import;file=h:\gasoline.csv$ create ; lg=log(g);lpg=log(pg);ly=log(pcincome)$ create ; ppnc=log(pnc);lpuc=log(puc) ; lppt=log(ppt) $ ? Part 1. regr;lhs=lg;rhs=one,lpg,ly,ly*ly; covariance$ calc ; v33=varb(3,3) ; v44=varb(4,4) ; v34=varb(3,4) $ calc ; lybar=xbr(ly)$ calc ; list ; sdv = sqr(v33 + 2*(2*lybar)*v34 + (2*lybar)^2 * v44)$ calc ; list ; pe = b(3) + 2*lybar*b(4) $ calc ; list ; lowerci = pe-1.96*sdv ; upperci = pe+1.96*sdv$ partials ; effects: ly ; means $ ? Part 2. ? given b2, c(b2)=exp(b2)-1. The derivative is exp(b2), so the variance ? is [exp(b2)]^2 times the variance. calc ; list ; b2 = b(2) ; c = exp(b2)-1 $ calc ; list ; var = (exp(b2))^2 * varb(2,2) $ calc ; list ; sd = sqr(var) $ wald ; fn1 = exp(b_lpg)-1$ ? Now, Krinsky and Robb Sample ; 1 - 1000 $ Calc ; sd2 = sqr(varb(2,2))$ create ; b2i = Rnn(b2,sd2) $ create ; ci = exp(b2i)-1 $ dstat;rhs=ci $ ? Part 3 sample;1-52$ regr;lhs=lg;rhs=one,lpg,ly,ly*ly$ sample;1$ fplot;fcn=-18.6042-.14609*1.5+3.87531*lyv-.18677*lyv*lyv ;vary(lyv) ; pts=200 ; limits=9,11 ;labels=lyv;start=9.5$ sample;1-52$ partials; effects: ly & ly=9(.1)11$ calc ; b3=b(3) ; b4 = b(4) ; v33=varb(3,3) ; v44 = varb(4,4) ; v34=varb(3,4) $ calc ; lystar = b3/(-2*b4) $ calc ; g3 = -1/(2*b4) ; g4 = b3/(-2)*(-1/b4^2) $ calc ; vlystar=g3^2*v33 + g4^2*v44 + 2*g3*g4*v34 $ calc ; list ; lystar ; sd = sqr(vlystar) $ wald ; labels = 4_bh ; start=b ; var=varb ; fn1=bh3/(-2*bh4)$ Part 4. import;file="H:\Courses-Stern\Econometrics\Problems\DataFiles\electricity.csv"$ ? Set up the data for the regression create ; logq=log(output) ; logpc=log(cprice) ; logpf=log(fprice) ; logpl=log(lprice)$ create ; logc = log(cost) ; logq2 = .5*logq*logq $ ? Least squares regression regress;lhs=logc;rhs=one,logq,logq2,logpc,logpf,logpl $ ? Explicit computation of the cost function at data means, demonstration. calc ; meanlpc=log(xbr(cprice)) ; meanlpf=log(xbr(fprice)) ; meanlpl=log(xbr(lprice))$ calc ; b1=b(1) ; b2=b(2) ; b3=b(3) ; b4=b(4) ; b5=b(5) ; b6=b(6) $ sample;1$ fplot ; fcn=exp(b1 + (b2-1)*lq + b3*lq*lq*.5 + b4*meanlpc+b5*meanlpf+b6*meanlpl ) ; start =5 ; limits = 2,15 ; pts=200 ;labels = lq ; plot(lq)$ ? Compute efficient scale. Explicitly using theoretical results calc;list;qstar=exp((1-b2)/b3)$ calc ; g2 = qstar * (-1/b3) ; g3 = qstar * (-log(qstar))/b3 $ calc ; v22 = varb(2,2) ; v33 = varb(3,3) ; v23 = varb(2,3) $ calc ; list ; sd = sqr(g2^2*v22 + g3^2*v33 + 2*g2*g3*v23) $ calc ; list ; lower = qstar - 1.96*sd ; upper = qstar + 1.96*sd $ ? The same computation using the built in program function wald ; start=b ; var=varb ; labels=6_c ; fn1=exp((1-c2)/c3)$ ? Part 5. sample;1-52$ procedure $ regress ; quietly ; lhs = lg ; rhs=one,lpg,ly,ly^2 $ endproc $ exec ; n=50 ; bootstrap=b $ regress ; lhs = lg ; rhs=one,lpg,ly,ly^2 $