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Assignment 3 
 
Part I.  Instrumental Variable Estimation    
 
     This exercise is based on Baltagi/Griffin’s gasoline demand model, which we extend 
to the folowing random effects model: 
 
 logGi,t = β1 + β2logYi,t + β3logPi,t + β4logCi,t + β5logGi,t-1 + ui + εi,t 
 
where G = per capita gasoline consumption, Y = income, P = price, C = cars per capita. 
(Use Baltagi’s gasoline data posted on the course web site, for the computations.)  Note 
the appearance of the lagged value of the dependent variable.   
(1) Will the ordinary least squares estimator of β for this model be unbiased?  
Consistent?  Efficient?  Explain. 
 
It will be neither.  Efficiency is a moot point. (OLS would not even be the most efficient 
estimator of the thing that it does estimate because this is a generalized regression 
model.)  The problem is the persistent correlation between logGi,t-1 and ui. 
 
(2)  What about the GLS estimator?  Consistent?  Explain. 
 
Inconsistent.  Same reason as in (1). 
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(3)  Estimate the model by OLS and report your results. 
 
--> Sample;all$ 
--> Create;t=year-1959$ 
--> create;logg=lgaspcar ; logy=lincomep;logp=lrpmg$ 
--> create;logc=lcarpcap;logg1=logg[-1]$ 
--> reject;t=1$ 
--> names;x=one,logy,logp,logc,logg1$ 
--> regress;lhs=logg;rhs=x$ 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =   4.281163     | 
|              Standard deviation   =   .5406116     | 
| WTS=none     Number of observs.   =        324     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        319     | 
| Residuals    Sum of squares       =   1.217978     | 
|              Standard error of e  =   .6179087E-01 | 
| Fit          R-squared            =   .9870977     | 
|              Adjusted R-squared   =   .9869359     | 
| Model test   F[  4,   319] (prob) =6101.33 (.0000) | 
| Diagnostic   Log likelihood       =   444.7993     | 
|              Restricted(b=0)      =  -259.9578     | 
|              Chi-sq [  4]  (prob) =1409.51 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =  -5.552685     | 
|              Akaike Info. Criter. =  -5.552687     | 
|              Bayes Info. Criter.  =  -5.494343     | 
| Autocorrel   Durbin-Watson Stat.  =  2.1877578     | 
|              Rho = cor[e,e(-1)]   =  -.0938789     | 
| Model was estimated Mar 23, 2009 at 09:36:56AM     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
|Constant|     .25410***       .05155174     4.929   .0000            | 
|LOGY    |     .06648***       .01792300     3.709   .0002  -6.1192275| 
|LOGP    |    -.07827***       .01682261    -4.653   .0000   -.5325998| 
|LOGC    |    -.04364***       .01371528    -3.182   .0016  -8.9901333| 
|LOGG1   |     .92879***       .01615761    57.483   .0000   4.3065209| 
+--------+------------------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.               | 
+---------------------------------------------------------------------+ 

 
 
 



(4)  Estimate the model by FGLS, ignoring its dynamic nature, and report your results.  
(Note that a year of data is lost because of the presence of the lagged dependent variable.) 
 
--> regress;lhs=logg;rhs=x;str=country;panel;random effects$ 

 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .273408D-02  | 
|             Var[u]              =   .108403D-02  | 
|             Corr[v(i,t),v(i,s)] =   .283918      | 
| Lagrange Multiplier Test vs. Model (3) =   48.14 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =          48.14 | 
|             Sum of Squares          .147022D+01  | 
|             R-squared               .984426D+00  | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
|LOGY    |     .14792***       .02452234     6.032   .0000  -6.1192275| 
|LOGP    |    -.16096***       .02127079    -7.567   .0000   -.5325998| 
|LOGC    |    -.12603***       .01785398    -7.059   .0000  -8.9901333| 
|LOGG1   |     .80548***       .02254132    35.734   .0000   4.3065209| 
|Constant|     .49875***       .07497369     6.652   .0000            | 
+--------+------------------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.               | 
+---------------------------------------------------------------------+ 

 
(5)  Suitable instruments for this model, using data within the model, might include a 
time trend and lagged values of income, price and cars per capita.  What are the explicit 
assumptions which would justify this suggestion. 
 
