

Department of Economics

Econometric Analysis of Panel Data

Professor William Greene Phone: 212.998.0876

Office: KMC 7-78 Home page:www.stern.nyu.edu/~wgreene

Office Hours: TR, 3:00 - 5:00 Email: wgreene@stern.nyu.edu

URL for course web page:

www.stern.nyu.edu/~wgreene/Econometrics/PanelDataEconometrics.htm

Assignment 4 Parameter Heterogeneity in Linear Models: RPM and HLM

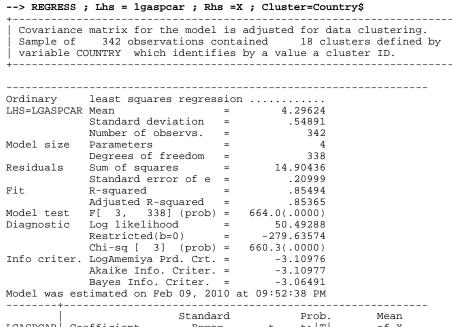
The estimation parts of this assignment will be based on the Baltagi and Griffin gasoline market and the Cornwell and Rupert labor market data sets that are posted on the course website.

We will begin with the gasoline market. The basic linear regression model in use will be

```
y_{it} = \beta_1 + \beta_2 x_{it,1} + \beta_3 x_{it,2} + \beta_4 x_{it,3} + w_{it}
where
                 = 1,...,18 OECD countries
and
                 = 1,...,19 years (1960 to 1978).
                                   = log of per capita gasoline use
                 = lgaspcar
        y_{it}
                                   = log of per capita income
                 = lincomep
        x_{it,1}
                 = lrpmg
                                   = log of gasoline price index
        x_{it.2}
                                   = log of cars per capita
                 = lcarpcap
        x_{it,3}
                 = a disturbance that may have have both permanent (time invariant)
        W_{it}
                    components and time varying components, and may, under some
                    circumstances, be correlated with \mathbf{x}_{it}.
Denote \mathbf{x}_{it}
                 = (1,x_{it,1},x_{it,2},x_{it,3}) and
                 = the 19×4 matrix containing all the data on \mathbf{x}_{it} for country i.
        \mathbf{X}_i
```

Part I. Parameter Variation in the Gasoline Market

- **A. Homogeneous parameters**: To begin, we *assume* that all parameters, including the constant term, are homogeneous across countries and through time and that $w_{it} = \varepsilon_{it}$, a classical zero mean, homoscedastic disturbances.
 - 1. Under these assumptions, what are the properties of the pooled OLS estimator?


Under the assumptions, the model is a classical linear regression, so OLS is unbiased, consistent, and efficient by the Gauss Markov Theorem. The asymptotic distribution is mormal with mean β and asymptotic covariance matrix $\sigma_{\epsilon}^{2}/(nT) \times \text{plim}[X'X/nT]^{-1}$.

2. Estimate the parameters of the model using OLS and report your results.

--> NAMELIST ; X = one,lincomep,lrpmg,lcarpcap \$ --> REGRESS ; Lhs = lgaspcar ; Rhs =X \$

Ordinary	least squares regres	sion			
LHS=LGASPCAR	Mean	=	4.	29624	
	Standard deviation	=		54891	
	Number of observs.	=		342	
Model size	Parameters	=		4	
	Degrees of freedom	=		338	
Residuals	Sum of squares	=	14.	90436	
	Standard error of e	=		20999	
Fit	R-squared	=		85494	
	Adjusted R-squared	=		85365	
	F[3, 338] (prob)				
Diagnostic	Log likelihood				
	Restricted(b=0)	=	-279.	63574	
	Chi-sq [3] (prob)				
Info criter.	LogAmemiya Prd. Crt.				
	Akaike Info. Criter.				
	Bayes Info. Criter.	=	-3.	06491	
	St.anda	ırd		Prob.	Mean
LGASPCAR Co			t		of X
Constant	2.39133*** .116	93	20.45	.0000	
LINCOMEP	.88996*** .035	81	24.86	.0000	-6.13943
LRPMG			-29.42		52310
LCARPCAP	76337*** .018	861	-41.02	.0000	-9.04180
Note: ***, *	*, * ==> Significand	e at	1%, 5%,	10% lev	vel.

3. As a first cut at assessing whether the assumptions are correct, compute the robust, cluster (country) corrected standard errors for the least squares estimator. Do they appear to be the same, or close to the same, as the uncorrected OLS standard errors? What do you conclude about the disturbances in the equation?

The standard errors have increased substantially. I suspect that this indicates that there is substantial correlation across observations within a country.

B. Heterogeneous Constant Terms: Now, consider fixed and random effects formulations of the model. We write the model as

$$y_{it} = \beta_{1i} + \beta_2 x_{it,1} + \beta_3 x_{it,2} + \beta_4 x_{it,3} + \varepsilon_{it}$$

where $\beta_{1i} = \beta_1 + u_i$ and $E[u_i] = 0$.

