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Econometric Analysis of Panel Data 
 

 Spring  2008 – Tuesday, Thursday:  1:00 – 2:20 

 
Professor William Greene 

 

Midterm Examination 
 
This examination has four parts.  Weights applied to the four parts will be 15, 15, 30 and 40.  
This is an open book exam.  You may use any source of information that you have with you.  
You may not phone or text message or email or Bluetooth (is that a verb?) to “a friend,” however. 
 
 Part I.  Fixed and Random Effects    
 
 Define the two basic approaches to modeling unobserved, time invariant effects in panel 
data.  What are the different assumptions that are made in the two settings?  What is the benefit of 
the fixed effects assumption?  What is the cost?  Same for the random effects specification.  Now, 
consider the possibility that the unobserved effects are not time invariant.?  How does your 
answer change? 
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 Two approaches are fixed effects and random effects.  In the “effects model,” 
 yit = xit′β + ci + εit,  xit is exogenous with respect to εit. 
 FE:  ci may be correlated with xit.   
  Benefits:  General approach,   
     Robust – estimator of β is consistent even if RE is the right model. 
  Cost:   Many parameters, inefficient if RE is correct.   
     Precludes time invariant variables. 
 RE:  ci is uncorrelated with xit 
  Benefits:  Tight parameterization – only one new parameter 
     Efficient estimation – use GLS 
     Allows time invariant parameters 
  Cost   Unreasonable orthogonality assumption 
     Inconsistent if RE is the right model. 
 Random parameters case.  Replace the model statement with yit = xit′βi + εit, βi = β + wi. 
  Case 1: wi may be correlated with xit.  This is the counterpart to FE.  In this case, it 
   is necessary to fit the equations one at a time.  Requires that there be enough 
   observations to do so, so T > K.  The efficient estimator is equation by 
   equation OLS.  Same benefits (robustness) and costs (inefficiency) as FE 
  Case 2; wi is uncorrelated with xit.  This RP model can be fit 
   An efficient estimator will be the matrix weighted FGLS estimator.  (Swamy et 
   al.)  This would be a two step estimator, just like FGLS for the RE model. 
   This model can also be fit by simulation – we mentioned this briefly in class, 
and 
   will return to it later this semester. 
 
If the unobserved heterogeneity is time varying, then taking deviations from means will not remove it from 
the model. Returning to the model specification, we now have 
 
Yit = β′xit + cit + εit 
 
If cit is uncorrelated with xit then it can be simply added to the disturbance in the model, and the model 
becomes a simple linear regression that can be fit by OLS. This is the RE case. In the FE case in which cit 
is correlated with xit we have a classic left out variable problem, and there is no way to proceed. 
 
 
Part II.  Minimum Distance Estimation    
 
 Munnell’s 1990 study of public capital productivity was based on output, capital and 
labor data for 48 states (not Alaska and Hawaii), and 17 years.  Variables are yit = log of gross 
state product and 
xit = (logKit, logLit) where K, and L are capital and labor.  The model I propose is   
 
 yit  =  αi + xit′β + εit,i = 1,…,48, t = 1970,…,1986. 
 
where E[εit|xit] = 0 for all i and t. 
 
 E[εitεjs]  =  σij if t = s and 0 if t ≠ s.   
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(I.e., states are correlated because of common macroeconomic conditions, but there is no 
correlation across time.) I propose to fit this model by the following strategy: 
 
 1.  Estimate the equation separately for each state. 
 2.  Use a minimum distance estimator to reconcile the 48 competing estimators of β 
 
1.  Does this procedure produce 48 sets of consistent estimators of the parameters of the model? 
Explain. 
 
 The estimators are unbiased, since this is a classical regression model. Consistency would 
hang on the usual assumptions about the data, plus an assumption that T was increasing. In the 
usual panel data case, we would assume that T is fixed, in which case, the answer would be no.  
With 17 years of data, and potentially more years, increasing T might make some sense.  In 
principle, consistency of a panel data hangs on n increasing, but increasing numbers of years is 
certainly more plausible than increasing the number of states.  So, consistency in this context is 
hardly assured. 
 
2.  Assuming that σij equals zero when i ≠ j. (i.e., no correlation across states, but different 
variances), show how to compute the minimum distance estimator of β. 
 
