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1 Introduction

Two econometricians, one Classical and one Bayesian, are presented with the same

panel data and are asked to estimate the following model:
Y;t :Oéi—i—XZ(tﬁ—i—’U,it, ’Z: 1,...,N and t = 1,...,T, (1)

where Y;; is a response variable for the sth individual at the tth time period, «; is a
fixed constant varying across individuals, X;; is a K-vector of covariates and u; is an
error term with zero mean and known variance. Additionally, both econometricians
know there is available knowledge on the parameters of the model from previous

research, which is contained in a joint distribution of the a;s and 3. When requested

*Corresponding author: Tel.:+ 34 91 624 5746; fax: + 34 91 624 9875.
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to estimate the slope parameter § with these data, both colleagues proceed to estimate
fixed and random effects. However, because they have a different understanding of
what fixed and random effects are, they perform different estimations.

In Classical econometrics, ‘fixed’ effects are treated as parameters and estimated
by a least-square dummy variable (LSDV) or covariance estimation. ‘Random’ effects
are assimilated to the error term and estimated by a generalized least squares (GLS)
or Aitken estimation. In both instances, effects are basically treated as errors: “the
use of dummy variables is an attempt to specify a model with an error term that
indeed has zero mean” (Wallace & Hussain 1969).! That is, effects are ‘nuisance’ or
‘incidental’ parameters, which may distort a consistent estimation of the slope.?

In the Bayesian framework both ‘fixed’” and ‘random’ effects are treated as random
parameters defined within a three-stage hierarchical model: the dependent variable
is distributed around a mean value that depends, together with regressors, on certain
parameters; these parameters are, in turn, distributed around a mean value deter-
mined by other parameters called ‘hyperparameters,” which are also random. While a
fixed effects estimation updates the distribution of the parameters, a random effects
estimation updates the distribution of the hyperparameters.®> Consequently, “for the
Bayesian model the distinction between fixed, random and mixed models reduces to
the distinction between different prior assignments in the second and third stages of
the hierarchy” (Smith 1973).*

This paper shows that when in a constant-slope variable-intercept linear regres-
sion such as the one in Model (1) all available prior information on effects is taken

into account, ‘fixed’ and ‘random’ effects estimations yield the same slope estimator,

'See also Balestra & Nerlove (1966), Maddala (1971), Henderson, Jr. (1971), Mundlak (1978),
Chamberlain (1984), Hsiao (1986), Baltagi (1995).

2See Lancaster (2000) for a survey of the incidental parameter problem in econometrics.

3The fixed effects model and the random effects model are also called, respectively, "Model I’ and
"Model IT’. In a forthcoming history of panel data econometrics Nerlove (2002) describes the origins
of this distinction.

4See also Lindley & Smith (1972), Laird & Ware (1982), Sweeting (1982), Waternaux, Laird &
Ware (1989).
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regardless of the framework used. Within the Classical framework this means that
the choice of whether to treat effects as parameters or as part of the error term is
just reflecting different uses of the same available information, without any conse-
quence for the slope estimator. In the first case, prior information is being updated;
in the second case, it is not. Similarly, in a hierarchical model, where effects are
characterized by their ‘layer of randomness’, the choice of the stage in which to up-
date knowledge does not affect the slope estimator either. It is also shown that if
the assumption of independence between effects and regressors is relaxed, as long as
the same information is used the slope estimator does not change; differences only
arise as result of a partial use of prior information. These conclusions stem from the
analysis and comparison of different particular cases in a general Bayesian framework
based on Lindley & Smith (1972) and Smith (1973) as applied to the constant-slope
variable-intercept model.

The model presented in this paper is valid for general forms of effects classifica-
tions, error covariance structures, and prior distributions. It is illustrated with the
one-way classification model with a spherical error covariance and a diagonal variance
in the prior distribution of effects. The rest of the paper is organized as follows: next
section describes the general model; Section 3 compares slope estimators when effects
are treated as parameters and when they are considered part of the error term; Sec-
tion 4 compares slope estimators for different stages of a hierarchical model; Section 5
studies a particular application of the general case: the one-way classification model;
Section 6 analyzes the case when there is correlation between effects and regressors;

and Section 7 presents the conclusions.
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2 The General Model

We can rewrite Model (1) in matrix form as
Y =Za+ X +u, u~ N(0,%) (2)

where Y is NT x1, Z is a NT x J matrix, o is a J x 1 vector, X is a NT x K matrix
of full rank, #is a K x 1 vector, u is N1 x 1, and variance ¥ is a N1 x NT matrix.