Thus, this is a model with a random constant term. By substituting the second equation into the first, you can see that it is the "effects" model we have discussed in class.

1. (**Fixed Effects**) Using the OECD gasoline data, estimate the parameters of the model under the assumption that $E[u_i|\mathbf{X}_i] = g(\mathbf{X}_i)$ for some nonzero function g(.). Explain the estimator and the motivation for using it. Display your results with the OLS estimates so that you (and your reader) can see the difference between the two. Note that $E[u_i|\mathbf{X}_i] = g(\mathbf{X}_i)$ is consistent with $E[u_i] = 0$. When averaged over \mathbf{X}_i , the overall mean is zero, but the mean is not zero for a specific \mathbf{X}_i . This implies that u_i and \mathbf{X}_i are correlated.

This would be the fixed effects model. The parameters are estimated by using the within estimator – including the country dummy variables in the equation.

						_
OLS Without	Group Dummy Van	iables				
	least squares					
LHS=LGASPCAF		=		29624		
	Standard devia			54891		
	Number of obse		-	342		
Model size	Parameters	=		4		
	Degrees of fre	eedom =		338		
Residuals	Sum of squares			90436		
	Standard error			20999		
Fit	R-squared	=		85494		
	R-squared Adjusted R-squ F[3, 338]	ared =		85365		
Model test	F[3, 338]	(prob) =	664.0(.	0000)		
Diagnostic	Log likelihood	1 =	50.	49288		
	Restricted (h=0)) =	-279.	63574		
	Chi-sq [3] LogAmemiya Pro Akaike Info. ((prob) =	660.3(.	0000)		
Info criter.	LogAmemiva Pro	1. Crt. =	-3.	10976		
	Akaike Info. (riter. =	-3.	10977		
	Baves Info. Cr	riter. =	-3.	06491		
Panel Data A	Bayes Info. Cr Analysis of LGAS	SPCAR	LONE	wavl		
	Unconditiona					
Source	Variation I	ea Free	Mean S	guare		
	85.68228	17	5	04013		
Between Residual	85.68228 17.06068	324		05266		
Total	102 74296	341	•	30130		
	102.74296					_
		Standard		Prob.	Mean	
LGASPCAR C	efficient	Error	t	t> T	of X	
+	efficient					_
LINCOMEP	.88996*** 89180*** 76337***	.03581	24.86	.0000	-6.13943	
LRPMG	89180***	.03031	-29.42	.0000	52310	
LCARPCAP	76337***	.01861	-41.02	.0000	-9.04180	
Constant	2.39133***	11602	20 45	0000		
		.11093				_
		.11093				_
		.11093				-
						_
Least Square	es with Group Du	ummy Varial	 oles			_
Least Square	es with Group Du	ummy Varial	oles			_
Least Square	es with Group Du least squares		oles 1			-
Least Square	es with Group Du	mmy Varial regression = ation =	oles 1 4.	 29624		-
Least Square	es with Group Du least squares Mean Standard devia	nmmy Varial regression = ation =	oles 1 4.	 29624 54891		
Least Square Ordinary LHS=LGASPCAF	es with Group Du least squares & Mean Standard devia Number of obse Parameters	ummy Varial regression ation = ervs. =	oles 14.	 29624 54891 342 21 321		
Least Square Ordinary LHS=LGASPCAF	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre	ummy Varial regression ention = ervs. = eedom =	oles 14.	 29624 54891 342 21 321		_
Least Square Ordinary LHS=LGASPCAR	least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares	ummy Varial regression ation = ervs. = eedom =	oles 1 4.	 29624 54891 342 21 321 73649		
Least Square Ordinary LHS=LGASPCAF Model size Residuals	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error	ammy Varial regression ation = ervs. = eedom =	ples 1 4.	 29624 54891 342 21 321 73649 09233		-
Least Square Ordinary LHS=LGASPCAR	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error	ammy Varial regression ation = ervs. = eedom =	ples 1 4.	 29624 54891 342 21 321 73649 09233		-
Least Square Ordinary LHS=LGASPCAR Model size Residuals	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error	ammy Varial regression ation = ervs. = eedom =	ples 1 4.	 29624 54891 342 21 321 73649 09233		-
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test	es with Group Du least squares & Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321]	ammy Varial regression = ation = ervs. = eedom = s = c of e = ared = (prob) =	2. 586.6(.	 29624 54891 342 21 321 73649 09233 97337 97171 0000)		
Least Square Ordinary LHS=LGASPCAR Model size Residuals	es with Group Du least squares & Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321]	ammy Varial regression = ation = ervs. = eedom = s = c of e = ared = (prob) =	2. 586.6(.	 29624 54891 342 21 321 73649 09233 97337 97171 0000)		_
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=0	nmmy Varial regression = ation = ervs. = eedom = s = cof e = (prob) = d = edo) = edo) = edo = ed	2. 586.6(. 340.			_
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20]	ammy Varial regression = ation = ervs. = eedom = cof e	2. 586.6(. 340. -279.			
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro	ammy Varial regression = ation = ervs. = eedom = confident = (prob) = (prob) = confident = (prob) = (prob	2. 			_
