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Assignment 5 
Estimation 

I.  Econometric Theory 
 

There are 38 cells on American roulette wheel, denoted 00, 0, and 1-36.  The probability 
that any one particular cell will be hit on a spin of the wheel is 1/38, unless the wheel is rigged.  A 
scientist visiting Amarillo Slim’s casino in Reno believes that the wheel is rigged against the 
positive numbers.  Let θ be the true proportion of hitting 1-36 on a wheel at Slim’s casino.  In 
theory, θ = 36/38.  Suppose our scientist decides to conduct an experiment.  He is going to watch 
N gamblers, i=1,…,N, and count the number of spins, Ki that it takes until the first hit occurs.  For 
each gambler, the probability that they lose Ki times before they win is 
 
 Prob[Spins = Ki]  =  θ (1 - θ)Ki

 . 

 

The sample data will consist of y = (K1,…,KN).  Formulate the log likelihood for estimation of θ 
and derive the MLE.  Derive the likelihood equation and show how to solve it to estimat θ.  
Derive the asymptotic variance of the MLE.  [Hint:  E[Ki]  =  (1-θ)/θ.] 
  
II.  Maximum Likelihood Estimation 
 
(Hierarchical distribution)  An exponential regression model might be formulated as follows 
(this is called a “loglinear model”):  Let yi be the time until failure of some electronic component.  
A model that is often used for this phenomenon is the exponential model that we have used in 
class: 
  f(yi)  =  θi exp(-θiyi), θi > 0, yi > 0. 
 
We believe that the lifetime of parts depends on a certain other variable, xi, such that 
 
  θi  =  exp(β1  +  β2xi). 
 

Department of Economics 
 

http://www.stern.nyu.edu/~wgreene�
mailto:wgreene@stern.nyu.edu�
http://www.stern.nyu.edu/~wgreene/Econometrics/Econometrics.htm�


We are interested in estimation of the parameters β1 and β2 and in manipulation of the model after 
estimation. 
 
a.  Write out the conditional (on x) log likelihood function.  (Note, the density does involve the 
exponential of an exponential function, so the log of the density will still involve an exponential.) 
 
b.  Show the likelihood equations (first order conditions) for estimation of β1 and β2.  Define the 
vector xi = [1,xi]′ and β = [β1,β2]′.  Then, show that this first derivative vector can be written in 
the form 
       ∂logL/∂β  =  Σi dixi  where  di  =  (1 - θiyi).  
 
It will also be convenient to write the gradient as ∂logL/∂β  =  Σi gi  =  g, where gi = dixi.  It is 
now possible to show that the expected value of the first derivative vector is zero, as the theory 
requires.  Explain, then do the proof. (It’s trivial.) 
 
c.  We will also need the second derivatives.  Show that  
 
       ∂2logL/∂β∂β′  =  -Σi hixixi′  =  -Σi Hi = -H,  where hi  =  di - 1. 
 
(Note that these values are all negative.  It follows that the Hessian is a negative definite matrix.) 
 
d.  What is -E[hi]?  What is the asymptotic covariance matrix of the maximum likelihood 
estimator in this model? 
 

An algorithm for estimation (that is, for finding the maximum likelihood estimator) in 
this model is Newton's method:   
 

b(k+1)  =  b(k)  -  H(k)-1g(k). 
 
where “k” indicates the iteration, b is the estimator of β and g and H are the first derivative vector 
(the sum of terms) and Hessian (also sum of terms) of the log likelihood.  This shows how one 
could locate the solution to the likelihood equations.  Where should one begin the process?  There 
are actually two natural candidates here.  The first is (β1=0, β2=0).  The second is a little more 
creative.  Suppose β2 = 0.  Then, as we saw in class, the MLE of θ would be 1/ y .  In the model, 
if β2 = 0, then β1 = logθ, so an initial estimator would be log(1/ y ).  You will be doing the 
estimation in the next part of the problem set.  You might want to try both starting points.  (Final 
observation. This is what is known as a ‘globally concave log likelihood.’  Because the Hessian is 
always negative definite, no matter what β1, β2, and xi are, it makes no difference where you start 
the iterations, you will always end up at the same point (estimate). 
 
e.  The data listed below are generated by the model assumed above.  You will use NLOGIT or 
any other program you wish to estimate the parameters using Newton's method.  Here is a routine 
that will do the computations for you if you are using NLOGIT.  As always, you may use a 
different computer program if you prefer to.  Report your results. 
 
