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Assignment 4

Parameter Heterogeneity in Linear
Models: RPM and HLM

The estimation parts of this assignment will be based on the Baltagi and Griffin gasoline
market and the Cornwell and Rupert labor market data sets that are posted on the course
website.

We will begin with the gasoline market.The basic linear regression model in use will be

Yite = B1 + BoXit1 + PaXitz + PaXies T Wit

where
and | =1,...,18 OECD countries
t =1,...,19 years (1960 to 1978).
Yit =lgaspcar = log of per capita gasoline use
Xiit = lincomep = log of per capita income
Xiip = lrpmg = log of gasoline price index
Xit3 = lcarpcap = log of cars per capita
Wit = a disturbance that may have have both permanent (time invariant)

components and time varying components, and may, under some
circumstances, be correlated with Xi;.
Denote Xxij; = (1 Xit1,Xit2-Xit3) and
X = the 19x4 matrix containing all the data on x;; for country i.



Part I. Parameter Variation in the Gasoline Market

A. Homogeneous parameters: To begin, we assume that all parameters, including the
constant term, are homogeneous across countries and through time and that wi; = &, a
classical zero mean, homoscedastic disturbances.

1. Under these assumptions, what are the properties of the pooled OLS estimator?

Under the assumptions, the model is a classical linear regression, so OLS is unbiased,
consistent, and efficient by the Gauss Markov Theorem. The asymptotic distribution is
mormal with mean B and asymptotic covariance matrix ,>/(nT) x plim[X'X/nT] ™.

2. Estimate the parameters of the model using OLS and report your results.

--> NAMELIST ; X = one, lincomep, lrpmg, Icarpcap $
--> REGRESS ; Lhs = lIgaspcar ; Rhs =X $

Ordinary least squares regression ............
LHS=LGASPCAR Mean = 4.29624
Standard deviation = 54891
Number of observs. = 342
Model size Parameters = 4
Degrees of freedom = 338
Residuals Sum of squares = 14.90436
Standard error of e = 20999
Fit R-squared = 85494
Adjusted R-squared = .85365
Model test FL 3, 338] (prob) = 664.0(.0000)
Diagnostic Log likelihood = 50.49288
Restricted(b=0) = -279.63574
Chi-sq [ 3] (prob) = 660.3(.0000)
Info criter. LogAmemiya Prd. Crt. = -3.10976
Akaike Info. Criter. = -3.10977
Bayes Info. Criter. = -3.06491
________ e ————————————————————————————
| Standard Prob. Mean
LGASPCAR] Coefficient Error t ©|T]| of X
________ e ——————————————————————————————————
Constant] 2.39133*** .11693 20.45 .0000
LINCOMEP] .88996*** .03581 24.86 .0000 -6.13943
LRPMG] -.89180*** 03031 -29.42 .0000 -.52310
LCARPCAP] - _76337*** 01861 -41.02 .0000 -9.04180

Note: ***, ** * ==> Significance at 1%, 5%, 10% level.



3. As a first cut at assessing whether the assumptions are correct, compute the
robust, cluster (country) corrected standard errors for the least squares estimator.
Do they appear to be the same, or close to the same, as the uncorrected OLS
standard errors? What do you conclude about the disturbances in the equation?

--> REGRESS ; Lhs = lgaspcar ; Rhs =X ; Cluster=Country$

e +
| Covariance matrix for the model is adjusted for data clustering. |
| Sample of 342 observations contained 18 clusters defined by |
| variable COUNTRY which identifies by a value a cluster ID. |
e +
Ordinary least squares regression ............
LHS=LGASPCAR Mean = 4.29624

Standard deviation 54891

Number of observs. 342
Model size Parameters 4

Degrees of freedom 338
Residuals Sum of squares 14.90436

Standard error of e 20999
Fit R-squared 85494

Adjusted R-squared

Model test FL 3, 338] (prob)
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Diagnostic Log likelihood 50.49288
Restricted(b=0) -279.63574
Chi-sq [ 3] (prob) 660.3(-0000)
Info criter. LogAmemiya Prd. Crt. -3.10976
Akaike Info. Criter. -3.10977
Bayes Info. Criter. = -3.06491

