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Midterm Examination Solutions
This examination has four parts.  Weights applied to the four parts will be 15, 15, 20 and 50.  This is an open book exam.  You may use any source of information that you have with you.  You may not phone or text message or email or Bluetooth (is that a verb?) to “a friend,” however.

 Part I.  Fixed and Random Effects   


Define the two basic approaches to modeling unobserved effects in panel data.  What are the different assumptions that are made in the two settings?  What is the benefit of the fixed effects assumption?  What is the cost?  Same for the random effects specification.  Now, extend your definitions to a model in which all parameters, not just the constant term, are heterogeneous.

Fixed and random effects are two approaches to modeling unobserved heterogeneity in a model such as yit  =  (′xit + ci + (it. where ci is taken to be the time invariant, unobserved heterogeneity.  The approaches are distinguished by their assumptions about the relationship between ci and xit.  In particular, the “fixed effects” approach is a nonparametric treatment in which it is assumed that E[ci | xi1,...,xiT] may be a function of at least one observation on xit. I.e., the conditional mean is not a constant.  Under the random effects specification, it is assumed that E[ci | xi1,...,xiT] = (, a constant that does not vary with xit for any t.  This is a semiparametric formulation in which the model typically goes on to assume that ci is a homoscedastic random variable with zero mean (assuming that xit now contains a constant term).  

The benefit of the fixed effects model is its semiparametric approach. No further assumptions about the distribution of ci is needed.  The disadvantage is that in order to estimate the model as such, we require a new variable and a new parameter for each individual in the sample. When we turn to nonlinear models, this disadvantage will show up again in the form of the “incidental parameters problem,” which is a persistent bias in the conventional estimator of the parameters of the model.  The fixed effects approach also precludes any other time invariant variables in the model.  
The advantage of the random effects model is its very tight formulation. The entire model is built around a single new parameter.  The disadvantage is the need to assume that ui​ is uncorrelated with xit.  This assumption is likely to be violated in models involving microeconomic data.


The extension to fixed vs. random effects in the full parameter vector is direct when the preceding paragraph is taken to apply to a “random constant” term in the model. Thus, write the preceding as


yit  =  (i + (′xit + (it where (i = ( + ui.  

Then, the difference between fixed and random effects is whether the covariation of ui with xit is zero or not.  The entire preceding argument may now be provided to a full random parameters model, with (i=(+wi.  A further complication with the full random parameters model is that if wi is correlated with the regressors, then the only way to fit the model is to estimate (i separately for each i, which means that we require Ti > K for all i.
Part II.  Estimating the Variance Components


In class, we discussed the problem of estimating the variance components, (u2 and ((2 in the random effects model,




yit = (′xit + ui + (it.

We considered several candidates based on the LSDV and OLS residuals.  The problem with some of them is that the derived estimator of (u2 can be negative.  In an early proposal to deal with this problem, one writer suggested that if the familiar methods fail, another possibility for the researcher to try is
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where eit is a residual from the pooled least squares regression and ai is the estimated dummy variable coefficient in the LSDV regression.  That is, 




ai  =  
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Assuming that the random effects model is correct and the panel is balanced (fixed T), does the suggestion provide a way consistently to estimate the two variance parameters?  Show your result.
Based on all our earlier discussions, we can jump right to the conclusion that q2 estimates (u2 + ((2.  So, the question turns on q1.  For completeness, assume that there is a constant term. This will turn out not to matter, but it does remove an ambiguity.  Then,
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  has 6 unique terms.  But, the three parts are at least asymptotically uncorrelated.  Indeed, as N goes to infinity, the first term (and its square) converge to zero.  Because the LSDV estimator is consistent, 
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 converges to whatever 
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 converges to.  The first of these converges to (u2.  The second term converges to the variance of 
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, which is ((2/T.  It follows that q1 converges to  (u2 + ((2/T.  Using the method of moments, then
q2 – q1 converges to ((2 [1 – 1/T] which can easily be solved for ((2.  With this in hand, a solution for (u2 is obtained by subtracting this estimate from q2.  So, the method does, indeed, provide a way to estimate the two variance parameters consistently.
Part III.  Dynamic Model

