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Abstract

The norm for estimating di¤erentiated product demand with aggregate-level data is the BLP

(1995) model. However, the estimation process BLP suggest requires a nested contraction map-

ping, which can make the process complicated and time-consuming. In this paper, we propose

an alternative estimation routine that avoids the nested contraction mapping. This routine

relies on a linear approximation to the market share function. Thus, we call it Approximate

BLP (ABLP). If ABLP is performed once, it provides an approximation to the BLP estimate.

However, if the ABLP procedure is iterated to convergence, it provides estimates identical to

the BLP estimate. Therefore, converged ABLP can be interpreted as a new computational al-

gorithm for the BLP estimation. We show in Monte Carlo experiments that converged ABLP

is faster than other computational algorithms, especially in datasets with a large number of

products or markets: ABLP is typically faster than BLP because ABLP avoids a contraction

mapping. Moreover, ABLP is typically faster than Mathematical Programming with Equilib-

rium Constraints (MPEC) because the dimension of the space of unknown variables is smaller

for ABLP. Therefore, ABLP is potentially useful to empirical researchers who study problems

that involve large datasets.

1 Introduction

In the estimation of di¤erentiated product demand with aggregate-level data, Berry, Levinsohn,

and Pakes (1995), hereafter BLP, have been widely used and become a gold standard. The model

deals with the endogeneity of prices in a random coe¢ cients logit model, which has �exible sub-

stitution patterns and can produce realistic demand elasticities. On the other hand, there is no
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helpful discussions and comments. All remaining errors are my own.
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analytic solution to invert unobserved product characteristics, which are needed to form the BLP

moment condition. To solve this problem, BLP suggest a nested �xed point (NFP) algorithm that

numerically inverts unobserved product characteristics for each conjectured parameter value using

a proposed contraction mapping. This nested algorithm can be time-consuming, as the recent

literature shows (e.g., Dube, Fox, and Su 2009; and Kalouptsidi 2010).

Dube, Fox, and Su (2009), hereafter DFS, propose a new computational algorithm, which is

called Mathematical Programs with Equilibrium Constraints (MPEC), that eliminates the nested

algorithm entirely. Instead, they add a system of market share equations as a constraint in their

optimization problem. This algorithm is potentially faster than the BLP method because the rate

of local convergence of MPEC is higher than that of the BLP method. Moreover, the MPEC

approach can be applied to several settings (e.g., single-agent dynamic discrete-choice models or

dynamic games). The MPEC approach, however, is a large-scale problem, especially in a random

coe¢ cients logit model: the number of unknown variables is the number of both parameters and

unobserved product characteristics, which grows with the number of products and markets. Large-

scale problems can be time-consuming, but DFS show that MPEC is generally faster than the BLP

method.

Petrin and Train (2010) propose a control function technique. They assume on the supply side

that price is a linear function of own observed and unobserved product characteristics. The control

variable is the residual of the price equation. The assumption on the pricing equation implies

that price is the sum of the marginal cost and a �xed markup (Park and Gupta 2009); in other

words, the price of one product is not a¤ected by prices and characteristics of other products in

the same market. This implication seems unlikely to hold for many industries. However, Kim

and Petrin (2010) relax the assumption on the pricing equation and deal with non-separability

between observed and unobserved factors in demand, cases for which the Berry (1994) correction

may not work. Nonetheless, their identifying assumption may be too strong: the residual of the

price equation is correlated with unobserved product characteristics, but both the residual and

unobserved product characteristic are independent of instrumental variables.

Kalouptsidi (2010) assumes consumer tastes for products are drawn from a discrete distribution

and �nds a duality between consumer types and product market shares. This duality enables us to

transform the system of market share equations to an equivalent system of consumer type equations

we can solve for some new consumer unobservables. In a market with a large number of products

and a small number of consumer types, computations in the dual domain can be faster. On the

other hand, in markets with more consumer types than products, the dual method may lose its

computational advantages.

In this paper, we propose a new computational approach for estimating the BLP model. We call

this method Approximate BLP, henceforth ABLP. ABLP (1) avoids the nested contraction map-

ping: ABLP uses a linear approximation to the market share function, which implies that, unlike

the BLP estimation approach, unobserved product characteristics can be inverted analytically;1

1Our MC results suggest ABLP is much quicker, though ABLP does require inversion of a matrix of dimension
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(2) is a small-scale problem: unlike DFS, the number of unknown variables is �xed regardless of

the number of observations; (3) has no additional assumption on the supply side unlike Petrin and

Train (2010); and (4) keeps the type of consumer tastes continuous unlike Kalouptsidi (2010).

ABLP proceeds as follows. We conduct the ABLP inversion of unobserved product characteristic

using a linear approximation to the market share function. Then we search over parameter values

to minimize a GMM objective function identical to BLP�s. We can improve the estimate of ABLP

by iterating the procedure. If we do not iterate (or iterate a small number of times), ABLP can be

interpreted as a simple2 and quick approximation to BLP estimation. Alternatively, if we iterate

until convergence, ABLP is a new computational method to the BLP estimation that is potentially

faster than the method de�ned above.

Aguirregabiria and Mira (2002) propose an iterative method in the single-agent dynamic model.

In general, the iterative approach in ABLP is similar to that in Aguirregabiria and Mira (2002)

with two main di¤erences. First, they propose a nested pseudo-likelihood algorithm (NPL) for the

estimation of a class of discrete Markov decision models, but ABLP is a nested pseudo-GMM algo-

rithm for the estimation of random coe¢ cients logit models. Second, NPL sequential estimators are

consistent if the conditional choice probability can be consistently estimated prior to estimation.

However, ABLP estimators, in the iterations before convergence, are not consistent because we can-

not �nd any consistent nonparametric estimator for unobserved product characteristics. However,

on convergence, the ABLP estimator is consistent because, as we show, in this case, the ABLP

estimator is numerically equivalent to the BLP estimator under some regularity conditions.

Su and Judd (2008) and DFS argue that iterative methods generally have lower rates of local

convergence than MPEC. In the random coe¢ cients logit model, the ABLP algorithm turns out to

have a superlinear rate of local convergence. However, a faster theoretical rate of local convergence

does not necessarily imply lower computational time in a given setting. For example, the theoretical

result does not take into account the large-scale nature of the MPEC approach. In fact, we show

in MC experiments using the same setup as DFS that ABLP iterated until convergence is 3 to 10

times faster than MPEC.

This paper contributes to the literature on numerical methods for applied econometric models.

The BLP model is widely used for modeling aggregated discrete-choice data in empirical IO research,

but the estimation procedure in BLP can be computationally burdensome, especially when an

empirical researcher needs to estimate multiple speci�cations of a model (e.g., to check robustness,

or for model-selection purposes). Thus, �nding computationally e¢ cient ways of estimating these

models seems useful (e.g., Dube, Fox and Su 2009; Su and Judd 2008; Petrin and Train 2010; Park

and Gupta 2009; and Kalouptsidi 2010). Many procedures are optimal from particular theoretical

perspectives (e.g., rate of convergence) in the literature (e.g., Su and Judd 2008; and Dube, Fox, and

Su 2009), but these theoretical arguments do not imply that a numerical method with a fast rate of

equal to the number of products in a market.
2Programming wise, ABLP is essentially the same as the BLP estimation, replacing the contraction mapping with

a matrix inverse.
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convergence will work faster than a method with a slow rate of convergence in any speci�c situation.

In some cases, an estimator has a special structure, such as linearity (or approximate linearity),

that can help one tailor computationally fast estimation procedures, which is exactly what the

ABLP estimation procedure, based on a linear approximation around the well-known logit model,

does. In at least the MC speci�cations we tried (based on DFS�s MC setup), the Converged ABLP

runs 3 to 10 times faster than MPEC. The K-step ABLP runs even faster, though the estimator

has approximation error. As in any Monte-Carlo study, our results are subject to the caveat that

many other possible speci�cations exist, and predicting how ABLP would do in those is di¢ cult.

However, ABLP presumably will do worse for models that are "further" from the logit model.

We organize the remainder of the paper as follows. In section 2, we discuss the BLP model and

moment conditions. Section 3 presents both the BLP and MPEC algorithm. Section 4 provides

an explanation of the ABLP algorithm. Section 5 shows Monte-Carlo experiments for the relative

performances of the ABLP and MPEC algorithms. We conclude in section 6.