The following analysis is applicable to all structures where observations can be
grouped in classes (like individual and time effects, or “treatments” and “blocks”).
The particular case of Model (1) of a one-way classification where J = N is explained
in Section 5. Thus, « is a vector of ‘effects’ and [ is a vector of ‘slope’ parameters
common to all observations.

Let X = [ 7 X } and 8’ = [ a f ], then this model becomes

Y = X0 + .

The econometrician’s prior knowledge on parameters is contained in the joint distri-

bution 8 ~ N (57 Q),

|
I

IS
I

where 6 does not exhibit any further randomness. Thus, the distribution of a condi-

tional on 3 is N (a* + P*(3, A*),

A* = A— P*BP¥, (3)
o = @- PP, (4)
P* = PB! (5)
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The posterior distribution of 6 is denoted by subscript ‘p’ and updated by

-1 —1 —1
Q° = XXTX+Q7, (6)
00, = X'S'Y +Q70, (7)
as proposed by Lindley & Smith (1972). From these expressions one obtains the
posterior moments for the effects and slope parameters® (see Appendix A.1. for
derivation of these equations). Thus, the posterior distribution of the slope parameter

is given by

‘/pfl — X*/QX*_i_Vfl’ (8)
v, '8, = X'QY"+ V7B, (9)

where X* =X +ZP*, Y*=Y — Za*, and
—1
Q = Q (Z,Z,A*) —_ Z—l _ E_le* (A* + (le—lz)*l) (le—lz)*l Z/E_l.

The posterior moments of the slope parameter has the simple structure of a weighted
average of its prior moments and a generalized least-squares estimator.® The weight-

ing matrix () can be decomposed in two components: ) = (1 + ()2, where

o} QO (2,2 =x -2z (25 '2)" 25,

Q = QZ3A)=x"2(25"2)" (A*JF(Z’Elz)‘l)_1 (zs'z)" 7zt

The first component )1 only depends on data, not on any prior information, and is

SThese formulae assume a known error covariance structure, as is usual in regression analysis.
Parameters of the disturbance term can be added to the joint prior distribution and be also updated
or integrated over to isolate the marginal of the location parameters. This extension escapes the
purpose of the current paper and as such is left for further research.

01t is assumed that Z’¥.~'Z is of full rank. If not, a generalized inverse should stand instead of

(z's-12)7".
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nonzero for Z # I; the second component (), does depend on prior information and
is nonzero only for an informative prior conditional variance, A*~* > 0. Thus, the
weighting matrix () depends on the form of the Z matrix, that is, on the design of
the effects and on the availability of an informative prior distribution for the effects.

The posterior conditional moments of the effects have also the form of a weighted

average of prior and sample moments:

*—1 -1 *—1
AN = 7Tz A (10)
*—1 * -1 *—1 %
Aoy = ZNTY AT, (11)
*—1 px* Iv—1 *—1 px*
AP = 2SI X 4 AP (12)

Note that P; is determined by the sample covariance between Z and X and is gener-
ally nonzero even if P* = 0. The fact that o, and P} use the same weighting matrix

A;;A*’l facilitates the computation of the unconditional mean of the effects:

@ = AA T @+ P (B, - B) + (I - A1) (2s7'2) ' 257 (Y — XB,).

The other unconditional moments are obtained from definitions (3)-(5).
The present model, with general Z and ¥, is basically a partitioned GLS regression
for two parameters, a and 3. The next sections present conditions for coincidence of

fixed and random effects estimations under different definitions.

3 Classical Approach: Parameter or Error?

The « effects in Eq. (2) can be treated as an intercept or as an error. Fixed and

random effects are defined according to this choice, that is,

o Fixed Effects: a is a parameter (FE)



Classical and Bayesian Regression. Silvio Rendén. April 2002 7

e Random Effects: « is an error (RE).

