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Foreword

This book consists of two volumes, edited by E.G. Tsionas, that provide a broad
and deep coverage of the literature about panel data. The first volume covers
theory, and the second volume covers various categories of empirical
applications.

This is not a textbook. There are some very good texts about panel data,
including Arellano, Panel Data Econometrics, 2003; Hsiao, Analysis of Panel
Data, 2003; and Baltagi, Econometric Analysis of Panel Data, 2013. A lot of
material about panel data can be found in Wooldridge, Econometric Analysis
of Cross-Section and Panel Data, 2010. These textbook treatments assume
some knowledge of statistics and econometrics, but do not assume any prior
knowledge about panel data techniques. This book is a collection of chapters
that require some background in panel data econometrics and attempt to take
the reader to the research frontier in the specific topic covered in the chapter.
Compared to the texts listed above, this book will appeal to more advanced
readers and will be extremely useful as a reference.

Some other edited books about panel data have the same general intent as
this one, including Matyas and Sevestre, The Econometrics of Panel Data,
2008, and Baltagi, The Oxford Handbook of Panel Data, 2015. The field of
panel data is advancing quickly enough that being more up-to-date by even a
few years is a significant advantage. Compared to the two other edited books
cited, this book’s chapters are narrower, but deeper, in scope. That is, they cover
more specifically defined topics in more detail. In addition, many chapters con-
tain a significant amount of new material. Although there is naturally some
overlap in topics with the other edited books, there is less than might be
expected. As a result this book will be interesting and useful even for people
who already have access to all of the existing the panel data books.

Volume 1 (Theory) covers standard panel data topics such as dynamic
models, nonlinear models, nonparametric methods, Bayesian methods, and
panel cointegration. It also covers some important but less well-known topics,
such as endogeneity in stochastic frontier models, panel VARs with binary data
and implementation of estimation procedures for complicated panel data
models. Each of the chapters is written by a leading expert about the topic.

Volume 2 (Empirical Applications) discusses a wide array of empirical
applications in which panel data techniques have been or could be used. Some
of these chapters also contain useful theoretical material, about topics such as

Xvii



xviii  Foreword

spatial panels and factor models. A partial listing of fields of application that are
covered includes education, banking, energy, transportation, health, and inter-
national trade. As in Volume 1, each of the chapters is written by a leading
expert in the field.

The breadth and depth of the coverage of this book is impressive. It is an
important reference work for anyone interested in research in or application
of panel data.



General Introduction

Panel data always have been at the center of econometric research and have
been used extensively in applied economic research to refute a variety of
hypotheses. The chapters in these two volumes represent, to a large extent,
much of what has been accomplished in the profession during the last few years.
Naturally, this is a selective presentation and many important topics have been
left out because of space limitations. The books cited at the end of this Intro-
duction, however, are well known and provide more details about specific
topics. The coverage extends from fixed and random effect formulations to non-
linear models and cointegration. Such themes have been instrumental in the
development of modern theoretical and applied econometrics.

Panel data are used quite often in applications, as we see in Volume 2 of this
book. The range of applications is vast, extending from industrial organization
and labor economics to growth, development, health, banking, and the measure-
ment of productivity. Although panel data provide more degrees of freedom,
their proper use is challenging. The modeling of heterogeneity cannot be
exhausted to fixed and random effect formulations, and slope heterogeneity
has to be considered. Dynamic formulations are highly desirable, but they
are challenging both because of estimation issues and because unit roots and
cointegration cannot be ignored. Moreover, causality issues figure prominently,
although they seem to have received less attention relative to time-series econo-
metrics. Relative to time-series or cross-sections, the development of specifica-
tion tests for panel data seems to have been slower than usual.

The chapters in these two volumes show the great potential of panel data for
both theoretical and applied research. There are more opportunities as more
problems arise, particularly when practitioners and economic theorists get
together to discuss the empirical refutation of their theories or conjectures. In
my view, opportunities are likely to arise from three different areas: the inter-
action of econometrics with game theory and industrial organization; the prom-
inence of both nonparametric and Bayesian techniques in econometrics; and
structural models that explain heterogeneity beyond the familiar paradigm of
fixed/random effects.

1. Detailed Presentation

In Chapter 1, Stephen Hall provides background material about econometric
methods that is useful in making this volume self-contained.

In Chapter 2, Jeffrey M. Wooldridge and Wei Lin study testing and est-
imation in panel data models with two potential sources of endogeneity: that

Xix



xx General Introduction

because of correlation of covariates with time-constant, unobserved heteroge-
neity and that because of correlation of covariates with time-varying idiosyn-
cratic errors. In the linear case, they show that two control function
approaches allow us to test exogeneity with respect to the idiosyncratic errors
while being silent on exogeneity with respect to heterogeneity. The linear case
suggests a general approach for nonlinear models. The authors consider two
leading cases of nonlinear models: an exponential conditional mean function
for nonnegative responses and a probit conditional mean function for binary
or fractional responses. In the former case, they exploit the full robustness of
the fixed effects Poisson quasi-MLE; for the probit case, they propose corre-
lated random effects.

In Chapter 3, William H. Greene and Qiushi Zhang point out that the panel
data linear regression model has been studied exhaustively in a vast body of
literature that originates with Nerlove (1966) and spans the entire range of
empirical research in economics. This chapter describes the application of panel
data methods to some nonlinear models such as binary choice and nonlinear
regression, where the treatment has been more limited. Some of the methodol-
ogy of linear panel data modeling can be carried over directly to nonlinear cases,
while other aspects must be reconsidered. The ubiquitous fixed effects linear
model is the most prominent case of this latter point. Familiar general issues,
including dealing with unobserved heterogeneity, fixed and random effects, ini-
tial conditions, and dynamic models, are examined. Practical considerations,
such as incidental parameters, latent class and random parameters models,
robust covariance matrix estimation, attrition, and maximum simulated likeli-
hood estimation, are considered. The authors review several practical specifi-
cations that have been developed around a variety of specific nonlinear
models, including binary and ordered choice, models for counts, nonlinear
regressions, stochastic frontier, and multinomial choice models.

In Chapter 4, Jeffrey S. Racine and Christopher F. Parmeter provide a survey
of nonparametric methods for estimation and inference in a panel data setting.
Methods surveyed include profile likelihood, kernel smoothers, and series and
sieve estimators. The practical application of nonparametric panel-based tech-
niques is less prevalent than nonparametric density and regression techniques.
The material covered in this chapter will prove useful and facilitate their adop-
tion by practitioners.

In Chapter 5, Kien Tran and Levent Kutlu provide a recent development in
panel stochastic frontier models that allows for heterogeneity, endogeneity, or
both. Specifically, consistent estimation of the models’ parameters as well as
observation-specific technical inefficiency is discussed.

In Chapter 6, Stefanos Dimitrakopoulos and Michalis Kolossiatis discuss
how Bayesian techniques can be used to estimate the Poisson model, a well-
known panel count data model, with exponential conditional mean. In particu-
lar, they focus on the implementation of Markov Chain Monte Carlo methods to
various specifications of this model that allow for dynamics, latent
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heterogeneity and/or serial error correlation. The latent heterogeneity distribu-
tion is assigned a nonparametric structure, which is based on the Dirichlet pro-
cess prior. The initial conditions problem also is addressed. For each resulting
model specification, they provide the associated inferential algorithm for con-
ducting posterior simulation. Relevant computer codes are posted as an online
supplement.

In Chapter 7, Chih-Hwa Kao and Fa Wang review and explain the tech-
niques used in Hahn and Newey (2004) and Fernandez-Val and Weidner
(2016) to derive the limit distribution of the fixed effects estimator of semipara-
metric panels when the time dimension tends to infinity jointly with the cross-
section dimension. The techniques of these two papers are representative and
understanding their working mechanism is a good starting point. Under a uni-
fied framework, this paper explicitly points out the difficulties in extending
from models with fixed dimensional parameter space to panels with individual
effects and from panel with individual effects to panel with both individual and
time effects, and how Hahn and Newey (2004) and Fernandez-Val and Weidner
(2016) solve them.

In Chapter 8, Bo Honore and Ekaterini Kyriazidou study the identification
of multivariate dynamic panel data logit models with unobserved fixed effects.
They show that in the pure VAR(1) case (without exogenous covariates) the
parameters are identified with as few as four waves of observations and can
be estimated consistently at rate square-root-n with an asymptotic normal dis-
tribution. Furthermore, they show that the identification strategy of Honore and
Kyriazidou (2000) carries over in the multivariate logit case when exogenous
variables are included in the model. The authors also present an extension of
the bivariate simultaneous logit model of Schmidt and Strauss (1975) to the
panel case, allowing for contemporaneous cross-equation dependence both in
static and dynamic frameworks. The results of this chapter are of particular
interest for short panels, that is, for small 7.

In Chapter 9, Subal Kumbhakar and Christopher F. Parmeter notice that, in
the last 5 years, we have seen a marked increase in panel data methods that can
handle unobserved heterogeneity, persistent inefficiency, and time-varying
inefficiency. Although this advancement has opened up the range of questions
and topics for applied researchers, practitioners, and regulators, there are var-
ious estimation proposals for these models and, to date, no comprehensive dis-
cussion about how these estimators work or compare to one another. This
chapter lays out in detail the various estimators and how they can be applied.
Several recent applications of these methods are discussed, drawing connec-
tions from the econometric framework to real applications.

In Chapter 10, Peter Pedroni discusses the challenges that shape panel coin-
tegration techniques, with an emphasis on the challenge of maintaining the
robustness of cointegration methods when temporal dependencies interact with
both cross-sectional heterogeneities and dependencies. It also discusses some
of the open challenges that lie ahead, including the challenge of generalizing
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to nonlinear and time varying cointegrating relationships. The chapter is written
in a nontechnical style that is intended to make the information accessible to non-
specialists, with an emphasis on conveying the underlying concepts and intuition.

In Chapter 11, by P.A.V.B. Swamy, Peter von zur Muehlen, Jatinder
S. Mehta, and I-Lok Chang show that estimators of the coefficients of econo-
metric models are inconsistent if their coefficients and error terms are not
unique. They present models having unique coefficients and error terms, with
specific applicability to the analyses of panel data sets. They show that the coef-
ficient on an included nonconstant regressor of a model with unique coefficients
and error term is the sum of bias-free and omitted-regressor bias components.
This sum, when multiplied by the negative ratio of the measurement error to the
observed regressor, provides a measurement-error bias component of the coef-
ficient. This result is important because one needs the bias-free component of
the coefficient on the regressor to measure the causal effect of an included non-
constant regressor of a model on its dependent variable.

In Chapter 12, Arne Heggingsen and Geraldine Henningsen give practical
guidelines for the analysis of panel data with the statistical software R. They
start by suggesting procedures for exploring and rearranging panel data sets
and for preparing them for further analyses. A large part of this chapter dem-
onstrates the application of various traditional panel data estimators that fre-
quently are used in scientific and applied analyses. They also explain the
estimation of several modern panel data models such as panel time series
models and dynamic panel data models. Finally, this chapter shows how to
use statistical tests to test critical hypotheses under different assumptions and
how the results of these tests can be used to select the panel data estimator that
is most suitable for a specific empirical panel data analysis.

In Chapter 13, Robin Sickles and Dong Ding empirically assess the impact
of capital regulations on capital adequacy ratios, portfolio risk levels and cost
efficiency for banks in the United States. Using a large panel data of US banks
from 2001 to 2016, they first estimate the model using two-step generalized
method of moments (GMM) estimators. After obtaining residuals from the
regressions, they propose a method to construct the network based on clustering
of these residuals. The residuals capture the unobserved heterogeneity that goes
beyond systematic factors and banks’ business decisions that affect its level of
capital, risk, and cost efficiency, and thus represent unobserved network hetero-
geneity across banks. They then reestimate the model in a spatial error frame-
work. The comparisons of Fixed Effects, GMM Fixed Effect models with
spatial fixed effects models provide clear evidence of the existence of unob-
served spatial effects in the interbank network. The authors find a stricter capital
requirement causes banks to reduce investments in risk-weighted assets, but at
the same time, increase holdings of nonperforming loans, suggesting the unin-
tended effects of higher capital requirements on credit risks. They also find the
amount of capital buffers has an important impact on banks’ management prac-
tices even when regulatory capital requirements are not binding.
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In Chapter 14, Gerraint Johnes and Jill Johnes survey applications of panel
data methods in the economics of education. They focus first on studies that
have applied a difference-in-difference approach (using both individual and
organization level data). Then they explore the way in which panel data can
be used to disentangle age and cohort effects in the context of investigating
the impact of education on subsequent earnings. The survey next examines
the role of panel data in assessing education peer effects and intergenerational
socioeconomic mobility. The review ends by looking at adaptations of methods
to assess efficiency in a panel data context, and dynamic discrete choice models
and their importance in the context of evaluating the likely effects of policy
interventions. The survey is intended to highlight studies that are representative
of the main areas in which the literature has been developed, rather than to be
encyclopedic.

In Chapter 15, corresponding author Scott Atkinson analyzes panel data
studies of the most widely examined energy consumption industries—electric
power, railroads, and airlines. For electric power, the choices between utility
level versus plant-level data, cross-sectional versus panel data, and pooled-data
analysis versus fixed-effects (FE) estimation generally makes little difference.
A consensus also exists across estimates of cost, profit, and distance functions,
the systems including these functions. Generally, studies reject homogeneous
functional forms and find nearly constant returns to scale (RTS) for the largest
firms. Residual productivity growth declines over time to small, positive levels,
and substantial economies of vertical integration exist. Cost saving can accrue
from a competitive generating sector. Controversy remains regarding the
Averch-Johnson effect and the relative efficiency of publicly owned versus pri-
vately owned utilities. Railroads exhibit increasing RTS, substantial inefficien-
cies, and low productivity growth. Airlines operate close to constant RTS and
enjoy modest productivity growth. Substantial inefficiencies decrease with
deregulation. A valuable alternative to FE estimation is a control function
approach to model unobserved productivity.

In Chapter 16, Georgia Kosmopoulou, Daniel Nedelescu, and Fletcher
Rehbein survey commonly used methods and provide some representative
examples in the auction literature in an effort to highlight the value of panel data
techniques in the analysis of experimental data obtained in the laboratory.

In Chapter 17, Paul D. Allison, Richard Williams, and Enrique Moral-
Benito point out that panel data make it possible both to control for unobserved
confounders and to allow for lagged, reciprocal causation. Trying to do both at
the same time, however, leads to serious estimation difficulties. In the econo-
metric literature, these problems have been solved by using lagged instrumental
variables together with the generalized method of moments (GMM). In this
chapter, the authors show that the same problems can be solved by maximum
likelihood estimation implemented with standard software packages for struc-
tural equation modeling (SEM). Monte Carlo simulations show that the ML-
SEM method is less biased and more efficient than the GMM method under
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a wide range of conditions. ML-SEM also makes it possible to test and relax
many of the constraints that typically are embodied in dynamic panel models.

In Chapter 18, Rico Merkert and Corinne Mulley notice that panel data have
been widely used for analyzing both the demand and supply sides of transport
operations. Obtaining true panels at the international level, however, appears to
be difficult for various reasons. For the demand side, their peer review of the
transport literature has demonstrated that pseudo panel data can be treated as
if it is true panel data. For the supply side, this approach results in many studies
using unbalanced panels instead. In terms of methods, they find that the DEA
approach overcomes the problems of conflicting KPIs when considering overall
cost efficiency while providing a robust tool for implementing change through
the understanding of the key determinants of efficiency. Their case study about
determinants of urban and regional train operator efficiency has evidenced, that
the spatial context matters for the sample composition of DEA panel analysis in
transport and that separating the panel into context specific subsamples can pro-
duce more robust results.

In Chapter 19, David Humphrey outlines the problems encountered when
using banking panel data. Workarounds and solutions to these problems are
noted. Although many of these problems occur when selecting and obtaining
a panel data set, others are specific to the topics investigated, such as bank scale
and scope economies, technical change, frontier efficiency, competition, and
productivity. Illustrative results from published studies on these topics also
are reported.

In Chapter 20, Christoph Siebenbrunner and Michael Sigmund point out that
financial contagion describes the cascading effects that an initially idiosyncratic
shock to a small part of a financial system can have on the entire system. They
use two types of quantile panel estimators to imply that if certain bank-specific
drivers used by leading regulatory authorities are good predictors of such
extreme events, where small shocks to some part of the system can cause the
collapse of the entire system. Comparing the results of the quantile estimation
to a standard fixed-effects estimator they conclude that quantile estimators are
better suited for describing the distribution of systemic contagion losses. Com-
paring the results to the aforementioned regulations, they find several recom-
mendations for improvement.

In Chapter 21, Keshab Bhattarai reviews applications of panel data models.
The process of substitution of labor by capital as discussed in Karabarbounis
and Neiman (2014) and Picketty (2014) has increased the capital share, causing
a reduction in labor share of about 10% magnitude. They also studied the
impacts of trade and aid on economic growth. Fixed and random effect esti-
mates show that investment rather than aid was a factor contributing to growth.
Exports tied to aid are always harmful for growth of recipient countries.
Although the evidence is mixed for the individual economies, there appear to
be trade-offs between unemployment and inflation in the panel of Organisation
for Economic Co-operation and Development (OECD) countries as shown by
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the random and fixed effect models in which the Hausman test is in favor of
random effect model. A simple VAR model with two lags on inflation and
unemployment shows persistence of inflation and unemployment rates among
the OECD economies. The ratio of investment to GDP (gross domestic product)
is a significant determinant of growth rates across OECD countries, and FDI
contributes positively to growth. Regression results are robust on the grounds
of stationarity and cointegration criteria. Threshold panel models developed
by Hansen (1997) and Caner and Hansen (2004) show how to study regime
changes occurring in the real world.

In Chapter 22, Andrew Jones, Apostolos Davillas, and Michaela Benzeval
add to the literature about the income-health gradient by exploring the associ-
ation of short-term and long-term income with a wide set of self-reported health
measures and objective nurse-administered and blood-based biomarkers, as
well as employing estimation techniques that allow for analysis beyond the
mean. The income-health gradients are greater in magnitude in cases of
long-run rather than cross-sectional income measures. Unconditional quantile
regressions reveal that the differences between the long-run and the short-run
income gradients are more evident toward the right tails of the distributions,
where both higher risk of illnesses and steeper income gradients are observed.