 If there is no correlation of the disturbances across states, we would have estimated αi as 
efficiently as possible, since we used the data for each state to estimate the state specific αi. But, 
we have 48 estimates of β.  We can use a minimum distance estimator to reconcile the 48 of them 
by minimizing with respect to β 
 
 

48
i i ii 1

(b ) V (b )
=

′−β −β∑  
 
As long as the weighting matrix for the MDE is positive definite, any one will produce a 
consistent estimator.  The most efficient estimator weights the components by the inverse of their 
respective covariance matrices.  Thus, we would use for Vi the inverse of si

2(Xi′Xi)-1.  This 
produces a weighted average of the bis, b  =  Σi Ai bi in which the weighting matrix is the diagonal 
of 
 
 Ai  =  [Σi {si

2(Xi′Xi)-1}-1]-1 {si
2(Xi′Xi)-1}-1 

 
3.  Show that a seemingly unrelated regression estimator can be used to estimate αi and β 
efficiently if I do not make the assumption that σij = 0 when i ≠ j.   
 
You can write the model in the model in the form of a seemingly unrelated regression model by 
just stacking the equations, but keeping a separate constant term for each state.  It turns out that 
this produces precisely the MDE. 
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4.  The first assumption made above is that the disturbance in each period is uncorrelated with the 
regressors in that period.  Suppose the assumption is strengthened to E[εit|xis] = 0 for all i,t and s.  
That is, the disturbance in each period for each state is uncorrelated with the regressors in every 
period for that state.  Does this weaken the claim of efficiency made in part 3?  Explain.  Is there 
an alternative estimator available that is more efficient than the one in 3? 
 
By assuming only exogeneity, we have assumed that the disturbance εit in each period is 
uncorrelated with the xit in that period.  This produces the moment equations 
 
  Σt xit εit = 0, for i = 1,…, 48. 
 
Solving this for the one estimator of β produces the estimator in part 2.  But, if we have strict 
exogeneity, then we have many additional equations. For example, this would imply the moment 
equations: 
 
  (1/n)Σi xi1 εi2 = 0 
 
The estimator implied by this moment condition is is the “IV” estimator 
 
  b12  =  (X2′X1)-1X2′y1 
 
where X2 is the 48 observations on xit for period 1, and X2 and y1 are defined likewise.  If you 
start listing these out, wou will see that this actually produces hundreds of additional estimators 
of β that can be added to the computation in 2.  (One might wonder if this is really such a good 
idea.) 
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Part III.  Dynamic Model 
 
 Consider the dynamic, linear, cross country, random effects regression model 
 
 yit =  α + βxit  + δzit  +   γyi,t-1 +  ui  +  εit, t = 1,...,4 (and yi,0 is observed data). 
 
in which i is a country and t is a year; yit is national income per capita, zit is domestic investment 
and xit is a measure of national labor input.  You have 30 countries and 4 years of data.   
1. Show that the pooled ordinary least squares estimator is inconsistent.  
 
 The variable yi,t-1 must be correlated with ui which appears in the disturbance. 
 
2. Show how the Hausman and Taylor approach can be used to obtain consistent estimators of 
(α,β,δ,γ). 
 
 Clearly it is an example of the H&T framework, though there are no time invariant 
variables in the model save for the constant  In the H&T framework, xi1 is (x,z) and xi2 is (y-1). zi1 
is (1) and zi2 is null.  Just counting variables, we find K1 = 2 is certainly greater than L2 = 0, so 
the H&T approach does appear to be available. 
 
3. Let wit = (yit -  α - βxit  - δzit  - γyi,t-1).  Consider the set of instruments fit = (1,xit,zit,xi,t-1,zi,t-1).  
Let F be a 120×4 matrix of instrumental variables, and X be the 120×4 matrix of data in the 
model.  Does the simple strategy of pooling the panel and simply using two stage least squares 
with F as the set of instruments produce a consistent estimator of the parameters?  Explain. 
 
 One would expect that the lagged values of xit and zit would, indeed, be valid 
instrumental variables in this model, so with no further assumptions that would make them 
endogenous, yes, 2sls would work in this case. 
 
4. Suppose the model is modified to allow the coefficient on zit to differ across countries. 
 
 yit =  α + βxit  + δi zit  +   γyi,t-1 +  ui  +  εit, t = 1,...,4 (and yi,0 is observed data). 
 
Can you propose a consistent estimator of the parameters of this model when δi varies across 
countries?  Explain. 
 
