

Econometric Analysis of Panel Data

Professor William GreenePhone: 212.998.0876Office: KMC 7-78Home page:www.stern.nyu.edu/~wgreeneEmail: wgreene@stern.nyu.eduURL for course web page:www.stern.nyu.edu/~wgreene/Econometrics/PanelDataEconometrics.htm

Assignment 6 Nonlinear Models for Panel Data

Part I. A Concentrated Log Likelihood

Consider an exponential regression model with fixed effects, The density is

 $f(y_{it}|\mathbf{x}_{it}) = [1/\theta_{it}] \exp(-y_{it} / \theta_{it}), y_{it} \ge 0, \text{ where } \theta_{it} = \exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta}), i = 1, \dots, n; t = 1, \dots, T.$

It will prove convenient to let $\gamma_i = \exp(\alpha_i)$ so $\theta_{it} = \gamma_i \exp(\mathbf{x}_{it}'\boldsymbol{\beta}) = \gamma_i \lambda_{it}$.

The log likelihood for this exponential regression model with fixed effects is

(*)
$$\log L = \sum_{i=1}^{n} \sum_{t=1}^{T} (-\log \theta_{it} - y_{it} / \theta_{it})$$

(a) Obtain the first order condition for maximizing log*L* with respect to γ_i . Note, there is one of these for each *i*, so you need only differentiate

$$logL_{i} = \sum_{t=1}^{T} (-log\theta_{it} - y_{it} / \theta_{it})$$

with respect to γ_i and equate it to zero. You will gain some convenience by defining $a_{it} = y_{it}/\lambda_{it}$.

With the suggestion, the contribution of individual i to the log likelihood becomes

$$\begin{split} \log L_{i} &= \sum_{t=1}^{T} \left(-\log \theta_{it} - y_{it} / \theta_{it} \right) \\ &= \sum_{t=1}^{T} \left(-\log \gamma_{i} - \log \lambda_{it} - (1 / \gamma_{i}) (y_{it} / \lambda_{it}) \right) \end{split}$$

The first derivative with respect to γ_{i} is

$$\frac{\partial \text{logL}_i}{\partial \gamma_i} = \sum_{t=1}^{T} -\frac{1}{\gamma_i} + \frac{1}{\gamma_i^2} a_{it}$$

Equating this to zero, then multiplying both sides of the equation, we get $\gamma_i = \overline{a}_i$

(This is the solution to b.)

(b) Now, treating β as if it were known, show that the implicit solution of this likelihood equation for γ_i in terms of β is

$$\gamma_{i} = \left(\frac{\sum_{t=1}^{T} \left[y_{it} / \exp(\mathbf{x}_{it}' \boldsymbol{\beta}) \right]}{T} \right) = \frac{\sum_{t=1}^{T} a_{it}}{T} = \overline{a}_{i} = \gamma_{i}(\boldsymbol{\beta})$$

See above

(c) It follows that at the solution for the MLE, it will be true that $\gamma_i(\beta) = \overline{a}_i$ where \overline{a}_i is the sample mean of a_{it} . Denote $\theta_{it}^c = \overline{a}_i \lambda_{it}$. Insert this solution back into the log likelihood function, to obtain the *concentrated log likelihood function*

(***)
$$\log L^{c} = \sum_{i=1}^{n} \sum_{t=1}^{T} (-\log \theta_{it}^{c} - y_{it} / \theta_{it}^{c})$$

Note that this is a function of $\boldsymbol{\beta}$ but not of γ_i . To obtain the maximum likelihood estimator of $\boldsymbol{\beta}$, we can now maximize this function with respect to $\boldsymbol{\beta}$. This is equivalent to maximizing the whole log likelihood function, while considering only the solutions for γ_i that satisfy $\gamma_i = \gamma_i(\boldsymbol{\beta})$ as shown above. When we find β , we can then compute γ_i . (No assignment for this part.)

