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Abstract 
 
 The panel data linear regression model has been exhaustively studied in a vast literature that 
originates with Nerlove (1966) and spans the entire range of empirical research in Economics. This 
chapter describes the application of panel data methods to some nonlinear models such as binary choice 
and nonlinear regression, where the treatment has been more limited. Some of the methodology of linear 
panel data modeling can be carried over directly to nonlinear cases, while other aspects must be 
reconsidered. The ubiquitous fixed effects linear model is the most prominent case of this latter point.  
Familiar general issues including dealing with unobserved heterogeneity, fixed and random effects, initial 
conditions and dynamic models are examined here. Practical considerations such as incidental parameters, 
latent class and random parameters models, robust covariance matrix estimation, attrition, and maximum 
simulated likelihood estimation are considered. We review several practical specifications that have been 
developed around a variety of specific nonlinear models including binary and ordered choice, models for 
counts, nonlinear regressions, stochastic frontier and multinomial choice models. 
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5.1 Introduction 
 
 This chapter explores the intersection of two topics: nonlinear modeling and the treatment of 
panel data. Superficially, nonlinearity merely compels parameter estimation to use methods more 
involved than linear least squares.  But, in many ways, nonlinear models are qualitatively different from 
linear ones – it is more than a simple matter of functional form.  (I.e., nonlinearity is more than the simple 
difference between [y = β′x + ε] and [y = h(β,x) + ε].)  Analysis often involves reinterpreting the objects 
of estimation  Most of the received analysis of panel data models focuses on the treatment of unobserved 
heterogeneity.  The full set of issues that appear in the (fixed or random effects) linear panel data  
regression appear in more complicated forms in nonlinear contexts. 

The application of panel data methods to nonlinear models is a subarea of microeconometrics. 
(See Cameron and Trivedi (2005).)  The analyst is interested in the behavior of individual units, such as 
people, households, firms, etc., where the typical model examines the outcome of an individual decision.  
We are interested in nonlinear models, using methods and models defined for panel data.  To cite a 
template example, many researchers have analyzed health outcomes data, including health satisfaction (a 
discrete, ordered, categorical outcome), retirement (a discrete, binary outcome) and health system 
utilization (usually a discrete count of events), in the context of the German Socioeconomic Panel data set 
or the European Community Household Panel data set. These are repeated surveys of a large number of 
households gathered over a number of years.  We are interested in models and methods that extend 
beyond linear regression. 

Many of the longitudinal data sets that are used in contemporary microeconometric research 
provide researchers with rich studies of outcomes such as fertility, health decisions and outcomes, 
income, wealth and labor market experiences, subjective health and well being and consumption 
decisions.  Most of these variables are discrete or discontinuous and not amenable to conventional linear 
regression modeling.  The literature provides a wide variety of theoretical and empirical frameworks for 
nonlinear modeling, such as binary, ordered and multinomial choice, censoring, truncation, attrition and 
sample selection. These nonlinear models have adapted econometric methods to more complicated 
settings than linear regression and simple instrumental variable (IV) techniques. This chapter will provide 
an overview of these applications. Some theoretical developments are presented to give context to the 
practical implementations. The particular interest is in the extension of ‘panel data’ methods to these 
nonlinear models that have long provided the econometric platforms.  This includes development of 
treatments of fixed and random effects models and random parameter forms for unobserved 
heterogeneity, models that involve dynamic effects and sample attrition. We are also interested in the 
theoretical issues and complications that define this area of analysis and in a number of specific kinds of 
applications such as random utility based discrete choice models, random parameter and latent class 
models and applications of the stochastic frontier model. 
 Overall, we are interested in a general arena of models that have appeared in empirical 
applications. The treatment leans more toward the parametric treatments than some recent treatments such 
as Honoré (2002) and Arellano and Hahn (2006).  Some essential theory is presented, as well as a variety 
of applications.  The selection of topics in this survey is wider than in some others (e.g., Honore (2002, 
2013), Honoré and Kesina (2017)), but not exhaustive.  A large literature on deeper theory (see, e.g., 
Wooldridge (2010)) and results that advance the fundamental methodology, such as set vs. point 
identification in discrete choice models (e.g., Chesher (2013)) is left for more advanced treatments. Many 
additional practical results appear in Cameron and Trivedi (2005).  One of the important features of the 
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analysis described here is that familiar results for the linear model cannot be carried over to nonlinear 
ones. We begin in Section 5.2 by examining the interpretation of parameters and partial effects in 
nonlinear models.  Specific aspects of panel data modeling, notably heterogeneity under different 
assumptions, the incidental parameters problem and dynamic effects are treated in Section 5.3.  Section 
5.4 describes features that are common to most nonlinear panel data models.  Applications, including the 
essential layout of longitudinal data sets are treated in Sections 5.5 and 5.6.  The last two sections also 
consider the problem of attrition and issues related to robust estimation and inference. 
 The following notation is used throughout the survey: 
 
 Panel Data Set Dimensions: 

i  = index for observations (individuals), 
t  = index for periods, or replications, 
n  = sample size; i = 1,…,n, 
Ti  = number of observations in group i, not assumed constant, 
N  = 1

n
i=Σ Ti; 

Panel Data: 
yi,t  = variable of interest in the ‘model,’ may be one or more than one outcome, 
xi,t  = exogenous variables = (1,zi,t′)′, column vectors, 
yi  = (yi,1,…,yi,Ti)′ = sequence of realizations of yi,t, 
Xi  = sequence of observations on exogenous variables, Ti×K; xi,t′ = row t of Xi, 
d(i) =  d(i)j,t = di = 1[j = i, t = 1,…,Ti] = sample length dummy variable for i, 
i  = constant term = column of ones; 

 Functions: 
φ(t), Φ(t)  = standard normal pdf, cdf,  
Λ(t)   = logistic cdf, 
N[µ,σ2]  = normal distribution,  
N+[µ,σ2]  = truncated at zero normal distribution = |u| where u ~ N[0,σ2], 
f(c|X)  = conditional density of c given X, 
f(c:σ) or f(c|X:σ) = density of variable that involves parameter σ, 
f(yi,t|…)  = density for yi,t, used generally for the model for yi,t, 
1[condition]  = 1 if condition is true, 0 if false, 
E[c]  = expected value,  
Ec[g(x,c)]  = h(x) = expected value over c;  

 Model Components: 
εi,t  = general idiosyncratic disturbance in model, 
ci   = unobserved heterogeneity, usually univariate, 
αi  = fixed effects version of ci, α = (α1,…,αn)′, 
ηi  = exp(αi), 
ui  = random effects version of ci, 
β  = slope vector in index function model, appears as β′xi,t = π + γ′zi,t, 
γ  = subvector of β omitting the constant, 
π  = constant term, β = (π,γ′)′, 
φi,t  = exp(γ′zi,t), 
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λi,t  = exp(β′xi,t + ci) = ηiφi,t, ci = αi or ui, 
θ  = οne or more ancillary parameters in parametric model, 
σ2  = variance of ui in random effects model, 
σε

2
  = variance of εi,t in random index function model. 

5.2  Nonlinear Models 
 
The linear panel data regression model is 
 

   yi,t = β′xi,t  + ci + εi,t, i = 1,…,n, t = 1,…,Ti, 
 
where yi,t is the outcome variable of interest, xi,t is a vector of time varying and possibly time invariant 
variables, also possibly including yi,t-1, ci is unobserved time invariant heterogeneity that is independent of 
εi,t and εi,t is a classical disturbance.  Since ci is unobserved, there is no coefficient or scale attached to it. 
The ‘linearity’ of the model relates to (1) the way that the natural estimator of the parameter vector of 
interest, β, is computed, that is, by using some variant of linear least squares or instrumental variables 
(IV) to solve a set of linear equations and (2) the way that the unobserved heterogeneity, ci enters the 
function of interest, here the conditional mean function. 

We are interested in models in which the function of interest, such as a conditional mean, is 
intrinsically nonlinear. This would include, for example, the Poisson regression model: 

  

 , , , ,

, , , ,

(Data Generating Process)    Prob( | , )   exp( ) / !;

(Function of Interest)            [ | , ]     =   exp( ).

j
i t i t i i t i t

i t i t i i t i t i

y j c j

E y c c

 = = −λ λ 
′λ = +

x

x xβ
 

 
(See Cameron and Trivedi (2005) and Greene (2018).) Most models of interest in this area involve 
missing data in which yi,t, the outcome of some underlying process involving β as well as ci, passes 
through a filter between the data generating process (DGP) and the observed outcome.1

 

  The most 
common example is the familiar (semiparametric) random effects binary choice model: 

(Random Utility DGP) yi,t*  =  β′xi,t + ci  +  εi,t , yi,t* = unobserved random utility; 
(Revealed Preference) yi,t    =  1[yi,t* > 0]. 

 
(The model becomes parametric when distributions are specified for ci and εi,t.) In this case, the nonlinear 
function of interest is 
 
 Prob[yi,t = 1|xi,t,ci]  =  

,( ) /i t iF c ε′ + σ xβ . 

 
where F[.] is the cdf of εi,t.  This example also fits into category (1).2

                                                      
1 Nearly all of the models listed above in Section 4.6 are of this type. 

  It will not be possible to use least 
squares or IV for parameter estimation; (2) Some alternative to group mean deviations or first differences 

2 In cases in which the function of interest is a nonlinear conditional mean function, it is sometimes suggested that a 
‘linear approximation’ to quantities of intrinsic interest, such as partial effects, be obtained by simply using linear  
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is needed to proceed with estimation in the presence of the unobserved, heterogeneity.  In the most 
familiar cases, the issues center on persuasive forms of the model and practicalities of estimation, such as 
how to handle heterogeneity in the form of fixed or random effects.  The linear form of the model 
involving the unobserved heterogeneity is a considerable advantage that will be absent from all of the 
extensions we consider here. A panel data version of the stochastic frontier model (Aigner, Lovell and 
Schmidt (1977)) is 
 
 yi,t   =  β′xi,t + ci + vi,t – ui,t 
  =  β′xi,t + ci + εi,t, 
 
where vi,t ~ N[0,σv

2] and ui,t ~ N+(0,σu
2).  (See Greene (2004a, 2004c).)  Superficially, this is a linear 

regression model with a disturbance that has a skew normal distribution, 
 

 , , 2 2 2
,

2( ) , = , .i t i t u
i t v u

v

f
ε −λε    σ

ε = φ Φ λ σ = σ + σ   σ σ σ σ   
 

 
In spite of the apparent linearity, the preferred estimator is (nonlinear) maximum likelihood.  A second, 
similar case is Graham et al.’s (2015) quantile regression model, yi,t (τ)  =  β(τ, ci)′xi,t + ε(τ)i,t. (See Geraci 
and Bottai (2007).)  The model appears to be intrinsically linear.  However, the preferred estimator is, 
again, not linear least squares – it is usually based on a linear programming approach.  For present 
purposes, in spite of appearances this model is intrinsically nonlinear. 
 
5.2.1  Coefficients and Partial Effects 
 

The feature of interest will usually be a nonlinear function, g(xi,t,ci) derived from the probability 
distribution, f(yi,t|xi,t,ci), such as the conditional mean function, E[yi,t|xi,t,ci] or some derivative function 
such as a probability in a discrete choice model, Prob(yi,t = j|xi,t,ci) = F(xi,t,ci).  In general, the function will 
involve structural parameters that are not, themselves, of primary interest; g(xi,t,ci) = g(xi,t,ci : θ) for some 
vector of parameters, θ.  The partial effects will then be PE(x,c) = δ(x,c : θ)  =  ( , : ) /g c∂ θ ∂x x .  In the 
probit model, the function of interest is the probability, and the relevant quantity is a partial effect,  

 
 PE(x,c) = ∂Prob(yi,t = 1|x,c)/∂x. 
 
Estimation of partial effects is likely to be the main focus of the analysis. Computation of partial effects 
will be problematic even if θ is estimable in the presence of c, because c is unobserved and the 
distribution of c remains to be specified.  If enough is known about the distribution of c, computation at a 
specific value, such as the mean, may be feasible.  The partial effect at the average (of c) would be 
 
 PEA(x) = δ(x,E[c] : θ) = ∂Prob(yi,t = 1|xi,t , E[ci])/∂x, 
 
while the average (over c) partial effect would be 
                                                                                                                                                                           
least squares.  See, e.g., Angrist and Pischke (2009) for discussion of the canonical example, the binary probit 
model. 
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 APE(x) = Ec[δ(x,c : θ)]  =  Ec[∂Prob(yi,t = 1|x,c)/∂x].  
 
One might have sufficient information to characterize f(ci|xi,t) or f(ci|Xi). In this case, the PEA could be 
based on E[ci|Xi] or the APE might be based on the conditional distribution, rather than the marginal.  
Altonji and Matzkin (2005) identify this as a local average response (LAR, i.e., local to the 
subpopulation associated with the specific realization of Xi). If ci and Xi are independent, then the 
conditional and marginal distributions will be the same and the LAR and APE will also be the same. 

In single index function models, in which the covariates enter the model in a linear index function, 
β′xi,t, the partial effects usually simplify to a multiple of β; 
 

 PEA(x) = β h(β′x,E[c])], where h(β′x ,E[c])] = ( , [ ]) ,t
g t E c

t ′=

∂
∂ xβ

 

 
 APE(x) = β Ec[h(β′x ,c)].  
 