 This is going to be difficult.  A fixed effects approach won’t work.  In principle, a “mixed 
fixed” effects estimator can be constructed, by building an interaction term between zi and a 
country dummy variable and having a separate term for each zi.  This leaves the lagged dependent 
variable in the model, so the problem of the endogeneity of yi,t-1 remains. This estimator is not 
consistent.  Likewise, a random parameters approach (δi = δ + wi)  might seem appealing, which 
turns the model into an RPM with a random constant and one random slope. But, that lagged y 
still remains.  So, consistency in this case, without an instrumental variable approach or a 
maximum likelihood estimator is not going to be obtainable.  
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Part IV.  Analysis of Panel Data 
 
 The following analysis is based on a panel of data on the U.S. airline industry (from back in 
the good old days before flying was less pleasant than root canal surgery).  The original data are an 
unbalanced panel of observations on 25 airlines with numnber of observations ranging from 2 to 15.  
One of the airlines is missing some essential data (for our purposes), so it was dropped leaving 24 
airlines.  We also doctored the data a bit, converting a time varying variable, POINTS = the number 
of cities served, to NODES = the airline average of POINTS, which is time invariant.  The variables 
in the data set that are used in the regressions below are as follows: 
 
Cit = total costs 
Qit = total output in revenue passenger miles 
Pjit = prices of five inputs, M=Materials, L=Labor, P=Property, F=Fuel, E=Equipment 
LFit = load factor (average proportion of seats occupied on a flight) 
Stageit = average stage length = average length of flights 
Nodesi = number of nodes (airports) in the airlines’ route map in the given year. 
 
We begin with a basic loglinear model, in which a variable name preceded by “L” indicates logs: 
 
LCit = β1LPM + β2LPF + β3LPL + β4LPE + β5LPP + θLQ + γ1LF + γ2Lstage + γ3LNodes + ci + εit 
 
1.  The assumption of linear homogeneity in prices is an essential part of the theory underlying the 
cost function.  This would be 5

k 1 k=Σ β  = 1.  How would you test the restriction of linear homogeneity 
in the input prices in the context of the pooled linear regression model?  Do the results given below 
provide the statistics you need to carry out the test?  If yes, show how to do it.  If not, explain why not 
– i.e., what do you need that is not provided. 
 
 In order to test the hypothesis of the restriction, in principle, one could use a Wald test.  But, 
the covariance matrix for the unrestricted model is not given, so this will not work.  The alternative is 
to compare the restricted and unrestricted models using the fit measures. One would normally do this 
using an F statistic based on the two R2s, which might appear to be 
 
 F(1,236) = [(.9960416-.9943532)/1] / [(1 - .9960416)/(246 – 10)] = 100.66249. 
 
This seems highly significant. The problem is that the restricted regression is obtained by 
imposing the restriction. This is done by subtracting LLP from the other 4 log prices, and from 
the dependent variable. Note in the second regression, there are only 4 price variables, and the 
dependent variable which was LC becomes LCP.  The test must be carried out using the sum of 
squared residuals, not the R2s.  This is 
 
 F(1,236) = [(1.606532-1.439515)/1] / [(1.606532)/(246 – 10)] = 25.534884. 
 
Still highly significant.  The hypothesis would be rejected. 
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2.  Using the pooled least squares results, test the hypothesis that γ1 = γ2 = γ3 = 0.  Can you carry out 
this test using the fixed effects results?  Explain?  How would you carry out this test using the random 
effects results?  (Note, the precise numbers are easy to manipulate on paper, but tedious actually to 
manipulate.  Just show me what you would like to compute – you need not actually carry out the 
computation.) 
 
 For this test, the only way to proceed is the Wald test.  The statistic would be 
 
 W  = (c1, c2, c3)′ V-1 (c1, c2, c3) 
 
Where c1, c2, and c3 are the estimates in the pooled results 
|LF      |     .64803***       .04247028    15.259   .0000  -1.1094900| 
|LSTAGE  |    -.09635***       .02204232    -4.371   .0000   6.0411056| 
|NODES   |     .00239***       .00027239     8.777   .0000   72.983740| 

 
And the covariance matrix needed is the lower right 3×3 matrix in the picture shown under the 
regression results.  (No need to do the actual calculation.) 
 
3.  Based on the results given, which model do you think the analyst should report as their best 
estimates, the pooled least squares results, the fixed effects results or the random effects results? 
Justify your answer with the statistical evidence. 
 
 This judgment has to be based on the model that does not include NODES, as this is time 
invariant.  These are the last results given below.  The reported results, 
| Lagrange Multiplier Test vs. Model (3) =  425.17 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Fixed vs. Random Effects (Hausman)     =   34.44 | 
| ( 7 df, prob value =  .000014)                   | 

Include an LM statistic of 425.17, which is a chi squared with 1 degree of freedom. This is large, and 
we can confidently reject the “no effects model.”   The Hausman statistic given of 34.44 is given with 
a P-value of .000014, which suggests that we should reject the random effects model in favor of the 
fixed effects model. 
 