(d) With this in hand, it is now possible to maximize the function with respect to β . Show that the likelihood equation will be

$$(****) \frac{\partial \log L^{c}}{\partial \beta} = \sum_{i=1}^{n} \sum_{t=1}^{T} \left(-\frac{1}{\theta_{it}^{c}} + \frac{y_{it}}{(\theta_{it}^{c})^{2}} \right) \frac{\partial \theta_{it}^{c}}{\partial \beta} = \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{\theta_{it}^{c}} \left(\frac{y_{it}}{\theta_{it}^{c}} - 1 \right) \frac{\partial \theta_{it}^{c}}{\partial \beta}.$$

You now need the derivative, $\partial \theta_{it}^{c} / \partial \beta$. Continuing, show that

 $\partial \theta_{it}^{c} / \partial \boldsymbol{\beta} = \bar{a}_i \lambda_{it} \mathbf{x}_{it} - \frac{1}{T} \sum_{i=1}^{T} a_{it} \lambda_{it} \mathbf{x}_{it}$ Hint: $\partial \lambda_{it} / \partial \boldsymbol{\beta} = \lambda_{it} \mathbf{x}_{it}$. Insert your result in the log likelihood equation to obtain the implicit solution for $\boldsymbol{\beta}$,

$$\frac{\partial \log L^{c}}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{n} \sum_{t=1}^{T} \frac{1}{\theta_{it}^{c}} \left(\frac{y_{it}}{\theta_{it}^{c}} - 1 \right) \left[\lambda_{it} \overline{a}_{i} \boldsymbol{x}_{it} - \frac{1}{T} \Sigma_{t=1}^{T} \lambda_{it} a_{it} \boldsymbol{x}_{it} \right] = \boldsymbol{0}.$$

This involves a lot of tedious calculus. (***) results from simply inserting the solution for γ_i that was obtained in (a) into the original log likelihood function, (*). Because γ_i has been eliminated, this is the "concentrated" log likelihood. Likewise, the derivative in (****) just uses the chain rule in (**). The remaining complication is finding $\partial \theta_{it}^c / \partial \beta$, which is shown above.

Part II. Solving for FE in Panel Probit

For the binary fixed effects panel probit model,

$$Prob(\mathbf{y}_{it} = 1 | \mathbf{x}_{it}) = \Phi(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta}),$$

$$Prob(\mathbf{y}_{it} = 0 | \mathbf{x}_{it}) = 1 - Prob(\mathbf{y}_{it} = 1 | \mathbf{x}_{it}) = \Phi(-\alpha_i - \mathbf{x}_{it}'\boldsymbol{\beta}).$$

a. Write out the full log likelihood function.

The full log likelihood function is

$$\log L = \sum_{i=1}^{N} \left\{ \left[\sum_{t, y_{it=0}} \log \Phi(-\alpha_i - \mathbf{x}'_{it} \boldsymbol{\beta}) \right] + \left[\sum_{t, y_{it=1}} \log \Phi(\alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta}) \right] \right\}$$

A very useful simplification is to write $q_{it} = 2y_{it}$ -1, so that $q_{it} = 1$ when $y_{it} = 1$ and -1 when $y_{it} = 0$. Then,

$$\log L = \sum_{i=1}^{N} \sum_{t=1}^{T} \log \Phi \left[q_{it} (\alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta}) \right]$$

b. Write out the first order condition for maximizing the function with respect to α_i , taking β as known. Take this derivation as far as possible – you will ultimately find that unlike the exponential model we examined in class, in this model, there is no explicit solution for α_i in terms of β and the data.

In the expression above, only T terms in the inner sum involve α_i , That part of the log likelihood function is

$$\log L_{i} = \sum_{t=1}^{T} \log \Phi [q_{it}(\alpha_{i} + \mathbf{x}'_{it}\boldsymbol{\beta})]$$
$$\frac{\log L_{i}}{\partial \alpha_{i}} = \sum_{t=1}^{T} \frac{1}{\Phi [q_{it}(\alpha_{i} + \mathbf{x}'_{it}\boldsymbol{\beta})]} \phi [q_{it}(\alpha_{i} + \mathbf{x}'_{it}\boldsymbol{\beta})] q_{it}$$

No further simplification is possible.

c. Show that regardless of the finding in b, there is no solution for α_i when y_{it} is always 1 or always 0 within a given group (i).

