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Abstract

We propose a two-stage estimation procedure to identify the effects of time-invariant re-

gressors in a dynamic version of the Hausman-Taylor model providing analytical standard

error adjustments for the second-stage coefficients. The two-stage approach is more robust

against misspecification than GMM estimators that obtain all parameter estimates simultane-

ously. In addition, it allows exploiting advantages of estimators relying on transformations to

eliminate the unit-specific heterogeneity. We analytically demonstrate under which conditions

the one-stage and two-stage GMM estimators are equivalent. Monte Carlo results highlight

the advantages of the two-stage approach in finite samples. Finally, the approach is illustrated

with a dynamic wage equation.
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1 Introduction

This paper considers estimation methods and inference for linear dynamic panel data models with

a short time dimension. In particular, we focus on the identification of coefficients of time-invariant

variables in the presence of unobserved unit-specific effects. In many empirical applications time-

invariant variables play an important role in structural equations. In labor economics researchers

are interested in the effects of education, gender, nationality, ethnic and religious background, or

other time-invariant characteristics on the evolution of wages but would still like to control for

unobserved time-invariant individual-specific effects such as worker’s ability. As a recent example,

Andini (2013) estimates a dynamic version of the Mincer equation controlling for a rich set of

time-invariant characteristics. In macroeconomic cross-country studies institutional features or

group-level effects play a role in explaining economic development. For example, Hoeffler (2002)

studies the growth performance of Sub-Saharan Africa countries by introducing a regional dummy

variable in her dynamic panel data model. Cinyabuguma and Putterman (2011) focus on within

Sub-Saharan differences by adding socio-economic and geographic factors to the analysis.

If there is unobserved unit-specific heterogeneity, it is often hard to disentangle the effects of

the observed and the unobserved time-invariant heterogeneity. Standard fixed and random effects

estimators cannot be used because of multicollinearity problems and, when the time dimension is

short, the familiar Nickell (1981) bias in dynamic panel data models. Therefore, it is common prac-

tice in empirical work to apply the generalized method of moments (GMM) framework proposed

by Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998), amongst

others. However, as Binder et al. (2005) and Bun and Windmeijer (2010) emphasize, GMM estima-

tors might suffer from a weak instruments problem when the autoregressive parameter approaches

unity or when the variance of the unobserved unit-specific effects is large. Moreover, the number of

instruments can rapidly become large relative to the sample size. The consequences of instrument

proliferation, summarized by Roodman (2009), range from biased coefficient and standard error

estimates to weakened specification tests.

In order to overcome the weak instruments problem in the context of estimating the effects

of time-varying regressors, Hsiao et al. (2002) propose a transformed likelihood approach that is

based on the model in first differences. A shortcoming of this approach is the inability to estimate
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the coefficients of time-invariant regressors. In this paper, we propose a two-stage estimation

procedure to identify the latter. In the first stage, we estimate the coefficients of the time-varying

regressors. Subsequently, we regress the first-stage residuals on the time-invariant regressors.1 We

achieve identification by using instrumental variables in the spirit of Hausman and Taylor (1981),

and adjust the second-stage standard errors to account for the first-stage estimation error. Our

methodology applies to any first-stage estimator that consistently estimates the coefficients of the

time-varying variables without relying on coefficient estimates for the time-invariant regressors.

Among others, the quasi-maximum likelihood (QML) estimator of Hsiao et al. (2002) as well as

GMM estimators qualify as potential first-stage candidates. A major advantage of the two-stage

approach is the invariance of the first-stage estimates to misspecifications regarding the model

assumptions on the correlation between the time-invariant regressors and the unobserved unit-

specific effects.2 However, under particular conditions feasible efficient one-stage and two-stage

GMM estimation are shown to be (asymptotically) equivalent.

We perform Monte Carlo experiments to evaluate the finite sample performance in terms of

bias, root mean square error (RMSE), and size statistics of our two-stage procedure relative to

GMM estimators that obtain all coefficient estimates simultaneously. The results suggest that the

two-stage approach is to be preferred when the researcher is interested in the coefficients of both

time-varying and time-invariant variables. However, the quality of the second-stage estimates de-

pends crucially on the precision of the first-stage estimates. Among our first-stage candidates the

QML estimator performs very well. GMM estimators can be an alternative if effective measures

are taken to avoid instrument proliferation. Our Monte Carlo analysis unveils sizable finite sample

biases when the GMM instruments are based on the full set of available moment conditions, in

particular regarding the coefficients of time-invariant regressors. Finally, in contrast to conven-

tionally computed standard errors our adjusted second-stage standard errors account remarkably

well for the first-stage estimation error.

1For a static model, Plümper and Troeger (2007) propose a similar three-stage approach that they label fixed
effects vector decomposition. Their first stage is a classical fixed effects regression. In a recent symposium on
this method, Breusch et al. (2011) and Greene (2011) show that the first two stages can be characterized by an
instrumental variable estimation with a particular choice of instruments, and that the third stage is essentially
meaningless.

2Hoeffler (2002) and Cinyabuguma and Putterman (2011) argue similarly. They apply GMM estimation in the
first stage, and ordinary least squares estimation in the second stage. However, they do not correct the second-stage
standard errors.
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To illustrate these methods we estimate a dynamic Mincer equation with data from the Panel

Study of Income Dynamics (PSID). We find evidence that wages are persistent over time after

accounting for other explanatory variables. Yet, the implied long-run returns to schooling are of a

similar magnitude as previously estimated with the same data set by Cornwell and Rupert (1988)

and Baltagi and Khanti-Akom (1990) in a static model. Again, the correct adjustment of the

second-stage standard errors proves to be important for valid inference.

The paper is organized as follows: Section 2 introduces the dynamic Hausman and Taylor (1981)

model. Section 3 describes one-stage GMM estimators that identify all coefficients simultaneously,

while Section 4 lays out the two-stage procedure that yields sequential coefficient estimates. Section

5 contrasts the two approaches on theoretical grounds, while Section 6 provides simulation evidence

on the performance of the two-stage approach in comparison to one-stage GMM estimators under

different scenarios. In Section 7 we discuss the empirical application, and Section 8 concludes.

2 Model

Consider the dynamic panel data model with units i = 1, 2, . . . , N , and a fixed number of time

periods t = 1, 2, . . . , T , with T ≥ 2:

yit = λyi,t−1 + x′itβ + f ′iγ + eit, eit = αi + uit, (1)

where xit is a Kx × 1 vector of time-varying variables. The initial observations of the dependent

variable, yi0, and the regressors, xi0, are assumed to be observed. fi is a Kf × 1 vector of observed

time-invariant variables that includes an overall regression constant, and αi is an unobserved unit-

specific effect of the i-th cross section. In a strict sense, αi is called a fixed effect if it is allowed to be

correlated with all of the regressor variables xit and fi, and it is a random effect if it is independently

distributed. Note that αi is correlated with the lagged dependent variable by construction. In this

paper we look at a hybrid (or intermediate case) of the dynamic fixed and random effects models

where some of the regressors are correlated with αi but not all of them. Throughout the paper we

maintain the following assumptions:
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Assumption 1: The disturbances uit and the unobserved unit-specific effects αi are independently

distributed across i and satisfy E[uit] = E[αi] = 0, E[uisuit] = 0 ∀s 6= t, and E[αiuit] = 0.

Identification of the (structural) parameters λ, β and γ now crucially hinges on the assumptions

about the dependencies between the regressors and the unit-specific effects.

Assumption 2: The explanatory variables can be decomposed as xit = (x′1it,x
′
2it)
′ and fi =

(f ′1i, f
′
2i)
′ such that E[αi|x1it, f1i] = 0, E[αi|x2it] 6= 0 and E[αi|f2i] 6= 0.

The resulting model is the dynamic counterpart of the Hausman and Taylor (1981) model.

For further reference, the lengths of the subvectors are Kx1, Kx2, Kf1, and Kf2, respectively. If

Kx2 = Kf2 = 0 the model collapses to the dynamic random effects model. Contrarily, Kx1 = 0

and Kf1 = 1 (the constant term) leads to the dynamic fixed effects model. In the remaining

sections, we occasionally distinguish between strictly exogenous and predetermined regressors xit

with respect to the disturbance term uit.

Assumption 3: The time-invariant regressors fi are exogenous with respect to the disturbances

uit, while the time-varying regressors xit can be strictly exogenous, E[uit|xi0,xi1, . . . ,xiT , fi;αi] =

0, or predetermined, E[uit|xi0,xi1, . . . ,xit, fi;αi] = 0 and E[uit|xis] 6= 0 ∀s > t.3

To facilitate the subsequent derivations we introduce the following notation. We can write

model (1) as

yi = λyi,(−1) + Xiβ + Fiγ + ei, ei = αiιT + ui, (2)

where yi = (yi1, yi2, . . . , yiT )′ is the vector of stacked observations of the dependent variable for

unit i. yi,(−1),Xi,Fi, ei, and ui are defined accordingly. ιT is a T × 1 vector of ones. When the

data is stacked for all units, for example y = (y′1,y
′
2, . . . ,y

′
N )′, subscripts are omitted:

y = λy(−1) + Xβ + Fγ + e, e = α+ u. (3)

Finally, let W = (y(−1),X) be the matrix of time-varying regressors with corresponding coefficient

3For simplicity, we abstract from endogenous regressors with respect to uit. They can be easily incorporated by
adjusting the GMM moment conditions appropriately. See Blundell et al. (2000).
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vector θ = (λ,β′)′, and W̃ = (y(−1),X,F) be the full regressor matrix.

3 One-Stage GMM Estimation

We can estimate all model parameters simultaneously by choosing appropriate instruments for

the variables that are endogenous with respect to the unobserved unit-specific effects. In the

following, we discuss generalized method of moments estimators that are based on the linear

moment conditions

E[Z′iHei] = 0, (4)

where Zi is a matrix of Kz instruments, and H is a deterministic transformation matrix.

For the static model with strictly exogenous regressors xit, Hausman and Taylor (1981) propose

an instrumental variable estimator that uses deviations from their within-group means, xit − x̄i,

as instruments for the regressors xit, and the within-group means x̄1i as instruments for f2i.
4

The time-invariant regressors f1i serve as their own instruments. We can extend this estimator to

the dynamic model by adding an appropriate instrument for the lagged dependent variable. For

example, Anderson and Hsiao (1981) propose to use yi,t−2 or ∆yi,t−2 as instruments for ∆yi,t−1.

With yi,(−2) = (yi0, yi1, . . . , yi,T−2)′, the resulting estimator satisfies the moment conditions (4)

with

Zi =


yi,(−2) 0 0 0

0 Xi 0 0

0 0 X1i F1i

 , and H =


D

Q

P

 ,

for the (T − 1)× T first-difference transformation matrix D = [(0, IT−1)− (IT−1,0)], where IT−1

is the identity matrix of order T −1, and the T ×T idempotent and symmetric projection matrices

P = ιT (ι′T ιT )−1ι′T and Q = IT − P, where P and Q transform the observations into within-

group means and deviations from within-group means, respectively. Importantly, both D and Q

are orthogonal to time-invariant variables. Due to the block-diagonal structure of Zi, only the

instruments (X1i,F1i) in the lower-right block of Zi are of use to identify γ. Therefore, as in

the static model of Hausman and Taylor (1981), a necessary condition for the identification of all

4To improve on the efficiency of the estimator, Amemiya and MaCurdy (1986) propose to use all time periods of
x1it separately as instruments instead of the within-group means. Breusch et al. (1989) additionally suggest using
the deviation of each individual time period from the within-group means as separate instruments.
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coefficients (θ′,γ′)′ with this extended estimator is Kx1 ≥ Kf2.