The main difference is that an FE updates prior information on effects, whereas
an RE estimation treats prior information as final, that is, as if there is no further
learning on the distribution of effects. An FE uses dummy variables to account
for class effects (be they individual or time related), so it is a LSDV estimation
where effects are ‘swept out’ by differentiation. The posterior moments of the slope

parameter are obtained from Eq. (8) and Eq. (9):

-1
vl = <(X*'QfX*)_1 + Vﬁl) :
B]J; — (I _ ‘/pfv—l) (X*/QfX*)—l X*/ny* + ‘/pf‘/—IB7
where Q; = Q(Z,%,A")

and the subscript f stands for FE.

An RE updates the distribution of § taking the distribution of a as known. Given
the correlation between these parameters, what is known is the distribution of «
conditional on . Let o|3 = a* + P*S 4+ v, v ~ N (0, A*), and u, = u + Zv. Using

definition (4), the original model is transformed:

Y = Za+ Xp+u,
= Z&"+ZP'0+ XB+u—+ Zv,
Y -Zo" = (X+ZP")B+u,,
Y* = X6+ u,,

where u, ~ N (0,%,), X, = ¥+ ZA*Z', and where Y* and X* are defined as in the
previous section. As there is only one parameter 3, we can see that @, = @ (0,%,) =

yl=[2+ ZA*Z’]_l, where subscript r stands for RE. Hence, the posterior distri-
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bution of the common parameter is given by

Vr _ ((X*,E,:lX*)_l + V_1> -1 7

p
B, = (I=VV ) (X5, X) 7 XS Y+ VG

As before, we have a GLS estimation, only the original error variance is augmented

by the variance of the effects.

Theorem 1 The posterior moments of the slope parameter are invariant to assum-
ing that effects are either parameters or errors, that is: FE and RE yield the same
postertor moments: E; = B; and fo =V,

Proof: Note that Qr = Q(Z,X,A*) = Q1 (Z,%,) =Q,m

This means that the econometrician’s choice to update or not to update prior
information on effects does not change the common parameter estimator. However,
were she interested in learning the most that data can tell, the econometrician would
always perform an FE, because it yields the RE slope estimator and learning on the

effects.

Corollary 2 A Classical random effects estimation is a special case of a Bayesian
fized effects estimation with ignorance on the common parameter, V! =0, but with

an informative prior conditional variance on the effects, A*=1 > 0.

By treating effects as an error term in a random effects estimation a Classical
econometrician (maybe without realizing it) does introduce prior information into
the estimation.” Absence of this prior information in an FE, that is, A*~! = 0 implies

Qs = @1y and produces different estimators:

FE: ‘/pf = (X/Qle)717 B]J; = (X,Qle)il X’Q1fY,
RE:Vy = (X'57'X) ", B, = (XS X) XS

p

"Zellner (1999) indicates several applications where non-Bayesians do introduce distributions for
parameters, which are usually considered ‘part of the model’ and not prior distributions.
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In conclusion, what appears to be a choice of an estimation method is actually a
choice about using prior information. Treating effects as parameters or as an error
term is not the crucial choice for an econometrician, whether to use or not prior

information is.

4 Bayesian Approach: Fixed or random parame-

ter?

If the dependent variable is distributed around a mean value that depends on pa-
rameter 6, which is in its turn distributed around the hyperparameter 5, we have a

hierarchical structure in three stages:

First Stage : Y ~ N (X60,%),
Second Stage : 6~ N (57 A> ,
Third Stage : 0~N (57 \I/) )

In this setup, and according to the number of stages used, fixed and random effects

are defined as follows:

e Fixed Effects: 0 is fixed (FE?),

e Random Effects: 6 is random (RE’).

