

Department of Economics

Econometric Analysis of Panel Data

Professor William Greene Phone: 212.998.0876

Office: KMC 7-78 Home page:www.stern.nyu.edu/~wgreene

Email: wgreene@stern.nyu.edu URL for course web page:

www.stern.nyu.edu/~wgreene/Econometrics/PanelDataEconometrics.htm

Assignment 1

Part I. Mathematical Statistics

The density f(y) for a nonnegative random variable, y, is exponential with parameter λ , so $f(y) = 1/\lambda \exp(-y/\lambda), y > 0, \lambda > 0$.

For this random variable, the mean is $E[y] = \lambda$. We make this a regression model by formulating the conditional mean function

$$\lambda(x) = \exp(\alpha + \beta x).$$

(This makes it a 'loglinear model.'). Now, the regression function is $E[y|x]=\exp(\alpha+\beta x)$.

Suppose, further, that x is distributed uniformly with density

$$f(x) = 1, 0 \le x \le 1.$$

Note that with this assumption, the joint density of y and x is

$$f(y,x) = f(y|x) f(x) = [1/\exp(\alpha + \beta x)] \exp[-y/\exp(\alpha + \beta x)].$$

1. Derive the parameters of the linear projection,

$$P(x) = \delta_0 + \delta_1 x,$$

where $\delta_0 = E[y] - \delta_1 E[x]$ and

$$\delta_1 = \text{Cov}[x,y]/\text{Var}[x].$$

Suppose $\alpha = 1/3$ and $\beta = 2$. What are the values of δ_0 and δ_1 ?

Hint:
$$E[y] = E_x E[y/x] = \int_0^1 \exp(\alpha + \beta x) \times 1 dx = \exp(\alpha) \int_0^1 \exp(\beta x) dx$$
 and

$$Cov[y,x] = Cov[x,E[y|x]] = E_x\{x \times E[y|x]\} - E[x] E[y] = exp(\alpha) \int_0^1 x exp(\beta x) dx - E[x] E[y].$$

Find help at http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

2. Consider the linear Taylor series approximation to the conditional mean function. What are the values of θ_0 and θ_1 in the Taylor series: $E^*[y|x] = \theta_0 + \theta_1 x$ when the expansion point is E[x] = 1/2 and as before, $\alpha = 1/3$ and $\beta = 2$.

1. $f(x) = 1, 0 \le x \le 1$. $f(y|x) = [1/\lambda(x)] \exp[-y/\lambda(x)], y \ge 0, \lambda(x) = \alpha + \beta x, \alpha = 1/3, \beta = 2$. $E[x] = \frac{1}{2}, Var[x] = \frac{1}{12}$. (Standard results)

 $E[y] = E_x E[y|x] = E[\lambda(x)] = E[\exp(\alpha + \beta x)]$

 $E[y] = \exp(\alpha)E[\exp(\beta x)]$

$$= \exp(\alpha) \int_0^1 \exp(\beta x) dx$$

$$= \exp(\alpha) \left\lceil \frac{\exp(\beta x)}{\beta} \right\rceil_0^1 = \exp(\alpha) \left\lceil \frac{\exp(\beta)}{\beta} - \frac{1}{\beta} \right\rceil = \frac{\exp(\alpha)}{\beta} [\exp(\beta) - 1] = 4.5832$$

$$Cov(x, y) = Cov(e, E[y \mid x]) = E[x \exp(\alpha + \beta x)] - E[x]E[y]$$

$$= \int_0^1 x \exp(\alpha + \beta x) dx - \frac{1}{2} 4.5832$$

$$= \exp(\alpha) \int_0^1 x \exp(\beta x) dx - \frac{1}{2} 4.5832$$

$$= \exp(\alpha) \left[\frac{\exp(\beta x)}{\beta^2} (\beta x - 1) \Big|_0^1 \right] - \frac{1}{2} 4.5832$$

$$= \exp(\alpha) \left\lceil \frac{\exp(\beta)}{\beta^2} (\beta - 1) - \frac{1}{\beta^2} (-1) \right\rceil - \frac{1}{2} 4.5832$$

$$=\frac{\exp(\alpha)}{\beta^2} \Big[\exp(\beta)(\beta-1) + 1 \Big] - \frac{1}{2} 4.5832 = .697808.$$