2 BLP Model3

Following BLP (1995) and Nevo (2000), in each market4 t = 1; :::; T; where T � 1; the utility of

purchasing product j = 1; :::; J of consumer i = 1; :::; I is

Uijt = Xjt�i + �jt + "ijt; (1)

Ui0t = "i0t for outside good,

whereXjt is a K-dimensional vector of product- and market-varying attributes (including a constant

and price that is typically interpreted as endogenous), �i is the preference of individual i for observed

product attributes, �jt is the unobserved product characteristic or demand shocks, and "ijt is an

extreme value deviate that is i.i.d. across agents, choices, and time periods.

Under the assumption that "ijt is drawn from the type I extreme value distribution, the prob-

ability of consumer i in market t purchasing product j is given by

sj (Xt; �t;�i) =
exp

�
Xjt�i + �jt

�
1 +

PJ
j0=1 exp

�
Xj0t�i + �j0t

� ; (2)

where Xt � (X 0
1t; :::; X

0
Jt)

0 ; �t � (�1t; :::; �Jt)
0 ; and the random coe¢ cients, �i, are drawn from

a cumulative density function, �i � F (�i; �) where � is the parameter (means and standard de-

viations) that determines the distribution of random coe¢ cients, F (�i; �) : The predicted market

3 In this paper, we consider a panel setting just for generality. ABLP can be used in the original BLP setting,
which is purely cross sectional (T = 1):

4Market means di¤erent regions or times.
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share of product j is then

sj (Xt; �t; �) =

Z
exp

�
Xjt�i + �jt

�
1 +

PJ
j0=1 exp

�
Xj0t�i + �j0t

�dF (�i; �) :
Often this integral needs to be simulated, for example,

sj (Xt; �t; �; I) =
1

I

IX
i=1

exp
�
Xjt�i + �jt

�
1 +

PJ
j0=1 exp

�
Xj0t�i + �j0t

� ; (3)

where I is the number of simulated individuals in each market.

De�ne s (Xt; �t; �) = (s1 (Xt; �t; �) ; :::; sJ (Xt; �t; �))
0 : For simplicity of notation, we rewrite s (Xt; �t; �)

as s (�t; �) from now on.

2.1 BLP Moment Condition

The BLP estimator utilizes the following population moment condition:

E [gjt (�)] = 0 where gjt (�) = �jt (�) zjt; (4)

zjt are the D-dimensional instrumental variables for prices, and �jt (�) is the unobserved product

characteristic for a parameter �: �jt (�) is obtained by the inverse mapping, �t (�) � s�1 (St; �),

from the market share equations, St = s (�t; �) where St is the (J � 1) vector of observed market
shares at market t and �t (�) = (�1t (�) ; :::; �Jt (�))

0.

De�ne gJ (�) =
1
J

PJ
j=1E [gjt (�)] : Then the population criterion function is

Q (�) = gJ (�)
0WgJ (�) ;

where W is a weight matrix.

Note that the sample analog to the population moment is

bgJT (�) = 1

JT

X
j

X
t

�jt (�) zjt =
1

JT
Z 0� (�) ; (5)

where � (�) =
�
�1 (�)

0 ; :::; �T (�)
0�0 is the (JT � 1) vector of unobserved product characteristics for

a parameter, �, and Z is the (JT �D) matrix of instrumental variables. We can write the sample
analogue of the population criterion function as

QJT (�) = bgJT (�)0cWJTbgJT (�) = � 1

JT

�2
� (�)0 ZcWJTZ

0� (�) (6)

over � 2 � and cWJT !p W: Here we assume that a unique true parameter, �0 2 int (�) exists such
that �0 = argminQ (�) :
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3 Computational Algorithm

Now we can estimate the parameter, �, once we obtain the inverse mapping, �t (�) � s�1 (St; �) :

Generally the inverse mapping, �t (�), does not have an analytic solution, which has stimulated

interest in how to compute � or how to estimate � and � at the same time. Among all methods, we

will explain three solutions to the problem in the following.

3.1 BLP Algorithm

The BLP algorithm is a nested �xed point algorithm in the random coe¢ cients logit model. The

BLP algorithm has two layers:

[ Inner loop ] BLP numerically invert out �t (�) using the following contraction mapping:

�Ht = �
H�1
t + lnSt � ln s

�
�H�1t ; �

�
(7)

for a given � as H !1; where H denotes the index of iterations: �BLPt (�) � �1t : In practice, we
use a tolerance level for the discrepancy between �Ht and �

H�1
t :

[ Outer loop ] The BLP minimization problem is

min
�
bgJT (�)0cWJTbgJT (�) ; (8)

where bgJT (�) = 1
JT Z

0�BLP (�) :

The BLP estimator is de�ned as the parameter, �, with the lowest value of the BLP GMM

objective function among the local roots of the �rst-order condition of the BLP minimization in

(8).

In sum, the outer loop searches over the parameter space to minimize the GMM objective func-

tion in (8). In the inner loop, a contraction mapping exists for unobserved product characteristic,

�, for each conjectured value of parameter, �: This inner loop is time-consuming,5 which motivated

the development of other alternative estimation methods or computational algorithms. In the next

subsection, we will look at the MPEC approach as a well-known alternative to the BLP algorithm.

3.2 MPEC Algorithm6

Mathematical Programs with Equilibrium Constraints (MPEC) is an optimization problem with

the equilibrium or complementary constraints (Luo, Pang, and Ralph 1996). Su and Judd (2008)

�rst apply MPEC in estimating structural models in economics. Dube, Fox, and Su (2009) use it

in BLP random coe¢ cients logit models.

5 In some Monte Carlo experiments, BLP contraction mapping, given a set of parameters, does not seem to satisfy
the tight stopping criterion

�
10�14

�
; which DFS suggest.

6The explanation of MPEC in BLP estimation is mainly extracted from Dube, Fox, and Su (2009).
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The DFS constrained minimization problem is

min
�; �

bgJT (�) 0cWJTbgJT (�) (9)

s:t: S = s (�; �) ;

where bgJT (�) = 1
JT Z

0�; S = (S01; :::; S
0
T )
0 is a (JT � 1) vector of observed market shares, and

s (�; �) =
�
s (�1; �)

0 ; :::; s (�T ; �)
0�0 is a (JT � 1) vector of market share functions. MPEC introduces

the market share equations as nonlinear constraints to the optimization problem. They optimize

over both the unobserved product characteristic, �, and the parameter, �: DFS show the equivalence

of both BLP and MPEC methods. MPEC approach has a quadratic local convergence rate (Luo,

Pang, and Ralph 1996).

We can solve the constrained optimization problem de�ned above using a modern nonlinear

optimization package researchers in numerical optimization developed. DFS use KNITRO in their

Monte Carlo simulation. Although the MPEC algorithm has a quadratic rate of local convergence,

it has one disadvantage that can slow down its computational speed: many unknown variables

in its optimization problems. For example, with J = 25 products and T = 200 markets,7 it has

5; 000 unobserved product characteristics, �jt, as unknown variables. As the number of observations

grows, MPEC becomes a larger-scale problem that might be hard to deal with and time-consuming.

The section on Monte-Carlo experiments tests this conjecture.

4 ABLP Algorithm

4.1 ABLP Inversion

We take a di¤erent approach from DFS to avoid the time-consuming contraction mapping. Instead,

we use a �rst-order approximation to the market share function. The advantage of approximation

is that we can easily invert out �t; the unobserved product characteristic in market t; using the

analytic solution in (11) (which requires matrix inversions).

The �rst-order approximation of the log market share function, ln s (�t; �), around a point of

approximation, �0t , is
8

ln s (�t; �) � ln s
�
�0t ; �

�
+
@ ln s

�
�0t ; �

�
@�0t

�
�t � �0t

�
;

where� denotes the �rst-order Taylor series expansion, ln s = (ln s1; :::; ln sJ)0, @ ln s@�0t
=
�
@ ln s
@�1t

; :::; @ ln s@�Jt

�
;

�t = (�1t; :::; �Jt)
0 ; and �0t =

�
�01t; :::; �

0
Jt

�0
. Let ln sA (�t; �) denote the �rst-order approximation of

7Here markets mean "regions" and "times". Marketing has many long panel datasets with weekly time series.
They de�ne regional market at the level of states, census tracts, or ZIP codes.

