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Part I.  A Concentrated Log Likelihood    
 
 Consider an exponential regression model with fixed effects, The density is 
 
f(yit|xit)  =  [1/θit] exp(-yit / θit), yit > 0, where θit = exp(αi + xit′β), i = 1,…,n; t = 1,…,T. 
 
It will prove convenient to let γi = exp(αi) so θit = γi exp(xit′β) = γi λit.   
 The log likelihood for this exponential regression model with fixed effects is 
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(a)  Obtain the first order condition for maximizing logL with respect to γi.  Note, there is 
one of these for each i, so you need only differentiate 
 

 
=

= − θ − θ∑ T

i it it itt 1
logL ( log y / )  

 
with respect to γi and equate it to zero.  You will gain some convenience by defining ait = 
yit/λit. 
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With the suggestion, the contribution of individual i to the log likelihood becomes 
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The first derivative with respect to  is
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Equating this to zero, then multiplying both sides of the equ
γ =i i

ation, we get
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(This is the solution to b.) 
 
(b)  Now, treating β as if it were known, show that the implicit solution of this likelihood 
equation for γi in terms of β is  
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See above 
 
 (c) It follows that at the solution for the MLE, it will be true that γi(β) = ia  where ia  is the 

sample mean of ait.  Denote θ = λc
it i ita .  Insert this solution back into the log likelihood 

function, to obtain the concentrated log likelihood function 
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Note that this is a function of β but not of γi.  To obtain the maximum likelihood 
estimator of β, we can now maximize this function with respect to β.  This is equivalent 
to maximizing the whole log likelihood function, while considering only the solutions for 
γi that satisfy γi = γi(β) as shown above.  When we find β, we can then compute γi.  (No 
assignment for this part.) 
 



(d)  With this in hand, it is now possible to maximize the function with respect to β.  
Show that the likelihood equation will be  
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You now need the derivative, ∂θit

c/∂β .   Continuing, show that  
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λ − λ∑x x   Hint: ∂λit/∂β = λitxit.  Insert your result in the log 

likelihood equation to obtain the implicit solution for β, 
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This involves a lot of tedious calculus.  (***) results from simply inserting the solution 
for γi that was obtained in (a) into the original log likelihood function, (*).  Because γi has 
been eliminated, this is the “concentrated” log likelihood.  Likewise, the derivative in 
(****) just uses the chain rule in (**).  The remaining complication is finding ∂θit

c/∂β, 
which is shown above. 
 
Part II.  Solving for FE in Panel Probit 
 
 For the binary fixed effects panel probit model, 
 
 Prob(yit = 1 | xit) =  Φ(αi + xit′β),  

Prob(yit = 0 | xit) = 1 - Prob(yit = 1|xit) = Φ(-αi - xit′β). 
 
a.  Write out the full log likelihood function. 
 
The full log likelihood function is 
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A very useful simplification is to write qit  =  2yit-1, so that qit =  1 when yit = 1 and -1 when yit = 
0.  Then, 
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b.  Write out the first order condition for maximizng the function with respect to αi, taking β as 
known.  Take this derivation as far as possible – you will ultimately find that unlike the exponential 
model we examined in class, in this model, there is no explicit solution for αi in terms of β and the 
data. 
 
In the expression above, only T terms in the inner sum involve αi,  That part of the log likelihood 
function is 
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No further simplification is possible. 
 
c.  Show that regardless of the finding in b, there is no solution for αi when yit is always 1 or always 0 
within a given group (i). 
 
In the derivative, both φ and Φ are always positive.  The terms are negative when yit = 0 and positive 
when yit = 1.  So, if yit is always equal to 1, then the sum has to be positive and you cannot equate it to 
0.  If yit is always 0, then the sum has to be negative and, again, you cannot equate it to zero. 
 
Part III.  The Incidental Parameters Problem. 
 
 This is a purely empirical exercise.  It will involve some computations using the German 
health care data. 
 As we discussed in class, for the binary logit model, there are two estimators for the fixed 
effects model 
 
 Prob(yit = 1 | xit)  =  Λ(αi + β′xit), i = 1,...,n, t = 1,...,T. 
 