The explicit assumptions would be that these variables are correlated with the lagged 
value of logGi,t but they are uncorrelated with ui and with εit. 



(6)  Compute the instrumental variable estimates for this model, ignoring the random 
effect term, ui. 
 
--> samp;all$ 
--> create;logy1=logy[-1];logp1=logp[-1];logc1=logc[-1]$ 
--> reject;t=1$ 
--> 2sls 
    ;lhs=logg 
    ;rhs=x 
    ;inst=one,logy,logp,logc,t,logy1,logp1,logc1$ 
+----------------------------------------------------+ 
| Two stage   least squares regression               | 
| LHS=LOGG     Mean                 =   4.281163     | 
|              Standard deviation   =   .5406116     | 
| WTS=none     Number of observs.   =        324     | 
| Model size   Parameters           =          5     | 
|              Degrees of freedom   =        319     | 
| Residuals    Sum of squares       =   1.670324     | 
|              Standard error of e  =   .7236107E-01 | 
| Fit          R-squared            =   .9820286     | 
|              Adjusted R-squared   =   .9818033     | 
| Model test   F[  4,   319] (prob) =4357.86 (.0000) | 
| Diagnostic   Log likelihood       =   393.6355     | 
|              Restricted(b=0)      =  -259.9578     | 
|              Chi-sq [  4]  (prob) =1307.19 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =  -5.236859     | 
|              Akaike Info. Criter. =  -5.236862     | 
|              Bayes Info. Criter.  =  -5.178517     | 
| Autocorrel   Durbin-Watson Stat.  =  1.1862635     | 
|              Rho = cor[e,e(-1)]   =   .4068683     | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Model was estimated Mar 23, 2009 at 09:43:42AM     | 
+----------------------------------------------------+ 
| Instrumental Variables: 
|ONE      LOGY     LOGP     LOGC     T        LOGY1    LOGP1    LOGC1 
 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
|Constant|     .66980***       .15453441     4.334   .0000            | 
|LOGY    |     .22631***       .05858391     3.863   .0001  -6.1192275| 
|LOGP    |    -.23625***       .05753897    -4.106   .0000   -.5325998| 
|LOGC    |    -.18348***       .05047775    -3.635   .0003  -8.9901333| 
|LOGG1   |     .74790***       .06472725    11.555   .0000   4.3065209| 
+--------+------------------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.               | 
+---------------------------------------------------------------------+ 

 
 
 
(7)  Under the assumptions made so far (presumably), this model can be viewed as a 

special case of the Hausman and Taylor model discussed in class.  Show how this is 
the case, then propose how to estimate the parameters of the model. 

 
The Hausman and Taylor formulation is a random effects model with 
 
x1,it = time varying variables that are uncorrelated with ui 
x2,it = time varying variables that are correlated with ui 



z1,it = time invriant variables that are uncorrelated with ui 
z1,it = time invariant variables that are correlated with ui 
 
In the model in this exercise,  
x1 is everything save the lagged value of logG 
x2 is the lagged value of logG 
z1 is the constant term (in principle).  There are no other variables in z1 
z2 is empty.  
 
The H&T estimator is a four step estimator discussed in class. The instrumental variables 

for lagged logG are the group means of the variables in x1.  There are three of them, 
so the identification issue is not a problem. 

 
This model is also in the form of the Arellano and Bond formulation, so their method 

suggests another way to proceed.  There are several different variations on the A&B 
method, depending on how many lags (and leads) of the exogenous variables should 
be used as instruments. 

 
NOTE:  Baltagi, Chapter 8, contains an application of this sort of model.  (Ignore the λt 
term in his application.) 
 