8Alternatively, we can take the �rst-order approximation to the market share function s (�t; �) :
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the log market share function:

ln sA (�t; �) � ln s
�
�0t ; �

�
+
@ ln s

�
�0t ; �

�
@�0t

�
�t � �0t

�
: (10)

Instead of using the (exact) market share equations, lnSt = ln s (�t; �), we use the approximate

market share equations, lnSt = ln sA (�t; �), to establish the following relationship:

�t = �t
�
�; �0t

�
� �0t +

"
@ ln s

�
�0t ; �

�
@�0t

#�1 �
lnSt � ln s

�
�0t ; �

��
(11)

for t = 1; :::; T: We call the mapping �t
�
�; �0t

�
the ABLP inversion of unobserved product charac-

teristic, �t, at market t given � with a point of approximation, �
0
t :

The ABLP inversion has a contrasting point with the BLP inversion. The ABLP inversion

is analytic: given �0t ; we can easily calculate �t
�
�; �0t

�
for any parameter, �: Thus the numerical

error in the BLP contraction mapping does not exist in the ABLP inversion. On the other hand,

the ABLP inversion has a �rst-order approximation error. However, this approximation error will

disappear when we iterate the K-step ABLP estimator in subsection 4:3 until convergence.

We have two natural choices to �nd the initial point of approximation, �0 =
�
�001 ; :::; �

00
T

�0
: one is

zero vector and the other is the estimated unobserved product characteristics from a logit model.

If variation of the true � is very small, zero vector seems a good candidate for �0. Otherwise, we

can use the estimated b� from a logit model for �0: However, we cannot tell the amount of variation

of � in advance, that is, prior to estimation.

Our preferred solution to this issue of �nding �0 is to generate an arbitrary vector of unobserved

product characteristic using the BLP contraction mapping just once. The procedure is as follows.

First, posit a speci�c parameter, �0. Then, �nd the corresponding �0 using the BLP contraction

mapping, i.e. �0 = �BLP
�
�0
�
. With this procedure, we can �nd any arbitrary initial point of

approximation for ABLP. In other words, if we have a good conjecture of parameter, we can also

obtain a good set of unobserved product characteristics.

4.2 ABLP Estimation

The ABLP minimization problem starts with an initial point of approximation, �0, for the unob-

served product characteristics. Then we can obtain a GMM estimate of � as

�1 = argmin
�2�

�
�
�; �0

�0
ZcWJTZ

0�
�
�; �0

�
; (12)

where

�t
�
�; �0t

�
= �0t +

"
@ ln s

�
�0t ; �

�
@�0t

#�1 �
lnSt � ln s

�
�0t ; �

��
(13)
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for t = 1; :::; T and �
�
�; �0

�
=
�
�1
�
�; �0

�0
; :::;�T

�
�; �0

�0�0
:

We can obtain the estimate of parameters from the GMM estimation with the analytic ABLP

inversion of unobserved product characteristic as described above. We name the solution of the

ABLP minimization problem the (one-step) ABLP estimator. The accuracy of the ABLP estimate

hinges on that of the initial unobserved product characteristic, �0: The closer the point of approx-

imation, �0, is to the true one, the more accurate an estimate of parameter, �1, we can get. From

this idea, we can naturally think of an iterative approach to obtain a better point of approximation

and, as a result, a better estimate. In the next subsection, we introduce an iterative method with

which we can obtain the BLP estimate from the ABLP algorithm.

4.3 K-step ABLP Estimation and ABLP mapping

The steps of iteration are as follows. First, we can obtain the estimate of parameter, �1, from

the �rst estimation with the initial point of approximation, �0. Second, we update the point of

approximation for unobserved product characteristics with the mapping �1 = �
�
�1; �0

�
, using the

estimate �1 from the �rst iteration. Then we can repeat the same procedure several times until the

estimate or the unobserved product characteristics converge. The details are the following.

The ABLP algorithm starts with an initial point of approximation, �0, for the unobserved

product characteristics: At each iteration K � 1; we take the following two stages:

� Stage 1 [ ABLP Minimization (�) ]: Obtain a new GMM estimate �K as

�K = �
�
�K�1

�
� argmin

�2�
�
�
�; �K�1

�0
ZcWJTZ

0�
�
�; �K�1

�
; (14)

where

�t

�
�; �K�1t

�
= �K�1t +

24@ ln s
�
�K�1t ; �

�
@�0t

35�1 hlnSt � ln s��K�1t ; �
�i

(15)

for t = 1; :::; T:

� Stage 2 [ ABLP Updating (�) ]: Update � using �K of stage 1, that is,

�K = �
�
�K ; �K�1

�
: (16)

We assume that, given �K�1; �K uniquely solve equation (14) : By the theorem of the maxi-

mum,9 � : � ! � is also continuously di¤erentiable in �. For each �; � (�; �) maps the space of

unobserved product characteristics into itself. We call the solution �K the K-step ABLP estimator.
9s (�t; �) is continuous in (�t; �) ; so �t (�; �t) is also continuous. Therefore, the GMM objective function in (14) is

continuous. By theorem of maximum, if the objective function is continuous and if the domain � is compact, then
the maximum-value function and the solution function are continuous.
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For convenience sake, de�ne the ABLP mapping as both (1) the solution function of the ABLP

minimization, �K = �
�
�K�1

�
, and (2) the ABLP updating function, �K = �

�
�K ; �K�1

�
. Now we

are interested in what the limit of the K-step ABLP estimator is, as K goes to in�nity. If the limit

exists, its candidate is a �xed point of the ABLP mapping. Fixed points of the ABLP mapping

provide key reference points for the characterization of the ABLP mapping. A �xed point of the

ABLP mapping is de�ned as follows.

De�nition 1 A �xed point of the ABLP mapping is a pair (��; ��) such that

�� = � (��) and �� = �(��; ��) :

Multiple �xed points could exist in the ABLP mapping. Denote the set of �xed points of the

ABLP mapping by T = f(��; ��) j�� = � (��) and �� = �(��; ��)g : Among all �xed points of the
ABLP mapping, we are interested in a �xed point with the lowest value of the GMM objected

function, which is de�ned as follows.

De�nition 2 The Converged ABLP estimator is the parameter b� such that�b�;b�� = arg min
(��;��)2T

� (��; ��)0 ZcWJTZ
0� (��; ��) :

The following lemma shows a local property of a �xed point of the ABLP mapping.

Lemma 1 For any �xed point (��; ��) ; @�(��;��)
@�0

= 0:

Proof. All proofs are in the appendix.

Lemma 1 implies that at a �xed point of the ABLP mapping, (1) updating the unobserved

product characteristic � (i.e., � = �(�; �)) and (2) minimizing the GMM objective function in (14)

is impossible. These features are key properties of the ABLP mapping: it leads to the equivalence

between the Converged ABLP estimator and the BLP estimator, and the local convergence property

of the K-step ABLP estimator.

Proving the equivalence between the Converged ABLP estimator and the BLP estimator requires

three steps. In the �rst step, we compare the �rst-order condition of the BLP minimization with

the �rst-order condition of the ABLP minimization with no updating of �, and show they are

equivalent. This result implies that the set of the local root of the �rst-order condition of the BLP

minimization is identical to the set of �xed points of the ABLP minimization with no updating

of �.10 In the second step, we show that for any pair (��; ��) that is both a local root of the

10The set of �xed points of the ABLP minimization with no updating of � includes the set of �xed points of the
ABLP mapping. Although the former set includes local maxima, minima, and saddle points, the latter set includes
only local minima. In the same way, the set of local roots of the FOC of the BLP minimization includes the set of
the solution of the BLP minimization. The former set includes local maxima, minima, and saddle points, whereas
the latter set includes local minima.
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BLP minimization and a �xed point of the ABLP mapping, the value of the GMM objective

function in the BLP minimization is equal to the value of the GMM objective function in the

ABLP minimization. Finally, in the third step, according to the de�nition of the BLP estimator

and the Converged ABLP estimator, we �nd they are identical. The details are in the proof of the

following proposition.

Proposition 1 The Converged ABLP estimator and the BLP estimator are numerically equivalent.

Proof. All proofs are in the appendix.

Proposition 1 shows the Converged ABLP estimator and the BLP estimator are the same

statistical estimator. Therefore, the asymptotics of the Converged ABLP estimator follows that of

the BLP estimator: the Converged ABLP estimator is consistent and asymptotically normal.

Now the remaining thing to be done is �nding the Converged ABLP estimator, which we

conjecture is possible to obtain, if we iterate the K-step ABLP estimator until convergence. In the

next subsection, we examine the local convergence of the K-step ABLP estimator to the Converged

ABLP estimator.