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. (ammy Varial regression = ation = ervs. = eedom = constant = (prob) = 1	586.6(. 340. -279. 1239.9(. -4.			
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test Diagnostic Info criter	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Ch	ammy Varial regression = ation = ervs. = eedom = s = s = (prob) = (prob) = (prob) = d. Crt. = eriter. = eriter. = eriter. = eriter.	586.6(. 340. -279. 1239.9(. -4. -4.			_
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter.	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Correlation of e	ammy Varial regression = ation = ervs. = eedom = constant = (prob) = domination = (prob) = (pro	586.6(. 340. -279. 1239.9(. -4. -4.			-
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test Diagnostic Info criter	es with Group Du least squares Mean Standard devia Number of observantes Degrees of free Sum of squares Standard error R-squared Adjusted R-squared I 20, 321 Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Correlation of elements of Empty 0,	ammy Varial regression = tion = trvs. = tedom = tropo = tion = tropo = tro	2. 586.6(. 340279. 1239.9(447 data			
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter.	es with Group Du least squares Mean Standard devia Number of observances of free Sum of squares Standard error R-squared Adjusted R-squared Adjusted R-squared Log likelihood Restricted (bechi-sq [20] LogAmemiya Pro Akaike Info. Control Security O, Smallest 19,	ammy Varial regression = tion = trvs. = tedom = tof e	2. 586.6(. 340. -279. 1239.9(. -4. -4. .7			-
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter.	es with Group Du least squares Mean Standard devia Number of observantes Degrees of free Sum of squares Standard error R-squared Adjusted R-squared I 20, 321 Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Correlation of elements of Empty 0,	ammy Varial regression = tion = trvs. = tedom = tof e	2. 586.6(. 340. -279. 1239.9(. -4. -4. .7			
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter.	es with Group Du least squares Mean Standard devia Number of observances of free Sum of squares Standard error R-squared Adjusted R-squared Adjusted R-squared Log likelihood Restricted (bechi-sq [20] LogAmemiya Pro Akaike Info. Control Security O, Smallest 19,	ammy Varial regression = tion = trvs. = tedom = tof e	2. 586.6(. 340. -279. 1239.9(. -4. -4. .7		Mean	
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test Diagnostic Info criter. Estd. Autoco Panel:Groups	es with Group Du least squares Mean Standard devia Number of observances of free Sum of squares Standard error R-squared Adjusted R-squared Adjusted R-squared Log likelihood Restricted (bechi-sq [20] LogAmemiya Pro Akaike Info. Control Security O, Smallest 19,	ammy Varial regression = tion = trvs. = tedom = tropo	2. 586.6(. 340. -279. 1239.9(. -4. -4. .7		Mean of X	-
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test Diagnostic Info criter. Estd. Autoco Panel:Groups	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squared Adjusted R-squisted (b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Chayes Inf	ammy Varial regression = tion = ervs. = erof e = erof e = (prob) = from the control of the contr	586.6(. 340. -279. 1239.9(. -4. -4. .7 data st			
Least Square Ordinary LHS=LGASPCAR Model size Residuals Fit Model test Diagnostic Info criter. Estd. Autoco Panel:Groups	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squared Adjusted R-squisted (b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Chayes Inf	ammy Varial regression = tion = ervs. = erof e = erof e = (prob) = from the control of the contr	586.6(. 340. -279. 1239.9(. -4. -4. .7 data st			
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter. Estd. Autocc Panel:Groups	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squ F[20, 321] Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Co Bayes Info. Co correlation of eco stempty 0, Smallest 19, Average group	ammy Varial regression = tion = trvs. = tedom = to fe	586.6(of X	
Least Square Ordinary LHS=LGASPCAF Model size Residuals Fit Model test Diagnostic Info criter. Estd. Autocc Panel:Groups LGASPCAR Cc	es with Group Du least squares Mean Standard devia Number of obse Parameters Degrees of fre Sum of squares Standard error R-squared Adjusted R-squared Log likelihood Restricted(b=(Chi-sq [20] LogAmemiya Pro Akaike Info. Chayes Info. Chaye	ammy Varial regression = tion = trvs. = tedom = tof e	2. 586.6(. 340. -279. 1239.9(. -4. -4. .7 data st anel		of X -6.13943	-

Fixed effects results are somewhat differerent. But, notice that the estimate price elasticity has fallen by 50%, a large change.