For the normalized (σε = 1) probit model, Prob(yi,t = 1|xi,t,ci) = Φ(β′xi,t+ci). Then,  
g(β′x,c) = Φ(β′x + c) and h(β′x,c) = βφ(β′x + c).  The coefficients have the same signs as partial effects, 
but their magnitude may be uninformative;   
 
 APE( ) ( ) ( | ).

c
c dF c′= φ +∫x x xβ β  

 
To complete this example, if c ~ N[0,σ2] and ε ~ N[0,12].  Then, y* = β′x + c + ε = β′x + w, where  
w ~ N[0,1+σ2].  It follows that  
 
 Prob[y = 1|x,c]  = Prob(ε <  β′x + c) = Φ(β′x + c), 
 
 Prob(y = 1|x)  = Prob(w <  β′x) = Φ(β′x/ σw) = Φ[β′x / (1 + σ2)1/2]. 
 
Then PEA(x) = β φ(β′x + 0) = β φ(β′x) while 

 ( )APE( ) ( )(1/ ) /
c

c c dc′= φ + σ φ σ∫x xβ β   

   = (β / (1 + σ2)1/2
 ) × φ[β′x / (1 + σ2)1/2]  =  δ φ (δ′x). 

 
5.2.2  Interaction Effects 
 

Interaction effects arise from second order terms; yi,t = βxi,t + γzi,t + δxi,tzi,t  + ci + εi,t, so that  
 
 APE(x|z)  =  Ec{∂E[y|x,z,c]/∂x} = Ec[∂(βxi,t + γzi,t + δxi,tzi,t  + ci)/∂x] =  β + δzi,t. 
 
The interaction effect is ∂APE(x|z)/∂z = δ. What appear to be interaction effects will arise unintentionally 
in nonlinear index function models. Consider the nonlinear model, E[yi,t |xi,t ,zi,t,ci] = exp(βxi,t + γzi,t + ci). 
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The average partial effect of x|z is APE(x|z)  =  Ec{∂E[y|x,z,c]/∂x} = βexp(βx + γz)E[exp(c)].  The second 
order (interaction) effect of z on the partial effect of x is βγexp(βx + γz)E[exp(c)], which will generally be 
nonzero even in the absence of a second order term. The situation is worsened if an interaction effect is 
built into the model.  Consider  E[y|x,z,c] = exp(βx + γz + δxz +c).  The average partial effect is 
 
 APE(x|z)  = Ec{∂E[y|x,z,c]/∂x}  
   = E[exp(c)](β+δz)exp(βx + γz + δxz)]. 
 
The interaction effect is, now,  
 
 ∂APE(x|z)/∂z =  E[exp(c)] exp(βx + γz + δxz)]{δ + (β+δz)(γ + δx)}. 
 
The effect contains what seems to be the anticipated part plus an effect that clearly results from the 
nonlinearity of the conditional mean. Once again, the result will generally be nonzero even if δ equals 
zero. This creates a considerable amount of ambiguity about how to model and interpret interactions in a 
nonlinear model.  (See Mandic, Norton and Dowd (2012), Pinar, Norton and Dowd (2012), Ai and Norton 
(2003) and Greene (2010a) for discussion.) 
 
5.2.3  Identification through Functional Form 
 

Results in nonlinear models may be identified through the form of the model rather than through 
covariation of variables. This is usually an unappealing result. Consider the triangular model of health 
satisfaction and SNAP (food stamp) program participation by Gregory and Deb (2015); 

 
  SNAP  = βS′x + δ′z + ε 
  HSAT = βH′x + γSNAP + w. 
 
Note that x is the same in both equations.  If δ is nonzero, then this linear simultaneous equations model 
is identified by the usual rank and order conditions.  Two stage least squares would likely be the preferred 
estimator of the parameters in the HSAT equation (assuming that SNAP is endogenous – that is, if ε and w 
are correlated).  However, if δ equals 0, the HSAT equation will fail the order condition for identification 
and be inestimable.  But, the model in the application is not linear – SNAP is binary and HSAT is ordered 
and categorical – both outcome variables are discrete.  In this case, the parameters are fully identified 
even if δ equals 0. Maximum likelihood estimation of the full set of parameters is routine in spite of the 
fact that the regressors in the two equations are identical. The parameters are identified by the likelihood 
equations under mild assumptions (essentially that the Hessian of the full information log likelihood with 
respect to (βS,δ,βH,γ) is nonsingular at δ = 0).  This is identification by functional form.  The causal effect, 
γ is identified when δ = 0, even though there is no instrument (z) that drives SNAP participation 
independently of the exogenous influences on HSAT. The authors note this, and suggest that the nonzero δ 
(exclusion of z from the HSAT equations) is a good idea to “improve” identification, in spite of result.3

                                                      
3 Scott et al. (2009) who make the same observation. Rhine and Greene (2013) is a similar application.  See also 
Filippini et al. (2018), Wilde (2000) and Mourifie and Meango (2014) for discussion of some special cases. 

  



8 
 

 
 
 
 
5.2.4  Endogeneity 
 

In the linear regression model, yi,t = α + βxi,t + δzi,t + εi,t, there is little ambiguity about the 
meaning of endogeneity of x.  There may be various theories to motivate it, such as omitted variables or 
heterogeneity, reverse causality, nonrandom sampling, and so on.  But, in any of these events, the ultimate 
issue is tied to some form of covariation between xi,t (the observable) and εi,t (the unobservable).  
Consider, instead, the Poisson regression model described above, where, now, λi,t = exp(α + βxi,t + δzi,t).  
For example, suppose yi,t equals  hospital or doctor visits (a health outcome) and xi,t equals income.  This 
should be a natural application of reverse causality. But, there is no mechanism within this Poisson 
regression model that supports the notion of endogeneity suggested above.  The model leaves open the 
question of what (in the context of the model) is correlated with xi,t that induces the endogeneity. (See 
Cameron and Trivedi (2005, p. 687).)  For this particular application, a common approach is to include 
the otherwise absent unobserved heterogeneity in the conditional mean function, as  
λi,t|wi,t = exp(βxi,t + δzi,t + wi,t). 

As a regression framework, the Poisson model has a shortcoming – it specifies the model for 
observed heterogeneity, but lacks a coherent specification for unobserved heterogeneity (a disturbance). 
The model suggested above is a mixture model.  For the simpler case of exogenous x, the feasible 
empirical specification is obtained by analyzing 

 
,

, , , , , , ,Prob( | , ) Prob( | , , ) ( ).
i t

i t i t i t it i t i t i t i tw
y j x z y j x z w d Fw= = =∫

 

 
This parametric approach would require a specification for F(w).  The traditional approach is a log-
gamma that produces a closed form, the negative binomial model, for the unconditional probability.  
Recent applications use the normal distribution.  A semiparametric approach could be taken as well if less 
is known about the distribution of w.  This might seem less ad hoc than the parametric model, but the 
assumption of the Poisson distribution is not innocent at the outset.  To return to the earlier question, a 
parametric approach to the endogeneity of xi,t would mandate a specification of the joint distribution of w 
and x, F(wi,t,xi,t).  For example, it might be assumed that xi,t  =  θ′fi,t + vi,t where w and v are bivariate 
normally distributed with correlation ρ.  This completes a mechanism for explaining how xi,t is 
endogenous in the Poisson model.  This is precisely the approach taken in Gregory and Deb’s 
SNAP/HSAT model shown earlier. 
 
5.3  Panel Data Models 
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 The objective of analysis is some feature(s) of the joint conditional distribution of a sequence of 
outcomes for individual i;  

[5.3-1]   ( ) ( ),1 ,2 , ,1 ,2 , ,1 ,, ,..., | , ,..., , ,..., | , .
i ii i i T i i i T i i M i i if y y y c c f=x x x y X c

 

 
The sequence of random variables, yi,t is the outcome of interest.  Each will typically be univariate, but 
need not be.  In Riphahn, Wambach and Million’s (2003) study, yi,t consists of two count variables that 
jointly record health care system utilization, counts of doctor visits and counts of hospital visits.  In order 
to have a compact notation, in [5.3-1], yi denotes a column vector in which the observed outcome yi,t, is 
either univariate or multivariate – the appropriate form will be clear in context.  The observed 
conditioning effects are a set of time varying and time invariant variables, xi,t.  (See, e.g., EDUC and 
FEMALE, respectively in Table 5.2 below.)  The matrix Xi is Ti×K containing the K observed variables xi,t 
in each row. To accommodate a constant term, Xi  =  [i,Zi]. 

For now, xi,t is assumed to be strictly exogenous.  The scalars, ci,m are unobserved, time invariant 
heterogeneity.  The presence of the time invariant, unobserved heterogeneity is the signature feature of a 
‘panel data model.’  For present purposes, with an occasional exception noted later, it will be sufficient to 
work with a single unobserved variate, ci. 

Most cases of practical interest depart from an initial assumption of strict exogeneity.  That is, for 
the marginal distribution of yi,t, we have 
 
[5.3-2]  , ,1 ,2 , , ,( | , ,..., , ) ( | , ).

ii t i i i T i i t i t if y c f y c=x x x x  
 
That is, after conditioning on (xi,t,ci), xi,r for r ≠ t contains no additional information for the determination 
of outcome yi,t.4

 

  Assumption [5.3-2] will suffice for nearly all of the applications to be considered here.  
The exception that will be of interest below will be dynamic models, in which, perhaps, sequential 
exogeneity, 

[5.3-3]  , ,1 ,2 , , ,1 ,2 ,( | , ,..., , ) ( | , ,..., , ),
ii t i i i T i i t i i i t if y c f y c=x x x x x x  

 
is sufficient. 

Given [5.3-2], the natural next step is to characterize f(yi|Xi,ci).  The conditional independence 
assumption adds that yi,t|xi,t,ci are independent within the cross section group, t = 1,…,Ti.  It follows that 

 
[5.3-4]  ,1 ,2 , , ,1

( , ,..., | , ) ( | , ).i

i

T
i i i T i i i t i t it

f y y y c f y c
=

= ∏X x  
 
The large majority of received applications of nonlinear panel data modeling are based on fully 
parametric specifications.  With respect to the model above, this adds a sufficient description of the DGP 
for ci that estimation can proceed. 
 
 
                                                      
4 For some purposes, only the restriction on the derived function of interest, such as the conditional mean,  
E[yi,t|Xi, ci] = E[yi,t|xi,t,ci] is necessary. (See Wooldridge (1995).) Save for the linear model, where this is likely to 
follow by simple construction, obtaining this result without [5.3-2] is likely to be difficult.  That is, asserting the 
mean independence assumption while retaining the more general [5.3-1] is likely to be difficult.  
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5.3.1  Objects of Estimation 
 
 In most cases, the platform for the analysis is the distribution for the observed outcome variable 
in [5.3-1]. The desired target of estimation is some derivative of that platform, such as a conditional mean 
or variance, a probability function defined for an event, a median, or some other conditional quantile, a 
hazard rate or a prediction of some outcome related to the variable of interest. For convenience, we 
restrict attention to a univariate case. In many applications, interest will center on some feature of the 
distribution of yit, f(yit|xi,t, ci), such as the conditional mean function, g(x, c) = E[y |x, c]. The main object 
of estimation will often be partial effects, δ(x, c) =  ∂g(x, c)/∂x, for some specific value of x such as E[x] 
if x is continuous, or ∆(x,d,c) = g(x,1, c) – g(x,0, c) if the margin of interest relates to a binary variable. 

A strictly nonparametric approach to δ(x,c) offers little promise outside the narrow case in which 
no other variables confound the measurement.5

 

  Without at least some additional detail about distribution 
of c, there is no obvious way to isolate the effect of c from the impact of the observable x.  Since c is 
unobserved, as it stands, δ is inestimable without some further assumptions.  For example, if it can be 
assumed that c has mean µc (zero, for example) and is independent of x, than a partial effect at this mean, 
PEA(x, µ)  =  δ(x, µ) may be estimable.  If the distribution of c can be more completely specified, then it 
may be feasible to obtain an average partial effect, 

 APE(x)  =  Ec[δ(x, c)]. 
 

Panel data modeling is complicated by the presence of unobserved heterogeneity in estimation of 
parameters and functions of interest.  This situation is made yet worse because of the nonlinearity of the 
target feature.  In most cases, the results gained from the linear model are not transportable.  Consider the 
linear model with strict exogeneity and conditional independence, E[yit|xit,ci]  =  β′xit + ci + εit.  Regardless 
of the specification of f(c), the desired partial effect is β.  Now consider the (nonlinear) probit model, 
 
 (DGP)   yi,t*   =  β′xi,t + ci + εi,t,  εi,t|xi,t,ci ~ N[0,12], 

(Observation)  yi,t  =  1[yi,t* > 0], 
 (Function of Interest) Prob(yi,t = 1|xi,t,ci) = Φ(β′xi,t + ci). 
 
With sufficient assumptions about the generation of ci, such as ci ~ N[0,σ2], estimation of β will be 
feasible.  The relevant partial effect is now 
 
 δ(x,c)  =  ∂Φ(β′x + c)/∂x  =  βφ(β′x + c). 
 