In Chapter 23, Steve Ongena, Andrada Bilan, Hans Degryse, and Kuchulain
O’Flynn review the data, econometric techniques, and estimates with respect to
two recent and salient developments in the banking industry, i.e., securitization
and globalization. The traditional banking market has become wider in its busi-
ness models, through securitization, and in its geographical dispersion, through
global operations. Both developments have brought new challenges for the
understanding of basic questions in banking. Questions such as what determines
credit flows or what are the channels of transmission for monetary policy
recently have been addressed through this new optic. This review establishes
that access to micro data has enabled researchers to arrive at increasingly better
identified and more reliable estimates.

In Chapter 24, Claire Economidou, Kyriakos Drivas, and Mike Tsionas
develop a methodology for stochastic frontier models of count data allowing
for technological and inefficiency induced heterogeneity in the data and endog-
enous regressors. They derive the corresponding log-likelihood function and
conditional mean of inefficiency to estimate technology regime-specific ineffi-
ciency. They apply our proposed methodology for the states in the United States
to assess efficiency and growth patterns in producing new knowledge in the
United States. The findings support the existence of two distinct innovation
classes with different implications for their members’ innovation growth.

In Chapter 25, Emmanuel Mamatzakis and Mike Tsionas propose a novel
approach to identify life satisfaction and thereby happiness within a latent vari-
ables model for British Household Panel Survey longitudinal data. By doing so,
they overcome issues related to the measurement of happiness. To observe hap-
piness, they employ a Bayesian inference procedure organized around
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Sequential Monte Carlo (SMC)/particle filtering techniques. Happiness effi-
ciency captures individuals’ optimal happiness to be achieved should they
use their resource endowment efficiently. In addition, they propose to take into
account individual-specific characteristics by estimating happiness efficiency
models with individual-specific thresholds to happiness. This is the first study
that departs from restrictions that happiness efficiency, and thereby ineffi-
ciency, would be time-invariant. Key to happiness is to have certain personality
traits; being agreeable and being an extrovert assist efforts to enhance happiness
efficiency. On the other hand, being neurotic would impair happiness
efficiency.

In Chapter 26, Vasso Ioannidou and Jan de Dreu study how the introduction
of an explicit deposit insurance scheme in Bolivia in 2001 affected depositors’
incentives to monitor and discipline their banks for risk-taking. They find that
after the introduction of the explicit deposit insurance scheme, the sensitivity of
deposit interest rates and volumes to bank risk is reduced significantly, consis-
tent with a reduction in depositor discipline. This effect operates mainly though
large depositors—the class of depositors who were sensitive to their banks’ risk
in the first place. The authors also find that the larger the decrease in depositor
discipline is, the larger the insurance coverage rate is. Deposit interest rates and
volumes become almost completely insensitive to bank risk when the insurance
coverage is higher than 60%. The results provide support for deposit insurance
schemes with explicit deposit insurance limits per depositor.

In Chapter 27, Sarantis Kalyvitis, Sofia Anyfantaki, Margarita Katsimi, and
Eirini Thomaidou review the growing empirical literature that explores the
determinants of export prices at the firm level. They first present evidence from
empirical studies that link firm export pricing to destination characteristics
(gravity-type models). The main implications of channels that can generate
price differentiation, such as quality customization, variable markups, and
exchange rate pass-through, and financial frictions then are explored. A newly
compiled panel data set from Greek exporting firms is used to present evidence
from regressions with export price as the dependent variable and show how the
main economic hypotheses derived in theoretical models are nested in empirical
specifications.

In Chapter 28, Almas Hermati and Nam Seok Kim investigate the relation-
ship between economic growth and democracy by estimating a nation’s produc-
tion function specified as static and dynamic models using panel data. In
estimating the production function, they use a single time trend, multiple time
trends, and the general index formulations to the translog production function to
capture time effects representing technological changes of unknown forms. In
addition to the unknown forms, implementing the technology shifters model
enabled this study to find possible known channels between economic growth
and democracy. Empirical results based on a panel data of 144 countries
observed from 1980 to 2014 show that democracy had a robust positive impact
on economic growth. Credit guarantee is one of the most significant positive
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links between economic growth and democracy. In order to check the robust-
ness of these results, a dynamic model constructed with a flexible adjustment
speed and a target level of GDP also is tested.

In Chapter 29, Almas Hesmati, Esfandiar Maasoumi, and Biwei Su examine
the evolution of well-being (household income) of Chinese households over
time, and its determinants. They study (stochastic) dominance relations based
on Chinese Household Nutrition Survey (CHNS) data. They reveal a profile of
general mobility/inequality and relative welfare in China over time and among
population subgroups. The authors report that from 2000 to 2009, welfare has
improved steadily along with Chinese economic development and growth. Pair-
wise comparison of subgroups reveals that there is no uniform ranking by
household type, gender of household head, or age cohort. Married group and
nonchild rearing group second order dominate single/divorced group and child
rearing group. Inequality in subgroups with different educational levels and
household sizes suggests groups with higher education and smaller household
size tend to be better off than their counterparts. Longitudinal data allow esti-
mation of permanent incomes, which smooth out short-term fluctuations. Treat-
ing the data as a time series of cross sections also avoids imposition of constant
partial effects over time and across groups. This is appropriate given the
observed heterogeneity in this population. Individual/group specific compo-
nents are allowed and subsumed in conditional dominance rankings, rather than
identified by panel data estimation methods.

In Chapter 30, Mike G. Tsionas, Konstantinos N. Konstantakis, and
Panayotis G. Michaelides present a production function, which is based on a
family of semi-parametric artificial neural networks that are rich in parameters,
in order to impose all the properties that modern production theory dictates.
Based on this approach, this specification is a universal approximator to any
arbitrary production function. All measures of interest, such as elasticities of
substitution, technical efficiency, returns to scale, and total factor productivity,
also are derived easily. Authors illustrate our proposed specification using data
for sectors of the US economy. The proposed specification performs very well
and the US economy is characterized by approximately constant RTS and
moderate TFP, a finding that is consistent with previous empirical work.
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1 Introduction

In this chapter, we provide a broad synopsis and background to standard econo-
metric techniques. The aim of this chapter is to act as a foundation for the rest of
this book and to make it a self-contained reference book. Inevitably, this will
mean a brief account of many of the issues we discuss, and we aim to provide
references that will give more complete and comprehensive accounts of each
section we address.

We begin by outlining some fundamental concepts that lie behind much of
what goes on in econometrics: the idea of a population, random variables, ran-
dom sampling, the sampling distribution, and the central limit theorem. We then
explore two of the basic approaches to constructing an econometric estimator:
the maximum likelihood principal and the general method of moments. We then
go through the standard linear model, the basic workhorse of econometrics, and
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the various problems that can arise in this familiar case. We then explore the
issue of nonstationarity, which has dominated many of the developments in
econometrics during the last 30 years.

2 Some Basic Concepts

At its heart, econometrics is about quantifying effects in the real world and
assessing these effects to gain some notion of their reliability. Economic theory
often can suggest the direction of a causal effect, but it rarely suggests the exact
magnitude of such an effect nor what the correct functional form should be. To
make the realm of econometrics operational, we need a statistical framework
that allows us to operate in a wide range of situations, at least to a good approx-
imation of the real world. This framework begins with the concept of the pop-
ulation. We assume that there is an infinitely large population of events or
outcomes that are of interest to us. We cannot know or observe all of these out-
comes, but we wish to make some inference about the population as a whole.
We then assume that this population is made up of individual events that are
random but drawn from the population that has some given distribution. This
distribution can be described by a set of moments (mean, variance, skewness,
kurtosis, and higher moments), so the mean is simply the average of the pop-
ulation distribution E(y) = u, where y is some random variable, and p, is the
mean of the population distribution, the variance of the population distribution
isE(y — ,uy)2 = ayz and so on for the higher moments. We cannot observe these
population moments, of course, because we cannot observe the whole popula-
tion. Instead, we try to make some inference about the population by drawing a
sample from this population. Our statistical framework then rests on some key
assumptions about this sample; the first of which is that the sample is drawn at
random; y is a random variable that is part of a population with a population
distribution. When we draw a sample from this population of size n
(y1 ... yn), these observations about y cease to be random variables and become
simple numbers. The basic notion of random sampling then has some important
implications. First, as we draw each y; at random from the sample, they should
be independent of each other. That is to say, for example knowing y; will not
help us in any way to know what value y, will take, so the observations about y
are independent. Also, as each observation is drawn at random from the same
population, they will have an identical distribution. Hence, the observations
have an independent identical distribution (IID) regardless of the shape or form
of the population distribution.

The next step is to begin to think about the properties of the sample we have
drawn. The sample (y; ... y,) can be used to make inference about the popula-
tion in a wide variety of ways, some of which might be sensible and some might
be highly misleading. For example, we could use the first observation as an esti-
mate of the population mean, although this might not be the best thing to do. We
also could take the average of the sample and use this as an estimate of the pop-
ulation mean. The important question is which would be better and how do we
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make an objective judgment. The answer to this question lies in another impor-
tant concept: the sampling distribution. Let’s suppose we derive some measure
from our sample, say 7 = f(y; ... y,). If we then pick another sample, we can
derive another estimate of this measure, 7 = f(y,’ ... y,/). If we pick yet another
sample, we can derive another estimate, and so on. This then allows us to define
the sampling distribution of 7 and this sampling distribution will have a mean
and a variance. We then would like to see this distribution being related to the
population distribution in a way we can clearly understand. If we are trying to
estimate the mean of the population distribution, we would like to find that
E(7) = py, in which case we would say that 7 is an unbiased estimate of the pop-
ulation mean, which means that even in a small sample the expected value of =
equals the true population mean. In some circumstances, this is not possible and
then a weaker but desirable property is lim,,_,(7) = y,, which says that, in the
limit, as the sample size grows to infinity 7 equals the true population mean.
This is termed consistency. Of course, there might be more than one unbiased
estimation technique, and we need some way to judge between them. A natural
way to judge between two consistent procedures is to ask which of the two
makes smaller errors on average, that is, to ask which of the two has a sampling
distribution with a smaller variance. So, if we have another procedure, v = &
(1 --- ¥n), and both are unbiased, then we would prefer 7 if var(z) < var (v).

This gives us a basic approach to estimation: We want to find unbiased and
efficient estimators. The other main part of econometric methodology is to draw
inferences about our estimated effects, that is, to be able to draw a confidence
interval around our central estimate and formally test the hypothesis. In order to
do this, we need to know the shape of the sampling distribution. At first sight,
this seems quite challenging. We have a population distribution that might have
any shaped distribution, then we draw a sample from this and derive an indic-
ative measure about that sample. To be able to conduct inference, we need to
know the shape of the sampling distribution. This seems to be a challenging
requirement, but a core theorem that underlies much of econometrics allows
us to do exactly that. This is the central limit theorem. There are actually many
versions of the central limit theorem (Davidson, 1994), but the result is that if
we have a sample of n observations from a population and we derive a statistic
which has a sampling distribution, then as n goes to infinity, the sampling dis-
tribution will converge on a normal distribution. The following multivariate
version of the central limit theorem is given by Greenberg and Webster (1983).

If (y; ... y,) are independently distributed random vectors with mean vector
u and covariance matrices V; ... V,, and the third moment of y exists, then

23 (i)~ N(0.3) M
i=1

where

T=limn™' >V )
i=1
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The key thing here, common to the many extensions of the central limit
theorem, is that, without making any assumption about the distribution of
the population distribution, the sampling distribution is normally distributed.
This then allows us to conduct standard classical inference, which can typi-
cally be done in one of three equivalent ways: the classic student ¢ test, the
P-value, or a confidence interval. In the case of a set of single values discussed
previously, if we had derived a particular value for y, say y* the 7 test would be
given by
Y —m

t > 3
showing the point on the 7 distribution where the value y* is located. As n
grows large, this converges on the normal distribution. The point on the nor-
mal distribution beyond which there is only 2.5% of the distribution is 1.96; so
a t value greater than 1.96 would allow us to reject the null hypothesis that the
true value of y is actually y at a 5% critical value on a two-tailed test. In a con-
venient but broadly equivalent ways, this often is expressed as a P-value; that is
the probability under the null that y* is a correct value.

P —value = Pry, (| y* —pu| >[y*“ —ul) “)

If the ¢ value is exactly 1.96, the P-value will equal 0.05; as the ¢ value rises
above 1.96, the P-value falls below 0.05. P-values are particularly useful when
the relevant distribution is not a normal one, and it is not easy to remember the
correct critical value.

The final largely equivalent way of presenting inference is in terms of a con-
fidence interval, which shows the range of values within which the true value
should lie with a particular degree of certainty. The formula for a 95% confi-
dence interval is

Clyso — {y* +1.96VZ, y* — 1.96\/5} )

These three methods of presenting basic inference are well known, but the
key point is that their existence is based on the central limit theorem, which
underlies the normality assumption that is being made in each of these
calculations.

The final point to emphasize in this section is that we were rather vague
regarding exactly what the function is when we previously stated 7=f
(1 -.. yn)- This vagueness was deliberate because this function can go well
beyond simple descriptive statistics. Therefore, we could think of 7 as simply
being the mean of y, but it also could be a regression coefficient or a wide range
of other statistics that are derived from a sample and therefore have a sampling
distribution.
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3 Two Basic Approaches to Estimation

In many basic textbooks, estimation is presented in a rather ad hoc way. It can
be argued, for example, that a model will generate errors and it is sensible to
minimize the squared error as a natural way to motivate ordinary least squares
(OLS) estimation. This is both simple and appealing, but a little extra thought
raises a number of questions: Why not minimize the absolute error? Why not a
higher power of the absolute error? Why not some other nonlinear transforma-
tion of the error, such as the absolute log? Historically, OLS has been pre-
ferred because it has an easy analytical solution that makes it feasible in
the absence of a modern computer, whereas most of the alternatives would
be infeasible. This is no longer an acceptable answer because computers
can do any of the previous calculations quite easily. The correct justification
for OLS and other techniques is that some underlying principles of estimation
make it possible under certain circumstances to justify OLS or other estima-
tion strategies. These principals are maximum likelihood (ML) and the Gen-
eralized Method of Moments (GMM).

4 Maximum Likelihood (ML)

The basic approach of maximum likelihood is both very general and powerful:
If we assume some specific model, this model generally will have some
unknown parameters to be estimated. Given this model structure and a specific
set of parameters, we then are generally able to calculate the probability that a
real-world event (or sample) actually would have occurred. We then choose the
unknown parameters of the model to maximize the probability (or likelihood)
that the real-world event would have occurred. This gives the maximum like-
lihood estimates of the unknown parameters, which then are generally consis-
tent and fully efficient. When it is possible to do maximum likelihood, it is
generally the best estimator. Hendry (1976) has shown that many other estima-
tion techniques, such as two-stage least squares, three-stage least squares, and
other instrumental variable estimation techniques can be interpreted as approx-
imations to the ML estimator.

Suppose we have a sample (y; ... y,) that is drawn from a population prob-
ability distribution P(y|A), where A is a set of unknown parameters to be esti-
mated. We assume that the y; are independent each with probability distribution
of P(y;|A). The joint probability distribution then is given by ITi_P(y;|A),
because the y; are a sample that are also fixed. We then can restate the joint prob-
ability distribution as the likelihood function.

L(A) =TI, P(vi| A) (©6)
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It is generally more convenient to work with the log of the likelihood function.
log (L(A)] = _P(ilA) ©)
i=1

This can then be maximized with respect to the parameters A to yield the max-
imum likelihood estimates. The advantage of this approach is that it can be
applied to any situation in which we can define the probability of a particular
event, and therefore it can be applied to many nonstandard situations.

If we consider as a starting point a general nonlinear model e =Y — fiX, ),
where Y is a vector of n endogenous variables, X is a matrix of exogenous vari-
ables that would be n X k, e is a vector of n error terms and /3 is a vector of k
parameters, if we also assume that e ~N(0,X), that is, the error terms are nor-
mally distributed, then the likelihood function for one period is proportional to,

log (L(A)) ~ —nlog(X) —e'Z e ®)

That is to say, under the assumption of normally distributed errors, the likeli-
hood function is a function of the squared errors scaled by the covariance
matrix. This is very close to standard OLS, although it includes a term in the
variance of the residuals. Another useful concept, concentrating the likelihood
function, allows us to transform this into the standard OLS result, making
this function useful in much more complex situations. The idea of concentrating
the likelihood function starts from the idea that without loss of generality we can
always split the parameter vector A into two subvectors (A1,4,). If we know A1,
it is possible to derive an analytical expression for A,, such as A, = g(A). Then
it is possible to substitute A, out of the likelihood function and state a concen-
trated likelihood function just in terms of A;. This often is used to simplify ML
procedures. If we take the model given previously and assume the variance
matrix is a single constant scaler, then, over a sample of n observations, the
likelihood function becomes.

log (L(A)) ~ —nlog (6*) —€'e/o” )

If we know the parameters A, we can then take the first-order conditions
with respect to 6” to give

slog (L(A)) /66> = —n/c* + e/ (c*) (10)
Solving this for the variance gives
o> =de/n (11)

We can use this expression to eliminate the variance from the standard
likelihood function to get the concentrated likelihood function

log (L*(A)) = —n—nlog(e'e/n) (12)
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which is now simply a function of the squared errors. This is the maximum like-
lihood justification for OLS, under the assumption of independent normal resid-
uals with a constant variance OLS is the maximum likelihood estimator. After
we have estimated the parameters of the model, we can recover the maximum
likelihood estimate of the variance from Eq. (11).

Maximum likelihood is generally a consistent and efficient estimation tech-
nique on the assumption that the model being estimated is correctly specified.
Two important matrices that are derived from the likelihood function provide
the bases for most standard inference: the efficient score matrix and the infor-
mation matrix. The efficient score matrix usually is defined as

Slog(L(A))
6A

This needs some explanation S(A) is actually a k X n matrix, where k is the
number of parameters; for each observation, 1...n, it contains the derivative
of the likelihood function with respect to each of the parameters at that obser-
vation. At the maximum, the sum down each column will be zero, because at the
maximum this will effectively be the first-order conditions. This matrix is tell-
ing us how far the maximum at each observation is away from the sample
average.