2. (**Random Effects**) Estimate the parameters of the model under the more restrictive assumption that $E[u_i|\mathbf{X}_i] = 0$.

```
Random Effects Model: v(i,t) = e(i,t) + u(i)
           = .008525
= .035571
Estimates: Var[e]
      Var[u]
      Corr[v(i,t),v(i,s)] =
                    .806673
Lagrange Multiplier Test vs. Model (3) =1465.55
( 1 degrees of freedom, prob. value = .000000)
Sum of Squares
     R-squared
                   .734618
           LGASPCAR | Coefficient
```

The random effects results resemble the fixed effects results.

3. Use the Wu/Mundlak variable addition test to test for the assumption of the (null) random effects model against the (alternative) fixed effects model. Report your results and your conclusions.

```
Create ; x1bar = GroupMean(lincomep,str=country)$
Create ; x2bar = GroupMean(lrpmg,str=country)$
Create ; x3bar = GroupMean(lcarpcap,str=country)$
REGRESS ; Lhs = lgaspcar
       ; Rhs = x1bar,x2bar,x3bar,X
        ; Str=Country ; Random Effects$
Random Effects Model: v(i,t) = e(i,t) + u(i)
            Var[e] = e(i,t) + u(i)

Var[u] = .008605

Var[u] = .030281

Corr[v(i,t),v(i,s)] = .778708

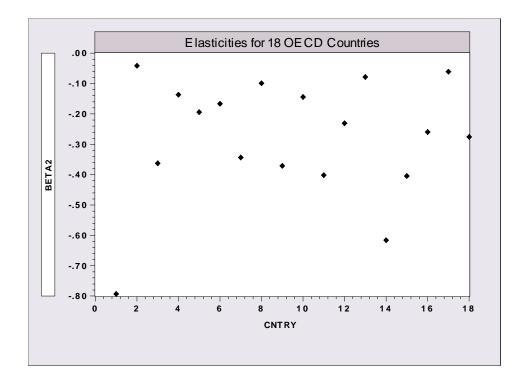
ltiplier Test
Estimates: Var[e]
Lagrange Multiplier Test vs. Model (3) =1864.35
( 1 degrees of freedom, prob. value = .000000)
(High values of LM favor FEM/REM over CR model)
Baltagi-Li form of LM Statistic = 1864.35

Sum of Squares 13.027071
           R-squared
                                       .873207
                     Standard Prob. Mean
                            Error
LGASPCAR | Coefficient
                                        z z > |Z|
                                                          of X
--> Matrix ; bm = b(1:3) ; vm=varb(1:3,1:3)
    ; List ; WaldStat = bm'<vm>bm $
Matrix WALDSTAT has 1 rows and 1 columns.
            1
```

+----+ 1| 31.31621 +-----+ The wald statistic is much larger than the critical value with 3 degrees of freedom. This suggests that the fixed effects specification is the preferred model.

C. General parameter heterogeneity: Let \mathbf{x}_{it} denote $(1,lincomep,lrpmg,lcarpcap)_{it}$. We now consider the possibility that there are differences across countries. Write the model

$$(1) y_{it} = \boldsymbol{\beta}_i' \mathbf{x}_{it} + \boldsymbol{\varepsilon}_{it}.$$


Absent any further assumptions about the variation in the parameters across countries, how would you proceed to examine the relationship between per capita gasoline consumption, y_{it} and the other variables, \mathbf{x}_{it} ?

1. Suppose we now assume that all the parameters, not just the constant, are random;

$$(2) \qquad \mathbf{\beta}_i = \mathbf{\beta} + \mathbf{u}_i$$

where \mathbf{u}_i has an overall mean of zero, however $E[\mathbf{u}_i|\mathbf{X}_i] = g(\mathbf{X}_i)$, where \mathbf{X}_i is the 19 years of data on \mathbf{x}_{it} for country i? Note that the assumption of the overall mean of zero states only that $\mathbf{\beta}_i$ varies around a mean.

We are particularly interested in the price elasticity of the demand for gasoline, the coefficient on lrpmg. To explore the cross country variation, compute the linear regression model for each of the 19 countries (separately). Display in a graph or a well labeled table the results of your estimation, to describe the variation in the estimated coefficients on lrpmg. Note that the assumption about \mathbf{u}_i is equivalent to the "fixed effects" case, but here we are considering the entire parameter vector, not just the constant term.

2. If we add to A. the assumption $E[\mathbf{u}_i|\mathbf{X}_i]=0$, the model turns into a "random effects" model, though note, once again, we are considering the entire parameter vector. Under this new assumption, what are the properties of the pooled ordinary least squares estimator? What does **b** estimate in this case? For a useful step in the analysis, insert (2) into (1) and analyze the implied model.