Model was estimated on Feb 09, 2010 at 09:52:38 PM

Standard Prob. Mean
LGASPCAR] Coefficient Error t ©|T] of X
________ e
Constant] 2.39133*** .44167 5.41 .0000
LINCOMEP| .88996*** .17248 5.16 .0000 -6.13943
LRPMG] -.89180*** .14578 -6.12 .0000 -.52310
LCARPCAP| —-.76337*** .06985 -10.93 .0000 -9.04180

The standard errors have increased substantially. I suspect that this indicates that there is
substantial correlation across observations within a country.

B. Heterogeneous Constant Terms: Now, consider fixed and random -effects
formulations of the model. We write the model as

Yit = Bii T BoXiti + PsXitz + PaXitz + &t
where
Bii = B1 + ujand E[ui] = 0.

Thus, this is a model with a random constant term. By substituting the second equation
into the first, you can see that it is the “effects” model we have discussed in class.



1. (Fixed Effects) Using the OECD gasoline data, estimate the parameters of the model
under the assumption that E[u;|Xi] = g(Xi) for some nonzero function ¢g(.). Explain the
estimator and the motivation for using it. Display your results with the OLS estimates so
that you (and your reader) can see the difference between the two. Note that E[uj|Xi] =
g(Xj) is consistent with E[u;] = 0. When averaged over X, the overall mean is zero, but
the mean is not zero for a specific Xj. This implies that u; and X are correlated.

This would be the fixed effects model. The parameters are estimated by using the within
estimator — including the country dummy variables in the equation.



OLS Without Group Dummy Variables.................
Ordinary least squares regression ............

LHS=LGASPCAR Mean 4.29624
Standard deviation 54891
Number of observs. 342

Model size Parameters 4
Degrees of freedom 338

Residuals Sum of squares 14.90436
Standard error of e 20999

Fit R-squared 85494
Adjusted R-squared

Model test F[ 3, 338] (prob) 664 .0(.0000)
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Diagnostic Log likelihood 50.49288
Restricted(b=0) -279.63574
Chi-sq [ 3] (prob) 660.3(-0000)
Info criter. LogAmemiya Prd. Crt. -3.10976
Akaike Info. Criter. -3.10977
Bayes Info. Criter. -3.06491
Panel Data Analysis of LGASPCAR [ONE way]
Unconditional ANOVA (No regressors)
Source Variation Deg. Free. Mean Square
Between 85.68228 17. 5.04013
Residual 17.06068 324. .05266
Total 102.74296 341. -30130
________ e
| Standard Prob. Mean
LGASPCAR] Coefficient Error t ©|T]| of X
________ A e
LINCOMEP] .88996*** .03581 24.86 .0000 -6.13943
LRPMG] -.89180*** 03031 -29.42 .0000 -.52310
LCARPCAP] - _76337*** 01861 -41.02 .0000 -9.04180
Constant] 2.39133*** .11693 20.45 .0000
________ e
Least Squares with Group Dummy Variables..........
Ordinary least squares regression ............
LHS=LGASPCAR Mean 4.29624
Standard deviation 54891
Number of observs. 342
Model size Parameters 21
Degrees of freedom 321
Residuals Sum of squares 2.73649
Standard error of e 09233
Fit R-squared 97337
Adjusted R-squared