Since the above estimator does not exploit all model implied moment conditions, it will be

inefficient. Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998)

derive additional linear moment conditions for the model in first differences and in levels. Ahn

and Schmidt (1995) add further moment conditions under homoscedasticity of uit that are in part

nonlinear. We present the full set of linear moment conditions in Appendix A. For the equations

in first differences, E[Z′diDei] = 0, and in levels, E[Z′liei] = 0, the moment conditions can be

combined by defining

Zi =

Zdi 0

0 Zli

 , and H =

D

IT


in equation (4). Since DιT = 0, the instruments that are relevant for the identification of the

coefficients γ need to be placed in Zli. Without imposing additional stationarity assumptions,

most of the available moment conditions refer to the first-differenced model. Following Arellano

and Bond (1991) and Arellano and Bover (1995), the following Kx1(T + 1) +Kf1 non-redundant

linear moment conditions arise under Assumption 2 for the model in levels:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T, (5)

E

[
T∑
t=1

f1ieit

]
= 0. (6)

Consequently, in the absence of external instruments a necessary condition for the identification

of all coefficients (θ′,γ′)′ in equation (1) is that Kx1(T + 1) ≥ Kf2.5

Remark 1: In practice, it will often be hard to justify that separate time periods of the ex-

ogenous time-varying regressors provide sufficient explanatory power for the instrumented time-

invariant regressors after partialling out the initial observations or within-group means, that is

E[f2i|x1i0,X1i, f1i] = E[f2i|x1i0, f1i] or E[f2i|x1i0,X1i, f1i] = E[f2i|x̄1i, f1i]. The identification con-

dition then tightens again to Kx1 ≥ Kf2.

Define H̃ = IN ⊗H, where ⊗ denotes the Kronecker product. Based on the sample moments

5External instruments can be incorporated in a straightforward way.
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N−1Z′H̃e, we can now derive the GMM estimator that minimizes the following distance function:

θ̂
γ̂

 = arg min
θ,γ

e′H̃′ZVNZ′H̃e,

where VN is a positive definite weighting matrix. If all elements in (θ′,γ′)′ are identified, that is

W̃′H̃′ZVNZ′H̃W̃ is non-singular, we obtain

θ̂
γ̂

 =
(
W̃′H̃′ZVNZ′H̃W̃

)−1

W̃′H̃′ZVNZ′H̃y. (7)

The following familiar result under the data generating process (1) applies:6

Lemma 1: If the moment conditions (4) are satisfied and all coefficients are identified, then under

standard regularity conditions the joint asymptotic distribution of the one-stage GMM estimator

(7) is:

√
N

θ̂ − θ
γ̂ − γ

 a∼ N (0,Σ) , (8)

with

Σ = (S′VS)−1S′VΞVS(S′VS)−1, (9)

where S = plimN−1Z′H̃W̃, Ξ = plimN−1Z′H̃ee′H̃′Z, and V = plim VN .

From equation (9) in Lemma 1 we can infer the following statement on the efficiency of the

GMM estimator:7

Lemma 2: The GMM estimator is asymptotically efficient for a given instruments matrix Z and

transformation matrix H̃ if V = Ξ−1.

Blundell and Bond (1998) and Windmeijer (2000) emphasize that for dynamic panel data

models, in general, efficient GMM estimation is infeasible without having a prior estimate of Ξ.

6See for instance Hansen (1982), Theorem 3.1, or Newey and McFadden (1994), Theorem 3.4.
7This result dates back to Hansen (1982), Theorem 3.2, and was generalized by Newey and McFadden (1994),

Theorem 5.2.
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A feasible efficient GMM estimator can be obtained in two steps. In the first step, choosing

any positive definite matrix VN will yield consistent but generally inefficient estimates θ̂ and γ̂.

The second-step estimator is then based on VN = Ξ̂−1. A consistent unrestricted estimate of Ξ is

obtained as Ξ̂ = N−1
∑N
i=1 Z′iHêiê

′
iH
′Zi, with êi = yi−Wiθ̂−Fiγ̂.8 The importance of choosing

an appropriate first-step weighting matrix should not be underestimated in applied work. Although

the second-step GMM estimator is asymptotically unaffected, its finite sample performance still

depends on the choice of VN in the first step. Windmeijer (2005) shows that asymptotic standard

error estimates of the two-step GMM estimator can be severely downward biased in finite samples.

He derives a finite sample variance correction. Alternatives to the two-step GMM estimator that

are targeted to improve the finite sample performance include the iterated and the continuously

updated GMM estimators, see for example Hansen et al. (1996).

Moreover, GMM estimators might suffer from severe finite sample distortions that arise from

having too many instruments relative to the sample size, as stressed by Roodman (2009) among

others. The instrument count can be reduced by forming linear combinations ZiR of the columns

of Zi. For any deterministic transformation matrix R, this also leads to a valid set of moment con-

ditions, E[R′Z′iHei] = 0. The GMM estimator (7) is then based on the transformed instruments

ZiR. We provide examples of relevant transformation matrices in Appendix C.

4 Two-Stage Estimation

When estimating all regression coefficients simultaneously, a misclassification of time-invariant

regressors as being uncorrelated with the unit-specific effects might lead to a biased estimation

of all coefficients including λ and β. In this section, we lay down a robust two-stage estimation

procedure. In a first stage, we subsume the time-invariant variables fi under the unit-specific effects,

α̃i = αi + f ′iγ, and consistently estimate the coefficients λ and β independent of the assumptions

on the correlation structure between fi and αi. In the second stage, we recover γ.

The first-stage model is

yit = λyi,t−1 + x′itβ + ᾱ+ ẽit, ẽit = α̃i − ᾱ+ uit, (10)

8For more details on efficient GMM estimation see Appendix B.
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where ᾱ = E[α̃i]. To obtain the first-stage estimates λ̂ and β̂ we can apply a transformation that

eliminates the time-invariant unit-specific effects α̃i. In particular, the GMM estimator of Arellano

and Bond (1991) and the QML estimator of Hsiao et al. (2002) are based on the first-differenced

model, while Arellano and Bover (1995) propose a GMM estimator based on forward orthogonal

deviations. Alternatively, system GMM estimators as discussed in Section 3 that also make use

of the level relationship can be applied taking into account that the time-invariant variables fi

are now part of the first-stage error term ẽit. If Kx1 > 0 but some or all of the variables in x1it

are correlated with fi then these variables are uncorrelated with αi but not with α̃i. Hence, the

first-stage instruments need to be adjusted appropriately. We do not restrict the analysis to any

particular first-stage estimator but make the following assumption:9

Assumption 4: θ̂ is a consistent asymptotically linear first-stage estimator with influence function

ψi such that

√
N(θ̂ − θ) =

1√
N

N∑
i=1

ψi + op(1), (11)

E[ψi] = 0, and E[ψiψ
′
i] = Σθ.

Asymptotic normality of θ̂ follows under standard regularity conditions.10 Also, denote ψ =∑N
i=1ψi.

In the second stage, we estimate the coefficients γ of the time-invariant variables based on the

level relationship:

yit − λ̂yi,t−1 − x′itβ̂ = f ′iγ + vit, vit = αi + uit − (λ̂− λ)yi,t−1 − x′it(β̂ − β). (12)

In particular, note the two additional terms in the error term vit that are due to the first-stage

estimation error. We can now set up a second-stage GMM estimator based on the moment condi-

tions

E[Z′γivi] = 0. (13)

Under Assumption 2, we can use the observations x1it as instruments for the endogenous regressors

9We pick up the case of a first-stage GMM estimator in the next section. Two-stage QML estimation is briefly
discussed in Appendix E.

10Compare Newey and McFadden (1994), Chapter 3.
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f2i. The resulting non-redundant moment conditions correspond to those given by equations (5)

and (6):

E[x1i0vi1] = 0, and E[x1itvit] = 0, t = 1, 2, . . . , T, (14)

E

[
T∑
t=1

f1ivit

]
= 0. (15)

The corresponding instruments matrix is given as Zγi = (Zxi,F1i), with

Zxi =



x′1i0 x′1i1 0 · · · 0

0 0 x′1i2
...

...
...

. . . 0

0 0 · · · 0 x′1iT


,

which is valid both for strictly exogenous and predetermined variables x1it. Consequently, the order

condition from the previous section transmits to the second-stage GMM estimation: A necessary

condition for the identification of the coefficients γ in equation (12) is that Kx1(T + 1) ≥ Kf2.11

The second-stage GMM estimator then solves12

ˆ̂γ = arg min
γ

v′ZγVγNZ′γv,

for a positive definite weighting matrix VγN . When γ is identified, the second-stage GMM esti-

mator is given by:

ˆ̂γ =
(
F′ZγVγNZ′γF

)−1
F′ZγVγNZ′γ(y −Wθ̂). (16)

We can now formulate the following proposition:

Proposition 1: If Assumption 4 holds, the moment conditions (4) are satisfied and all coefficients

are identified, then under standard regularity conditions the asymptotic distribution of the second-

stage GMM estimator (16) is:
√
N
(

ˆ̂γ − γ
)
a∼ N (0,Σγ) , (17)

11The qualifications of Remark 1 apply again.
12A double hat denotes second-stage estimates while a single hat refers to first-stage estimates.
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with

Σγ = (S′FVγSF )−1SF
′VγΞvVγSF (S′FVγSF )−1, (18)

where SF = plimN−1Z′γF, Ξv = plimN−1Z′γvv′Zγ , and Vγ = plim VγN . Moreover,

Ξv = Ξe + SWΣθS
′
W − Ξ′θeS

′
W − SWΞθe, (19)

where SW = plimN−1Z′γW, Ξe = plimN−1Z′γee′Zγ , and Ξθe = plimN−1ψe′Zγ .

Proof. Inserting model (3) into equation (16) and scaling by
√
N we obtain:

√
N
(

ˆ̂γ − γ
)

=

[(
1

N
F′Zγ

)
VγN

(
1

N
Z′γF

)]−1(
1

N
F′Zγ

)
VγN

(
1√
N

Z′γv

)
= (S′FVγSF )−1SF

′Vγ

[
1√
N

Z′γe− SW
√
N(θ̂ − θ)

]
+ op(1)

= (S′FVγSF )−1SF
′Vγ

[
1√
N

N∑
i=1

(Z′γiei − SWψi)

]
+ op(1),

where the last equality follows from Assumption 4. By applying the central limit theorem,

N−1/2
∑N
i=1(Z′γiei−SWψi)

a∼ N (0,Ξe + SWΣθS
′
W −Ξ′θeS

′
W −SWΞθe), and equation (18) follows

from the continuous mapping theorem.13

Remark 2: For completeness, the asymptotic covariance matrix between the first-stage and the

second-stage estimator is given by

E

[(
θ̂ − θ

)(
ˆ̂γ − γ

)′]
= (ΣθS

′
W + Ξθe)VγSF (S′FVγSF )−1. (20)

In analogy to Lemma 2, we can state the following corollary:

Corollary 1: The second-stage GMM estimator ˆ̂γ is efficient for a given first-stage estimator θ̂

and instruments matrix Zγ if Vγ = Ξ−1
v .