Under the random effects assumption, the model turns into a heteroscedastic linear regression. I.e.,

$$\begin{aligned} y_{it} &= \beta_i{'}x_{it} \; + \; \epsilon_{it}, \quad \beta_i \; = \; \beta \; + \; u_i, \\ so \\ y_{it} &= \beta{'}x_{it} \; + \; \epsilon_{it} \; + \; u_i{'}x_{it}. \end{aligned}$$

This is a linear regression with mean $\beta' x_{it}$ and variance $\sigma_{\epsilon}^2 + x_{it}' \Sigma x_{it}$ where Σ is the 4×4 covariance matrix of the random parameters. Since it is a linear regression and the distirbances, though heteroscedastic, are not correlated with x_{it} , it can be fit by OLS, though inefficiently. Note, $u_i' x_{it}$ is not correlated with x_{it} . To see, just note that $E[u_i' x_{it} | x_{it}] = E[u_i'] \times x_{it} = 0$. (Looks like a trivial proof. But, it's right.) So, pooled OLS has the properties of OLS in the presence of heteroscedasticity. Unbiased (possibly), consistent, asymptotic normal, not efficient.

Part II. Theory and an Example for Simulation Based Estimation:

This theoretical exercise will begin to suggest how simulation based estimation works. Consider a simple regression model

$$y_{it} = \beta_i x_{it} + \varepsilon_{it}$$

There is only one variable and no constant in the model. Assume that $\varepsilon_{it} \sim N[0,\sigma^2]$. We suppose as well that β_i is random; $\beta_i = \beta + wu_i$ where $w_i \sim N[0,\theta^2]$. A simpler way to write this is

$$\beta_i = \beta + \theta u_i$$
 where $u_i \sim N[0,1]$.

Putting θ specifically in the equation simplifies the derivation a bit. The contribution of individual i to the likelihood function is the product of the normal densities,

$$L_i = \prod_{t=1}^T \frac{1}{\sigma} \phi \left(\frac{y_{it} - \beta_i x_{it}}{\sigma} \right)$$

This is not useable for maximum likelihood estimation because $\beta_i = \beta + \theta u_i$ which means that the log likelihood to be maximized involves the unobserved u_i ;

$$L_{i} = \prod_{t=1}^{T} \frac{1}{\sigma} \phi \left(\frac{y_{it} - \beta x_{it} - \theta u_{i} x_{it}}{\sigma} \right)$$

In principle, we would now maximize $\log L = \Sigma_i \log L_i$ with respect to (β, θ, σ) . The problem is that the unobserved u_i is in the equation and must be integrated out to proceed.. The contribution of individual i to the *unconditional* log likelihood function is

$$\log L_i = \log \int_{-\infty}^{\infty} \left[\prod_{t=1}^{T} \frac{1}{\sigma} \phi \left(\frac{y_{it} - \beta x_{it} - \theta u_i x_{it}}{\sigma} \right) \right] \phi(u_i) du_i$$

where $\phi(u_i)$ is the standard normal density. The integral of the product above does not exist in closed form, so we will approximate it by simulation. (It could be approximated with quadrature.) Adding up the individual contributions, the *simulated* log likelihood is

$$\log L_{S} = \sum_{i=1}^{n} \log \left\{ \frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T} \frac{1}{\sigma} \phi \left(\frac{y_{it} - \beta x_{it} - \theta u_{ir} x_{it}}{\sigma} \right) \right] \right\}$$

where u_{ir} is a set of R random draws on the standard normal population for each individual i. (The random draws are reused every time the function or its derivatives are computed. There are a total of nR random draws used in the simulation.) An additional simplification is obtained by using $\gamma = 1/\sigma$. (We make use of the invariance principle for maximum likelihood estimation.) Then,

$$\log L_{S} = \sum_{i=1}^{n} \log \left\{ \frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T} \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right) \right] \right\}.$$

The maximum simulated likelihood estimator is the (β, θ, γ) that maximizes this function. 1. Derive the necessary (first order) conditions for maximizing this function. Hint: your derivation is simplified greatly by using the result $d\phi(t)/dt = -t\phi(t)$. You can then just use the chain rule.

$$\frac{\partial \log L_{S}}{\partial \gamma} = \sum_{i=1}^{n} \frac{\frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T} \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right) \right] \sum_{t=1}^{T} \frac{\partial \log \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right)}{\partial \gamma} }{\left\{ \frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T} \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right) \right] \right\}}$$

(Note I used a trick above, $\partial f/\partial x = f \times \partial \log f/\partial x$. The derivatives with respect to β and θ have the same form save for the derivative in the rightmost sum. These three derivatives are

$$\frac{\partial \log \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right)}{\partial \begin{pmatrix} \gamma \\ \beta \\ \theta \end{pmatrix}} = \begin{pmatrix} 1/\gamma \\ 0 \\ 0 \end{pmatrix} + \frac{1}{\phi(.)} (-.) \phi(.) \begin{pmatrix} (y_{it} - \beta x_{it} - \theta u_{ir} x_{it}) \\ -\gamma x_{it} \\ -\gamma u_{ir} x_{it} \end{pmatrix}$$

$$\frac{\partial \log \gamma \phi \left(\gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \right)}{\partial \begin{pmatrix} \gamma \\ \beta \\ \theta \end{pmatrix}} = \begin{pmatrix} 1/\gamma \\ 0 \\ 0 \end{pmatrix} - \gamma \left(y_{it} - \beta x_{it} - \theta u_{ir} x_{it} \right) \begin{pmatrix} (y_{it} - \beta x_{it} - \theta u_{ir} x_{it}) \\ -\gamma x_{it} \\ -\gamma u_{ir} x_{it} \end{pmatrix}$$