The slope is Cov(x,y)/Var[x] = .697808/(1/12) = 8.37369

The constant term is E[y] - slope×E[x] = 4.5832 - 8.37369(1/2) = 0.27147

2. If $E[y|x] = \lambda(x)$, The Taylor series approximation would be $\lambda(E[x]) + \partial \lambda(x)/\partial x \mid (x=E[x]) \times (x-E[x]) = \lambda(E[x])[1 - \beta E[x]]$

$$E^*(y|x) = \lambda(1/2) + \partial \lambda(x)/\partial x|_{1/2} [x - \frac{1}{2}]$$

= $\exp(1/3 + 2(1/2)) - (\frac{1}{2})\beta\lambda(1/2) + \beta\lambda(1/2)x$

```
The slope is 2\exp(1/3 + 2(1/2)) = 2\exp(4/3) = 7.587.
The constant is \lambda(1/2)[1 - \frac{1}{2}\beta] = 0.
```

Part II. Linear Regression Analysis

Data for this exercise are on the course website – please use the "Cornwell and Rupert Returns to Schooling Data." We begin with the linear regression model (using the variable names in the data set)

(*) LWAGE_{it} =
$$\beta_1 + \beta_2$$
OCC_{it} + β_3 SMSA_{it} + β_4 MS_{it} + β_5 FEM_i + β_6 ED_i + β_7 EXP_{it} + ε_{it}

The dependent variable is log wage. The RHS variables are defined in the data set. Although this is a panel data set, we are going to ignore that aspect and "pool" the data.

- 1. Compute the linear least squares regression results and report the coefficients, standard errors, 't-ratios,' R^2 , adjusted R^2 , residual standard deviation, and F statistic for testing the joint significance of all the variables in the equation.
- 2. Test the hypothesis that neither education (ED) nor experience (EXP) is a significant determinant of the expected log wage. Use an F (Wald), likelihood ratio (assuming normality of ε), and a Lagrange multiplier (also assuming normality) test. In each case, document in minute detail exactly how you are computing your results and what conclusion you reach.
- 3. The model contains a dummy variable for sex, FEM = 1 for female, 0 for male. What is the value of the coefficient on FEM in your estimated model? How do you interpret this value? I.e., what is the economic meaning of the value you computed for this coefficient? Test the hypothesis that this coefficient equals zero.