The information matrix is given by the second derivative of the likelihood
function with respect to the parameters.

£ {_ 8 log (L(A))
SABA'

=S(4) (13)

=) (14)

An important result is that the variance of the ML parameters is asymptotically
given by the inverse of the information matrix, and this is asymptotically equiv-
alent to the outer product of the score matrix.

Var(AML) = (I(AML))71 = S(AML)/S(AML) (15)

The Cramer-Rao lower bound theorem states that any other estimation tech-
nique must yield a variance that is equal to or greater than the ML variance.
For example, if A* is a set of parameters generated by any other estimation tech-
nique, then the lower bound theorem states that Var(A*) >(I (AML))”. This is
truly remarkable because it states that ML is better than any other technique,
even one we have not invented yet.

ML also forms the bases of most of the ways we construct hypothesis tests.
In any classic hypothesis test, we set up a null hypothesis (H,), and we see if we
can reject this against an alternative (H). This typically involves deciding if an
unrestricted model (H;) is significantly different from a set of theoretical
restrictions (Hy). ML provides a natural framework to formalize this idea,
so all we need to do is to compare the value of the likelihood function at the
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unrestricted point and the restricted point and to find a way to judge if this dif-
ference is significant. This is exactly what the fundamental likelihood ratio test
does. It also can be shown that in a testing context, twice the difference between
the value of the log likelihood function at the maximum point and the restricted
point has a y* distribution. The likelihood ratio test is given by

LRT =2(log (L(Am)) — log (L(A,)) ~ x*(m) (16)

where A, is a set of restricted parameters and m is the number of restrictions.

This formulation is the fundamental of testing, but it is not always conve-
nient to employ because, in some circumstances, it can be difficult to estimate
either the restricted or unrestricted models. For this reason, two other basic test-
ing procedures allow us to approximate the likelihood ratio test without estimat-
ing either the restricted or unrestricted model. If we estimate only the
unrestricted model and approximate the likelihood ratio test from this point,
we are conducting a Wald test. If we estimate only the restricted model, then
we are performing a LaGrange Multiplier (LM) test.

The Wald (1943) test is given by

W =lg(aw )] {GUI(Aw)) "G Hlg(Amn)] ~ 22 (k) a7

where G is a set of & restrictions on A, and g is the derivative of the restrictions
(6G(A)/oA). This test requires us only to estimate the model at the unrestricted
point. The most common example of a Wald test is the student ¢ test, in which
we estimate an unrestricted model and then test individual coefficients for a
restricted value (typically zero), but without estimating the model subject to this
restriction.

The LaGrange Multiplier (LM) test estimates the model only at the
restricted point and then approximates the LR test from that point. The test
is defined as

LM = [S(A,)] [1(A)] ' [S(A))] ~ 1% (k) (18)

where A, is the restricted set of parameters. Common examples of the LM tests
are tests for ARCH or serial correlation in which we estimate the model without
these features (the restricted model) and then calculate a test against these fea-
tures as the alternative. A particularly common and convenient version of the
LM test under linear OLS estimation is to take the residuals from an OLS model
and regress them on the exogenous variable and the restrictions (lagged errors in
the case of serial correlation). The LM test then is given by nR? from this aux-
iliary regression.

Both the LM and Wald tests make a quadratic approximation to the likeli-
hood ratio test. If the likelihood function were quadratic (which it usually is
not), then all three would give the same answer. In general, however, we expect
that W > LR > LM, that it the Wald test overestimates the LR test, and the LM
test underestimates it (Berndt & Savin, 1977).
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One limiting assumption given previously is that so far we have assumed
that the observations on y are independent. This will be true under that
assumption of random sampling, but, in many cases, this is not valid. The most
obvious case is time series data in which an observation at period 7 is not gen-
erally independent of the observation at # — 1. There is, however, an important
extension to ML that allows us to deal with this case—the prediction error
decomposition (Harvey, 1981). This rests on a basic definition of conditional
probability, Pr(a,f) = Pr(a|p) Pr(f). Because likelihood functions are
essentially statements about probability, this can be applied directly to a like-
lihood function. Suppose we have a general joint log likelihood function for a
set of time series observations y; ... y7. This can be factorized to turn it into a
sequence of likelihood functions, each of which condition on the past vari-
ables as if they were fixed.

T—k
log (L(yy...yr) = Z log (yr—i| y1-..y7—1-i) + log (y1... %) (19)
=0

=

where £ is the number of lags in the relationship between y and its past values.
The last term in Eq. (19) is essentially initial conditions that can be dropped
from the maximization.

It often has been said that a weakness of maximum likelihood is that we
assume that we have the correct model and, if this assumption is false, then
the whole procedure collapses. A much simpler process, such as OLS, might
be more robust. This argument was effectively countered by White (1982),
who introduced the notion of quasi maximum likelihood (QML). This states that
under a wide range of misspecifications, ML still will be a consistent estimator
although it will no longer be fully efficient because it will not be the correct ML
estimator. White, however, showed that what goes seriously wrong is the infer-
ence we draw under maximum likelihood, neither the inverse information
matrix nor the outer product of the score matrix are consistent estimators for
the correct covariance matrix of the parameters. Instead, he derives a generic
robust covariance matrix, which is consistent under full ML assumptions and
when QML is only a consistent estimator but not efficient. The formula for this
robust covariance matrix is

C(AomL) =1(Aqm) ' [S(AqmL)'S(Aom) ] T(Agur) ™' (20)

where C(Agmy) is the QML robust covariance matrix, given as a combination of
the information matrix and the outer product of the score matrix. Under full ML
assumptions, these two are equivalent, so the last two terms would cancel, giv-
ing us the standard information matrix. Under QML assumptions, these two
matrices are no longer even asymptotically equivalent, and we get this more
general formula. This is the basis of all the robust covariance matrices that have
been later developed in econometrics. In general, we can use this robust
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covariance matrix in the construction of either Wald or LM tests to give robust
test statistics. The LR test, however, is no longer valid because it runs directly
from the likelihood function, which in the case of QML, is incorrect.

5 Generalized Method of Moments (GMM)

GMM was introduced into econometrics by Hansen (1982), and an excellent
survey of the approach can be found in Hall (2005). Although ML is always
the best option when it is feasible, there are many circumstances in which it
is not a practical option: Theory rarely tells us exactly from which distribution
a set of errors should be drawn, a crucial factor in formulating the correct ML
estimator; it might not always be possible to fully specify the probability dis-
tribution; and the computational burden might be extreme or the likelihood
function might be relatively flat and therefore hard to maximize. In these
circumstances, GMM provides a computationally convenient alternative to
ML, which, although inevitably less efficient, is feasible and computationally
tractable.

As the name suggests, GMM is a generalization of a much earlier technique,
method of moments, which has been part of the statistical toolkit since the late
19th century. At its most basic level, method of moments is a technique that
allows us to estimate the moments of a population distribution based on the esti-
mated moments from a particular sample. The key distinguishing feature of
method of moments is that if we have K moment conditions that we wish to
satisfy, then we also will have K parameters to estimate. This implies that gen-
erally we will be able to make each of the moment conditions hold exactly. In
GMM estimation, we typically will have L > K moment conditions, where K is
the number of parameters being estimated. Because we will not be able to make
all the moment conditions hold at the same time, there must be a tradeoff
between competing moment conditions.

Method of moments estimation typically was used to estimate the form of a
particular population distribution. In the late 19th century, Karl Pearson devel-
oped what is now known as the Pearson family of distributions, which are
defined by a vector of four parameters that describe the form of a particular dis-
tribution. These four parameters can capture a wide variety of different standard
distributions. For example, suppose we want to know the first moment of the
population distribution of a random variable y, the moment condition we want
to satisfy is E(y) — ¢ = 0 where u is the population mean. The sample analogue
to this moment condition, for a sample of 7 is then n~'Y""_ y; — i =0. Here we
have one moment condition and one parameter to estimate, so we can solve this
condition exactly to give ji =n"" >, vi- This basic idea of method of moments
can be extended to produce a range of standard instrumental variable estimators
(see Hall, 2005) in which the moment conditions involve orthogonality between
the instruments and the error terms. Instrumental variable estimation first
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entered mainstream econometrics in the 1940s as a solution to the error in vari-
ables problem (although strictly speaking, the first example of this technique
was in Wright (1925), which had little impact at the time). Consider a simple
case:

y,:ax?+u1, 21)
But the independent variable is observed with error such that
x =20 +uy, (22)

Because the true regressor is unobservable in estimation, we replace this with
the observed variable

Vi = ax;+ u; (23)

If we estimate this using OLS, we will have a biased coefficient because of the
correlation between the observed regressor and the error term. Reiersol (1941)
and Geary (1948) both suggested the instrumental variable approach as a solu-
tion to this problem. This suggestion was to propose the existence of another
variable z, which is correlated with x but uncorrelated with the error in
Eq. (23). This then gives the following moment condition

Cov(z;, y:) —aCov(z;, x;) =0 (24)

This method of moments estimator gives rise to the instrumental variable esti-
mator for a. Sagan (1958) then gave a full statistical underpinning for instru-
mental variable estimation.

To set up the GMM estimator in its most general form, we first have to
define a set of population moment conditions, following Hall (2005). If we
let ¢ be a vector of unknown parameters to be estimated, v a vector of random
variables, and g a vector of functions, then the population moment conditions
can be stated in a general form as

Elg(vr, )] =0 (25)

The example in Eq. (24) is a special case of this; when there are k moments and &
parameters, it gives rise to a method of moments estimator and each moment
can hold exactly in a sample. In general, however, there can be more moment
conditions than parameters to be estimated, and all the moments generally can-
not be met simultaneously. Therefore, there must be a tradeoff between the
moments as to how close each is to zero. It is this tradeoff that gives rise to
the GMM technique. Therefore, the GMM estimator is given by the value of
@, which for a given sample of T observations minimizes

(o) =T "g(v, ) W,T ' g(v1, ) (26)
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where W, is a positive semi definite matrix that converges in probability to a
matrix of constants. GMM generally is consistent for any matrix W, that obeys
this restriction. Clearly different matrices could give very different results, so
we need some way to choose between these alternatives. The question then
arises as to how we should choose the optimal weighting matrix and exactly
what we mean by optimal in this context. This is resolved by defining the opti-
mal weighting matrix W* to be the matrix that minimizes the asymptotic vari-
ance of ¢. Similar to the argument that the Cramer Roa lower bound justifies the
use of ML over other estimation techniques, we choose the estimator within the
class of GMM estimators that is the most efficient.
It is possible to use the central limit theorem to show that

TﬁlZ,T:Ig(VzJP) ~N(0,S) Q27)

where S is the covariance matrix of the moment conditions; Hansen (1982) dem-
onstrated that W* = S~ . This then has an apparent circularity, to estimate W*
we must first know ¢ and to estimate ¢ we must first knowW™. This circularity
can be resolved by implementing Hansen’s two-step procedure. First, we obtain
a consistent estimate of ¢ by using any admissible matrix W, often just the iden-
tity matrix. Based on this set of parameters, we estimate W*, and given this esti-
mate, we estimate ¢ in a second estimation step. It would be possible to iterate
this procedure to convergence, but this is not often done because, theoretically
at least, there is no advantage in further steps.

6 Some Examples of Moment Conditions

It helps understanding to give some simple examples of moment conditions.
Consider the case of a standard linear model:

Vi =Xip+u; (28)

where y is the dependent variable, x is a vector of n exogenous variables, ¢ is a
suitably dimensioned vector of parameters, and u is an error term. The moment
conditions that will generate exactly the same result as OLS will be

E(x;u,-) :E(xﬁ(yi —xiqﬁ)) =0 (29)

which reflects that fact that OLS produces parameter estimates that make the
exogenous variables orthogonal to the error term. This is a method of moment’s
estimator because there will be exactly as many moment conditions as param-
eters to estimate. We can generalize this to be an instrumental variable estimator
or generalized methods of moment estimator by introducing a vector of vari-
ables z; of p suitable instruments, in which there are more instruments in the
z vector than x’s (p > n). The moment conditions then become

E(z;u,-) = E(z;(y,- — xi(ﬁ)) =0 (30)
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7 The Standard Linear Model and Least Squares

In this section, we consider the basic properties of least squares estimation of the
standard linear model, which has for years been the workhorse of econometrics.
Consider

Vi =Xep+uy 3D

as defined previously and let the least squares estimate of the parameters be dA)
Now let us assume that following;

1. The vector x; is nonstochastic
2. The error term u, is a normal random error with mean zero and covariance
matrix E(uu') = 6°1

It is easy to show that we can write the least squares estimator as

b=+ (x'x)"Ku (32)

In order to make statements about the behavior of (2)’ we need to know about the
behavior of(x'x) ' and x’e. The strongest and usual assumption is that'

. / . /
lim <ﬂ) —Q and M <ﬂ> —0 33)
t—oo\T t—oo\ T

where Q is a finite nonsingular matrix. The x’s are not linearly dependent in the
limit, they settle down to a constant matrix on average and in the limit there is no
relationship between the x’s and the error term. Under these assumptions, the
least squares is the maximum likelihood estimator, and it is consistent and effi-
cient and often is described as the best linear unbiased estimator (BLUE). Given
these assumptions, it is easy to demonstrate the consistency of LS estimation.
We can restate Eq. (32) as

N ) ¥\ ' Wu
$=¢+plim l(7> 7] (34)
7N\ 1 /
$:¢+plim[()%> ]plim [)%} (35)
/ -1
p=d+ lim [<x;> ]plim [";”] (36)
p=¢p+Q7'0 @37)
p=¢ (38)

1. We define orders of magnitude and convergence in the appendix to this chapter.
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Therefore, LS estimation gives a consistent estimate of the true parameters.
The failures of OLS can be summarized in terms of failures of the two sets of
the previous assumptions in one way or another. Consider the following cases.

8 Failure of E(uu') = 6°1

This can occur in two principal ways: the identity matrix might have constant
diagonal elements but its off-diagonal elements might be non-zero. In the case
of a time series regression, this would be interpreted as a serially correlated error
term. In the case of a cross-section or panel regression model, this would be
interpreted as a spillover in the errors from one individual to another, giving
rise to spatial econometrics literature. It also is possible that the off-diagonal
elements might be non-zero, but the diagonal elements have different values.
This would give rise to the case of heteroskedasticity.

In both of these cases, LS remains a consistent estimation technique,
although it is no longer the maximum likelihood estimator and so it is not fully
efficient. Inference regarding the parameter estimates, however, is no longer
correct using the standard formulas, and inference then must be based on some
version of the quasi maximum likelihood covariance matrix (Eq. 20). In prac-
tice, when using LS, it is not generally possible to apply Eq. (20) directly.
Therefore, some specific form of the QML covariance matrix must be used; typ-
ically for serial correlation in a time series regression, this would be the Newey
and West (1987) covariance matrix and for heteroscedasticity, it would be a ver-
sion of the White (1980) covariance matrix.

9 The Vector x; is Stochastic

Relaxing the assumption that x is nonstochastic has only minor consequences as
long as the second assumption in Eq. (33) still holds. LS will no longer be unbi-
ased in small samples, but it remains consistent and efficient.

. lim .
10 Failure of o o (X4)=0
This can arise for a variety of reasons, but principally because either x is not
weakly exogenous or that u is not random, perhaps because it contains some
element of measurement error in the x's.

There are various definitions of exogeneity, but in terms of obtaining con-
sistent parameter estimates, the key definition is weak exogeneity. Engle,
Hendry, and Richard (1983) found that this requires a weakly exogenous var-
iable to be independent of the current relevant endogenous variables and that the
parameters that generate the endogenous variable and the weakly exogenous
variable are variation free. The most obvious way in which this can be violated
is if x is a function of the current endogenous variable, giving rise to the standard
case of simultaneous equation bias.
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The other main cause of the failure of this condition is when the error terms
are contaminated by something other than a purely random component. The
principal way in which this can happen is when we measure the x variables with
error. Therefore, if x = x* + v where x* is the true value of the variable, v is a
measurement error, and x is the observed value of the variable including the
measurement error. In this case, Eq. (31) becomes y, = x,¢p + (u, — ¢pv,) where
the term in brackets is the total error term. Now there is a clear correlation
between the error term and x because both contain v and the condition will
be violated.

In both of these cases, LS estimation will give biased estimates of the param-
eters, and it is no longer consistent. The most efficient way forward would be to
specify an appropriate structural model and estimate it using maximum likeli-
hood. This is not always feasible, however, because it might not be possible to
specify a complete model nor to estimate it in a practical way. The usual alter-
native is to resort to an instrumental variable estimator or GMM, and then the
challenge is to find some appropriate set of instruments that are both properly
exogenous and not weak.

. lim .
11 Failure of o o (X¥)=Q
This assumption might be violated for a number of trivial reasons and for one
very important reason. The most obvious of the trivial reasons is where perfect
multicollinearity exists between the x’s. In this case, x'x/T becomes singular and
this assumption is violated. The multicollinearity needs to be removed by reduc-
ing the size of the x vector.

Another trivial reason would be if one of the x variables contains a determin-
istic linear trend, although in this case the properties of LS estimation might be
recovered by a slightly more complex analysis.