  



READ the data using procedures that are familiar to you.   
(Or, enter them in the data editor.) 
Sample   ; 1 - 50 $ 
Namelist ; X = one,xi $ 
? Use zero and zero for starting values 
Matrix ; c = [0/0] $ 
? Define a procedure that we can use over and over again. 
Procedure  
?  First derivative and second derivative, scalar part 
Create ; gi = 1  - yi*exp(c(1) + c(2)*xi) ; hi = gi - 1 $ 
? This computes the (negative of) the second derivatives matrix 
? and the first derivative vector then the next coefficient vector. 
Matrix ; H = -X'[hi]X ; g = X'gi ; c = c + <H>*g ; List ; gt = g’ $ 
EndProc 
?  How many iterations will it take to converge?  Watch the first 
?  derivatives, g.  When they get very small, we are done. 
Execute ; n = 10 $ 
?  Display the results 
Matrix  ; Stat (c,<H>,X) $ 
 
f.  The mean value of x is .529271.  The expected value of yi is 1/θi.  Use the delta method and 
your maximum likelihood results to obtain a confidence interval for this conditional mean 
function evaluated at the mean of xi. 
 
g.  We are always interested in regression slopes.  Since E[yi|xi]  =  1/θi, what is ∂E[yi|xi]/∂xi? 
Compute this value using the mean of the x's and your estimates and, once again, use the delta 
method to obtain an asymptotic standard error.  Some researchers suggest that there is a better 
way to compute these marginal effects.  The alternative is to compute the marginal effect for each 
observation separately, then average these separate observations.  Note, in the first case, you are 
computing δ( x ) while in the second, you are computing (1/n)Σiδ(xi).  Do this second 
computation and compare the two results. 
 
h.  Linearly regress y on x and report the least squares regression slope.  How does this compare 
to the value you obtained for the marginal effect in g?  Do you have an intuition for this result?  
What do you think is the explanation for your finding. 
 
i.  As in all regular maximum likelihood problems, there are three alternative estimators for the 
asymptotic variance of the MLE, the negative inverse of the actual Hessian that you used in part 
c, the negative inverse of the expected Hessian in part d. and the sum of outer products of the first 
derivatives, which in this case would be  BHHH = [Σi gi

2xixi′]-1.  (The BHHH stands for Berndt, 
Hall, Hall, and Hausman, the four econometricians who first suggested this estimator to the 
econometrics literature in 1971.)  Compute all three estimates and compare the results. 
 



j.  We are now interested in testing the hypothesis that β2 = 0.  We will apply the ‘trinity’ of tests. 
(1)  Use a Wald test based on your earlier results.  What do you conclude? 
(2)  The likelihood ratio test.  You can compute the log likelihood function in part a. by plugging 
in your maximum likelihood estimates.  Call this function logL1.  As we showed in class, the 
maximum likelihood estimator of θ when there is no x in the model is 1/ y , so the maximum 
likelihood estimator of β1 will be log(1/ y ).  You can compute the log likelihood function in part 
a. again by plugging in this value and 0.0 for γ.  Call this logL0.  Compare the two values.  Which 
is larger.  Explain.  The likelihood ratio statistic is χ2[1] = 2×(logL1 – logL0).  Compute the 
statistic and carry out the test. 
(3)  The Lagrange Multiplier Test.  The logic of the LM test is to test whether the first derivatives 
of the log likelihood function are zero when they are evaluated at the restricted estimator (which 
we discussed in (2) just above).  To compute the LM statistic, do the following: (a) Evaluate the 
first derivative vector (only two elements) in part b. and the second derivative in part c. at the 
restricted MLE, [log(1/ y ),0] for [α,γ]. (b) Use a Wald test to test the hypothesis that the gradient 
is zero.  The statistic is 
                         LM = g0′ (-H0) g0.   
This is also a chi-squared statistic with 1 degree of freedom.  Carry out this test, and report your 
results. 



 I      Yi       Xi 
  1.  .066160  .946800 
 2. 1.120200  .264050 
 3.  .488590  .370610 
 4.  .092126  .939910 
 5. 2.139800  .019091 
 6. 1.126200  .302710 
 7. 1.015000  .904730 
 8.  .154100  .690400 
 9. 1.004700  .697850 
10.  .154030  .312350 
11.  .067202  .288070 
12.  .310240  .925220 
13.  .157290  .599210 
14. 1.352700  .714170 
15.  .055464  .653310 
16.  .503090  .633900 
17.  .128890  .629960 
18.  .405520  .683460 
19.  .285340  .465400 
20. 1.444700  .569690 
21.  .088804  .653300 
22. 1.267100  .378620 
23.  .284470  .366850 
24.  .071322  .348690 
25.  .312380  .037744 
26.  .282310  .731110 
27.  .407930  .598430 
28.  .277310  .653960 
29.  .134230  .336180 
30.  .225810  .053202 
31.  .150300  .323130 
32. 1.144900  .501200 
33.  .112230  .704040 
34. 1.018200  .042694 
35.  .230820  .774310 
36.  .095829  .537350 
37.  .414960  .966150 
38.  .917050  .763620 
39.  .134340  .967000 
40. 2.274800  .154660 
41.  .284190  .325830 
42.  .183810  .244440 
43.  .271540  .557660 
44.  .065958  .125680 
45.  .289010  .675920 
46. 2.536700  .711490 
47.  .143330  .677970 
48. 1.082500  .177430 
49. 1.329800  .846460 
50.  .483260  .617530 
 