Similar to one-stage GMM estimators, feasible efficient estimation requires an initial estimate

13Compare Newey and McFadden (1994), Chapter 6.
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of Ξv unless Z′γF is non-singular. A consistent unrestricted estimate of Ξ is obtained as

ˆ̂
Ξv =

ˆ̂
Ξe +

ˆ̂
SW Σ̂θ

ˆ̂
S′W −

ˆ̂
Ξ′θe

ˆ̂
S′W −

ˆ̂
SW

ˆ̂
Ξθe, (21)

where
ˆ̂
SW = N−1Z′γW. An estimate of Σθ is readily available from the first-stage regression. An

estimate of Ξe can be obtained as
ˆ̂
Ξe = N−1

∑N
i=1 Z′γi

ˆ̂eiˆ̂e
′
iZγi, where ˆ̂ei = yi −Wiθ̂ − Fi ˆ̂γ for

a consistent initial estimate ˆ̂γ. Obtaining an estimate of Ξθe is more involved as it relies on the

product of the influence function ψi from the first stage and the moment function from the second

stage:14

ˆ̂
Ξθe =

1

N

N∑
i=1

ψ̂i
ˆ̂e′iZγi. (22)

Importantly, ignoring the first-stage estimation error by setting
ˆ̂
Ξv =

ˆ̂
Ξe might not only yield an

inefficient second-stage estimator but also produces inconsistent standard error estimates of ˆ̂γ. In

general, the direction of the bias of uncorrected standard errors is a priori unclear unless Ξθe = 0.

In the latter case, the difference Ξv − Ξe = SWΣθS
′
W is a positive semi-definite matrix and,

consequently, standard error estimates ignoring the correction term will be too small.15 Ξθe = 0

holds for example in the special case where we consider a first-stage GMM estimator that uses

moment conditions for the first-differenced model only, that is H = D, all second-stage instruments

Zγi are time-invariant, and the errors uit are independent and homoscedastic across units and time.

Finally, ignoring the first stage is only valid if SW = 0.

5 One-Stage versus Two-Stage GMM Estimation

We are now in a position to shed more light on one-stage and two-stage GMM estimators and to

contrast the two. To facilitate the following exposition, denote by (θ̂
′
s, γ̂
′
s)
′ the one-stage system

GMM estimator (7) and decompose its weighting matrix VN = LL′ with rk(L) = Kz. Also define

y∗ = L′Z′H̃y, W∗ = L′Z′H̃W, and F∗ = L′Z′H̃F. The following partitioned regression result

14We derive the influence function for a first-stage GMM estimator in Appendix D and for a first-stage QML
estimator in Appendix E.

15A generalization of this result can be found in Newey (1984).
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will be helpful:

θ̂s = (W∗′MFW∗)−1W∗′MFy∗, (23)

γ̂s = (F∗′F∗)−1F∗′
(
y∗ −W∗θ̂

)
, (24)

where MF = IKz −F∗(F∗′F∗)−1F∗′ is an idempotent and symmetric projection matrix. Further-

more, partition the weighting matrix as

VN =

VdN VdlN

V′dlN VlN

 , (25)

conformable for multiplications ZdVdNZ′d and ZlVlNZ′l. As an alternative consider the two-stage

GMM estimator (θ̂
′
d,

ˆ̂γ′d)
′, where θ̂d is based on the moment conditions E[Z′diDei] = 0 for the

transformed model only, and with weighting matrix VθN :

θ̂d =
(
W′D̃′ZdVθNZ′dD̃W

)−1

W′D̃′ZdVθNZ′dD̃y, (26)

where D̃ = IN ⊗D. The second-stage estimator ˆ̂γd is given by equation (16) based on θ̂d in the

first stage. We can now make the following claim:

Proposition 2: It holds that θ̂s = θ̂d, with θ̂s and θ̂d given by equations (23) and (26), respec-

tively, if Z′lF is non-singular and VθN = VdN −VdlNV−1
lNV′dlN .

Proof. Observe that F′H̃′Z = (F′D̃′Zd,F
′Zl) = (0,F′Zl) since D̃F = 0. Consequently, F∗′F∗ =

F′ZlVlNZ′lF. With Z′lF being non-singular, it follows that (F∗′F∗)−1 = (Z′lF)−1V−1
lN (F′Zl)

−1.

Let VθN = VdN −VdlNV−1
lNV′dlN . Then,

LMFL′ = VN −VN

0 0

0 V−1
lN

VN =

VθN 0

0 0

 ,

such that after straightforward algebra equation (23) boils down to equation (26). Alternatively,

if Z′dD̃
′W is non-singular as well, θ̂s = θ̂d = (Z′dD̃

′W)−1Z′dD̃
′y independent of the choice of the

14



weighting matrices.

When Z′lF is non-singular, the coefficients γ are exactly identified because the time-invariant

regressors are orthogonal to the instruments for the first-differenced equation. But then the in-

struments for the level equation cannot be used any more to identify the coefficients θ, and θ̂s

consequently equals θ̂d with an appropriate choice of the weighting matrix. A similar proposition

holds for the coefficients γ under the additional restriction that the level instruments of the one-

stage system GMM estimator equal the instruments of the second-stage GMM estimator, Zl = Zγ :

Proposition 3: With Zl = Zγ , it holds that γ̂s = ˆ̂γd, with γ̂s and ˆ̂γd given by equations (24)

and (16), respectively, if Z′γF is non-singular, VθN = VdN , and VdlN = 0.

Proof. With F∗′F∗ = F′ZlVlNZ′lF and Zl = Zγ , equation (24) can be written as

γ̂s = (F′ZγVlNZ′γF)−1F′ZγVlN (V−1
lNV′dlNZ′dD̃ + Z′γ)(y −Wθ̂s).

With Z′γF being non-singular, this equation reduces further to

γ̂s = (Z′γF)−1(V−1
lNV′dlNZ′dD̃ + Z′γ)(y −Wθ̂s).

Also, equation (16) becomes ˆ̂γd = (Z′γF)−1Z′γ(y −Wθ̂d) independent of VγN . Consequently,

γ̂s = ˆ̂γd if VdlN = 0 and θ̂s = θ̂d. The latter results as a consequence of Proposition 2 by

setting VθN = VdN − VdlNV−1
lNV′dlN = VdN . Alternatively, if Z′dD̃

′W is non-singular as well,

Z′dD̃(y −Wθ̂d) = 0 and again θ̂s = θ̂d without any restriction on the weighting matrices.

Taken together, Propositions 2 and 3 state that one-stage and two-stage GMM estimation

are equivalent for a particular choice of the weighting matrices if both utilize the same linearly

independent instruments for the equation in levels and their number equals the count of time-

invariant regressors. In this case, the first-stage GMM estimator of the two-stage approach is

based on the moment conditions for the transformed model only. Leaving aside the trivial case

of exact identification of the coefficients θ as well, we can now infer a statement on asymptotic

efficiency. When VN is the optimal weighting matrix for the estimator θ̂s according to Lemma 2,
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then an optimal weighting matrix for the estimator θ̂d is given by VθN = VdN −VdlNV−1
lNV′dlN

as can be easily seen by calculating the partitioned inverse of VN . This corresponds to the

condition that is required by Proposition 2. However, for equivalence of the one-stage and the

two-stage estimators, Proposition 3 requires a block-diagonal weighting matrix VN of the one-

stage estimator such that VdlN = 0. It is clear that this restricted estimator is less efficient than

the feasible efficient one-stage GMM estimator in general unless the optimal one-stage weighting

matrix is indeed block-diagonal asymptotically. A relevant case where this holds is a restricted

covariance structure of the error term, E[eie
′
i|Zi] = σ2

αιT ι
′
T + σ2

uIT , together with time-invariance

of the level instruments Zli. In this case, the feasible efficient one-stage and two-stage GMM

estimators will be (asymptotically) identical, and therefore also have the same variance.

Remark 3: If the optimal weighting matrices VN or VθN are based on separate initial consistent

estimates (of σ2
u), the equivalence of VθN and VdN −VdlNV−1

lNV′dlN only holds asymptotically,

and the resulting feasible efficient estimators can be numerically different in finite samples, even if

all other conditions of Propositions 2 and 3 are satisfied.

If the moment conditions for the level equation outnumber the time-invariant regressors, the

one-stage and the two-stage GMM estimators will generally be different because the information

contained in the level instruments Zli is no longer exclusively used to identify γ. A clear ranking

of the two estimators in terms of efficiency is not possible anymore. Also, a misspecification of the

level moment conditions might now turn the coefficient estimates for the time-varying regressors

inconsistent.

6 Monte Carlo Simulation

6.1 Simulation Design

We conduct Monte Carlo experiments to analyze the finite sample performance of the two-stage

approach in comparison to one-stage GMM estimators. To keep the simulations economical we

consider a dynamic panel data model with a single time-varying regressor xit that is correlated

with the unobserved unit-specific effects, and one time-invariant regressor fi that is uncorrelated
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with them. In practice, the researcher will typically face a larger number of regressors. While the

fundamental results should carry over to larger-dimensional models, we note that finite sample dis-

tortions of GMM estimators that result from too many overidentifying restrictions might aggravate

by adding additional regressors. We generate yit and xit according to the following processes:

yit = λyi,t−1 + βxit + γfi + αi + uit, uit
iid∼ N (0, σ2

u), (27)

and

xit = φxi,t−1 + νρfi + ν
√

1− ρ2ηi + εit, εit
iid∼ N (0, σ2

ε ), (28)

such that xit is strictly exogenous with respect to uit.
16

The observed time-invariant variable fi is obtained as an independent binary variable from a

Bernoulli distribution with success probability p. The unobserved unit-specific effects αi and ηi

are generated from a joint normal distribution:

αi
ηi

 ∼ N

µα
µη

 ,

 σ2
α σαη

σαη p(1− p)


 , (29)

such that the variances of ηi and fi coincide. The particular design of the process for xit guarantees

that the correlation between xit and fi can be altered while keeping the variance of xit unchanged,

because

V ar(xit) =
1

(1− φ)2

[
ν2p(1− p) +

1− φ
1 + φ

σ2
ε

]
(30)

is independent of ρ. ν ≥ 0 is introduced as a scale parameter. The correlation between xit and fi

is characterized by:

Corr(xit, fi) = ρ

√
ν2p(1− p)

ν2p(1− p) + 1−φ
1+φσ

2
ε

. (31)

Since ρ ∈ [−1, 1], it can be interpreted as a correlation coefficient net of the variation coming from

εit.