Model test FL 20, 321] (prob) 586.6(-0000)
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Diagnostic Log likelihood 340.33399
Restricted(b=0) -279.63574
Chi-sq [ 20] (prob) 1239.9(-0000)
Info criter. LogAmemiya Prd. Crt. -4.70517
Akaike Info. Criter. -4.70533
Bayes Info. Criter. -4.46986
Estd. Autocorrelation of e(i,t) . 775557
Panel :Groups Empty 0, Valid data 18
Smallest 19, Largest 19
Average group size in panel 19.00
________ e
| Standard Prob. Mean
LGASPCAR] Coefficient Error t ©|T] of X
________ e
LINCOMEP] .66225*** .07339 9.02 .0000 -6.13943
LRPMG] -.32170*** .04410 -7.29 .0000 -.52310
LCARPCAP| -.64048*** .02968 -21.58 .0000 -9.04180
________ e

Fixed effects results are somewhat differerent. But, notice that the estimate price
elasticity has fallen by 50%, a large change.



2. (Random Effects) Estimate the parameters of the model under the more restrictive
assumption that E[uj|Xj] = 0.

Random Effects Model: v(i,t) = e(i,t) + u(i)
Estimates: Var[e] = .008525
Var[u] = .035571
Corr[v(i,t),v(i,s)] .806673
Lagrange Multiplier Test vs. Model (3) =1465.55

( 1 degrees of freedom, prob. value = .000000)
(High values of LM favor FEM/REM over CR model)
Baltagi-Li form of LM Statistic = 1465 .55
Sum of Squares 27.266173
R-squared .734618
________ e
| Standard Prob Mean
LGASPCAR] Coefficient Error z z>|Z] of X
________ A e
LINCOMEP| .55270*** .05651 9.78 .0000 -6.13943
LRPMG] - .42500%*** 03842 -11.06 .0000 -.52310
LCARPCAP| -.60631*** .02446 -24.78 .0000 -9.04180
Constant] 1.98508*** .17572 11.30 .0000
________ e

The random effects results resemble the fixed effects results.

3. Use the Wu/Mundlak variable addition test to test for the assumption of the (null)
random effects model against the (alternative) fixed effects model. Report your results

and your conclusions.
Create ; xlbar = GroupMean(lincomep,str=country)$
Create ; x2bar = GroupMean(lrpmg,str=country)$
Create ; x3bar = GroupMean(lcarpcap,str=country)$
REGRESS ; Lhs = lgaspcar

; Rhs = xlbar,x2bar,x3bar,X

; Str=Country ; Random Effects$

Random Effects Model: v(i,t) e(i,t) + u(i)

Estimates: Var[e] = .008605
Var[u] = .030281
Corr[v(i,t),v(i,s)] = .778708
Lagrange Multiplier Test vs. Model (3) =1864.35
( 1 degrees of freedom, prob. value = .000000)
(High values of LM favor FEM/REM over CR model)
Baltagi-Li form of LM Statistic = 1864 .35
Sum of Squares 13.027071
R-squared .873207
________ e
| Standard Prob Mean
LGASPCAR] Coefficient Error z z>|Z] of X
________ A e
X1BAR] .30533* .15712 1.94 _.0520 -6.13943
X2BAR]| -.64185*** .12649 -5.07 .0000 -.52310
X3BAR]| -.15482* .07933 -1.95 .0510 -9.04180
LINCOMEP| .66225*** .07373 8.98 .0000 -6.13943
LRPMG] -.32170*** .04431 -7.26 .0000 -.52310
LCARPCAP] -.64048*** 02982 -21.48 .0000 -9.04180
Constant] 2.54163*** .46953 5.41 .0000
________ A e

--> Matrix ; bm = b(1:3) ; vm=varb(1:3,1:3)
; List ; waldStat = bm"<vm>bm $

Matrix WALDSTAT has 1 rows and 1 columns.



The wald statistic is much larger than the critical value with 3 degrees of freedom. This
suggests that the fixed effects specification is the preferred model.



C. General parameter heterogeneity: Let x; denote (1,lincomep,lrpmg,lcarpcap)i.
We now consider the possibility that there are differences across countries. Write the
model

(1) vyii = Bi'xit + &ie.

Absent any further assumptions about the variation in the parameters across countries,
how would you proceed to examine the relationship between per capita gasoline
consumption, Yj; and the other variables, x;;?

