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Assignment 5 
Nonlinear Models 

 
 
Part I.  Weibull Regression Model 
 
 In class, we examined a ‘loglinear,’ exponential regression model, 
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The Weibull model is an extension of the exponential model which adds a shape parameter, γ; 
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The exponential model results when γ = 1.  (This distribution looks like, but is not the gamma 
distribution we discussed in class.)  An interesting special case is the Rayleigh distribution, which has 
γ = 2.  The resulting density is 
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One of the interesting things about the Rayleigh distribution is that E[y|xi]= .5 π θi (compared to θi 

for the exponential.  .5 π  is approximately equal to 0.866.)  One difference is the variance.  The 
variance of the exponential variable is θi

2.  The variance of the Rayleigh variable is [Γ(2) - Γ2(1.5)]θi
2.  
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Since Γ(t) = t-1! for integer t, Γ(2) = 1.  When t = an integer + .5, we can use the recurrence Γ(t) = (t-
1)Γ(t-1) until we reach Γ(.5) which equals π .  Combining terms, then, the variance of the Rayleigh 

variable is [1-(.5 π )2]θi
2 = 0.2146θi

2. 
 a.  The parameters β in the Rayleigh model could be estimated either by nonlinear least 
squares or by maximum likelihood.  Which would be more efficient?  Explain. 
 
The MLE is efficient among consistent and asymptotically normally distributed estimators of β.  The 
MLE will surpass NLS because it uses information about the distribution while the NLS estimator 
only uses information about the form of the conditional mean function.  Both estimators are 
consistent. 
 
 b.  Form the log likelihood and derive the expressions for the first order conditions for 
maximizing the log likelihood for the Weibull model.  
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 c.  How would you test the null hypothesis of the Rayleigh model (γ=2) against the more 
general null of the Weibull model (γ unrestricted)? 
 
(1) likelihood ratio test, fitting the Weibull model without restriction (logLu) and the Rayleigh model 
with the restriction (logLR), then χ2[1] =  2[logLU – logLR].  Chi-squared test, one degree of freedom. 
(2) Wald test. For this restriction, just fit the Weibull model without restriction, then do a simple “t 
test” against the null hypothesis that γ = 2. t = (c – 2)/standard error. 
 
 d.  How would you test the null hypothesis of the Rayleigh model (γ=2) against the 
alternative of the Exponential model (γ = 1)? 
 
It’s not possible to test the simple null against the simple alternative. (Sorry, a trick question, I 
suppose.)  A Bayesian approach might suggest the “posterior odds ratio” 
P(Rayleigh|data)/P(Exponential|data).  Note that this is not a “test” as such – one would not reject one 
model or the other on this basis, but only modify one’s prior belief as to which model is more likely 
to be “correct.” 
 
 



 e.  Maximum likelihood estimates of the parameters of the three models based on the German 
health data discussed in class appear below.  Carry out the test in part c.  Which of the three do you 
think is the appropriate model given the results below. 
 
(1) The LR statistic is 2(12033.5 – 11918.69) = 229.62.  The critical value is 3.84 so the null 
hypothesis is rejected. 
(2) The Wald statistic would be [(2.12853619 – 2)/.00466881]2 = 757.946.  Same conclusion 
 
 f.  In the Rayleigh model, show how to obtain the three available estimators of the asymptotic 
covariance matrix of the MLE of β. Remember, you are not estimating γ (it equals 2), and the 
expected value of yi is still θi. 
 
To do this, we will need the first derivatives of the log likelihood, the second derivatives and the 
expected derivatives for the Rayleigh model.  Remember, the parameter γ is now fixed at 2.  We have 
the first derivative with respect to β for the Weibull model above, so we can just insert γ = 2 for the 
Rayleigh model.  So, the first derivatives are 
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The Berndt, Hall, Hall and Hausman estimator is just the inverse of the sum of squares, 
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To compute this, we would obtain the MLE of β and just replace θi in the above expression with the 
estimated values.  To obtain the other estimates, we need the second derivatives. 
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(I differentiated first with respect to θi then θi with respect to β.)   Then, the estimator of the 
asymptotic covariance matrix would be the negative of the inverse of this matrix, computed using the 
MLE of β to compute θi.  This would be,  

Est.Asy.Var[ β̂ ] = 
12
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For the third estimator, we need the negative inverse of the expected second derivatives.  To get the 
expected value of the second derivative, we need the expected value of yi

2.  The mean and variance of 
the Rayleigh variable are given in the problem. The expected value of yi

2 is the variance plus the 
square of the mean, which, nicely, simplifies to just θi

2.  Therefore, the negative expectatation of the 
second derivatives matrix is just 
 
-E[∂2logL/∂β∂β′]  =  4 X′X  which means that the estimator of the asymptotic covariance matrix is  
 
Est.Asy.Var[ β̂ ]  =  [4X′X]-1 ! 