The ‘brute force’ approach maximizes the whole log likelihood for αi,i = 1,...,n and β.  This 
estimator is known to suffer from the ‘incidental parameters problem;’ when T is small, the 
estimator is biased away from zero.  The best known result is that when T = 2, there is a 100% 
bias.  The other approach is the Rasch/Andersen/Chamberlain method, which computes a 
conditional MLE using the probabilities conditioned on the sum of the yits for each group. This 
estimator is known to be consistent.  For this exercise, we will see if the effect is visible in a 
sample, using precisely the estimators described. 
 



a.  We first see if we can observe Hsiao/Abrevaya’s finding when T = 2.  The following 
commands compute the estimates of the logit model both ways.  Estimate the equations, and 
report your results.  Do the empirical results seem to conform to the theory? 
 
Sample ; All $ 
Reject ; _groupti # 2 $ 
Namelist ; x = hhninc,age,married,working$ 
Create ; y = doctor $ 
Logit ; Lhs = y ; Rhs = x ; pds = 2 ; Fixed$ 
Logit ; Lhs = y ; Rhs = x ; pds = 2 $ 
POOLED 
------------------------------------------------------------------ 
Logit    Regression Start Values for Y 
Dependent variable                    Y 
Log likelihood function     -1378.51484 
Estimation based on N =   2158, K =   5 
Information Criteria: Normalization=1/N 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
  HHNINC|    -.29336         .26910    -1.09  .2756     .35678 
     AGE|     .02488***      .00403     6.18  .0000    38.9222 
 MARRIED|    -.03152         .09869     -.32  .7494     .61538 
 WORKING|    -.10627         .10416    -1.02  .3076     .62326 
Constant|    -.17427         .19791     -.88  .3786 
--------+--------------------------------------------------------- 
BRUTE FORCE 
------------------------------------------------------------------ 
FIXED EFFECTS Logit  Model 
Dependent variable                    Y 
Log likelihood function      -474.89737 
Estimation based on N =   2158, K = 349 
Sample is  2 pds and   1079 individuals 
Skipped  734 groups with inestimable ai   <======================= 
LOGIT (Logistic) probability model 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|   -1.79046        1.14804    -1.56  .1189     .35928 
     AGE|     .00177         .05837      .03  .9758    36.2652 
 MARRIED|     .52879         .45144     1.17  .2415     .56667 
 WORKING|     .71611*        .37067     1.93  .0534     .69275 
--------+--------------------------------------------------------- 
CONDITIONAL 
------------------------------------------------------------------ 
Logit Model for Panel Data 
Dependent variable                    Y 
Log likelihood function      -237.44868 
Estimation based on N =   2158, K =   4 
Fixed Effect Logit Model for Panel Data 
--------+--------------------------------------------------------- 
        |                  Standard           Prob. 
       Y| Coefficient        Error       z    z>|Z| 
--------+--------------------------------------------------------- 
  HHNINC|    -.89523         .81179    -1.10  .2701 
     AGE|     .00089         .04127      .02  .9829 
 MARRIED|     .26440         .31921      .83  .4075 
 WORKING|     .35806         .26210     1.37  .1719 
--------+--------------------------------------------------------- 

 
Three sets of results are given.  The pooled results look quite far off compared to the third set of 
results which we know are from a consistent estimator. Comparing the second set of results to the 
third, it looks like the theory is working very well. The unconditional estimates are almost exactly 
twice the conditional estimates. 



 
b.  A second result that seems intuitively reasonable is that the IP bias diminishes as T increases.  
Is this the case?  Change the three 2s in the command set above to 3s and redo the experiment.  
What do you find?  Now, change the 2s to 7s and repeat the experiment. In each case, report your 
findings and your conclusions. 
 
