

Department of Economics

Econometric Analysis of Panel Data

Professor William Greene Phone: 212.998.0876

Office: KMC 7-90 Home page: people.stern.nyu.edu/wgreene

Email: wgreene@stern.nyu.edu URL for course web page:

people.stern.nyu.edu/wgreene/Econometrics/PanelDataEconometrics.htm

Final Examination: Spring 2018

This is a 'take home' examination. Today is Tuesday, May 1, 2018. Your answers are due on Monday, May 14, 2018. You may use any resources you wish – textbooks, computer, the web, etc. – but please work alone and submit only your own answers to the questions.

The five parts of the exam are weighted as follows:

Part I.	Literature	20
Part II.	The Mundlak Estimator	20
Part III.	Panel Data Regressions	50
Part IV.	Binary Choice Models	50
Part V.	A Loglinear Model	60

Note, in parts of the exam in which you are asked to report the results of computation, please filter your response so that you present the numerical results as part of an organized discussion of the question. Do not submit long, unannotated pages of computer output. Some of the parts require you to do some computations. Use Stata, R, *NLOGIT*, MatLab or any other software you wish to use.

Part I. Literature

Locate a published study in a field that interests you that uses a panel data based methodology. Describe in no more than one page the study, the estimation method(s) used and the conclusion(s) reached by the author(s).

Part II. The Mundlak Approach in Estimation

Many recent studies have revived Mundlak's approach to modeling common effects in linear regression and nonlinear models. Describe in detail the standard common effects models. How is the Mundlak estimator motivated? How is it employed? Show how the estimator provides a constructive test for fixed vs. random effects.

Part III. Panel Data Regressions

The course website contains an abbreviated version of the WHO health outcomes data set,

http://people.stern.nyu.edu/wgreene/Econometrics/WHO-balanced-panel.csv

and as an nlogit project,

http://people.stern.nyu.edu/wgreene/Econometrics/WHO-balanced-panel.lpj

The csv file is a text, comma delimited file that should be directly readable by other programs such as Stata and R. The original data set contained 840 observations as an unbalanced panel for 191 countries. It also contained data for some internal political districts such as the 24 states of Mexico and the provinces of Canada and Australia. This panel retains the data for the 140 countries that contain all 5 years of data. The variables in the file are

COUNTRY = Country name (text)

ID, STRATUM = Country ID. Ignore STRATUM

YEAR = 1993, ..., 1997

COMP and LOGCOMP = WHO health outcome measure and its log

DALE and LOGDALE = WHO life expectance and its log EDUC, LOGEDUC, LOGEDUC2 = Education, log and square of log

HLTHEXP, LOGHEXP, LOGHEXP2 = Health expenditure, log and square of log PUBTHE = Share of health expenditure paid by government

LOGED EX = LOGHEXP * LOGEDUC

GINI = Gini coefficient income distribution TROPICS = Dummy variable for tropical country

POPDEN, LOGPOPDN = Population density, people per square kilometer and log

GDPC, LOGGDPC = Per capita GDP and log T93,...,T97 = Year dummy variables

GEFF = World bank measure of government effectiveness

VOICE = World Bank measure of political efficacy

OECD= OECD member dummy variableMEANLCMP= Country mean of log COMPMEANLHC= Country mean of log EDUCMEANLHC2= Country mean of log EDUC squared

MEANLEXP = Country mean of log HEXP

Note that COMP, DALE, EDUC and HLTHEXP are time varying, but all other measured variables are time invariant.

The WHO model originally specified was

$$\begin{array}{lll} y_{it} &=& \alpha + \beta_1 x_{1,it} + \beta_2 x_{2,it} + \gamma_{11} x_{1,it}^2 + \gamma_{22} x_{2,it}^2 + \gamma_{12} x_{1,it} x_{2,it} + \epsilon_{it} \\ where \\ y &=& logCOMP, \, x_1 \, = \, logEDUC, \, x_2 \, = \, logHEXP. \end{array}$$

Call this Model A. This is a translog production function. The authors found that the values of γ_{kl} implied a nonconcave production function, and fixed γ_{22} and γ_{12} both to zero in their final presentation. Call this restricted model Model B.