+---------------------------------------------+ 
| Weibull (Loglinear) Regression Model        | 
| Dependent variable               HHNINC     | 
| Number of observations            27322     | 
| Log likelihood function        12033.50     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Parameters in conditional mean function 
 Constant      3.44054643      .02266279   151.815   .0000 
 EDUC          -.10914142      .00147212   -74.139   .0000    11.3201838 
 MARRIED       -.31230818      .00750583   -41.609   .0000     .75869263 
 AGE            .00053144      .00044049     1.206   .2276    43.5271942 
          Shape parameter for Weibull model 
 P_scale       2.12853619      .00466881   455.905   .0000 
 
+---------------------------------------------+ 
| Exponential (Loglinear) Regression Model    | 
| Log likelihood function        1539.191     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Parameters in conditional mean function 
 Constant      1.82555590      .04219675    43.263   .0000 
 EDUC          -.05545277      .00267224   -20.751   .0000    11.3201838 
 MARRIED       -.23664845      .01460746   -16.201   .0000     .75869263 
 AGE            .00087436      .00057331     1.525   .1272    43.5271942 
 
+---------------------------------------------+ 
| Weibull (Loglinear) Regression Model        | 
| Log likelihood function        11918.69     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Parameters in conditional mean function 
 Constant      3.28524659      .02586426   127.019   .0000 
 EDUC          -.10377049      .00172163   -60.275   .0000    11.3201838 
 MARRIED       -.31371176      .00871996   -35.976   .0000     .75869263 
 AGE            .00064343      .00048739     1.320   .1868    43.5271942 
          Shape parameter for Weibull model 
 P_scale       1.99999964   ......(Fixed Parameter)....... 

 
 



Part II.  Marginal Effects in a Heteroscedastic Probit Model 
 
 Consider the following extension of the probit model. We make the disturbance 
heteroscedastic: 
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This extension produces the probability model 
 

 
⎛ ⎞α + β + β

= = Φ ⎜ ⎟γ + γ⎝ ⎠
i1 1 i2 2

i i1 i2 i3
i1 1 i3 3

x x
Prob[y 1| x , x , x ]

exp(x x )
 

 
Derive the partial (marginal) effects for this model, ∂Prob(yi=1)/∂xi1, ∂Prob(yi=1)/∂xi2, and 
∂Prob(yi=1)/∂xi3.  It’s worth noting that the partial effect for xi3 has the opposite sign from the 
coefficient. 
 
Since xi1 appears in both numerator and denominator, we must differentiate the parts separately 
and add them. 
∂Prob(yi=1)/∂xi1 = 
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Essentially the same computation, but xi2 is only in the numerator, so the second term is zero. 
∂Prob(yi=1)/∂xi2 = 
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Again, essentially the same, but now only the term in the denominator. 
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It’s worth noting that the partial effect for xi3 has the opposite sign from the coefficient. 
 



Part III.  Binomial Loglinear Model 
 
 Theory “Z” states that the age and education of the mother have an influence on the 
probability that a child will be female.  Theory “Not Z” says that these two variables are irrelevant. 
Theory “There is no Theory” goes even further and states that the probability is always exactly one 
half.  Consider modeling the number of female children, Girlsi in a sample of families; the number of 
children is Kidsi.  The model in question is 
 

−

=

=

⎛ ⎞
= = θ − θ⎜ ⎟

⎝ ⎠
θ θ =

i i i

i

i i

Girls Kids Girlsi
i i i i

i

i i

Kids total number of children = 0,1,...

Girls  number of female children = 0,1,...,K

Kids
Prob(GIRLS Girls | ,Kids ) (1 )

Girls

0 <  < 1,  probability of a female chi

ix

′
θ = = β = β β β

′+i i i i 0 1 2

ld

exp( )
,  (1, Age ,Educ ), ( , , )

1 exp( )
i

i

x β
x

x β

 

 
(Note that if Kidsi = 0, the probability that Girlsi equals zero is 1.).   
The three theories are: Z  = all three coefficients nonzero 
   Not Z  = β1 = β2 = 0, β0 unrestricted 
   No Theory = β0 = β1 = β2 =  0 
1.  Derive the log likelihood for estimation of the three unknown parameters.  (Note, the factorial term 
at the beginning of the probabilities does not involve the parameters, so it can be ignored.  This is 
often labeled “an irrelevant constant.” 
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2.  Derive the first order conditions for maximizing your log likelihood function. 
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3. Discuss exactly how you will test the hypothesis of theory “Not Z” against the alternative of theory 
“Z.”  How will you test the hypothesis of “No Theory” against theory “Z.”  What statistics will you 
use. 
 