Sample   ; all $ 
Create   ; logg=lgaspcar ; logy=lincomep ; logp=lrpmg ;logc=lcarpcap$ 
Create   ; logg1 = logg[-1] $ 
Namelist ; x1 = logy, logp,logc  ; x2 = logg1  ; z1=one $ 
Calc     ; kx1 = col(x1) ; kx2 = col(x2) ; kz1 = col(z1) ; kz2=0$ 
Reject   ; year = 1960 $ 
Regress  ; lhs = logg ; rhs = x1,x2 ; pds=18 ; fixed ; panel $ 
Calc     ; s2e = ssqrd $ 
Namelist ; x = x1,x2 $ 
Create   ; dwit = logg - x'b $ 
Regress  ; lhs = dwit ; rhs = one ; pds = 18 ; panel ; keep = dwi $ 
2sls     ; lhs = dwi ; rhs=z1 ; inst = x1,z1 $ 
Calc     ; s2s = ssqrd $ 
Calc     ; s2u = s2s - s2e/18 $ 
Regress  ; lhs = logg  ; rhs = x1,x2,z1  
; panel ; pds=18 ; random  
; start=kx1,kx2,kz1,0,s2e,s2u$ 
 
 



+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .273408D-02  | 
|             Var[u]              =   .634650D-02  | 
|             Corr[v(i,t),v(i,s)] =   .698909      | 
| This is the Hausman and Taylor IV estimator.     | 
| Variance components provided by ;START=values    | 
| No time invariant vars. correlated with u(i)     | 
+--------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
+--------+ 
|LOGY    |     .16320***       .03275540     4.982   .0000  -6.1192275| 
|LOGP    |    -.17093***       .02383122    -7.172   .0000   -.5325998| 
|LOGC    |    -.15939***       .02114784    -7.537   .0000  -8.9901333| 
+--------+ 
|LOGG1   |     .73368***       .02725711    26.917   .0000   4.3065209| 
+--------+ 
|Constant|     .59621***       .10287641     5.795   .0000            | 
+--------+------------------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.               | 
+---------------------------------------------------------------------+ 
 

 
 
Part II.  A GMM Estimator 
 
 Continuing problem (1), with the model 
 
 logGi,t = β1 + β2logYi,t + β3logPi,t + β4logCi,t + β5logGi,t-1 + ui + εi,t 
 
suppose it is proposed to estimate the model by relying on the following orthogonality 
conditions: 
 
 let zi,t = (logYi,t,logPi,t,logCi,t) 
Then, we assume 
 E[          (ui + εi,t)] = 0,  
 E[zi,t ×   (ui + εi,t)] = 0,  
 E[zi,t-1 × (ui + εi,t)] = 0,   
 E[zi,t-2 × (ui + εi,t)] = 0 
 
(1)  Show that this set of conditions is sufficient to estimate the model.  Write out the 10 
moment conditions.  I.e., show precisely how to set up the moment conditions for 
estimation. 
 
There are 9 variables plus the constant term listed in the set of condisions.  For 
convenience, let Zit denote them.  Note also that two observations are lost when 
constructing the moments.  In any event, based on these, we are looking for the 5 
parameter values that satisfy the 10 equations 
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There are too many equations, but obviously, the equations are sufficient to identify the 
parameters.  Any 5 of them will do, and we have 10.  The GMM estimator will use all 10 
equations as efficiently as possible. 
 
(2)  Construct the GMM estimator. 
 
See below. 
 
(Looks like a typo. There is no part 3.) 
 
(3) Compute the GMM estimator and test the overidentifying restrictions.  Discuss the 
implications of the test results. 
 
The program below computes several different estimates.  The full GMM estimator is given 
last.  The standard errors do seem to fall as more information is added.  Note that the GMM 
estimator makes use of the correlation across years, while the other two do not. 



