or ‘population 

averaged’ estimator. 

 The  ordered choice cases are essentially the same as the binary cases as regards the conventional 

(brute force) estimator and the incidental parameters problem.  There is no sufficient statistic for 

estimation of β in either case.  However, the 2β result for T = 2 appears to extend to the ordered choice 

models.  The broad nature of the result for T > 2 would seem to carry over as well.  [See Greene and 

Hensher (2010).]  the ordered logit model provides an additional opportunity to manipulate the sample 

information.  The base outcome probability for a fixed effects ordered logit model is 

 Prob(yit = j |xit)  =  Λ(μj - β′xit – αi)  -  Λ(μj-1 - β′xit – αi). 

The implication is 

 Prob(yit  >  j |xit)  =  Λ(β′xit + αi – μj)  =  Λ(β′xit + δi(j)). 

Define the new variable Dit(j) = 1[yit > j], j = 1,…,J.  This defines J-1 binary fixed effects logit models, 

each with its own set fixed effects, though they are the same save for the displacement by μj. The 
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Rasch/Chamberlain estimator can be used for each one.  This does produce J-1 numerically different 

estimators of β that one might reconcile using a minimum distance estimator.  The covariance matrices 

needed for the efficient weighting matrix are given in Brant (1990).  An alternative estimator is based on 

the sums of outer products of the score vectors from the J-1 log likelihoods.  Das and van Soest (2000) 

provide an application. 

 Large sample bias corrected applications of the ordered choice models have been developed in 

Bester and Hansen (2009) and in Carro and Traferri (2012).  The methods employed limit attention to a 

three outcome case (low/medium/high).  It is unclear if they can be extended to more general cases. 

As has been documented elsewhere (e.g., Cameron and Trivedi (2005)), the conditional fixed 

effects estimator for the Poisson model is algebraically identical to the unconditional estimator.  The 

upshot would be that for the Poisson model, there is no incidental parameters problem.  The mathematics 

of the result is straightforward enough.  The logic still seems elusive.  We would surmise that in contrast 

to the binary choice cases, there is no implicit random variation around the mean – no disturbance 

variance defined in the model.  The fixed effects negative binomial model is rather more involved.  A 

form of the model was proposed in HHG (1984) and was the received standard until quite recently.  

Applied researchers would occasionally bump into a surprising result that in contrast to every other model 

considered thus far, a FENB model with time invariant variables z in the index function ‘worked,’ in that 

estimation of all parameters including those on z (and even an overall constant) were estimated routinely.  

Allison and Waterman (2002) examined the HHG model in detail (see also Greene (2012)) and 

demonstrated that unlike every other familiar case, this received FE model was not a single index model.  

In the HHG model, the time invariant heterogeneity appears in the scale parameter of the log-gamma 

heterogeneity that extends the NB model from the Poisson base.   A more natural NB model – at least in 

terms of its relationship to other models, would take the usual form, as a conditional Poisson regression 

E[yit|xit] = exp(β′xit + αi + uit), 

where u has a log gamma(θ,θ) distribution.  The mixed Poisson produces an NB model with fixed effects.  

This model appears to be impacted by the IP problem.  Recourse to a pseudo maximum likelihood 

approach – that is, to a Poisson regression, might be useable strategy.  This remains an avenue for further 

research. 

 The preceding is focused on estimation of the parameters of fixed effects models.  We also noted 

the possibility of conventional inference about parameters, and for estimation of partial effects.  A 

remaining question is whether it is possible to test for the presence of fixed effects.  The behavior of the 

MLE under the null hypothesis is the pooled estimator, which is easily established.  Behavior under the 

alternative is less clear because of the incidental parameters problem.  The MLE of the parameters 

converge to something (see Hahn and Newey (1994)) but not to the ‘true’ parameters of the model.  The 
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behavior of the likelihood ratio statistic remains to be settled.  One practical approach based on 

Mundlak’s approximation is considered in the next section.  Finally, the force of the IP problem seems to 

be more pronounced when lagged values in model.  However, relatively little is known about the behavior 

of the MLE in this case.  (See Lee (2013, this volume).) 

 

C.  Correlated Random Effects 
 Mundlak (1978) suggested an approach between the questionable orthogonality assumptions of 

the random effects model and the frustrating limitations of the fixed effects specification, 

 yit  = β′xit  +  αi  +  εit 

 αi  =  α  +  i′xγ + wi. 

Chamberlain (1980) proposed a less restrictive formulation, 

 αi  =  α  +  Σt γt′xit  +  wi. 