4.4 Local Convergence of K-step ABLP Estimator

Now we want to know whether the K-step ABLP estimator locally converges to the Converged

ABLP estimator as K !1 and whether the Converged ABLP estimator is asymptotically stable.

By the Hartman-Grobman theorem, the characterization of the local behavior of the ABLP mapping

in a neighborhood of its �xed point can be obtained by the local behavior of its linearization under

some regularity conditions.

Consider a nonlinear system xk+1= f (xk) where f : Rn ! Rn is a continuously di¤eren-

tiable single-value function. Suppose a �xed point x� exists such that x�= f (x�) : The function

xk+1= f (xk) can be approximated around the �xed point x�: Let xk � x�+�k. A Taylor expansion
around x� yields

x�+�k+1= f (x
�+�k)= f (x

�)+rf (x�)�k+O
�
j�kj

2
�
;

where O
�
j�kj

2
�
denotes terms of second and higher order in the deviation �k. For small enough

j�kj ; we have the linearized map �k+1=rf (x�)�k: The maximum of the absolute of eigenvalues

of the Jacobian matrixrf (x�) is called the spectral radius of rf (x�) ; denoted by � (x�) : If � (x�)
is less than 1; the �xed point x� is asymptotically stable (Ch.4 in Galor 2007 and Ch.1 in Wiggins

1997). We apply the above stability theory to the ABLP mapping and prove its local stability and

rate of local convergence.

Now let�s look at the ABLP mapping, which consists of the solution function of the ABLP

minimization, �K = �
�
�K�1

�
, and the updating function, �K = �

�
�K ; �K�1

�
. Let

�b�;b�� be the
Converged ABLP estimator.11 Let k�k denote the Euclidian norm. The Taylor series expansion to
11 In the exactly-identi�ed model, (��; ��) can be any �xed point of the ABLP map for the proof of Proposition 2.
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the ABLP mapping around
�b�;b�� gives

�K = �
�b�;b��+ @�

@�0

�
�K � b��+ @�

@�0

�
�K�1 � b��+O�


�K�1 � b�


2�+O�


�K � b�


2�

=) �K � �� = @�

@�0

�
�K � b��+O�


�K�1 � b�


2�+O�


�K � b�


2�

because �
�b�;b�� = b� by the de�nition of a �xed point, and @�

@�0
= 0 by Lemma 1. The remaining

thing to do is check the relationship between �K � b� and �K�1 � b�:
Proposition 2 Suppose � : � ! � is a continuously di¤erentiable single-value function in a

neighborhood of b�. For iteration K = 1; 2; :::

In the exactly-identi�ed model,

�K � b� = O�


�K�1 � b�


2� ;
and in the over-identi�ed model,

�K � b� = Op �(JT )� 1
2




�K�1 � b�


�+O�


�K�1 � b�


2� :
Proof. All proofs are in the appendix.

Proposition 2 establishes the local convergence of the K-step ABLP estimator under some regu-

larity conditions: as K !1; the K-step ABLP estimator, �K , locally converges to the Converged
ABLP estimator, b�, at a superlinear rate of convergence, and the Converged ABLP estimator is
asymptotically stable. The result in Proposition 2 is intuitive in a sense that the updating function

of the ABLP mapping has a form of Newton update.

The Converged ABLP estimator is one of the �xed points of the ABLP mapping. That is, the

K-step ABLP estimator could converge to some �xed points of the ABLP mapping, and the �xed

point with the lowest value of the GMM objective function in the ABLP minimization becomes

the Converged ABLP estimator. This procedure is exactly analogous to the local minima in the

BLP estimation (as well as in the MPEC estimation). We can �nd several local minima in the BLP

minimization, and the local minimum with the lowest value of the GMM objective function in the

BLP minimization is the BLP estimator.

4.5 Features of ABLP Algorithm

The ABLP algorithm contrasts with the BLP algorithm. The BLP estimator is the nested �xed

point (NFP) estimator in random coe¢ cients logit models: they have to �rst �nd the unobserved

product characteristics for each conjectured value of parameter and then search for the parameter

that best minimizes the GMM objective function in (8). In contrast, the ABLP estimator is the

12



nested pseudo-GMM (NPGMM) estimator in random coe¢ cients logit models: we �rst search

for the parameter that best satis�es the moment condition given the point of approximation of

the unobserved product characteristic. Then we update the point of approximation and estimate

the parameter again. A trade-o¤ exists between the ABLP algorithm and BLP algorithm: the

BLP algorithm spends time on its contraction mapping given a speci�c parameter, but the ABLP

algorithm takes time for parameter search given speci�c unobserved product characteristics.

The ABLP algorithm could be faster than other methods for several reasons. First, the matrix

inversion in the ABLP inversion and multiple parameter searches may be faster than the BLP

contraction mapping and one-time parameter search. Second, ABLP could be faster than MPEC

because ABLP remains a small-scale problem, whereas MPEC becomes a larger-scale problem as

we add more markets or products. In the next section, we can see the relative performance of the

ABLP and MPEC algorithm.

Moreover, the ABLP algorithm has an advantage in over-identi�ed models. When doing GMM

estimation, one typically wants to do two-steps of GMM estimation for e¢ ciency (i.e., with optimal

weight matrix). Since we can update the weight matrix in each step ABLP estimation, we can

obtain the optimal matrix for free. In practice, we update the weight matrix when the ABLP

algorithm checks the convergence. For example, in Figure 1, the ABLP algorithm checks the

convergence from the fourth iteration. We can update the weight matrix from the �fth iteration

and get the optimal matrix and the e¢ cient estimator on convergence. In this sense, if we want to

obtain the e¢ cient estimator, the ABLP algorithm can save more computational time.

5 Monte Carlo Experiments

In this section, we use various synthetic datasets to compare the speed of the ABLP algorithm

with that of the MPEC algorithm. (Hereafter, we use the term ABLP [MPEC or BLP] instead of

the ABLP [MPEC or BLP] algorithm for simplicity, if there is no confusion.) We follow the same

data-generating process as in DFS. Note that DFS compare MPEC to BLP and �nd MPEC is 1:3

to 5 times faster than BLP. Therefore, we compare ABLP only with MPEC. We test the speed of

each algorithm by altering some features, such as the level of mean intercept E
�
�0i
�
, the number

of markets T; the number of products J , and the variance of the random coe¢ cients.

5.1 Data-generating Process12

The (base) data-generating process for Monte-Carlo experiments is as follows.

Uijt = Xjt�i + �jt + "ijt; Ui0t = "iot;

for i = 1; :::; I; j = 1; :::J; t = 1; :::; T; where there are 50 markets (T ) and the same 25 products (J)

in each market. Let Xjt = f1; xj1; xj2; xj3; pjtg : Observed product characteristics fxj1; xj2; xj3g
12For more details, please, refer to subsections 6.2 and 7.2 in Dube, Fox, and Su (2009).
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follow multivariate normal distribution with zero means and the covariance matrix:264 1 �0:8 0:3

�0:8 1 0:3

0:3 0:3 1

375 :
Unobserved product characteristic, �jt, is distributed i.i.d. standard normal, N (0; 1). Finally, price

is generated as follows:

pjt = 3 + �jt � 1:5 + ujt +
P3
k=1 xkjt;

where ujt follows a uniform distribution U [0; 5]:

Denote consumer preference by �i =
�
�0i ; �

1
i ; �

2
i ; �

3
i ; �

p
i

	
, each distributed independently nor-

mal: E [�i] = f1; 1:5; 1:5; 0:5;�3g and V ar [�i] = f0:5; 0:5; 0:5; 0:5; 0:2g : We use the same I = 100
individuals both in the data-generating process and in estimation. The same set of J products

exists in each market, so the only variation is due to prices, which vary by market.

5.2 Speed Comparison of Converged ABLP and MPEC

In our Monte Carlo experiments, we use "ABLP with Concentration on Nonlinear Parameter" in

the Appendix C, which has the same properties as ABLP and computes quickly because we can

concentrate out the linear parameters. However, in MPEC, the concentration may be insigni�cant

because � is not a function of nonlinear parameter during parameter search.