To test the hypothesis of Theory Z against Not Theory Z, I would fit the model twice.  Theory Z has 
all three elements of xi in the model. Theory Not Z has only a constant term in the model.   Then, I 
could use a likelihood ratio test  to test the null hypothesis that the two coefficients are zero.  
Alternatively, I could use a Wald test based on the full model with all three nonzero coefficients. 
 
4. The data you need to do your estimation and carry out your tests are placed in two formats on the 
course website, .xls for a spreadsheet and .csv is an ascii text file.  The files contain 500 observations 
on Age, Educ, Kids, Girls.  Use these data to estimate your model and test the hypotheses. 
 
http://pages.stern.nyu.edu/~wgreene/Econometrics/BinomialData.xls 
http://pages.stern.nyu.edu/~wgreene/Econometrics/BinomialData.csv 
 
(Disclaimer:  The data are completely synthetic – simulated with a random number generator.  
This is a numerical example, not a study based on actual outcomes.) 
Tip:  Once you have read the data into NLOGIT, you can compute your estimates with 
 
maximize  
; labels=beta0,beta1,beta2 ; start = 0,0,0 
; fcn = bx = beta0+beta1*educ+beta2*age | 
        ti = exp(bx)/(1+exp(bx)) | 
        girls * log(ti) + (kids-girls)*log(1-ti) $ 
 
To fix certain coefficients to zero, one convenient way is to use ;FIX=list.  For example, to force 
β2 to equal zero in the results, you would add  ;Fix=beta2 to the command. (This forces the 
estimate to equal the starting value(s).)  Also, note that in your results, what NLOGIT reports as 
the “Log Likelihood” in its results is actually the negative of the log likelihood. 
 
--> maximize 
    ; labels=beta0,beta1,beta2 ; start = 0,0,0 
    ; fcn = bx = beta0+beta1*educ+beta2*age | 
    ti = exp(bx)/(1+exp(bx)) | 
    girls * log(ti) + (kids-girls)*log(1-ti) $ 
Normal exit from iterations. Status=0. F=    1640.785 
 
+---------------------------------------------+ 
| User Defined Optimization                   | 
| Maximum Likelihood Estimates                | 
| Dependent variable             Function     | 
| Weighting variable                 None     | 
| Number of observations              500     | 
| Iterations completed                  7     | 
| Log likelihood function        1640.785     | 
| Number of parameters                  0     | 
| Info. Criterion: AIC =         -6.56314     | 
|   Finite Sample: AIC =         -6.56314     | 
| Info. Criterion: BIC =         -6.56314     | 
| Info. Criterion:HQIC =         -6.56314     | 
| Restricted log likelihood      .0000000     | 
| Chi squared                    3281.570     | 
| Degrees of freedom                    3     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Model estimated: Apr 08, 2009, 05:41:02PM   | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
|BETA0   |   -2.50069***       .28392633    -8.808   .0000 | 
|BETA1   |     .05402***       .01498679     3.605   .0003 | 



|BETA2   |     .03995***       .00377150    10.593   .0000 | 
+--------+-------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.    | 
+----------------------------------------------------------+ 
 
--> calc ; logl1 = logl $ 
--> matrix ; bx =b(2:3) ; vbx = varb(2:3,2:3) $ 
--> matrix ; list ; wald = bx'<vbx>bx $ 
 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|  126.51465  **************** Hypothesis is rejected. Critical value 
  For chi squared with 2 degrees of freedom is 5.99 
--> maximize 
    ; labels=beta0,beta1,beta2 ; start = 0,0,0 
    ; fcn = bx = beta0+beta1*educ+beta2*age | 
    ti = exp(bx)/(1+exp(bx)) | 
    girls * log(ti) + (kids-girls)*log(1-ti) 
    ; fix = beta1,beta2$ 
NOTE: Convergence in initial iterations is rarely 
at a true function optimum. This may not be a 
solution (especially if initial iterations stopped). 
Exit from iterative procedure.    3 iterations completed. 
Check convergence values shown below. 
Gradient value: Tolerance= .1000D-05, current value= .7260D-07 
Function chg. : Tolerance= .0000D+00, current value= .1497D-08 
Parameters chg: Tolerance= .0000D+00, current value= .1869D-05 
Smallest abs. param. change from start value = .3884D-01 
Normal exit from iterations. Status=0. F=    1712.994 
 