GENDER DIFFERENCE (PROPORTIONAL). -39%. HYPOTHESIS THAT IT EQUALS ZERO IS REJECTED BASED ON T RATIO OF -15.164.

```
Ordinary least squares regression
 LHS=LWAGE
                                              6.676346
                 Mean
                Standard deviation =
                Number of observs. =
                                                4165
 WTS=none
 Model size Parameters
                Degrees of freedom = 4158
Sum of squares = 556.3030
Standard error of e = .3657745
 Residuals
 R-squared = .3727592
Adjusted R-squared = .3718541
Model test F[ 6, 4158] (prob) = 411.84 (.0000)
Diagnostic Log likelihood = -1717.476
                 Log likelihood = -1717.476
Restricted(b=0) = -2688.806
                 Chi-sq [ 6] (prob) =1942.66 (.0000)
 Info criter. LogAmemiya Prd. Crt. = -2.009797
                 Akaike Info. Criter. = -2.009797
                 Bayes Info. Criter. = -1.999151
|Variable| Coefficient | Standard Error | b/St.Er.|P[|Z|>z]| Mean of X|
5.66098*** .04685914 120.808 .0000

-.11220*** .01464317 -7.662 .0000 .5111645

.15504*** .01233744 12.567 .0000 .6537815
```

```
.09569*** .02133490 4.485 .0000 .8144058
-.39478*** .02603413 -15.164 .0000 .1126050
            -.59478*** .02603413 -15.164
.05688*** .00267742
                                                              .1126050
12.845378
FEM
               .05688*** .00267743 21.244
.01044*** .00054206 19.256
                                              21.244
                                                       .0000
E.D
                                                       .0000
                                                               19.853782
EXP
| Note: ***, **, * = Significance at 1%, 5%, 10% level.
--> MATRIX ; List ; Wald = b2'_*<v2>*b2 $
Matrix WALD has 1 rows and 1 columns.
1 | 668.77622
--> CALC ; Logl1 = Logl $
--> Regress ; Lhs = Lwage ; Rhs = One,OCC,SMSA,MS,FEM ; Res = e0 $
 Ordinary least squares regression
LHS=LWAGE Mean =
                                     = 6.676346
              Standard deviation = .4615122
              Number of observs. = 4165
Parameters = 5
 Model size Parameters
 Residuals Sum of squares = 4160
Standard error of e = .3939992
                                        .2718733
              R-squared =
Adjusted R-squared =
                                          . 2711731
 Model test F[4, 4160] (prob) = 388.32 (.0000)
 Diagnostic Log likelihood = -2028.070
Restricted(b=0) = -2688.806
               Chi-sq [ 4] (prob) =1321.47 (.0000)
 Info criter. LogAmemiya Prd. Crt. = -1.861613
               Akaike Info. Criter. = -1.861613
 Bayes Info. Criter. = -1.854009
Autocorrel Durbin-Watson Stat. = .7730622
Rho = cor[e,e(-1)] = .6134689
 Model was estimated Feb 10, 2009 at 06:49:39AM
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
 Note: ***, **, * = Significance at 1%, 5%, 10% level.
--> Create ; e02 = e0*e0 $
--> CALC ; Logl0 = Logl $
--> Matrix ; List ; LMtest = e0'XPart2 * <XPart2'[E02]XPart2> * Xpart2'e0 $
Matrix LMTEST has 1 rows and 1 columns.
1 | 411.91215
--> CALC ; list ; LR = 2*(Logl1 - Logl0) $
Listed Calculator Results
LR = 621.187281
```

Part III. Structural Change

The implication of the specification of FEM in the model in Part II is that the extent of the difference between men and women is captured in a shift of the regression function (based on a change in the intercept alone). Consider, instead, the hypothesis that different regression functions apply to men and women. Fit the model separately for men and women, then use a Chow test to test the null hypothesis that the same equation applies to men and women. (Note, for purposes of this exercise, your model will not contain the FEM variable.) The model is

(**)
$$LWAGE_{it} = \beta_1 + \beta_2 OCC_{it} + \beta_3 SMSA_{it} + \beta_4 MS_{it} + \beta_5 ED_i + \beta_6 EXP_{it} + \varepsilon_{it}$$

Completely document your analysis. Include in your results a table that shows the results of the three regressions, male, female and pooled, so that the reader can easily see the comparison of the estimated coefficients. What is the result of the test?

Looking ahead to our work in panel data modeling, repeat this analysis for the 7 years of data in the sample. That is, compute the regression in (**) using the full pooled data set, then again for each of the 7 years. (There are 595 observations for each of the 7 years.) Using a Chow (F) test, test the null hypothesis that the same model applies to all 7 years. To investigate whether a structural change might be explained by a simple shift of the function, fit the model

(***)
$$LWAGE_{it} = \beta_1 + \beta_2 OCC_{it} + \beta_3 SMSA_{it} + \beta_4 MS_{it} + \beta_5 ED_i + \beta_6 EXP_{it} + \gamma_1 T_{2,t} + ... \quad \gamma_6 T_{6,t} + \epsilon_{it}$$

where $T_{2,t}$... $T_{6,t}$ are 6 dummy variables for the 6 years, omitting the first. Test the null hypothesis that the 6 dummy variable coefficients all equal zero and report all results. Interpret your findings.