2. How would you obtain asymptotic standard errors for your estimator?

Notice that the derivatives have to be simulated just like the log likelihood. In principle, you would differentiate this function again and use the negative inverse of the second derivatives. The derivatives are extremely complicated. This looks like a very good candidate for the BHHH estimator. The first derivative vector above, looking at it from the outside, takes the form

$$\frac{\partial \log L_{S}}{\partial \begin{pmatrix} \gamma \\ \beta \\ \theta \end{pmatrix}} = \sum_{i=1}^{n} \mathbf{g}_{i}$$

where g_i is the vector in the messy expression after the first summation. An estimator that will work asymptotically is just

$$V = \left[\sum_{i=1}^{n} \mathbf{g}_{i} \mathbf{g}_{i}^{\prime}\right]^{-1}$$

Complicated, but not so bad as the full Hessian.

3. The following small exercise will show this computation at work. This application estimates the parameters of a model that precisely satisfies the assumptions of the model above. Execute these commands and report all of your results

```
? 1,000 observations in total will be n=100, T=10. The x(i,t) is normally distributed
? with mean zero and standard deviation 1. Variable i is the 1,1,1,1...,2,2,2,2... etc.
Sample ; 1 - 1000 $
Create ; xit = Rnn(0,1) ; i = Trn(10,0) $
? We generate b(i) = 0.5 + u(i) where u(i) is normal with mean 0, standard deviation
? .5. Then, y(i,t) = b(i)*x(i,t) + e(i,t) where e(i,t) is normally distributed with zero
? mean and standard deviation 1.
Matrix ; bi = init(100,1,.5) + .5*rndm(100)$
Create ; yit = bi(i)*xit + rnn(0,1) $
? This command estimates the random parameters model exactly as shown in
? part 2. above.
Regress ; lhs = yit ; rhs = xit ;rpm ; fcn=xit(n)
; pds=10 ; pts=100 ; halton $
```

```
--> CALC; DELETE I$
--> Sample ; 1 - 1000 $
--> Create ; xit = Rnn(0,1) ; i = Trn(10,0) $
--> Matrix ; bi = init(100,1,.5) + .5*rndm(100)$
--> Create ; yit = bi(i)*xit + rnn(0,1) $
--> Regress ; lhs = yit ; rhs = xit ;rpm ; fcn=xit(n)
    ; pds=10 ; pts=100 ; halton $
OLS Starting values for random parameters model...
Ordinary
            least squares regression ......
            Mean = -.03481
Standard deviation = 1.21392
LHS=YIT
Chi-sq [ 1] (prob) = 185.7(.0000)

Info criter. LogAmemiya Prd. Crt. = .20300
Akaike Info. Criter. = .20300
Bayes Info. Criter. = .20791
                       YIT | Coefficient
   XIT| .48868*** .03414 14.31 .0000 -.00495
Normal exit: 9 iterations. Status=0. F= 1451.252
Random Coefficients LinearRg Model
Dependent variable
                                   YTT
Dependent variable YIT Log likelihood function -1451.25191
Estimation based on N = 1000, K =
Information Criteria: Normalization=1/N
            Normalized Unnormalized
                         2908.50381
AIC 2.90850 2908.50381
Fin.Smpl.AIC 2.90853 2908.52791
Bayes IC 2.92323 2923.22708
Hannan Quinn 2.91410 2914.09968
Sample is 10 pds and 100 individuals
LINEAR regression model
Simulation based on 100 Halton draws
                       Standard Prob. Mean
     YIT | Coefficient
                           Error
                                             z> | Z |
                                                         of X
        Means for random parameters
          .48041*** .03006 15.98 .0000 -.00495
        Scale parameters for dists. of random parameters
          .63417*** .02593 24.45 .0000
      Variance parameter given is sigma
Std.Dev. | .96500*** .01908 50.57 .0000
```

Estimation begins with OLS (as usual). The OLS (consistent) estimate is 0.48868. The RP estimate of the mean of the distribution is .48041. The standard deviation of the distribution of β_i is 0.63417. The true value is 0.5. The estimate of σ_ϵ is 0.965. The true value is 1.0.

Part III. Random Parameters Models

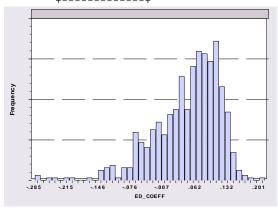
This exercise will demonstrate the computation of a fairly elaborate, hierarchical linear model. The computations are based on the Cornwell and Rupert data. Note that the simulations below are based on Halton sequences, not pseudorandom random numbers. As such, the results you obtain below are replicable – in principle, you and I (and your colleagues) should all get the same results. Also, if you fit these equations more than once, you will get the same answers.