We set the long-run coefficient β/(1− λ) = 1 and initialize the processes at t = −50 with their

16Modeling xit as predetermined or endogenous does not affect the qualitative conclusions regarding the coefficient
of the time-invariant regressor for appropriately adjusted GMM estimators. It will, however, turn the two-stage
QML estimator inconsistent because the first-difference transformation at the first stage requires strict exogeneity.
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long-run means given the realizations of the unit-specific effects:

yi,−50 = xi,−50 +
1

1− λ
(γfi + αi) , (32)

xi,−50 =
ν

1− φ

(
ρfi +

√
1− ρ2ηi

)
, (33)

and discard the first 50 observations for the estimation. The covariance between the two unobserved

fixed effects αi and ηi is set to σαη = σα
√
p(1− p)/2 which creates a positive correlation between

xit and αi. We also fix γ = 1, σ2
u = 1, ν = 1, p = 0.5 and µα = µη = 0. To ensure an

adequate degree of fit, we obtain the population value of the coefficient of determination for the

first-differenced model, R2
∆y, in a similar fashion as Hsiao et al. (2002). For the data generating

process stated above it is given by

R2
∆y =

β2σ2
ε

β2σ2
ε + (1 + φ)(1− λφ)σ2

u

. (34)

We fix R2
∆y = 0.2 and determine σ2

ε endogenously as

σ2
ε =

R2
∆y

1−R2
∆y

(1 + φ)(1− λφ)

β2
σ2
u. (35)

Finally, we simulate the data with different combinations for the remaining parameters, namely λ ∈

{0.4, 0.8, 0.99}, σ2
α ∈ {1, 3}, φ ∈ {0.4, 0.8}, and ρ ∈ {0, 0.4}. The sample size under consideration

is T ∈ {4, 9} and N ∈ {50, 500}. In total, we do 2500 repetitions for each simulation.

For the two-stage approach we consider system GMM estimators and the QML estimator of

Hsiao et al. (2002) as first-stage estimators. The latter is briefly described in Appendix E. We

compare the two-stage QML estimator, “2s-QML”, to various GMM estimators that use different

sets of instruments and recover the coefficient of the time-invariant regressor either in one or in two

stages. First, we set up a system GMM estimator that exploits the full set of moment conditions

given in Appendix A and recovers all parameters jointly in one stage, “1s-sGMM (full)”.17 Besides

the moment conditions (39) and (43) that result from the presence of the time-invariant regressor,

this estimator equals the one proposed by Blundell et al. (2000). To deal with the problems resulting

17We disregard the moment conditions (40) that are due to homoscedasticity. For the regression constant we
exploit only the moment conditions (43) but not the conditions (39).

18



from too many instruments, we set up an alternative system GMM estimator with a collapsed set

of instruments, “1s-sGMM (collapsed)”.18 This reduces the number of instruments from 33 to 15

when T = 4 and from 143 to 30 when T = 9. Furthermore, we consider two-stage variants of both

GMM estimators, “2s-sGMM (full)” and “2s-sGMM (collapsed)”, respectively. To compute the

standard errors of the (first-stage) GMM estimators, we use the robust variance-covariance formula

(9) with an unrestricted estimate of Ξ. All GMM estimators are feasible efficient estimators with

an initial weighting matrix as chosen by Blundell et al. (2000). We apply the Windmeijer (2005)

correction for the standard errors. The second-stage estimates are independent of the choice of the

weighting matrix because γ is exactly identified. The corresponding standard errors are based on

formula (18) taking into account the first-stage estimation error.

6.2 Simulation Results

Table 1 summarizes the simulation results for different values of the autoregressive parameter λ

holding fixed σ2
α = 3, φ = 0.4, and ρ = 0.4. The sample size is small with T = 4 and N = 50. As

a first observation, we recognize that the two-stage approach is very competitive. In particular for

the coefficient of the time-invariant regressor it shows a smaller RMSE than the respective one-

stage counterpart. We clearly see that the quality of the second-stage estimates hinges crucially on

the choice of the first-stage estimator. The large bias of the GMM estimators with the full set of

instruments readily transmits into poor second-stage estimates while the two-stage QML estimator

convinces us with small biases irrespective of the parameter design.

[Table 1 about here.]

The finite sample bias of GMM estimators that exploit the full set of moment conditions can

become tremendous. In the baseline scenario, λ = 0.4, it reaches 27 percent for the coefficient λ

in case of one-stage estimation, and 30 percent for two-stage estimation. The magnitude is similar

for the coefficient γ. Reducing the number of instruments with the collapsing procedure yields a

strong bias reduction. It shrinks below 3 percent for all coefficients, comparable to the bias of the

two-stage QML estimator. The root mean square error (RMSE) shows less clear a picture. While

collapsing helps for the coefficient λ, it does not improve the RMSE for β and γ. Particularly

18See Appendix C for the respective transformation matrices.
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for the latter, the reduced bias seems to come at the cost of a larger dispersion. Noteworthy, the

RMSE of the two-stage estimator with the full set of instruments is lowest among all estimators

under consideration for the coefficient of the time-invariant regressor. However, having a look

at the size distortions it is clearly visible that this smaller RMSE does not compensate the poor

performance in terms of bias relative to the GMM estimators with the collapsed instruments or

the two-stage QML estimator.

The average ratio of the estimated standard errors to the observed standard deviation of the

estimators is in most cases reasonably close to unity. An exception are the QML estimates for the

coefficient λ when its true value is 0.4. Here, the standard error estimates fall short of the observed

standard deviation by about 17 percent. This anomaly can be explained by the observation that

the QML estimates for λ feature a bimodal distribution with one peak close to the true value of

0.4 and another one close to unity.19 When we neglect those 58 estimates (out of 2500) that are

larger than 0.7, the ratio of the standard errors to the standard deviation jumps up to 1.06. The

problematic estimates of the first-stage QML estimator also affect the second-stage estimation of

the coefficient γ. When the QML estimates of λ are above 0.7, then the majority of the second-stage

estimates of γ even has the wrong sign by falling below zero with a mean at −0.28. Irrespective

of this effect, we obtain very promising results for the second-stage standard errors that correct

for the first-stage estimation error. On average they are reasonably close to the observed standard

deviation. Importantly, when we ignore the first stage by assuming Ξv = Ξe in equation (18), we

substantially underestimate the second-stage standard errors. For the baseline scenario we contrast

these estimates in Table 2.

[Table 2 about here.]

Increasing the persistence of the data generating process for yit does not produce a clear-cut

picture. For the coefficients of the time-varying regressors we obtain strong reductions both of

the bias and the RMSE. To the contrary, the results deteriorate for the coefficient of the time-

invariant regressor when changing λ from 0.4 to 0.8. Further increasing λ to 0.99 tends to yield

small improvements for the GMM estimators though not for the two-stage QML estimator. We

observe a similar non-uniform behavior for the size statistics with increasing values of λ. The size

19Juodis (2013) provides a technical explanation for this identification problem of the transformed likelihood
estimator in small samples.
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distortions of the Wald tests for the GMM estimators first become larger when increasing λ from

0.4 to 0.8 but become smaller again when heightening λ further to 0.99. In particular for the GMM

estimators with the full set of instruments we notice large overrejections as a consequence of the

considerable biases.

In Table 3 we present the simulation results for alternative sample sizes and with the same

parameterization as in Table 1, holding fixed λ = 0.4. The findings are not surprising but a few

observations shall be mentioned. For the GMM estimator with the full set of instruments both the

bias and the RMSE are reduced when we increase the time dimension from 4 to 9 periods, despite

the fact that the instruments count goes up from 33 to 143. When the cross-sectional dimension

becomes large, N = 500, the RMSE turns in favor of the full set of instruments compared to the

collapsed one while the latter is still preferred in terms of bias. Independent of the sample size,

we find again that the two-stage GMM estimator shows a smaller RMSE than the corresponding

one-stage estimator for the coefficient of the time-invariant regressor. For the QML estimator we

can observe that the bimodal feature of the distribution disappears with increasing T or N . When

T = 9 and N = 50, there are only three outliers left. When N = 500, there are none of them and

the standard error estimates are very close to the observed standard deviation.

[Table 3 about here.]

We also analyze the performance of the estimators under alternative parameterizations of the

data generating process. Table 4 presents the results for the three situations of a reduction of the

variance σ2
α of the unit-specific effects from 3 to 1, an increase in the persistence parameter φ from

0.4 to 0.8, or an elimination of the correlation between xit and fi by setting ρ = 0, respectively. In

the first case, the RMSE is reduced for all parameters. For the coefficient of the lagged dependent

variable, the GMM estimators now even become superior to the QML estimator. This result is

consistent with previous findings of Binder et al. (2005) and Bun and Windmeijer (2010) that

GMM estimators tend to suffer from weak instruments when the variance of the unit-specific

effects is large. In the second scenario, the higher persistence of xit yields small improvements for

the coefficients of the time-varying regressors. At the same time we observe a sharp deterioration

of the results for the coefficient of the time-invariant regressor. The reason is that the latter

now explains relatively less of the variation in yit due to the larger variance of the regressor xit.
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Finally, removing the correlation between the time-varying and the time-invariant regressor leaves

the estimates for λ and β virtually unaffected, besides minor improvements for the latter, but

has a notably positive effect on the precision of the coefficient γ. Concerning the comparison of

one-stage and two-stage estimators, the results in Table 4 largely confirm the picture of Table 1.

The RMSE of the two-stage estimator is always smaller than that of the corresponding one-stage

estimator for the coefficient of the time-invariant regressor while it is the other way round for the

coefficients of the time-varying regressors.

[Table 4 about here.]

7 Empirical Application: Dynamic Wage Regression

Factors that influence the labor income have long been studied in theoretical models and empirical

applications. The seminal work of Mincer (1974) laid the ground for a vast strand of literature

in modern labor economics analyzing the impact of human capital on wages often referred to as

the return to schooling. Mincer (1974) derives an earnings function that depends on the number

of years of education and experience, as well as the squared number of years of experience. In

the absence of an IQ measure as a proxy variable for unobserved ability, the amount of schooling

is typically assumed to be correlated with the unobserved individual-specific effects, and it is a

time-invariant variable because the individuals enter the workforce after finishing their education.

Hausman and Taylor (1981) illustrate their identification approach in this context. Cornwell and

Rupert (1988) compare the Hausman and Taylor (1981) estimator with the more efficient estimators

of Amemiya and MaCurdy (1986) and Breusch et al. (1989). They use an extract from the Panel

Study of Income Dynamics (PSID) to estimate a wage equation for 595 household heads that report

a positive wage in all seven years from 1976 to 1982. Baltagi and Khanti-Akom (1990) replicate the

study of Cornwell and Rupert (1988) using a corrected data set. For our empirical illustration of the

methods discussed in this paper we employ the same PSID extract and extend the analysis to the

estimation of a dynamic Mincer equation.20 Andini (2007) and Semykina and Wooldridge (2013)

motivate a dynamic earnings equation on the empirical observation that earnings are correlated

20The corrected data set is freely available on the Internet as supplementary material to Baltagi (2008). For a
description see Cornwell and Rupert (1988) and Baltagi and Khanti-Akom (1990).
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over time. Andini (2010) argues in favor of the dynamic model “that observed earnings do not

instantaneously adjust to net potential earnings”, and Andini (2013) formulates a wage-bargaining

model to justify this approach.

Besides the dynamic nature of the model, we deviate from Cornwell and Rupert (1988) and

Baltagi and Khanti-Akom (1990) by explicitly considering labor market experience as a time-

invariant regressor. As discussed by the latter authors, the experience variable is a linear time

trend that only differs in the initial level across individuals. Consequently, the set of time dummies

that we include into the regression will be collinear with the within-group deviations or the first

differences of experience. Therefore, the return to experience cannot be identified from its variation

over time. This observation tightens the necessary condition for identification, Kx1(T + 1) ≥ Kf2.