1. Suppose we now assume that all the parameters, not just the constant, are random;

2 Bi=8PBtu

where u; has an overall mean of zero, however E[u;|Xi] = g(Xi), where X is the 19 years
of data on xj; for country i? Note that the assumption of the overall mean of zero states
only that Bj varies around a mean.

We are particularly interested in the price elasticity of the demand for gasoline, the
coefficient on Irpmg. To explore the cross country variation, compute the linear
regression model for each of the 19 countries (separately). Display in a graph or a well
labeled table the results of your estimation, to describe the variation in the estimated
coefficients on Irpmg. Note that the assumption about u; is equivalent to the “fixed
effects” case, but here we are considering the entire parameter vector, not just the
constant term.



Matrix ; beta2 = Init(18,1,0)$
i-o0s

Calc ; il1=1 ; i 0
Procedure
Calc ; iI2 =11 +18 ; i =1 +1$%
Sample ; il-i2 $
Regress ; quietly ; Lhs = lgaspcar ; Rhs = x $
Matrix ; beta2(i)=b(3) $
Calc il=i1+19 $
EndProc
Execute ; N = 18 $
Matrix ; cntry=[1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18]%
Mplot ; Lhs = cntry ; Rhs = beta2
;Title=Elasticities for 18 OECD Countries $
E lasticities for 18 OECD Countries
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2. If we add to A. the assumption E[u;/X;] = 0, the model turns into a “random effects”
model, though note, once again, we are considering the entire parameter vector. Under
this new assumption, what are the properties of the pooled ordinary least squares
estimator? What does b estimate in this case? For a useful step in the analysis, insert (2)
into (1) and analyze the implied model.

Under the random effects assumption, the model turns into a heteroscedastic linear
regression. l.e.,

Yit = Bi'Xit + &i, Bi = B + u,
SO
yie=B'Xi + & + ui'Xit.

This is a linear regression with mean B'x;; and variance 682 + X;/'2x;; where X 1s the 4x4
covariance matrix of the random parameters. Since it is a linear regression and the
distirbances, though heteroscedastic, are not correlated with x;, it can be fit by OLS,
though inefficiently. Note, u;'x; is not correlated with x;.. To see, just note that

E[ui'xixi] = E[ui']xxit = 0. (Looks like a trivial proof. But, it’s right.) So, pooled OLS
has the properties of OLS in the presence of heteroscedasticity. Unbiased (possibly),
consistent, asymptotic normal, not efficient.

Part II. Theory and an Example for Simulation Based Estimation:

This theoretical exercise will begin to suggest how simulation based estimation works.
Consider a simple regression model

yit = PBiXit T €it
There is only one variable and no constant in the model. Assume that & ~ N[0,6°]. We
suppose as well that B; is random; B; = B + wu; where w; ~ N[0,0*]. A simpler way to
write this is

Bi = B + Ou; whereu; ~N[0,1].

Putting 0 specifically in the equation simplifies the derivation a bit. The contribution of
individual i to the likelihood function is the product of the normal densities,

L= 1T Lq{ﬂJ

() ()

This is not useable for maximum likelihood estimation because B = 8 + 6u; which means
that the log likelihood to be maximized involves the unobserved u;;

L = HtT:l l(l)[ Yie —BXi _euixitj

(&) ()



In principle, we would now maximize logL = % loglL; with respect to (,9,5). The
problem is that the unobserved U; is in the equation and must be integrated out to
proceed.. The contribution of individual i to the unconditional log likelihood function is

logli = log {HL. écb(y“_ﬁ o~ O ﬂqmui)dui

where ¢(U;) is the standard normal density. The integral of the product above does not
exist in closed form, so we will approximate it by simulation. (It could be approximated
with quadrature.) Adding up the individual contributions, the simulated log likelihood is

log LS - Zinzl log{%zﬁl {HL l(1)[ Yit _Bxit _euirxit j}}

(&) (@)

where Ui is a set of R random draws on the standard normal population for each
individual i. (The random draws are reused every time the function or its derivatives are
computed. There are a total of NR random draws used in the simulation.) An additional
simplification is obtained by using y = 1/c. (We make use of the invariance principle for
maximum likelihood estimation.) Then,