If f(c) is sufficiently parameterized, then an estimator of PE(x| ĉ ) =  βφ(β′x + ĉ )  such as 
 
 PEA(x| ĉ )   =  βφ[β′x + ˆ ( )E c ] 
 

                                                      
5 If there are no x variables in E[y |x, c], then with independence of d and c and binary y, there may be scope for 
nonparametric identification. 
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may be feasible. If c can be assumed to have a fixed conditional mean, µc = E[c|x] = 0, and if x contains a 
constant term, then the estimator might be PEA(x,0) = βφ(β′x). This is not sufficient to identify the 
average partial effect.  If it is further assumed that c is normally distributed (and independent of x) with 
variance σ2, then, 
 
 APE(x)  = β/(1 + σ2)1/2 φ[β′/(1 + σ2)1/2x] 
   = β (1 - ρ)1/2 φ[β′(1 - ρ)1/2x] 
   = γ φ(γ′x), 
 
where ρ is the intragroup correlation, Corr[(εi,t + ci),(εi,s + ci)] = σ2/(1 + σ2).  In the context of this model, 
what will be estimated with a random sample (of panel data)? Will APE and PEA be substantively 
different?   In the linear case, PEA(x| ĉ ) and APE(x) will be the same β.  It is the nonlinearity of the 
function that implies that they might be different here.. 

If ci were observed data, then fitting a probit model for yi,t on (xi,t,ci) would estimate (β,1).  We 
have not scaled ci, but since we are treating ci as observed data (and uncorrelated with xi,t), we can use, 
instead, c* = ci/sc as the variable, and attach the parameter σc to ci*.  So a fully specified parametric model 
might estimate (β,σc). If ci were simply ignored, we would fit a ‘pooled’ probit model. The true 
underlying structure is yi,t = 1{β′xi,t + ci + εi,t > 0|εi,t ~N[0,12]}.  The estimates, shown above, would reveal 
γ = β(1 - ρ)1/2.  Each element of γ is an attenuated (biased toward zero) version of its counterpart in β.  If 
the model were linear, then omitting a variable that is uncorrelated with the included x, would not induce 
this sort of ‘omitted variable bias.’  Conclude that the pooled estimator estimates γ while the MLE 
estimates (β,σc), and the attenuation occurs even if x and c are independent. 

An experiment based on ‘real’ data will be suggestive.  The data in Table 5.1 below are a small 
subsample from the data used in Riphahn et al. (2003).6

 

  The sample contains 27,326 household/year 
observations in 7,293 groups ranging in size from one to seven.  We have fit simple pooled and panel 
probit models based on 

Doctori,t*  =  β1 + β2Agei,t + ci + εi,t; Doctor = 1[Doctori,t* > 0] 
 
where Doctor = 1[Doctor Visits > 0].  The results are 
 

(Pooled) Doctori.t* = -0.37176  +  0.01625Agei,t 
(Panel)  Doctori,t* = -0.53689  +  0.02338Agei,t  +  0.90999ci*, 

 

                                                      
6 The original data set may be found at the Journal of Applied Econometrics data archive, 
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.  The raw data set contains 
variables INCOME and HSAT (self reported health satisfaction) that contain a few anomalous values.  In the 27,326 
observations, three values of income were reported as zero.  The minimum of the remainder was 0.005.  These three 
values were recoded to 0.0015.  The health satisfaction variable is an integer, 0,..,10.  In the raw data, 40 
observations were recorded between 6.5 and 7.0.  These 40 values were rounded up to 7.0.  The data set used here, 
with these substitutions is at http://people.stern.nyu.edu/wgreene/text/healthcare.csv.  Differences 
between estimators computed with the uncorrected and corrected values are trivial. 
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where ci*. is normalized to have variance 1.7

 

  The estimated value of ρ = σ2/(1+σ2) is 0.45298, so the 
estimated value of σ is 0.90999.  The estimator of the attenuation factor, (1 - ρ)1/2, is 0.73961.  Based on 
the results above, then, we obtain the estimate of γ based on the panel model, 0.02338×0.73961 = 
0.01729.  The finite sample discrepancy is about 6%.  The average value of Age is 43.5 years. The 
average partial effects based on the pooled model and the panel model, respectively, would be 

(Pooled) APE(Age:γ)  =  0.01625 × φ(-0.37176  +  0.01625×43.5) =  0.00613 
(Panel)  APE(Age:β,σ) =  0.02338(1 - .45298)1/2 ×  

          φ[(1 - 0.45298)1/2(-0.53689 + 0.02338×43.5)] = 0.00648. 
 
The estimate of APE(Age:γ) should not be viewed as PEA(Age,E[c]) = PEA(Age,0).  That estimator 
would be PEA(Age,0:β,σ) =  0.02338 × φ(-0.53689 + 0.02338×43.5)  =  0.008312.8

 

  This estimator seems 
to be misleading.  Finally, simple least squares estimation produces 

(Linear PM) Doctori,t  = 0.36758  +  0.00601Agei,t  +  ei,t. 
 
This appears to be a reasonable approximation.9

 Most situations to be considered in the subject of this chapter focus on nonlinear models such as 
the probit or Poisson regression, and pursue estimates of appropriate partial effects (or ‘causal’ effects) in 
many cases.  As we will see in Section 5.6, there are a variety of situations in which something other than 
partial effects is interest.  In the stochastic frontier model, 

 

 
 yi,t   =  α + γ′zi,t + ci + vi,t – ui,t, 
  =  α + γ′zi,t + ci + εi,t, 
 
the object of interest is an estimator of the inefficiency term, ui,t.  The estimator used is 

, , ,ˆ [ [ | ]]i t c i t i tu E E u= ε . The various panel data formulations focus on the role of heterogeneity in the 

specification and estimation of the inefficiency term.  In the analysis of individual data on multinomial 
choice, the counterpart to ‘panel data modeling’ in many studies is the stated choice experiment.  The 
random utility based multinomial logit model with heterogeneity takes the form 
 

, , ,

, , ,1

exp( )
Prob[ = ] , 1,..., .

1 exp( )
i j i t j

i,t J
i j i t jj

Choice j j J
=

′α +
= =

′+ α +∑
z

z

γ

γ
 

 

                                                      
7 The model was estimated as a standard ‘random effects probit model’ using the Butler and Moffitt (1982) method.  
The estimate of σ was 0.90999.  With this in hand, the implied model is as shown above.  When the model is 
estimated in precisely that form (β′x + σc*) using maximum simulated likelihood, the estimates are 0.90949 for σ 
and  
(-0.53688,0.02338) for β.  Quadrature and simulation give nearly identical results, as expected. 
8 The slope in the OLS regression of Doctor on (1,Age) is 0.00601. This suggests, as observed elsewhere, that to the 
extent OLS estimates any defined quantity in this model, it will likely resemble APE(x). 
9 There is no econometric framework available within which it can be suggested that the OLS slope is a consistent 
estimator of an average partial effect (at the means, for example).  It just ‘works’ much of the time. 
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Some applications involve ‘mixed logit’ modeling, in which not only the alternative specific constants, 
αi,j but also the marginal utility values, γi = γ + ui are heterogeneous.  Quantities of interest include 
willingness to pay for specific attributes (such as trip time), WTP =  Ec[E[γi,k/γi,income]] and elasticities of 
substitution, ηj,l|k  =  Ec[-γiPi,jPi,l], and entire conditional distributions of random coefficients. 
 
5.3.2  General Frameworks 
 

Three general frameworks are employed in empirical applications of panel data methods.  Save 
for the cases we will note below, they depart from strict exogeneity and conditional independence.   
 
 
Fixed Effects 
 
 If no restriction is imposed on the relationship between c and X, then the conditional density 
f(c|x1,…,xT) depends on X in some unspecified fashion.  The assumption that E[c|X] is not independent of 
X is sufficient to invoke the ‘fixed effects’ setting.  With strict exogeneity and conditional independence, 
the application takes the form 
 
 f(yit|xi,t,ci)  =  fy(yi,t,β′xi,t + ci), 
 
such as in the linear panel data regression.10

 

  In most cases, the models are estimated by treating the 
effects as parameters to be estimated, using a set of dummy variables, d(j).  The model is thus 

 f(yit|xi,t,ci)  =  fy(yi,t,β′xi,t + Σjαjd(j)i,t ). 
 
The dummy variable approach presents two obstacles.  First, in practical terms, estimation involves at 
least K+n parameters  Many modern panels involve tens or hundreds of thousands of units, which might 
make the physical estimation of (β,α) impractical.  Some considerations are suggested below. The more 
important problem arises in models estimated by M estimators – that is, by optimizing a criterion function 
such as a log likelihood function.  The incidental parameters problem (IP) arises when the number of 
parameters in the model (αi) increases with the number of observation units. In particular, in almost all 
cases, it appears that the maximum likelihood estimator of β in the fixed effects model is inconsistent 
when T is ‘small’ or fixed, even if the sample is large (in n), and the model is correctly specified. 
 
Random Effects 
 
 The random effects model specifies that X and c are independent so f(c|X)  = f(c).  With strict 
independence between X and c, the model takes the form f(yit|xi,t,ci)  =  f(yi,t,β′xi,t + ui).  Estimation of 
                                                      
10 Greene (2004c) labels index function models in this form ‘true fixed effects’ and ‘true random effects’ models.  
There has been some speculation as to what the author meant by effects models that were not ‘true.’  The use of the 
term was specifically meant only to indicate linear index function models in contrast to models that introduced the 
effects by some other means.  The distinction was used to highlight certain other models, such as the ‘fixed effects 
negative binomial regression model’ in Hausman, Hall and Griliches (1984).  In that specification, there were fixed 
effects defined as above in terms of f(c|x), but the effects were not built into a linear index function. 
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parameters can still be problematic.   But, pooled estimation (ignoring ui) may reveal useful quantities 
such as average partial effects.  More detailed assumptions, such as a full specification of  
ui ~ N[0,σ2] will allow full estimation of (β′,σ)′.  It will still be necessary to contend with the fact that ui 
remains unobserved.  The Butler and Moffitt (1982) and maximum simulated likelihood approaches are 
based on the assumption that 
 

 ,1 , , ,1
[ ( ,..., | , )] ( | : ) ( : )i

i i

T
c i i t i i i t i t i itc

E f y y c f y c d Fc
=

′= + σ∏∫X xβ θ  

 
depends on (β′,θ′,σ)′ in a way that the expected likelihood can be the framework for the parameters of 
interest. 
Correlated Random Effects 
 
 The fixed effects model is appealing for its weak restrictions on f(ci|Xi).  But, as noted, there are 
practical and theoretical shortcomings that follow.  The random effects approach remedies these 
shortcomings, but rests on an assumption that might be unreasonable, that the heterogeneity is 
uncorrelated with the included variables.  The correlated random effects model places some structure on 
f(ci|Xi).  Chamberlain (1980) suggested that the unstructured f(ci|Xi) be replaced with 
 
 ci|Zi  = π + θ1′zi,1 + θ2′zi,2 + … + θTi′zi,Ti  +  ui. 
 
with f(ui) to be specified – ui would be independent of zi,t.  A practical problem with the Chamberlain 
approach is the ambiguity of unbalanced panels. Substituting zi = 0 for missing observations or deleting 
incomplete groups from the data set, are likely to be unproductive. The amount of detail in this 
specification might be excessive – in a modern application with moderate T and large K (say 30 or more) 
this implies a potentially enormous number of parameters.  Mundlak (1978) and Wooldridge (2005,2010) 
suggest a useful simplification,  
 

c|Xi = π + θ′ iz  + ui. 
 
Among other features, it provides a convenient device to distinguish fixed effects (θ ≠ 0) from random 
effects (θ = 0). 
 
5.3.3  Dynamic Models 
 
 Dynamic models are useful for their ability (at least in principle) to distinguish between state 
dependence such as the dominance of initial outcomes and dependence induced by the stickiness of 
unobserved heterogeneity.  In some cases  such as in stated choice experiments, the dynamic effects might 
themselves be an object of estimation. (See, as well, Contoyannis et al. (CRJ, 2004).) 

A general form of dynamic model would specify f(yi,t|Xi,ci,yi,t-1,yi,t-2,…yi,0).  Since the time series 
is short, the dependence on the initial condition, yi,0, is likely to be substantive. Strict exogeneity is not 
feasible, since yi,t depends on yi,t-1 in addition to xi,t, it must also depend on xi,t-1. A minor simplification in 
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terms of the lagged values produces the density f(yi,t|Xi,ci,yi,t-1,yi,0).  The joint density of the sequence of 
outcomes is then 

 

f(yi,1, yi,2,…,yi,Ti  |Xi, yi,t-1,ci, yi,0)  =  , , 1 ,01
( | , , , ).iT

i t i i t i it
f y y c y−=∏ X  

 
It remains to complete the specification for ci and yi0.  A pure fixed effects approach that treats yi,0 as 
‘predetermined’ (or exogenous) would specify 
 
 f(yi,t|Xi,yi,t-1,ci,yi,0)  =  f(yi,t|γ′zi,t +  θyi,t-1 + γyi,0 + αi), 
 
with Zi implicitly embedded in αi.  This model cannot distinguish between the time invariant 
heterogeneity and the persistent initial conditions effect.  Moreover, as several authors (e.g., Carro 
(2007)) have examined, the incidental parameters problem is made worse than otherwise in dynamic fixed 
effects models.  Wooldridge (2005) suggests an extension of the correlated random effects model, 
 
 ci|Xi,yi,0  =  π  +  π′ iz  + θyi,0  +  ui. 
 