For MPEC, we use DFS�s original Matlab code, which we can download from Su�s website.13 As

DFS do, we use Tomlab interface to run KNITRO in Matlab program. For ABLP, we use Matlab

programming and its optimization function "fmincon".14 DFS use an interior-point algorithm in

KNITRO and we also use the same algorithm in fmincon. For the convergence criterion, ABLP

uses 10�6 for both the update of unobserved product characteristics and the change in the value

of the objective function in each iteration. MPEC uses 10�6 for the constraint of the market share

equations and the optimality condition of its objective function, or the change in the value of the

objective function in each run if it doesn�t satisfy the optimality condition. For a fair comparison

with MPEC, we run ABLP until convergence and use the same starting points for both ABLP and

MPEC. For each experiment, we use 80 di¤erent datasets and �ve starting points in each dataset.

In our �rst experiment in Table 1, we manipulate the level of mean intercept, E
�
�0i
�
: DFS �nd

the Lipschitz constant,15 a¤ects the speed of BLP and increases as the level of mean intercept gets

13Here is the link: http://faculty.chicagobooth.edu/jean-pierre.dube/vita/MPEC%20code.htm.
14We can use "fminunc" instead of "fmincon": "fminunc" seems faster than "fmincon", but it sometimes has an

operational problem. The ABLP algorithm calculates the inverse of the matrix
@ lnS(�K�1;�)

@�0 when it searches over
parameters. The matrix is rarely not invertible with some parameters. (The BLP algorithm has a similar problem
with calculating the gradient of its objective function.) In this case, "fminunc" stops during an optimization run, so
we cannot handle it directly. However, "fmincon" can handle the problem by itself by searching nearby feasible sets
of parameters. For this reason, we use "fmincon" for convenience and stability at the cost of some speed advantages.
15 In BLP approach, the Lipschitz constant measures the rate of convergence of the contraction mapping. As it

gets close to 1, the contraction mapping converges slowly (Dube, Fox, and Su 2009).
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bigger. In general, ABLP is faster than MPEC by 3 to 5 times. ABLP slows by 50 percent from

E
�
�0i
�
= �1 to 2. But MPEC gets a little faster and then seems to be stable as the Lipschitz

constant grows. This result implies that ABLP seems to be monotonically a¤ected by the Lipschitz

constant.

In the second experiment, we change the number of markets, T , and check the relative perfor-

mance of ABLP and MPEC. DFS argue the Lipschitz constant grows as we include more markets

in a dataset. In that sense, this experiment is similar to the �rst one but di¤erent in that we can

additionally test the problem of MPEC with scale. In MPEC, the unobserved product characteris-

tics, �, are unknown variables to �nd. Thus, as we have more observations, such as more products

and markets, MPEC has more unknown variables. For example, with J = 25 products and T = 200

markets, MPEC has at least 5; 000 unknown variables except parameters. Table 2 has four cases

with T = 25; 50; 100; and 200: With T = 25; ABLP is faster than MPEC by 3 times. This gap,

however, widens as the number of markets, T; increases. With T = 200; ABLP is 10 times faster

than MPEC. This result shows that MPEC, a large-scale problem, slows as the number of markets

increases.16

In the third experiment, we change the number of products, J: The ABLP inversion requires a

matrix inverse in each market at each conjectured value of � (see equation [11]). The dimension of

the matrix inverse is J �J: Thus, as J increases, the cost of the inversion increases much more. To
know the amount of this computing cost, we test di¤erent values of J in the experiment. In general,

ABLP is faster than MPEC in this experiment. The time cost of ABLP increases by around 8 times

from J = 25 to J = 100; whereas that of MPEC increases by about 29 times. This result implies

the time cost of the ABLP inversion is less than that of the MPEC large-scale problem in this

example.

Finally, we test the time cost of the ABLP inversion with respect to linear approximation of the

market share function. In the logit model, the unobserved product characteristics are linear in the

log of the market share function. Hence we expect the linear approximation to perform well with

small variance of random coe¢ cients. In the fourth experiment, we change the variance of random

coe¢ cients and check the computing time of ABLP and MPEC by multiplying V ar [�i] by 0:5; 1;

and 2: Unlike what we expect, the level of variances of random coe¢ cients may not a¤ect ABLP.

5.3 Performance of the K-step ABLP Estimator

Figure 1 shows the performance of the K-step ABLP estimator at each iteration in a Monte Carlo

experiment. We measure the root mean-squared error (RMSE) between the true own price elasticity

and the estimated elasticity. ABLP converges with six iterations in this experiment. After three

iterations, no change seems to occur in RMSE at a signi�cant level. In other words, RMSE improves

16With J = 25 and T = 200, we have 5; 000 observations. However, this is not an extreme case. Many researchers
use more observations in their researches. For example, Nevo (2001) uses 27; 862 observations, and Davis (2006) uses
20; 008 observations. Moreover, many panel datasets in marketing have much more observations than these numbers
because they include weekly sales and prices of many products in many small regional markets such as zipcode-level
markets in the US.
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quickly in the early iterations and then checks its convergence in the later iterations. Thus, this

result implies that we could get a good estimate of parameter quickly even though we iterate ABLP

only a few times.

Now let�s look at the performance of the K-step ABLP estimator when K = 2: To mea-

sure how close the K-step ABLP estimator is to the Converged ABLP estimator, we use the

mean absolute error (MAE) of the own price elasticities per each dataset: Let ejt and bejt de-
note the Converged ABLP and the K-step ABLP own price elasticity of product j at market

t; respectively. The (normalized) MAE of the own price elasticity (per dataset) is calculated by

MAEds =
1
JT

P
j

P
t

����bejt � ejt� =ejt���, where ds is the index of dataset. The MAE in a table is the
simple average of MAE�s across 80 datasets: MAEmean = 1=80

P80
ds=1MAEds: We �nd in Table 5

to 8 that the 2-step ABLP estimator performs well: we can save the computational time by 30 to

50% using the 2-step ABLP estimator instead of using the Converged ABLP estimator, whereas

the MAE is less than 1% in each case. This result implies we can save a large amount of time

at the expense of a very small amount of accuracy using the K-step ABLP estimator. Thus, the

K-step ABLP estimator, which is an even quicker approximation, may be particularly useful when

running many speci�cations, e.g. for robustness checks.

6 Conclusion

In this paper, we propose a new computational algorithm, ABLP, for the random coe¢ cients logit

model. ABLP avoids the nested BLP contraction mapping and appears to save computational

time. The ABLP inversion of unobserved product characteristic relies on an approximation to the

market share function. However, we show that if we iterate the K-step ABLP estimator until con-

vergence, the ABLP estimation exactly replicates the BLP estimation because the approximation

error vanishes on convergence. In addition, we show the K-step ABLP estimator locally converges

to the Converged ABLP estimator.

To measure the speed improvement of the ABLP algorithm, we conduct Monte Carlo exper-

iments to investigate the relative performance of ABLP and MPEC. In DFS, MPEC was shown

to be 1.3 to 5 times faster than the BLP algorithm. In general, ABLP appears to be faster than

MPEC by 3 to10 times. The speed advantage of ABLP is highest with a large number of products or

markets. ABLP is presumably faster than MPEC because ABLP is a small-scale problem, whereas

MPEC is a large-scale problem. In addition, ABLP appears to be faster than the BLP algorithm

because ABLP avoids a contraction mapping. Therefore, ABLP is potentially useful to empirical

researchers who study problems that involve large datasets.
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Table 1. Time Costs Varying the Mean Intercept E
�
�0i
�

Mean Intercept Implementation Time 1� Time 2� Iterations�

E
�
�0i
�

(median) (mean) (median)

�1 Converged ABLP 16:9 19:5 5

MPEC 82:7 105:9

0 Converged ABLP 17:8 19:7 5

MPEC 74:6 99:3

1 Converged ABLP 20:9 23:2 5

MPEC 74:1 103:7

2 Converged ABLP 25:0 27:5 6

MPEC 72:9 102:0

� Time 1 & 2 : the CPU time (second) per starting point.
� The median of the numbers of iterations on convergence per starting point.

Table 2. Time Costs Varying the Number of Markets T

# of Markets Implementation Time 1� Time 2� Iterations�

(T ) (median) (mean) (median)

25 Converged ABLP 10:5 11:6 5

MPEC 30:3 45:9

50 Converged ABLP 20:9 23:2 5

MPEC 74:1 103:7

100 Converged ABLP 51:2 54:7 6

MPEC 220:5 278:9

200 Converged ABLP 125:0 125:4 6

MPEC 1; 295:9 1; 357:7

� Time 1 & 2 : the CPU time (second) per starting point.
� The median of the numbers of iterations on convergence per starting point.
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Table 3. Time Costs Varying the Number of Products J

# of Products Implementation Time 1� Time 2� Iterations�

(J) (median) (mean) (median)

25 Converged ABLP 20:9 23:2 5

MPEC 74:1 103:7

50 Converged ABLP 65:4 70:4 6

MPEC 219:0 300:4

100 Converged ABLP 174:3 182:6 7

MPEC 2; 189:2 2; 221:7

� Time 1 & 2 : the CPU time (second) per starting point.
� The median of the numbers of iterations on convergence per starting point.