Here is the full experiment with T=2,3,4,5,6,7 
WITH T=2 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|   -1.79046        1.14804    -1.56  .1189     .35928 
     AGE|     .00177         .05837      .03  .9758    36.2652 
 MARRIED|     .52879         .45144     1.17  .2415     .56667 
 WORKING|     .71611*        .37067     1.93  .0534     .69275 
--------+--------------------------------------------------------- 
  HHNINC|    -.89523         .81179    -1.10  .2701 
     AGE|     .00089         .04127      .02  .9829 
 MARRIED|     .26440         .31921      .83  .4075 
 WORKING|     .35806         .26210     1.37  .1719 
--------+--------------------------------------------------------- 
WITH T=3 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|     .59013         .70428      .84  .4021     .36352 
     AGE|     .12338***      .03485     3.54  .0004    40.4401 
 MARRIED|     .65030*        .35210     1.85  .0648     .74479 
 WORKING|     .09112         .27020      .34  .7359     .66146 
--------+--------------------------------------------------------- 
  HHNINC|     .40128         .57716      .70  .4869 
     AGE|     .08214***      .02841     2.89  .0038 
 MARRIED|     .42203         .28313     1.49  .1361 
 WORKING|     .05916         .22023      .27  .7882 
--------+--------------------------------------------------------- 
WITH T=4 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|   -1.27207**       .53695    -2.37  .0178     .36115 
     AGE|     .17885***      .02282     7.84  .0000    41.6709 
 MARRIED|    -.32722         .25114    -1.30  .1926     .73537 
 WORKING|     .17151         .19681      .87  .3835     .68236 
--------+--------------------------------------------------------- 
  HHNINC|    -.94006**       .45951    -2.05  .0408 
     AGE|     .13319***      .01955     6.81  .0000 
 MARRIED|    -.24378         .21610    -1.13  .2593 
 WORKING|     .12651         .16941      .75  .4552 
--------+--------------------------------------------------------- 
WITH T=5 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|    -.38665         .38487    -1.00  .3151     .35799 
     AGE|     .11721***      .01661     7.06  .0000    42.9664 
 MARRIED|    -.17447         .22345     -.78  .4349     .78049 
 WORKING|     .18235         .16158     1.13  .2591     .72052 
--------+--------------------------------------------------------- 
  HHNINC|    -.30921         .34404     -.90  .3688 
     AGE|     .09371***      .01483     6.32  .0000 
 MARRIED|    -.14012         .19971     -.70  .4829 
 WORKING|     .14476         .14422     1.00  .3155 
--------+--------------------------------------------------------- 
WITH T=6 



--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|     .76162**       .35975     2.12  .0343     .35924 
     AGE|     .08686***      .01337     6.49  .0000    44.1876 
 MARRIED|    -.44181*        .22544    -1.96  .0500     .80129 
 WORKING|    -.52941***      .14991    -3.53  .0004     .74873 
--------+--------------------------------------------------------- 
  HHNINC|     .63224*        .32811     1.93  .0540 
     AGE|     .07233***      .01220     5.93  .0000 
 MARRIED|    -.36869*        .20575    -1.79  .0731 
 WORKING|    -.44155***      .13683    -3.23  .0013 
--------+--------------------------------------------------------- 
WITH T=7 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
       Y| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
  HHNINC|    -.03468         .33461     -.10  .9175     .34717 
     AGE|     .08870***      .01193     7.43  .0000    43.8163 
 MARRIED|    -.04349         .21200     -.21  .8374     .84234 
 WORKING|    -.09784         .14573     -.67  .5020     .76362 
--------+--------------------------------------------------------- 
  HHNINC|    -.03061         .30848     -.10  .9210 
     AGE|     .07604***      .01103     6.89  .0000 
 MARRIED|    -.03777         .19604     -.19  .8472 
 WORKING|    -.08394         .13482     -.62  .5336 
--------+--------------------------------------------------------- 
 
The estimators are clearly getting closer together as T ncreases. With T=7, they seem to be pretty 
close.  The general experience suggests that if T is 10 or larger, the difference is small enough to 
be comfortable with the unconditional estimator.  One might think that this is not necessarily a 
useful result, since we can always use the conditional estimator.  But, the conditional estimator 
only exsts for the logit model. If you want to use a probit model, you can only use the 
unconditional estimator, so this is a useful guide for that case. 
 
 
c.  What do you conclude about the fixed effects model? 
 
See above. 



Part IV.  A Common Effects Probit Model 
 
 In this exercise, you will fit a probit model with common effects, and develop the 
appropriate model based on your findings.  The probit model we will use is 
 
 Prob(yit = 1 | xit)  =  Φ(ci + β′xit) 
 yit  =  Publicit  =  whether or not the individual chose public health insurance in that year. 
 xit =  one,age,educ,hhninc,handper,working,hsat 
 
1.  Suppose, for the moment, we ignore the heterogeneity, ci and just pool the data and fit a 
simple probit model.  Is the estimator consistent?  What assumptions are necessary for the pooled 
estimator to be a consistent estimator of β? 
 