1

logls = ZL 10g{EZ,R=, [H; Yq)(Y(yn = BX; _euirxit))}}'

The maximum simulated likelihood estimator is the (j3,0,y) that maximizes this function.
1. Derive the necessary (first order) conditions for maximizing this function. Hint: your
derivation is simplified greatly by using the result d¢(t)/dt = -td(t). You can then just use
the chain rule.

1 «—R T T 5108Y¢(Y(yit — B _Guirxit))
dlog Lg _ zn EZM [Ht:l Y(I)(Y(Yit — B _euirxit))JZ:t=1 oy

o (130, [T et -0u0)])

(Note I used a trick above, 0f/0x = fxologf/ox. The derivatives with respect to 3 and 6
have the same form save for the derivative in the rightmost sum. These three derivatives
are

1/ - —Bx. —0u. X
6logy¢(y(yn _Bxit _euirxit )) _ Oy +L(_)¢() (yn Binyx Ulrxlt)
; 0 ) ~YUir Xi¢

op
0



1/ it — PXie — U X;
alOg“/d)(Y(y.t _Bxit —Ouirxit )) i (y|t B it i t)

Y = 0 _Y(%t_B&t_euH&J —YXit
0 ~YUir Xi¢
o P
0

2. How would you obtain asymptotic standard errors for your estimator?

Notice that the derivatives have to be simulated just like the log likelihood. In principle,
you would differentiate this function again and use the negative inverse of the second
derivatives. The derivatives are extremely complicated. This looks like a very good
candidate for the BHHH estimator. The first derivative vector above, looking at it from
the outside, takes the form

OlogLg n
:Zizl
Y
oB
0

8i

where g; is the vector in the messy expression after the first summation. An estimator
that will work asymptotically is just

V= [ZL gigi,:|_1

Complicated, but not so bad as the full Hessian.

3. The following small exercise will show this computation at work. This application
estimates the parameters of a model that precisely satisfies the assumptions of the model
above. Execute these commands and report all of your results

? 1,000 observations in total will be n=100, T=10. The x(i,t) is normally distributed
? with mean zero and standard deviation 1. Variable i is the 1,1,1,1...,2,2,2,2... etc.
Sample ; 1 - 1000 $
Create ; xit = Rnn(0,1) ; i = Trn(10,0) $
? We generate b(i) = 0.5 + u(i) where u(i) is normal with mean 0, standard deviation
? .5. Then, y(i,t) = b(i)*x(i,t) + e(i,t) where e(i,t) is normally distributed with zero
? mean and standard deviation 1.
Matrix ; bi = init(100,1,.5) + .5*rndm(100)$
Create ; yit = bi(i)*xit + rn(0,1) $
? This command estimates the random parameters model exactly as shown in
? part 2. above.
Regress ; lhs = yit ; rhs = xit ;rpm ; fcn=xit(n)
; pds=10 ; pts=100 ; halton $



--> CALC;DELETE I$

--> Sample ; 1 - 1000 $

--> Create ; xit = Rnn(0,1) ; i = Trn(10,0) $

--> Matrix ; bi = init(100,1,.5) + .5*rndm(100)$

--> Create ; yit = bi(i)*xit + rnn(0,1) $

--> Regress ; lhs = yit ; rhs = xit ;rpm ; fcn=xit(n)
; pds=10 ; pts=100 ; halton $

OLS starting values for random parameters model. ..