 
 



? Maximum Likelihood Estimator. Parts a-e 
SAMPLE   ; 1 - 50 $ 
NAMELIST ; X = one,xi $ 
? Use zero and zero for starting values 
Matrix ; c = [0/0] $ 
? Define a procedure that we can use over and over again. 
Procedure  
?  First derivative and second derivative, scalar part 
Create ; gi = 1  - yi*exp(c(1) + c(2)*xi) ; hi = gi - 1 $ 
? This computes the (negative of) the second derivatives matrix 
? and the first derivative vector then the next coefficient vector. 
Matrix ; H = -X'[hi]X ; g = X'gi ; c = c + <H>*g ; List ; gt = g'$ 
EndProc 
?  How many iterations will it take to converge?  Watch the first 
?  derivatives, g.  When they get very small, we are done. 
Execute ; n = 10 $ 
?  Display the results 
Matrix  ; Stat (c,<H>,X) $ 
 
? Part f.  Compute Mean at mean of x. 
? For the delta method, we need the covariance matrix 
Matrix ; V = <H> $ 
? Delta method for E[y|x=xbar].  We also list mean of y 
Calc ; xbar = xbr(xi) $ 
Calc ; list ; thetabar = 1/exp(c(1)+c(2)*xbar) ; xbr(yi) $ 
Calc ; d1 = -1/thetabar^2 * thetabar ; d2 = d1*xbar $ 
Matrix ; d = [d1/d2] $ 
Calc ; List ; se = sqr(qfr(d,V))  
     ; lower=thetabar-1.96*se ; upper = thetabar+1.96*se $  
? Part g. Delta method for partial effect at mean. 
Calc ; list ; mebar = c(2)*d1 $ 
Calc ; dm1 = -mebar ; dm2=(-1+c(2)*xbar)/thetabar $ 
Matrix ; dm = [dm1/dm2] $ 
Calc ; list ; se=sqr(qfr(dm,V)) $ 
? Partial effect at each observation, then averaged. 
Create ; mei = -c(2)/exp(c(1)+c(2)*xi) $ 
Calc ; list ; xbr(mei)$ 
? Part h.  Compare linear regression slope to partial effects. 
Regress;lhs=yi;rhs=one,xi$ 
? Part i.  Three variance estimators. 
? So far, H is based on actual derivatives. 
? But, hi = -yi*thetai and E[yi]=1/thetai, so E[hi]=-1. 
? Therefore, covariance matrix based on E[H] is just <X'X> 
? BHHH estimator uses squares of first derivatives. 
Create ; gi2 = gi*gi $ 
Matrix ; List ; V ; EH = <X'X>  ; BHHH = <X'[gi2]X> $ 
? Part j.  Testing Hypothesis that beta(2) = 0. 
Calc Wald test    ; List ; Wald = c(2)/sqr(v(2,2)) $ 
Calc LR statistic ; b01 = log(1/xbr(yi)) ; b02=0 $ 
Create            ; theta0=exp(b01 + b02*xi)$ 
Create     ; fi0 = theta0*exp(theta0*yi) ; logli0=log(fi0)$ 
Calc       ; logl0 = sum(logli0)$ 
Calc       ; b1 = c(1) ; b2=c(2) $ 
Create     ; thetai=exp(b1 + b2*xi)$ 
Create     ; fi = thetai*exp(thetai*yi) ; logli=log(fi)$ 
Calc       ; logl1 = sum(logli)$ 
calc       ; list ; LRstat = 2*(logl1 - logl0) $ 
Create     ; gi0 = 1  - yi*exp(b01 + b02*xi) ; hi0 = gi0 - 1 $ 
Matrix     ; H0 = -X'[hi0]X ; V0 = <H0> $ 
Matrix     ; list ; LM = gi0'X * V0 * X'gi0 $ 
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