- a. Fit the "pooled" model and report your results.
- b. Using the pooled model, test the null hypothesis of Model B against the alternative Model A.
- c. Using the formulation of Model B, fit a random effects model and a fixed effects model. Use your estimation results to decide which is the preferable model. If you find that neither panel data model is preferred to the pooled model, show how you reached that conclusion. As part of the analysis, test the hypothesis that there are no "country effects."
- d. Using the Mundlak approach, determine which model, fixed or random effects is preferred.
- e. Assuming that there are "latent individual (county) effects," the asymptotic covariance matrix that is computed for the pooled estimator, $s^2(\mathbf{X}'\mathbf{X})^{-1}$, is inappropriate. What estimator can be computed for the covariance matrix of the pooled estimator that will give appropriate standard errors?
- f. The hypothesis of constant returns to scale in the translog model (Model A) would be

$$H_0$$
: $\beta_1 + \beta_2 = 1$ and $\gamma_{11} + \gamma_{22} + 2\gamma_{12} = 0$

Test this hypothesis in the context of Model A.

- g. The 2004 Health Economics paper by Greene argued that WHO did not handle the obvious heterogeneity across countries appropriately. Variables GINI, TROPICS, logPOPDN, logGDPC, GEFF, VOICE, OECD all capture dimensions of this heterogeneity. Extend the random effects model to include some (or all) of these variables and test the hypothesis that they significantly add to the explanatory power of the model.
- h. Are there "time effects" in the data. One approach find out would be to add the time variables (less one of them) to the preferred regression model and test for their joint significance. A second approach would be to use a CHOW test to test for homogeneity of the regression model over the 5 years. Test the homogeneity assumption using your preferred pooled model.

Part IV. Binary Choice Models

The course website describes the "German Manufacturing Innovation Data." The actual data are not published on the course website. We will use them for purposes of this exercise, however. You can obtain them by downloading either a csv file,

http://people.stern.nyu.edu/wgreene/Econometrics/probit-panel.csv

or an nlogit project file,

http://people.stern.nyu.edu/wgreene/Econometrics/probit-panel.lpi

This data set contains 1,270 firms and 5 years of data for 6,350 observations in total – a balanced panel. The variables that you need for this exercise are described in the data sets area of the course home page,

http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm

(The csv file can easily be ported to other software such as R, SAS and Stata.) I am interested in a binary choice model for the innovation variable, IP. You will fit your model using at least three of the independent variables in the data set. With respect to the model you specify,

A. THEORY

- (a) If you fit a pooled <u>logit</u> model, there is the possibility that you might be ignoring unobserved heterogeneity (effects). Wooldridge argues that when one fits a probit model while ignoring unobserved heterogeneity, the raw coefficient estimator (MLE) is inconsistent, but the quantity of interest, the "Average Partial Effects" might well be estimated appropriately. Explain in detail what he has in mind here.
- (b) Suppose we were to estimate a "fixed effects" probit model by "brute force," just by including the 1,270 dummy variables needed to create the empirical model. What would the properties of the resulting estimator likely be? What is "the incidental parameters problem?"
- (c) How would I proceed to use Chamberlain's estimator to obtain a consistent slope estimator for the fixed effects logit model.
- (d) Describe in detail how to fit a random effects logit model using quadrature and using simulation for the part of the computations where they would be necessary, under the assumption that the effects are uncorrelated with the other included exogenous variables.
- (e) Using the random effects logit model that you described in part (d), describe how you would test the hypothesis that the same logit model applies to the four different sectors in the data set (CONSGOOD,FOOD,RAWMTL,INVGOOD).

B. PRACTICE

- (a) Fit a pooled probit model using your specification. Provide all relevant estimation results. (Please condense and organize the results in a readable form.)
- (b) Fit a random effects probit model.
- (c) Use the Mundlak (correlated random effects) approach to approximate a fixed effects model. Recall this means adding the group means of the time varying variables to the model, then using a random effects model.
- (d) Note the difference between the estimates in (b) and (c). Which do you think is appropriate? Explain.

Tip for nlogit users: You can use

CREATE; new variable = GroupMean(variable,pds=5)\$

To obtain the group means you need for a variable.