This approach overcomes the two shortcomings noted earlier.  At the cost of the restrictions on f(c|X,y0), 
this model can distinguish the effect of the initial conditions from the effect of state persistence due to the 
heterogeneity.  Cameron and Trivedi (2005) raise a final practical question – how should a lagged 
dependent variable appear in a nonlinear model?  They propose, for example, a Poisson regression that 
would appear 
 

 , ,
, ,0 , , , 1 0 ,0

exp( )
Prob[ | , , ] , exp( )
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j
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CRJ (2004) proposed a similar form for their ordered probit model. 
 
5.4  Nonlinear Panel Data Modeling 
 
 Some of the methodological issues in nonlinear panel data modeling have been considered in 
Sections 5.2 and 5.3.  We examine some of the practical aspects of common effects models. 
 
5.4.1  Fixed Effects 
 
 The fixed effects model is semiparametric. The model framework, such as the probit or Tobit 
model is fully parameterized.  [See Ai et al. (2015).] But, the conditional distribution of the fixed effect, 
f(c|X) is unrestricted. We can treat the common effects as parameters to be estimated with the rest of the 
model. Assuming strict exogeneity and conditional independence, the model is 
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where θ is any ancillary parameters in the model such as σε in a Tobit model.  Denote the number of 
parameters in (γ,θ) as K*=K+M.  A full maximum likelihood estimator would optimize the criterion 
function, 
   

[5.4-1] , , , ,1 1 1 1
ln ( , , ) ln ( : , , ) ln ( , : ),i in T n T

i t i t i i t i t ii t i t
L f y f y

= = = =
′= α = + α∑ ∑ ∑ ∑z zγ α θ | γ θ γ θ  

 
where α is the n×1 vector of fixed effects.  The unconditional estimator produces all K*+n parameters of 
the model directly using conventional means.11

 

  The conditional approach operates on a criterion function 
constructed from the joint density of (yi,t, t = 1,…,Ti) conditioned on a sufficient statistic, such that the 
resulting criterion function is free of the fixed effects. 

Unconditional Estimation 
 
The general log likelihood in [5.4-1] is not separable in γ and α. (For present purposes, θ can be 

treated the same as γ, so it is omitted for convenience.) Unconditional maximum likelihood estimation 
requires the dummy variable coefficients to be estimated along with the other structural parameters. For 
example, for the Poisson regression,  
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The within transformation or first differences of the data does not eliminate the fixed effects. The same 
problem will arise in any other nonlinear model in which the index function is transformed or the criterion 
function is not based on deviations from means to begin with.12

For most cases, full estimation of the fixed effects model requires simultaneous estimation of β  
and αi.  The likelihood equations are 
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11 If the model is linear, the full unconditional estimator is the within groups least squares estimator. If zi,t contains 
any time invariant variables (TIVs), it will not be possible to compute the within estimator – the regressors will be 
collinear; the TIV will lie within the column space of the individual effects, D = (d1,…,dn). The same problem arises 
for other true fixed effects nonlinear models.  The collinearity problem arises in the column space of the first 
derivatives of the log likelihood.  The Hessian for the log likelihood will be singular.  The OPG matrix will be also.  
A widely observed exception is the negative binomial model proposed in Hausman et al. (1984) which is not a ‘true’ 
fixed effects model. 
12 If the model is a nonlinear regression of the form yi,t = ηih(γ′zi,t) + εi,t, then, E[yi,t / iy ] ≈ hi,t / ih , does eliminate the 
fixed effect.  See Cameron and Trivedi (2005, p. 782). 
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Maximum likelihood estimation can involve matrix computations involving vastly more memory than 
would be available on a computer. Greene (2005) noted that this assessment overlooks a compelling 
advantage of the fixed effects model. The large submatrix of the Hessian, ∂2lnL/∂α∂α′ is diagonal, which 
allows a great simplification of the computations. The resulting algorithm reduces the order of the 
computations from (K+n)×(K+n) to K×K + n.  Fernandez-Val (2009) used the method to fit a fixed effects 
probit model with 500,000 fixed effects coefficients.13

Unconditional fixed effects estimation is, in fact, straightforward in principle. However, it is still 
often an unattractive way to proceed.  The disadvantage is not the practical difficulty of the computation. 
In most cases – the linear regression and Poisson regression are exceptions – the unconditional estimator 
encounters the incidental parameters problem.  Even with a large sample (n) and a correctly specified 
likelihood function, the estimator is inconsistent when T is small, as assumed here. 

 The method can be easily used for most of the 
models considered here.   

 
Concentrated Log Likelihood and Uninformative Observations 
 

For some models, it is possible to form a concentrated log likelihood for (γ,α1,…,αn). The 
strategy is to solve each element of [5.4-2] for αi(γ|yi,Xi), then insert the solution into [5.4-1] and 
maximize the resulting log likelihood for γ.  The implied estimator of αi can then be computed. For the 
Poisson model, define  
 

λi,t = exp(αi + γ′zi,t) = ηiexp(γ′z i,t)  =  ηiφi,t. 
 
The log likelihood function is 
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The likelihood equation for ηi is ∂lnL/∂ηi  =  -Σt φi,t  +  Σt yi,t/ηi.  Equating this to zero produces  
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Inserting this solution into the full log likelihood produces the concentrated log likelihood, 
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13 The Hessian for a model with n = 500,000 will, by itself, occupy about 950gb of memory if the symmetry of the 
matrix is used to store only the lower triangle. Exploiting the special form of the Hessian reduces this to less than 
4mb. 
14 The log likelihood in terms of ηi = exp(αi) relies on the invariance of the MLE to 1:1 transformations. See Greene 
(2018) 
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The concentrated log likelihood can now be maximized to estimate γ. The solution for γ can then be used 
in [5.4-3] to obtain each estimate of ηi and αi = ln(ηi). 
 Groups of observations in which Σt yi,t = 0 contribute zero to the concentrated log likelihood.  In 
the full log likelihood, if yi,t = 0 for all t, then ∂lnL/∂ηi = Σtφi,t which cannot equal zero.  The implication is 
that there is no estimate of αi if Σt yi,t = 0. Surprisingly, for the Poisson model, estimation of a nonzero 
constant does not require within group variation of yi,t but it does require that there be at least one nonzero 
value.   Notwithstanding the preceding issue, this strategy will not be available for most models, including 
the one of most interest, the fixed effects probit model. 
 
Conditional Estimation 
 
 For a few cases, the joint density of the Ti outcomes conditioned on a sufficient statistic, Ai, is free 
of the fixed effects;  
 ,1 , ,1 ,( ,..., | , , ) ( ,..., | , )

i ii i T i i i i i T i if y y c A g y y A=X X . 

 
The most familiar example is the linear regression with normally distributed disturbances, in which, after 
the transformation,  
 
 f(yi,1,…,yi,Ti|Xi,ci, iy )  =  N[γ′( ,i t i−z z ),σε

2).  

 
The within groups estimator is the conditional maximum likelihood estimator, then the estimator of ci is  

ˆi iy ′− zγ . The Poisson regression model is another.15

 

  For the sequence of outcomes, with  

λi,t = exp(αi)exp(γ′zi,t) = ηiφi,t,  

 
( )
1 , ,

,1 , 1 , 1
,1 ,

,( )!
( ,..., | , ) .

!

i

i i

i i

T
t i t i tT T

i i T i t i t tT
s i st i t

i ty
y

f y y y
y

=
= =

=

 Σ φ
Σ = ×Π   Σ φΠ  

X  

 
(See Cameron and Trivedi (2005, p.807).)   

Maximization of the conditional log likelihood produces a consistent estimator of γ, but none of 
the fixed effects. Computation of a partial effect, or some other feature of the distribution of yi,t, will 
require an estimate of αi or E[αi] or a particular value.  The conditional estimator provides no information 
about the distribution of αi.  For index function models, it may be possible to compute ratios of partial 
effects, but these are generally of limited usefulness. With a consistent estimator of γ in hand, one might 
reverse the concentrated log likelihood approach.  Taking γ as known, the term of the log likelihood 
relevant to estimating αi is 
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15 The exponential regression model, f(yi,t|xi,t) = λi,texp(-yi,tλi,t), yi,t > 0, is a third.  This model appears in studies of 
duration, as a base case specification, unique for its feature that its constant hazard function,  
h(yi,t|xi,t) =  f(yi,t|xi,t)/[1 – F(yi,t|xi,t)] = λi,t, independent of yi,t. 
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In principle, one could solve each of these in turn to provide an estimator of αi that would be consistent in 
T.  Since T is small (and fixed), estimation of the individual elements is still dubious.  However, by this 

solution, ˆ i i iwα = α +  where Var(wi) = O(1/T).  Then 
1

1ˆ ˆn
iin =

α = α∑  could be considered the mean of a 

sample of observations from the population generating αi.  (Each term could be considered an estimator 

of E[αi|yi].  Based on the law of iterated expectations, α̂  should estimate Ey[E[α|yi]] = E[α].  The terms 
in the mean are all based on common γ̂ .  But by assumption Plimn γ̂  = γ.  Then, ˆ ˆ ˆplim ( ) plim ( )α = αγ γ  = 
E[α], which is what will be needed to estimated partial effects for fixed effects model.16

 
   

The Incidental Parameters Problem and Bias Reduction 
 
 The disadvantage of the unconditional fixed effects estimator is the incidental parameters (IP) 
problem. [See Lancaster (2000).]  The unconditional maximum likelihood estimator is generally 
inconsistent in the presence of a set of incidental (secondary) parameters whose number grows with the 
dimension of the sample (n) while the number of cross sections, T is fixed.  The phenomenon was first 
identified by Neyman and Scott (1948), who noticed that the unconditional maximum likelihood 
estimators of β and σ2 in the linear fixed effects model are the within groups estimator for γ and  

2σ̂ = e′e/(nT), with no degrees of freedom correction. The latter estimator is inconsistent;  
plim 2σ̂  = [(T-1)/T] σ2 < σ2. The downward bias does not diminish as n increases, though it does 
decrease to zero as T increases.  In this particular case, plim γ̂  = γ.  No bias is imparted to γ̂ .  Moreover, 

the estimators of the fixed effects, ˆ iα = Σt(yi,t - ˆ ′γ xi,t), are unbiased, albeit inconsistent because 

Asy.Var[ ˆ iα ] is O(1/T) 
 There is some misconception about the IP problem.  The bias is usually assumed to be transmitted 
to the entire parameter vector and away from zero.  The inconsistency of the estimators of αi taints the 
estimation of the common parameters, γ. But, this does not follow automatically.  The nature of the 
inconsistencies of ˆ iα and ˆ ˆ( )γ α are different. The FE estimator, ˆ iα , is inconsistent because its asymptotic 
variance does not converge to zero as the sample (n) grows.  There is no obvious sense in which the fixed 
effects estimators are systematically biased away from the true values.  (In the linear model, the fixed 
effects estimators are actually unbiased.)  But, in many nonlinear settings, the common parameters, γ, are 
estimated with a systematic bias that does not diminish as n increases.  No internally consistent theory 
implies this result.  It varies by model.  In the linear regression case, there is no systematic bias.  In the 
binary logit case, the bias in the common parameter vector is proportional for the entire vector, away from 
zero. The result appears to be the same for the probit model, though this remains to be proven 
                                                      
16 Wooldridge (2010, p. 309) makes this argument for the linear model.  There is a remaining complication about 

this strategy for nonlinear models that will be pursued again in Section 4.6.  Broadly, α̂  estimates αi for the 

subsample for which there is a solution for ˆ iα . For example, for the Poisson model, the likelihood equation for αi 

has no solution if Σtyit = 0.  These observations have been dropped for purposes of estimation.  The average of the 
feasible estimators would estimate E[αi|Σtyi,t ≠ 0].  This may represent a nontrivial truncation of the distribution.  
Whether this differs from E[αi] remains to be explored. 
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analytically.  Monte Carlo evidence (Greene (2005) for the Tobit model suggests, again, that the scale 
parameter, σε is biased, but the common slope estimators are not.  In the true fixed effects stochastic 
frontier model, which has common parameters γ and two variance parameters, σu and σv, the IP problem 
appears to reside only in σv, which resembles the Neyman and Scott case. 