+---------------------------------------------+ 
| User Defined Optimization                   | 
| Maximum Likelihood Estimates                | 
| Dependent variable             Function     | 
| Weighting variable                 None     | 
| Number of observations              500     | 
| Iterations completed                  3     | 
| Log likelihood function        1712.994     | 
| Number of parameters                  0     | 
| Info. Criterion: AIC =         -6.85198     | 
|   Finite Sample: AIC =         -6.85198     | 
| Info. Criterion: BIC =         -6.85198     | 
| Info. Criterion:HQIC =         -6.85198     | 
| Restricted log likelihood      .0000000     | 
| Chi squared                    3425.988     | 
| Degrees of freedom                    1     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Model estimated: Apr 08, 2009, 05:43:47PM   | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
|BETA0   |    -.03884          .03495948    -1.111   .2666 | 
|BETA1   |       .000       ......(Fixed Parameter)....... | 
|BETA2   |       .000       ......(Fixed Parameter)....... | 
+--------+-------------------------------------------------+ 
| Note: ***, **, * = Significance at 1%, 5%, 10% level.    | 
+----------------------------------------------------------+ 
+---------------------------------------------------------------------+ 
|Fixed Parameter... indicates a parameter that is constrained to equal| 
|a fixed value (e.g., 0) or a serious estimation problem. If you did  | 
|not impose a restriction on the parameter, check for previous errors.| 
+---------------------------------------------------------------------+ 
 
--> calc ; logl0 = logl $ 
--> calc ; list ; lrtest = 2*(logl1 - logl0) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LRTEST  =    144.417353  Hypothesis is rejected again. 

5. Using your results for for Theory Z, compute the probabilities that are predicted for the data 
set, and show the distribution with a kernel density estimator. 



 
Create ; Probi = Lgp(b(1)+b(2)*educ+b(3)*age) $ 
Kernel ; Rhs = Probi $  
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Sort of interesting. 
 
 
6.  The expected number of Girls in a family with Kidsi children is  
 
 E[Girlsi|Kidsi,xi] =  θi × Kidsi.   
 
What is the partial effect with respect to Age?  I.e., ∂ E[Girlsi|Kidsi,xi]/∂Agei  computed at the 
mean of age and education.  Hint:  θi, the probability, is the logit probability, Λ(β′x).  The 
derivative of Λ(t) with respect to t is dΛ(t)/dt  =  Λ(t)[1 - Λ(t)]. 
 
The partial effect would be 
 
Kidsi × ∂ θi/∂Agei  =  δ1 =  Kidsi × θi × (1 – θi) × β1.  Suppose this is computed at the means of the 
data.  Just call this d1.  Denote θi computed at the means as just θ without a subscript.  To 
compute an asymptotic variance for this, we need the Jacobian, 
 
∂d1/∂β = Kids {{θ(1 – θ)[0,1,0]} + β1(1 – 2θ)[θ(1 – θ)][1, Age , Educ ]} 
.   
Call this vector g1′.  Call the estimated asymptotic covariance matrix for the MLE V.  Then, the 
estimator of the variance for d1 is g1′Vg1. 
 



calc ; kbar = xbr(kids)  
     ; abar = xbr(age) 
     ; ebar = xbr(educ) $ 
calc ; tbar = lgp(b(1)+b(2)*abar+b(3)*ebar) 
     ; g1 = kbar*tbar*(1-tbar) ; g2 = b(2)*(1-2*tbar)*tbar*(1-tbar) $ 
matrix ; list ; j1= g1*[0,1,0] 
    ; j2= g2*[1,abar,ebar] ; vd = j*varb*j' 
    ; j = j1 + j2 $ 
    ; vd = j*varb*j'$ 
calc  ; list ; d1 = kbar * tbar*(1-tbar)*b(2) $ 
calc  ; list ; td1 = d1 / sqr(vd) $ 
Matrix J1       has  1 rows and  3 columns. 
               1             2             3 
        +------------------------------------------ 
       1|  .0000000D+00    1.20766    .0000000D+00 
 
Matrix J2       has  1 rows and  3 columns. 
               1             2             3 
        +------------------------------------------ 
       1|    -.00200      -.08081      -.03106 
 
Matrix VD       has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|     .00030 
 
Matrix J        has  1 rows and  3 columns. 
               1             2             3 
        +------------------------------------------ 
       1|    -.00200      1.12685      -.03106 

 
--> calc  ; list ; d1 = kbar * tbar*(1-tbar)*b(2) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 D1      =       .065241 
--> calc ; list ; td1 = d1 / sqr(vd) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TD1     =      3.758577 
 

 
Note that the statistical significance of this estimate is the same as that for the corresponding 
coefficient.  Looking at the two parts of the Jacobian, it is easy to see why.  
 