An FE’ is a ‘Model of the First Kind’ or ‘Model I’, which means it does not
have a Third Stage. That is the case when 0 =8 and A = Q as shown in Section
2 and in Section 3, where, regardless of the form of ¥ or of Z, neither @ nor § are
random. Consequently, FE and RE are both FE’. One can also generate an FE’ model
by getting rid of the hyperparameter § and working directly with the unconditional
distribution of 6, N (5, A+ \I/) If A+¥ = Q, one obtains the same model of Section 2.
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An FE’ updates the posterior unconditional moments for the Second Stage, which are

AV = XETX+(A+T)7

A, = X'SY 4+ (A+ )76

P

An RE’, also called a ‘Model of the Second Kind’ or ‘Model IT’; updates the distri-
bution of the hyperparameter 5, that is, it estimates the posterior moments for the

Third Stage:

vl o= XSR'X+ 0
v, = X'TR'Y +07,

where Yr =X+ XAX'.

This is a general result shown by Lindley & Smith (1972) and Smith (1973). To apply

it to the constant-slope variable-intercept framework, let

!
N

Apﬁ_a C P
g PV |8 P v

and, to maintain the model with nonrandom slopes, let E =0, V= 0, P = 0. The

resulting hierarchical structure is thus

a ~ N(a,Dla),
a a C P
~ N 1,
16} 16} PV
In this setup, A+¥ = Q implies that D+C' = A, that is, effects present different ‘layers
of randomness’ but with exactly the same unconditional distribution of Section 2. Let

F" and R be the subscripts denoting FE’ and RE’ estimators, respectively. Posterior

distributions of the common parameter are obtained using Eq. (8) and Eq. (9). For
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an FE’, the posterior moments of the slope parameters are

-1
VF _ ((X*IQFX*)fl +V_1> ’
ﬁp = (I _ ‘/pFVfl) (X*/QFX*)—l X*,QFY* + ‘/}7va137
where Qr = Q(Z,%,D+C").

For an RE’; the posterior moments of the slope parameter are

R */ ) —1 —1 -1
v :<(XQRX) +v) ,
ﬁp _ (I . %Rv—l) (X*IQRX*)*l X*/QRY* + ‘/pRV_lﬁ,
where Qr = Q(Z, X+ ZDZ',C").

Here XAX' = ZDZ'. Note that in an RE’ the variance of the Second Stage, D, is
assimilated to the error term, whereas in an FE’ it is in the prior distribution and it is,
therefore, updated. In choosing an RE’ or an FE’ the econometrician is choosing how
to ‘slice’ information, that is, she is choosing what portion of the available knowledge

to update.

Theorem 3 The posterior distribution of the slope parameter is invariant to the stage
wn which it is estimated, that is, FE’ and RE’ yield the same estimators: Bf = Ef
and V' = VL.

Proof: Note that A* =D+ C* and Qp = Qr =[S + ZDZ' + ZC*Z'| ' = (OFy |

The same slope estimator results whether the estimation is done in the Second
or in the Third Stage. What matters is that we use all the available information, no
matter how we slice it. In other words, what brings about a difference in the resulting
estimators is the choice of whether to use or not to use the available information. The
later choice of how to ‘slice’ this information in components that are updated and

components that are not, does not entail a difference in the slope estimator obtained.
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The posterior distributions for the idiosyncratic parameters in the Second and
Third Stages are estimated using Egs. (10)-(12). Unlike the common parameter,
they do not coincide. For example, the posterior conditional precisions of the effects

are

Second Stage : Di ' =Z'S'Z+ (D+ oo,

p

’ -1 !
Third Stage : CF ' = ((Z Zle) + D) + O

which are only equal in the trivial case, when D = 0. So, while FE and FE’ coincide
also for the effects estimators, RE and RE’ do not. In RE there is no learning on
effects, while there is in RE’. We can examine a particular case in which the prior
distribution is uninformative, that is, where ¥=! = 0 and D = A, which implies that

Qr=Q1(Z,%X)and Qr = Q1 (Z,X + ZAZ') = Q1R, thus

_F_

! ! - 12 — ! _f
FE VI =(X'QX) ' '=V/, B, =(XQX) " XQY =5,

RE :VE = (X'QurX)™ £ VI, By = (X'QirX) " X'QirY # B,

As in the previous section, the difference in the estimators is caused by the use of
different information in each of the two estimations; the difference in the estimators
does not come at all from having used a hierarchical model with three stages. The
next section applies these result to a particular configuration of effects, the one-way

classification.