Table 4. Time Costs Varying the Variance of Random Coe¢ cients V ar [�i]

Variance of Random Coe¢ cients Implementation Time 1� Time 2� Iterations�

(level � V ar [�i]) (median) (mean) (median)

0:5 Converged ABLP 20:6 22:4 5

MPEC 69:2 93:1

1 Converged ABLP 20:9 23:2 5

MPEC 74:1 103:7

2 Converged ABLP 23:0 26:3 7

MPEC 81:4 109:9

� Time 1 & 2 : the CPU time (second) per starting point.
� The median of the numbers of iterations on convergence per starting point.
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Figure 1: Movement of RMSE with Number of Iterations�
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� This result is from a dataset from the base data-generating process.

Table 5. Performance of the 2-step ABLP estimator Varying the Mean Intercept E
�
�0i
�

Mean Intercept 2-step ABLP� Converged ABLP� MAE�

E
�
�0i
�

(second) (second) (%)

�1 8:7 16:9 0:08

0 9:2 17:8 0:09

1 10:4 20:9 0:21

2 12:7 25:0 0:27

� The median of the CPU times per starting point
� Mean absolute error (MAE) is the average di¤erence between the own price elasticities of the 2-step ABLP
and those of the Converged ABLP. It measures accuracy of the 2-step ABLP estimator.

21



Table 6. Performance of the 2-step ABLP estimator Varying the Number of Markets T

# of Markets 2-step ABLP� Converged ABLP� MAE�

(T ) (second) (second) (%)

25 5:6 10:5 0:14

50 10:4 20:9 0:21

100 32:1 51:2 0:33

200 77:2 125:0 0:11

� The median of the CPU times per starting point
� Mean absolute error (MAE) is the average di¤erence between the own price elasticities of the 2-step ABLP
and those of the Converged ABLP. It measures accuracy of the 2-step ABLP estimator.

Table 7. Performance of the 2-step ABLP estimator Varying the Number of Products J

# of Products 2-step ABLP� Converged ABLP� MAE�

(J) (second) (second) (%)

25 10:4 20:9 0:21

50 33:0 65:4 0:27

100 98:8 174:3 0:19

� The median of the CPU times per starting point
� Mean absolute error (MAE) is the average di¤erence between the own price elasticities of the 2-step ABLP
and those of the Converged ABLP. It measures accuracy of the 2-step ABLP estimator.

Table 8. Performance of the 2-step ABLP estimator Varying the Variance of Random Coe¢ -

cients

Variance of Random Coe¢ cients 2-step ABLP� Converged ABLP� MAE�

(level � V ar [�i]) (second) (second) (%)

0:5 12:5 20:6 0:50

1 10:4 20:9 0:21

2 10:3 23:0 0:89

� The median of the CPU times per starting point
� Mean absolute error (MAE) is the average di¤erence between the own price elasticities of the 2-step ABLP
and those of the Converged ABLP. It measures accuracy of the 2-step ABLP estimator.
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7 Appendix A : ABLP Setting

The ABLP moment function is

E [gjt (�; �)] = 0 where gjt (�; �) = �jt (�; �) zjt;

and �jt (�; �) is the jt-th element of the mapping � (�; �) with an abuse of notation: De�ne

gJ (�; �) =
1
J

PJ
j=1E [gjt (�; �)] : Then the population criterion function is

Q0 (�; �) = gJ (�; �)
0WgJ (�; �) ;

whereW is a weight matrix. We also write the sample analogue of the population criterion function

as

QJT (�; �) = bgJT (�; �)0cWJTbgJT (�; �) ;
where bgJT (�; �) = 1

JT

P
j

P
t�jt (�; �) zjt =

1
JT Z

0� (�; �) and cWJT !p W:

With an abuse of notation, de�ne �0 (�) � argmin�Q0 (�; �) ; �0 (�) � � (�0 (�) ; �) : The ABLP
population mapping consists of both � = �0 (�) and � = �0 (�) : Let r� and r� denote the �rst-
order derivative with respect to � and �, respectively. Let k�k denote the Euclidian norm. We start
with imposing standard regularity conditions for the consistency and asymptotic normality of the

nested pseudo-GMM estimator (i.e., Proposition 11 in Kasahara and Shimotsu 2009 and Condition

1 and 2 in Kim and Park 2010). We impose the regularity condition on �t (�0; �0).

Condition 1 (a) cWJT !p W ; (b) � (�; �) is three times continuously di¤erentiable in the neigh-

borhood of (�0; �0) ; (c) � and B� are compact: (�; �) 2 � � B�; (d) a unique �0 2 int (�) exists
such that �0 = �(�0; �0) ; (e) �0 (�) is a single-valued continuous function of � in a neighborhood

of �0; (f) the mapping f (�) � �0 (�)� � has a nonsingular Jacobian matrix at �0; (g) gJ (�0; �0) =
0; E [kztk] =

p
J < 1; E

h
kztk2

i
=
p
J < 1; E [k�t (�0; �0)k] =

p
J < 1; E

h
k�t (�0; �0)k2

i
=
p
J <

1; (h) E
h
sup�2� kr��t (�; �0)k2

i
=
p
J <1; E

h
sup�2� kr��t (�; �0)k2

i
=
p
J <1; and

(i) r�gJ (�; �)0Wr�gJ (�; �) is nonsingular at (�0; �0) :
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8 Appendix B : Proofs

Proof of Lemma 1. Assume without loss of generality that there is one market and J products

exist in it. For k = 1; 2; � � � ; J;

�k (�
�; ��) = ��k +

JP
j=1

[lnSj � ln sj (��; ��)]hkj

@�k (�
�; ��)

@�0
= 1 +

JP
j=1

�
[lnSj � ln sj (��; ��)]

@hkj
@�0

� hkj
@ ln sj (�

�; ��)

@�0

�
= 1�

JP
j=1

hkj
@ ln sj (�

�; ��)

@�0
;

where lnSj� ln sj (��; ��) = 0 for j = 1; :::; J; and hkj is (k; j) element of the matrix
h
@ ln s(��;��)

@�0

i�1
;

that is, 0BBBB@
h11 h12 � � � h1J

h21 h22 � � � h2J
...

...
. . .

...

hJ1 hJ2 � � � hJJ

1CCCCA �
�
@ ln s (��; ��)

@�0

��1
:

Thus we have

@� (��; ��)

@�0
= IJ �

�
@ ln s (��; ��)

@�0

��1 @ ln s (��; ��)
@�0

= IJ � IJ = 0J :

Proof of Proposition 1.
Assume without loss of generality that there is one market and J products exist in it.

(BLP) The BLP minimization problem is as follows:

min
�2�

� (�)0 ZcWJTZ
0� (�) ;

where (1) � (�) is obtained by the BLP contraction mapping: � (�) satis�es lnS = ln s (� (�) ; �) :

Suppose a local root e�BLP such that (2) the �rst-order condition (FOC) of the BLP minimization
problem holds at e�BLP :

2
d� (�)0

d�
ZcWJTZ

0� (�) j
�=e�BLP = 0:

By the implicit function theorem and the market share equations, lnS = ln s (� (�) ; �), for any �;

d� (�)

d�0
= �

�
@ ln s (� (�) ; �)

@�0

��1 �@ ln s (� (�) ; �)
@�0

�
:
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Then we can rewrite the FOC of the BLP minimization problem as

2

(
�
�
@ ln s (� (�) ; �)

@�0

��1 �@ ln s (� (�) ; �)
@�0

�)0
ZcWJTZ

0� (�) j
�=e�BLP = 0: (A.1)

(ABLP) The ABLP minimization problem with e�ABLP is as follows:
min
�2�

�
�
�;e�ABLP�ZcWJTZ

0�
�
�;e�ABLP� :

Suppose a �xed point
�e�ABLP ;e�ABLP� such that (1) (no updating) e�ABLP = ��e�ABLP ;e�ABLP� ;

and (2) the following �rst-order condition holds at e�ABLP :
2
@�
�
�;e�ABLP�
@�

0

ZcWJTZ
0�
�
�;e�ABLP� j�=e�ABLP = 0: (A.2)

(The set of these �xed points includes the set of the �xed points of the ABLP mapping.)