Sample ; all $ 
Create ; g=lgaspcar ; g1 = g[-1] $ 
Create ; y=lincomep ; y1 = y[-1] ; y2 = y[-2] $ 
create ; p=lrpmg    ; p1 = p[-1] ; p2 = p[-2] $ 
Create ; c=lcarpcap ; c1 = c[-1] ; c2 = c[-2] $ 
Reject ; Year < 1962 $ 
Namelist ; x = one,y,p,c,g1$ 
Namelist ; z = one,y,p,c,y1,p1,c1,y2,p2,c2 $ 
2sls ; lhs = g ; rhs = x ; inst = z ; res = e $ 
 
Heteroscedasticity only 
======================= 
Create ; e2 = e*e $ 
Matrix ; W = <z'[e2]z> $ 
Matrix ; vgmm = x'z*w*z'x ; vgmm=<vgmm> 
       ; bgmm = vgmm * x'z * w * z'g $ 
Matrix ; stat(bgmm,vgmm,x)$ 
 
Cross period correlation due to random effect 
============================================= 
Sample;all $ 
Reject ; Year < 1962 $ 
Matrix ; zeez = init(10,10,0)$ 
Proc = wmat $ 
Include ; new ; country = i  & year > 1961 $ 
Matrix  ; ze = z'*e ; zeez = zeez + ze*ze' $ 
Endproc$ 
Exec ; i=1,18$ 
 
Sample;all $ 
Reject ; Year < 1962 $ 
Matrix ; W = <zeez> $ 
Matrix ; vgmm = x'z*w*z'x ; vgmm=<vgmm> 
       ; bgmm = vgmm * x'z * w * z'g $ 
Matrix ; stat(bgmm,vgmm,x)$ 
 
GMM Criterion 
============== 
Sample ; all $ 
Reject ; year < 1962 $ 
Matrix ; egmm = g - X*bgmm 
  ; list ; q = egmm'Z * W * Z'egmm $ 
 
Matrix Q        has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|   13.38767 
 
 
2SLS 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
|Constant|     .62653***       .12012137     5.216   .0000            | 
|Y       |     .20147***       .04519272     4.458   .0000  -6.0994603| 
|P       |    -.21031***       .04432644    -4.745   .0000   -.5407110| 
|C       |    -.15981***       .03880791    -4.118   .0000  -8.9402302| 
|G1      |     .77503***       .04964613    15.611   .0000   4.2911591| 
+--------+------------------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.               | 
+---------------------------------------------------------------------+ 
Heteroscedasticity 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 



+--------+--------------+----------------+--------+--------+ 
|Constant|     .50891***       .12932957     3.935   .0001 | 
|Y       |     .11170**        .04692009     2.381   .0173 | 
|P       |    -.11452**        .04580170    -2.500   .0124 | 
|C       |    -.06671*         .04014253    -1.662   .0966 | 
|G1      |     .88009***       .05149707    17.090   .0000 | 
+--------+-------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.    | 
+----------------------------------------------------------+ 
GMM 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
|Constant|     .67652***       .09446681     7.161   .0000 | 
|Y       |     .21347***       .03529008     6.049   .0000 | 
|P       |    -.20713***       .02343071    -8.840   .0000 | 
|C       |    -.15832***       .02473016    -6.402   .0000 | 
|G1      |     .78497***       .03505659    22.392   .0000 | 
+--------+-------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.    | 
+----------------------------------------------------------+



Part III.  Minimum Distance Estimation 
 
This exercise will be based on the Spanish dairy farm data.  This is a panel data set of 
247 individuals (farms) each observed 6 times, in years 1993, 1994, …, 1998.  For this 
exercise, we will use 3 of the years, 1993, 1995, and 1997, which will be denoted t=1, 
t=2 and t=3 below.   
 Consider Chamberlain’s formulation of the fixed effects model: 
 
 yit  =  αi + xit′β + εit, i = 1,…,N; t = 1,2,3. 
 
We parameterize the fixed effect here as 
 
 αi =  xi1′δ1 +  xi2′δ2 +  xi3′δ3 + ui. 
 
Making the substitution, we obtain the random effects model, 
 
 yit  =  xit′β + xi1′δ1 +  xi2′δ2 +  xi3′δ3 + ui + εit, i = 1,…,N; t = 1,2,3. 
 