5 Application: One-way Classification

The previous sections have shown that for a general form of Z or of ¥ the slope
estimator is invariant to introducing information on effects as either parameters or
errors or at different stages of a hierarchical model. This section examines Model (1),

the one-way classification model, where Z = Iy ® ir, being ir a T X 1 vector of ones.
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Let the error term have a diagonal variance, ¥ = 0], assume that the prior moments

are V! =0,P*=0,a" =0, and that A* is diagonal, that is,

A*fl — 0_72le + A*il,

g

*2

i)

0, i3

7 =

P
[ 002 0 0 ] o727 0 0 ] 720 0
0 o 0 B 0 o727 0 0 o2 0
0 0 pn |0 0 oT | 0 0 T

Proposition 4 If ¥ = 021 and the prior conditional variance A* is diagonal, then

the posterior conditional variance A is also diagonal.

Proof: It follows from Z'S'Z = o *TIy and Eq. (10)m

%2 *2 __ *2
= 0p;, then oyi, = 0450

Corollary 5 If o2 i # j, that 1s, individuals with the same

conditional prior variance have the same conditional posterior variance.

Corollary 6 (Conditional independence) Conditional on (3, individuals have zero

posterior covariance: cov, (a;, a;|8) =0, i # j.

As the conditional moments of the effects are used in the computation of the
slope estimator, Proposition 4 means that a tractable configuration is preserved. The
posterior unconditional variance of effects is, however, not diagonal, because in general
the posterior correlation P; is nonzero. This result also means that individual effects
can be estimated independently, because they are correlated with each other only
through their individual correlation with 3. It is straightforward to extend this result
to an unbalanced panel with T} observations for each individual 7, or to a model with

an heteroskedastic error term, where the diagonal variance is preserved as well.
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To update the slope parameter, we use Q; = o 2 [I Nt — I ® 7T} and
Q2 = U’QA;A*A@jT, where Jp = T lipi}. Then O'fip = giaﬁ,@m =(1—g) Wl — Yﬁp],

! and B, is obtained from Eq. (9). This means that in a

where g; = 0 (To%? + 0?)
‘random effects’ estimation there can also be learning on the idiosyncratic parameters
as in a ‘fixed effects’ estimation.

If the prior conditional distribution of effects is not only diagonal but also
02 = 072 Vi, then g; = g = 02 (To2 4+ 02) ' and Qy = 0~ 29Iy ® Jr. In this case,

(21 and @)> produce, respectively, the familiar ‘within” and ‘between’ covariances. The

posterior estimator of the slope becomes

‘/p = (X,QlX“—X,QQX)il:O'Q (Wxx—{—gBX)()il,

ﬁp = (X' X+ X’QzX)il (X'QY + X'Q:Y) = (Wxx + QBXX)_1 (Wxy + gBxy) -

These expressions, obtained by Maddala (1971), are usually seen as different methods
of estimation. In the present context, they depend on the availability of prior infor-
mation on effects. (J1, which produces the ‘between’ covariances, does not depend at
all on prior information on effects; (), which produces the ‘within’ covariances, does
introduce the prior information on effects, as it contains g.

We can also analyze the one-way classification model applying a hierarchical ap-

proach in three stages as in Section 4:

First Stage : Y ~ N (a; + X[,3,07),
Second Stage : a; ~ N (@, a§i|a) ,

Third Stage : a; ~ N (Ei,ai) , B~ N (B, V) .

In this model C* and D are diagonal, with o2 and o2, as the prior conditional vari-
ances for individual 7, and there is independence between idiosyncratic and common

parameters. In this context the assumption of Section 4 that A* = D+ C* means that
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*2
at

o o2 + o2 that is, the individual parameter  exhibits ‘layers’ of randomness.

For the Second Stage only the sum of these variances matter, but for the Third Stage

*2
ci

separate prior information about ¢2 and o*? is needed. If the prior distribution in

the Third Stage is uninformative, then o7 = o2,
Let h; = (To?2 + %)~ (T o2 + c?), then the posterior moments are summarized

in Table 1.