The important reason why this condition might fail is simply that implicitly
behind this statement is the assumption that the x variables are weakly station-
ary. A stochastic process x, is weakly (second-order or covariance) stationary if
the first two moments of the process do not change over time. A stationary pro-
cess will obey the following conditions:

E(x,)=p< oo forall ¢ (39)
E[(x, - ;4)2} < oo forall 1 (40)
E[(x;—p)(xr+x — p)] =7, forall 1,k 41)

If any of these conditions is violated, then the variable is not weakly
stationary. One of the simplest forms of nonstationary process is the
random walk

X=X+ & 42)
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where ¢, is a white noise error process with constant variance 2. We can alter-
natively write this as

t
X, =Xxo+ Zsi 43)
i=1

In this case, the expected value of x; is x,_; and therefore it changes at each
point in time violating Eq. (39). Also, the variance of x, is easily shown to
be var(x,) = var (¢, + & + -+ + &) = to>, which goes to oo as t — oo, thus
violating Eq. (40). This also means that

lim (x’x> 40 44)

t—oo\ T

as the variance of x will go to infinity. A process such as Eq. (42) can be ren-
dered stationary by taking the first difference x, — x,_; = w, = &, in which case
x is referred to as an integrated process. Because it needs only to be differenced
once to make it stationary, it is integrated of order 1, or I(1). A random walk
series such as Eq. (42) is of smaller order in magnitude than T, that is
T ZrTzlxtz ~0p(T).
The nonstationarity of the x variables raises another important issue. If both
x and y are stationary in the standard linear model y, = x,¢p + u,, then the error
term u, also will be stationary. If either x or y is nonstationary, however, then
there is no guarantee of the stationarity of the error term, and it is again possible
lim

that we have a failure in the assumption that (’%”) =0. This is the classic
t— o0

case of a spurious regression defined by Granger and Newbold (1974), which
comes about essentially when the last term in Eq. (34) is undefined and the LS
estimator does not converge to anything well defined.

12 Cointegration

Although it generally is true that if x and y are nonstationary then the error
term also will be nonstationary, this does not always have to be the case. When
this happens, it gives rise to the important special case of cointegration.
Following Engle and Granger (1987), we can define cointegration. Let w, be
a k x I'vector of variables, then the components of w, are said to be cointegrated
of order (d,b) if

(1) All the components of w, are I (d)
(2) There is at least on vector of coefficients a such that aw,~I(d — b)

In other words, there is a combination of the w, variables that is integrated at a
lower order than the variables themselves.
This gives rise to the important Granger Representation Theorem.
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Let w, be a vector of k x I(1) components and assume that there exists > 0
cointegrating combinations of w,. Then there exists a valid error correction
model of the form

p(L)(1—L)w, = —aw,_t+v+¢g (45)

where 7 has rank r < n.
A moving average representation also exists.

(1—LYw,=C(L)(&+0)

=C(1)(&+v)+C*(L)A(& +0) (46)

where C(1) has rank n — r.

This theorem demonstrates several things. First, in the presence of nonsta-
tionary variables, cointegration is required for a model to be valid. Second, if
there are r cointegrating vectors, there are n — r common stochastic trends
(represented by the rank of the C(1) matrix). Third, in the absence of cointegra-
tion, the regression will be spurious. Fourth, the existence of cointegration
implies the existence of Granger causality in at least one direction. Finally, that
the time dating of the levels terms is unimportant.

Given these concepts, we now can define the property of an LS regression in
the presence of cointegration. We start with the formula for the LS estimator:

/ -1
$=¢+plim l(%) %] (47)

We already have seen that LT‘ ~ 0,(T) that is, the x variables explode proportion-
ally to the sample size 7. Because the model is cointegrated and the error is
stationary, we also can show that £~ 0,(1), therefore

T(p—¢) ~0,(1) (48)
(p—¢)~0,(T7") (49)

which means that the bias in the LS estimator disappears in proportion to the
inverse of the sample size T. This is in contrast to the standard case of LS with
stationary variables, in which ((}5 — ¢) ~ 0, (T’O'S) , where the bias disappears
in proportion to the inverse of the square root of the sample size. This is known
as the super consistency of LS estimation with cointegrated nonstationary
variables.

13 Conclusion

In this chapter, we have reviewed some of the basic concepts that lie behind
standard estimation and regression work. This began with the simple ideas of
sampling, the population, and the sample distribution. We discussed the central
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limit theorem and the law of large numbers. We then outlined the two basic
approaches to classical estimation: the maximum likelihood approach and
instrumental variables/Generalized Methods of Moments. We then discussed
the basic linear regression model and the problems that can arise in LS estima-
tion when the underlying assumptions prove to be false. Finally, we outlined
the problem of nonstationarity and cointegration and showed how under
cointegration estimation actually can be more effective based on the super
consistency proof.

Appendix Order of Magnitude and Convergence

In this appendix, we summarize the important concept of orders of magnitude
and convergence, which is fundamental to understanding the analysis of state-
ments such as Eq. (33). More detail about these fundamental concepts are found
in Judge, Griffiths, Carter Hill, Lutkepohl, and Lee (1985).

Order of magnitude of a sequence: A sequence ar is at most of order T* if
there exists a real number N such that

T |ar| <N (A.1)

This is written as ay = O(Tk).
Smaller order of magnitude: A sequence ay is of smaller order of magnitude
than T* if

lim T *a; =0 (A.2)
T—o0
This is written as ar = o(T%).
These definitions can be extended to vectors and matrices by applying
the definitions to every element of the matrix under consideration.

There are ‘also some useful algebraic results in this area. Let ar = O(T")
and by = O(T), then

aTbT =0 (Tk +‘j)
lar|* =0(T") (A.3)

ar +br :0(max{Tk, Tj})

Convergence in probability: A sequence of random variables x, x, ... , X7 con-
verges in probability to the random variable x if, for all € > 0
lim =P[|xr —x| >€]=0 (A4
1—00

That is, the probability that | x; — x| is greater than some small positive number
is zero. Then, x is called the probability limit of x7, which is written as
p lim x7 = x or alternatively x; — x.
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Almost sure convergence: This is a stronger concept of convergence than
convergence in probability, the basic idea here for T > T,. The probability that
any two x,/s differ from x by more than an arbitrarily small amount is vanish-
ingly small. The random variable x; converges almost surely to the random var-
iable x if

P(TILH;XT_X>E):0 (A5)

We write this as xy 45 x

Slutsky’s theorem is important when working with probability limits. It
states that, for any continuous function g thenp lim (g(x7)) = g(p lim (x7)). This
is in contrast to Siegel’s paradox, which states that for standard expectations
E(g(xy)) # g(E(x).

Order in Probability: We can combine the ideas of probability limits and
order in magnitude to give a weaker version of orders in magnitude. A sequence
of random variables x; is at most of order in probability T* if for every & > 0
there exists a real number N such that

P[T™*xy| >N| <e forall T (A.6)

This is expressed as x; = OP(T’().
Similarly to orders in magnitude, we can say that xr is of smaller order in
probability than T*if

plimT *x; =0 (A7)

Which again is expressed as x; = OI,(Tk).

A final useful relationship in this area of econometric theory is Chebyshev’s
inequality, which states that if x is a random variable with mean X, then for
everyé > 0

E[(x—x)z}

Pllx— 28 <—— (A8
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1 Introduction

The availability of panel data can greatly facilitate the estimation of causal
effects from nonexperimental data. For example, for studying policy interven-
tions using linear models, the methods of fixed effects (FE) estimation and first
differencing (FD) estimation are used routinely. The primary attractiveness of
the FE and FD methods is because of their eliminating additive, unobserved het-
erogeneity that is thought to be correlated with the policy variable or variables
of interest. Fixed effects-type approaches are available in special cases for non-
linear models, although in such cases they are best viewed as conditional max-
imum likelihood or conditional quasimaximum likelihood estimators, in which
a conditioning argument essentially removes the dependence of an objective
function on unobserved heterogeneity. The leading cases are the FE logit and
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FE Poisson estimators. To handle heterogeneity more generally in a microeco-
nometric setting, in which the number of available time periods, T, is typically
small, the correlated random effects (CRE) approach can be effective.
Wooldridge (2010) shows how the CRE approach can be used for a variety
of nonlinear panel data models used in practice. See also Wooldridge (2018)
for some developments using unbalanced panels.

One drawback to FE, FD, and CRE approaches is that they allow for only
one kind of endogeneity: correlation between the time-varying explanatory var-
iables, often through sometime like the time average of these variables, and
time-constant heterogeneity. But in many contexts we might be worried about
correlation between at least some of the covariates and unobserved shocks—
often called idiosyncratic errors. In the case of a linear model, combining instru-
mental variables (IV) approaches with the FE and FD transformations can be
quite powerful. For example, Levitt (1996, 1997) uses IV approaches after elim-
inating heterogeneity at either the state or city level.

Fixed effects IV approaches explicitly recognize two potential sources of
endogeneity: “heterogeneity endogeneity,” which arises when one or more
explanatory variables is correlated with time-constant heterogeneity, and “idi-
osyncratic endogeneity,” which arises when one or more explanatory variables
is correlated with time-varying unobservables. Both kinds of endogeneity also
can be present in nonlinear models. Papke and Wooldridge (2008) [hereafter,
PW (2008)], in the context of a probit fractional response model, show how
to combine the CRE and control function approaches to allow for heterogeneity
endogeneity and idiosyncratic endogeneity. [More recently, Murtazashvili &
Wooldridge, 2016 use a similar approach for panel data switching regression
models with lots of heterogeneity.] The approach is largely parametric,
although it is robust to distributional misspecification other than the conditional
mean, and it allows unrestricted serial dependence over time—a feature not
allowed, for example, by random effects probit or fixed effects logit
approaches. The PW (2008) approach is attractive because it leads to simple
estimation methods, robust inference, and easy calculation of average partial
effects. It does, however, have a couple of potential drawbacks. The first is that
the method does not allow one to tell whether a rejection of the null hypothesis
of exogeneity of the covariates is because of heterogeneity or idiosyncratic
endogeneity. Second, the explanatory variables that are potentially endogenous
in the structural equation are not rendered strictly exogenous in the estimating
equation. Rather, they are only contemporaneously exogenous, which means
that only pooled methods, or method of moments versions of them, produce
consistent estimators. This leaves out the possibility of applying quasigenera-
lized least squares approaches, such as the generalized estimating equations
(GEE) approach that is popular in fields outside economics.

In this paper, we show how to modify, in a straightforward way, the CRE/
CF approach of PW (2008) so that we can easily separate the two kinds of
endogeneity. One benefit is that we can test the null hypothesis of idiosyn-
cratic exogeneity while allowing for heterogeneity exogeneity, which
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effectively allows us to determine whether an IV approach is needed.
Section 2 covers the linear case, in which we show that our new control func-
tion approach leads to a test statistic that is identical to the variable addition
Hausman test discussed in Wooldridge (2010, Chapter 11). This sets the
stage for two leading cases of nonlinear models, an exponential mean func-
tion and a probit mean function. The exponential mean case, treated in
Section 3, is interesting because the robustness properties of the Poisson
FE estimator can be combined with the control function approach to obtain
a test for idiosyncratic exogeneity that is fully robust to distributional mis-
specification, as well as to serial dependence of arbitrary form. We also
cover the issue of estimating average partial effects, and discuss the merits
of a CRE/CF approach. In Section 4 we turn to a probit response function—
as in PW (2008)—and show how to modify PW’s CRE approach to sepa-
rately analyze the two kinds of endogeneity. Section 5 discusses how the
approach applied to general nonlinear unobserved effects models, and pro-
vides a discussion of the pros and cons of using a joint MLE—such as ran-
dom effects probit or random effects Tobit—in the second stage. Two
empirical applications in Section 6 show how the methods are easily applied,
and Section 7 contains concluding remarks.

2 Models Linear in Parameters
We start with a “structural” equation
Yirt =Xinfy +cit + Ui (D

where, for now, the explanatory variables are

Xir1 = (y,-,z, Zin )

The vector z;,; typically would include a full set of time effects to allow for sec-
ular changes over time. We suspect the vector y;, is endogenous in that it might
be correlated with the unobserved effect (or heterogeneity), c;;, and possibly
with the idiosyncratic error, u;,;. In what follows, we allow all exogenous vari-
ables, which include the vector z;,; and variables excluded, z;,,, to be correlated
with the heterogeneity. Therefore, we proceed as if all explanatory variables can
be correlated with the unobserved heterogeneity, c;;. In other words, we are not
taking a traditional random effects approach.

The difference between y;,» and z; is that we take the latter to be strictly
exogenous with respect to {u;,}:

Cov(zy, uir1) =0,allt, r=1,...,T.

By contrast, {y;»} can be correlated with {u;,}, either contemporaneously or
across time periods.

Given a suitable rank condition, which is discussed in Wooldridge (2010,
Chapter 11), 1 can be estimated by fixed effects 2SLS (FE2SLS), sometimes
called FEIV. To describe the estimator, define the deviations from time aver-
ages as
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T T T
Vir =yin =Ty vty Vio=Yia =T "> Virr» Bu=2u—T 'Y 2.

r=1 r=1 r=1

Given a random sample (in the cross section) of size N, one characterization
of FE2SLS estimator is that it is pooled 2SLS applied to the equation

Vin =Xinf +iin, t=1,...,T

using IVs z;,. With fixed T and N — oo, the estimator is generally consistent and
v/N-asymptotically normal. Fully robust inference that allows arbitrary serial
correlation and heteroskedasticity in {u;,} is straightforward.

In terms of precision, the FE2SLS estimator can have large standard errors. We
first remove much of the variation in the data by removing the time averages, and
then we apply 2SLS. Ata minimum, we require sufficient variation in the excluded
exogenous variables that serve as instruments for y;,,. Therefore, it is of some inter-
est to test the null hypothesis that {y;,} is exogenous with respect to {u;}.

A common approach is to apply the Hausman (1978) principle, where the
two estimators being compared are the usual FE estimator and the FE2SLS esti-
mator. The usual FE estimator is consistent if we add the assumption

Cov(y;pn,uir1) =0,allt, r=1,...,T.

The FE2SLS estimator does not require this stronger form of exogeneity of y;,.

There are a couple of drawbacks to the traditional Hausman test. Most
importantly, because it assumes that one estimator is relatively efficient—in
this case, the FE estimator plays the role of the efficient estimator—it is not
robust to serial correlation or heteroskedasticity in {u;,; }. If we make our infer-
ence concerning f1 robust to departures from the standard, usually unrealistic,
assumptions, then it is logically inconsistent to use nonrobust specification
tests. Wooldridge (1990) makes this point in the context of a variety of speci-
fication tests. The second problem with the traditional Hausman test is the
asymptotic variance required is singular, and this can lead to computational
problems as well as incorrect calculation of degrees of freedom.

A simpler approach is to obtain a variation addition test (VAT), which is
based on the control function approach. Wooldridge (2010, Chapter 11)
describes the procedure:

Procedure 1 (FE Variable Addition Test):
1. Estimate the reduced form of y,.,
Yin =Zilllh + € +uyp,

by fixed effects, and obtain the FE residuals,

U =Yin —Zilla

T
Yio =Y — T ZYirZ

r=1
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2. Estimate the equation
Yirt =Xin f1 +Wipp; +cit +errorin
by usual FE and compute a robust Wald test of Hy: p; = 0. O

The VAT version of the Hausman test has a simple interpretation, because the
ﬁ | obtained in the second step is actually the FEIV estimate. If we set p; to zero,
we are using the usual FE estimator. If we estimate p;, we obtain the FEIV esti-
mator. Importantly, it is very easy to make the test robust to arbitrary serial cor-
relation and heteroskedasticity. As a practical matter, it is important to
understand that the nature of y;,, is unrestricted. It can be continuous, discrete
(including binary), or some mixture. Later, we will discuss what happens if we
allow more general functional forms.

In motivating our general approach for nonlinear models, it is useful to
obtain a test based on Mundlak’s (1978) CRE approach. We must use some care
to obtain a test that rejects only in the presence of idiosyncratic endogeneity. We
start with a linear reduced form for y;,, but we emphasize that, for linear
models, this equation is not restrictive. A linear unobserved effects reduced
form is

Yin =z dlh +cp +u;

where II, is dimension L x G where G is the dimension of y;,». Now we apply
the Mundlak (1978) to the vector of unobserved heterogeneity, ¢;,:

Co =Wy, +Z;E) +ap,

wherez; =T} ZrT:ﬂir is the row vector of time averages of all exogenous vari-
ables and &, is L x Gy. Plugging into the previous equation gives

Yio=VY> +Z5,H2 +ii52 +ap+upn, = 1,....T.
In what follows, we operate as if

Cov(zi, u;2) =0, all 1,5

Cov(zy,ap) =0, all ¢,

but, as we will see, even these mild assumptions need not actually hold.
The key now in obtaining a test of idiosyncratic endogeneity is how we
apply the Mundlak device to ¢;; in the structural equation

Vit =Xy +cit + i

One possibility is to project c;; only onto z;. It turns out that this approach is
fine for estimating f1 but, for testing endogeneity of y,,, it does not distinguish
between

Cov(yin, cin) #0
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and

Cov(Yin, tis1) #0.
Instead, it is better to project ¢;; onto (Z;,V,») where
Vin = a2 + W
Then we have
cit =1y +Zidy + VTt +dir
Cov(z;,an) =0
Cov(yy,ai)=0
Importantly, the remaining heterogeneity, a;;, is uncorrelated not only with

z,={z;:t=1, ..., T} but also with y;, = {yin: t =1, ...,}. Plugging into the
structure equation produces the following estimating equation:

Vit =Xify +1 +Zih + VTt +aj +uin
=Xy +1 +Zih + (Yo — Wy — ZiM2) Ty +aj + i

=xif +w + Y +ZE +ai + g

Now, by the Mundlak device, a;; is uncorrelated with al/l RHS observables, that
is, (Yir» Zin, ¥;2,Zi)- By the strict exogeneity assumption on {z;: t =1, ..., T},
u; is uncorrelated with (z;,, Z;). Therefore, we can now test whether y,, is
uncorrelated with u;,; by testing whether v, is uncorrelated with u;,;.

Procedure 2 (CRE/CF Variable Addition Test):
1. Run a pooled OLS regression

Yio =+ 2L +Z,5; + v,

and obtain the residuals, V;;.
2. Estimate

Yin =X w1 +YpT1 +Zi& + Vipp +errorin )
by POLS or RE and use a robust Wald test of Hy: p; = 0. O

Because the derivation of the estimating equation in Procedure 2 uses the Mun-
dlak device, it nominally appears that it is less robust than that based on fixed
effects in Procedure 1. This turns out not to be the case; in fact, the two
approaches yield identical estimates of 1 and p;. The estimate of f1 is still
the FEIV estimate. Therefore, we can use either the FE approach or the Mundlak
CRE approach, and it does not matter whether the residuals we add to the equa-
tion are the FE residuals, ﬁ[,z, or the Mundlak residuals, v;,. These residuals are
not the same, but in the appendix it is shown that

Vio =Ujn +Tp
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where
Fp =Y,k —ZiA>

are the between residuals from regressing y;, on 1, Z;. In particular, ¥, is a linear
combination of (¥, 1, Z;). It follows immediately that replacing Vi in Eq. (2)
does not change f1 and p,. Only v, ft; and €, would change.