Part V. A Loglinear Model

This semester, we have examined several 'loglinear models,' including the logit model for binary choice, Poisson and negative binomial models for counts and the exponential model for a continuous nonnegative random variable. We will now examine one more loglinear model. The nonnegative, continuous random variable y|x has a Weibull distribution:

$$f(y \mid \mathbf{x}) = \lambda_i P y_i^{P-1} \exp(-\lambda_i y_i^{P}), y \ge 0, P > 0,$$

$$\lambda_i = \exp(\alpha + \beta' \mathbf{x}_i).$$

(We examined a version of this model in Assignment 5.) Estimation and analysis is based on a sample of N observations on y_i, \mathbf{x}_i . The conditional mean function is

$$E[y_i|\mathbf{x}_i] = \frac{1}{\lambda_i} \Gamma\left(\frac{P+1}{P}\right) = \exp(-\alpha - \boldsymbol{\beta}'\mathbf{x}_i) \Gamma\left(\frac{P+1}{P}\right) \text{(Note the minus sign.)}$$

The variables used in the regressions are described below.

Variable	Mean	Std.Dev.	Minimum	Maximum	Cases	Missing
INCOME	.352135	.176857	.001500	3.067100	27326	0
logINCOM	-1.157442	.491452	-6.502290	1.120732	27326	0
AGE	43.52569	11.33025	25.0	64.0	27326	0
EDUC	11.32063	2.324885	7.0	18.0	27326	0
HSAT	6.785662	2.293725	0.0	10.0	27326	0
MARRIED	.758618	. 427929	0.0	1.0	27326	0
HHKIDS	.402730	.490456	0.0	1.0	27326	0

The data set is a panel. There are 7,293 groups with group sizes ranging from 1 to 7. This exercise will examine a variety of regression formulations. I have done the estimation for you; the results appear below. Some of the questions will involve a small amount of ancillary computation.

A. I propose to estimate the parameters (P,α,β) by maximum likelihood. The results are shown in regression 1 below. Derive the log likelihood function, likelihood equations and Hessian. Show precisely how to use Newton's method to estimate the parameters. How will you obtain asymptotic standard errors for your estimator? Test the hypothesis of 'the regression model.' That is, test the hypothesis that all of the coefficients in β are equal to zero using the likelihood ratio test.

- B. There are several interesting special cases of the Weibull model. If P = 1, the model reduces to the exponential model discussed in class. We considered three different ways to test a parametric restriction such as this, Wald, Likelihood ratio and LM tests. Using the results of regressions 1, 2 and 3 below, carry out the three tests. Do the results of the three tests agree?
- C. The conditional mean function shown above suggests a nonlinear least squares approach. Note that the conditional mean function can be written

$$E[y \mid \mathbf{x}] = \exp \left[\log \Gamma \left(\frac{P+1}{P}\right) - \alpha - \beta' \mathbf{x}\right] = \exp(\delta - \beta' \mathbf{x})$$

Thus, the constant term in the conditional mean function is not $-\alpha$. The nonlinear least squares results are shown in regression 4. How do the two results compare to the MLE? We now have two possible estimators of β . In theoretical terms, which is better, MLE or NLS? Why? Do the empirical results support your argument?

- D. The likelihood equations for estimation of (P,α,β) imply that $E[y^P|x] = 1/\lambda$. Prove this result.
- E. Derive the partial effects for the Weibull conditional mean function, $\partial E[y|\mathbf{x}]/\partial \mathbf{x}$. Compute the partial effects at the means of the data. Hint: $\Gamma((P+1)/P)$ for the P in regression 1 equals .88562. How would you obtain standard errors for your estimated partial effects? Explain in detail.
- F. Regression 5 presents *linear* least squares results for the regression of -y on (1,x). (The minus sign on y changes the sign of the coefficients so they will be comparable to the earlier results.) How do these results compare to the MLEs in part A? How do they compare to the results in part E? Why would they resemble the results in part E?
- G. The log of a Weibull distributed variable has a type 1 extreme value distribution. The expected value of logy is $-(\alpha+\beta'x) + \gamma$, where γ is the Euler-Mascheroni constant, 0.57721566.... Regression 6 presents the results of linear regression of $-\log y$ on x. Which other result should these resemble? Do they?
- H. Since these are panel data, it is appropriate to rebuild the model to accommodate the unobserved heterogeneity. Explain the difference between fixed and random effects models. How would they appear in the loglinear model formulated here?
- I. Regressions 7 and 8 show FEM and REM.
- (1) What is the incidental parameters problem? Would the result apply to the model shown in (7)?
- (2) Show how the parameters of the random effects model in regression 8 are computed. I.e., describe how the maximum simulated likelihood estimator is computed.
- (3) Regression 9 presents estimates of a random effects model that also contains the group means of the regressors. As noted earlier, this Mundlak style treatment helps to distinguish the FE and RE specifications. Based on the results given, which appears to be the preferable model, FE or RE?
- J. Some have argued that marital status might be endogenous in an income equation when there are households that have two working people. (You probably thought people married for love.) To investigate in the present model, I will use a control function approach. Regression 10 presents a probit eqution for marital status based on age, education, gender and whether the household head has a white collar job. The variable GENRES is the generalized residual from this model,
- GENRES = $q\phi(\beta'x)/\Phi(q\beta'x)$ where q=2Married-1. The expected value of GENRES is zero, and since it is the derivative of logL with respect to the constant term, it will sum to zero in the sample. I am going to use GENRES as a control function. What is a control function, and why will I use it in the INCOME model?