--> NAMELIST ; XPart3 = One,OCC,SMSA,MS,ED,EXP \$
--> REGRESS ; Lhs = Lwage ; Rhs = XPart3 \$

+----

```
|Variable | Coefficient | Standard Error | b/St.Er. | P[ | Z | >z ] | Mean of X |
| Note: ***, **, * = Significance at 1%, 5%, 10% level.
--> CALC ; SSPool = sumsqdev $
--> REGRESS ; For[FEM=0] ; Lhs = Lwage ; Rhs = XPart3 $
**************
* Setting up an iteration over the values of FEM *
* The model command will be executed for 1 values
* of this variable. In the current sample of 4165 *
* observations, the following counts were found:
* Subsample Observations Subsample Observations *
* FEM = 0 3696 FEM
                        FEM =*** ******
* Actual subsamples may be smaller if missing values *
* are being bypassed. Subsamples with 0 observations *
* will be bypassed.
************************
     Subsample analyzed for this command is FEM
 Ordinary least squares regression LHS=LWAGE Mean =
                            = 6.729774
           Standard deviation = .4382202
                              = 3696
 WTS=none
            Number of observs. =
 Model size Parameters
            Degrees of freedom = 3690
Sum of squares = 503.8896
                                     3690
 Residuals
            Sum of squares
            Standard error of e = .3695341
            R-squared = Adjusted R-squared =
                                 .2898728
 Fit.
 Model test F[5, 3690] (prob) = 301.25 (.0000)
           Log likelihood = -1561.981
Restricted(b=0) = -2194.572
 Diagnostic
            Chi-sq [ 5] (prob) =1265.18 (.0000)
 Info criter. LogAmemiya Prd. Crt. = -1.989402
            Akaike Info. Criter. = -1.989402
 Bayes Info. Criter. = -1.979313
Autocorrel Durbin-Watson Stat. = .7604481
Rho = cor[e,e(-1)] = .6197759
 Model was estimated Feb 10, 2009 at 06:56:48AM
+----+
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
| Note: ***, **, * = Significance at 1%, 5%, 10% level.
```

--> CALC ; SSMen = sumsqdev \$

--> REGRESS ; For[FEM=1] ; Lhs = Lwage ; Rhs = XPart3 \$

- * Setting up an iteration over the values of FEM *
- * The model command will be executed for 1 values * of this variable. In the current sample of 4165 *
- * observations, the following counts were found:
- * Subsample Observations Subsample Observations *

```
* Actual subsamples may be smaller if missing values *
* are being bypassed. Subsamples with 0 observations *
* will be bypassed.
    Subsample analyzed for this command is FEM
*****************
           least squares regression
Mean =
Standard deviation =
 Ordinary
                                  = 6.255308
 LHS=LWAGE
                                      .4227426
 WTS=none
            Number of observs. =
 Model size Parameters
             Degrees of freedom =
                                            463
 Residuals Sum of squares = 47.90453
              Standard error of e = .3216605
R-squared = .4272321
Adjusted R-squared = .4210467
             R-squared
 Fit
 Model test F[5, 463] (prob) = 69.07 (.0000)
 Diagnostic Log likelihood = -130.4956
Restricted(b=0) = -261.1765
              Chi-sq [5] (prob) = 261.36 (.0000)
 Info criter. LogAmemiya Prd. Crt. = -2.255805
              Akaike Info. Criter. = -2.255806
              Bayes Info. Criter. = -2.202707
             Durbin-Watson Stat. = .8105792
Rho = cor[e,e(-1)] = .5947104
 Autocorrel
 Model was estimated Feb 10, 2009 at 06:56:48AM
|Variable | Coefficient | Standard Error | t-ratio | P[|T|>t] | Mean of X |
 5.26320*** .11046622 47.645 .0000 .3923241 .12504*** .03915105 -6.536 .0000 .3923241 .12504*** .039261168 -.013 .9900 .0255864
Constant 5.26320***
           -.25591***
OCC
SMSA
MS
            -.00121
|ED | .06611***
|EXP | .00851***
                          .00754249 8.765 .0000 12.835821
.00154633 5.503 .0000 17.014925
| Note: ***, **, * = Significance at 1%, 5%, 10% level.
--> CALC ; SSWomen = Sumsqdev $
--> CALC ; K = Col(XPart3) $
--> CALC ; List ; Chow = ((SSPool - (SSMen+SSWomen))/ K) /
  ((SSMen + SSWomen) / (N - 2*K)) $
Listed Calculator Results
+-----
CHOW = 44.247081
--> calc;LIST;FTB(.95,K,(N-2*K))$
| Listed Calculator Results
Result = 2.100770
```