This formulation is a bit cumbersome if the panel is not balanced – particularly if, as Wooldridge (2010) 

considers, the unbalancedness is due to endogenous attrition.  The model examined by Plumper and 

Troeger (2007) is similar to Mundlak’s; 

 αi = α + γ′zi  +  wi 

(This is a ‘hierarchical model,’ or multi (two) level model – see Bryk and Raudenbush (2002).)  In all of 

these cases, the assumption that E[wixit]  =  0 point identifies the parameters and the partial effects.  The 

direct extension of this approach to nonlinear models such as the binary choice, ordered choice and count 

data models converts them to random effects specifications that can be analyzed by conventional 

techniques.  Whether the auxiliary equation should be interpreted as the conditional mean function in a 

structure or as a projection that, it is hoped, provides a good approximation to the underlying structure is a 

minor consideration that nonetheless appears in the discussion.  For example, Hahn, Ham and Moon 

(2011) assume Mundlak’s formulation as part of the structure at the outset, while Chamberlain (1980) 

would view that as restriction on the more general model. 

 The correlated random effects specification has a number of virtues for nonlinear panel data 

models.  The practical appeal of a random effects vs. a full fixed effects approach is considerable.  There 

are a number of conclusive results that can be obtained for the linear model that cannot be established for 

nonlinear models, such as Hausman’s (1978) specification test for fixed vs. random effects.  In the 

correlated random effects case, although the conditions needed to motivate Hausman’s test are not met – 

the fixed effects is not robust; it is not even consistent under either hypothesis – a variable addition test 

(Wu (1973)) is easily carried.  In the Mundlak form, the difference between this version of the fixed 

effects model and the random effects model is the nonzero γ, which can be tested with a Wald test.  Hahn, 

Ham and Moon (2011) explored this approach in the context of panels in which there is very little within 
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group variation and suggested an alternative statistic for the test.  (The analysis of the data used in the 

World Health Report (WHO (2000)) by Gravelle et al. (2002) would be a notable example.) 

 

D  Attrition and Unbalanced Panels 
 Unbalanced panels may be more complicated than just a mathematical inconvenience.  If the 

unbalanced panel results from attrition from what would otherwise be a balanced panel, and if the attrition 

is connected to the outcome variable, then the sample configuration is endogenous, and may taint the 

estimation process.  Contoyannis, Jones and Rice (2004) examine self assessed health (SAH) in eight 

waves of the British Household Panel Survey.  Their results suggest that individuals left the panel during 

the observation window in ways connected to the sequence of values of SAH.  A number of authors, 

beginning with Verbeek and Nijman (1992) and Verbeek (2000) have suggested methods of detecting and 

correcting for endogenous attrition in panel data.  Wooldridge (2002) proposes an ‘inverse probability 

weighting’ procedure to weight observations in relation to their length of stay in the panel as a method of 

undoing the attrition bias.  The method is refined in Wooldridge (2010) as part of an extension to a natural 

sample selection treatment. 

 

IV.  Dynamic Models 
 An important benefit of panel data is the ability to study dynamic aspects of behavior in the 

model.  The dynamic linear panel data regression 

 yit = β′xit  +  δyi,t-1  +  αi  +  εit 

has been intensively studied since the field originated with Balestra and Nerlove (1966).  Analysis of 

dynamic effects in discrete choice modeling has focused largely on binary choice.  An empirical 

exception is Contoyannis, Jones and Rice’s (2004) ordered choice model for SAH.  (Wooldridge (2005) 

also presents some more general theoretical results, e.g., for ordered choices.)  For the binary case, the 

random effects treatment is untenable.  The base case would be 

 yit  =  1[β′xit + δyi,t-1 + γ′zi + ui + εit  >  0]. 

Since the common effect appears in every period, ui cannot be treated as a random effect.  A second 

complication is the ‘initial conditions problem’ (Heckman (1981)).  The path of yit will be determined at 

least partly (if not predominantly) by the value it took when the observation window opened.  (The idea 

of initial conditions, itself, is confounded by the nature of the observation.  It will rarely be the case that a 

process is observed from its beginning.  Consider, for example, a model of insurance takeup or health 

status.  Individuals have generally already participated in the process in periods before the observation 

begins.  In order to proceed, it may be necessary to make some assumptions about the process, perhaps 
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that it has reached an equilibrium at time t0 when it is first observed.  (See, e.g., Heckman (1981) and 

Wooldridge (2002).)  Arellano and Honoré (2001) consider this in detail as well. 

 Analysis of binary choice with lagged dependent variables, such as Lee (2013, this volume) 

suggest that the incidental parameters problem is exacerbated by the lagged effects.  See, e.g., Heckman 

(1981), Hahn and Kuersteiner (2002) and Fernandez Val (2009).  Even under more restrictive 

assumptions, identification (and consistent estimation) of model parameters is complicated owing to the 

several sources of persistence in yit, the heterogeneity itself and the state persistence induced by the 

lagged value.  Analysis appears in Honoré and Kyriazidou (2000), Chamberlain (1992), Hahn (2001) and 

Hahn and Moon (2006). 