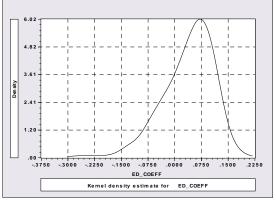
1. A simple RPM with one random coefficient. The first model is the regression model discussed in class, now with a random coefficient on education. After fitting the random parameters model, this program computes the posterior estimates of $E[\beta_{i,Ed}|y_i,X_i]$ and plots the distribution with a kernel density estimator and a histogram. Estimate the model and report all results. (Note, you can copy/paste the figure into a Word document.)

```
Sample ; All $
Regress; Lhs = Lwage; Rhs = One, Exp, Occ, Ind, South, SMSA, MS, FEM, Union, Ed, Blk
;Pds=7 ;RPM ; Halton ; Pts=100 ;Fcn = Ed(N) ;Parameters ; Maxit = 20 $
Sample ; 1 - 595 $
Create ; Ed_Coeff = 0 $
Create ; Ed Coeff = beta i $
Kernel ; Rhs = Ed_Coeff$
Histogram ; Rhs = Ed_Coeff $
--> Sample ; All $
--> Regress ; Lhs = Lwage
    ; Rhs = One, Exp, Occ, Ind, South, SMSA, MS, FEM, Union, Ed, Blk
    ;Pds=7 ;RPM ; Halton ; Pts=100 ;Fcn = Ed(N)
    :Parameters $
OLS Starting values for random parameters model...
          least squares regression .....
Mean = 6.6763
Ordinary
                                      6.67635
LHS=LWAGE
                                         .46151
           Standard deviation =
            Number of observs. =
                                         4165
11
4154
           Model size Parameters
Residuals Sum of squares
            R-squared = Adjusted R-squared =
                                          .39656
Model test F[ 10, 4154] (prob) = 274.6(.0000)
Diagnostic Log likelihood = Restricted(b=0) =
                                   -1631.91946
-2688.80603
            Chi-sq [ 10] (prob) = 2113.8(.0000)
                                    -2.04896
Info criter. LogAmemiya Prd. Crt. =
           Akaike Info. Criter. =
                                       -2.04896
-2.03223
            Bayes Info. Criter. =
Model was estimated on Feb 09, 2010 at 10:51:13 PM
                        Standard
  LWAGE Coefficient
                                       z > |Z|
                                                       of X
                          Error
          5.68035*** .04783 118.77 .0000
.01024*** .00054 19.11 .0000 19.8538
Constant
    EXP
                                            .0000
                                                    .51116
                           .01502
            -.14664***
    OCC
                                     -9.76
                                     4.57 .0000
             .05525***
                           .01208
                                                      .39544
    IND
            -.05298***
                                                     .29028
                                     -4.12 .0000
   SOUTH
                           .01285
             .14851***
                            .01236
   SMSA
                                     12.02
                                            .0000
                                                      .65378
             .06783***
                           .02107
                                                      .81441
     MS
                                      3.22 .0013
                           .02569
                                            .0000
    FEM
            -.36013***
                                    -14.02
                                                     .11261
                                                     .36399
             .09158***
                           .01290
                                            .0000
                                     7.10
   UNION
            -.16824***
                           .02262
    BLK
                                     -7.44 .0000
                                                      .07227
            .05669***
                           .00268
                                    21.16 .0000
                                                    12.8454
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
```

Maximum of 100 iterations. Exit iterations with status=1.

_____ Random Coefficients LinearRg Model on -264.53571 Dependent variable LWAGE Log likelihood function Estimation based on N = 4165, K = 13Information Criteria: Normalization=1/N Normalized Unnormalized .13327 555.07141 555.15910 637.41954 584.20182 Fin.Smpl.AIC .13329 Bayes IC .15304 Mannan Quinn .14026 584.20182 Model estimated: Feb 09, 2010, 22:54:10 Sample is 7 pds and 595 individuals


LINEAR regression model


Simulation	on based on 100) Halton dra	aws		
	+ 	Standard		Prob.	Mean
LWAGE	1	Error	Z	z > Z	of X
	Nonrandom paramet				
Constant	4.57949***	.02054	222.92	.0000	
EXP	.07444***	.00045	166.45	.0000	19.8538
OCC	05447***	.00590	-9.23	.0000	.51116
IND	04841***	.00483	-10.01	.0000	.39544
SOUTH	.10661***	.00513	20.79	.0000	.29028
SMSA	.07319***	.00478	15.32	.0000	.65378
MS	.00116	.00788	.15	.8832	.81441
FEM	09641***	.01056	-9.13	.0000	.11261
UNION	.17620***	.00489	36.02	.0000	.36399
BLK	16604***	.01027	-16.17	.0000	.07227
	Means for random	parameters			
ED	.11889***	.00114	103.87	.0000	12.8454
	Scale parameters	for dists.	of rando	m parame	ters
ED	1.34686***	.00162	829.14	.0000	
	Variance paramete	er given is	sigma		
Std.Dev.	.15915***	.00075	213.52	.0000	
Note: **	*, **, * ==> Sign	nificance at	 t 1%, 5%,	10% lev	el.