Ordinary least squares regression ............
LHS=YIT Mean = -.03481
Standard deviation = 1.21392
Number of observs. = 1000
Model size Parameters = 1
Degrees of freedom = 999
Residuals Sum of squares = 1222.62727
Standard error of e = 1.10628
Fit R-squared = .16948
Adjusted R-squared = .16948
Model test FL 1, 9991 (prob) = 203.9(-0000)
Diagnostic Log likelihood = -1519.43957
Restricted(b=0) = -1612.29192
Chi-sq [ 11 (prob) = 185.7(-0000)
Info criter. LogAmemiya Prd. Crt. = .20300
Akaike Info. Criter. = -20300
Bayes Info. Criter. = .20791
________ e
| Standard Prob. Mean
YIT] Coefficient Error z z>|Z] of X
________ e e
XIT] .48868*** 03414 14.31 .0000 -.00495
________ e ————————————————————————————————
Normal exit: 9 iterations. Status=0. F= 1451.252
Random Coefficients LinearRg Model
Dependent variable YIT
Log likelihood function -1451.25191
Estimation based on N = 1000, K = 3
Information Criteria: Normalization=1/N
Normalized Unnormalized
AlC 2.90850 2908.50381
Fin.Smpl_AIC 2.90853 2908.52791
Bayes IC 2.92323 2923.22708
Hannan Quinn 2.91410 2914.09968
Sample is 10 pds and 100 individuals
LINEAR regression model
Simulation based on 100 Halton draws
________ A e
| Standard Prob. Mean
YIT] Coefficient Error z z>|Z] of X
________ e ————————————————————————————————
|[Means for random parameters
XIT] .48041*** .03006 15.98 .0000 -.00495
|Scale parameters for dists. of random parameters
XIT] _63417*** .02593 24.45 0000
|Variance parameter given is sigma
Std.Dev.| -96500*** .01908 50.57 .0000
________ e

Estimation begins with OLS (as usual). The OLS (consistent) estimate is 0.48868. The
RP estimate of the mean of the distribution is .48041. The standard deviation of the
distribution of B; is 0.63417. The true value is 0.5. The estimate of 6. is 0.965. The true
value is 1.0.



Part III. Random Parameters Models

This exercise will demonstrate the computation of a fairly elaborate, hierarchical linear model.
The computations are based on the Cornwell and Rupert data. Note that the simulations below
are based on Halton sequences, not pseudorandom random numbers. As such, the results you
obtain below are replicable — in principle, you and I (and your colleagues) should all get the same
results. Also, if you fit these equations more than once, you will get the same answers.

1. A simple RPM with one random coefficient. The first model is the regression model discussed
in class, now with a random coefficient on education.
model, this program computes the posterior estimates of E[f;rdlyi,X;] and plots the distribution
with a kernel density estimator and a histogram. Estimate the model and report all results. (Note,

you can copy/paste the figure into a Word document.)

Sample ; AlIl &

Regress ;

Sample ; 1 - 595 %

Create ; Ed _Coeff = 0 $
Create ; Ed_Coeff = beta_i $
Kernel ; Rhs = Ed_Coeff$
Histogram ; Rhs = Ed_Coeff $

--> Sample ; All $

--> Regress ; Lhs = Lwage
; Rhs = One,Exp,Occ, Ind, South,SMSA,MS,FEM,Union,Ed,Blk
;Pds=7 ;RPM ; Halton ; Pts=100 ;Fcn = Ed(N)
;Parameters $

OLS starting values for random parameters model. ..

Ordinary
LHS=LWAGE
Model size
Residuals
Fit

Model test
Diagnostic

Info criter.

least squares regression ............