As suggested by the Neyman and Scott application, it does seem that the force of the result is 
actually exerted on some explicit or embedded scaling parameters in index models.  (E.g., the linear 
regression, Tobit, stochastic frontier, and even in binary choice, where the bias appears equally in the 
entire vector.)  The only theoretically verified case is the binary logit model, for which it has been shown 
that plim γ̂  = 2γ when T = 2. [See Abreveya (1997).]  It can also be shown that plim γ̂ = γ as (n,T) -> ∞.  
What applies between 2 and ∞, and what occurs in other models has been suggested experimentally.  (See 
e.g., Greene (2004a).)  A general result that does seem widespread is suggested by Abrevaya’s result, that 
the IP bias is away from zero.  But, in fact, this seems not to be the case either.  In the Tobit case, for 
example, and in the stochastic frontier, the effect seems to reside in the variance term estimators.  In the 
truncated regression, it appears that both slopes and standard deviation parameters are biased downward.  
Table 5.1 below shows some suggestive Monte Carlo simulations from Greene (2004a, 2005).  All 
simulations are based on a latent single index model yi,t* = αi + βxi,t + δdi,t + σεi,t where εi,t  is either a 
standardized logistic variate or standard normal, β = δ = 1, xi,t is continuous, di,t is a dummy variable and 
αi is a correlated random effect – i.e., the DGP is actually a true fixed effects model. Table entries in each 
case are percentage ‘biases’ of the unconditional estimators, computed as 100%[(b - β)/β] where β is the 
quantity being estimated (1.0) and b is the unconditional FE estimator.  The simulation also estimates the 
scale factor for the partial effects.  The broad patterns that emerge are, first, when there is discrete 
variation in yi,t, the slopes are biased away from zero.  When there is continuous variation, the bias, if 
there is any, in the slopes, is toward zero.  The bias in ˆ εσ  in the censored and truncated regression models 
is toward zero.  Estimates of partial effects seem to be more accurate than estimates of coefficients. 
Finally, the IP problem obviously diminishes with increases in T.  Figure 5.1 shows the results of a small 
experimental study for a stochastic frontier model, yi,t  =  αi  +  βxi,t  +  σvvi,t  -  σu|ui,t| where, again, this is 
a true fixed effects model, and vi,t and ui,t are both standard normally distributed.  The true values of the 
parameters β, σu and σv are 0.2, 0.18 and 0.10, respectively.  For β and σu, the deviation of the estimator 
from the true value is persistently only 2-3%. Figure 5.1 compares the behavior of a consistent method of 
moments estimator of σv to the maximum likelihood estimator. The results strongly suggest that the bias 
of the true fixed effects estimator is relatively small compared to the models in Table 5.1, and it resides in 
the estimator of σv.   

Proposals to ‘correct’ the unconditional fixed effects estimator have focused on the probit model. 
Several approaches have been suggested that involve operating directly on the estimates, maximizing a 
‘penalized log likelihood,’ or modifying the likelihood equations.  Hahn and Newey’s (2004) jackknife 
procedure provides a starting point.  The central result for an unconditional estimator based on n 
observations and T periods is 
 

( )2 3
1 1 1

1 2ˆplim  ,n T T T
O→∞ = + + +b bγ γ  
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where γ̂ is the unconditional MLE, b1 and b2 are vectors and the final term is a vector of order (1/T 3).17

 

  
For any t, a ‘leave one period out’ estimator without that t, has 

 ( )2 3
1 1 1

( ) 1 21 ( 1)
ˆplim .n t T T T

O→∞ − −
= + + +b bγ γ  

 
It follows that 
 

( ) ( )3 2
1 1 1

( ) 2( 1)ˆ ˆplim  ( 1) .n T t T T T T
T T O O→∞ −− − = − + = +bγ γ γ γ  

 
This reduces the bias to O(1/T 

2).  In order to take advantage of the full sample, the jackknife estimator 
would be 

1 ( )
1ˆ̂ ˆ ˆ ˆ ˆ( 1)  where  T

T t tTT T == − − = Σγ γ γ γ γ . 

 
Based on the simulation results above, one might expect the bias in this estimator to be trivial if T is in the 
range of many contemporary panels (say 15 or so).  Imbens and Wooldridge (2012) raise a number of 
theoretical objections that together might limit this estimator, including a problem with ( )ˆ tγ in dynamic 

models and the assumption that b1 and b2 will be the same in all periods.  Several other authors, including 
Fernandez-Val (2009) and Carro (2007, 2014), have provided refinements on this estimator. 

 

 
 

                                                      
17 For the probit and logit models, it appears that the relationship could be plim γ̂   =  γ g(T)  where g(2) = 2,  
g′(T) < 0 and limT→∞g(T) = 1. This simpler alternative approach remains to be explored. 
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Figure 5.1. Unconditional Fixed Effects Stochastic Frontier Estimator 

 
 
5.4.2  Random Effects Estimation and Correlated Random Effects 
 
 The random effects model specifies that ci is independent of the entire sequence xi,t. Then,  
f(ci|Xi) = f(c). Some progress can be made analyzing functions of interest, such as E[y|x,c] with 
reasonably minimal assumptions.  For example, if only the conditional mean, E[c] is assumed known 
(typically zero), then estimation can sometimes proceed semiparametrically, by relying on the law of 
iterated expectations and averaging out the effects of heterogeneity.  Thus, if sufficient detail is known 
about E[y|x,c], then partial effects such as  APE = Ec [∂E[y|x,c]/∂x] can be studied by averaging away the 
heterogeneity.  However, most applications are based on parametric specifications of ci. 
Parametric Models 
 
 With strict exogeneity and conditional independence, 
 

 ,1 , , ,1
( ,..., | , ) ( | , ).i

i

T
i i T i i i t i t it

f y y c f y c
=

= ∏X x  

 
The conditional log likelihood for a random effects model is, then, 
 

 ( ), ,1 1
ln ( , , ) ln ( | : , ) .iTn

i t i t ii t
L f y c

= =
′σ = + θ σ∑ ∏ xβ θ β  

 
It is not possible to maximize the log likelihood with the unobserved ci present. The unconditional density 
will be 
 

( ), ,1
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i

T
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=

′ + θ σ∏∫ xβ  

 
The unconditional log likelihood is 
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 ( ), ,1 1
ln ( , , ) ln ( | : ) ( : ) .i

i

Tn
unconditional i t i t i i ii tc

L f y c f c dc
= =

′σ = + θ σ∑ ∏∫ xβ θ β  

 
The maximum likelihood estimator is now computed by maximizing the unconditional log likelihood.   
The remaining obstacle is computing the integral.  Save for the two now familiar cases, the linear 
regression with normally distributed disturbances and normal heterogeneity and the Poisson regression 
with log-gamma distributed heterogeneity, integrals of this type do not have known closed forms, and 
must be approximated.18

 If ci is normally distributed with mean zero and variance σ2, the unconditional log likelihood may 
be written 

  Two approaches are typically used, Gauss-Hermite quadrature and Monte Carlo 
simulation. 

 

, ,1 1

1ln ( , , ) ln ( | , : , )iTn i
unconditional i t i t i ii t

cL f y c dc
∞

= =−∞

  σ = φ   σ σ 
∑ ∏∫ xβ θ β θ

 
 

With a change of variable and some manipulation, this can be transformed to 
 

2

1
ln ( , , ) ln ( ) ,i

n h
unconditional i ii

L g h e dh
∞ −

= −∞
σ = ∑ ∫β θ  

 
which is in the form needed to use Gauss-Hermite quadrature. The approximation to the unconditional log 
likelihood is 
 

, ,1 1 1
ln ( , , ) ln ( | , : , ) ,iTn H

quadrature i t i t h hi h t
L f y a w

= = =
 σ =  ∑ ∑ ∏ xβ θ β θ  

 
where ah and wh are the nodes and weights for the quadrature.  The method is fast and remarkably 
accurate, even with small numbers (H) of quadrature points.  Butler and Moffitt (1982) proposed the 
approach for the random effects probit model.  It has since been used in many different applications.19

 Monte Carlo simulation is an alternative method.  The unconditional log likelihood is, 
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By relying on a law of large numbers, it is possible to approximate this expectation with an average over a 
random sample of observations on ci.  The sample can be created with a pseudo-random number 
generator.  The simulated log likelihood is 
 

                                                      
18 See Greene (2018) 
19 See, e.g., Stata (2018) and Econometric Software (2017). 
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, , ,1 1 1

1ln ( , , ) ln ( | , : , )iTn R
simulation i t i t i ri r t

L f y c
R= = =

 σ = σ ∑ ∑ ∏ x β θ β θ,  

 
where ,i rc  is the rth pseudo random draw.20

 In most applications, the parameters of interest are partial effect of some sort, or some other 
derivative function of the model parameters.  In random effects models, these functions will likely 
involve ci.  For example, for the random effects probit model, the central feature is Prob(yi,t = 1|xi,tci)  =  
Φ(β′xi,t + σvi) where ci = σvi with vi ~ N[0,1].  As we have seen earlier, the average partial effect is 

  Maximum simulated likelihood has been used in a large and 

growing number of applications.  Two advantages of the simulation method are, first, if integration must 
be done over more than one dimension, the speed advantage of simulation over quadrature becomes 
overwhelming and, second, the simulation method is not tied to the normal distribution – it can be applied 
with any type of population that can be simulated. 

 APE = Ev [βφ(β′x + σv)]  =  β(1 - ρ)1/2 φ(β′x(1 - ρ)1/2). 
 
The function could also be approximated using either of the methods noted above.  In more involved 
cases that do not have closed forms, that would be a natural way to proceed. 
 
Correlated Random Effects 
 
 The fixed effects approach, with its completely unrestricted specification of f(c|X) is appealing, 
but difficult to implement empirically. The random effects approach, in contrast imposes a possibly 
unpalatable restriction.  The payoff is the detail it affords as seen in the previous section.  The correlated 
random effects approach suggested by Mundlak (1978), Chamberlain (1980)) and Wooldridge (2010) is a 
useful middle ground.  The specification is ci  =  π + θ′ iz  + ui.  This augments the random effects model 
shown above.   
 

 ( ), ,1 1
ln ( , , , ) ln ( | )iTn

i t i t i ii t
L f y u

= =
′ ′π σ = π + + +∑ ∏ z zγ θ γ θ  

 
For example, if ui ~ N[0,σ2], as is common, the log likelihood for the correlated random effects probit 
model would be 
 

 ( ), ,1 1
ln ( , , , ) ln [(2 1)( )] ( )iTn

i t i t i i i ii t
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= =−∞
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Post estimation, the partial effects for this model would be based on 
 

 
( ) ( ) ( , , ).vPE v v

′ ′∂Φ π + + + σ ′ ′= = φ π + + + σ =
∂
z z z z z z

z
γ θ

γ γ θ δ 21

                                                      
20 See Cameron and Trivedi (2005, p. 394) for some useful results on properties of this estimator. 

 

21 We note, in application, ∂ ( )v′ ′Φ π + + + σz zγ θ /∂z should include a term 1
iT θ. For purpose of the partial effect, 

the variation of z is not taken to be variation if a component of z . 
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Empirically, this can be estimated by simulation or, as before, with 
 

  ( )1/2 1/21 [(1 ) ( )]PE ′ ′− ρ φ − ρ π + +z z= γ γ θ  

 
The CRE model relaxes the restrictive independence assumption of the random effects specification, 
while overcoming the complications of the unrestricted fixed effects approach. 
 
Random Parameters Models 
 

The random effects model may be written f(yi,t|xi,t,ci)  =  f[yi,t|γ′zi,t  +  (π + ui):θ]. That is, as a 
nonlinear model with a randomly distributed constant term.  We could extend the idea of heterogeneous 
parameters to the other parameters.  A random utility based multinomial choice model might naturally 
accommodate heterogeneity in marginal utilities over the attributes of the choices with a random 
specification γi  =  γ + ui where E[ui] = 0, Var[ui]  = Σ = ΓΓ′ and Γ is a lower triangular Cholesky factor 
for Σ.  The log likelihood function for this random parameters model is 
 

, ,1 1
ln ( , , ) ln ( | ( ) : ) ( )i
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Tn
i t i i t i ii t

L f y f d
= =
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The integral is over K (or fewer) dimensions, which makes quadrature unappealing – the amount of 
computation is O(HK) while the amount of computation needed to use simulation is roughly linear in K. 
 
A Semiparametric Random Effects Model 
 
 The preceding approach is based on a fully parametric specification for the random effect. 
Heckman and Singer (1984) argued (in the context of a duration model), that the specification was 
unnecessarily detailed.  They proposed a semiparametric approach using a finite discrete support over ci, 
cq, q = 1,…,Q, with associated probabilities, τq.  The approach is equivalent to a latent class, or finite 
mixture model.  The log likelihood, would be 
 

, ,1 1 1

1ln ( , , , ) ln ( | : , , ) .iTn Q
q i t i t qi q tQ

L f y c
= = =

 = τ  ∑ ∑ ∏c xβ θ τ β θ , 0 < τq < 1, Σqτq = 1. 

 
Willis (2006) applied this approach to the fixed effects binary logit model proposed by Cecchetti (1986).  
The logic of the discrete random effects variation could be applied to more than one, or all of the elements 
of β.  The resulting latent class model has been used in many recent applications. 
 