K. Regression 11 presents estimates of the Weibull INCOME model that includes the control function. Regression 12 is similar to 11, but regression 12 includes normal heterogeneity in the model in the form of what appears to be a random effect – a random constant. But, this is not a panel data model look closely at the results and note that the 'panel' has one period. The implied two equation model underlying 12 is

$$MARRIED_i* \quad = \gamma'z \ + \ u_i, \ MARRIED_i \ = \ 1[MARRIED_i* > 0], \ u_i \sim N[0,1].$$

INCOME_i* ~ Weibull(
$$\lambda_i$$
,P) where $\lambda_i = exp(\beta'x_i + \epsilon_i)$

where (ϵ_I, u_i) have a bivariate normal distribution with means (0,0), standard deviations $(\sigma_\epsilon, 1)$ and correlation ρ . The endogeneity issue turns on ρ . The coefficient on GENRES in the model in regression 12 will approximate $\sigma_\epsilon \rho$. So, based on the estimated model, marry for money (endogenous, ρ not equal to zero) or marry for love (exogenous, ρ equal to zero)?

L. In this model, the argument in parts J and K about MARRIED could also be made about health satisfaction, HSAT. But, HSAT is an ordered outcome, coded 0,1,2 (bad, middling, good) in our data. How would you proceed to deal with endogeneity of HSAT in this model?

1. Weibull, MLE

Weibull (Loglinear) Regression Model

Dependent variable INCOME Log likelihood function 12133.14495 Restricted log likelihood 1195.24508 (Log likelihood when β = 0) Chi squared [7](P= .000) 21875.79975 .00000 Significance level .00000 McFadden Pseudo R-squared -9.1511775 Significance level Estimation based on N = 27326, K = 8 Inf.Cr.AIC = -24250.3 AIC/N = -.887

Standard Prob. 95% Confidence Error z |z|>Z* Interval INCOME | Coefficient |Parameters in conditional mean function Constant| 1.67075*** .01433 116.62 .0000 1.64267 AGE| .00086*** .00022 3.91 .0001 .00043 EDUC| -.05084*** .00073 -69.23 .0000 -.05228 1.69883 .00130 HSAT| -.01233*** MARRIED| -.16990*** FEMALE| -.02041*** .06403*** HHKIDS |Scale parameter for Weibull model P scale| 2.13722*** .00495 431.40 .0000 2.12751 2.14693

***, **, * ==> Significance at 1%, 5%, 10% level.

	Constant	AGE	EDUC	HSAT	MARRIED	HHKIDS	P_scale
Constant	0.000203282	-2.18842e-006	-5.43762e-006	-4.95755e-006	1.02554e-005	-1.15906e-005	-2.77586e-005
AGE	-2.18842e-006	4.7703e-008	-7.89778e-009	4.31199e-008	-3.07207e-007	1.75484e-007	1.31682e-007
EDUC	-5.43762e-006	-7.89778e-009	5.32837e-007	-5.61965e-008	-3.2693e-007	2.5195e-007	9.33686e-007
HSAT	-4.95755e-006	4.31199e-008	-5.61965e-008	5.90819e-007	-2.22175e-008	-3.58706e-007	-5.27993e-007
MARRIED	1.02554e-005	-3.07207e-007	-3.2693e-007	-2.22175e-008	1.33275e-005	-4.0085e-006	-6.66408e-007
HHKIDS	-1.15906e-005	1.75484e-007	2.5195e-007	-3.58706e-007	-4.0085e-006	1.35887e-005	3.46969e-006
P_scale	-2.77586e-005	1.31682e-007	9.33686e-007	-5.27993e-007	-6.66408e-007	3.46969e-006	2.40568e-005