In the derivative, both ϕ and Φ are always positive. The terms are negative when $y_{it} = 0$ and positive when $y_{it} = 1$. So, if y_{it} is always equal to 1, then the sum has to be positive and you cannot equate it to 0. If y_{it} is always 0, then the sum has to be negative and, again, you cannot equate it to zero.

Part III. The Incidental Parameters Problem.

This is a purely empirical exercise. It will involve some computations using the German health care data.

As we discussed in class, for the binary logit model, there are two estimators for the fixed effects model

$$Prob(y_{it} = 1 | x_{it}) = \Lambda(\alpha_i + \beta' x_{it}), i = 1,...,n, t = 1,...,T.$$

The 'brute force' approach maximizes the whole log likelihood for $\alpha_{i,i} = 1,...,n$ and β . This estimator is known to suffer from the 'incidental parameters problem;' when T is small, the estimator is biased away from zero. The best known result is that when T = 2, there is a 100% bias. The other approach is the Rasch/Andersen/Chamberlain method, which computes a conditional MLE using the probabilities conditioned on the sum of the y_{it}s for each group. This estimator is known to be consistent. For this exercise, we will see if the effect is visible in a sample, using precisely the estimators described.

a. We first see if we can observe Hsiao/Abrevaya's finding when T = 2. The following commands compute the estimates of the logit model both ways. Estimate the equations, and report your results. Do the empirical results seem to conform to the theory?

Sample ; All \$ Reject ; _groupti # 2 \$ Namelist ; x = hhninc,age,married,working\$ Create ; y = doctor \$Logit ; Lhs = y ; Rhs = x ; pds = 2 ; Fixed\$ Logit ; Lhs = y ; Rhs = x ; pds = 2 \$ POOLED _____ Logit Regression Start Values for Y Dependent variable 1 Log likelihood function -1378.51484 Petimation based on N = 2158, K = 5 Information Criteria: Normalization=1/N Y| Coefficient ·-----+-----
 HHNINC
 -.29336
 .26910
 -1.09
 .2756
 .35678

 AGE
 .02488***
 .00403
 6.18
 .0000
 38.9222

 MARRIED
 -.03152
 .09869
 -.32
 .7494
 .61538

 WORKING
 -.10627
 .10416
 -1.02
 .3076
 .62326

 Constant
 -.17427
 .19791
 -.88
 .3786
 ------BRUTE FORCE FIXED EFFECTS Logit Model Dependent variable -474.89737 Y Log likelihood function -474.89737Estimation based on N = 2158, K = 349 Sample is 2 pds and 1079 individuals LOGIT (Logistic) probability model --+-----_____ Standard Prob. Frror z z>|Z| Prob. Mean Y| Coefficient of X _____ . ______ Index function for probability
 HHNINC
 -1.79046
 1.148014
 -1.56
 .1189
 .35928

 AGE
 .00177
 .05837
 .03
 .9758
 36.2652

 MARRIED
 .52879
 .45144
 1.17
 .2415
 .56667

 WORKING
 .71611*
 .37067
 1.93
 .0534
 .69275
 _____ _____ ____ ____+ CONDITIONAL Logit Model for Panel Data Dependent variable Y Log likelihood function -237.44868 Estimation based on N = 2158, K = Fixed Effect Logit Model for Panel Data ----+-·-----HHNINC-.89523.81179-1.10.2701AGE.00089.04127.02.9829MARRIED.26440.31921.83.4075WORKING.35806.262101.37.1719 ----+------

Three sets of results are given. The pooled results look quite far off compared to the third set of results which we know are from a consistent estimator. Comparing the second set of results to the third, it looks like the theory is working very well. The unconditional estimates are almost exactly twice the conditional estimates.

b. A second result that seems intuitively reasonable is that the IP bias diminishes as T increases. Is this the case? Change the three 2s in the command set above to 3s and redo the experiment. What do you find? Now, change the 2s to 7s and repeat the experiment. In each case, report your findings and your conclusions.