Mean = 6.67635
Standard deviation = .46151
Number of observs. = 4165
Parameters = 11
Degrees of freedom = 4154
Sum of squares = 533.91105
Standard error of e = .35851
R-squared = -39801
Adjusted R-squared = .39656
F[ 10, 41541 (prob) = 274.6(-0000)
Log likelihood = -1631.91946
Restricted(b=0) = -2688.80603
Chi-sq [ 10] (prob) = 2113.8(.0000)
LogAmemiya Prd. Crt. = -2.04896
Akaike Info. Criter. = -2.04896
Bayes Info. Criter. = -2.03223

Model was estimated on Feb 09, 2010 at 10:51:13 PM

Standard Prob. Mean
LWAGE| Coefficient Error z z>|Z] of X
________ e
Constant] 5.68035*** .04783 118.77 .0000
EXP] .01024%*** .00054 19.11 .0000 19.8538
0ocC| -.14664*** .01502 -9.76 .0000 .51116
IND| .05525*** .01208 4.57 .0000 .39544
SOUTH] -.05298*** .01285 -4.12 .0000 .29028
SMSA| .14851*** .01236 12.02 .0000 .65378
MS| .06783*** .02107 3.22 .0013 .81441
FEM] -.36013*** .02569 -14.02 .0000 .11261
UNION] .09158*** .01290 7.10 .0000 -36399
BLK] -.16824*** .02262 -7.44 .0000 .07227
ED] .05669*** .00268 21.16 .0000 12.8454
________ e
Note: ***, **_ * ==> Significance at 1%, 5%, 10% level.

Lhs = Lwage ;Rhs = One,Exp,Occ, Ind,South,SMSA,MS,FEM,Union,Ed,Blk
;Pds=7 ;RPM ; Halton ; Pts=100 ;Fcn = Ed(N) ;Parameters ; Maxit = 20 $

After fitting the random parameters



Maximum of

100 iterations.

Exit iterations with status=1.
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LinearRg Model
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-264.53571
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Information Criteria: Normalization=1/N

AlIC
Fin.Smpl_AIC
Bayes IC

Hannan Quinn

Normalized
.13327
.13329
.15304
.14026

Unnormalized
555.07141
555.15910
637.41954
584.20182

Model estimated: Feb 09, 2010, 22:54:10
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19.8538
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.39544
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.65378
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Simulation based on 100 Halton draws
________ e
| Standard Prob.
LWAGE| Coefficient Error z z>|Z]
________ e
|Nonrandom parameters
Constant] 4 _57949*** 02054 222.92 .0000
EXP .07444%*** .00045 166.45 .0000
occ —.05447*** .00590 -9.23 .0000
IND -.04841*** 00483 -10.01 .0000
SOUTH] .10661*** .00513 20.79 .0000
SMSA .07319*** .00478 15.32 .0000
S .00116 .00788 .15 .8832
FEM -.09641*** .01056 -9.13 .0000
UNION] .17620*** .00489 36.02 .0000
BLK -.16604*** .01027 -16.17 .0000
Means for random parameters
ED .11889*** 00114 103.87 .0000
|Scale parameters for dists. of random parameters
ED 1.34686*** .00162 829.14 .0000
Variance parameter given is sigma
Std.Dev. .15915*** 00075 213.52 .0000
________ e ——————————————_——————————————————
Note: *** **_ * —=> Significance at 1%, 5%, 10% level.

Implied standard deviations of random parameters
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2. The second model is a typical hierarchical model. The model is

yice = Pui T B2iExpic + B3OCCj + ... + BsUniony + &
Bii = Pi+ 611 Fem; + 8 ,Ed; + 8, 3Blk; + uy,
Bai = B2+ 621 Fem; + 8,,Ed; + 6,3BIlk; + uy;,

This is a common sort of model in which the regression of interst is based on the time varying
attributes and the variation in the parameters is explained by the randomness, uy; and by the
demographics that do not vary across time, here Gender, Education and Race. Fit the model and
report all results, identifying what parameter is what in your report.

Sample ; All $

Regress ; Lhs = Lwage

;Rhs = One,Exp,Occ, Ind,South,SMSA,MS,Union

;Pds=7

;RPM=Fem,Ed,Blk

;Halton ; Pts=100

;Fen = one(n),exp(n)

;Parameters $

OLS Starting values for random parameters model. ..
Ordinary least squares regression ............