(We note, this has some redundancies in it; in each specific period, t, xit appears in the 
equation twice.)  Now, consider how to estimate the parameters.  We can estimate the 
parameters using the data for the three periods separately.  For the three periods, 
 
 yi1  =  xi1′(β+δ1) +  xi2′δ2        +  xi3′δ3        + ui + εi1, i = 1,…,N. 
 yi2  =  xi1′δ1        +  xi2′(β+δ2) +  xi3′δ3        + ui + εi2, i = 1,…,N. 
 yi3  =  xi1′δ1        +  xi2′δ2        +  xi3′(β+δ3) + ui + εi3, i = 1,…,N. 
 
Using the dairy data, let xit = X1,X2,X3,X4 for the period.  To make it a little more 
convenient, we will use yit in deviations form and omit the constant term in each 
equation.   
 



a.  Using the data on YI1 = YIT for period 1 (1993), regress YI1 on xi1,, xi2, and xi3.  That 
will be a regression of YI1 (1993) on three years of xs, 1993, 1995 and 1997.  That will 
produce 12 estimated coefficients. 
 
b.  Repeat part a using data for YI2 and Yi3.   Note that each regression produces 12 
estimated coefficients. 
 
These are the OLS coefficients.  The program appears below. 
 
Matrix C        has 12 rows and  3 columns. 
               1             2             3 
        +------------------------------------------ 
       1|     .67011       .03248       .00368 
       2|    -.01313      -.01075       .04148 
       3|    -.01889       .05185      -.04949 
       4|     .42306       .05712       .00244 
       5|     .00901       .55407      -.01453 
       6|    -.02494       .02822      -.03758 
       7|    -.10241      -.05939      -.08226 
       8|     .00794       .28731       .03796 
       9|    -.01082      -.06117       .56585 
      10|     .00769       .04163       .03000 
      11|     .13605       .01350       .17751 
      12|    -.02583       .13682       .43877 

 
 
c.  Note that from the listing above, you can see that you have two direct estimates of δ1.  
What are these?  (I.e., specifically, what are the numerical values?) 
 
The two estimates of δ1 are bold in the matrix above. 
--> Matrix   ; list ; delta12 = c(1:4,2:2) 
    ; delta13 = c(1:4,3:3) $ 
 
Matrix DELTA12  has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .03248 
       2|    -.01075 
       3|     .05185 
       4|     .05712 
 
Matrix DELTA13  has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .00368 
       2|     .04148 
       3|    -.04949 
       4|     .00244 

 
d.  Based on the three equations, you can see, by subtraction, that the results in part c., 
combined with your results from the first equation, provide two different estimates of β.  
What are these two different estimates? 
 
The estimator of β+δ1 are underlined in the matrix above. The two results of subtraction 
are shown below. 



 
--> Matrix   ; list ; beta11 = c(1:4,1:1) - delta12 
    ; beta12 = c(1:4,1:1) - delta13 $ 
 
Matrix BETA11   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .63763 
       2|    -.00237 
       3|    -.07074 
       4|     .36595 
 
Matrix BETA12   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .66643 
       2|    -.05461 
       3|     .03060 
       4|     .42063 

 
 
e.  In fact, using the direct estimates of δ2 and the second equation, you can obtain two 
more estimates of β. What are these estimates?  (I.e., give the values.)  The third equation 
produces yet two more estimates of β, for 6 estimates in total.  Show the 6 sets of values. 
 



Here are 4 more estimators of β 
 
Matrix ; delta21 = c(5:8,1:1) ; delta23=c(5:8,3:3) 
Matrix ; list ; beta21 = c(5:8,2:2) - delta21  
              ; beta23 = c(5:8,2:2) - delta23 $ 
 
Matrix ; delta31 = c(9:12,1:1) ; delta32=c(9:12,2:2) 
Matrix ; list ; beta31 = c(9:12,3:3) - delta31  
              ; beta32 = c(9:12,3:3) - delta32 $ 
Matrix BETA21   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .54505 
       2|     .05316 
       3|     .04302 
       4|     .27937 
 
Matrix BETA23   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .56860 
       2|     .06579 
       3|     .02288 
       4|     .24935 
 
Matrix BETA31   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .57667 
       2|     .02230 
       3|     .04146 
       4|     .46460 
 
Matrix BETA32   has  4 rows and  1 columns. 
               1 
        +-------------- 
       1|     .62701 
       2|    -.01164 
       3|     .16401 
       4|     .30194 



f.  Your three estimated equations provide a total of 3×12 = 36 estimates of parameters.  
Your model contains 4 + 3(4) = 16 unique parameters.   Describe a method that you can 
use to combine your different estimates of the parameters in an efficient manner. 
 