[Insert Table 1]

The first block of this table reports FE’ and RE’ for both uninformative and
informative prior distributions of idiosyncratic parameters. We see that the slope
estimator produced by informative prior distributions of effects only depends on their
total variance. The partition of this variance in different stages only makes a difference
for the posterior distributions of idiosyncratic parameters. It is also clear that for
all estimators of idiosyncratic parameters posterior conditional variances are equal if
prior variances are equal; however, unconditional variances of effects are not diagonal.
Correlation across individuals is built through their individual correlation with the
common parameter (3.

In conclusion, the usual ‘fixed’ and ‘random’ effects estimators of the one-way
classification model are posterior estimators produced by different prior distributions
of individual parameters. Transforming the original model into a hierarchical model
by adding ‘stages’ does not change the slope estimator, as long as the same information

on individual effects is used.
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6 Independence or Correlation of Effects and Re-
gressors?

If idiosyncratic parameters are correlated not just with slope parameters, but also

with regressors, one can postulate the auxiliary regression:
a=Ir+wv,

where I' = I' (X)) is a known transformation of X of dimension Jx L, 7 is a L x 1 vector,
visaJ x 1 vector, v ~ N (0,T) and T is a known J x J matrix. The transformation
I' can have several forms. Mundlak (1978) used I'(X) = (Z2'2) ' Z'X, so L = N.
In his setup the idiosyncratic effects depended on the individual mean over time.
Chamberlain (1982) used a more general transformation where the effects depended
on all the individual X's over time. In any case, one still needs to estimate 7, which
becomes the main purpose of the estimation. The parameter vector has now the

following prior distribution

II R
RV

=l

™

&)

~ N

=y

that is, in terms of the original moments of the effects:

A* = TITT 47,
o = I'n*,

Pt = TR

where IT*, 7*, and R* are defined as in Egs. (3)-(5). Now, Model (2) becomes

Y = Zyym 4+ X8+ tm,
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where Z,, = ZT" and u,, = u+ Zv, with a known resulting variance %,, = X + ZYZ".
Thereby, effects are divided in two parts: the correlated component, which is main-
tained as a parameter, and the uncorrelated component, which is assimilated to the

error term. We just need to apply the corresponding expressions derived in Section 2.

» 1
Vo= ((X;;me;> +V1> :
5= v (anxi) - (Kenri) £ v,
where Q= Q (Zm,Em, 1I%)

X = X+Z,R",

YE = Y = Zpr".

Theorem 7 The posterior moments of the slope parameter, Bp, Vp, are invariant to
allowing for correlation between effects and regressors, regardless of the form of this

correlation.

Proof. From Eq. (8), Eq. (9), and from

X, = X+Z,RR=X+7ZP" =X",

m

Y = Y —Zpyr'=Y — Za* =Y",

and Qm = Q (Zm7 Zm: H*) )
= [S4+2YZ 4+ 2T 2 =[S+ Z[Y + T 2],

= Q(Z7 2714*) )
=

it follows that V" = fo and that EZL =[5, m

Again, it does not matter that the information on effects consists of correlated
and uncorrelated components; it only matters that the information is being used.
Suppose that we have an uninformative prior distribution except for the variance of

errors, that is, Y1 = 0, P* = 0,7* = 0. We can analyze how this result changes
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for two extreme cases: a degenerate and an uninformative prior distribution for the
idiosyncratic effects.

Assuming II = 0 is equivalent to excluding 7 from the regression and assuming
with certainty that its value is zero, which implies that A* = Y and, thus, Q,, = X!

The uncorrelated component of the effects produces an RE estimator:

m — -1 r
Vo= (X'EX) =V,
o= (X'SX) T XY =8,

On the other hand, ignorance about 7, that is, [I7! = 0, implies Q,, = Q1 (Zm, Xm)-
In this case, the transformation I' = (Z'Z)"' Z'X and a diagonal matrix ¥ = ¢2]

yield the particular result (derived in Appendix A.2.):
X'Qim = XQu, (13)
where, as in Section 2, Q1 = @1 (Z,X). The estimator is then:

ym o= (X’Q1X)_1:fo,

B = (X'QX) ' X'QY =3,

This is a special case where prior information on the uncorrelated component is ‘swept
out.” An FE estimator for a completely uninformative prior distribution on effects
arises, yet according to the definition of Section 3, it should also be considered an RE
estimator.