The only way for the pooled estimator to be a consistent estimator of β is for ci to equal zero for 
every observation. Otherwise, it is inconsistent in all cases. 
 
2.  All of the suggested covariates in the model are time varying.  Fit a random effects model and 
a fixed effects model (this can only be done by brute force).  Report your results. 
 
The pooled, random and fixed effects results are shown below. 
 
--> probit;lhs=public;rhs=xit;random;pds=_groupti$ 
------------------------------------------------------------------ 
Binomial Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -8294.31338 
Restricted log likelihood   -9711.25153 
Chi squared [   6 d.f.]      2833.87629 
Significance level               .00000 
McFadden Pseudo R-squared      .1459069 
Estimation based on N =  27326, K =   7 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
  PUBLIC| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
Constant|    3.86731***      .08308    46.55  .0000 
     AGE|    -.00034         .00106     -.32  .7498    43.5257 
    EDUC|    -.16849***      .00407   -41.37  .0000    11.3206 
  HHNINC|    -.96505***      .05584   -17.28  .0000     .35208 
 HANDPER|     .00114         .00070     1.64  .1014    7.01229 
 WORKING|    -.01036         .02533     -.41  .6825     .67705 
    HSAT|    -.03834***      .00532    -7.21  .0000    6.78543 
--------+--------------------------------------------------------- 
Normal exit:  24 iterations. Status=0. F=    4868.491 
 
------------------------------------------------------------------ 
Random Effects Binary Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -4868.49090 
Restricted log likelihood   -8294.31338 
Chi squared [   1 d.f.]      6851.64496 
Significance level               .00000 
Unbalanced panel has   7293 individuals 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
  PUBLIC| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
Constant|    11.5697***      .33006    35.05  .0000 
     AGE|    -.00291         .00362     -.80  .4214    43.5257 
    EDUC|    -.56234***      .01755   -32.04  .0000    11.3206 
  HHNINC|   -1.46850***      .13213   -11.11  .0000     .35208 
 HANDPER|     .00254         .00205     1.24  .2157    7.01229 
 WORKING|     .10990*        .06136     1.79  .0733     .67705 



    HSAT|    -.03535**       .01383    -2.56  .0106    6.78543 
     Rho|     .90503***      .00416   217.77  .0000 
--------+--------------------------------------------------------- 
 
--> probit;lhs=public;rhs=xit;fem;pds=_groupti$ 
------------------------------------------------------------------ 
FIXED EFFECTS Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -1346.22838 
Estimation based on N =  27326, K =1236 
Information Criteria: Normalization=1/N 
              Normalized   Unnormalized 
AIC               .18899     5164.45676 
Fin.Smpl.AIC      .19328     5281.66570 
Bayes IC          .56060    15318.93084 
Hannan Quinn      .30876     8437.17555 
Model estimated: Feb 10, 2010, 07:04:22 
Unbalanced panel has   7293 individuals 
Skipped 6063 groups with inestimable ai 
PROBIT (normal)  probability model 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
  PUBLIC| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
        |Index function for probability 
     AGE|    -.04549***      .01178    -3.86  .0001    42.1510 
    EDUC|    -.30999***      .08493    -3.65  .0003    12.5433 
  HHNINC|    -.94060***      .25739    -3.65  .0003     .39798 
 HANDPER|     .00017         .00437      .04  .9692    5.53937 
 WORKING|     .09822         .11254      .87  .3828     .78911 
    HSAT|    -.02955         .02123    -1.39  .1639    7.17090 
--------+--------------------------------------------------------- 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
------------------------------------------------------------------ 
 
3.  We are interested in deciding which is preferred, fixed or random effects. I propose to use a 
variable addition test.  Add the group means to the model, then carry out a likelihood ratio test of 
the hypothesis that the coefficients on the group means are all zero.  What do you find?  What do 
you conclude is the preferred model? 
 