Part IV.  Odds Ratio in the Logit Model 
 
 The results below present logit estimates of a model of whether the number of doctor visits is 
greater than zero based on the health care data discussed in class.  (We used this example in class.)   
 
+---------------------------------------------+ 
| Logit Model                                 | 
| Dependent variable               DOCTOR     | 
| Number of observations            27326     | 
| Log likelihood function       -17407.69     | 
| Restricted log likelihood     -18016.64     | 
| Chi squared                    1217.911     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Characteristics in numerator of Prob[Y = 1] 
 HHNINC        -.13813513      .07764383    -1.779   .0752     .35213516 
 HHKIDS        -.25400914      .02984645    -8.511   .0000     .40271576 
 EDUC          -.02375730      .00578666    -4.106   .0000    11.3201838 
 MARRIED        .11799754      .03374477     3.497   .0005     .75869263 
 AGE            .01811793      .00132457    13.678   .0000    43.5271942 
 FEMALE         .53279823      .02817810    18.908   .0000     .47880829 
 WORKING       -.15388095      .03185320    -4.831   .0000     .67714662 
 Constant      -.05351200      .09905516     -.540   .5890 

 
 a.  The results given are estimates of the coefficients, β.  Researchers are sometimes 
interested in “odds” ratios, which are computed as exp(β).  (See, for example, the Stata manual,  
volume 2, G-M.)  How would the results in the table above change if we reported these, instead?  
Show explicitly. 
 
The “coefficients” reported would be exp(β) instead, so, for example, the -.13813513 would be 
reported as exp(-.13813513) = 0.870981.  To compute the standard errors, we would use the delta 
method.  The variance of exp(b) is [exp(b)]2Var[b], which means that the standard errors would be 
multiplied by the square root, which is exp(b).  Thus, the first reported standard error would become 
(.870981).07764383 = .0676263.  The “t-ratios” would be computed differently. The test of whether 
the “odds ratio” equals zero would make no sense, since exp(β) cannot equal zero.  The interesting 
hypothesis is whether exp(β) = 1.  The test statistic would be 
 
[exp(b) – 1] / New Standard error  =  [exp(b) – 1]/[exp(b)×Old standard error]   
  =  [exp(b) – 1] / [exp(b)×sb]     =   (1/sb) – 1/[exp(b)×sb] 
 
For the first one, this would be (0.870981 – 1)/.0676263  =  -1.908. 
 
 b.  The restricted log likelihood in a binary choice model is computed for a model which 
contains only a constant term.  This, in turn, ultimately is a function of the proportion of ones in the 
sample.  Given the value above, deduce the number of observations for which DOCTOR equals 1 in 
the sample of 27,326.  (Hint: there are two solutions – the problem is symmetric in P and (1-P).  The 
correct solution is the larger one.) 
 
In the model with only a constant term, logL = N[PlogP + (1-P)log(1-P]  =  -18016.64.  This means 
that [PlogP + (1-P)log(1-P]  =  -18016.64/27326  =  -0.6592988. 
There are a few ways to approach this:  One is to solve the problem numerically: 



sample ; 1 $ 
mini ; start = .8 
     ; labels = p 
     ; fcn =  ((p*log(p)+(1-p)*log(1-p)) + .6592988) ^2 $  
+---------------------------------------------+ 
| User Defined Optimization                   | 
| Maximum Likelihood Estimates                | 
| Dependent variable             Function     | 
| Weighting variable                 None     | 
| Number of observations                1     | 
| Iterations completed                  5     | 
| Log likelihood function        .8399616E-16 | 
| Number of parameters                  0     | 
| Info. Criterion: AIC =           .00000     | 
|   Finite Sample: AIC =           .00000     | 
| Info. Criterion: BIC =           .00000     | 
| Info. Criterion:HQIC =           .00000     | 
| Restricted log likelihood      .0000000     | 
| Chi squared                    .1679923E-15 | 
| Degrees of freedom                    1     | 
| Prob[ChiSqd > value] =         1.000000     | 
| Model estimated: Apr 08, 2009, 08:30:19PM   | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
|P       |     .62935         1.00000000      .629   .5291 | 
+--------+-------------------------------------------------+ 
 