2. Exponential, MLE

Exponential (Loglinear) Regression Model
Dependent variable INCOME
Log likelihood function 1558.04494

Restricted log likelihood 1195.24508
Chi squared [5] (P= .000) 725.59973
Significance level .00000
Estimation based on N = 27326, K = 6
Inf.Cr.AIC = -3104.1 AIC/N = -.114

	+						
		Standard		Prob.	95% Co	nfidence	
INCOME	Coefficient	Error	z	z >Z*	Inte	erval	
	Parameters in co	martional me	an Tunct	TOIL			
Constant	1.85106***	.04834	38.29	.0000	1.75632	1.94580	
AGE	.00158**	.00064	2.48	.0133	.00033	.00283	
EDUC	05438***	.00268	-20.27	.0000	05963	04912	
HSAT	01101***	.00275	-4.00	.0001	01641	00561	
MARRIED	26249***	.01568	-16.75	.0000	29322	23177	
HHKIDS	.06619***	.01399	4.73	.0000	.03877	.09360	

	Constant	AGE	EDUC	HSAT	MARRIED	HHKIDS
Constant	0.00233667	-2.04546e-005	-8.41197e-005	-5.58263e-005	-1.67755e-005	-0.000163745
AGE	-2.04546e-005	4.06572e-007	1.57594e-007	3.21119e-007	-3.44467e-006	3.49705e-006
EDUC	-8.41197e-005	1.57594e-007	7.19294e-006	-7.79848e-007	1.52206e-006	-7.72587e-008
HSAT	-5.58263e-005	3.21119e-007	-7.79848e-007	7.58913e-006	-6.64156e-007	-7.8368e-007
MARRIED	-1.67755e-005	-3.44467e-006	1.52206e-006	-6.64156e-007	0.00024571	-8.04925e-005
HHKIDS	-0.000163745	3.49705e-006	-7.72587e-008	-7.8368e-007	-8.04925e-005	0.000195638

3. Constrained Weibull, MLE

Weibull (Loglinear) Regression Model

Dependent variable INCOME
LM Stat. at start values 21526.22099
LM statistic kept as scalar
Log likelihood function 1558.04494
Restricted log likelihood 1195.24508
Chi squared [6] (P= .000) 725.59973
Significance level .00000
McFadden Pseudo R-squared -.3035360
Estimation based on N = 27326, K = 7
Inf.Cr.AIC = -3102.1 AIC/N = -.114

 INCOME		Standard Error	z	Prob. z >Z*		nfidence erval
i	Parameters in co	nditional me	an funct	ion		
Constant	1.85106***	.09976	18.56	.0000	1.65553	2.04658
AGE	.00158	.00130	1.22	.2233	00096	.00412
EDUC	05438***	.00574	-9.47	.0000	06563	04312
HSAT	01101**	.00556	-1.98	.0477	02190	00011
MARRIED	26249***	.02881	-9.11	.0000	31896	20603
HHKIDS	.06619**	.02827	2.34	.0192	.01078	.12160
1	Scale parameter	for Weibull	model			
P_scale	1.0***	.00672	148.81	.0000	. 98683	.10132D+01

***, **, * ==> Significance at 1%, 5%, 10% level.

Nonlinear Least Squares, y on exp(-b'x)

UserFunc	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval	
B ONE	1.92270***	.02202	87.33	.0000	1.87955	1.96585	
B AGE	00022	.00030	75	. 4535	00081	.00036	
B EDUC	05378***	.00103	-52.09	.0000	05580	05175	
B HSAT	01072***	.00132	-8.12	.0000	01330	00813	
B MARR	25986***	.00821	-31.66	.0000	27594	24377	
B_KIDS	.05581***	.00664	8.40	.0000	.04279	.06883	