Consider a dynamic, linear, cross country, random effects regression model


yit =  ( + (xit  + (zit  +   (yi,t-1 +  ui  +  (it, t = 2,...,T (and yi,1 is observed data).
in which i is a country and t is a year.  yit is gasoline consumption per capita, zit is is the price of gasoline and xit is per capita income.  You have 18 countries and 50 years of data.  
(1) Show that the pooled ordinary least squares estimator is inconsistent.
Because yi,t-1​ is correlated with ui for all t, there is a regressor in the model that is correlated with the disturbance. Thus, OLS will be inconsistent.
(2) Show an instrumental variable approach that could be used to obtain consistent estimators of α, (, ( (.
(A) An obvious approach is simply to use lags of xit and zit as instrumental variables.  Thus, we can use two stage least squares.
(B)  This model can be estimated by Anderson and Hsiao’s estimator.  First differences eliminates the common time invariant effect.  Thus,

yit -  yi,t-1  =  ((xit – xi,t-1)  + ((zit - zi,t-1​)  +   ((yi,t-1 -  yi,t-2)  +  ((it - (i,t-1)


 =  ((xit  +  ((zit  +  ((yi,t-1  +  ((it.

The regressor (yi,,t-1 is correlated with ((i,t, so we cannot use OLS. We can find an instrumental variable (or several).  For example, (yi,t-2 could be used, or (xi,t-1, or (zi,t-1 or all three.  With these instrumental variables, we could now use two stage least squares.
It looks like this approach lost an estimator of (.  However, consider that if we have in hand consistent estimators of (, (, (, say b,d,c, then the residuals

eit  =  yit – bxit – dzit – cyi,t-1  are pointwise consistent estimators of ( + ui + (it.  Then, we can use

a = 
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  which will converge to ( + 0 + 0 (the second and third terms are the expectations of ui and (it). 
(C) A third approach is the Hausman and Taylor estimator discussed in class. Here, X1 =(xit,zit), X2 = yi,t-1, Z1 = the constant and Z2 is null.  The method described in class can be used here.
(3) Given the problem in (1) and the solution in (2), suppose I obtain from outside the model, data on three instrumental variables,  fit = f1it, f2it and f3it.  There are two different assumptions that one might make about the instruments:


Exogeneity:  
E[fit (ui + (it)]  =  0, for t = 2,...,T


Strict Exogeneity
E[fit (ui + (is)]  =  0, for t = 2,...,T and s = 2,...,T
(Note, there is another equation always available, E[(ui + (it)]  =  0.)  In terms of constructing a GMM estimator, how do these two assumptions differ regarding the implications for constructing moment equations for estimation.

The exogeneity assumption provides a set of moment equations that applies to each of the available periods 

of data, namely, 
[image: image10.wmf],1

1

1

1

()

N

it

itititit

i

it

it

x

yxzy

z

N

-

=

æö

ç÷

ç÷

-a-b-d-g=

ç÷

ç÷

èø

å

0

f

, t = 2,...,T

This is 6 moment equations for each of the T-1 periods of data, or altogether 6(T-1) moment equations for estimating the 4 parameters.  One way to think of this is that we could use 2SLS with each of the T-1 periods of available data.  (Note, in the exam, many of you did not include xit and zit in your list of instruments, and suggested that for each period, there were 4 moment equations. Actually, there are 6.)  

The strict exogeneity assumption adds many, many moment equations, since the cross period moments may now be used.  Thus,
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This provides 6(T-1)(T-1) equations.  Continuing the line of thinking, one could use 2SLS with the instruments from period 2, say and the residuals from period 3, and so on.  The strict exogeneity adds a huge number of moments to the estimation.  The total number would be 49*49*5  + 49 since the residuals sum to 1 in each period only once.
 (4)  Suppose that (, the coefficient on zit, is allowed to differ across countries, but it is assumed that



(i  =  (  +  wi
where wi is random noise uncorrelated with all other variables in the model. Comment on the following estimation strategies for estimating (, (, (, (:
(Note that this case is simpler than the one we discussed in class because I am assuming right away the “random parameters” version, with wi being random noise uncorrelated with everything else in the model. This simplifies the results below.)
(a)  Pooled least squares, ignoring the whole issue