If you use .2 as the starting value, you get the other solution, .37065.  
Another approach is to plot the function.  
 
sample;1-395$ 
create ; pd = trn(.01,.0025)$ 
create ; fn = pd*log(pd)+(1-pd)*log(1-pd)$ 
plot   ; lhs = pd ; rhs = fn ; bars = -.6592988 
       ; fill  
       ; endpoints = 0,1  
;title=Crude Graphical Solution for P from Log Likelihood$ 
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If P = .62935, then the number of ones in the sample is .62935(27326) = 17,196.  (The actual value is 
17,191.  The difference is due to rounding error in the solution.) 
 



Part V.  The Poisson Regression Model 
 
 The following is based on the health care data used in several previous examples.  We 
consider fitting a Poisson regression model to the variable DOCVIS which is the number of visits 
to the doctor by the individual in the given period.  The model is as follows: 
 

iy
i i

i i i i i
i

exp( )
Prob[DocVis y | ] , y 0,1,...,  exp( )

y !
−θ θ ′= = = θ = ix x β  

 
 a.  Derive the log likelihood function for estimating β from a sample of n observations on 
yi and xi. 
 
The log likelihood is the sum of the logs of the probabilities for the observed variable: 

1
log log log( !), exp( )N

i i i i i ii
L y y

=
′= − θ + θ − θ =∑ xβ  

 
 b.  This is yet another log linear model in which E[yi] = θi.  Use this result to show that 
the expected values of the first derivatives of the log likelihood function have expectation zero. 
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Since E[yi|xi] = θi, each term obviously has expectation zero, so the sum does.  Notice that the 
first order condition is Σi eixi = 0 where ei is a residual. This is equivalent to X′e = 0, which is 
familiar. 
 
 c.  Derive the forms of the three estimators of the asymptotic covariance matrix. 
 
The BHHH estimator  is just the inverse of the sum of squares of the first derivatives, 
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The second derivatives matrix is simple, since ∂θi/∂β  =  θixi.  Therefore, 
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The estimated asymptotic covariance matrix is the negative inverse of this matrix, 
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This is computed just by inserting the MLE in the expression. Since this function does not 
involve yi, this is also the expectation. The third form is the same as the second. 
 
 



 d.  Show that the restricted log likelihood in which xi contains only a constant term is a 
function only of the sample mean of yis. 
 
If there is only a constant term, then θi = exp(β0) and  
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 e.  Using the health care data set, estimate a Poisson model for DOCVIS in which  
 
 xi=[1, female,age,hhninc,hhkids,educ,married]. 
 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Maximum Likelihood Estimates                | 
| Model estimated: Apr 08, 2009 at 08:57:55PM.| 
| Dependent variable               DOCVIS     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  7     | 
| Log likelihood function       -103727.3     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          7.59235     | 
|   Finite Sample: AIC =          7.59235     | 
| Info. Criterion: BIC =          7.59446     | 
| Info. Criterion:HQIC =          7.59303     | 
| Restricted log likelihood     -108662.1     | 
| McFadden Pseudo R-squared      .0454145     | 
| Chi squared                    9869.679     | 
| Degrees of freedom                    6     | 
| Prob[ChiSqd > value] =         .0000000     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =255127.59573  RsqP=   .0818   | 
| G  - squared =154416.01169  RsqD=   .0601   | 
| Overdispersion tests: g=mu(i)  : 20.974     | 
| Overdispersion tests: g=mu(i)^2: 20.943     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|     .77266707       .02813535    27.463   .0000 
 FEMALE  |     .29287271       .00701806    41.731   .0000    .47877479 
 AGE     |     .01763160       .00034644    50.894   .0000   43.5256898 
 HHNINC  |    -.52228656       .02258946   -23.121   .0000    .35208362 
 HHKIDS  |    -.16031757       .00840186   -19.081   .0000    .40273000 
 EDUC    |    -.02981125       .00174594   -17.075   .0000   11.3206310 
 MARRIED |     .00964101       .00874426     1.103   .2702    .75861817 
 
 f.  Using your estimator, test the hypothesis that all coefficients in the model except the 
constant term are zero.  The easiest test to use will be the likelihood ratio test.  Show how to do 
the Lagrange multiplier test.  (It has a particularly simple form in this model.)  If you have access 
to the necessary matrix computations, carry out the LM test. 
 