=**** *******

* FEM

= 1 469 FEM

```
CREATE; T = Trn(-7,0)$
CALC ; SST = 0 $
Procedure
REGRESS ; For[T=j] ; Lhs = Lwage ; Rhs = Xpart3 ; quietly $
CALC ; SST = SST + Sumsqdev $
Exec ; J = 1,7 $
CALC ; List ; Chow = ((SSPool - SST)/(6*K)) / (SST/(N-7*K)) $
--> CALC; List; Chow = ((SSPool - SST)/(6*K)) / (SST/(N-7*K))$
Listed Calculator Results
CHOW = 34.789262
--> CALC ; List ; FTB(.95,(6*K),(n-7*K)) $
Listed Calculator Results
Result =
             1.419543
CALC ; List ; FTB(.95,(6*K),(n-7*K)) $
CREATE; T1 = t=1; T2 = t=2; T3 = t=3; T4 = t=4; T5 = t=5; T6 = T=6 $
REGRESS ; Lhs = Lwage ; Rhs = XPart3 $
CALC ; SS0 = Sumsqdev $
REGRESS ; Lhs = Lwage ; Rhs = XPart3,t1,t2,t3,t4,t5,t6 $
CALC ; List ; FStat = ((SS0 - Sumsqdev)/6) / (sumsqdev/(n-k-6)) $
--> CALC ; List ; FStat = ((SS0 - Sumsqdev)/6) / (sumsqdev/(n-k-6)) $
| Listed Calculator Results
FSTAT = 203.701855
```

Part IV. A Nonlinear Regression

1. The model (*) above omits a well known phenomenon with respect to the association of wages and experience – earnings often do not increase uniformly with experience, but rather increase more rapidly in the earlier years of employment than in the later years. Test this theory by adding EXP² to your model. The equation is

(****) LWAGE_{it} =
$$\beta_1 + \beta_2$$
OCC_{it} + β_3 SMSA_{it} + β_4 MS_{it} + β_5 FEM_i + β_6 ED_i + γ EXP_{it} + δ EXP_{it}² + ϵ _{it}

Refit the model by least squares and discuss your results. Use the entire sample. Does squared experience help to explain the variation in log wages? Test the null hypothesis that it does not. What do you find?

2. Partial Effect. As part of your analysis, derive and statistically analyze the partial effect of experience,

$$\theta(\text{EXP}_{\text{it}}) = \partial \text{E}[\text{LWAGE}|\mathbf{x}]/\partial \text{EXP} = \gamma + 2\delta \text{EXP}_{\text{it}}$$

at the sample mean value of EXP_{it} . Compute an asymptotic standard error for the estimator of θ then test the hypothesis that θ equals zero.

3. Examining the Regression. Obtain the sample mean values of OCC, SMSA, MS ED. Then, using your estimated coefficients, compute

$$\hat{\alpha} = \hat{\beta}_1 + \hat{\beta}_2 \overline{OCC} + \hat{\beta}_3 \overline{SMSA} + \hat{\beta}_4 \overline{MS} + \hat{\beta}_6 \overline{ED} \ .$$

We are interested in what the regression model implies about the trajectory of wages as a function of experience. Thus, we want to plot

$$\widehat{WAGE}(Exp \mid Female) = \exp(\hat{\alpha} + \hat{\beta}_5 + \hat{\gamma}Exp + \hat{\delta}Exp^2)$$
and
$$\widehat{WAGE}(Exp \mid Male) = \exp(\hat{\alpha} + \hat{\gamma}Exp + \hat{\delta}Exp^2)$$

What do you find? Interpret the figure.