Implied standard deviations of random parameters

Matrix S.D_Beta has 1 rows and 1 columns.

```
1
+----+
1 | 1.34686
```


2. The second model is a typical hierarchical model. The model is

```
\begin{array}{ll} y_{it} = \beta_{1,i} + \beta_{2,i} Exp_{it} + \beta_{3} OCC_{it} + ... + \beta_{8} Union_{it} + \ \epsilon_{it} \\ \beta_{1,i} = \beta_{1} + \delta_{1,1} Fem_{i} + \delta_{1,2} Ed_{i} + \delta_{1,3} Blk_{i} + u_{1i}, \\ \beta_{2,i} = \beta_{2} + \delta_{2,1} Fem_{i} + \delta_{2,2} Ed_{i} + \delta_{2,3} Blk_{i} + u_{2i}, \end{array}
```

This is a common sort of model in which the regression of interst is based on the time varying attributes and the variation in the parameters is explained by the randomness, $u_{k,i}$ and by the demographics that do not vary across time, here Gender, Education and Race. Fit the model and report all results, identifying what parameter is what in your report.

```
Sample ; All $
Regress ; Lhs = Lwage
; Rhs = One, Exp, Occ, Ind, South, SMSA, MS, Union
;Pds=7
;RPM=Fem,Ed,Blk
;Halton ; Pts=100
Fcn = one(n), exp(n)
;Parameters $
OLS Starting values for random parameters model...
Ordinary
              least squares regression ......
               Standard deviation = 6.67635
             Mean
Chi-sq [ 7] (prob) = 1403.4(.0000)
Info criter. LogAmemiya Prd. Crt. = -1.87985
Akaike Info. Criter. = -1.87985
Bayes Info. Criter. = -1.86768
Model was estimated on Feb 09, 2010 at 10:57:31 PM
                          Standard Prob. Mean
   LWAGE Coefficient
                                Error
                                             z z> | Z |
                                                                  of X
            -.32393*** .01373 -23.59 .0000 .51116
.04033*** .01301 3.10 .0019 .39544
-.11104*** .01373 -8.09 .0000 .29028
.15575*** .01327 11.73 .0000 .65378
.33545*** .01611 20.83 .0000 .81441
.06787*** .01398 4.86 .0000 .36399
      IND
    SOUTH
      MS
                .06787***
   INTON
Constant 6.31844***
                             .02106 300.02
.00057 12.44
                                                     .0000
             .00705***
   EXP
                                                     .0000
                                                              19.8538
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.
```

Warning 141: Iterations:current or start estimate of sigma is nonpositiv Maximum of 20 iterations. Exit iterations with status=1.

Random Coefficients LinearRg Model
Dependent variable LWAGE
Log likelihood function 468.34115
Restricted log likelihood .00000
Chi squared [8 d.f.] 936.68230
Significance level 00000

Chi squared [8 d.f.] 936.68230 Significance level .00000 Estimation based on N = 4165, K = 17 Information Criteria: Normalization=1/N Normalized Unnormalized

AIC -.21673 -902.68230

```
Fin.Smpl.AIC -.21670 -902.53472

Bayes IC -.19088 -794.99628

Hannan Quinn -.20758 -864.58870

Model estimated: Feb 09, 2010, 22:59:14

Sample is 7 pds and 595 individuals

LINEAR regression model

Simulation based on 100 Halton draws
```

LWAGE	 Coefficient	Standard Error			
	 Nonrandom paramet	ters			
OCC	02885*** .05175***	.00575	-5.02	.0000	.51116
IND	.05175***	.00455	11.38	.0000	.39544
SOUTH		.00494	-7.60	.0000	.29028
SMSA					.65378
MS	06154***	.00814	-7.56	.0000	.81441
UNION	.05017***	.00477	10.52	.0000	.36399
	Means for random	parameters			
Constant	5.10687***	.02754	185.43	.0000	
EXP	.02578***	.00085	30.33	.0000	19.8538
	Scale parameters				eters
Constant					
EXP					
	Heterogeneity in				ters
CONE_FEM					
cone_ed	01659***	.00180	-9.19	.0000	
ONE_BLK	.36096***	.01871	19.29	.0000	
CEXP_FEM	00572*** .00460***	.00056	-10.19	.0000	
cexp_ed	.00460***	.6620D-04	69.50	.0000	
CEXP_BLK	01732***	.00073	-23.58	.0000	
	Variance paramete				
Std.Dev.	.15238***	.00075	204.11	.0000	

3. Construct a different random parameters specification, modify the command above accordingly and fit your model. Report your results and interpret the estimates you obtain.