A Wald test of the hypothesis: 
--> Matrix ; b1 = b(2:7) ; v1 = varb(2:7,2:7)$ 
--> Matrix ; list ; Wald = b1'<v1>b1 $ 
Matrix WALD     has  1 rows and  1 columns. 
               1 
        +-------------- 
       1| 9873.01682 
--> Calc   ; list ; ctb(.95,6)$ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =     12.591587 

 
Likelihood ratio test. 
--> Calc ; l1 = logl $ 
--> Poisson ; Lhs = DocVis ; Rhs = one $ 
--> Calc ; l0 = logl $ 
--> Calc ; List ; LRTest = 2*(l1 - l0) $ 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 LRTEST  =   9869.679159 

 
For the Lagrange Multiplier test, you are going to compute the first derivatives, 
 
∂logL/∂β  =  [ ]1

N
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y
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− θ∑ x  at the restricted estimates in which all the coefficients except the 
constant term are zero.  Call this 
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You need the covariance matrix for the first derivatives. The easiest way to compute them is to 
use the sum of squares as usual.  Then, use a Wald statistic to test the hypothesis that g0 equals 
zero.  Thus, 
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Collecting terms, the LM statistic will be g0′V0

-1g0.  I.e., 
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--> Create  ; theta0 = exp(b(1)) $ 
--> Create  ; e0 = DocVis - theta0 ; e02 = e0*e0 $ 
--> Matrix  ; List ; LM = e0'X * <X'[e02]X> * X'e0 $ 
Matrix LM       has  1 rows and  1 columns. 
               1 
        +-------------- 
       1| 1110.82997 
 



NLOGIT provides a way to automate LM statistics: 
 
--> Poisson ; Lhs = DocVis ; Rhs = X 
    ; Start = b(1),0,0,0,0,0,0 ; Maxit=0 $ 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Maximum Likelihood Estimates                | 
| Model estimated: Apr 08, 2009 at 09:13:36PM.| 
| Dependent variable               DOCVIS     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  2     | 
| LM Stat. at start values       10030.87     | <======================= 
| LM statistic kept as scalar    LMSTAT       | 
| Log likelihood function       -108662.1     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          7.95353     | 
|   Finite Sample: AIC =          7.95353     | 
| Info. Criterion: BIC =          7.95564     | 
| Info. Criterion:HQIC =          7.95421     | 
+---------------------------------------------+ 
 
+---------------------------------------------+ 
| Poisson Regression                          | 
| Chi- squared =277862.01305  RsqP=   .0000   | 
| G  - squared =164285.69085  RsqD=   .0000   | 
| Overdispersion tests: g=mu(i)  : 21.669     | 
| Overdispersion tests: g=mu(i)^2: 21.669     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    1.15798903       .02551994    45.376   .0000 
 FEMALE  |       .000000       .00692075      .000  1.0000    .47877479 
 AGE     |       .000000       .00034270      .000  1.0000   43.5256898 
 HHNINC  |       .000000       .02028930      .000  1.0000    .35208362 
 HHKIDS  |       .000000       .00799415      .000  1.0000    .40273000 
 EDUC    |       .000000       .00156684      .000  1.0000   11.3206310 
 MARRIED |       .000000       .00891090      .000  1.0000    .75861817 
 
Notice the statistic is different from what we obtained above. The reason is that this procedure 
uses the second derivatives instead of the squares of the first derivatives to compute the 
covariance matrix.  If you use 
--> Matrix  ; List ; LM = e0'X * <X'[theta0]X> * X'e0 $ 

in the program above, you will reproduce the LM statistic above. 
 
Estimating the Poisson Model. 
 
All programs that you might use these days, Stata, SAS, SPSS, NLOGIT, EViews, have a 
pushbutton estimator for the Poisson model.  But, this one, like the probit or logit models, is 
exceedingly simple to estimate, and you can program Newton’s method and see how it works 
close up.  The following shows how you can do this with NLOGIT.  The annotations show what 
each command does.  You should just put these commands on your editing screen, and execute 
them as shown below.  (The lines with leading question marks are comments that can be ignored.)  
Based on part III, you should also be able to write a MAXIMIZE command to do the estimation. 
You might try this as well. 
 