Now we will show a �xed point
�e�ABLP ;e�ABLP� satis�es the market share equations, lnS =

ln s (�; �), and then that the FOC of the BLP minimization problem is equivalent to the FOC of

the minimization problem in the ABLP mapping with no updating of �.

First, the equation, e�ABLP = ��e�ABLP ;e�ABLP� ; implies no change or updating occurs in � at the
�xed point as follows:

�
�e�ABLP ;e�ABLP� � e�ABLP +

24@ ln s
�e�ABLP ;e�ABLP�

@�0

35�1 hlnS � ln s�e�ABLP ;e�ABLP�i

) e�ABLP = e�ABLP +
24@ ln s

�e�ABLP ;e�ABLP�
@�0

35�1 hlnS � ln s�e�ABLP ;e�ABLP�i

) 0 =

24@ ln s
�e�ABLP ;e�ABLP�

@�0

35�1 hlnS � ln s�e�ABLP ;e�ABLP�i
) 0 = lnS � ln s

�e�ABLP ;e�ABLP� : (A.3)

Next, look at the �rst-order condition of the ABLP minimization problem in (A:2) :

2
@�
�
�;e�ABLP�0
@�

ZcWJTZ
0�
�
�;e�ABLP� j�=e�ABLP = 0;

25



where e�ABLP = �e�ABLP;1; � � � ;e�ABLP;J�0 ; and for i = 1; 2; � � � ; J;
�i

�
�;e�ABLP� = e�ABLP + JP

j=1

h
lnSj � ln sj

�e�ABLP ; ��i fij
@�i

�
�;e�ABLP�
@�0

=
JP
j=1

8<:hlnSj � ln sj �e�ABLP ; ��i @fij@�0
� fij

@ ln sj

�e�ABLP ; ��
@�0

9=;
where fij is (i; j) element of the matrix

�
@ ln s(e�ABLP ;�)

@�0

��1
; in other words,

0BBBB@
f11 f12 � � � f1J

f21 f22 � � � f2J
...

...
. . .

...

fJ1 fJ2 � � � fJJ

1CCCCA �

24@ ln s
�e�ABLP ; ��
@�0

35�1 :

If we evaluate both �
�
�;e�ABLP� and @�(�;e�ABLP )

@�0
at e�ABLP ;

�
�
�;e�ABLP� j�=e�ABLP = e�ABLP (A.4)

@�
�
�;e�ABLP�
@�0

j
�=e�ABLP = �

24@ ln s
�e�ABLP ; ��
@�0

35�1 24@ ln s
�e�ABLP ; ��
@�0

35 j
�=e�ABLP

because lnS� ln s
�e�ABLP ;e�ABLP� = 0. Then the �rst-order condition of the ABLP minimization

problem becomes

2

8><>:�
24@ ln s

�e�ABLP ;e�ABLP�
@�0

35�1 24@ ln s
�e�ABLP ;e�ABLP�

@�0

35
9>=>;
0

ZAZ 0e�ABLP = 0: (A.5)

From the BLP contraction mapping and (A:3) ; we can say both
�
�
�e�ABLP� ;e�ABLP� and �e�ABLP ;e�ABLP�

satisfy the market share equations, lnS = ln s (�; �) : And from equations (A:1) and (A:5) ; we can

say both
�
�
�e�ABLP� ;e�ABLP� and �e�ABLP ;e�ABLP� satisfy the same form of the �rst-order condi-

tion. This result implies that the set of the local roots of the BLP minimization,
ne�BLP ; � �e�BLP�o ;

is identical to the set of the �xed points of the ABLPminimization with no updating,
ne�ABLP ;e�ABLPo :

In addition, for any pair (��; ��) (which is both a local root of the BLP minimization and a �xed

point of the ABLP mapping), the value of the GMM objective function in the BLP minimization

is equal to the value of the GMM objective function in the ABLP minimization: �� = �(��; ��)

) ��0ZcWJTZ
0�� = �(��; ��)0 ZcWJTZ

0� (��; ��) :
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The BLP estimator, denoted by b�BLP ; is the parameter � with the lowest value of the BLP GMM
objective function among the local roots of the FOC of the BLP minimization. The BLP estimatorb�BLP and its corresponding � �b�BLP� become the �xed point with the lowest value of the ABLP
GMM objective function among the �xed points of the FOC of the ABLP minimization with no

updating. And the reverse is also true. Therefore, the BLP estimator is numerically equivalent to

the Converged ABLP estimator.

Proof of Proposition 2.
Let r� and r� denote the �rst-order derivative with respect to � and �, respectively. Let k�k denote
the Euclidian norm. Let QJT

�
�K ; �K�1

�
� bgJT ��K ; �K�1�0cWJTbgJT ��K ; �K�1� :

By de�nition, �K satis�es the �rst-order condition (FOC):

r�QJT
�
�K ; �K�1

�
= 0: (A.6)

Expanding r�QJT
�
�K ; �K�1

�
in (A:6) around

�b�;b�� using the mean value theorem,
0 = r��QJT

�
�; �
� �
�K � b��+r��QJT ��; �� ��K�1 � b�� ; (A.7)

where
�
�; �
�
lie between

�
�K ; �K�1

�
and

�b�;b�� ; and r�QJT �b�;b�� = 0: From (A:7), we get the

bound of �K � b� as follows:
�K � b� =

�
r��QJT

�
�; �
���1r��QJT ��; �� ��K�1 � b��

= O
�


�K�1 � b�


� : (A.8)

For the bound of �K � b�; we need to expand the right-hand side of �K = � ��K ; �K�1� around�b�;b�� :
�K = �

�b�;b��+r���b�;b����K � b��+r���b�;b����K � b��+O�


�K�1 � b�


2�
) �K � b� = r���b�;b����K � b��+O�


�K�1 � b�


2� (A.9)

because �
�b�;b�� = b�; r���b�;b�� = 0 by Lemma 1 and �K � b� = O �


�K�1 � b�


� in (A:8).

Expanding bgJT ��K ; �K�1� around �b�;b�� and using r�bgJT ��K ; �K�1�0cWJTbgJT �b�;b�� =
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Op

�
(JT )�

1
2




�K � b�


�+Op �(JT )� 1
2




�K�1 � b�


� in the over-identi�ed model,
r�bgJT ��K ; �K�1�0cWJTbgJT ��K ; �K�1�

= r�bgJT ��K ; �K�1�0cWJTbgJT �b�;b��+r�bgJT ��K ; �K�1�0cWJTr�bgJT �b�;b����K � b��
+r�bgJT ��K ; �K�1�0cWJTr�bgJT �b�;b����K�1 � b��+O�


�K�1 � b�


2� :

) 0 = r�bgJT ��K ; �K�1�0cWJTr�bgJT �b�;b����K � b��+Op �(JT )� 1
2




�K�1 � b�


�+O�


�K�1 � b�


2� :
because r�bgJT ��K ; �K�1�0cWJTbgJT ��K ; �K�1� = 0 (FOC) and r�bgJT �b�;b�� = 0 by Lemma 1:

Thus we have

�K � b� = Op �(JT )� 1
2




�K�1 � b�


�+O�


�K�1 � b�


2� : (A.10)

The result in (A:10) substitutes for �K � b� in (A:9). Therefore, the bound of �K � b� is
�K � b� = Op �(JT )� 1

2




�K�1 � b�


�+O�


�K�1 � b�


2� :
By the way, in the exactly-identi�ed model, bgJT �b�;b�� = 0: Thus, Expanding bgJT ��K ; �K�1�

around
�b�;b�� yields
0 = r�bgJT ��K ; �K�1�0cWJTr�bgJT �b�;b����K � b��+O�


�K�1 � b�


2� :
) �K � b� = O�


�K�1 � b�


2� :

In the same way as above, we have

�K � b� = O�


�K�1 � b�


2� :
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9 Appendix C : ABLP with Concentration on Nonlinear Parame-
ters 17

Similar to BLP (see Nevo 2000), ABLP restricts its parameter search over nonlinear parameters

� 2 �NL; and IV regression estimates its linear parameters � separately. The ABLP with a

concentration on nonlinear parameters has the same properties as ABLP. Therefore, all proofs of

ABLP will be applied to this version of ABLP. Similar to ABLP, ABLP with concentration starts

with an initial guess �0 for the unobserved product characteristic: At each iteration K � 1; the

following two stages occur:

Stage 1 [ Update of � ]: Obtain a new GMM estimate of � as

�K = �
�
�K�1

�
� argmin

�2�NL
�
�
�; �K�1

�0
ZcWJTZ

0�
�
�; �K�1

�
;

where

�
�
�; �K�1

�
= �

�
�; �K�1

�
�X�;

�
�
�; �K�1

�
= �K�1 +

"
@ lnS

�
�; �K�1

�
@�0

#�1 �
lnS � lnS

�
�; �K�1

��
;

� = (X 0PZWX)
�1X 0PZW �

�
�; �K�1

�
; PZW = ZcWJTZ

0:

Stage 2 [ Update of � ]: Update � using the �K of step 1; that is,

�K = �
�
�K ; �K�1

�
:

Iterate in K until convergence in � and � is reached.