5. Linear Least Squares, -y on b'x

 Ordinary
 least squares regression

 LHS=MINCOME
 Mean
 =
 -.35214

 Standard deviation
 =
 .17686

 ------ No. of observations
 =
 27326
 DegFreedom
 Mean square

 Regression
 Sum of Squares
 =
 93.8115
 5
 18.76231

 Residual
 Sum of Squares
 =
 760.870
 27320
 .02785

 Total
 Sum of Squares
 =
 854.682
 27325
 .03128

 ------ Standard error of e
 =
 .16687
 R-bar squared
 .10960

 Fit
 R-squared
 =
 .10976
 R-bar squared
 .10960

 Model test
 F[5, 27320]
 =
 673.68410
 Prob F > F*
 .00000

MINCOME	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval	
Constant AGE EDUC HSAT MARRIED HHKIDS	03873*** .0001202088***00366***08630***	.00815 .00010 .00044 .00046 .00260	-4.75 1.14 -47.07 -8.03 -33.21 8.51	.0000 .2535 .0000 .0000 .0000	05470 00008 02175 00455 09140 .01558	02275 .00032 02001 00277 08121 .02489	

6. Linear Least Squares, -logy on b'x

 MLINCOME	Coefficient	Standard Error	z	Prob. z >Z*	95% Confidence Interval	
Constant	2.03085***	.02217	91.60	.0000	1.98740	2.07430
AGE	.00190***	.00028	6.73	.0000	.00135	.00246
EDUC	05651***	.00121	-46.82	.0000	05887	05414
HSAT	01175***	.00124	-9.47	.0000	01418	00932
MARRIED	34733***	.00707	-49.14	.0000	36118	33348
HHKIDS	.06628***	.00647	10.25	.0000	.05361	.07896

7. Fixed Effects Weibull, MLE

FIXED EFFECTS Weibul Model

Dependent variable INCOME

Log likelihood function 34910.40335

Estimation based on N = 27326, K =7299

Inf.Cr.AIC = -55222.8 AIC/N = -2.021

Unbalanced panel has 7293 individuals

Skipped 0 groups with inestimable ai

Weibull loglinear regression model

INCOME	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval
	Index function for					
AGE	04322***	.00055	-78.85	.0000	04429	04214
EDUC	07959***	.00616	-12.91	.0000	09167	06750
HSAT	00339***	.00088	-3.85	.0001	00511	00166
MARRIED	18215***	.00836	-21.80	.0000	19853	16578
HHKIDS	.07732***	.00550	14.06	.0000	.06654	.08810
	Scale parameter :	for Weibull	distribu	tion		
P scale	5.77115***	.02935	196.61	.0000	5.71362	5.82868

***, **, * ==> Significance at 1%, 5%, 10% level.

8. Random Effects Weibull, Maximum Simulated Likelihood

Random Coefficients WeiblReg Model
Dependent variable INCOME
Log likelihood function 19489.51857
Restricted log likelihood 1558.04494
Chi squared [1] (P= .000) 35862.94726
Significance level .00000
McFadden Pseudo R-squared -11.5089579
Estimation based on N = 27326, K = 8
Inf.Cr.AIC = -38963.0 AIC/N = -1.426
Unbalanced panel has 7293 individuals
Simulation based on 100 Halton draws
Weibull loglinear regression model

	 Coefficient +		z	Prob. z >Z*	Interval	
	Nonrandom paramet					
AGE	01369***	.00015	-91.51	.0000	01398	01339
EDUC	06413***	.00057	-111.59	.0000	06525	06300
HSAT	00478***	.00059	-8.05	.0000	00594	00361
MARRIED	19181***	.00307	-62.53	.0000	19782	18580
HHKIDS	.08751***	.00271	32.26	.0000	.08219	.09282
	Means for random	parameters				
Constant	2.43436***	.01030	236.40	.0000	2.41418	2.45455
	Scale parameters	for dists.	of rando	m paramet	ers	
Constant	.50166***	.00138	364.84	.0000	.49896	.50435
	Scale parameter f	or Weibull	distribu	tion		
P scale	4.15999***	.01130	368.03	.0000	4.13783	4.18214

***, **, * ==> Significance at 1%, 5%, 10% level.

9. Random Effects Weibull, Maximum Simulated Likelihood with Group Means

Random Coefficients WeiblReg Model
Dependent variable INCOME
Log likelihood function 21443.98658
Restricted log likelihood 1735.72267
Chi squared [1] (P= .000) 39416.52782
Significance level .00000
McFadden Pseudo R-squared -11.3545005
Estimation based on N = 27326, K = 13
Inf.Cr.AIC = -42862.0 AIC/N = -1.569
Unbalanced panel has 7293 individuals
Simulation based on 100 Halton draws
Weibull loglinear regression model