Concerning the overidentifying assumptions we stick to the classification of Cornwell and Rupert

(1988) who treat weeks worked (WKS), the dummy variables for residence in the south (SOUTH) or

a standard metropolitan statistical area (SMSA), and the marital status (MS) as exogenous time-

varying regressors, while the squared level of experience (EXP2), and dummy variables for blue-

collar occupation (OCC), manufacturing industry workers (IND), and union coverage (UNION)

are allowed to be correlated with the unobserved individual-specific effects. Among the time-

invariant variables, gender (FEM) and race (BLK) are exogenous, while average experience (EXP)

and education (ED) are potentially correlated with unobserved ability.

In Table 5 we present the main estimation results. We focus here on the one-stage system GMM

estimator with the full set of available instruments that is asymptotically optimal, the one-stage

system GMM estimator with “collapsed” instruments that is targeted to reduce the finite sample

distortions, its two-stage analog with robust first-stage estimates against misclassification of the

variables according to Assumption 2, and a two-stage QML estimator that has been shown to

be less responsive to changes in the data generating process, in particular higher variances of the

unit-specific effects.21

[Table 5 about here.]

21The one-stage moment conditions are given in Appendix A, disregarding conditions (40). We follow Blun-
dell et al. (2000) to form the initial weighting matrix. For two-stage GMM estimation we treat all time-varying
regressors as potentially correlated with the first-stage effects α̃i, as explained in Section 4. The second-stage mo-
ment conditions are given by equations (14) and (15), and the initial second-stage weighting matrix is formed as
VγN = N(Z′γZγ)−1. When we consider collapsed instruments at the first stage, we also collapse the second-stage
instruments by using the within-group averages of the time-varying regressors x1it as standard instruments. The
same applies for the two-stage QML estimator.
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The dynamic specification of the model is supported by the highly significant coefficient esti-

mates of the lagged dependent variable that lie in the range between 0.2 and 0.4. To compare the

coefficients of the other covariates to their counterparts in the static model, we need to calculate

the corresponding long-run effects by dividing the coefficients from the dynamic model by one

minus the autoregressive parameter.22 For the return to schooling, we obtain a long-run effect

from the asymptotically efficient one-stage GMM estimator of 15%. When we shrink the number

of instruments by about factor three to reduce the potential finite sample distortions, this return

increases to 23% for each additional year of education. The difference between the two estimates

is sizable. However, for both one-stage estimators the Hansen (1982) test for the validity of the

overidentifying restrictions rejects the null hypothesis at the 95% confidence level.

The corresponding two-stage GMM estimator uses less restrictive assumptions at the first stage

because it initially treats all time-varying regressors as potentially correlated with the unit-specific

effects. Assumption 2 only plays a role at the second stage. Yet, the long-run return to schooling

decreases only slightly to 20%. At the same time, the coefficient of experience turns insignificant,

partly as a consequence of larger standard errors. The two-stage approach also has the benefit

that we can easily calculate overidentification tests separately for both stages. At the second stage

we directly test for the validity of the overidentifying restrictions that stem from Assumption 2.

Here, we cannot reject the chosen separation in exogenous and endogenous variables. However, at

the first stage the Hansen test still rejects the null hypothesis.

Therefore, we turn to the QML estimator of Hsiao et al. (2002) as an alternative first-stage

estimator that is based on the first-differenced model only and does not rely on any assumption

about the unobserved unit-specific effects. The autoregressive coefficient becomes relatively large

compared to the GMM estimators. Nevertheless, with 22% the implied return to schooling is in

the same range as the GMM estimators that use a collapsed set of instruments.23

[Table 6 about here.]

22We replicate the static estimates of Baltagi and Khanti-Akom (1990) with the Hausman and Taylor (1981)
estimator in Table 6. The return to schooling is 22%. Not surprisingly, the results are unaffected by the explicit
classification of experience as a time-invariant regressor. For further estimates of the static model, we refer to Table
III of Baltagi and Khanti-Akom (1990).

23We present additional two-stage estimation results in Table 6, in particular using a “difference” GMM estimator
that disregards all level moment conditions that are only valid under the additional stationarity Assumption 5. The
Hansen test no longer rejects the validity of the instruments at the 95 percent confidence level. The respective
long-run returns to schooling are 14% using the full set of instruments and 21% with the collapsed instruments.
Thus, they hardly differ from the corresponding system GMM estimates.
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Finally, we emphasize the importance of taking into account the first-stage estimation error

at the second stage. Ignoring the resulting correction terms in equation (19) does not only yield

inefficient estimates due to a suboptimal weighting matrix, but also produces inconsistent standard

error estimates. Let us have a look at the two-stage GMM estimation in Table 5. When we turn a

blind eye on the correction terms, the standard error of the schooling coefficient would be more than

halved to 0.0217 while the coefficient estimate would only slightly go down to 0.1278. Similarly,

the standard error of the coefficient of experience would shrink to 0.0059 and thus falsely signal the

experience coefficient to be significant at the 10% level given a coefficient estimate of 0.0106.24

8 Conclusion

Estimation of linear dynamic panel data models with unobserved unit-specific heterogeneity is

a challenging task when the time dimension is short. The identification of the coefficients of

time-invariant regressors poses additional complications and requires further assumptions on the

orthogonality of the regressors and the unobserved unit-specific effects. These orthogonality as-

sumptions imply additional moment conditions that can be used to form a GMM estimator that

estimates all parameters simultaneously. As an alternative we propose a two-stage estimation

strategy. At the first stage, we subsume the time-invariant regressors under the unit-specific ef-

fects and estimate the coefficients of the time-varying regressors. At the second stage, we regress

the first-stage residuals on the time-invariant regressors. Both time-varying and time-invariant

variables that are assumed to be uncorrelated with the unit-specific effects qualify as instruments

at the second stage. The corresponding overidentifying restrictions can be tested with the usual

specification tests at the second stage.

We can base the first-stage regression on any estimator that consistently estimates the coeffi-

cients of the time-varying regressors without relying on estimates of the coefficients of time-invariant

regressors. In this paper, we discuss GMM-type estimators and the transformed likelihood esti-

mator of Hsiao et al. (2002) as potential first-stage candidates. The latter is entirely based on

the model in first differences and thus necessarily requires the two-stage approach to identify the

coefficients of time-invariant regressors. In general, the two-stage approach is neither restricted to

24Detailed results are available upon request.
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models with a short time dimension nor to dynamic models. It has two main advantages compared

to the estimation of all parameters at once. First, the estimation of the coefficients of the time-

varying regressors is robust to a model misspecification with regard to the time-invariant variables.

Second, the researcher can exploit advantages of first-stage estimators that rely on transforma-

tions to eliminate the unit-specific heterogeneity such as first differences or forward orthogonal

deviations.

Our Monte Carlo analysis points out that the two-stage approach works very well in finite

sample but it crucially hinges upon the choice of the first-stage estimator. Suitable candidates

are the QML estimator and GMM estimators that effectively limit the number of overidentifying

restrictions. GMM estimators that are based on the full set of available moment conditions are

shown to suffer from instrument proliferation even at a modest time span. As a consequence, the

resulting first-stage estimation error translates into poor second-stage estimates.

Importantly, the two-stage approach requires an adjustment of the second-stage standard errors

due to the additional variation that comes from the first-stage estimation error. We provide the

asymptotic variance formula for the second-stage estimator. Our Monte Carlo results demonstrate

that the adjustment works well and is quantitatively important. The relevance of the standard

error correction is also demonstrated in our empirical application.
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Appendix

A GMM Moment Conditions

In this appendix, we list the model implied moment conditions for one-stage GMM estimation.

Following Arellano and Bond (1991) and Blundell et al. (2000), Assumption 1 implies the following

T (T − 1)/2 moment conditions for the model in first differences:

E[yi,t−s∆uit] = 0, t = 2, 3, . . . , T, 2 ≤ s ≤ t. (36)

Under strict exogeneity of the variables xit according to Assumption 3 we have another Kx(T +

1)(T − 1) moment conditions:

E[xis∆uit] = 0, t = 2, 3, . . . , T, 0 ≤ s ≤ T. (37)

In the case of predetermined regressors there are only the following Kx(T + 2)(T − 1)/2 moment

conditions available:

E[xi,t−s∆uit] = 0, t = 2, 3, . . . , T, 1 ≤ s ≤ t. (38)

At this stage, we do not need to make a distinction between regressors that are correlated and those

that are uncorrelated with αi. Following Arellano and Bover (1995), the presence of time-invariant

regressors provides another Kf (T − 1) moment conditions:

E[fi∆uit] = 0, t = 2, 3, . . . , T. (39)

When the disturbances uit are homoscedastic through time, Ahn and Schmidt (1995) suggest

another T − 2 moment conditions:

E[yi,t−2∆ui,t−1 − yi,t−1∆uit] = 0, t = 3, . . . , T. (40)
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We can combine these moment conditions for the first-differenced equation:

E[Z′diDei] = 0, (41)

where Zdi = (Zdyi,Zdxi, IT−1 ⊗ f ′i ,Zdui) with

Zdyi =



z′dyi2 0 · · · 0

0 z′dyi3
...

...
. . . 0

0 · · · 0 z′dyiT


, Zdxi =



z′dxi2 0 · · · 0

0 z′dxi3
...

...
. . . 0

0 · · · 0 z′dxiT


,

Zdui =



yi1 0 · · · 0

−yi2 yi2
...

0 −yi,3
. . . 0

...
. . . yi,T−2

0 · · · 0 −yi,T−1


and zdyit = (yi0, yi1, . . . , yi,t−2)′. The instruments zdxit differ according to the assumption about

the regressor variables. We have zdxit = (x′i0,x
′
i1, . . . ,x

′
iT )′ under strict exogeneity, and zdxit =

(x′i0,x
′
i1, . . . ,x

′
i,t−1)′ for predetermined regressors.

For the regressors x1it, Arellano and Bond (1991) introduce the following Kx1(T + 1) level

moment conditions:

E[x1i0ei1] = 0, and E[x1iteit] = 0, t = 1, 2, . . . , T. (42)

Arellano and Bover (1995) further suggest Kf1 moment conditions for the time-invariant regressors

f1i that are uncorrelated with the unit-specific effects αi:

E

[
f1i

T∑
t=1

eit

]
= 0. (43)

To add further moment conditions for the model in levels we need to impose the following assump-

tion:
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Assumption 5: E[∆yi1αi] = 0, and E[∆x2itαi] = 0, t = 1, 2, . . . , T .25

Under the additional Assumption 5, Blundell and Bond (1998) establish the following T − 1

linear moment conditions for the model in levels:

E[∆yi,t−1eit] = 0, t = 2, 3, . . . , T. (44)

Moreover, Arellano and Bover (1995) and Blundell et al. (2000) introduce another Kx2T moment

conditions for the regressors x2it under Assumption 5:

E[∆x2iteit] = 0, t = 1, 2, . . . , T. (45)

All remaining moment conditions for the model in levels are redundant.26 We can now combine

the level moment conditions:

E[Z′liei] = 0, (46)

where Zli = (Zlyi,Zlxi,F1i), with

Zlyi =



0 0 · · · 0

∆yi1 0 · · · 0

0 ∆yi2
...