Interestingly, if we drop ¥;, from step (2) in Procedure 2, the resulting esti-
mate of f1 is still the FEIV estimate. But we obtain a different estimate of p,,
and basing a test of endogeneity on the equation without including y;, conflates
heterogeneity endogeneity and idiosyncratic endogeneity. Evidently, this point
has gone unnoticed, probably because Procedure 1 is the usual VAT in testing
for idiosyncratic endogeneity. Neverthless, this observation is very important
when we must use the Mundlak CRE approach in nonlinear models (because
an FE approach is not available).

The conclusion from this section is that, for using the CRE/CF approach for
testing

Hoy:Cov(ypn, tis1) =0,
we should use the equations

Yio =W+ L + 2,8y — Vip
Vit =X+ + YT +ZiE +Vipp, +errory,

being sure to include y,,.

As an aside, one might want to know what happens if the seemingly less
restrictive Chamberlain (1982) version of the CRE approach is used in place
of Mundlak. The answer is: nothing. At least not if we use the basic estimation
methods that do not attempt to exploit serial correlation or heteroskedasticity in
the {u;;}. To be clear, letting

zZ,= (Zil, cees ZiT), Yo = (yiu, cees yirz),

the equations

Yin =W+ 2y + 2,85 — Vi
Vit =Xin 1+ +Zi€ + YT +Vipp +erroriy

result in the same estimates of #; and p; as the Mundlak approach, provided we
use either pooled OLS or RE in the second equation.

How can one use the test of idiosyncratic endogeneity? Guggenberger
(2010) shows that the pretesting problem that exists from using the Hausman
test to determine an appropriate estimation strategy can be severe. Nevertheless,
such practice is common in empirical work. If the VAT rejects at, say, the 5%
significance level, one typically uses the FEIV estimator. If one fails to reject, it
provides some justification for dropping the IV approach and instead using the
usual FE estimator.
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3 Exponential Model

If y,;1 is nonnegative, and especially if it can take the value zero, an exponential
conditional mean function is attractive. (The common alternative when y;,; > 0
is to use log(y;;) in a linear model, but some researchers prefer to model y;,
directly.) An unobserved effects model that allows for heterogeneity endogene-
ity and idiosyncratic endogeneity is

E(Yil Yoo Zis cits Tint) = E(Yint| Yir» Zits €its it ) = cn €Xp (Xin By +7in1)s - (3)

where, again, X;; = (Y2, Zi;1)- Now the heterogeneity, c;;, is nonnegative and
multiplicative. We use r;,; to denote time-varying omitted factors that we sus-
pect are correlated with y;,». We could make r;,; multiplicative but it is slightly
more convenient to have it appear inside the exponential function.

3.1 An FE Poisson/CF Approach

As discussed in Wooldridge (1999) and Wooldridge (2010, Chapter 18), with-
out 7, an appealing estimator is what is typically called the fixed effects Pois-
son estimator. In Hausman, Hall, and Griliches (1984), the FE Poisson estimator
was obtained as a conditional MLE, in which the Poisson assumption was
assumed to hold along with conditional independence. Wooldridge (1999)
showed that the neither assumption is needed to ensure consistency and asymp-
totic normality of the FE Poisson estimator. Viewed as a quasiMLE, the esti-
mator is fully robust in the sense that it only requires, in the current notation
(with idiosyncratic endogeneity),

E(yin|Xit, cit) =E(y;n| Xin, cit) = cirexp (Xin f1).

The first equality imposes a strict exogeneity requirement with respect to
idiosyncratic shocks. It will be violated if r;; is present and correlated with
Vis2 for any time period s, including, of course, s = .

To obtain a test of the null hypothesis that there is no idiosyncratic endo-
geneity, we again need time-varying, strictly exogenous instruments that are
excluded from z;,,. Formally, the null hypothesis is

E(yin| Yi» 2i» cit) = E(Yin| Yina» Zint» cin) = cinexp (Xin ),

where the key is that z;,, is exclused from the mean function. Also, all variables
are strictly exogenous conditional on c¢;;. In order to obtain a test, we need to
specify an alternative, and this is where explicitly introducing a time-varying
unobservables into the structural model, and a reduced form for y,,», come into
play. But we emphasize that these do not play a role under the null hypothesis.
They are used only to obtain a test. In addition to Eq. (3), we write

Yio=zildh +cp+uwp, t=1,....T,

and, because the {z;} is strictly exogenous, we test for correlation between
{ri1} and functions of {u;,}. We use the analog of the test from Procedure 1.
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Procedure 3 (Poisson FE/VAT):
1. Estimate the reduced form for y,, by fixed effects and obtain the FE
residuals,

ﬁirz = 5’1'12 - iitnz

2. Use FE Poisson on the mean function

E(ym | Zist, Yirp» ﬁnz, Cil) =Ci1€Xp (Xizlﬁl + ﬁit2p1>
and use a robust Wald test of Hy : p1 =0. O

It turns out that, as in the linear case, the fixed effects residuals can be replaced
with the Mundlak residuals. Again let v, be the OLS residuals from estimating

Yio =¥ +Zillh + Z;E> + vjp».

Then, as shown in the appendix, step (2) in Procedure 3 produces the same esti-
mates of (ff;, p;). This follows from the form of the FE Poisson quasilog-
likelihood function and the fact that v;» = i:i,»,z + T2, and so removing the time
averages of v, produces the FE residuals u;,.

As in the linear case, it is useful to remember that, under the null hypothesis,
no restrictions are placed on y;,. In fact, the EEVs could include binary variables,
in which case the reduced forms are linear probability models estimated by FE or
the CRE approach. Under the null hypothesis that {y,;} is exogenous, we can use
any way of generating residuals that we want. More power might be obtained by
using different models for the elements of y;,, but that is a power issue.

The equivalance between the between using the FE residuals ﬁ,-,z and the
Mundlak residuals v;», means that we can obtain sufficient conditions for
Procedure 3 to correct for idiosyncratic endogeneity when it is present. But
now we need to make assumptions on the reduced form of y;,. We can get
by with somewhat less, but a convenient assumption is

(ri1, up) is independent of (¢;1, €2, Z;),

where r;; is the vector of omitted variables in Eq. (3) and u;, is the reduced
form error. This assumption that v;, is independent of means that the Mundlak
equation is in fact a conditional expectation. Moreover, there cannot be
heteroskedasticity.

Now, if we make a functional form assumption,

Elexp (rinn )| up) = exp (61 + winp,) = exp [0 + (Vio — a1 )py ],

which follows under joint normality of (r;;, u;;) but can hold more generally.
The structural expectation is in Eq. (3), where now we also assume this is
the expectation when we add c;, to the conditioning set. Then

E(yin1| Yio, i, cit, €2, Vin) = Ci1 €XP [Xin B} + 01 + (Vi — 211 )py ]

=gj1exp (X1 f +Vinp,)
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where g;; = ¢;; exp(—a;;p1). Now we can use Procedure 3, with either the FE
residuals or the Mundlak residuals, to consistently estimate /3, along with py,
using the Poisson FE estimator. We require nothing more about the Poisson dis-
tribution to be correctly specified, and serial independence is entirely unrest-
ricted. However, because we now allow p; # 0, the standard errors need to
be adjusted for the two-step estimation. One can use the delta method, or use
a panel bootstrap, where both estimating steps are done with each bootstrap
sample.

3.2 Estimating Average Partial Effects

In addition to consistently estimating #1, we might want to obtain partial effects
on the conditional expectation itself. One possibility is to estimate the average
structural function (Blundell & Powell, 2004), which averages out the unob-
servables for fixed x;;:

ASF((X11) = E ¢y, r) [Ci1 €Xp (X1 By +7Tir1)]
=E(cy, rcirexp (rin)] exp (Xuf)-
Let

Vit = ¢i1 exp (rir)
0[1 = E(V,‘ﬂ).

Because we have a consistent estimate of fl—which typically would
include time effects—we just need to estimate 6,; for each ¢ (or, we might
assume these are constant across ). Write

Yir1 = Vi1 €Xp (Xir1ﬂ1 )em
E(ein| X1, cir, 1) = 1.
In particular,
E(vinnein) =EvinE(ei| vinn)] =E(Vir1) = 01.

Therefore,

0, = E|: Yit ]
exp (Xinfy)
and so a consistent estimator of 6,; is

N

Yit .
Z €Xp (Xitli))l )]

i=1

é[l :N_l

Therefore, a consistent and +/N-asymptotically normal estimator of
ASF (X;1).
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is
ASF (%) = 0p1 exp (xa ;).

One can compute derivatives or changes with respect to the elements of x,;
and insert interesting values. A valid standard error for the resulting partial
effects can be obtained via the delta method or bootstrapping.

Sometimes one wishes to have a single measure of partial effects, averaged
across both the unobservables and observables. If x,,; is continuous—for exam-
ple, an element of y,,—we usually obtain the derivative and then average. The
average partial effect (APE) is

APE ;= ByiE(x,y, cn,rin) [Ci1 €XP (Xirt By +Tin1 )]
and this is particularly easy to estimate because, by iterated expectations,
E(Xul, Cits Tint) [Cil €Xp (Xitlﬂl +7in )] = E(yit)'

(This simplification comes because of the exponential mean function.) There-
fore, for each ¢,

APE;; :ﬂle()’iz),

. . . . 1IN
and a simple, consistent estimator is /ilj (N lzizly,-t). In many cases one

would average across ¢ as well to obtain a single partial effect.

3.3 A CRE/Control Function Approach

A CRE/CF approach can be used, although it requires more assumptions. Let

E(yin| Yinn» Zint» Cit Tint ) = Ci1 €Xp (Xint By + Tt )
Vir1 = Cj1 €Xp (Vm)
Y=+ 2 I +Z;E; + V.

Then there are two possibilities. Papke and Wooldridge (2008) suggest model-
ing the conditional distribution

D(vin| zi, Vin),

where and assuming that this depends only on (Z;, v;,). Although this approach
leads to consistent estimation under maintained parametric assumptions, it does
not lead to a straightforward test of idiosyncratic endogeneity: v;,; might be
related to v;, because of heterogeneity or idiosyncratic endogeneity. In addi-
tion. because we obtain an equation for E(y;;1 | X1, Zi, Vi), only contemporane-
ous exogeneity holds because we are only conditioning on v;, at time f.
Therefore, only pooled methods can be used for consistent estimation.

Drawing on the linear case, a second possibility is attractive: Model the
distribution
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D(vin| zi, Vin).
Here, we use a Mundlak assumption:
D(virt| 2i, Vio) = D(Virt| Zi, Vin, Vi)
=D(vin|Zi, ¥, Vira).

By construction, strict exogeneity holds for the conditioning variables, and so
GLS-type procedures can be used. Moreover, even before we use a parametric
model, this approach endogeneity of {y;»} with respect to ¢;; and {u;,}.

If we use a linear index structure, the estimating equation is

E(yin|zi,ypn) = exp(y +Xinf1 + YT +Z:E, +Vipp,).

Identification of the parameters follows because the time-varying exogenous
variables z;, are excluded from x;,;, and therefore generate variation in v;,.
The presence of ¥, and Z; allows the unobserved heterogeneity to be correlated
with all explanatory variables and the excluded exogenous variables. The test of
Hy: p1 = 0 is a clean test of idiosyncratic endogeneity, provided we assume our
instruments are strictly exogenous and that the Mundlak device holds.

There are several approaches to estimating. The simplest is to use the pooled
Poisson QMLE; naturally, we need to use fully robust inference to allow serial
correlation and violations of the Poisson assumption. But we also can use a gen-
eralized least squares approach, where a working variance-covariance matrix is
used to potentially increase efficiency over pooled estimation. Typically, one
would use the Poisson variance, up to a scaling factor, as the working variances,
and then choose a simple working correlation matrix—such as an exchangeable
one, or at least one with constant pairwise correlations. Wooldridge (2010,
Chapter 12) shows how the GEE approach is essentially multivariate weighted
nonlinear least squares with a particular weighting matrix.

Because of the properties of the exponential function, it is possible to esti-
mate the parameters f1 using a generalized method of moments approach on a
particular set of nonlinear moment conditions. The GMM approach does not
restrict that nature of y;,. (See Wooldridge (1997) and Windmeijer (2000).)
At a minimum, one can use the test for idiosyncratic endogeneity based on
the Poisson FE estimator before proceeding to a more complicated GMM
procedure.

4 Probit Response Function

With a probit conditional mean function, there are no versions of a fixed effects
estimator that have attractive statistical properties, at least when T is not fairly
large. Therefore, we consider only CRE/CF approaches to testing and correct-
ing for endogeneity.
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A probit conditional mean for y;;; € [0, 1], which we consider the structural
equation, is

E(yin| 2i, ¥ips it in) = E(Vint| Zint, Yig» ¢y in) = @(Xint fy + it +tin ), (4)
and this can hold when y;,; is binary or when it is a fractional response. We
assume that y;» continuous and write a Mundlak reduced form, as before:

Yio =¥ +2idly + 2,85 + Vipp.
The important restriction (which can be relaxed to some degree) is
vip is independent of z;.
Define
Tint = Ci1 + Uiy -
Now we assume
D(rin| 2i, vi2) =D(rinn| Zi, Vi, Vie) = D(rint| Zi, Y120 Vi)
where the second equality holds because of the relationships among z;, ¥;,, and
Vi>. In the leading case, we use a homoskedastic normal with linear mean:
i |Zi, ¥, Vi ~ Normal(w| + Y71 + Z:E| + Vippy, 1).

We set the variance to unity because we cannot identify a separate variance, and
it has no effect on estimating the average partial effects—see Papke and
Wooldridge (2008) for further discussion. Then, an argument similar to that
in Papke and Wooldridge (2008) gives the estimating equation

E(yin| zi, yin) = Py +Xinf1 + Ym0 +Z:E +Vinp, ),

which is clearly similar to the estimating equation in the exponential case.

Procedure 4 (CRE/CF Probit):
1. Obtain the Mundlak residuals, v;,, by pooled OLS.
2. Insert V; in place of v;,, use pooled (fractional) probit of
Yit1 On l,xm,yiz,z,f/itz, t=1,....,T;i=1,..,.N. O

As in the linear case, Procedure 2, because V;p = u,,2 + T we can replace v,
with i, and not change ﬂl or p;; only ¥, t; and §1 would change.

As before, we can use a cluster-robust Wald test of Hy: pl = 0 as a test of
idiosyncratic exogeneity. Compared with Papke and Wooldridge (2008), y;, has
been added to the equation, and doing so allows one to separate the two
sources of endogeneity. Further, because the conditional mean satisfies a strict
exogeneity assumption, we can use a GEE (quasiGLS) procedure, although
bootstrapping should be used to obtain valid standard errors. Technically, the
assumptions under which Procedure 4 is consistent are different from those
for the PW procedure, but in practice the difference is unlikely to be important.
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Procedure 4 leads to a cleaner test and also has the potential to produce more
efficient estimators. Namely, GEE approaches can be used in place of the
pooled probit estimation.

Consistent estimation of the APEs is also straightforward. Using the same
arguments in Papke and Wooldridge (2008),

APE ;= B1iE 1,7, 5., vi) [ (Xit B + W1 +Zi) + Y701 + Vipp))]

N
]V*1 Z¢<X”1ﬁl +li/1 +Z'§1 +Yi2ﬁ1 +€’,'[2ﬁ1)‘| .
i=1

To obtain a single value, APE ;; can be averaged across ¢, too, and this is what
would be produced by applying the Stata margins command after pooled esti-
mation or GEE estimation. The standard error of the APE is complicated
because of the two-step estimation and the averaging. Bootstrapping the entire
procedure is practically sensible and not difficult computationally.

It can be shown that, just like the parameters, estimation of the APEs does
not depend on whether Vv, or ﬁ,-,z is used as the control function.

It is easy to make Procedure 4 more flexible. For example, rather than just
entering each variable linearly, any nonlinear functions of

(Xirt» Zis i Vi)
can be included. These would typically include squares and cross products, but
maybe higher order terms, too. One still can obtain the APEs by differentiating

or differencing with respect to the elements of x,; and then averaging across
everything. For example, if we extend the estimating equation to

E(yin| 2i, i) = Py +Xinn ) + YT +Zi€| +Vipp, + (Xin @Xin )y + (Xin ®Vin)d1),

then we simply add the terms X;;; ®X;; and X;; ®V;,» to the probit or fractional
probit estimation. We then have to account for the interactions when taking
derivatives, and then average the resulting function.

Another possibility is to allow the variance in the probit equation, whether
fractional or not, to depend on

(iis yiz’ vf12) .

Then, one uses heteroskedastic probit or fractional heteroskedastict probit to
allow c¢;; to have nonconstant variance.

5 Other Nonlinear Models
5.1 Pooled Methods

The approach taken in the previous section applies to other nonlinear models,
including the unobserved effects Tobit model. The approach is unchanged from
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the model with a probit response function. First, model the heterogeneity as a
function of the history of the exogenous and endogenous variables, (z;, ¥,»), typ-
ically (but not necessarily) through simple functions, such as the time averages,
(Zi,¥;,)- Then add reduced-form Mundlak residuals, V;, in a pooled Tobit esti-
mation. The key assumption is that for each ¢, y;;; conditional on (z;, y;,) follows
a Tobit model with linear index y| +X;1 8, + Y, +Z;€; + Vinp,; and constant
variance. If we use a pooled estimation method, then abitrary serial dependence
is allowed. As usual, we must account for two-step estimation in calculating
standard errors, and we must cluster to account for the serial dependence.

If y;; is a count variable, and we prefer to use, say, a negative binomial
model, then we can simple assume that, conditional on (z;1, ¥, Zi, iz, Vi),
vin follows the appropriate model. Notice that we would not be able to derive
such a model if we start with the assumption that the structural model for y;,;—
conditional unobservables (c;;, u;1) as in the previous section—follow a
negative binomial model. Therefore, purists might be reluctant to adopt such
a strategy even though it would perhaps provide a good approximation that
accounts for the count nature of y;;.