 INCOME	Coefficient	Standard Error		Prob. z >Z*		nfidence erval
N	Nonrandom parame	ters				
AGE	04140***	.00041	-100.59	.0000	04221	04060
EDUC	07436***	.00382	-19.47	.0000	08185	06687
HSAT	00775***	.00076	-10.19	.0000	00924	00626
MARRIED	20973***	.00473	-44.37	.0000	21899	20046
HHKIDS	.08242***	.00454	18.17	.0000	.07353	.09132
gmnAGE	.04656***	.00043	107.94	.0000	.04571	.04741
gmnEDUC	.03803***	.00384	9.90	.0000	.03050	.04556
gmnHSAT	01136***	.00083	-13.69	.0000	01299	00974
gmnMARRI	.01497**	.00587	2.55	.0107	.00347	.02646
gmnHHKID	01393**	.00603	-2.31	.0210	02575	00210
N	Means for random	parameters				
Constant	1.41275***	.00930	151.96	.0000	1.39453	1.43097
18	Scale parameters	for dists.	of rando	m paramet	ters	
Constant	.46708***	.00118	395.64	.0000	.46477	.46940
18	Scale parameter	for Weibull	distribu	tion		
P scale	4.38591***	.01205	363.95	.0000	4.36229	4.40953

10. Probit Model for Marital Status, MLE

ependent	Probit Model variable	MARRI				
MARRIED		Standard Error	z	Prob. z >Z*	95% Confidence Interval	
	Index function f					
Constant	.20370***	.05761	3.54	.0004	.09079	.31662
AGE	.02234***	.00076	29.28	.0000	.02084	.02383
EDUC	03308***	.00367	-9.02	.0000	04027	02589
FEMALE	12946***	.01727	-7.50	.0000	16330	09562
WHITEC	03858**	.01861	-2.07	.0382	07506	00210

11. Weibull with Control Function, MLE

Weibull (Loglinear) Regression Model
Dependent variable INCOME
Log likelihood function 12160.11190
Restricted log likelihood 1195.24508
Chi squared [7](P= .000) 21929.73366
Significance level .00000

 INCOME	Standard Coefficient Error		z	Prob. z >Z*	95% Confidence Interval	
Parameters in conditional mean function						
Constant	1.19668***	.03721	32.16	.0000	1.12374	1.26962
AGE	00528***	.00051	-10.39	.0000	00627	00428
EDUC	04215***	.00107	-39.51	.0000	04425	04006
HSAT	01251***	.00077	-16.34	.0000	01401	01101
MARRIED	.67313***	.06091	11.05	.0000	.55375	.79251
HHKIDS	.05201***	.00371	14.03	.0000	.04475	. 05927
GENRES	49197***	.03508	-14.02	.0000	56073	42321
İ	Scale parameter :	for Weibull	model			
P scale	2.13826***	.00492	434.41	.0000	2.12862	2.14791

12. Weibull with Normal Heterogeneity and Control Function, Maximum Simulated Likelihood

Random Coefficients WeiblReg Model

Random Coefficients WeiblReg Model
Dependent variable INCOME
Log likelihood function 13158.01422
Restricted log likelihood 1563.62291
Sample is 1 pds and 27326 individuals
Simulation based on 10 Halton draws

INCOME	Coefficient		z	Prob. z >Z*	95% Confidence Interval			
	Nonrandom parameters							
AGE	00331***	.00046	-7.24	.0000	00421	00241		
EDUC	04512***	.00097	-46.49	.0000	04702	04321		
HSAT	01211***	.00072	-16.84	.0000	01352	01070		
MARRIED	. 45855***	.05526	8.30	.0000	.35024	.56686		
HHKIDS	. 06500***	.00369	17.60	.0000	.05776	.07224		
GENRES	39467***	.03169	-12.45	.0000	45678	33256		
	Means for random	parameters						
Constant	1.31805***	.03473	37.95	.0000	1.24999	1.38612		
	Scale parameters	for dists.	of rando	m parame	ters			
Constant	. 25368***	.00194	130.76	.0000	.24988	.25748		
	Scale parameter	for Weibull	distribu	tion				
P_scale	2.64003***	.00733	359.95	.0000	2.62566	2.65441		