Pooled, panel data approach.  With this assumption, 
(*)
yit =  ( + (xit  + (zit  +   (yi,t-1 +  (ui  +  (it  + wizit)
Pooled least squares does not work for the same reason as before.  yi,t-1​ is still correlated with ui.  It is counterintuitive, but the problem is not caused by correlation of zit and wizit.  The covariance of zi and wizit is zero.  To see it, note that wizit can vary independently of zit because wi can vary independently.  Formally, 
Cov[zit,wizit]  =  E[zit ( zitwi]  -  E[zit]E[zitwi]  =  E[wi zit2] – E[zit]E[zitwi].  By independence of zit and wi, 

E[wi zit2]  =  E[wi]E[zit2]  =  0(something and E[zit]E[zitwi] = E[zit](0(E[zit] = 0 again.  The upshot is the the problem in OLS estimation of the model still arises because of the correlation of yi,t-1 and ui.
(b)  Regression of the 18 country means of y on a constant and country means of x, z and lagged y.

Cross Section Approach

Averaging equation (*) above across the 50 periods for each country,  the country means are
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This looks like it ought not to work.  But, note that 
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 +  [1/(T-1)](yi1 – yiT).  Thus,
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Manipulate this a bit to obtain
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If we could assume that T is “large” then the end effect would be small(ish), and we could ignore it (just add it to the disturbance) and fit the model by least squares.  Thus, if T is large enough, we can estimate at least these functions of the parameters..

(c)  Regression of 50 period means of y on the period means of the other variables
Time Series Approach

The period means are the averages across countries of equation (*)
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The mean of the lagged values must be highly correlated with the mean of ui, so this is going to be inconsistent for the same reason as before. Note, again, the problem is not 
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(d)  18 separate country specific regressions, then average the estimates of (, (, δ and (.

Fixed Effects Approach
Not at all. The problem of the correlation of yi,t-1 with ui is present in the data for each country.  For each country, the model is now a time series model.
(*)
yt =  ( + (xt  + (zt  +   (yt-1 +  (u  +  (t  + wzt)
The problem of correlation between the lagged value of y and u remains.  One might estimate the parameters by IV, however, using lagged (or leaded) values of xt and/or zt.  Given this possibility, one could, in principle, average these consistent estimators to obtain another consistent estimator.
Part IV.  Analysis of Panel Data
(1)  The first model considered is a simple labor market outcomes equation,


(A)
LWAGEit  =  (1 EXPit  +  (2 EXPSQit  +  (3 DATEit  +  ci  +  (it.

Based on the results given below, which model do you think the analyst should report as their best estimates, the pooled least squares results, the fixed effects results or the random effects results? Justify your answer with the statistical evidence.

| Lagrange Multiplier Test vs. Model (3) =21472.90 |

| ( 1 df, prob value =  .000000)                   |

| Fixed vs. Random Effects (Hausman)     =  137.97 |

The LM statistics is huge. Formally, that strongly rejects the classical model in favor of the random effects model, so in principle, we rule out the pooled model.  It still leaves the possibility that the FE model is preferred. A question is, if the FE model, not the RE model were correct, would the LM statistic still show up huge? The answer is probably. We use the Hausman statistic to settle the issue.  The Hausman statistic, a chi squared with three degrees of freedom is 137.97.  This is far larger than the critical value for 3 degrees of freedom. So, it looks like the fixed effects model is the preferred specification.
(2)  Notice that the R2 jumps from an unimpressive 0.08 to a very impressive 0.66 when the dummy variables for the fixed effects model are added to the equation.  This seems like a very large change just for a set of constants.  Should this be expected?  Explain.
This is typical when there is a large amount of between groups variation that is not necessarily explained by the regressors.  The mean of the dependent variable differs greatly across the individuals and the means of the independent variables do not.  The difference is then picked up by the dummy variables.  This is a common outcome.
 (3)  Based on the model you chose in part (1) estimate the impact on expected logWage of an additional year of experience.  How would you form a confidence interval for your estimate?
From the fixed effects results,

 EXP     |     .03083440       .00741694     4.157   .0000   8.36268765

 EXPSQ   |    -.00381882       .00014899   -25.632   .0000   86.9698644

 DATE    |     .07619867       .00594136    12.825   .0000   8.19671857

Matrix Cov.Mat. has  3 rows and  3 columns.