MT.I.H .I.= 7						
		Standard		Prob.	Mean	
Y	Coefficient	Error	z	z > Z	of X	
		EIIOI				
Index function for probability						
HHNINC	-1.79046	1.14804	-1.56	.1189	.35928	
AGE	.00177	.05837	.03	.9758	36.2652	
MARRIED	.52879	.45144	1.17	.2415	.56667	
WORKING	.71611*	.37067	1.93	.0534	.69275	
HHNINC	89523	.81179	-1.10	.2701		
AGE	.00089	.04127	.02	.9829		
MARRIED	.26440	.31921	.83	.4075		
WORKING		.26210	1.37	.1719		
WITH T=3						
	+					
		Standard		Prob.	Mean	
Y	Coefficient	Error	Z	z> Z	of X	
	, +					
	Index function	for probabili	ty			
HHNINC	.59013	.70428	.84	.4021	.36352	
AGE	.12338***	.03485	3.54	.0004	40.4401	
MARRIED	.65030*	.35210	1.85	.0648	.74479	
WORKING	.09112	.27020	.34	.7359	.66146	
HHNINC	.40128	.57716	.70	.4869		
AGE	.08214***	.02841	2.89	.0038		
MARRIED	.42203	.28313	1.49	.1361		
WORKING	.05916	.22023	.27	.7882		
+	+					
WITH T=4						
+	+ I				 Moon	
		Standard		Prob.	Mean	
 У	Coefficient	Standard Error	 Z	Prob. z> Z	Mean of X	
Y		Error				
	Index function	Error for probabili	 ty	z> Z	of X	
HHNINC	Index function -1.27207**	Error for probabili .53695	ty -2.37	z> Z .0178	of X .36115	
HHNINC AGE	Index function -1.27207** .17885***	Error for probabili .53695 .02282	ty -2.37 7.84	z> Z .0178 .0000	of X .36115 41.6709	
HHNINC AGE MARRIED	Index function -1.27207** .17885*** 32722	Error for probabili .53695 .02282 .25114	ty -2.37 7.84 -1.30	z> Z .0178 .0000 .1926	of X .36115 41.6709 .73537	
HHNINC AGE	Index function -1.27207** .17885***	Error for probabili .53695 .02282	ty -2.37 7.84	z> Z .0178 .0000	of X .36115 41.6709	
HHNINC AGE MARRIED WORKING	Index function -1.27207** .17885*** 32722 .17151	Error for probabili .53695 .02282 .25114 .19681	ty -2.37 7.84 -1.30 .87	z> Z .0178 .0000 .1926 .3835	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC	Index function -1.27207** .17885*** 32722 .17151 94006**	Error for probabili .53695 .02282 .25114 .19681 .45951	ty -2.37 7.84 -1.30 .87 -2.05	z> Z .0178 .0000 .1926 .3835 	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE	Index function -1.27207** .17885*** 32722 .17151 94006** .13319***	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955	ty -2.37 7.84 -1.30 .87 -2.05 6.81	z> Z .0178 .0000 .1926 .3835 .0408 .0000	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13	z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED	Index function -1.27207** .17885*** 32722 .17151 94006** .13319***	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955	ty -2.37 7.84 -1.30 .87 -2.05 6.81	z> Z .0178 .0000 .1926 .3835 .0408 .0000	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13	z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13	z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13	z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593	of X .36115 41.6709 .73537	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13	<pre>z> Z .0178 .0000 .1926 .3835 </pre>	of X .36115 41.6709 .73537 .68236	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING WITH T=5	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 </pre>	of X .36115 41.6709 .73537 .68236	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING WITH T=5	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** .24378 .12651 Coefficient Index function	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 </pre>	of X .36115 41.6709 .73537 .68236 	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING WITH T=5 Y HHNINC	<pre>Index function -1.27207** .17885*** .32722 .17151 94006** .13319*** .24378 .12651 Coefficient Index function 38665</pre>	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 </pre>	of X .36115 41.6709 .73537 .68236 	
HHNINC AGE MARRIED WORKING HHNINC AGE WORKING WITH T=5 Y HHNINC AGE	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721***	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06	<pre>z> Z .0178 .0000 .1926 .3835 </pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WITH T=5 	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721*** 17447	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661 .22345	-2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06 78	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000 .4349</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	
HHNINC AGE MARRIED WORKING HHNINC AGE WORKING WITH T=5 Y HHNINC AGE	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721***	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664	
HHNINC AGE MARRIED WORKING HHNINC AGE WITH T=5 WITH T=5 Y HHNINC AGE MARRIED WORKING	Index function -1.27207** .1785*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721*** 17447 .18235	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 .16941 .38487 .01661 .22345 .16158	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06 78 1.13	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000 .4349 .2591</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING HHNINC	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721*** 17447 .18235 30921	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661 .22345 .16158 .34404	-2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06 78 1.13 90	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000 .4349 .2591 .3688</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING WITH T=5 Y HHNINC AGE MARRIED WORKING HHNINC AGE	<pre>Index function -1.27207** .17885*** .32722 .17151 94006** .13319*** .24378 .12651 Coefficient Index function 38665 .11721*** .17447 .18235 30921 .09371***</pre>	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661 .22345 .16158 .34404 .01483	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06 78 1.13 90 6.32	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000 .4349 .2591 .3688 .0000</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WITH T=5 	Index function -1.27207** .17885*** 32722 .17151 94006** .13319*** 24378 .12651 Coefficient Index function 38665 .11721*** 17447 .18235 30921 .09371*** 14012	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661 .22345 .16158 .34404 .01483 .19971	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 ty -1.00 7.06 78 1.13 1.13 .75 	<pre>z> z .0178 .0000 .1926 .3835 </pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	
HHNINC AGE MARRIED WORKING HHNINC AGE MARRIED WORKING WITH T=5 Y HHNINC AGE MARRIED WORKING HHNINC AGE	<pre>Index function -1.27207** .17885*** .32722 .17151 94006** .13319*** .24378 .12651 Coefficient Index function 38665 .11721*** .17447 .18235 30921 .09371***</pre>	Error for probabili .53695 .02282 .25114 .19681 .45951 .01955 .21610 .16941 Standard Error for probabili .38487 .01661 .22345 .16158 .34404 .01483	ty -2.37 7.84 -1.30 .87 -2.05 6.81 -1.13 .75 z ty -1.00 7.06 78 1.13 90 6.32	<pre>z> Z .0178 .0000 .1926 .3835 .0408 .0000 .2593 .4552 Prob. z> Z .3151 .0000 .4349 .2591 .3688 .0000</pre>	of X .36115 41.6709 .73537 .68236 Mean of X .35799 42.9664 .78049	