4.  The hypothesis of constant returns to scale is θ = 1.  Carry out a test of this hypothesis using the 
model that you chose in part 3. 
The fixed effects results are 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
|LPMP    |     .51163***       .05845300     8.753   .0000   2.5223929| 
|LPFP    |     .21330***       .01622798    13.144   .0000   2.1502564| 
|LPLP    |     .12843**        .04951746     2.594   .0101   2.8079962| 
|LPEP    |    -.02844          .03435212     -.828   .4085   1.8883002| 
|LQ      |     .24755***       .03597221     6.882   .0000  -1.1728132| 
|LF      |     .60151***       .03907522    15.394   .0000  -1.1094900| 
|LSTAGE  |    -.15213***       .03313002    -4.592   .0000   6.0411056| 
+--------+------------------------------------------------------------+ 

To test the hypothesis, we would refer the statistic (.24755 – 1)/.03597 to the standard normal table. 
The statistic is 20.91, which is large. We would reject the hypothesis. 
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5.  Notice that in the first set of results, the sum of squared residuals for the fixed effects estimator is  
.5100564 .  In the second set of results, where the time invariant variable NODES is removed 
from the regression, the sum of squared residuals given for the fixed effects regression is   
.5100564 again!!.  Shouldn’t the sum of squared residuals increase when a variables is removed 
to the regression?  Can you explain this strange outcome? 
 
Unfortunately, as noted in class during the exam, you did not actually have the results to observe 
this outcome. The result follows from the fact that when we fit the FE model without NODES, we 
get a sum of squares of .5100564.  To try to add NODES to the model, we are adding a variable 
that is a linear combination of variables that are already in the model. This cannot improve the fit 
of the model, so it produces the same sum of squares. 
 
6.  Using the first set of regression results, test the hypothesis that all the constant terms in the fixed 
effects model are equal to each other. 
 
The first set of regression results for the panel data treatment includes 
+--------------------------------------------------------------------+ 
|             Test Statistics for the Classical Model                | 
+--------------------------------------------------------------------+ 
|       Model            Log-Likelihood  Sum of Squares    R-squared | 
|(1)  Constant term only     -366.94408  .2845018183D+03    .0000000 | 
|(2)  Group effects only      -58.93258  .2325641805D+02    .9182556 | 
|(3)  X - variables only      251.76657  .1859991285D+01    .9934623 | 
|(4)  X and group effects     386.41860  .6224075306D+00    .9978123 | 
+--------------------------------------------------------------------+ 
|                        Hypothesis Tests                            | 
|         Likelihood Ratio Test           F Tests                    | 
|         Chi-squared   d.f.  Prob.       F    num. denom.   P value | 
|(2) vs (1)   616.023     23  .00000  108.425    23     222   .00000 | 
|(3) vs (1)  1237.421      7  .00000 5166.595     7     238   .00000 | 
|(4) vs (1)  1506.725     30  .00000 3268.709    30     215   .00000 | 
|(4) vs (2)   890.702      7  .00000 1116.933     7     215   .00000 | 
|(4) vs (3)   269.304     23  .00000   18.587    23     215   .00000 | 
+--------------------------------------------------------------------+ 

The question asks for the test of “Model 4” vs. “Model 3” above.  The F statistic is given at the 
bottom of the table, 18.587, with a P value of .00000.  We would reject the hypothesis that all the 
constant terms are the same. 
 
7.  In a cost function such as this, the assumption that the output variable is exogenous is sometimes 
justified by an appeal to the regulatory environment in which some regulatory body sets the prices for 
the firm and they must accept all demand that is forthcoming.  The argument works for electricity or 
gas providers.  It probably doesn’t work for profit maximizing airlines.  In general terms, how would 
you want to change your estimation strategy to deal with the possibility that the output variable is 
endogenous in the model. 
 
If this were the case, I would look for a version of instrumental variables that accommodates fixed 
effects.  In fact this is straightforward.  We would need, first, to obtain the IV. In hand, an FE 
transformation (deviations from means) does solve the problem.  The real problem is locating the 
valid instrumental variable. 
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8.  The random effects model in the first results embodies an undesirable assumption of 
uncorrelatedness of ci and the independent variables.  The fixed effects model has many coefficients 
and is inefficient (possibly).  The Mundlak approach represents a compromise of these two.  Describe 
how to use Mundlak’s estimator in this model. 
 
Mundlak’s approach would write the FE as 
 
αi  =  δ′x-bari + ui 
 
where x-bar is the group means of the time varying variables  - and time invariant variables stay in the 
model.  This turns the FE model into an RE model which contains the group means as additional 
variables.  
 
 
 