HINT: Here are NLOGIT commands that you can use to do this computation

```
regress;lhs=lwage;rhs=one,occ,smsa,ms,fem,ed,exp,expsq$
calc;occbar=xbr(occ);smsabar=xbr(smsa);msbar=xbr(ms);edbar=xbr(ed)$
calc;ahat=b(1)+b(2)*occbar+b(3)*smsabar+b(4)*msbar+b(6)*edbar$
samp;1-51$
create;fitexp=trn(1,1)$
create;wagef=exp(ahat + b(5) + b(7)*fitexp+b(8)*fitexp^2)$
create;wagem=exp(ahat + b(7)*fitexp+b(8)*fitexp^2)$
plot;lhs=fitexp;rhs=wagef,wagem;fil
;title =Wage Trajectories for Men and Women Based on Experience
;Vaxis =Projected Weekly Earnings
;Grid$
```

```
--> CALC ; EXpBar = Xbr(EXP) $
--> Calc ; list ; Theta = b(7)+2*b(8)*Expbar $
```


Part V. Nonlinear Function of Parameters

Based on the regression model in part IV,

(****) LWAGE_{it} =
$$\beta_1 + \beta_2$$
OCC_{it} + β_3 SMSA_{it} + β_4 MS_{it} + β_5 FEM_i + β_6 ED_i + EXP_{it} + δ EXP_{it} + ϵ _{it}

In Part IV, you plotted the trajectory of WAGE (not log WAGE) using the mean values of the variables in the model. Note that the figure shows a parabola with a maximum at about 29 years, We are interested in exploring the computation of the peak earning year.

TIP. For purposes of this exercise, you will find it convenient to use

$$EXP100 = EXP/100$$
 and
$$EXP100SQ = EXP100^{2}$$

for your regression. This scaling will make the standard errors that you need to use much more convenient but will, of course, not change the model.

(****) LWAGE_{it} =
$$\beta_1 + \beta_2$$
OCC_{it} + β_3 SMSA_{it} + β_4 MS_{it} + β_5 FEM_i + β_6 ED_i + γ EXP100_{it} + δ EXP100_{it}² + ϵ _{it}

Refit the model, using EXP100 and EXP100SQ. Our prediction of WAGE is

$$\widehat{WAGE}(Exp \mid Female) = \exp(\hat{\alpha} + \hat{\beta}_5 + \hat{\gamma}Exp100 + \hat{\delta}Exp100^2)$$

- 1. Prove that the maximum of this function occurs at $EXP100^* = -\hat{\gamma}/2\hat{\delta}$. We are interested in estimating and forming a confidence interval for EXP100*.
- 2. Compute the value of EXP100* using the results of your regression.
- 3. Use the delta method to obtain estimated asymptotic standard error for EXP100*.

HINTS: You can use the following NLOGIT commands to do the regression.

```
sample;all$
create;exp100=exp/100 ; exp100sq=exp100^2$
regress;lhs=lwage;rhs=one,occ,smsa,ms,fem,ed,exp100,exp100sq$
```

The rest of the computations can be done with a hand calculator or with the CALC command. After you compute the regression, go into the project window, open the Matrices list, then double click on VARB to show the asymptotic covariance matrix.

```
--> calc ; list ; \max = -b(7)/(2*b(8)) $
Listed Calculator Results
+-----
MAX = .294943
--> calc ; g1 = -1/(2*b(8)) ; g2 = -max/b(8) $
--> calc ; smax = sqr(g1*g1*varb(7,7)+g2*g2*varb(8,8)+2*g1*g2*varb(7,8))$
--> calc ; list ; max/smax $
Listed Calculator Results
--> wald ; start = b ; var = varb ; labels = 8_c ; fn1=-c7/(2*c8)$
 WALD procedure. Estimates and standard errors
 for nonlinear functions and joint test of
 nonlinear restrictions.
 Wald Statistic
Prob. from Chi-squared[1] = .00000
|Variable | Coefficient | Standard Error | b/St.Er. | P[ | Z | >z] |
|Fncn(1) | .29494*** .00632660 46.620 .0000 |
```