? (1) You have to load the Healthcare.lpj data set. I assume this is  
? done.  The next line defines the variables in the equation as 
? specified in the assignment.  Note, though that this also defines a 
? matrix named X 
     namelist ; x=one,female,age,hhninc,hhkids,educ,married$ 
? This next line shows you what you will be doing with your program. 
? It fits the Poisson model using the internal estimator. We will  
? replicate these results 
     poisson ; lhs=docvis;rhs=x$ 
? Now, we obtain starting values for the iterations.  If all the slopes 
? were zero, then E[y] would equal exp(α), so we can estimate the 
? constant term with the log of the mean of the dependent variable.  
? Then start the other coefficients at zero. The matrix command defines 
? a column vector of this form. 
     calc   ; list ; a0=log(xbr(docvis))$ 
     matrix ; beta = [a0/0/0/0/0/0/0] $ 
? This small set of commands does the iterations.  Note, the function  
? involves the log of yi!.  We use Gamma(y+1) = y! and a special version, 
? the log of the gamma function, lgm(y+1) = logy! 
?************************************************************************ 
? To do the iterations, highlight and execute these commands. When done, 
? the calc command shows you g’H-1g. Execute the commands several times. 
? You will see this go toward zero very quickly. When it gets very small, 
? you are done iterating.  Then just display the results. Did you replicate 
? the “real” results above? 
     procedure $ 
     create ; ey = exp(beta'x)                 ? Mean 
            ; logli = -ey + docvis*log(ey)     ? logL(i) 
                 - lgm(docvis+1)               ? logL(i) 
            ; gi = docvis - ey                 ? first derivative 
            ; hi = ey $                        ? second derivative 
? Matrix manipulations do the update of Newton’s method. 
     matrix ; score = X'gi 
            ; Hessian  = X'[hi]X 
            ; update = <Hessian>*score 
            ; beta = beta + update $ 
     calc   ; list ; ghg = score'update $      ? 
     endproc$ 
     execute ; n = 5 $ 
? Display results 
     matrix ; stat(beta,<Hessian>,x)$ 
 



+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 GHG     =  10030.869712 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 GHG     =    316.917939 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 GHG     =       .339091 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 GHG     =       .000001 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 GHG     =       .000000 
 
Maximum repetitions of PROC 
 
--> matrix ; stat(beta,<Hessian>,x)$ 
 
+---------------------------------------------------+ 
|Number of observations in current sample =   27326 | 
|Number of parameters computed here       =       7 | 
|Number of degrees of freedom             =   27319 | 
+---------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Constant|     .77266707       .02813535    27.463   .0000 
 FEMALE  |     .29287271       .00701806    41.731   .0000 
 AGE     |     .01763160       .00034644    50.894   .0000 
 HHNINC  |    -.52228656       .02258946   -23.121   .0000 
 HHKIDS  |    -.16031757       .00840186   -19.081   .0000 
 EDUC    |    -.02981125       .00174594   -17.075   .0000 
 MARRIED |     .00964101       .00874426     1.103   .2702 

 



calc   ; list ; a0=log(xbr(docvis))$ 
matrix ; beta = [a0/0/0/0/0/0/0] $ 
Maximize ; start = beta 
         ; Labels = c0,c1,c2,c3,c4,c5,c6 
         ; Fcn = ti = exp(c0'x) | 
                 -ti + Docvis*log(ti) - lgm(Docvis+1) $ 
 
+---------------------------------------------+ 
| User Defined Optimization                   | 
| Maximum Likelihood Estimates                | 
| Model estimated: Apr 08, 2009 at 09:28:58PM.| 
| Dependent variable             Function     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                 12     | 
| Log likelihood function        103727.3     | 
| Number of parameters                  0     | 
| Info. Criterion: AIC =         -7.59184     | 
|   Finite Sample: AIC =         -7.59184     | 
| Info. Criterion: BIC =         -7.59184     | 
| Info. Criterion:HQIC =         -7.59184     | 
| Restricted log likelihood      .0000000     | 
| Chi squared                    207454.6     | 
| Degrees of freedom                    7     | 
| Prob[ChiSqd > value] =         .0000000     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 C0      |     .77266698       .00942052    82.020   .0000 
 C1      |     .29287272       .00220396   132.885   .0000 
 C2      |     .01763161       .00011478   153.606   .0000 
 C3      |    -.52228638       .00775505   -67.348   .0000 
 C4      |    -.16031757       .00270115   -59.352   .0000 
 C5      |    -.02981125       .00063915   -46.642   .0000 
 C6      |     .00964094       .00267079     3.610   .0003 
 
 