5.4.3  Robust Estimation and Inference 
  
 In nonlinear (or linear) panel data modeling, ‘robust’ estimation arises in two forms.  First, the 
difference between fixed or correlated random effects and pure random effects arises from the assumption 
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about restrictions on f(ci|Xi).  In the correlated random effects case, f(ci|Xi) = f(ci| i′π + zθ ) and in the pure 
random effects, case, f(ci|Xi) = f(ci).  A consistent fixed effects estimator should be robust to the other two 
specifications.  This proposition underlies much of the treatment of the linear model.  The issue is much 
less clear for most nonlinear models because, at least in the small T case, there is no sharply consistent 
fixed effects estimator– because of the incidental parameters problem.  This forces the analyst to choose 
between the inconsistent fixed effects estimator and a possibly nonrobust random effects estimator.  In 
principle, at the cost of a set of probably mild, reasonable assumptions, the correlated random effects 
approach offers an appealing approach. 
 The second appearance of the idea of robustness in nonlinear panel data modeling will be the  
appropriate covariance matrix for the ML estimator.  The panel data setting is the most natural place to 
think about clustering and robust covariance matrix estimation.  [See Abadie et al. (2017), Cameron and 
Miller (2015) and Wooldridge (2003).]  In the linear case, where the preferred estimator is OLS, 
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The variance estimator would be 
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The correlation accommodated by the cluster correction in the linear model arises through the within 
group correlation of (xi,tei,t).  Abadie et al. (2017) discuss the issue of when clustering “matters.”  For the 
linear model with normally distributed disturbances, the first and second derivatives of the log likelihood 
function are gi,t = xi,tεi,t/σ2 and Hi,t = -xi,txi,t′/σ2.  In this case, whether clustering matters would turn on 
whether (- 1 ,

ˆiT
t i t=Σ H ) = Xi′Xi/ 2σ̂ differs substantially from 
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(apart from the scaling 2σ̂ ). This, in turn depends on the within group correlation of (xi,tei,t), not 
necessarily on that between ei,t or xi,t separately.

 For a maximum likelihood estimator, the appropriate estimator is built up from the Hessian and 
first derivatives of the log likelihood.  By expanding the likelihood equations for the MLE γ̂  around γ, 
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The estimator for the variance of γ̂  is then 
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where the terms are evaluated at γ̂ .  The result for the nonlinear model mimics that for the linear model.  
In general, clustering matters with respect to the within group correlation of the scores of the log 
likelihood.  It may be difficult to interpret this in natural terms such as membership in a group.  Abadie et 
al. also take issue with the idea that clustering is harmless, arguing it should be “substantive.”  We 
wholeheartedly agree with this, especially given the almost reflexive (even in cross section studies) desire 
to secure credibility by finding something to ‘cluster on.’  The necessary and sufficient condition is that 
some form of unobservable be autocorrelated within the model.  (I.e., the mere existence of some base 
similarity within defined groups in a population is not alone sufficient to motivate this correction.) 
 Clustering appears universally to be viewed as ‘conservative.’  The desire is to protect against 
being too optimistic in reporting standard errors that are too small.  It seems less than universally 
appreciated that the algebra of the ‘cluster correction’ (and robust covariance matrix correction more 
generally) does not guarantee that the resulting estimated standard errors will be larger than the 
uncorrected version. 
 
5.4.6  Attrition 
 
 When the panel data set is unbalanced, the question of ignorability is considered.  The 
methodological framework for thinking about attrition is similar to sample selection.  If attrition from the 
panel is related systematically to the unobserved effects in the model, then the observed sample may be 
‘nonrandom.’ (In CRJ’s (2004) study of self assessed health, the attrition appeared to be most pronounced 
among those whose initial health was rated poor or fair.) It is unclear what the implications are for data 
sets impacted by nonrandom attrition.  Verbeek and Nijman (VN, 1992) suggested some variable addition 
tests for the presence of ‘attrition bias.’  The authors examined the issue in a linear regression setting.  
The application of CRJ (2004) to an ordered probit model is more relevant here.  The Verbeek and 
Nijman tests add (one at a time) three variables to the main model: (1) NEXT WAVE is a dummy 
variable added at observed wave t that indicates if the individual is observed in the next wave; (2) ALL 
WAVES is a dummy variable that indicates whether the individual is present for all waves; (3) 
NUMWAVES is the total number of waves for which individual i is present in the sample. (Note that all 
of these variables are time invariant, so they cannot appear in a fixed effects model.)  The authors note, 
these ‘tests’ may have low power against some alternatives and are nonconstructive – they do not indicate 
what response should follow a finding of attrition bias.  A Hausman style of test might work.  The 
comparison would be between the estimator based only on the full balanced panel and the full, larger, 
unbalanced panel.  Contoyannis et al. (CRJ) note that this approach would likely not work because of the 
internal structure of the ordered probit model.  The problem is worse than that, however.  The more 
‘efficient’ estimator of the pair is only more efficient because it uses more observations, not because of 
the some aspect of the model specification, as is generally required for the Hausman (1978) test.  It is not 
clear, therefore, how the right asymptotic covariance matrix for the test should be constructed.  This 
would apply in any modeling framework.  The outcome of the VN test suggests whether the analyst 
should restrict the sample to the balanced panel that is present for all waves, or they can gain the 
additional efficiency afforded by the full, larger, unbalanced sample. 
 Wooldridge (2002) proposed an inverse probability weighting scheme to account for nonrandom 
attrition. For each individual in the sample, di,t = 1[individual i is present in wave t, t=1,…,T].  A probit 
model is estimated for each wave based on characteristics zi,1 that are observed for everyone at wave 1.  
For CRJ (2004), these included variables such as initial health status and initial values of several 
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characteristics of health.  At each period, the fitted probability ,ˆ i tp is computed for each individual.  The 

weighted pooled log likelihood is 
 

, , ,1 1
ˆln ( / ) login T

i t i t i ti t
L d p L

= =
= ∑ ∑ . 

 
CRJ suggested some refinements to allow z to evolve.  Their application of the set of procedures 
suggested the presence of attrition ‘bias’ for men in the sample, but not for women.  Surprisingly, the 
difference between the estimates based on the full sample and the balanced panel were negligible. 
 
5.4.7  Specification Tests 
  
 The random effects and fixed effects models each encompass the pooled model (linear or not) via 
some restriction on f(ci|Xi). The tests are uncomplicated for the linear case.  For the fixed effects model, 
the linear restriction, H0:αi = α1, i = 2,…,n can be tested with an F statistic with (n-1) and Ν-n-K degrees 
of freedom.  Under the normality assumption, a likelihood ratio statistic, -2ln(eLSDV′eLSDV/ePOOLED′ePOOLED) 
would have a limiting chi squared distribution with n-1 degrees of freedom under H0.  There is no 
counterpart to the F statistic for nonlinear models. The likelihood ratio test might seem to be a candidate, 
but this strategy requires the unconditional fixed effects estimator to be consistent under H0. The Poisson 
model is the only clear candidate for this.  Cecchetti (1986) proposed a Hausman (1978) test for the 
binary logit model based on a comparison of the efficient pooled estimator to the inefficient conditional 
ML estimator.22

A useful middle ground is provided by the correlated random effects (CRE) strategy.  The CRE 
model restricts the generic fixed effects model by assuming ci = π0  +  θ′

  This option will not be available for many other models. It requires the conditional 
estimator, or some other consistent (but inefficient under H0) estimator.  The logit and Poisson are the 
only available candidates.  The strategy is certainly not available for the probit model.  A generic 
likelihood ratio test will not be available because of the incidental parameters problem and, for some 
cases, the fixed effects estimator must be based on a smaller sample. 

z  + ui.  If we embed this in the 
generic fixed effects model, so 
 
 f(yi,1,…,yi,Ti|Xi,ci)  =  Πtf( ,i t i iu′ ′π + + +z zγ θ ). 

 
This model can be estimated as a random effects model if a distribution (such as normal) is assumed for 
wi.  The Wald statistic for testing H0:θ = 0 would have a limiting chi squared distribution with K degrees 
of freedom.  (The test should be carried out using a robust covariance matrix owing to the loose definition 
of ci.23

                                                      
22 The validity of Cecchetti’s test  depends on using the same sample for both estimators.  The observations with Σt 
yi,t = 0 or Ti should be omitted from the pooled sample even though they are useable. 

) 

23 The same test in the linear presents a direct approach.  Linear regression of yi,t on (zi,t, iz ) is algebraically identical 

to the within estimator.  A Wald test of the hypothesis that the coefficients on iz  equal zero (using a robust 
covariance matrix)  is loosely equivalent to the test described here for nonlinear models.  This is the Wu (1973) test, 
but the underlying logic parallels the Hausman test. 
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 The test for random effects likewise has some subtle complications.  For the linear model, with 
normally distributed random effects, the standard approach is Breusch and Pagan’s LM test based on the 
pooled OLS residuals: 
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Wooldridge (2010) proposes a method of moments based test statistic that uses Cov(εi,t,εi,s) = Var(εi,t) = 
σ2, 
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Some manipulation of this reveals that Z = / rn r s  where ri = 2[( ) ]i i i iT e ′− e e . The difference between 
the two is that the LM statistic relies on variances (and underlying normality) while Wooldridge’s relies 
on the covariance between ei,t and ei,s and the central limit theorem. 
 There is no direct counterpart to either of these statistics for nonlinear models, generally because 
nonlinear models do not produce ‘residuals’ to provide a basis for the test.24

Under the fairly strong assumptions that underlie the Butler and Moffitt or random constants 
model, a simpler Wald test is available.  For example, for the random effects probit model, maximization 
of the simulated log likelihood, 

  There is a subtle problem 
with tests of H0:σc

2 = 0 based on the likelihood function.  The regularity conditions required to derive the 
limiting chi squared distribution of the statistic require the parameter to be in the interior of the parameter 
space, not on its boundary, as it would be here. (Greene and McKenzie (2015) examine this issue for the 
random effects probit model.)   

 

, , ,1 1 1

1ln ( , ) ln [(2 1)( )iTn R
i t i t i ri r t

L y v
R= = =

 ′σ = Φ − + σ ∑ ∑ ∏ xβ β
 

produces estimates of β and σ.  The latter can form the basis of a Wald or likelihood ratio test.  The Butler 
and Moffitt estimator produces an estimate of ρ = σ2/(1 + σ2) that can be treated similarly.

 

 The random and fixed effects models are not nested without some restrictions – H0: f(c|X) = f(c) 
requires some formal structure to provide a basis for statistical inference.  Once again, the correlated 
random effects model provides a convenient approach.  The log likelihood function under a suitable 
definition of f(c|Xi) would be 
 

, ,1 1
ln ( , , ) ln ( | (  ) ( )iTn

i t i t i i i ii t
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∞

= =−∞
 ′ ′θ σ = π + + + σ ∑ ∏∫ z zβ γ θ

 
 

                                                      
24 Greene and McKenzie (2015) develop an LM test for H0 for the random effects probit model using generalized 
residuals. [See Chesher and Irish (1986).] For a single index nonlinear (or linear) model, the generalized residual is 
ui,t = ∂lnf(yi,t|•)/∂(β′x), i.e., the derivative with respect to the constant term.  For the linear model, this is εi,t/σε

2. 
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A Wald test of H0:θ = 0 tests the difference between fixed and random effects under this specification.
 

 
5.5  Panel Data 
 
 Panel data are found in several forms.  Broadly, n observational units are each observed T times 
in sequence.  One useful distinction can be made by delineating the sampling frame that generates n and 
T.  In the longitudinal data settings of interest here, we treat T as ‘fixed,’ though not necessarily very 
small. The Panel Survey of Income Dynamics (PSID) contains over 50 years of data while the German 
Socioeconomic Panel (GSOEP) is near 20 years. The European Community Household Panel (ECHP) 
data set was ended after eight waves. Econometric considerations in such data are generally based on n 
multivariate (T-variate) observations.  The statistical theory for longitudinal analysis is labeled ‘fixed T.’  
In particular, although some of these data sets might be long enough to be considered otherwise, the time 
series properties of the data (e.g., stationarity) are not of interest.  The Penn World Tables 
(http://www.rug.nl/ggdc/productivity/pwt/) consist of T = 65 years of data on n = 182 
countries (as of version 9.0 in 2017).  In analyzing these aggregate time series data, the time series 
properties are of paramount importance.  These could be regarded as ‘fixed n,’ though the number of 
countries in any particular analysis is typically not an important feature of the analysis.  Asymptotic 
properties of estimators in this context, for example, hinge on T, not n. A style of analysis rather different 
from longitudinal modeling is called for in this setting.  In contrast, the Center for Research in Security 
Prices (CRSP) data (http://www.crsp.com) provide financial analysts with extremely wide (large n) 
data on some very long time series (large T), such as stock and bond data for corporations.  Each of these 
settings calls for its own classes of models and methods.  In this (now, admittedly parochial) survey, we 
are interested in longitudinal analysis (small or fixed T and large n).  Some examples of these national (or 
international) data sets are as follows: 
 
 • European Community: SHARE (Survey of Health, Ageing and Retirement in Europe); 
 • European Community: ECHP (European Community Household Panel); 

• Australia: HILDA (Household Income and Labor Dynamics in Australia); 
• UK: BHPS (now, Understanding Society, previously the British Household Panel Survey); 
• Germany: GSOEP (German Socioeconomic Panel); 
• Mexico: ENEU (Encuesta Nacional de Empleo Urbano, Urban Employment Survey) 
• China: CFPS (China Family Panel Study); 
• Italy: WHIP (Work Histories Italian Panel); 
• USA: PSID (Panel Survey of Income Dynamics); 
• USA: MEPS (Medical Expenditure Panel Survey); 
• USA: NLS (National Longitudinal Survey); 
• USA: SIPP (Survey of Income and Program Participation). 
 