...
. . . 0

0 · · · 0 ∆yi,T−1


,

25To guarantee that ∆yit and ∆x2it are uncorrelated with αi a restriction on the initial conditions has to be
satisfied. Deviations of yi0 and x2i0 from their long-run means must be uncorrelated with αi. A sufficient but not
necessary condition for Assumption 5 to hold is joint mean stationarity of the processes yit and xit. Moreover,
E[∆yitαi] = 0, t = 2, 3, . . . , T , is implied by Assumption 5. See Blundell and Bond (1998), Blundell et al. (2000),
and Roodman (2009) for a discussion.

26The moment conditions (44) and (45) that result under Assumption 5 do not help identifying γ because it is
unlikely that these instruments are correlated with the time-invariant regressors. Compare Arellano (2003), Chapter
8.5.4.
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and

Zlxi =



x′1i0 x′1i1 0 · · · 0 ∆x′2i1 0 · · · 0

0 0 x′1i2
... 0 ∆x′2i2

...

...
...

. . . 0
...

. . . 0

0 0 · · · 0 x′1iT 0 · · · 0 ∆x′2iT


.

Ahn and Schmidt (1995) derive an additional nonlinear moment condition under homoscedas-

ticity of uit, namely E[ūi∆ui2] = 0. In this paper, we restrict our attention to the linear moment

conditions above.

B Feasible Efficient GMM Estimation

Let Ω = E[eie
′
i|Zi]. Under homoscedasticity, E[u2

it|Zi] = σ2
u and E[α2

i |Zi] = σ2
α, and prior

knowledge of τ = σ2
α/σ

2
u, an optimal weighting matrix is:

VN = N
[
Z′H̃(IN ⊗ Ω̃)H̃′Z

]−1

, (47)

with Ω̃ = τιT ι
′
T + IT such that V = σ2

uΞ−1. When the estimator only involves moment conditions

for the first-differenced equation such that H̃′Z = D̃′Zd, the optimal weighting matrix (47) boils

down to VN = N(Z′dD̃D̃′Zd)
−1 independent of τ since DΩ̃D′ = DD′, as discussed by Arellano

and Bond (1991).

When τ is unknown or homoscedasticity is too strong an assumption, it is common practice to

use a first-step weighting matrix of the following form:

VN = N [Z′(IN ⊗ Ω∗)Z]
−1
, (48)

with different choices for Ω∗. Among others, Arellano and Bover (1995) and Blundell and Bond

(1998) use Ω∗ = I2T−1, while Blundell et al. (2000) take the first-order serial correlation in the

first-differenced residuals into account by choosing

Ω∗ =

DD′ 0

0 IT

 .
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When σ2
α is small, Windmeijer (2000) suggests to use Ω∗ = HH′. In the latter case, the first-

step weighting matrix (48) equals the optimal weighting matrix (47) under τ = 0. A reasonable

alternative is the weighting matrix (47) with an adequate choice of τ .

As discussed in Section 3, the second-step weighting matrix is formed as VN = Ξ̂−1. Under

homoscedasticity, an estimate of Ξ can be obtained as Ξ̂ = N−1
∑N
i=1 Z′iHΩ̂H′Zi with an unre-

stricted estimate Ω̂ = N−1
∑N
i=1 êiê

′
i or a restricted estimate Ω̂ = σ̂2

αιT ι
′
T + σ̂2

uIT . The variance

estimates σ̂2
α and σ̂2

u can be obtained as follows:

σ̂2
e =

1

NT − (1 +Kx +Kf )

N∑
i=1

T∑
t=1

ê2
it, (49)

σ̂2
α =

1

NT (T − 1)/2− (1 +Kx +Kf )

N∑
i=1

T−1∑
t=1

T∑
s=t+1

êitêis, (50)

σ̂2
u = σ̂2

e − σ̂2
α. (51)

C Transformations of GMM Instruments

This appendix provides examples of the transformation matrix R that are relevant in practical

applications.27 In the following, we restrict our attention to block-diagonal versions of R:

R =

Rd 0

0 Rl

 ,

such that H′ZiR = (D′ZdiRd,ZliRl). Similarly, we consider a block-diagonal partition of the

transformation matrix for the first-differenced equation:

Rd =


Rdy 0 0

0 Rdx ⊗ IKx 0

0 0 Rdf ⊗ IKf

 ,

conformable for multiplication with the instruments matrix Zdi given in Appendix A. For simplicity,

we disregard the moment conditions (40) that are based on the homoscedasticity of uit.

27Mehrhoff (2009) provides similar transformation matrices for an AR(1) process.
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Often, the instrument count is reduced by restricting the number of lags used to construct the

instrument matrix. This procedure is equivalent to the construction of a transformation matrix Rd

that selects the appropriate columns of the full matrix Zdi. As an example, the following matrices

restrict the lag depth to κ ≥ 1 for both the lagged dependent variable yi,t−1 and strictly exogenous

regressors xit while also discarding future values of the latter:

Rdy =



1 0 0 · · · 0

0 Jκ2 0 · · · 0

0 0 Jκ3

...

...
...

. . . 0

0 0 · · · 0 Jκ,T−1


, Rdx =



J̃κ3 0 0 . . . 0

0 J̃κ4 0 · · · 0

0 0
. . .

...

...
... J̃κT 0

0 0 · · · 0 Jκ,T+1


,

where Jκs = Is if s ≤ κ, and Jκs = (0, Iκ)′ with dimension s× κ if s > κ, and J̃κs = (J′κs,0)′ with

dimension (T + 1)×min{s, κ}. We set Rdf = IT−1 in this case.

Alternatively, the dimension of the instrument matrix can be reduced by collapsing it into

smaller blocks. The following transformation matrices linearly combine the columns of Zdi, again

for the case of strictly exogenous regressors xit:

Rdy =



J∗0,1,T−2

J∗0,2,T−3

...

J∗0,T−2,1

I∗T−1


, Rdx =



J∗0,T+1,T−2

J∗1,T+1,T−3

...

J∗T−3,T+1,1

J∗T−2,T+1,0


,

where J∗s1,s2,s3 = (0s2×s1 , I
∗
s2 ,0s2×s3) with dimension s2×(s1+s2+s3), and I∗s2 is the s2-dimensional

mirror identity matrix with ones on the antidiagonal and zeros elsewhere. ZdyiRdy now corresponds

to the collapsed matrix described by Roodman (2009). As a consequence, the T (T − 1)/2 moment

conditions (36) are replaced by the T − 1 conditions E
[∑T

t=s yi,t−s∆uit

]
= 0, s = 2, 3, . . . , T .

Similarly, the information contained in the Kx(T + 1)(T − 1) moment conditions (37) is condensed

into Kx(2T − 1) conditions. The instrument block containing fi can be collapsed by setting Rdf =

ιT−1. The implied Kf moment conditions are E[fi(uiT − ui1)] = 0 instead of the Kf (T − 1)
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conditions (39). The transformation matrices can be further adjusted to combine the collapsing

approach with the lag depth restriction.

The instruments for the level equation, for clarity ignoring the moment conditions E[x1i0ei1] =

0, can be collapsed into a set of standard instruments by applying the following transformation:

Rl =



ιT−1 0 0 0

0 ιT ⊗ IKx1 0 0

0 0 ιT ⊗ IKx2 0

0 0 0 IKf1


,

such that ZliRl = [(0,∆y′i,(−1))
′,X1i,DX2i,F1i].

D Two-Stage GMM Estimation

Consider a first-stage system GMM estimator θ̂ that satisfies the moment conditions E[Z′iHẽi] = 0

for the first-stage model (10), possibly making use of moment conditions for the level equation.

Compared to one-stage system GMM estimators, this requires an appropriate adjustment of the

instruments Zli that now have to be uncorrelated with α̃i instead of αi. The instruments Zdi for

the transformed model can be left unchanged because Dei = Dẽi. With the notation of Section 5,

we obtain the first-stage estimator θ̂ by adapting equation (23), partialling out the intercept term

ᾱ:

θ̂ = (W∗′MιW
∗)−1W∗′Mιy

∗, (52)

where Mι = IKz − ι∗(ι∗
′ι∗)−1ι∗′ with ι∗ = L′Z′H̃ιNT . From equation (52) we can infer an

expression for the corresponding influence function ψi that is needed to obtain an estimate of Ξθe

at the second stage:

ψi = (W∗′MιW
∗)−1W∗′MιL

′Z′iHẽi, (53)

such that

ˆ̂
Ξθe = (W∗′MιW

∗)−1W∗′MιL
′

(
1

N

N∑
i=1

Z′iHˆ̃eiˆ̂e
′
iZγi

)
, (54)
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where ˆ̃ei = yi−Wiθ̂− ˆ̄αιT . Notice that plimN−1
∑N
i=1 Z′iHẽie

′
iZγi = 0 in the special case where

H = D, the errors are independent and homoscedastic across units and time, and the second-

stage instruments Zγi are time-invariant. Hence, in this particular case Ξθe = 0, and ignoring

the first-stage estimation error results in an underestimation of the standard errors at the second

stage.

E Two-Stage QML Estimation

If Kx2 = Kf2 = 0 we can immediately estimate model (1) with the random effects maximum

likelihood estimator of Bhargava and Sargan (1983) and Hsiao et al. (2002). When this strong

assumption does not hold, Hsiao et al. (2002) propose to estimate the coefficients of the time-

varying regressors based on the first-differenced model:

∆yit = λ∆yi,t−1 + ∆x′itβ + ∆uit, (55)

for the time periods t = 2, 3, . . . , T . However, this procedure not only eliminates the incidental

parameters αi but also the time-invariant variables fi. The latter can be recovered with the two-

stage approach described in Section 4.

Hsiao et al. (2002) derive the joint density of ∆ỹi = (∆yi1,∆yi2, . . . ,∆yiT )′ conditional on

the strictly exogenous variables ∆X̃i = (∆xi1,∆xi2, . . . ,∆xiT )′. Because ∆yi0 is unobserved,

the marginal density of the initial observations ∆yi1 conditional on ∆X̃i cannot be obtained

immediately from model (55). Instead, Hsiao et al. (2002) apply linear projection techniques

to derive the following expression for the initial observations based on an additional stationarity

assumption for the regressors xit:

∆yi1 = b+
T∑
s=1

∆x′isπs + ξi1, (56)

with E[ξi1|∆X̃i] = 0, E[ξ2
i1] = σ2

ξ , E[ξi1∆ui2] = −σ2
u, and E[ξi1∆uit] = 0 for t = 3, 4, . . . , T . The

1 + KxT coefficients π = (b,π′1,π
′
2, . . . ,π

′
T )′ are additional nuisance parameters that need to be

estimated jointly with the parameters of interest. Under homoscedasticity, the variance-covariance
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matrix of ∆ũi = (ξi1,∆ui2, . . . ,∆uiT )′ is given by28

E[∆ũi∆ũ′i] = σ2
uΩ̈ = σ2

u



ω −1 0 · · · 0

−1 2 −1

0 −1 2

...
. . . −1

0 −1 2


,

where ω = σ2
ξ/σ

2
u. The likelihood function can now be set up for the transformed model ∆ỹi =

∆W̃iθ + ∆X̃iπ + ∆ũi, where

∆W̃i =

 0 0

∆yi,(−1) ∆Xi

 , ∆X̃i =

1 ∆x′i1 ∆x′i2 . . . ∆x′iT

0 0 0 . . . 0

 .