17Recently, Moon, Shum, and Weidner (2010) (MSW) proposed a complementary estimation method to BLP by
adding interactive �xed e¤ects and using a nested �xed point algorithm. ABLP in Appendix C is applicable to their
model. To our knowledge, however, the MPEC approach cannot be applied to the MSW model.
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10 Appendix D : Partial Derivatives

� The following derivatives are calculated by market t: Thus, we omit subscript t for simple
notation.

� @ ln s(�;�)
@�0

�
= @ ln s(�;�)

@�0

�
; where ln s = (ln s1; :::; ln sJ)

0, and @ ln s
@�0

=
�
@ ln s
@�1

; :::; @ ln s@�J

�
.

@ ln s (�; �)

@�0
=

2666664
@s1
s1@�1

@s1
s1@�2

� � � @s1
s1@�J

@s2
s2@�1

@s2
s2@�2

� � � @s2
s2@�J

...
...

. . .
...

@sJ
sJ@�1

@sJ
sJ@�2

� � � @sJ
sJ@�J

3777775
�; �

=

266664
1
s1
1
I

PI
i=1

�
si1 � s2i1

�
1
s1
1
I

PI
i=1 (�si1si2) � � � 1

s1
1
I

PI
i=1 (�si1siJ)

1
s2
1
I

PI
i=1 (�si2si1) 1

s2
1
I

PI
i=1

�
si2 � s2i2

�
� � � 1

s2
1
I

PI
i=1 (�si2siJ)

...
...

. . .
...

1
sJ
1
I

PI
i=1 (�siJsi1) 1

sJ
1
I

PI
i=1 (�siJsi2) � � � 1

sJ
1
I

PI
i=1

�
siJ � s2iJ

�

377775
�; �

;

where sij =
exp(Xj�i+�j)

1+
PJ
j0=1 exp(Xj0�i+�j0)

; sj =
1
I

PI
i=1 sij ;

@sj
@�j

= 1
I

PI
i=1

�
sij � s2ij

�
for j = 1; :::; J ;

and @sj
@�k

= 1
I

PI
i=1 (�sijsik) for j 6= k and k = 1; :::; J:

� @ ln sj
@�k

:

@sj
@�k

is as follows:

@sj
@�k

=
1

I

IX
i=1

@sij
@�k

=
1

I

IX
i=1

sij

0@xkj � JX
j0=1

xkj0sij0

1A :
@sj
@�k

=
1

I

IX
i=1

@sij
@�k

=
1

I

IX
i=1

viksij

0@xkj � JX
j0=1

xkj0sij0

1A :
We can get @ ln sj@�k

using @sj
sj@�k

:
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11 Appendix E.

11.1 Nonparametric Speci�cation

The ABLP approach is not limited to a parametric distribution. We can approximate any well-

behaved distribution using the histogram approach that Kamakura (2001) proposes and that Bajari,

Fox, Kim, and Ryan (2009) apply for a discrete-choice model..

First, we can model the distribution of the random coe¢ cients as a mixture of point masses.

The market share function is approximated as follows:

sj (�t; �) =
RX
r=1

�rsj (�t; �
r) ; (C.1)

where there are R basis points � =
�
�1; :::; �R

�
, �r is the K-dimensional preference parameter and

�r is the probability of basis r, respectively. The � =
�
�1; :::; �R

�
must satisfy

RP
r=1

�r = 1; �r � 0: (C.2)

We could interpret that R types of agents with the proportion � exist.

Second, we could instead model the density function of the random coe¢ cients as a mixture of

normal densities in order to have a smooth distribution of the random coe¢ cients. In this model,

basis r denotes a joint normal function with K independent normal densities as follows.

N (�rj�r; �r) =
Q
k

N (�rkj�rk; �rk) ;

where �r = (�r1; :::; �
r
K) ; and �

r = (�r1; :::; �
r
K) : Let �

r denote the probability weight to basis r:

With basis r; we simulate I draws from N (�rj�r; �r) : Let a particular draw i be denoted by �r;i:
The market share function is

sj (�t; �) =
RX
r=1

�r
�
1

I

IP
i=1
sj
�
�t; �

r;i
��
: (C.3)

The � =
�
�1; :::; �R

�
must satisfy (C:2).

As in the case of the parametric market share function, we can apply the ABLP algorithm to

the nonparametric market share function.
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11.2 Estimation

The Convergent ABLP�s estimation of parameters and standard errors is the same as BLP�s. A

straightforward approach to this model is to �nd parameters satisfying the following condition

gjt (�) = �jt (�) zjt and E [gjt (�)] = 0;

where �jt is the unobserved product characteristic and zjt is instrumental variables for price pjt for

j = 1; :::; J; t = 1; :::; T: Note the sample analog to the population moment is

gN (�) =
1

JT

X
j

X
t

�jt (�)Zjt =
1

N

X
n

hn (�) ;

where N denotes JT and hn (�) � �jt (�)Zjt:
If we have more instrumental variables than parameters, we can run GMM estimation by min-

imizing

gN (�)
0WgN (�) ;

where W is a weight matrix and V � V ar (gN (�)) in order to minimize variance of the GMM

estimate. Note that the sample analog to V is given by

bV � V ar
�
gN

�b��� = V ar 1
N

X
n

hn

�b��! = 1

N2

X
n

V ar
�
hn

�b���
=

1

N
V ar

�
hn

�b��� = 1

N
E

�
hn

�b��hn �b��0� = 1

N2

X
n

hn

�b��hn �b��0
since hn (�) is i.i.d. and E [hn (�)] = 0:

In estimation, we can start with some initial �, compute W and then �nd the � that minimizes

the objective function. We can iteratively recompute the weight matrix W and re-estimate until

the estimates don�t change much between iterations. If we have the same number of moments as

parameters, the choice of the weighting matrix W doesn�t a¤ect estimates of �; in principle. How-

ever, if there is over-identi�cation, this iteration procedure obtains e¢ cient estimates conditional

on instrumental variables Z:

11.3 Standard Error

Let QN (�) = 1
2gN (�)

0WgN (�) : GMM estimates b� satisfy
p
N
�b� � �� = �

0@@2QN
�e��

@�@�0

1A�1pN @QN (�)
@�

;
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where e� is between b� and �:
p
N
�b� � �� d�! N

�
0;
�
�0W�

��1
�0W
W�

�
�0W�

��1�
;

where

� � E

�
@gN (�)

@�0

�
= E

�
@hn (�)

@�0

�

 � V ar

�p
NgN (�)

�
= E

�
hn (�)hn (�)

0�
@2QN(e�)
@�@�0

p�! �0W�
p
N @QN (�)

@�
d�! N

�
0;�0W
W�

�
:

If we ignore the simulation error, the asymptotic variance matrix of a GMM estimate b� is given by
AV ar

�b�� = ��0W���1 �0W 
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The asymptotic variance matrix can be approximated as

\AV ar
�b�� = �b�0W b���1 b�0W b
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where these derivatives are numerically obtained and the weight matrix W is �xed.

For a parametric speci�cation of market share function, the standard errors of parameters are

the diagonal elements of AV ar
�b�� 12 : For a nonparametric speci�cation, however, � contains the

probability weights, which are not the parameters of interest. Let B (�) be the parameters of

interest. By the delta method,

p
N
�
B
�b���B (�)� d�! N

�
0;rB (�)0

�
�0W�

��1
�0W
W�

�
�0W�

��1rB (�)� :
The asymptotic distribution of B

�b�� provides the standard errors of interest.
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