               1             2             3

        +------------------------------------------

       1|  .5501099D-04 -.6738864D-06 -.4131113D-04

       2| -.6738864D-06  .2219732D-07  .2758857D-06

       3| -.4131113D-04  .2758857D-06  .3529975D-04

The partial effect would be

(E[logWage|x]/Exp  =  .03083440  - 2(.00381882(EXP.

I would compute this at the mean of the variable EXP, which is 8.36268765.  The result is  -0.03307 or about negative 3.3%.  To form a confidence interval, I would need to estimate the standard error.  I would compute this using  the square root of g′ V g where g is [1, 2(EXP-bar] and V is the asymptotic covariance matrix of the two coefficients, b1 and b2. The necessary covariance matrix is the upper left 2(2 covariance matrix in the matrix shown above.  Then, the standard error is the square root.  The confidence interval would equal the partial effect plus and minus 1.96 times the standard error.

--> calc;list;me=.03083440 +2*(-.00381882)*8.36268765 $
+------------------------------------+

| Listed Calculator Results          |

+------------------------------------+

 ME      =      -.033037

--> matrix ; v = [
    .5501099D-04, -.6738864D-06, -.4131113D-04/
    -.6738864D-06,  .2219732D-07,  .2758857D-06/
    -.4131113D-04,  .2758857D-06,  .3529975D-04] $
--> matrix ; g = [1 / 16.725375 / 0]$
--> matrix ; list ; v = g'[v]g $
Matrix V        has  1 rows and  1 columns.

               1

        +-------------+

       1|  .3867842D-04

        +-------------+

--> calc ; list ; sd = sqr(v) $
+------------------------------------+

| Listed Calculator Results          |

+------------------------------------+

 SD      =       .006219

--> calc ; list 
; upper = me + 1.96*sd 
; lower = me - 1.96*sd $
+------------------------------------+

| Listed Calculator Results          |

+------------------------------------+

 UPPER   =      -.020847

 LOWER   =      -.045226

Calculator: Computed   2 scalar results
(4)  As an alternative approach to the specification question in part 1, I computed the group means of the three variables in the model, refit the RE model with the group means added to the equation, then computed the statistic shown below.  (The regression appears below after the random effects estimates for (A).)  What conclusion should I draw about fixed vs. random effects based on these results?  Explain.

matr;b0=b(4:6);v0=varb(4:6,4:6)$   subvector of coefficients, submatrix of cov.mat.
matr;list;fere=b0'<v0>b0$
        quadratic form (0′ V0-1 (0
Matrix FERE     has  1 rows and  1 columns.

               1

        +--------------

       1|  141.34925

calc;list;ctb(.95,3)$              95th percentile from chi-squared with 3 deg.fre.
+------------------------------------+

| Listed Calculator Results          |

+------------------------------------+

 Result  =      7.814728
This is a Wu, or variable addition test for fixed vs. random effects. It is an alternative to the Hausman statistic that we used earlier.  The value of 141.34925 is a chi squared test statistic against the null hypothesis of the random effects model.  The critical value is 7.814.  Since the test statistic is larger than the critical value, we would reject (once again), the hypothesis of the random effects model in favor of the fixed effects model.
 (5)  Consider, now a second “regression model,” for ci.  


(B)
ci  =  (1 + (2 MEDi + (3 FEDi + (4 BROKENi + (5 SIBSi + ui.
Under the assumption that ui and (it in (A) are statistically independent, which model would now be appropriate for the equation in part 1, fixed or random effects?  Explain your answer.