Decompose Ω̈−1 = A′B−1A, where A is a T × T lower-triangular and B a diagonal matrix.29

Moreover, let P = IN ⊗ (B−1/2A). The QML estimator for θ is then given by:

θ̂ = (∆W̃′P̂′M̂xP̂∆W̃)−1∆W̃′P̂′M̂xP̂∆ỹ, (57)

where M̂x = INT − P̂∆X̃(∆X̃′P̂′P̂∆X̃)−1∆X̃′P̂′, and P̂ is a function of the variance estimate ω̂.

The variance-covariance matrix of θ̂ is the corresponding partition of the inverse negative Hessian

matrix:

Σθ = (∆W̃′P′MxP∆W̃)−1. (58)

In our Monte Carlos simulations in Section 6 we obtain the estimate ω̂ by maximizing the

concentrated log-likelihood function in terms of ω only, given the analytical first-order conditions

for the remaining parameters. The initial values for the QML optimization are obtained in the

following steps. First, we obtain consistent system GMM estimates of λ and β, and a variance

estimate of σ2
u from the corresponding first-differenced residuals. The nuisance parameters π are

obtained as ordinary least squares estimates from the initial observations equation (56). Second,

28Hayakawa and Pesaran (2012) extend the transformed likelihood estimator to accommodate for heteroscedastic
errors.

29See Hsiao et al. (2002) for details.
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given those estimates we evaluate the first-order condition for the variance parameter ω. Third,

we update the estimates of the other parameters based on their respective optimality conditions

given this estimate of ω. Finally, we repeat the second and third step one more time to obtain a

faster convergence of the subsequent Newton-Raphson algorithm.

The second-stage estimator ˆ̂γ for the coefficients of the time-invariant regressors is given by

equation (16), and the joint asymptotic distribution of the first-stage and second-stage estimators

follows from Proposition 1. Finally, the influence function of θ̂ is given by

ψi = (∆W̃′P′MxP∆W̃)−1[
∆W̃′

iΩ̈
−1∆ũi −∆W̃′(IN ⊗ Ω̈−1)∆X̃[∆X̃′(IN ⊗ Ω̈−1)∆X̃]−1∆X̃′iΩ̈

−1∆ũi

]
. (59)

Under homoscedasticity of uit an estimate of Ξθe can thus be obtained as

ˆ̂
Ξθe = σ̂2

u(∆W̃′P̂′M̂xP̂∆W̃)−1∆W̃′P̂′M̂xP̂(IN ⊗Ψ)Zγ , (60)

with the T × T matrix

Ψ = IT −

 0 0

IT−1 0

 ,

and σ̂2
u is obtained from the QML estimation. Notice that in the case of only time-invariant

instruments at the second stage, that is Zγi = ιT z′γi, the expression ΨZγi reduces to (zγi,0)′.
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Table 1: Simulation results under different parameterization of λ

Coefficient Design Estimator Bias RMSE Size SE/SD

λ λ = 0.4 1s-sGMM (full) 0.2694 0.1609 0.2212 0.9479
2s-sGMM (full) 0.3010 0.1687 0.2452 0.9531
1s-sGMM (collapsed) -0.0119 0.1428 0.0788 0.9755
2s-sGMM (collapsed) -0.0049 0.1443 0.0860 0.9755
2s-QML 0.0273 0.1306 0.0628 0.8284

λ = 0.8 1s-sGMM (full) 0.0968 0.0953 0.4252 0.9402
2s-sGMM (full) 0.1026 0.0982 0.4560 0.9499
1s-sGMM (collapsed) 0.0196 0.0797 0.1336 0.9363
2s-sGMM (collapsed) 0.0226 0.0801 0.1376 0.9427
2s-QML 0.0023 0.0720 0.0496 0.9525

λ = 0.99 1s-sGMM (full) 0.0027 0.0038 0.2748 0.9581
2s-sGMM (full) 0.0029 0.0039 0.2952 0.9703
1s-sGMM (collapsed) 0.0011 0.0037 0.1232 0.9455
2s-sGMM (collapsed) 0.0012 0.0038 0.1320 0.9423
2s-QML 0.0000 0.0038 0.0524 0.9835

β λ = 0.4 1s-sGMM (full) 0.0565 0.1304 0.0708 1.0182
2s-sGMM (full) 0.0656 0.1321 0.0716 1.0177
1s-sGMM (collapsed) 0.0204 0.1346 0.0628 0.9858
2s-sGMM (collapsed) 0.0226 0.1348 0.0644 0.9890
2s-QML 0.0101 0.1097 0.0516 0.9906

λ = 0.8 1s-sGMM (full) 0.0315 0.0181 0.0744 1.0347
2s-sGMM (full) 0.0341 0.0182 0.0792 1.0363
1s-sGMM (collapsed) 0.0121 0.0189 0.0692 0.9965
2s-sGMM (collapsed) 0.0136 0.0189 0.0668 1.0029
2s-QML 0.0045 0.0156 0.0496 0.9888

λ = 0.99 1s-sGMM (full) 0.0010 0.0001 0.0652 1.0166
2s-sGMM (full) 0.0011 0.0001 0.0636 1.0282
1s-sGMM (collapsed) 0.0007 0.0001 0.0656 1.0058
2s-sGMM (collapsed) 0.0008 0.0001 0.0656 1.0134
2s-QML 0.0001 0.0000 0.0516 0.9917

γ λ = 0.4 1s-sGMM (full) -0.2687 0.6001 0.1416 0.9993
2s-sGMM (full) -0.3099 0.5758 0.1688 1.0086
1s-sGMM (collapsed) -0.0238 0.6623 0.0752 1.0018
2s-sGMM (collapsed) 0.0011 0.6300 0.0708 0.9987
2s-QML -0.0181 0.6046 0.0792 0.9632

λ = 0.8 1s-sGMM (full) -0.4399 0.6718 0.2756 0.9749
2s-sGMM (full) -0.4764 0.6580 0.3276 0.9853
1s-sGMM (collapsed) -0.1156 0.7133 0.1212 0.9631
2s-sGMM (collapsed) -0.1034 0.6816 0.1228 0.9701
2s-QML 0.0012 0.6817 0.0752 0.9939

λ = 0.99 1s-sGMM (full) -0.2476 0.6195 0.0896 1.0351
2s-sGMM (full) -0.2859 0.5908 0.0992 1.0360
1s-sGMM (collapsed) -0.1053 0.6701 0.0636 1.0247
2s-sGMM (collapsed) -0.1176 0.6387 0.0628 1.0122
2s-QML 0.0201 0.6919 0.0356 1.0290

Fixed parameters: β = 1− λ, γ = 1, σ2
α = 3, φ = 0.4, ρ = 0.4, T = 4, N = 50.

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 2: Corrected versus uncorrected second-stage standard errors

Coefficient Estimator Corrected SE/SD Uncorrected SE/SD

γ 2s-sGMM (full) 1.0086 0.8072
2s-sGMM (collapsed) 0.9987 0.8005
2s-QML 0.9632 0.8265

Design: λ = 0.4, β = 1− λ, γ = 1, σ2
α = 3, φ = 0.4, ρ = 0.4, T = 4, N = 50.

Note: See notes to Table 1 for a description of the estimators. We report the average
standard error relative to its standard deviation for the 2500 replications. Corrected second-
stage standard errors are based on formula (18), while uncorrected standard errors ignore
the first-stage estimation error.
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Table 3: Simulation results for different sample sizes

Coefficient Design Estimator Bias RMSE Size SE/SD

λ T = 9 1s-sGMM (full) 0.1966 0.1021 0.1888 1.0893
N = 50 2s-sGMM (full) 0.2212 0.1094 0.2592 1.0839

1s-sGMM (collapsed) -0.0231 0.0719 0.0640 1.0032
2s-sGMM (collapsed) -0.0221 0.0716 0.0636 1.0097
2s-QML -0.0014 0.0522 0.0456 0.9249

T = 4 1s-sGMM (full) 0.0205 0.0380 0.0600 0.9717
N = 500 2s-sGMM (full) 0.0229 0.0391 0.0612 0.9706

1s-sGMM (collapsed) 0.0006 0.0427 0.0564 0.9956
2s-sGMM (collapsed) 0.0007 0.0430 0.0564 0.9975
2s-QML 0.0024 0.0335 0.0464 0.9960

T = 9 1s-sGMM (full) 0.0164 0.0189 0.0708 0.9881
N = 500 2s-sGMM (full) 0.0190 0.0198 0.0780 0.9814

1s-sGMM (collapsed) -0.0007 0.0215 0.0532 0.9857
2s-sGMM (collapsed) -0.0005 0.0215 0.0540 0.9856
2s-QML -0.0002 0.0153 0.0532 0.9946

β T = 9 1s-sGMM (full) 0.0260 0.0832 0.0220 1.2289
N = 50 2s-sGMM (full) 0.0321 0.0827 0.0284 1.2119

1s-sGMM (collapsed) 0.0027 0.0809 0.0700 0.9608
2s-sGMM (collapsed) 0.0029 0.0811 0.0692 0.9600
2s-QML -0.0022 0.0614 0.0516 0.9876

T = 4 1s-sGMM (full) 0.0032 0.0354 0.0552 0.9918
N = 500 2s-sGMM (full) 0.0043 0.0357 0.0556 0.9871

1s-sGMM (collapsed) 0.0009 0.0389 0.0528 0.9873
2s-sGMM (collapsed) 0.0010 0.0390 0.0544 0.9851
2s-QML -0.0008 0.0343 0.0520 0.9881

T = 9 1s-sGMM (full) 0.0024 0.0214 0.0536 0.9976
N = 500 2s-sGMM (full) 0.0031 0.0214 0.0552 0.9971

1s-sGMM (collapsed) 0.0001 0.0222 0.0540 1.0016
2s-sGMM (collapsed) 0.0001 0.0223 0.0520 1.0007
2s-QML -0.0003 0.0190 0.0544 1.0093

γ T = 9 1s-sGMM (full) -0.2222 0.5112 0.0804 1.0879
N = 50 2s-sGMM (full) -0.2313 0.4826 0.0908 1.0545

1s-sGMM (collapsed) -0.0428 0.5679 0.0564 1.0150
2s-sGMM (collapsed) 0.0140 0.5333 0.0524 1.0030
2s-QML -0.0017 0.5153 0.0532 0.9895

T = 4 1s-sGMM (full) -0.0280 0.1895 0.0696 0.9725
N = 500 2s-sGMM (full) -0.0312 0.1844 0.0612 0.9976

1s-sGMM (collapsed) -0.0137 0.1945 0.0576 0.9986
2s-sGMM (collapsed) -0.0094 0.1911 0.0548 1.0031
2s-QML -0.0104 0.1792 0.0512 1.0116

T = 9 1s-sGMM (full) -0.0151 0.1762 0.0600 0.9756
N = 500 2s-sGMM (full) -0.0178 0.1633 0.0572 0.9906

1s-sGMM (collapsed) -0.0120 0.1716 0.0552 0.9857
2s-sGMM (collapsed) 0.0018 0.1684 0.0508 0.9840
2s-QML 0.0016 0.1636 0.0460 0.9900

Fixed parameters: λ = 0.4, β = 1− λ, γ = 1, σ2
α = 3, φ = 0.4, ρ = 0.4.

Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 4: Simulation results under alternative scenarios

Coefficient Design Estimator Bias RMSE Size SE/SD

λ σ2
α = 1 1s-sGMM (full) 0.0674 0.1083 0.0864 1.0021
φ = 0.4 2s-sGMM (full) 0.1108 0.1144 0.1056 1.0036
ρ = 0.4 1s-sGMM (collapsed) -0.0294 0.1247 0.0728 0.9920

2s-sGMM (collapsed) -0.0212 0.1267 0.0772 0.9927
2s-QML 0.0252 0.1281 0.0612 0.8453

σ2
α = 3 1s-sGMM (full) 0.2290 0.1400 0.2152 0.9602
φ = 0.8 2s-sGMM (full) 0.2518 0.1453 0.2440 0.9563
ρ = 0.4 1s-sGMM (collapsed) 0.0026 0.1347 0.0844 0.9635

2s-sGMM (collapsed) 0.0101 0.1356 0.0880 0.9677
2s-QML 0.0185 0.1266 0.0640 0.8078

σ2
α = 3 1s-sGMM (full) 0.2705 0.1608 0.2244 0.9485
φ = 0.4 2s-sGMM (full) 0.2953 0.1678 0.2384 0.9522
ρ = 0 1s-sGMM (collapsed) -0.0111 0.1434 0.0796 0.9737

2s-sGMM (collapsed) -0.0057 0.1448 0.0852 0.9746
2s-QML 0.0282 0.1316 0.0632 0.8228

β σ2
α = 1 1s-sGMM (full) 0.0367 0.1216 0.0660 1.0019
φ = 0.4 2s-sGMM (full) 0.0494 0.1235 0.0724 1.0053
ρ = 0.4 1s-sGMM (collapsed) 0.0191 0.1304 0.0676 0.9788

2s-sGMM (collapsed) 0.0217 0.1313 0.0700 0.9799
2s-QML 0.0100 0.1098 0.0516 0.9895

σ2
α = 3 1s-sGMM (full) 0.0504 0.1262 0.0724 0.9964
φ = 0.8 2s-sGMM (full) 0.0604 0.1277 0.0788 0.9953
ρ = 0.4 1s-sGMM (collapsed) 0.0316 0.1383 0.0676 0.9750

2s-sGMM (collapsed) 0.0351 0.1383 0.0668 0.9797
2s-QML 0.0042 0.1091 0.0532 0.9833

σ2
α = 3 1s-sGMM (full) 0.0587 0.1306 0.0708 1.0178
φ = 0.4 2s-sGMM (full) 0.0586 0.1312 0.0712 1.0156
ρ = 0 1s-sGMM (collapsed) 0.0213 0.1344 0.0676 0.9875

2s-sGMM (collapsed) 0.0221 0.1346 0.0656 0.9905
2s-QML 0.0101 0.1097 0.0516 0.9906

γ σ2
α = 1 1s-sGMM (full) -0.0760 0.4260 0.0804 1.0207
φ = 0.4 2s-sGMM (full) -0.1267 0.3990 0.0900 1.0310
ρ = 0.4 1s-sGMM (collapsed) -0.0007 0.4663 0.0736 1.0159

2s-sGMM (collapsed) 0.0123 0.4500 0.0628 1.0063
2s-QML -0.0220 0.4494 0.0744 0.9412

σ2
α = 3 1s-sGMM (full) -0.3884 0.7118 0.1600 1.0198
φ = 0.8 2s-sGMM (full) -0.4465 0.6988 0.2068 1.0341
ρ = 0.4 1s-sGMM (collapsed) -0.0690 0.7724 0.0816 0.9999

2s-sGMM (collapsed) -0.0569 0.7430 0.0752 1.0112
2s-QML -0.0186 0.7034 0.0780 0.9611

σ2
α = 3 1s-sGMM (full) -0.1750 0.5230 0.1012 1.0036
φ = 0.4 2s-sGMM (full) -0.1994 0.4897 0.1272 1.0049
ρ = 0 1s-sGMM (collapsed) -0.0143 0.6142 0.0660 1.0009

2s-sGMM (collapsed) 0.0098 0.5769 0.0600 0.9964
2s-QML -0.0072 0.5582 0.0684 0.9790

Fixed parameters: λ = 0.4, β = 1− λ, γ = 1, T = 4, N = 50.
Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient system
GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In parenthesis,
we refer to the set of instruments. The bias is measured relative to the true parameter value. RMSE is
the root mean square error. The size statistic refers to the actual rejection rate of Wald tests that the
parameter estimates equal their true value given a nominal size of 5%. SE/SD is the average standard
error relative to the standard deviation of the estimator for the 2500 replications. GMM standard errors
are based on formula (9) with an unrestricted estimate of Ξ and the Windmeijer (2005) correction.
Second-stage standard errors are based on formula (18).
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Table 5: Estimation results: dynamic Mincer regression

LWAGEit 1s-sGMM (full) 1s-sGMM (collapsed) 2s-sGMM (collapsed) 2s-QML

LWAGEi,t−1 0.3234 0.2017 0.3186 0.4050
(0.0526)*** (0.0600)*** (0.0707)*** (0.0232)***

WKSit 0.0017 0.0018 0.0015 0.0003
(0.0010)* (0.0009)** (0.0010) (0.0007)

SOUTHit -0.0000 -0.0092 -0.1081 0.0555
(0.0295) (0.0421) (0.1156) (0.0400)

SMSAit 0.0386 -0.0146 -0.0456 -0.0186
(0.0266) (0.0316) (0.0374) (0.0224)

MSit 0.0369 0.0163 0.0084 -0.0210
(0.0306) (0.0322) (0.0328) (0.0214)

EXP2
it -0.0002 -0.0003 0.0000 -0.0001

(0.0001)*** (0.0001)*** (0.0000) (0.0001)*
OCCit -0.0364 -0.0403 -0.0437 -0.0298

(0.0218)* (0.0193)** (0.0195)** (0.0156)*
INDit 0.0296 0.0286 0.0299 0.0150

(0.0225) (0.0219) (0.0217) (0.0171)
UNIONit 0.0110 0.0075 0.0386 0.0139

(0.0223) (0.0198) (0.0210)* (0.0168)
FEMi -0.2455 -0.3132 -0.2330 -0.2514

(0.0460)*** (0.0595)*** (0.0858)*** (0.0506)***
BLKi -0.0275 0.0431 -0.0046 -0.0034

(0.0560) (0.0887) (0.1211) (0.0710)

EXPi 0.0161 0.0271 0.0114 0.0204
(0.0037)*** (0.0056)*** (0.0110) (0.0075)***

EDi 0.1017 0.1814 0.1369 0.1338
(0.0193)*** (0.0487)*** (0.0529)*** (0.0306)***

Constant 2.7679 2.4164 2.0003 1.8250
(0.3744)*** (0.5683)*** (0.7000)*** (0.3871)***

Observations 3,570 3,570 3,570 3,570
Individuals 595 595 595 595
1st stage

Instruments 341 112 110
Hansen χ2

322 = 367.36 χ2
93 = 130.26 χ2

95 = 161.06
(0.0413) (0.0065) (0.0000)

2nd stage
Instruments 7 7
Hansen χ2

2 = 2.76 χ2
2 = 4.79

(0.2518) (0.0913)

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage estimators,
respectively. “QML” is the estimator of Hsiao et al. (2002), and “sGMM” refers to feasible efficient
system GMM estimators. We follow Blundell et al. (2000) to form the initial weighting matrix. In
parenthesis, we refer to the set of instruments. GMM standard errors are based on formula (9) with
an unrestricted estimate of Ξ and the Windmeijer (2005) correction. Second-stage standard errors are
based on formula (18). The standard errors are reported in parenthesis. All regressions include time
dummies. The endogenous variables according to Assumption 2 are X2 = {EXP2, OCC, IND, UNION}
and F2 = {EXP, ED}. “Hansen” refers to the Hansen (1982) test of the overidentifying restrictions,
with the p-value in parenthesis.
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Table 6: Estimation results: dynamic Mincer regression (continued)

LWAGEit HT 2s-sGMM (full) 2s-dGMM (full) 2s-dGMM (collapsed)

LWAGEi,t−1 0.4791 0.1442 0.0836
(0.0745)*** (0.0460)*** (0.0480)*

WKSit 0.0008 0.0001 0.0007 0.0012
(0.0006) (0.0011) (0.0008) (0.0009)

SOUTHit 0.0118 -0.0525 0.0381 -0.0217
(0.0293) (0.0697) (0.0946) (0.0904)

SMSAit -0.0393 -0.0131 -0.0262 -0.0282
(0.0193)** (0.0318) (0.0272) (0.0294)

MSit -0.0258 0.0183 -0.0202 -0.0176
(0.0189) (0.0298) (0.0278) (0.0283)

EXP2
it -0.0004 0.0000 -0.0003 -0.0003

(0.0001)*** (0.0000)* (0.0001)*** (0.0001)***
OCCit -0.0192 -0.0789 -0.0230 -0.0344

(0.0137) (0.0218)*** (0.0179) (0.0189)*
INDit 0.0211 0.0179 0.0088 0.0074

(0.0154) (0.0215) (0.0190) (0.0189)
UNIONit 0.0267 -0.0066 0.0243 0.0116

(0.0148)* (0.0240) (0.0216) (0.0196)
FEMi -0.4041 -0.1960 -0.3461 -0.3654

(0.0798)*** (0.0594)*** (0.0533)*** (0.0651)***
BLKi 0.0159 -0.0560 -0.1042 -0.0261

(0.1073) (0.0787) (0.0784) (0.0999)

EXPi 0.0416 0.0056 0.0311 0.0370
(0.0109)*** (0.0075) (0.0087)*** (0.0102)***

EDi 0.2236 0.0468 0.1193 0.1898
(0.0405)*** (0.0330) (0.0297)*** (0.0436)***

Constant 2.8820 2.4382 3.3770 2.8171
(0.5071)*** (0.4982)*** (0.4378)*** (0.5628)***

Observations 4,165 3,570 3,570 3,570
Individuals 595 595 595 595
1st stage

Instruments 22 339 291 101
Hansen χ2

324 = 370.45 χ2
276 = 304.98 χ2

86 = 107.59
(0.0384) (0.1110) (0.0576)

2nd stage
Instruments 27 27 7
Hansen χ2

22 = 13.79 χ2
22 = 28.99 χ2

2 = 3.34
(0.9088) (0.1452) (0.1883)

* p < 0.1; ** p < 0.05; *** p < 0.01
Note: We abbreviate the estimators as follows: “1s” and “2s” refer to one-stage and two-stage
estimators, respectively. “HT” is the generalized least squares estimator of Hausman and
Taylor (1981), and “sGMM” refers to feasible efficient system GMM estimators. We follow
Blundell et al. (2000) to form the initial weighting matrix. “dGMM” is a GMM estimator
that ignores the moment conditions for the level equation. In parenthesis, we refer to the
set of instruments. GMM standard errors are based on formula (9) with an unrestricted
estimate of Ξ and the Windmeijer (2005) correction. Second-stage standard errors are based
on formula (18). The standard errors are reported in parenthesis. All regressions include
time dummies. The endogenous variables according to Assumption 2 are X2 = {EXP2,
OCC, IND, UNION} and F2 = {EXP, ED}. “Hansen” refers to the Hansen (1982) test of
the overidentifying restrictions, with the p-value in parenthesis.
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