LHS=LWAGE Mean = 6.67635
Standard deviation = 46151
Number of observs. = 4165
Model size  Parameters = 8
Degrees of freedom = 4157
Residuals Sum of squares = 633.19640
Standard error of e = 39028
Fit R-squared = 28606
Adjusted R-squared = .28486
Model test FL 7, 4157] (prob) = 237.9(-0000)
Diagnostic Log likelihood = -1987.09274
Restricted(b=0) = -2688.80603
Chi-sq [ 7] (prob) = 1403.4(.0000)
Info criter. LogAmemiya Prd. Crt. = -1.87985
Akaike Info. Criter. = -1.87985
Bayes Info. Criter. = -1.86768

Model was estimated on Feb 09, 2010 at 10:57:31 PM

________ e ——————————————————————————
| Standard Prob. Mean
LWAGE] Coefficient Error z z>|Z] of X
________ e ——————————————_——————————————————
occl -.32393*** .01373  -23.59 .0000 .51116
IND]| .04033*** .01301 3.10 .0019 .39544
SOUTH] -.11104*** .01373 -8.09 .0000 .29028
SMSA| .15575*** .01327 11.73 .0000 .65378
MS| .33545*** .01611 20.83 .0000 .81441
UNION] .06787*** .01398 4.86 .0000 -36399
Constant] 6.31844*** .02106  300.02 .0000
EXP] .00705*** .00057 12.44 .0000 19.8538
________ e ——————————————————————————

Note: ***, ** * ==> Significance at 1%, 5%, 10% level.

Warning 141: Iterations:current or start estimate of sigma is nonpositiv
Maximum of 20 iterations. Exit iterations with status=1.

Random Coefficients LinearRg Model

Dependent variable LWAGE
Log likelihood function 468.34115
Restricted log likelihood .00000
Chi squared [ 8 d.f.] 936.68230
Significance level .00000
Estimation based on N = 4165, K = 17

Information Criteria: Normalization=1/N
Normalized Unnormalized
AlIC -.21673 -902.68230



Fin_Smpl_AIC -.21670 -902.53472
Bayes IC -.19088 -794.99628
Hannan Quinn -.20758 -864.58870
Model estimated: Feb 09, 2010, 22:59:14
Sample is 7 pds and 595 individuals
LINEAR regression model

Simulation based on 100 Halton draws
________ e ——————————————————————————————————
| Standard Prob. Mean
LWAGE] Coefficient Error z z>|Z] of X
________ e
|[Nonrandom parameters
occ -.02885*** .00575 -5.02 .0000 .51116
IND .05175*** .00455 11.38 .0000 .39544
SOUTH -.03755*** .00494 -7.60 .0000 .29028
SMSA| .00458 .00477 .96 .3364 .65378
S -.06154*** .00814 -7.56 .0000 .81441
UNION .05017*** .00477 10.52 .0000 -36399
Means for random parameters
Constant] 5.10687*** .02754  185.43 .0000
EXP .02578*** .00085 30.33 .0000 19.8538
Scale parameters for dists. of random parameters
Constant _19776%*** .00509 38.88 .0000
EXP] .00070*** .8794D-04 7.98 .0000
Heterogeneity in the means of random parameters
CONE_FEM -.13431*** .01417 -9.48 .0000
CONE_ED -.01659*** .00180 -9.19 .0000
CONE_BLK] -36096*** .01871 19.29 .0000
CEXP_FEM -.00572%** .00056 -10.19 .0000
CEXP_ED .00460*** .6620D-04 69.50 .0000
CEXP_BLK -.01732%*** .00073 -23.58 .0000
|Variance parameter given is sigma
Std.Dev. | .15238*** .00075 204.11 .0000

________ e
Note: nnnnn.D-xx or D+xx => multiply by 10 to -XX or +xx.
Note: *** **_ * —=> Significance at 1%, 5%, 10% level.

3. Construct a different random parameters specification, modify the command above
accordingly and fit your model. Report your results and interpret the estimates you obtain.