One can even apply the approach to less obvious situations, such as two-part
models. For example, suppose the Tobit model is replaced by the Cragg (1971)
truncated normal hurdle model—see also Wooldridge (2010, Section 17.6).
Then one can model the two parts both as functions of (z;1, ¥, Zi» Yiz, Vi),
and then separately test for endogeneity of y;, in each part by testing coeffi-
cients on V;,. Average partial effects are obtained easily by averaging out
(Zi, ¥, Vi), across i or across (i, ), in the partial derivatives with respect to
X;;. The form of the partial effects is given in, for example, Wooldridge
(2010, Eq. (17.48)).

5.2 Joint Estimation Methods

So far our discussion has centered on pooled estimation methods. There are two
reasons for this. First, pooled two-step methods are computationally simple, and
panel bootstrap methods run quickly in most cases for obtaining valid standard
errors. Second, and just as important, pooled methods are robust to any kind of
serial dependence.

It is possible to apply the CRE/CF approach to joint MLE estimation in the
second stage. For example, rather than using pooled probit, as in Section 5, one
might want to estimate a so-called random effects probit in the second stage.
The explanatory variables would be

(Xir1> Zi, Yin» Vir2)
where recall x;;1 is a function of (z;;1, y,»). Or, we could use more flexible func-
tions of the histories (z;, y;»). Although joint MLEs can be used in the second

stage, one should be aware of the costs of doing so. First, computationally joint
MLEs are usually significantly more difficult to obtain than pooled MLEs.
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Although the difference in computational times often is irrelevant for one pass
through the data, adding v, to account for idiosyncratic endogeneity of y;,»
requires some sort of adjustment for inference, although testing the null hypoth-
esis that v;;; has zero coefficients does not require an adjustment. If one uses the
bootstrap, then the increased computational burden can be nontrivial.

The second cost to use joint MLE in the second step is lack of robustness to
distributional misspecification and serial dependence. Standard joint MLEs
used for nonlinear random effects models maintain that innovations—what
we would call {u;} in Egs. (1) and (4)—are independent over time, as well
as being independent of c;; and z;. None of random effects probit, RE logit,
RE Tobit, RE Poisson, and so on has robustness properties in the presence of
serial correlation of the innovations. Moreover, even if the innovations in
Eq. (4) are serially independent, the RE probit joint MLE is not known to be
consistent.

When we apply a joint MLE in the second step, there is another subtle point.
Suppose we express the relationship between innovations in, say, Eq. (4) and
those in the reduced form of y;;, Vi, as

Uint =VinpP t+ein.

The relevant innovations underlying the joint MLE in the second step are
{ei1}, not {u;;; }—unless p; = 0. Consequently, serial correlation in the reduced
form of y;,» can cause serial correlation in the second stage MLE, even though
there was none in the original innovations.

For robustness and computational reasons, the pooled methods generally are
preferred. Future research could focus on how to improve in terms of efficiency
over the pooled methods without adding assumptions.

6 Empirical Example

Papke and Wooldridge (2008) estimate the effect of spending on fourth-grade
mathematics test using data from Michigan. The years straddle the Michigan
School Reform, which was passed in 1995. The response variable, math4, is
a pass rate, and so we use a fractional probit model response in addition to a
linear model estimated by fixed effects IV. The variable of interest is the natural
log of real per-pupil spending, averaged over the current and previous 3 years.
The instrumental variable is the foundation allowance. Which is the amount
given by the state to each school district—after the spending reform. A kinked
relationship between the allowance and prereform per-pupil revenue means
that, after controlling for a district effect, the foundation allowance is exoge-
nous. Not surprisingly, its log is a very strong instrument for the log of average
real spending. Other controls include the proportion of students eligible for free
and reduced lunch and the log of district enrollment. A full set of year effects
also is included. There are N = 501 school districts over the 7 years 1995
to 2001.
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TABLE 1 Effects of Spending on Test Pass Rates

Model: Linear Linear FProbit FProbit

Estimation: FE FEIV PQMLE PQMLE
Coef Coef Coef APE Coef APE

lavgrexp 0.377 0.420 0.821 0.277 0.797 0.269
(0.071) (0.115) (0.334) (0.112) (0.338) (0.114)

B = —0.060 - = = =

(0.146)
Vs - - 0.076 - —0.666 -
(0.145) (0.396)
lavgrexp? - - Yes No

The results of the test are given in Table | for the spending variable. The
linear fixed effects estimate, 0.377, implies that a 10% increase in average
spending increases the pass rate by about 3.8 percentage points, and the effect
is very statistically significant. The FEIV estimate actually increases to 0.420,
and remains strongly significant. The fully robust test of idiosyncratic endo-
geneity, where the null is exogeneity, gives t = —0.41, which is not close to
being statistically significant. Therefore, the evidence is that, once spending
is allowed to be correlated with the district heterogeneity, spending is not
endogenous with respect to idiosyncratic shocks.

Columns (3) and (4) in Table 1 apply the fractional probit CRE/CF approaches.
In column (3) we apply Procedure 4, which includes the time average of lavgrexp
along with the time average of all exogenous variables, including [found, the log
of the foundation allowance. The coefficient is 0.821 and it is strongly statistically
significant. The APE, which is comparable to the FEIV estimate, is quite a bit
lower: 0.277, but with ¢ = 2.47 is still pretty significant. The test for idiosyncratic
endogeneity fails to reject the null of exogeneity, with ¢t = 0.52. This is entirely
consistent with the linear model estimates and test. By contrast, when we apply
the Papke-Wooldridge approach in column (4), the ¢ statistic for the coefficient
on the reduced form residual v, is t = — 1.68, which is significant at the 10% level.
This is not a strong rejection of exogeneity, but it is much stronger than when the
time average of lavgrexp. The outcomes in columns (3) and (4) are consistent
with the conclusion that spending is correlated with district-level heterogeneity
but not district-level shocks, which is why the test in column (3) marginally
rejected exogeneity and that in column (4) does not come close to rejecting. In
the end, the new approach in column (3) and the PW approach in column (4) give
similar estimates of the APE of spending: 0.277 versus 0.269, and the standard
errors are similar.
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7 Extensions and Future Directions

The main message in this chapter is that, when combining the CRE and control
function approaches in nonlinear panel data models, there is a good case to sep-
arately model—even if only implicitly—the distribution of the heterogeneity
conditional on all explanatory variables and outside exogenous variables. In this
way, adding the control functions to account for idiosyncratic endogeneity leads
to a pure test of the null hypothesis of exogeneity. In linear models, a common
variable addition test after fixed effects estimation achieves this goal. We have
shown how the same goal can be achieved for two popular nonlinear models.

We have used parametric assumptions in our discussion and applications.
Nevertheless, when the EEVs y;,, are continuous, there is a more general mes-
sage when semiparametric, or even purely nonparametric, approaches are
taken. For example, when applying the insights of Blundell and Powell
(2004), it makes sense to separately include functions of the entire history,
(¥i2, Z;), and the control functions, V;». We touched on this at the end of
Section 5, where we showed a model with interactions between the variables
of interests, the time averages, and the control functions can be added for flex-
ibility. The general point is that by adding, say, ¥, along with Z; we then obtain
an estimating equation in which Vv, is added to account for possible idiosyn-
cratic endogeneity.

In nonlinear models, the assumptions imposed on the reduced form of y;,»
will not be met when y,,, has discreteness. Even allowing for a single binary
EEV, y;,» poses challenges for nonlinear unobserved effects panel data models.
In particular, the parametric assumptions that can be viewed as convenient
approximations when y;, now have real bite when it comes to identifying
the average partial effects. If one is willing to make distributional assump-
tions—such as normality in the probit case—the methods in Wooldridge
(2014) and Lin and Wooldridge (2016) can be extended to allow CRE. As a
simple example, if y;, is assumed to follow a reduced form probit, one can
use as a control function the generalized residuals,

8 in =Yink (Wz‘zé’z) — (1 =yin)A (—Wiréz) ,

where w;; = (1, z;;, Z;). But then the issue of how to best model the relationship
between heterogeneity and (y;,, z;) arises. The Munklak device, or Chamber-
lain’s version of it, might work reasonably well, but neither might be flexible
enough. We leave investigations into the quality of CF approximations in dis-
crete cases to future research.

As discussed in Wooldridge (2018), unbalanced panels pose challenges for
the CRE approach, although the challenges are not insurmountable. In the con-
text of heterogeneity endogeneity only, Wooldridge suggests a modeling strat-
egy in which unobserved heterogeneity is a function of {(s;, s;X;):t =1, ..., T},
where s, is a binary selection indicator that is unity when a complete set of data
is observed for unit 7 in time . This approach can be extended to the current
setting, but the details remain to be worked out.
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Appendix

This appendix verifies some of the algebraic claims made in Sections 2 and 3

A.1 Relationship Between the FE and Mundlak Residuals

We first find a relationship between the FE residuals and the Mundlak residuals.
Let w; be any collection of time-constant variables. The FE and Mundlak resid-
uals are, respectively,

iy = Yy — XiPpe
Vie = Yit = Xuf pg — W —Xi€ — Wik,
where we use the fact that the estimates x;, are identical using FE and the Mun-
dlak approaches. Further, because X;; is a nonsingular linear combination of x;,

and X;;, we obtain the same Mundlak residuals if instead we run the pooled
regression

Yir ON iil‘v 1»ii7wi'

In fact, we can add i,iiFE and subtract it off:
Vi = Yir — (Xir — XI)ﬂFE W— (§ +ﬂFE)
=it — iizﬁFE ( )

=Yir — iitﬁFE -y — Xi;S -

=

From Mundlak (1978), it is known that (1]/, 3, 31) are the between estimates, that
is, from the cross-section OLS regression y; on 1,X;,w;.

This is easy to see directly in our setup. Define z; = (1, X;, w;) and let 6 be the
set of coefficients: (y, 3, A ). Then

T T
Zz;x,,:z;z:ii,:o
t=1 t=1
so that the regressors are orthogonal in sample. By Frisch-Waugh, 0 also is
obtained by dropping X;,, that is, from
yironz,t=1,...,T;i=1,...,N.
But
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Now we can write
Vit = Yie = ;= XilBpg + 3, — Yp — Xi0p — Wiks
=V~ i”ﬁFE + (yi — g —Xidp — W[ig) + 7,
= ’?iif

where 7; is the between residual. One important feature of this relationship is
that 7; does not change over time. Therefore,

T
E f,’l/’l’it :0.
=1

More importantly, for demeaned variables X;;,

T T

VIR LA
E X Vit = E XiUi
=1 =1

T o~
because Y, X; 7 =0.

A.2 Equivalence in Using the FE and Mundlak Residuals in FE Poisson
Estimation

Now we obtain a general result that shows that adding time-constant variables to
the explanatory variables does not affect f in the Poisson FE case. For a cross-
section observation i, the quasilog likelihood is

T T
4G(B) = Zyn{xitﬂ — log [Z exp (Xirﬂ)] },
t=1 r=1
and the score is

T
S et
Zr: , €XP (xiB)

T
Si(ﬂ) = Zyit X;l -
=1
Therefore, the FOC is
> 5 (3) -0
i=1
Now suppose
X; =g;, +hy,

which allows for the case that some h; are identically zero for all i. Then for
any i,



T
/ Z: _, X exp (gzrﬁ +h’ﬂ) L , exp( lﬁ) Z, X, €Xp (gi,ﬁ)

X, —
= Vit Xip —

it T
Cexp(gbenB) [T ew(nB)Y e (2iB)

2.
’ _Z,T 1 Irexp (gn
2

= i:ytz { X T
= —1 SXP (gn
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Note that the final expression is the score with explanatory variables g;,, and
so we have shown ﬂ is the same whether we use x;, or g;,.

The previous result applies to the control function estimation in Section 3
because, as shown in Appendix A.1,

Vip =W +Tp,

where I, are the between residuals and do not vary over time. The other explan-
atory variables are unchanged. Therefore, we obtain the same estimates whether
we obtain the FE residuals in the first stage or the Mundlak residuals.
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1 Introduction

This chapter explores the intersection of two topics: nonlinear modeling and the
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than a simple matter of functional form, i.e., nonlinearity is more than the
simple difference between [y = p'x + €] and [y = h(f.,x) + €]. Analysis often
involves reinterpreting the objects of estimation. Most of the received analysis
of panel data models focuses on the treatment of unobserved heterogeneity. The
full set of issues that appear in the (fixed or random effects) linear panel data
regression appear in more complicated forms in nonlinear contexts.

The application of panel data methods to nonlinear models is a subarea of
microeconometrics (see Cameron & Trivedi, 2005). The analyst is interested in
the behavior of individual units, such as people, households, firms, etc., in
which the typical model examines the outcome of an individual decision.
We are interested in nonlinear models, using methods and models defined
for panel data. To cite a template example, many researchers have analyzed
health outcomes data, including health satisfaction (a discrete, ordered, categor-
ical outcome), retirement (a discrete, binary outcome), and health system utili-
zation (usually a discrete count of events), in the context of the German
Socioeconomic Panel data set or the European Community Household Panel
data set. These are repeated surveys of a large number of households gathered
over a number of years. We are interested in models and methods that extend
beyond linear regression.

Many of the longitudinal data sets that are used in contemporary microeco-
nometric research provide researchers with rich studies of outcomes such as
fertility, health decisions and outcomes, income, wealth and labor market expe-
riences, subjective health, and well-being and consumption decisions. Most of
these variables are discrete or discontinuous and not amenable to conventional
linear regression modeling. The literature provides a wide variety of theoretical
and empirical frameworks for nonlinear modeling, such as binary, ordered and
multinomial choice, censoring, truncation, attrition, and sample selection.
These nonlinear models have adapted econometric methods to more compli-
cated settings than linear regression and simple instrumental variable (IV) tech-
niques. This chapter will provide an overview of these applications. Some
theoretical developments are presented to give context to the practical imple-
mentations. The particular interest is in the extension of panel data methods
to these nonlinear models that have long provided the econometric platforms.
This includes development of treatments of fixed and random effects models
and random parameter forms for unobserved heterogeneity, models that involve
dynamic effects and sample attrition. We also are interested in the theoretical
issues and complications that define this area of analysis and in a number of
specific kinds of applications, such as random utility based discrete choice
models, random parameter, and latent class models and applications of the
stochastic frontier model.

Overall, we are interested in a general arena of models that have appeared in
empirical applications. The treatment leans more toward the parametric treat-
ments than some recent treatments, such as Honoré (2002) and Arellano and
Hahn (2006). Some essential theory is presented, as well as a variety of
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applications. The selection of topics in this survey is wider than in some others
(e.g., Honoré, 2002, 2013, Honoré and Kesina, 2017), but not exhaustive.
A large literature about deeper theory (see Wooldridge, 2010) and results that
advance the fundamental methodology, such as set vs. point identification in
discrete choice models (e.g., Chesher, 2013) is left for more advanced treat-
ments. Many additional practical results appear in Cameron and Trivedi
(2005). One of the important features of the analysis described here is that
familiar results for the linear model cannot be carried over to nonlinear ones.
We begin in Section 2 by examining the interpretation of parameters and partial
effects in nonlinear models. Specific aspects of panel data modeling, notably
heterogeneity under different assumptions, the incidental parameters problem,
and dynamic effects are treated in Section 3. Section 4 describes features that
are common to most nonlinear panel data models. Applications, including the
essential layout of longitudinal data sets are treated in Sections 5 and 6. The last
two sections also consider the problem of attrition and issues related to robust
estimation and inference.

The following notation is used throughout the survey:

Panel data set dimensions:

i = index for observations (individuals),

t = index for periods, or replications,

n = sample size; i = 1,...,n,

T; = number of observations in group i, not assumed constant,

N=XT;

Panel data:

yi, = variable of interest in the model, might be one or more than one
outcome,

x;, = exogenous variables = (1,z;,)’, column vectors,

Yi = Vi1s---»yii) = sequence of realizations of y; ,

X, = sequence of observations on exogenous variables, T; x K; x;,/ =
row t of X;,

d() =d(@);,=d;=1[j =i,t=1,...,T;] = sample length dummy variable for i,

i = constant term = column of ones.

Functions:

d(7), @(f) = standard normal pdf, cdf,

A(f) = logistic cdf,

N| [y,az] = normal distribution,

N*[u,6*] = truncated at zero normal distribution = |u| where u ~ N
[0,6°],

f(c|X) = conditional density of ¢ given X,

flc:o) or flc|X:6) = density of variable that involves parameter o,

Jfis|...) = density for y;,, used generally for the model for y; ,,

1[condition] = 1 if condition is true, O if false,

E[c] = expected value,

E [g(x,c)] = h(x) = expected value over c.
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Model components:

&;, = general idiosyncratic disturbance in model,

¢; = unobserved heterogeneity, usually univariate,

a; = fixed effects version of ¢;, & = (ay,...,0,),

i = exp(ay),

u; = random effects version of c;,

B = slope vector in index function model, appears as p'x;; = 7 + ¥z, ,,
Y = subvector of § omitting the constant,

x = constant term, = (z,Y’),

i = CXP(Y/ZI‘,:),

Aip = exp(B'X;; + ¢)) = niis, ¢; = a; or u;,

0 = one or more ancillary parameters in parametric model,
auz = variance of u; in random effects model,

0'62 = variance of ¢;, in random index function model.

2 Nonlinear Models
The linear panel data regression model is
yi,t:ﬁ/X,",+Ci+€i’,, i=1,...,nt=1,....T;,

where y; , is the outcome variable of interest, X; , is a vector of time varying and
possibly time invariant variables, also possibly including y;, 1, ¢; is unobserved
time invariant heterogeneity that is independent of €;, and €, , is a classical dis-
turbance. Since c; is unobserved, no coefficient or scale is attached to it. The
linearity of the model relates (1) to the way that the natural estimator of the
parameter vector of interest, f, is computed, that is, by using some variant of
linear least squares or instrumental variables (IV) to solve a set of linear equa-
tions, and (2) to the way that the unobserved heterogeneity, c; enters the function
of interest, here the conditional mean function.