 Semiparametric approaches to dynamics in panel data discrete choice have provided fairly limited 

guidance.  Arellano and Honoré (2001) examine two main cases, one in which the model contains only 

current and lagged dependent variables and a second, three period model that has one regressor for which 

the second and third periods are equal.  Lee (2013) examines the multinomial logit model in similar 

terms.  The results are suggestive, though perhaps more of methodological than practical interest.  A 

practical approach is suggested by Heckman (1981), Hsiao (2003) and Wooldridge (2010) and Semikyna 

and Wooldridge (2010).  In a model of the form 

 yit = 1[β′xit + δyi,t-1 + ui + εit > 0], 

the starting point, yi0, is likely to be crucially important to the subsequent sequence of outcomes, 

particularly if T is small.  We condition explicitly on the history; 

 Prob(yit = 1 | Xi,ui,yi,t-1,…,yi1,yi0)  =  f[yit,(β′xit + δyi,t-1+ui)]. 

One might at this point take the initial outcome as exogenous and build up a likelihood, 

 f(yi1,…,yiT | Xi,yi0,ui)  =  , 11
[(2 1)( )]−=

′− + δ +∏ xT
it it i t it

f y y uβ , 

then use the earlier methods to integrate ui out of the function and proceed as in the familiar random 

effects fashion – yi0 appears in the first term. The complication is that it is implausible to assume the 

common effect out of the starting point and have it appear suddenly at t = 1, even if the process (for 

example, a labor force participation study that begins at graduation) begins at time 1. An approach 

suggested by Heckman (1981) and refined by Wooldridge (2005, 2010) is to form the joint distribution of 

the observed outcomes given (Xi,yi0) and a plausible approximation to the marginal distribution f(ui|yi0,Xi).  

For example, if we depart from a probit model and use the Mundlak device to specify 

 2
0 0| , ~ [ , ]′η+ θ + λ σxi i i i i wu y X N y  

then 

 , 1 01[ 0]−′ ′= + δ + η+ θ + λ + + ε >x xit it i t i i i ity y y wβ . 
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(Some treatments, such as Chamberlain (1982), extend all of the rows of Xi individually rather than use 

the group means.  This creates a problem for unbalanced panels and, for a large model with even 

moderately large T creates an uncomfortably long list of right hand side variables.  Recent treatments 

have usually used the projection onto the means instead.)  Wooldridge (2010, page 628) considers 

computation of average partial effects in this context.  An application of these results to a dynamic 

random effects Poisson regression model appears in Wooldridge (2005).  Contoyannis, Jones and Rice 

(2004) specified a random effects dynamic ordered probit model, as 
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This is precisely the application suggested above (with the Mundlak device).  One exception concerns the 

treatment of the lagged outcome.  Here, since the outcome variable is the label of the interval in which 

hit* falls, hi,t is a vector of J dummy variables for the J+1 possible outcomes (dropping one of them). 

 
V.  Spatial Panels and Discrete Choice 
 The final class of models noted is spatial regression models.  Spatial regression has been well 

developed for the linear regression model.  The linear model with spatial autoregression is 

yt  =  Xtβ  +  λWyt  +  εt 

where the data indicated are a sample of n observations at time t.  The panel data counterpart will consist 

of T such samples.  The matrix W is the spatial weight matrix, or contiguity matrix.  Nonzero elements wij 

define the two observations as neighbors.  The relative magnitude of wij indicates how close the neighbors 

are.  W is defined by the analyst.  Rows of W are standardized to sum to one.  The crucial parameter is 

the spatial autoregression coefficient, λ.  The transformation to the spatial moving average form is 

yt  = (I – λW)-1Xtβ  +  (I – λW)-1εt 

This is a generalized regression with disturbance covariance matrix Ω = σ2(I – λW)-1(I – λW)-1′.  Some 

discussion of the model formulation may be found, e.g., in Arbia (2006).  An application to residential 

home sale prices is Bell and Bockstael (2006).  Extension of this linear model to panel data is developed 

at length in Lee and Yu (2010).  An application to UK mental health expenditures appears in Moscone, 

Knapp and Tosetti (2007). 

 Extensions of the spatial regression model to discrete choice are relatively scarce.  A list of 

applications includes binary choice models Smirnov (2010), Pinske and Slade (1998), Bhat and Sener 

(2009), Klier and McMillen (2008) and Beron and Vijverberg (2004); a sample selection model applied to 

Alaskan trawlers by Flores Lagunes and Schnier (2012); an ordered probit analysis of accident severity by 
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Kockelman and Wang (2009); a spatial multinomial probit model in Chakir and Parent (2009) and, an 

environmental economics application to zero inflated counts by Rathbun and Fei (2006). 

It is immediately apparent that if the spatial regression framework is applied to the underlying 

random utility specification in a discrete choice model that the density of the observable random vector, yt 

becomes intractable.  In essence, the sample becomes one enormous fully autocorrelated observation.  

There is no transformation of the model that produces a tractable log likelihood.  Each of the applications 

above develops a particular method of dealing with the issue.  Smirnov, for example, separates the 

autocorrelation into ‘public’ and ‘private’ parts, and assumes that the public part is small enough to 

discard.  There is no generally applicable methodology in this setting on the level of the general treatment 

of simple dynamics and latent heterogeneity that has connected the applications up to this point.   We 

note, as well, that there are no received applications of spatial panel data to discrete choice models. 
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