sample;all$ 
namelist;xit =  one,age,educ,hhninc,handper,working,hsat$ 
probit;lhs=public;rhs=xit;fem;pds=_groupti$ 
calc;logl0=logl$ 
create ; agebar=GroupMean(age,pds=_groupti) $ 
create ; edbar=GroupMean(educ,pds=_groupti) $ 
create ; incbar=GroupMean(hhninc,pds=_groupti) $ 
create ; handbar=GroupMean(handper,pds=_groupti) $ 
create ; workbar=GroupMean(working,pds=_groupti) $ 
create ; hsatbar=GroupMean(hsat,pds=_groupti) $ 
namelist;xb=agebar,edbar,incbar,handbar,workbar,hsatbar$ 
probit ; lhs=public;rhs=xit,xb;random;pds=_groupti $ 
calc;logl1=logl$ 
calc;list;chisq=2*(logl1-logl0);ctb(.95,6)$ 
matrix;bm=b(8:13);vm=varb(8:13,8:13) 
;list;waldstat=bm'<vm>bm$ 

 
Here are the results for the model with the group means added.  The log likelihood without the 
group means is  -4868.49090.  With the group means, it is -4830.45663.  Twice the difference is 
76.06854.  This is a chi squared statistic with 6 degrees of freedom.  The 95% critical value is 
12.5915, so the hypothesis that the coefficients on the group means are all zero would be rejected. 
This makes the fixed effects model the preferred specification.  The Wald statistic is 172.82994 
which leads to the same inference.  
 



------------------------------------------------------------------ 
Random Effects Binary Probit Model 
Dependent variable               PUBLIC 
Log likelihood function     -4830.45663 
Restricted log likelihood   -8231.41932 
Chi squared [   1 d.f.]      6801.92539 
Significance level               .00000 
McFadden Pseudo R-squared      .4131684 
Estimation based on N =  27326, K =  14 
Information Criteria: Normalization=1/N 
              Normalized   Unnormalized 
AIC               .35457     9688.91326 
Fin.Smpl.AIC      .35457     9688.92863 
Bayes IC          .35878     9803.93157 
Hannan Quinn      .35592     9725.98289 
Model estimated: Feb 10, 2010, 07:14:13 
Unbalanced panel has   7293 individuals 
--------+--------------------------------------------------------- 
        |                  Standard           Prob.       Mean 
  PUBLIC| Coefficient        Error       z    z>|Z|       of X 
--------+--------------------------------------------------------- 
Constant|    12.7702***      .42367    30.14  .0000 
     AGE|    -.03087***      .00836    -3.69  .0002    43.5257 
    EDUC|    -.24376***      .05281    -4.62  .0000    11.3206 
  HHNINC|    -.67317***      .19869    -3.39  .0007     .35208 
 HANDPER|     .00037         .00356      .10  .9167    7.01229 
 WORKING|     .05389         .08190      .66  .5105     .67705 
    HSAT|    -.01904         .01723    -1.10  .2693    6.78543 
  AGEBAR|     .03372***      .00888     3.80  .0001    43.5257 
   EDBAR|    -.26090***      .05530    -4.72  .0000    11.3206 
  INCBAR|   -3.26485***      .33218    -9.83  .0000     .35208 
 HANDBAR|     .00519         .00453     1.15  .2517    7.01229 
 WORKBAR|    -.00795         .13099     -.06  .9516     .67705 
 HSATBAR|    -.17811***      .03074    -5.79  .0000    6.78543 
     Rho|     .90640***      .00445   203.59  .0000 
--------+--------------------------------------------------------- 
 
Matrix WALDSTAT has  1 rows and  1 columns. 
               1 
        +-------------+ 
       1|  172.82994 
        +-------------+ 
 
 

4.  Suppose it were hypothesized that the previous year’s choice of whether or not to choose 
public insurance were on the right hand side of the equation.  That is, 
 
 Prob(yit = 1 | xit)  =  Φ(ci + β′xit + γyi,t-1) 
 
What would this imply for how one (you) should go about estimating the parameters of the 
model. What issues should you be concerned with for a dynamic model? 
 
The new specification creates a problem for estimation. Even if it is argued that ci is uncorrelated 
with xit, it can’t be uncorrelated with yit-1.  So, some alternative approach would be called for.  
Wooldridge’s suggestion is a combination of Mundlak’s approach and a separate model for the 
initial conditions, yi0.  In one way or another, the model will have to account for the endogeneity 
of the lagged dependent variable in the equation. 