 We note an immediate complication in the description above.  In practice, most longitudinal data 
sets do not actually involve a fixed T observations on n units.  Rather, units come and go from the sample 
for various reasons. This may be by design.  In a rotating panel, such as the SIPP and ENEU data, units 
enter the panel for a fixed number of waves, and the entry of specific units is staggered. In a particular 
wave of the panel, the number of appearances of any unit may be any of 1,…,T. (T varies from two to 
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four years for the SIPP data and is five for the ENEU data)  But, the reasons for exit and possible reentry 
by any unit might be unexplainable in the context of the study.  Full generality would require us to 
specify that the i = 1,…,n observations are each observed Ti times.  In nearly all received cases, this sort 
of variation merely presents a notational inconvenience for the econometrician and a practical, accounting 
complication for the model builder.  It is necessary, however, to distinguish randomly missing 
observations from attrition.  For purpose of the analysis, attrition will have two features: (1) It is an 
absorbing state – the unit that attrites from the sample does not return later.  (There is ‘churn’ in some of 
the data sets listed above.); (2) In the context of whatever model is under consideration, the unobservable 
features that explain attrition will be correlated with the unobservables that enter the model for the 
interesting variable(s) under analysis.  These two results produce a complication due to nonrandom 
sampling.  For an example, it is not simply association of attrition with the ‘dependent variable’ that 
creates an attrition ‘problem.’ The association is with the unobservable effects in the model.  In a model 
for Income, if attrition is explainable completely in terms of Income - individuals whose income reaches a 
certain level are asked to exit the panel - then the phenomenon can be modeled straightforwardly in terms 
of truncation.  But, if the attrition is associated with the disturbance in the Income equation, matters 
become much more complicated.  To continue the example, in an Income model, attrition that is related to 
Health might well be nonrandom with respect to Income.  We will examine an application below. 
 A panel data set that consists precisely of T observations on N units is said to be a balanced panel.  
In contrast, if the number of observations Ti varies with i, then the panel is unbalanced.  Attrition is a 
potential problem in unbalanced panels.  Table 5.2 below displays an extract from an unbalanced panel 
data set.  The analysis in the remainder of this survey is concerned with data such as these.  (The data are 
extracted from the GSOEP sample that was used in Riphahn, Wambach and Million (2003).)  For our 
purposes, the interesting variables in this data set are HSAT, health satisfaction, and DOCVIS, number of 
doctor visits. 
 

 
Table 5.2.  Unbalanced Panel Data 
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5.6  Modeling Frameworks and Applications 
 
 We illustrate the applications of the panel data methods in several different nonlinear settings. We 
begin with the binary choice model that dominates the received literature then examine several others. A 
few relatively uncommon applications such as duration models (Lee (2008)) are left for more extensive 
treatments. 
 
 
5.6.1.  Binary Choice 
 
 The probit and logit models for binary choice are the standard settings for examining ‘nonlinear’ 
modeling in general, and panel data modeling in particular.  The canonical origin of the topic would be 
Chamberlain’s (1980) development of the fixed effects model and Butler and Moffitt’s (1982) treatment 
of the random effects model.25

 

  The unconditional fixed effects estimators for the panel probit and logit 
models (see Greene (2004a,b, 2018)) exemplify the incidental parameters problem and therefore are 
unappealing approaches. The literature on extensions and less parameterized alternatives to the two 
models includes Hahn and Kuersteiner(2011), Han and Newey (2004), Carro (2007), Fernandez-Val 
(2009), Honoré and Lewbel (2002), Honoré and Kesina (2017), Manski (1975), Aguirrebira and Mira 
(2007) and Lewbel and Dong (2015). 

 
 
Random and Unconditional Fixed Effects Probit Models 
  

The log likelihood function for a panel probit model26

 
 is 

 , , , ,1 1
ln ( , ) = ln [ ( )],   (2 1).in T

i t i t i i t i ti t
L q c q y

= =
′σ Φ π + + = −∑ ∑ zβ γ  

 
The pooled estimator was examined earlier.  The random effects estimator would be based either on 
simulation or Hermite quadrature. There is no conditional likelihood estimator for the fixed effects form 
of this model.  To illustrate the model, we will compare the various estimators using the GSOEP health 
data described earlier.  The data are an unbalanced panel with 7,293 groups, 27,326 household/year 
observations.  We have used the 877 households who were observed in all 7 waves (so, there are no issues 
of attrition embedded in the data).  For purposes of computing the dynamic models, the last 6 years of 
data were used in all cases.  The outcome variable is Doctori,t = 1[DocVisi,t > 0].  Groups for which  
Σt Doctori,t equals 0 or 6 were then omitted from the sample.  This leaves n* = 597 observations. 
 Estimates for random and unconditional fixed effects for a small specification are shown in Table 
5.2. (Standard errors are not shown, as the discussion of the various models is not concerned with 
                                                      
25 Rasch (1960) is a precursor to the fixed effects logit model. 
26 (We distinguish this from the panel probit model described in Bertschuk and Lechner (1998), which was 
essentially a constrained seemingly unrelated regressions model for a set of T binary choices;  
yi,t  =  1[β′xi,t  +  εi,t > 0] with Cov(εi,t,εj,s)  =  1[i = j]ρt,s with ρt,t = 1  Their formulation describes cross period 
correlation, not individual heterogeneity. 
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efficiency of different estimators.) Overall, the pooled and fixed effects (FE) estimators seem distinctly 
removed from the random effects (RE) counterparts.  The correlated random effects model seems 
likewise to have substantial effect on the estimated partial effects. Based on the LM test, the Pooled 
approach is rejected for any static or dynamic form.  The simple RE form is rejected in favor of the CRE 
form for both cases as well.  This would argue in favor of the FE model. A direct test for the FEM 
soundly rejects all other forms of the model, static or dynamic.  It is not clear whether this is a valid test, 
however, as the FE log likelihood is not based on a consistent estimator of the parameters estimated by 
any other form. Still using the LR test, the dynamic CRE rejects the static one, so the preferred model is 
the dynamic CRE. Comparing to the static pooled model, the extensions substantially change the partial 
effects. 
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Table. 5.3  Estimated Probit Models.  (Estimated partial effects in parentheses)     
             Static                Dynamic   
Pooled  Pooled RE  CRE  FE  Pooled RE CRE  
Constant    1.603   1.612   2.668    0.648   0.880   1.449 
Age    0.007   0.015   0.033   0.040   0.005   0.010   0.030 
   (0.002)  (0.004)  (0.009)  (0.008)  (0.002)  (0.003)  (0.008) 
Education  -0.042  -0.052   0.178   0.109  -0.026  -0.035   0.165 
 (-0.014) (-0.014)  (0.046)  (0.019) (-0.008) (-0.009)  (0.044) 
Income    0.051   0.046  -0.119  -0.177   0.005   0.054 -0.116 
  (0.018)  (0.012) (-0.031) (-0.315)  (0.001) (-0.014) (-0.031) 
Health  -0.180  -0.197  -0.144  -0.180  -0.141  -0.171  -0.143 
 (-0.062) (-0.052) (-0.037) (-0.032) (-0.044) (-0.046) (-0.038) 
Married   0.119   0.105  -0.007   0.016   0.099   0.099  -0.146 
  (0.041)  (0.028) (-0.019)  (0.003)  (0.031)  (0.027) (-0.004) 

Age     -0.029    -0.027 

Educ     -0.221     -0.198 

Income      0.220      0.105 

Health     -0.175     -0.079 

Married      0.250      0.220 

Doctort-1       0.667    0.230   0.207 
Doctor0       0.475    0.799   0.774 
ρ      0.436     0.430      0.300   0.305 
LnL -3212.59 -2923.37 -2898.88 -1965.63 -2898.18 -2826.68 -2815.87 
LM   215.754 212.28      112.64   121.03  
 
 
Logit Model and Conditional Fixed Effects Estimation 
 

The binary logit model is the most familiar of a small handful of models that provide a 
conditional estimator. [See Lancaster (2000).] The probability with fixed effects is  

 

 , ,
, , ,Prob( 1| , ) ( ) / [1 ].i i t i i t
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The unconditional logit log likelihood is 
 

 *
, , , ,1 1

ln ( , ) = ln [ ( )],   (2 1).in T
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= =

′Λ + α = −∑ ∑ zγ α γ  

 
Groups for which Σt yi,t equals 0 or Ti do not contribute to this log likelihood, so the sum is over the n* 
observations for which 0 < Σtyi,t < Ti.  The unconditional log likelihood is straightforward to maximize 
over(γ,α) using the remaining observations. The conditional log likelihood is the sum of the logs of the 
probabilities conditioned on 1 ,

iT
i t i tS y== Σ , 
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The denominator is summed over all the different combinations of Ti values of yi,t that sum to the same 

total as the observed data.  There are i

i

T
S

 
 
 

 terms.  This may be large. With T = 6 (as in our example), it 

reaches 30 at S = 3.  With T = 50, it reaches 1014
 at S = 25.27

ˆ iα

  The algorithm by Krailo and Pike (1984) 
makes the computation extremely fast and simple.  The estimators of αi are not individually consistent, 
but one might expect (1/n*)Σi  to be a consistent estimator of E[αi].  A remaining question to be 

considered is whether E[αi|0 < Si < Ti ]  differs from E[αi].  Assuming not, partial effects for the fixed 
effects logit model can be estimated with 
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(The average could be over n* alone using iz .) Table 5.4 shows the estimates.  They are quite close even 
though n* is moderate and Ti = 6 for all i, which is small by modern standards. The unconditional 
 
Table 5.4   Estimated Fixed Effects Logit Models (Percentage excess in parentheses) 
       Unconditional           Conditional  
  Estimate PEA  Estimate PEA  
Age    0.065 (14)  0.017 (21)  0.057   0.014 
Educ    0.168 (17)  0.041 (14)  0.144   0.036 
Income   -0.284 (21) -0.070 (21) -0.234  -0.058 
Health   -0.304 (21) -0.074 (19) -0.251  -0.062 
Married  0.041 (24)  0.010 (25)  0.033   0.008  
 
estimates are uniformly slightly larger. The percentage differences between the two estimates are shown 
in parentheses in the table. The results are consistent with the results for T = 8 in Table 5.1. This does 
suggest that the effect diminishes from the benchmark of 100% at T = 2 rather rapidly.  We also examined 
the estimated fixed effects.  The unconditional estimates are estimated with γ.  The conditional estimates 
are computed by solving the unconditional likelihood equation for αi using the consistent conditional 
estimator of γ.  The means of the conditional and unconditional estimators are –2.4 for the unconditional 
and -2.1 for the conditional.  Figure 5.2 compares the two sets of estimates. 

 

                                                      
27 Estimation of a model with n = 1,000 and T = 50 required about 0.5 seconds.  Of course, if T = 50, the incidental 
parameters problem would be a moot point. 
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Figure 5.2  Plot of Estimates of αi Conditional vs. Unconditional 

 
 Chamberlain (1980) also proposed a conditional estimator for a multinomial logit model with 
fixed effects.  The model is defined for a sequence of choices from J+1 alternatives by individual i in 
repetition t, J choices and an ‘opt out’ or ‘none’ choice that is taken a substantive number of times.  The 
choice probabilities are then 
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where the outcome is di,t,j = 1[individual i makes choice j in choice task t] and zi,t,j = a set of alternative 
specific attributes of choice j.  Individual specific, choice invariant characteristics such as age or income 
could be introduced into the model by interacting them with J alternative specific constants.)  The 
probability attached to the sequence of choices is constructed similarly but the summing in the 
denominator of the conditional probability is for the sum of di,t,j over (J+1)T terms for individual i.  The 
summing for the conditional probability itemizes terms for which the denominator Σj,tdi,j,t equals Si, 
subject to the constraint that the terms in each block of (J+1) sum to 1 (only one choice is made) and the 
sum in the T blocks equals the sum for the observed blocks.  The counterpart to the uninformative 
observations in the binomial case are individuals that make the same choice, j, in every period, t. There is 
an enormous amount of computation.  (See Pforr (2011, 2014).)  But, there is a much simpler way to 
proceed.  For each of the J alternatives, there is a set of T blocks of 2 alternatives, each consisting of 
alternative j and the opt out choice. In each n(2T) set, there is a binary logit model to be constructed, 
where the individual chooses either alternative j or the opt out choice.  Each of these binary choice 
models produces a consistent estimator of γ, say ˆ( )jγ , j=1,…,J.  Since there are J such estimators, they 
can be reconciled with a minimum distance estimator, 
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where ˆ ( )jΩ  is the estimated asymptotic covariance matrix for the jth estimator. The amount of 
computation involved is a very small fraction of that developed in Pforr(2011,2014). The reduction in the 
amount of computation is enormous at the possible cost of some efficiency.  For Pforr’s example, which 
is involves 26,200 individual/period choices and J+1 = 2 alternatives, the author reports the full 
Chamberlain computation requires 101.58 seconds.  Partitioning the problem and using the minimum 
distance estimator produces the numerically identical result in 0.297 seconds.28

 
 

5.6.2.  Bivariate and Recursive Binary Choice  
 
 The bivariate probit model (there is no logit counterpart), and recursive bivariate probit (probit 
model with an endogenous binary variable) has attracted some recent attention.29

 

  The two equation 
model with common effects would be 

   y1,i,t = 1[β1′x1,i,t  + γ′zi,t    + c1,i  +  ε1.i,t > 0] 
   y2,i,t = 1[β2′x2,i,t + δy1,i,t   + c2,i     +  ε2,i,t > 0]. 
 
A full fixed effects treatment would require two sets of fixed effects and would be affected by the IP 
problem.  There is no conditional estimator available. The random effects model, or the correlated random 
effects model would be a natural choice.  A dynamic model would proceed along the lines developed 
earlier for the single equation case.  (Rhine and Greene (2013) treated y1 as the initial value and y2 as the 
second period value in a two period RBP.) 
 