We could use a minimum distance estimator.  There are 3 least squares estimates of 12 
parameters each.  Denote the X matrices in each by X1, X2 and X3.  Each of these is 247 
rows and 12 columns.  The covariance matrix of the 36×1 long vector of estimates 
obtained by stacking the three estimates is a partitioned matrix whose each submatrix is 
 
Vl,m  =  σlm(Xl′Xl)-1Xl′Xm(Xm′Xm)-1. 
 
This makes a 36×36 covariance matrix.  The 36×1 vector of least squares estimates is 
 
b = [b1′, b2′, b3′]′. 
 
The 36×1 vector of unknown parameters is the stack of the three parameter vectors 
shown above, 
 
Δ′  =  (β+δ1)′, δ2′, δ3′, δ1′, (β+δ2)′, δ3′, δ1′, δ2′, (β+δ3)′ 
 
The MDE would look for the 12 values of the unknowns that minimize 
 
(b – Δ)′ V-1 (b – Δ). 
 
Wooldridge notes that there is a somewhat simpler way to formulate this problem.  We 
can write the whole thing as a generalized regression model, 
 

1 1 1 2 3 1 1
1

2 2 1 2 3 2 2
2

3 3 1 2 3 3 3
3

y X X X X u
y X X X X u
y X X X X u

β⎛ ⎞
+ ε⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎜ ⎟δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟= + + ε⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟δ⎜ ⎟ ⎜ ⎟⎢ ⎥ + ε⎜ ⎟⎝ ⎠ ⎣ ⎦ ⎝ ⎠δ⎝ ⎠

 

 
There are a couple different ways this can be fit by GLS, either explicitly accounting for 
the random effects form, or treating it is a SUR model with free correlation across 
periods. 
 
 
 
 



PROGRAMMING: 
Using NLOGIT, we will do the computations using matrix algebra.  You can do parts a. – 
d. using the following commands: 
 
Create   ; Y = Dev(yit)$ 
Namelist ; X = x1,x2,x3,x4 $ 
Include  ; new ; year93=1 $ 
Matrix   ; x93 =  x ; y93 = y $ 
Include  ; new ; year95=1 $ 
Matrix   ; x95 =  x ; y95 = y $ 
Include  ; new ; year97=1 $ 
Matrix   ; x97 =  x ; y97 = y $ 
Matrix   ; allX = [x93,x95,x97] $ 
Matrix   ; ally = [y93,y95,y97] $ 
Matrix   ; list ; c = <allX'allX> * allX'ally $ 
? Estimates of delta 1. Note syntax c(rows r1:r2, columns c1:c2) 
Matrix   ; list ; delta12 = c(1:4,2:2)  
                ; delta13 = c(1:4,3:3) $ 
? Estimates of beta using delta1 
Matrix   ; list ; beta11 = c(1:4,1:1) - delta12 
                ; beta12 = c(1:4,1:1) - delta13 $ 
Matrix ; delta21 = c(5:8,1:1) ; delta23=c(5:8,3:3) 
Matrix ; list ; beta21 = c(5:8,2:2) - delta21  
              ; beta23 = c(5:8,2:2) - delta23 $ 
 
Matrix ; delta31 = c(9:12,1:1) ; delta32=c(9:12,2:2) 
Matrix ; list ; beta31 = c(9:12,3:3) - delta31  
              ; beta32 = c(9:12,3:3) - delta32 $ 
 
Now, add the necessary instructions to do the rest of the computations.  We will pursue 
the actual estimation of the parameters and the appropriate asymptotic covariance matrix 
in class. 
 