If we substitute equation (B) into (A), we obtain

LWAGEit  =  
(1 EXPit  +  (2 EXPSQit  +  (3 DATEit  +   



(1 + (2 MEDi + (3 FEDi + (4 BROKENi + (5 SIBSi + ui +  (it.

which is a random effects model under the assumption that ui is uncorrelated with all of the variables in the model.  But, the question asks about the model in (A), so what we are looking at here would be an explanation of how the correlation between ci and the time varying variables might arise.  So, given this equation, whether the equation in (A) should be viewed as an FEM or REM depends on whether (MED,FED,BROKEN,SIBS) (actually also includes ABILITY, which I accidentally omitted from this list) are correlated with EXP and DATE.  Would they be?  Probably not with DATE, but Experience might well be correlated with any of these time invariant variables This suggests that it might be reasonable, based on the theory, to think about (A) as a fixed effects model.
(6)  Continuing part (5), how does the existence of this regression affect the properties of the fixed effects and random effects estimators of the parameters (1,(2,(3,(4 in equation (A)?  (Note the question states estimators.)

Looking at (A) by itself, we would say that if ci is correlated with the other variables, an FE is appropriate. If not, then an REM is appropriate.  The FE estimator is robust, consistent in the presence of the omitted time varying variables.  The FGLS estimator (or OLS) would be inconsistent. For the REM, the FE estimator remains consistent, but inefficient, whereas FGLS will be consistent and efficient.  However, to this point, we have to assume the answer.  Knowing about the second equation, we would be in a better position to see which assumption is correct.  So, the existence of the second equation will suggest which is the appropriate specification, RE or FE. Given the variables in equation (B), one might suspet that the FEM is the right model. As such, the existence of the second equation has no implications for the LSDV estimator, but it does suggest that the FGLE (or pooled OLS) estimator will be inconsistent.
(7)   By inserting equation (B) in (A), I obtain an equation that I can fit in a single step.  Consider a two step approach to estimation of equations (A) and (B).  Step 1, I compute the FE estimates of (A), keeping the estimated constant terms, ai.  Step 2, I fit a least squares regression of the constant terms on the variables in equation (B).  The results for both approaches are shown below.  Based on the assumptions made so far, is the two step estimator shown here a valid procedure (consistent, efficient estimator) for estimating all the parameters of the two equation model?

The assumptions thus far produce a random effects model by inserting (B) in (A).  The first step LSDV estimates ( consistently.  That means that the constant terms, ai are unbiased though not consistent estimators of ci .  It follows that the second step regression is based on the implicit regression,

ai  =  ci + estimation error.  Inserting (B), we obtain 

ai =   (1 + (2 MEDi + (3 FEDi + (4 BROKENi + (5 SIBSi + ui + ei
We should, indeed, be able to estimate the parameters using OLS in this second equation.  This will be a consistent estimator.  It will not be efficient because the estimation error, ei is heteroscedastic. This could be corrected.  It would still not be as efficient as estimating the model in (A) with (B) all at once, using the efficient estimator, FGLS in a single step.
(8)  The last two set of results shown below are random parameters models in which only the constant term is treated as a random parameter.  In the latent class results, note that in all three classes, the slope parameters and the standard deviation of ( are all the same – the classes differ in the constant term.  The maximum simulated likelihood estimates are estimates of (A) and (B) using maximum likelihood rather than two step FGLS.  Explain in one brief paragraph how these two models differ in their approach to modeling the heterogeneity in the data.
The maximum simulated likelihood estimator is for a random constants model, that is for the random effects model assuming that ui has a normal distribution with zero mean and variance (u2.  That is, the heterogeneity is continuously distributed in the population.  The latent class approach uses a discrete distribution to approximate the continuous one – it is essentially a nonparametric approach.  One could view this as a distribution in its own right – the heterogeneity is distributed discretely among three classes.  Or, the discrete distribution is an approximation to a continuous one.
Department of Economics











PAGE  
8

_1299522927.unknown

_1299524373.unknown

_1299690412.unknown

_1299693415.unknown

_1299693439.unknown

_1299693458.unknown

_1299693117.unknown

_1299524465.unknown

_1299524632.unknown

_1299523880.unknown

_1299524353.unknown

_1299523773.unknown

_1299522552.unknown

_1299522821.unknown

_1299522838.unknown

_1299522740.unknown

_1203362281.unknown

_1203404016.unknown

_1028119136.bin