We are interested in models in which the function of interest, such as a
conditional mean, is intrinsically nonlinear. This would include, for example,
the Poisson regression model (see Cameron & Trivedi, 2005; Greene, 2018):

(Data generating process) Prob(y;,=j| X, ¢;) = [exp (7/1,-,,)/%;:’,} /i
(Function of interest) Elyii| Xis, ci] = Ao = exp (B'xi. +¢i).

Most models of interest in this area involve missing data in which y;,, the
outcome of some underlying process involving f§ as well as c;, passes through
a filter between the data generating process (DGP) and the observed outcome.'
The most common example is the familiar (semiparametric) random effects
binary choice model:

1. Nearly all of the models listed above in Section 6 are of this type.
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(Random utility DGP) y; ,* = p'x;, +c¢; +¢&,,

yir* = unobserved random utility;
(Revealed preference) y;,=1[y;," >0].

(The model becomes parametric when distributions are specified for ¢; and €; ,.)
In this case, the nonlinear function of interest is

F[(ﬁ/X,"[+C,‘)/G€],

where F[.] is the cdf of €; ;. This example also fits into category (1). It will not
be possible to use least squares or IV for parameter estimation; (2) Some alter-
native to group mean deviations or first differences is needed to proceed with
estimation in the presence of the unobserved, heterogeneity. In the most familiar
cases, the issues center on persuasive forms of the model and practicalities of
estimation, such as how to handle heterogeneity in the form of fixed or random
effects. The linear form of the model involving the unobserved heterogeneity is
a considerable advantage that will be absent from all of the extensions we
consider here. A panel data version of the stochastic frontier model (Aigner,
Lovell, & Schmidt, 1977) is

/
Vie=PBXi itV — i,

/
=@'x;;+ci+eis,

where v;, ~ N [0,5,%] and Ui, ~N* (0,6,2) (see Greene, 2004a, 2004c¢). Superfi-
cially, this is a linear regression model with a disturbance that has a skew normal

distribution,

2 & —Ag;

fei) :—¢(L’)d>(—“),
c' ' \o c
=2
oy
o’ =o'+

In spite of the apparent linearity, the preferred estimator is (nonlinear) maxi-
mum likelihood. A second, similar case is Graham, Hahn, Poirier, and
Powell’s (2015) quantile regression model, y;, (z) = B(z, ¢;))'x;, + (1), (see
Geraci & Bottai, 2007). The model appears to be intrinsically linear. The pre-
ferred estimator, however, is, again, not linear least squares; it usually is based
on a linear programming approach. For current purposes, in spite of appear-
ances, this model is intrinsically nonlinear.

2. In cases in which the function of interest is a nonlinear conditional mean function, it is sometimes
suggested that a linear approximation to quantities of intrinsic interest, such as partial effects, be
obtained by simply using linear least squares. See, e.g., Angrist and Pischke (2009) for discussion
of the canonical example, the binary probit model.



50 Panel Data Econometrics

2.1 Coefficients and Partial Effects

The feature of interest usually will be a nonlinear function, g(x;,c;) derived
from the probability distribution, f(y;,|X;c;), such as the conditional mean
function, E[y; ;| X; ,,c;] or some derivative function such as a probability in a dis-
crete choice model, Prob(y;; = j|X;,¢;)) = F(X;,c¢;). In general, the function
will involve structural parameters that are not, themselves, of primary interest;
8(X; 1,¢i) = g(X; ;2 ) for some vector of parameters, 0. The partial effects will
then be PE(x,c) = 8(x,c: 0) = dg(x, ¢ : #)/0x. In the probit model, the function of
interest is the probability, and the relevant quantity is a partial effect,

PE(x, ¢) = dProb(y; , = 1| x, ¢) /0x.

Estimation of partial effects is likely to be the main focus of the analysis.
Computation of partial effects will be problematic even if 0 is estimable in
the presence of ¢, because ¢ is unobserved and the distribution of ¢ remains
to be specified. If enough is known about the distribution of ¢, computation
at a specific value, such as the mean, might be feasible. The partial effect at
the average (of ¢) would be

PEA(x) =8(x, E[c] : 0) = dProb(y; , = 1| x; 1, E[c;]) / 0%,
while the average (over c) partial effect would be
APE(x) =E.[8(x, c:0)] = E.[0Prob(y;, = 1| x, ¢) /0x].

One might have sufficient information to characterize f{c;|x;,) or flc;|X;).
In this case, the PEA could be based on E[c;|X;] or the APE might be based
on the conditional distribution, rather than the marginal. Altonji and Matzkin
(2005) identify this as a local average response (LAR, i.e., local to the subpop-
ulation associated with the specific realization of X;). If ¢; and X; are indepen-
dent, then the conditional and marginal distributions will be the same, and the
LAR and APE also will be the same.

In single index function models, in which the covariates enter the model
in a linear index function, B'x;,, the partial effects usually simplify to a
multiple of B;

PEA(Y) =Bh(BxEL]) where A(pxel])="ED|
APE(x) =B E.[h(f'x, ¢)].

For the normalized (6. = 1) probit model, Prob(y; ; = 1|x; ,,¢;) = ®(B'x; . +¢;).
Then, g(f'x,c) = ®(P'x + ¢) and h(p'x,c) = BO(P'x + ¢). The coefficients have
the same signs as partial effects, but their magnitude might be uninformative;

APE(x) = ﬁJ d(B'x+c)dF(c|x).

¢
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To complete this example, if ¢ ~ N[0,6%] and & ~ N[0,1%]. Then, yE=p'x+
¢ +¢e=p'x+w, where w ~ N[O,] + 62]. It follows that

Prob[y = 1| x, ¢] =Prob(e < §'x+c) =@ (f'x+¢),
Prob(y = 1| x) = Prob(w < p'x) = ®(p'x/c,) = ® [ﬁ'x/(1 +02)‘/2} .

Then PEA(x) = B $(B'x + 0) = B ¢(B'x) while

APE(X) =B | 4(Bx+0)(1 /o) (c/o)de
= (B/(1+0%) ") xp[Bx/ (146%) "] =80(8%).

2.2 Interaction Effects

Interaction effects arise from second-order terms; y;, = fx;, + yz;, + Ox; z; , +
¢; + €y, SO that

APE(x| z) = E{0E[y| x,z, c]/ox} = E.[0(Bxi s + yZi.t + X 1Zi s + ;) [ OX]
:ﬂ+5z,-,,.

The interaction effect is 0 APE(x|z)/0z = 6. What appear to be interaction
effects will arise unintentionally in nonlinear index function models. Consider
the nonlinear model, E[y; | x; ,z; ;,¢;] = exp(Bx; , + yz;, + ¢;). The average partial
effect of x|z is APE(x|z) = E.{0E[y|x,z,c]/ox} = pexp(px + yz)E[exp(c)]. The
second-order (interaction) effect of z on the partial effect of x is fyexp(fx + yz)E
[exp(c)], which generally will be nonzero even in the absence of a second-order
term. The situation is worsened if an interaction effect is built into the model.
Consider E[y|x,z,c] = exp(fx + yz + éxz +c). The average partial effect is

APE(x| z) =E.{0E[y| x, z, c]/ox} = E[exp(c)] (B + 8z) exp (Px + vz + 8xz)].
The interaction effect is, now,
0APE (x| z)/0z=E[exp(c)]exp (Bx+yz +6xz)|{5+ (B +62)(y + 6x) }.

The effect contains what seems to be the anticipated part plus an effect that
clearly results from the nonlinearity of the conditional mean. Once again, the
result generally will be nonzero even if 8 equals zero. This creates a consider-
able amount of ambiguity about how to model and interpret interactions in a
nonlinear model (see Mandic, Norton, & Dowd, 2012; Ai & Norton, 2003;
Greene, 2010a for discussion).

2.3 Identification Through Functional Form

Results in nonlinear models can be identified through the form of the model
rather than through covariation of variables. This is usually an unappealing
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result. Consider the triangular model of health satisfaction and SNAP (food
stamp) program participation by Gregory and Deb (2015):

SNAP =f¢'x+8'z+¢
HSAT = B;,'x +ySNAP +w.

Note that x is the same in both equations. If 8 is nonzero, then this linear
simultaneous equations model is identified by the usual rank and order condi-
tions. Two stage least squares likely would be the preferred estimator of the
parameters in the HSAT equation (assuming that SNAP is endogenous, that
is, if € and w are correlated). However, if 8 equals 0, the HSAT equation will
fail the order condition for identification and be inestimable. The model in
the application, however, is not linear—SNAP is binary and HSAT is ordered
and categorical—both outcome variables are discrete. In this case, the param-
eters are fully identified, even if § equals 0. Maximum likelihood estimation of
the full set of parameters is routine in spite of the fact that the regressors in the
two equations are identical. The parameters are identified by the likelihood
equations under mild assumptions (essentially that the Hessian of the full infor-
mation log likelihood with respect to (8s,0,8,y) is nonsingular at § = 0). This is
identification by functional form. The causal effect, y is identified when § = 0,
even though there is no instrument (z) that drives SNAP participation indepen-
dently of the exogenous influences on HSAT. The authors note this, and suggest
that the nonzero & (exclusion of z from the HSAT equations) is a good idea to
improve identification, in spite of result.”

2.4 Endogeneity

In the linear regression model, y;, = a + fx;, + 6z, , + €; , there is little ambigu-
ity about the meaning of endogeneity of x. Various theories might motivate it,
such as omitted variables or heterogeneity, reverse causality, nonrandom sam-
pling, and so on. In any of these events, however, the ultimate issue is tied to
some form of covariation between x;, (the observable) and ¢;, (the unobserva-
ble). Consider, instead, the Poisson regression model described earlier, where
now, 4, = exp(a + px;, + oz;,). For example, suppose y;, equals hospital or
doctor visits (a health outcome) and x; ; equals income. This should be a natural
application of reverse causality. No mechanism within this Poisson regression
model, however, supports this notion of endogeneity. The model leaves open
the question of what (in the context of the model) is correlated with x;, that
induces the endogeneity (see Cameron & Trivedi, 2005, p. 687). For this

3. Scott, Schurer, Jensen, and Sivey (2009) make the same observation. Rhine and Greene (2013) isa
similar application. See also Filippini, Greene, Kumar, and Martinez-Cruz (2018), Wilde (2000) and
Mourifie and Meango (2014) for discussion of some special cases.
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particular application, a common approach is to include the otherwise absent
unobserved heterogeneity in the conditional mean function, as

Aid|wie = exp (ﬂxi‘, +6z;,+ wi,t).

As a regression framework, the Poisson model has a shortcoming:
It specifies the model for observed heterogeneity, but lacks a coherent specifi-
cation for unobserved heterogeneity (a disturbance). The model suggested
above is a mixture model. For the simpler case of exogenous x, the feasible
empirical specification is obtained by analyzing

PrOb(Yi,t :]| Xits Zi,t) = J PrOb()’it :J‘ Xits Zits Wi,t)dF(Wi,t)o
Wit

This parametric approach would require a specification for F(w). The tradi-
tional approach is a log-gamma that produces a closed form, the negative bino-
mial model, for the unconditional probability. Recent applications use the
normal distribution. A semiparametric approach could be taken as well if less
is known about the distribution of w. This might seem less ad hoc than the para-
metric model, but the assumption of the Poisson distribution is not innocent at
the outset. To return to the earlier question, a parametric approach to the endo-
geneity of x; , would mandate a specification of the joint distribution of w and x,
F(w; ;,x; ). For example, it might be assumed that x; , = 0'f; , + v, , where w and v
are bivariate normally distributed with correlation p. This completes a mecha-
nism for explaining how x;, is endogenous in the Poisson model. This is
precisely the approach taken in Gregory and Deb’s SNAP/HSAT model.

3 Panel Data Models

The objective of analysis is some feature of the joint conditional distribution of
a sequence of outcomes for individual ;

FOitYi2e s il Xi1sXi2s oo Xi T Cists oo Cimt) =F (Vi Xiv€i). (1)

The sequence of random variables, y; , is the outcome of interest. Each will
typically be univariate, but need not be. In Riphahn, Wambach, and Million’s
(2003) study, y, , consists of two count variables that jointly record health care
system use, counts of doctor visits, and counts of hospital visits. In order to have
a compact notation, in Eq. (1), y; denotes a column vector in which the observed
outcome y;, is either univariate or multivariate—the appropriate form will be
clear in context. The observed conditioning effects are a set of time varying
and time invariant variables, x;, (see, e.g., EDUC and FEMALE, respectively
in Table 2). The matrix X; is 7; x K containing the K observed variables Xx;,
in each row. To accommodate a constant term, X; = [i,Z;].

For now, x;, is assumed to be strictly exogenous. The scalars, c; ,,, are unob-
served, time invariant heterogeneity. The presence of the time invariant,
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unobserved heterogeneity is the signature feature of a panel data model. For cur-
rent purposes, with an occasional exception noted later, it will be sufficient to
work with a single unobserved variate, c;.

Most cases of practical interest depart from an initial assumption of strict
exogeneity. That is, for the marginal distribution of y;,, we have

FOid X1, X2, oo Xirys €1) =F Vi Xi, €1)- )

That is, after conditioning on (x;,c;), X;, for r # t contains no additional
information for the determination of outcome yi,,.4 Assumption (2) will suffice
for nearly all of the applications to be considered here. The exception that
will be of interest will be dynamic models, in which, perhaps, sequential
exogeneity,

i

is sufficient.

Given Eq. (2), the natural next step is to characterize f(y;| X;,c;). The condi-
tional independence assumption adds that y; ,| X, ,,¢; are independent within the
cross section group, ¢ = 1,...,T;. It follows that

T;
FOitYizs oo yir | Xis ¢i) = lelf(yi,t| Xi1 Ci)- 4)

The large majority of received applications of nonlinear panel data modeling
are based on fully parametric specifications. With respect to the previous model,
this adds a sufficient description of the DGP for ¢; that estimation can proceed.

Xi1,Xi 2, o0 Xi 70 Ci) =F Vit Xi1, Xi2, o0, Xirs Ci) s 3)

3.1 Obijects of Estimation

In most cases, the platform for the analysis is the distribution for the observed
outcome variable in Eq. (1). The desired target of estimation is some derivative
of that platform, such as a conditional mean or variance, a probability function
defined for an event, a median, or some other conditional quantile, a hazard rate
or a prediction of some outcome related to the variable of interest. For conve-
nience, we restrict attention to a univariate case. In many applications, interest
will center on some feature of the distribution of y;, f(yi/|Xi. ¢;), such as the
conditional mean function, g(x, ¢) = E[y|X, c]. The main object of estimation
often will be partial effects, 8(x, ¢) = dg(x, ¢)/0x, for some specific value of x
such as E[x] if x is continuous, or A(x,d,c) = g(x,1, ¢) — g(x,0, ¢) if the margin
of interest relates to a binary variable.

4. For some purposes, only the restriction on the derived function of interest, such as the conditional
mean, E[y;,| X, ¢;] = E[y;|X;c] is necessary (see Wooldridge, 1995). Save for the linear model,
where this is likely to follow by simple construction, obtaining this result without (2) is likely to be
difficult. That is, asserting the mean independence assumption while retaining the more general (1)
is likely to be difficult.
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A strictly nonparametric approach to 8(x,c) offers little promise outside the
narrow case in which no other variables confound the measurement.” Without at
least some additional detail about distribution of ¢, there is no obvious way to
isolate the effect of ¢ from the impact of the observable x. Because c is unob-
served, as it stands, 9 is inestimable without some further assumptions. For
example, if it can be assumed that ¢ has mean u. (zero, for example) and is
independent of x, then a partial effect at this mean, PEA(x, y) = 8(x, u) might
be estimable. If the distribution of ¢ can be more completely specified, then it
might be feasible to obtain an average partial effect,

APE(x) =E.[8(x, ¢)].

Panel data modeling is complicated by the presence of unobserved hetero-
geneity in estimation of parameters and functions of interest. This situation is
made worse because of the nonlinearity of the target feature. In most cases,
the results gained from the linear model are not transportable. Consider the lin-
ear model with strict exogeneity and conditional independence, Ely;|X;.c;] =
B'x;, + c; + €;,. Regardless of the specification of f{(c), the desired partial effect
is B. Now consider the (nonlinear) probit model,

(DGP) yi,/* =P'Xi +Ci+€ip.€i[Xirnci ~ N[0, 17],
(Observation) y;,=1[y;,* > 0],
(Function of interest) Prob(y;,=1|xX;,,¢;) =®(B'x; +c;).

With sufficient assumptions about the generation of c;, such as ¢; ~ N [0,62],
estimation of p will be feasible. The relevant partial effect is now

8(x,c) =0®(f'x+c)/ox=PpH(P'x+c).
If f(c) is sufficiently parameterized, then an estimator of PE(x|¢) = Bd(p'x + ¢)
such as
PEA(x| ¢) =B [p'x+E(c)]

might be feasible. If ¢ can be assumed to have a fixed conditional mean, y. =
E[c|x] = 0, and if x contains a constant term, then the estimator might be
PEA(x,0) = p¢(f'x). This is not sufficient to identify the average partial effect.
If it is further assumed that ¢ is normally distributed (and independent of x) with
variance 02, then,

APE(x) =B/ (1+0%) " ¢[B/(1+0°) x| =B (1-p)'" o [B(1-p)"¥]
=714(vx),

5. If there are no x variables in E[y |x, c], then with independence of d and ¢ and binary y, there might
be scope for nonparametric identification.
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where p is the intragroup correlation, Corr[(e;, + ¢;),(¢;5 + ¢;))] = 02/(1 + 62).
In the context of this model, what will be estimated with a random sample
(of panel data)? Will APE and PEA be substantively different? In the linear
case, PEA(x|¢) and APE(x) will be the same f. It is the nonlinearity of the
function that implies that they might be different.

If ¢; were observed data, then fitting a probit model for y;, on (x; ;,c;) would
estimate (f§, 1). We have not scaled c;, but because we are treating c; as observed
data (and uncorrelated with x; ;), we can use ¢* = ¢;/s.. as the variable, and attach
the parameter o, to ¢;*. Therefore, a fully specified parametric model might
estimate (B, o.). If ¢; were simply ignored, we would fit a pooled probit model.
The true underlying structure is y;, = 1{#'x;, + ¢; + &;, > 0|e;, ~N[0,17]}.
The estimates, shown before, would reveal y = (1 — p)” 2. Each element of
v is an attenuated (biased toward zero) version of its counterpart in f. If the
model were linear, then omitting a variable that is uncorrelated with the
included x, would not induce this sort of omitted variable bias. Conclude that
the pooled estimator estimates y while the MLE estimates (f, o..), and the atten-
uation occurs even if X and ¢ are independent.