Here is the full experiment with T=2,3,4,5,6,7 $_{\text{WITH T=2}}$

WITH T=6

4					
i		Standard		Prob.	Mean
Y	Coefficient	Error	z	z> Z	of X
+					
	Index function	-	ty		
HHNINC	.76162**	.35975	2.12	.0343	.35924
AGE	.08686***	.01337	6.49	.0000	44.1876
MARRIED	44181*	.22544	-1.96	.0500	.80129
WORKING	52941***	.14991	-3.53	.0004	.74873
HHNINC	.63224*	.32811	1.93	.0540	
AGE	.07233***	.01220	5.93	.0000	
MARRIED	36869*	.20575	-1.79	.0731	
WORKING	44155***	.13683	-3.23	.0013	
+					
WITH T=7					
i		Standard		Prob.	Mean
Y	Coefficient	Error	Z	z> Z	of X
+	Index function	for probabili	 ty		
HHNINC	03468	.33461	10	.9175	.34717
AGE	.08870***	.01193	7.43	.0000	43.8163
MARRIED	04349	.21200	21	.8374	.84234
WORKING	09784	.14573	67	.5020	.76362
HHNINC	03061	.30848		.9210	
AGE	.07604***	.01103	6.89	.0000	
MARRIED	03777	.19604	19	.8472	
WORKING	08394	.13482	62	.5336	
+					

The estimators are clearly getting closer together as T ncreases. With T=7, they seem to be pretty close. The general experience suggests that if T is 10 or larger, the difference is small enough to be comfortable with the unconditional estimator. One might think that this is not necessarily a useful result, since we can always use the conditional estimator. But, the conditional estimator only exsts for the logit model. If you want to use a probit model, you can only use the unconditional estimator, so this is a useful guide for that case.

c. What do you conclude about the fixed effects model?