5.6.3.  Ordered choice  
 
 Contoyannis et al. (2004) used the dynamic CRE model in their analysis of health satisfaction in 
the BHPS.  One of the complications in their case is the treatment of lagged effects for an ordered choice 
outcome that takes J+1 values, 0,…,J.  The solution is a set of J endogenous lagged dummy variables, one 
for each category.  A fixed effects treatment of the ordered probit (logit) model presents the same 
complications as the binary probit or logit model.  Ferrer-i-Carbonell and Frijters (2004) note that the 
ordered choice model can be broken up into a set of binary choice models.  If 
 
 Prob(yi,t = j)  =  Λ(µj - αi - γ′zi,t)  -  Λ(µj-1 - αi - γ′zi,t) 
then 
 Prob(yi,t > j)  =  Λ(αi + γ′zi,t -  µj). 
 
The transformed model can be treated with Chamberlain’s conditional fixed effects approach. The time 
invariant threshold becomes an outcome specific constant, and will be lost in the fixed effects. Like the 

                                                      
28 Pforr’s data for this application are obtained from Stata at http://www.stata-press.com/data/r11/r.html under the 
CLOGIT heading. The data are reconfigured for NLOGIT (Econometric Software (2017)). The data may be 
downloaded from the author’s website at http://people.stern.nyu.edu/wgreene/felogit.csv.  A second example 
involving J=3, T=8 and n=400 required 0.229 seconds using the MDE. 
29 (Wilde (2000), Han and Vytlacil (2017), Mourifie and Meango (2014), Filippini, Greene, Kumar and Martinez-
Cruz (2018), Rhine and Greene (2013), Scott, Schurer, Jensen and Sivey (2009), Gregory and Deb (2015). 

http://people.stern.nyu.edu/wgreene/felogit.csv�
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multinomial logit model considered earlier, this produces multiple estimates of γ, which can be reconciled 
with a minimum distance estimator.  Bias corrections for the fixed effects ordered probit and logit models 
are developed by Bester and Hansen (2009), Carro (2007), Carro and Trafferri (2014), Muris (2017) and 
others. 
 
5.6.4.  Censored or Truncated Regression 
 
 Much less is known (or studied) about the censored (Tobit) and truncated regression models.  
Greene’s (2005) results (in Table .1) suggest that the incidental parameters problem appears, but in a 
different fashion than in discrete choice models – and the censored and truncated models behave 
differently from each other.  Honoré and Kesina (2017) examine a number of issues in this setting and a 
semiparametric specification.  A serious complication will arise in a dynamic Tobit models – it is unclear 
how a lagged effect that is either zero or continuous should be built into the model. 
 
5.6.5.  Stochastic Frontier: Panel Models,  
 
 Panel data considerations in the stochastic frontier model focus on both inefficiency and 
heterogeneity.  The model framework is built from the canonical model 
 
 yi,t  =  β′xi,t  +  vi,t  -  ui,t  
 
where ui,t < 0 and typically vi,t is N[0,σv

2].  Aigner, Lovell and Schmidt’s (1977) base case specifies ui,t as 
N+(0,σu

2).  The early developments for panel data treatments focused on ui,t, not on heterogeneity.  Pitt 
and Lee (1981) specified ui as a time invariant, random one sided term that represented inefficiency.  
Schmidt and Sickles (1984) and Cornwell, Schmidt and Sickles (1990) developed a fixed effects approach 
that respecified ui,t as a fixed value, ai or time varying, ai(t).  Subsequent developments (e.g., Kumbhakar 
et al. (2014) and Battese and Coelli (1995) and Cuesta (2000) extended the time variation of ui,t by 
various specifications of σu(t).  These developments oriented the focus on inefficiency measurement 
while leaving unobserved heterogeneity ambiguous or assumed to be time varying and embedded in vi,t.  
Greene (2005) proposed the ‘true random effects’ and ‘true fixed effects’ models 
 
 yi,t  =  (α + wi)  +  γ′zi,t  +  vi,t  -  ui,t  
 
where ui,t is as originally specified in Aigner et al. and wi is treated as either a ‘true’ fixed or random 
effect.  The latter model, with its combination of normal wi and skew normal (vi,t – ui,t) is estimated by 
maximum simulated likelihood.  Kumbhakar et al. (2014) completed the development with the 
‘generalized true random effects model,’ 
 
 yi,t  =  (α + wi – fi)  +  γ′zi,t  +  vi,t  -  ui,t  
 
where fi now has a truncated normal distribution like ui,t, and the full model is based on the sum of two 
skew normal variables, which has a closed skew normal distribution.  The authors developed a full 
maximum likelihood estimator.  Greene and Filippini (2015) showed how the estimation could be 
simplified by simulation. 
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5.6.6  Count Data  
 
 With the binary probit and logit models, the Poisson regression model for count data has been the 
proving ground for methods of nonlinear panel data modeling.  A comprehensive early reference is 
Hausman, Hall and Griliches (1984).30

 

 The fixed effects conditional estimator is identical to the 
unconditional estimator, so the latter is consistent.  The random effects model (or correlated random 
effects) is a straightforward application of Butler and Moffitt’s method. As a nonlinear regression, the 
specification provides a convenient framework for modeling multiple equations.  Riphahn et al. (2003) 
specified a two equation random effects Poisson model, 

 yi,t,j ~ Poisson with λi,t,j  =  exp(πj + γj′zi,t,j + εi,t,j + ui,j), j = 1,2, i=1,…,n, t = 1,…,Ti. 
 
The two equations are correlated through the means, ρ = Cov(εi,t,1,εi,t,2).  (A natural extension would be to 
allow correlation between the random effects as well, or instead.)  In the univariate, cross section case, the 
heterogeneous Poisson regression is specified with conditional mean λi,t = exp(π + γ′zi,t + ui). If ui ~ log-
gamma with mean 1, the unconditional distribution after integrating out ui is the negative binomial (NB).  
This convenience has motivated use of the NB form. The log-gamma, while convenient, in that form, is 
extremely inconvenient (intractable) in a model such as RWM’s.  Recent applications of mixed models 
have used the normal distribution, and computed the necessary integrals by Monte Carlo simulation.   

The Poisson and negative binomial models have also been frequently the setting for latent class 
models.  Jones and Schurer (2011) examined the frequency of doctor visits in a two class negative 
binomial latent class model.  Their methodology provides a useful example for using latent class 
modeling.  Two questions that attend this type of modeling are (1) is it possible to characterize the latent 
classes (other than by number) and (2) is it possible to assign individuals to their respective classes?  
Strictly, the answer to both classes is no. Otherwise, the classes would not be latent.  But, it is possible to 
do both probabilistically.  The latent class Poisson model is 
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Maximization of the log likelihood produces estimates of (β1,…,βQ) and (τ1,…,τq).  (A more elaborate 
specification that bears some similarity to the correlated random effects model would make τq a function 
of exogenous factors, zi and/or the group means of xi,t.  See Greene (2018, Section 18.4).  With the 
estimates of (βq,τq) in hand, the posterior class probabilities for each individual can be computed; 
 

                                                      
30 Hausman et al.’s (1984) formulation of the fixed effects NB model embedded the fixed effects in a variance 
parameter, not as an offset in the conditional mean as is familiar in other models. As a consequence, their FE model 
permits time invariant variables in the mean function, a result that continues to surprise researchers who are not 
warned of this. See Greene (2018, p. 901). 
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Individuals can then be assigned to the class with the highest posterior probability.  Jones and Schurer 
(2011) then characterized the two classes as ‘light users’ and ‘heavy users’ by the average frequency of 
doctor visits within the classes.  They also computed characteristics such as average partial effects by the 
two groups to characterize the system.  Table 5.5 repeats this exercise with the GSOEP data used earlier.  
The three classes do appear to be separating individuals by the intensity of usage.  The pattern of the 
partial effects suggests  
 
Table 5.5  Latent Class Model for Doctor Visits      
             Class 1      Class 2       Class 3             
  Parameter     APE Parameter     APE Parameter       APE  
Constant  3.253         -   1.524         -    0.116               - 
Age   0.015       0.132  0.024         0.102   0.038           0.048 
Educ  -0.061      -0.535 -0.035       -0.137  -0.040          -0.050 
Income  -0.178      -0.156* -0.274       -0.107*   0.301           0.038* 
HSAT  -0.220      -1.929 -0.178       -0.696  -0.275          -0.347 
Married   0.134       1.175  0.080        0.313   0.005           0.006 

ˆ| iDocVis q            10.423            4.174   1.642 

ˆ ˆ [ ] | iMean E q•             8.771            3.914   1.262 

ˆ qτ              0.158            0.474   0.368   
 

5.6.7.  A General Nonlinear Regression  
 
Papke and Wooldridge (1996, 2008) proposed a model for aggregates of binary responses.  The 

resulting outcome is a fractional variable.  Minimum chi squared methods for fractional variables have 
long provided a useful consistent approach.  The model developed here builds out from a common effects 
binary choice model.  The resulting treatment is a heteroscedastic nonlinear regression that lends itself 
well to the correlated random effects treatment. (See, also Wooldridge (2010) pp. 748-755 and 759-764.)  
No obvious likelihood based approach emerges, so the preferred estimator is nonlinear (possibly 
weighted) least squares. 
 
5.6.9.  Sample Selection Models:   
 
 Most treatments of sample selection have layered the fixed and/or random effects treatments over 
Heckman’s (1979) sample selection model.  Verbeek (1990) and Verbeek and Nijman (1992) proposed a 
hybrid fixed and random effects specification, 
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Zabel (1992) argued that the FE model should have appeared in both equations. He then proposed the 
CRE form for the usual reasons. The system that results is two CRE models with correlation of the 
idiosyncratic disturbances.  A natural extension would be correlation of ui and vi. 
 

                 = [ + + +η > 0]  (Correlated random effects probit)

| ( = 1) = +  +  + +ε ; (Correlated random effec ts regression)
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Vella (1998) provides some details on this strand of development.  Fernandez-Val and Vella (2009) 
continue the analysis with bias corrections based on the fixed effects specification.  Kyriazidou (1997) 
suggested a semiparametric approach based on a fixed effects logit selection and weighted least squares 
with kernel estimators for the weights. Refinements are considered by Vella and Verbeek (1999), 
Barrachine (1999) and Dustman Rochina Barrachina (2007) and Semykina and Wooldridge (2010) 
 In all of these treatments, the selection process is run at the beginning of each period – the 
selection equation is repeated, without autocorrelation, for every t.  Bravo-Ureta et al. (2012) applied the 
selection model in a setting in which the selection occurs at the baseline, and is unchanged for all T 
periods.  The selection effect becomes a correlated random effect.  In their application, the main outcome 
equation is a stochastic frontier model.  Greene (2010) shows how the model can be estimated either by 
full information maximum likelihood or by Monte Carlo simulation. 
 
5.6.8.  Individual choice and stated choice experiments 
 
 The choice probability in the multinomial choice model we examined in Section 5.6.1 is 
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More than any other model examined in this survey, the coefficients in this model are not of direct use.  
Once the parameters have been estimated, the model will be used to compute probabilities, simulate 
market shares under policy scenarios, estimate willingness to pay and distributions of willingness to pay, 
and compute elasticities of probabilities.  Since all of these require a full set of components for the 
probabilities, the fixed effects model that bypasses computation of the fixed effects does not seem helpful.  
A random effects approach is considered in Hensher et al. (2007)  

The counterpart of a ‘panel’ in recent applications of choice modeling is the stated choice 
experiment. (See Hensher et al. (2015).) The individual being interviewed is offered a choice task 
involving J alternatives with a variety of attributes, xi,t,j.  In the typical experiment, this  scenario will be 
repeated T times with widely varying attribute sets in order to elicit the characteristics of the respondent’s 
preferences.  The common fixed or random effect that is persistent across choice settings serves to 
accommodate the feature that this is the same individual with the same latent attributes making the 
choices with short intervals between tasks.  It is unlikely that the random utility formulation of the model 
could be so complete that the choice tasks would be independent conditioned on the information that 
appears in the utility functions.  The mixed logit  is the current standard in the modeling of choice 
experiments.  The model is 
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Revelt and Train (1998) modeled results of a survey of California electric utility customers. Train (2009) 
summarizes the theory and relevant practical aspects of discrete choice modeling with random 
parameters. 
 
5.6.10  Multilevel Models Hierarchical (Nonlinear) Models   

 
The general methodology of ‘multilevel modeling’ (often linear modeling) builds a random 

parameters specification that bears some resemblance to the correlated random effects model.  (See 
Raudebush and Bryk (2002).)  A generic form would be 

 
f(yi,t|xi,t,ui:β,Σ)  =  f(yi,t, (β + Γui)′xi,t:θ)  =  f(yi,t, βi′xi,t:θ). 

 
A useful extension is βi  =  β  +  ∆zi  +  Γui, where zi indicates exogenous factors; zi could also include the 
correlated random effects treatment with the group means of xi,t.  For a linear model, estimation is often 
based on manipulation of feasible generalized least squares. For a nonlinear model, this will require 
multivariate integration to deal with the unobserved random effects.  This can be done with Monte Carlo 
simulation. 
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