We conclude that the different use of prior knowledge on the correlated component
of the effects m explains the difference in slope estimators. Allowing for correlation
between effects and regressors does not, on itself, modify the slope estimator if the

same information is used.
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7 Conclusion

This paper has developed a common and tractable framework to discuss the Classi-
cal and Bayesian approaches to the analysis of the constant-slope variable-intercept
model. The main concern has been with the estimation of the slope parameter 3 that
is common to all individuals; the individual parameters «; have been of interest to
the extent that the way they are treated in the estimation affects the slope estima-
tor. It is usually believed that fixed and random effects estimators are the result of
different estimation methods. This paper has shown that, rather than the method or
approach adopted, it is the difference in information content captured by the prior
distribution of individual effects used in the estimations that produces different slope
estimators. In other words, by choosing an estimation method, a Classical econome-
trician is actually choosing a prior distribution of effects, like her Bayesian colleague.
The important point here is that the slope estimator is invariant to the introduction

of information on effects

(i) as parameters or as an error term,
(ii) in different stages of a hierarchical model, or

(iii) allowing for correlation between effects and regressors.

What matters is to use all available information on idiosyncratic parameters in the
estimation, whatever the approach or method. If different methods produce different

results, it is ultimately because somehow different prior information is being used.
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Appendix
A.1. Derivation of Eqgs. (8)-(12) in Section 2
Note that
Qfl B A P *1_ A*—l _A*—IP* 4
— P/ V - _P*IA*—I V—l + P*/A*—lp* , an
- z'v "tz 7'vlX
’ 1 _ .
XxXx = [X’E—lZ X'vX ]

Eq. (10) and Eq. (12) follow then from Eq. (6). For Eq. (8):
Vol = —prATIpr XIS X+ YA PR VT
= (x"sT'z(2's7'2) " AT - XTT 2 (270 2) ) (257X - AT
—|—X’Z_1X + P*,A*_lp* + V_l,
= XN Z (2571 2) T (AT ZSTIX 4 (T - AT AT PY) 4 XQuX + VY
= X"QX* + X' X +V ' =X"QX*+V

Note that Z'Q; = 0, therefore X* Q1 X* = X'Q1 X, and X*Q,Y* = X'Q,Y. Eq. (11)
follows from Egs. (3)-(5) and Eq. (7), which also determine Eq. (9):

Vpﬁp = (P;/lefl +X1271) Y+ <P;I _ P*I) Al
—1 */ «! w—1 <\ =
+(V —(Pp _Pp )A P)ﬁ,
— X' QY+ XSz (257 2) T AT 2 (Y + 2 (@ - PB)) + VB,
= X QY +X7QuY" + VG = X"Qy* + V.

A.2. Derivation of Eq. (13) in Section 6
Note that:

.= (B42VZ) T = Qi+ Qa,
ZSm = X'Qu,
where it is used that Z’Q1 = 0. Note that if ¥ = 021, then 7, % 17, = Z/ ¥ 1X =
X'Q2,X. Then Eq. (13) follows:
— — — -1 7 =
Qim = Sn' =S Zn (2,50 Z0) Z,55),
X'Qim = X'S,' —X'Qun=X0Q1
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Table 1: Posterior Moments in the Hierarchical Model

Bayesian Second Stage: FE’ or FE
Classical ‘fixed’ ‘random’
2nd Stage ot =0 ort >0
3rd Stage None or 0%% = g2, + 077
3, (X’HX) 'X'HY | (X'QX) 'X'QY
v, o2 (X'HX)™! o2 (X'QX)”!
Taip T~'0? 9i0ai
Oé;:p Yl (1 — gl) Yz
PiTp A _(1_gi)Xi
Bayesian Third Stage: RE’
2nd Stage o2 = o2, 02 =02 + 0
3rd Stage o e o2 >0
By (X'QX) " X'QY
v, o (X'QX)
o T 0% + 032 hio??
El,p Yz __XZ/Bp (1 _ h’l) Wz __ 2/67)]
C;(p Yz (1 - hz) Yz
P, —X; —(1=h) X,