See above.

Part IV. A Common Effects Probit Model

In this exercise, you will fit a probit model with common effects, and develop the appropriate model based on your findings. The probit model we will use is

 $\begin{array}{l} Prob(y_{it}=1 \mid x_{it}) = \Phi(c_i + \beta' x_{it}) \\ y_{it} = Public_{it} = whether or not the individual chose public health insurance in that year. \\ x_{it} = one, age, educ, hhninc, handper, working, hsat \end{array}$

1. Suppose, for the moment, we ignore the heterogeneity, c_i and just pool the data and fit a simple probit model. Is the estimator consistent? What assumptions are necessary for the pooled estimator to be a consistent estimator of β ?

The only way for the pooled estimator to be a consistent estimator of β is for c_i to equal zero for every observation. Otherwise, it is inconsistent in all cases.

2. All of the suggested covariates in the model are time varying. Fit a random effects model and a fixed effects model (this can only be done by brute force). Report your results.

The pooled, random and fixed effects results are shown below.

--> probit; lhs=public; rhs=xit; random; pds= groupti\$

> pro	bic, ins-public	, INS-AIC	, random	, pusu	JIOUDCIŞ	
Dependent Log likel Restricte Chi squar Significa McFadden	Probit Model variable lihood function ed log likelihood red [6 d.f.] ance level Pseudo R-squared on based on N = 2	-9711.251 2833.876 .000 .14590	338 53 529 000 069			
PUBLIC	Coefficient	Standard Error	z	Prob. z> Z	Mean of X	
Random Ef Dependent Log likel Restricte Chi squar	16849*** 96505*** .00114 01036	.08308 .00106 .00407 .05584 .00070 .02533 .00532 	46.55 32 -41.37 -17.28 1.64 41 -7.21 0. F=	.0000 .1014 .6825 .0000	43.5257 11.3206 .35208 7.01229 .67705 6.78543	
PUBLIC	Coefficient	Standard Error	Z	Prob. $z > Z $	Mean of X	
Constant AGE EDUC HHNINC HANDPER WORKING	-1.46850*** .00254	.33006 .00362 .01755 .13213 .00205 .06136	35.05 80 -32.04 -11.11 1.24 1.79	.0000 .0000 .2157	43.5257 11.3206 .35208 7.01229 .67705	

HSAT Rho	03535** .90503***		-2.56 217.77		6.78543		
> probit;lhs=public;rhs=xit;fem;pds=_groupti\$							
FIXED EFFECTS Probit Model Dependent variable PUBLIC Log likelihood function -1346.22838 Estimation based on N = 27326, K =1236 Information Criteria: Normalization=1/N Normalized Unnormalized AIC .18899 5164.45676 Fin.Smpl.AIC .19328 5281.66570 Bayes IC .56060 15318.93084 Hannan Quinn .30876 8437.17555 Model estimated: Feb 10, 2010, 07:04:22 Unbalanced panel has 7293 individuals Skipped 6063 groups with inestimable ai PROBIT (normal) probability model							
PUBLIC	Coefficient	Standard Error		Prob. z> Z	Mean of X		
AGE EDUC HHNINC HANDPER WORKING HSAT	94060*** .00017 .09822 02955	.01178 .08493 .25739 .00437 .11254 .02123	-3.86 -3.65 -3.65 .04 .87 -1.39	.0003 .0003 .9692 .3828 .1639	12.5433 .39798 5.53937 .78911 7.17090		
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.							