4. We will now use the method of Krinsky and Robb as an alternative to the delta method. The method proceeds as follows. We are interested in analyzing a nonlinear function of $\hat{\gamma}$ and $\hat{\delta}$. We have estimated the 2×2 asymptotic covariance matrix for this pair of estimators; call it Σ . Our estimators are asymptotically normally distributed with mean (γ, δ) and asymptotic covariance matrix Σ . What we will do is draw a large random sample from this population, (γ_r, δ_r) , r = 1,...,R, then compute from this sample, a sample of values $EXP_r = -\gamma_r/(2\delta_r)$. We will then use the empirical standard deviation from the sample of draws as our estimator of the asymptotic standard deviation of the estimator of EXP.

How to draw a random sample from this population: We need a sample of draws of the form

$$\gamma_r = \hat{\gamma} + w_{\gamma,r}$$
 and $\delta_r = \hat{\delta} + w_{\delta,r}$ then $EXP_r^* = -\gamma_r/(2\delta_r)$

where $(w_{\gamma,r},w_{\delta,r})$ have bivariate normal distribution with mean vector (0,0) and covariance matrix Σ . Here is how to do that. We will use the Cholesky decomposition of Σ . L is a lower triangular matrix such that $LL' = \Sigma$. Let $v_{1,r}$ and $v_{2,r}$ be samples of independent draws from the standard normal distribution. Then,

$$w_{\gamma,r} = L_{11}v_{1,r}$$
 and $w_{\delta,r} = L_{21}v_{1,r} + L_{22}v_{2,r}$.

a. Let $\sigma_{11}=$ the asymptotic variance of $\hat{\gamma}$, $\sigma_{22}=$ the asymptotic variance of $\hat{\delta}$ and let $\sigma_{12}=$ the asymptotic covariance.

Show that $L_{11} = \text{sqr}(\sigma_{11})$, $L_{21} = \sigma_{12}/L_{11}$ and $L_{22} = \text{sqr}(\sigma_{22} - \sigma_{12}^2/\sigma_{11})$.

- b. Compute the random sample of draws on v1 and v2.
- c. Compute the random sample of draws on γ and δ .
- d. Compute the random sample of draws on EXP*
- e. Compute the standard error for your estimate of EXP* using the sample standard deviation.
- f. Compare your result to the results using the delta method in part 3.

HINT: This set of NLOGIT commands does the computation after the regression.

```
calc ;sgg=varb(7,7);sgd=varb(8,7);sdd=varb(8,8)$
calc ;list; L11=sqr(sgg) ; L21=sgd/sqr(sgg) ; L22=sqr(sdd-sgd^2/sgg)$
create ;u1=rnn(0,1);u2=rnn(0,1)$
create ;gr=b(7) + L11*u1 ; dr=b(8) + L21*u1 + L22*u2 $
create ;expr = -gr/(2*dr)$
dstat ;rhs=expr$
? This command uses the delta method after the regression
wald ;start=b;var=varb;labels=8_b ; fn1=-b7/(2*b8)$
```

```
--> create ;u1=rnn(0,1);u2=rnn(0,1)$
--> create ;gr=b(7) + L11*u1 ; dr=b(8) + L21*u1 + L22*u2 $
--> create ;expr = -gr/(2*dr)$
--> dstat ;rhs=expr$
Descriptive Statistics
All results based on nonmissing observations.
______
Variable Mean Std.Dev. Minimum Maximum Cases Missing
______
All observations in current sample
4165 0
--> wald ;start=b;var=varb;labels=8_b; fn1=-b7/(2*b8)$
 WALD procedure. Estimates and standard errors
 for nonlinear functions and joint test of
 nonlinear restrictions.
.00000
÷-----
|Variable | Coefficient | Standard Error | b/St.Er. | P[ | Z | >z] |
|Fncn(1) | .29494*** .00632660 46.620 .0000 |
| Note: ***, **, * = Significance at 1%, 5%, 10% level. |
```