3. We are interested in deciding which is preferred, fixed or random effects. I propose to use a variable addition test. Add the group means to the model, then carry out a likelihood ratio test of the hypothesis that the coefficients on the group means are all zero. What do you find? What do you conclude is the preferred model?

```
sample;all$
namelist;x<sub>it</sub> = one,age,educ,hhninc,handper,working,hsat$
probit;lhs=public;rhs=xit;fem;pds=_groupti$
calc;logl0=logl$
create ; agebar=GroupMean(age,pds=_groupti) $
create ; edbar=GroupMean(educ,pds=_groupti) $
create ; incbar=GroupMean(hhninc,pds=_groupti) $
create ; handbar=GroupMean(handper,pds=_groupti) $
create ; workbar=GroupMean(working,pds=_groupti) $
create ; hsatbar=GroupMean(hsat,pds=_groupti) $
namelist;xb=agebar,edbar,incbar,handbar,workbar,hsatbar$
probit ; lhs=public;rhs=xit,xb;random;pds=_groupti $
calc;logl1=logl$
calc;list;chisq=2*(logl1-logl0);ctb(.95,6)$
matrix;bm=b(8:13);vm=varb(8:13,8:13)
;list;waldstat=bm'<vm>bm$
```

Here are the results for the model with the group means added. The log likelihood without the group means is -4868.49090. With the group means, it is -4830.45663. Twice the difference is 76.06854. This is a chi squared statistic with 6 degrees of freedom. The 95% critical value is 12.5915, so the hypothesis that the coefficients on the group means are all zero would be rejected. This makes the fixed effects model the preferred specification. The Wald statistic is 172.82994 which leads to the same inference.

Random Effects Binary Probit Model							
Dependent variable PUBLIC Log likelihood function -4830.45663							
Restricted log likelihood -8231.41932							
Restricted log likelihood -8231.41932							
Chi squared [1 d.f.] 6801.92539							
Significance level .00000							
McFadden Pseudo R-squared .4131684 Estimation based on N = 27326, K = 14							
	on Criteria: Nor						
Informati							
3.7.0		Unnormaliz					
AIC		9688.913					
	AIC .35457						
-	Bayes IC .35878 9803.93157						
Hannan Quinn .35592 9725.98289							
	imated: Feb 10,						
Unbalance	ed panel has 72	93 individua	ls				
++							
		Standard		Prob.	Mean		
POBLIC	Coefficient	Error	Z	z> Z	of X		
Constant	12.7702***	.42367	30.14	0000			
AGE	03087***	00836	-3.69	.0002	43.5257		
EDUC	24376***	.05281	-4.62		11.3206		
HHNINC	67317***	.19869			.35208		
HANDPER	.00037	.00356	.10		7.01229		
WORKING	.05389	.08190	.10	.5105	.67705		
HSAT	01904	.01723	-1.10		6.78543		
AGEBAR	.03372***	.00888	3.80		43.5257		
EDBAR	26090***	.05530	-4.72		11.3206		
INCBAR	-3.26485***		-9.83		.35208		
HANDBAR	.00519	.00453	1.15		7.01229		
WORKBAR	00795		06		.67705		
HSATBAR	17811***				6.78543		
Rho	.90640***	.00445	-5.79 203.59	.0000	0.70545		
KIIO	.90040	.00445	203.39	.0000			
Matrix WA	Matrix WALDSTAT has 1 rows and 1 columns.						
1							
+	± ++						
1	1 172 82004						

1| 172.82994

4. Suppose it were hypothesized that the previous year's choice of whether or not to choose public insurance were on the right hand side of the equation. That is,

 $Prob(y_{it} = 1 | x_{it}) = \Phi(c_i + \beta' x_{it} + \gamma y_{i,t-1})$

What would this imply for how one (you) should go about estimating the parameters of the model. What issues should you be concerned with for a dynamic model?

The new specification creates a problem for estimation. Even if it is argued that c_i is uncorrelated with x_{it} , it can't be uncorrelated with y_{it-1} . So, some alternative approach would be called for. Wooldridge's suggestion is a combination of Mundlak's approach and a separate model for the initial conditions, y_{i0} . In one way or another, the model will have to account for the endogeneity of the lagged dependent variable in the equation.