An experiment based on real data will be suggestive. The data in Table 1 are
a small subsample from the data used in Riphahn et al. (2003).° The sample
contains 27,326 household/year observations in 7293 groups ranging in size
from one to seven. We have fit simple pooled and panel probit models based on

Doctor;* = p; +p,Age; ,+c;i+¢;;; Doctor =1[Doctor; ;* > 0]
where Doctor = 1[Doctor Visits > 0]. The results are
(Pooled) Doctor;;" =—0.37176+0.01625Age, ,
(Panel) Doctor; ;* = —0.53689 +0.02338Age; , +0.90999¢;",

where ¢;* is normalized to have variance 1.” The estimated value of p = 6%/
(1+ %) is 0.45298, so the estimated value of ¢ is 0.90999. The estimator of
the attenuation factor, (1 — p)l/2 , 1s 0.73961. Based on the previous results,

6. The original data set is found at the Journal of Applied Econometrics data archive, http://qed.
econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/. The raw data set contains variables
INCOME and HSAT (self-reported health satisfaction) that contain a few anomalous values. In the
27,326 observations, three values of income were reported as zero. The minimum of the remainder
was 0.005. These three values were recoded to 0.0015. The health satisfaction variable is an integer,
0,..,10. In the raw data, 40 observations were recorded between 6.5 and 7.0. These 40 values were
rounded up to 7.0. The data set used here, with these substitutions is at http://people.stern.nyu.edu/
wgreene/text/healthcare.csv. Differences between estimators computed with the uncorrected and
corrected values are trivial.

7. The model was estimated as a standard random effects probit model using the Butler and Moffitt
(1982) method. The estimate of ¢ was 0.90999. With this in hand, the implied model is as shown.
When the model is estimated in precisely that form (f'x + 6¢*) using maximum simulated likeli-
hood, the estimates are 0.90949 for ¢ and (—0.53688,0.02338) for §. Quadrature and simulation give
nearly identical results, as expected.


http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million
http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million
http://people.stern.nyu.edu/wgreene/text/healthcare.csv
http://people.stern.nyu.edu/wgreene/text/healthcare.csv
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TABLE 1 Bias of Unconditional Fixed Effects Estimators in Limited
Dependent Models

T=2 T=38 T=20
Parameter APE Parameter APE Parameter  APE
Logit p +102.00 +67.60 +21.70 +19.10 +06.90 + 3.40
6  +103.00 +66.00 +19.10 +12.80 +06.20 +5.20
Probit B +108.30 +47.40 +32.80 +24.10 +10.80 +8.80
5  +93.80 +38.80 +24.30 +15.20 +6.80 +4.70
Ordered B +132.80 - +16.60 - +5.80 -
probit o +160.50 - +12.20 - +6.80 -
Tobit B +0.67 +15.33 +0.29 +1.30 +0.05 +0.08
o +0.33 +19.67 +0.54 +2.16 +0.14 +0.27
o —36.14 - —8.40 - —3.30 -
Truncated g —17.13 —7.52 —4.92 —1.72 —2.11 — 0.67
fegression —2281 1164 —7.51 ~364  -327 ~1.53
o —35.36 - —9.12 - —3.75 -

then, we obtain the estimate of y based on the panel model, 0.02338 x
0.73961 = 0.01729. The finite sample discrepancy is about 6%. The average
value of Age is 43.5 years. The average partial effects based on the pooled model
and the panel model, respectively, would be

(Pooled) APE(Age:y)=0.01625 x ¢p(—0.37176+0.01625 x 43.5)
=0.00613

(Panel) APE(Age: B, o) =0.02338(1 —0.45298)"/?

¢ [(1 —0.45298)'/2(—0.53689 +0.02338 x 43.5)
=0.00648.

The estimate of APE(Age:y) should not be viewed as PEA(Age,E[c]) = PEA
(Age,0). That estimator would be PEA(Age,0:B,0) = 0.02338 x ¢(-0.53689 +
0.02338 x 43.5) = 0.008312.° This estimator seems to be misleading. Finally,
simple least squares estimation produces

8. The slope in the OLS regression of Doctor on (1,Age) is 0.00601. This suggests, as observed else-
where, that to the extent OLS estimates any defined quantity in this model, it likely will resemble
APE(x).
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(LinearPM) Doctor;; =0.36758 +0.00601Age; , +e; ;.

This appears to be a reasonable approximation.”’

Most situations to be considered in the subject of this chapter focus on non-
linear models such as the probit or Poisson regression and pursue estimates of
appropriate partial effects (or causal effects) in many cases. As we will see in
Section 6, there are a variety of situations in which something other than partial
effects is of interest. In the stochastic frontier model,

/
Vit =0+YZi+C;i+Vir— Uy,

= (Z+Y/Z,", +¢; +8,",,

the object of interest is an estimator of the inefficiency term, u; ,. The estimator
used is i#;, = E.[E[u; | & ,]]. The various panel data formulations focus on the
role of heterogeneity in the specification and estimation of the inefficiency
term.

In the analysis of individual data on multinomial choice, the counterpart to
panel data modeling in many studies is the stated choice experiment. The ran-
dom utility based multinomial logit model with heterogeneity takes the form

exp (a,-!j + Y/Zi,t,j)
1+ Z_j:l exp (a,-’j + Y/zi,f,j)

Some applications involve mixed logit modeling, in which not only the alter-
native specific constants, a;; but also the marginal utility values, y; = ¥ + w,
are heterogeneous. Quantities of interest include willingness to pay for specific
attributes (such as trip time), WTP = E_[E[Y; /Y income]] and elasticities of sub-
stitution, #;;x = E.[—y:P;;P;,], and entire conditional distributions of random
coefficients.

Prob[Choice; ;= j] = , j=1,...,J.

3.2 General Frameworks

Three general frameworks are employed in empirical applications of panel data
methods. Except for the cases we will note below, they depart from strict exo-
geneity and conditional independence.

3.2.1 Fixed Effects

If no restriction is imposed on the relationship between ¢ and X, then the con-
ditional density f(c|X,...,X7) depends on X in some unspecified fashion. The
assumption that E[c|X] is not independent of X is sufficient to invoke the fixed

9. There is no econometric framework available within which it can be suggested that the OLS slope
is a consistent estimator of an average partial effect (at the means, for example). It just works much
of the time.
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effects setting. With strict exogeneity and conditional independence, the
application takes the form

F il Xi0o i) =1, ie, B'Xi e+ ¢i)s

such as in the linear panel data regression.'” In most cases, the models are
estimated by treating the effects as parameters to be estimated, using a set of
dummy variables, d(j). The model is thus

FOiel Xios i) =1y (i BXie +Zj°‘jd(j)i,z)'

The dummy variable approach presents two obstacles. First, in practical
terms, estimation involves at least K + n parameters. Many modern panels
involve tens or hundreds of thousands of units, which might make the physical
estimation of (f,a) impractical. Some considerations follow. The more impor-
tant problem arises in models estimated by M estimators; that is, by optimizing a
criterion function such as a log likelihood function. The incidental parameters
problem (IP) arises when the number of parameters in the model (¢;) increases
with the number of observation units. In particular, in almost all cases, it appears
that the maximum likelihood estimator of f in the fixed effects model is incon-
sistent when T is small or fixed, even if the sample is large (in ), and the model
is correctly specified.

3.2.2 Random Effects

The random effects model specifies that X and ¢ are independent so f(c|X) =
f(c). With strict independence between X and ¢, the model takes the form
S| XisnCi) = finP'Xis + u;). Estimation of parameters still can be proble-
matic. But, pooled estimation (ignoring u;) can reveal useful quantities such
as average partial effects. More detailed assumptions, such as a full specifica-
tion of u; ~ N[0,6°] will allow full estimation of (§',5)'. It still will be necessary
to contend with the fact that u; remains unobserved. The Butler and Moffitt
(1982) and maximum simulated likelihood approaches are based on the
assumption that

T;
E lf i1, - yid Xi, )] :J thlf()’i,t| B'x;,+ci:0)dF(c;:0)

depends on (f/,0’,06) in a way that the expected likelihood can be the framework
for the parameters of interest.

10. Greene (2004c) labels index function models in this form true fixed effects and true random
effects models. There has been some speculation as to what the author meant by effects models that
were not true. The use of the term was specifically meant only to indicate linear index function
models in contrast to models that introduced the effects by some other means. The distinction
was used to highlight certain other models, such as the fixed effects negative binomial regression
model in Hausman, Hall, and Griliches (1984). In that specification, there were fixed effects defined
as in the text in terms of f{c|x), but the effects were not built into a linear index function.
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3.2.3 Correlated Random Effects

The fixed effects model is appealing for its weak restrictions on f{(c;| X;). But, as
noted, practical and theoretical shortcomings follow. The random effects
approach remedies these shortcomings, but rests on an assumption that might
be unreasonable: that the heterogeneity is uncorrelated with the included vari-
ables. The correlated random effects model places some structure on f(c;| X;).
Chamberlain (1980) suggested that the unstructured f{c;|X;) be replaced with

C,“Z,‘ = 77.'+91,Z1“1 +92/Z,"2 + .- +9Tilzi,Ti +u;.

with f(u;) to be specified—u; would be independent of z; .. A practical problem
with the Chamberlain approach is the ambiguity of unbalanced panels.
Substituting z; = 0 for missing observations or deleting incomplete groups from
the data set, are likely to be unproductive. The amount of detail in this speci-
fication might be excessive; in a modern application with moderate T and large
K (say 30 or more), this implies a potentially enormous number of parameters.
Mundlak (1978) and Wooldridge (2005, 2010) suggest a useful simplification,

C|X,‘ :Jr+0'i,-+u,-.

Among other features, it provides a convenient device to distinguish fixed
effects (0 # 0) from random effects (6 = 0).

3.3 Dynamic Models

Dynamic models are useful for their ability (at least in principle) to distinguish
between state dependence such as the dominance of initial outcomes and depen-
dence induced by the stickiness of unobserved heterogeneity. In some cases,
such as in stated choice experiments, the dynamic effects might themselves
be an object of estimation (see Contoyannis, Jones, & Rice, 2004).

A general form of dynamic model would specify f(y; | Xi,CisVis—1:Yis—2s--
¥io)- Because the time series is short, the dependence on the initial condition,
yio, 1s likely to be substantive. Strict exogeneity is not feasible, because y;,
depends on y;,_ in addition to X; , it also must depend on X;,_;. A minor sim-
plification in terms of the lagged values produces the density f(y; ;| XiCi,Yir—1,
vio)- The joint density of the sequence of outcomes is then

T;
Uit i oo yiril Xiy Yi—1, ¢, yi0) = Ht:]f()’i,t| X, Yii—1, iy Yi0)-

It remains to complete the specification for ¢; and y;. A pure fixed effects
approach that treats y; o as predetermined (or exogenous) would specify

Fid Xiy i1y i ¥i0) =F Vit Yo +Oyi 1 +1yi0 + i),

with Z; implicitly embedded in a;. This model cannot distinguish between
the time invariant heterogeneity and the persistent initial conditions effect.
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Moreover, as several authors (e.g., Carro, 2007) have examined, the incidental
parameters problem is made worse than otherwise in dynamic fixed effects
models. Wooldridge (2005) suggests an extension of the correlated random
effects model,

/—
C,"X,',yi,() =nT+TZ; +9yi,0 +u;.

This approach overcomes the two shortcomings noted earlier. At the cost of the
restrictions on f(c | X,yo), this model can distinguish the effect of the initial con-
ditions from the effect of state persistence because of the heterogeneity.
Cameron and Trivedi (2005) raise a final practical question: How should a
lagged dependent variable appear in a nonlinear model? They propose, for
example, a Poisson regression that would appear

exp(—h)A,
J' st

=exp(N'zi,+pyi—1 +00yio+ 7 +0Z +u;)

Probly; , =j| Xi, yi0. ¢i] =

Contoyannis et al. (2004) proposed a similar form for their ordered
probit model.

4 Nonlinear Panel Data Modeling

Some of the methodological issues in nonlinear panel data modeling have been
considered in Sections 2 and 3. We examine some of the practical aspects of
common effects models.

4.1 Fixed Effects

The fixed effects model is semiparametric. The model framework, such as
the probit or Tobit model is fully parameterized (see Ai, Li, Lin, & Ment,
2015). But the conditional distribution of the fixed effect, f(c | X) is unrestricted.
We can treat the common effects as parameters to be estimated with the rest
of the model. Assuming strict exogeneity and conditional independence, the
model is

f(yi,l,yi,z, s ViT,

is

H fyulxm Ht lf )’zt|Yzzt+az-9>,

where 0 is any ancillary parameters such as o, in a Tobit model. Denote the
number of parameters in (y,0) as K* = K + M. A full maximum likelihood
estimator would optimize the criterion function,

InL(y, . 0) ZZlnfyZAz,, 7.;,0 szfy,[,vzlﬁa, 0). (5

i=1 t= i=1 t=
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where « is the n x 1 vector of fixed effects. The unconditional estimator pro-
duces all K* + n parameters of the model directly using conventional means."'
The conditional approach operates on a criterion function constructed from the
joint density of (y;,, ¢t = 1,...,T;) conditioned on a sufficient statistic, such that
the resulting criterion function is free of the fixed effects.

4.1.1 Unconditional Estimation

The general log likelihood in Eq. (5) is not separable in y and . (For current
purposes, @ can be treated the same as 7, so it is omitted for convenience.)
Unconditional maximum likelihood estimation requires the dummy variable
coefficients to be estimated along with the other structural parameters. For
example, for the Poisson regression,
Y
Prob(y;; =j| iV, &) = M,ﬂm = exp (a; +7'zi,).

The within transformation or first differences of the data does not eliminate the
fixed effects. The same problem will arise in any other nonlinear model in
which the index function is transformed or the criterion function is not based
on deviations from means to begin with.'”

For most cases, full estimation of the fixed effects model requires simulta-
neous estimation of f and «a;. The likelihood equations are

dInL _ Z":ia Inf (il 200 40) _ o
oY i=1 1= o

01InL _ Zn olnf(yi | zi,: v, )

ool =1 aa; =0, i=1,...,n. (6)

Maximum likelihood estimation can involve matrix computations involving
vastly more memory than would be available on a computer. Greene (2005)
noted that this assessment overlooks a compelling advantage of the fixed effects
model. The large submatrix of the Hessian, 0’InL/dada’ is diagonal, which
allows a great simplification of the computations. The resulting algorithm

11. If the model is linear, the full unconditional estimator is the within groups least squares estima-
tor. If z; , contains any time invariant variables (TIVs), it will not be possible to compute the within
estimator. The regressors will be collinear; the TIV will lie within the column space of the individual
effects, D = (dy.....d,). The same problem arises for other true fixed effects nonlinear models. The
collinearity problem arises in the column space of the first derivatives of the log likelihood. The
Hessian for the log likelihood will be singular, as will the OPG matrix. A widely observed exception
is the negative binomial model proposed in Hausman et al. (1984) which is not a true fixed effects
model.

12. If the model is a nonlinear regression of the form y; , = n,a(y'z;,) + &;,, then, E[y; /y;] ~ h; /h;,
does eliminate the fixed effect (see Cameron & Trivedi, 2005, p. 782).
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reduces the order of the computations from (K +#n) x (K+n) to K X K + n.
Fernandez-Val (2009) used the method to fit a fixed effects probit model with
500,000 fixed effects coefficients.'” The method can easily be used for most of
these models considered.

Unconditional fixed effects estimation, in fact, is straightforward in princi-
ple, however, it is still often an unattractive way to proceed. The disadvantage is
not the practical difficulty of the computation. In most cases—the linear regres-
sion and Poisson regression are exceptions—the unconditional estimator
encounters the incidental parameters problem. Even with a large sample (n)
and a correctly specified likelihood function, the estimator is inconsistent when
T is small, as assumed here.

4.1.2 Concentrated Log Likelihood and Uninformative
Observations

For some models, it is possible to form a concentrated log likelihood for
(7,0, ..,0,). The strategy is to solve each element of Eq. (6) for a,(y|y;,X;), then
insert the solution into Eq. (5) and maximize the resulting log likelihood for ¥y.
The implied estimator of a; then can be computed. For the Poisson model,
define

Ai=exp(ai+Y'zi;) = nexp (Y'z,) = 09
The log likelihood function is'*

n T
InL(y,a) = Z [_’7[¢i,r +yie Inni+yi Ing; , — lny,-’,!],

i=1 t=1

The likelihood equation for #; is dInL/on; = —Z, ¢; , + Z, y; /n;. Equating this to
zero produces
i )
f=—=h 2 @)
l 25;1451‘,1 ¢i
Inserting this solution into the full log likelihood produces the concentrated log
likelihood,

InLeone = er.lzl |:_%Ztr[1¢i»f + In <&> Zil)’i,t + Z;il ()’i,t Ing;,— In (yi,t!))
i

P

13. The Hessian for a model with n = 500,000 will, by itself, occupy about 950gb of memory if the
symmetry of the matrix is used to store only the lower triangle. Exploiting the special form of the
Hessian reduces this to less than 4mb.

14. The log likelihood in terms of n; = exp(w;) relies on the invariance of the MLE to 1:1 transfor-
mations (see Greene, 2018).
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The concentrated log likelihood now can be maximized to estimate y. The solu-
tion for y then can be used in Eq. (7) to obtain each estimate of 1; and o; = In(n;).

Groups of observations in which %, y; , = 0 contribute zero to the concen-
trated log likelihood. In the full log likelihood, if y;, = O for all ¢, then dlnL/
on; = Z,;, which cannot equal zero. The implication is that there is no estimate
of a; if %, y; , = 0. Surprisingly, for the Poisson model, estimation of a nonzero
constant does not require within group variation of y;, but it does require that
there be at least one nonzero value. Notwithstanding the preceding issue, this
strategy will not be available for most models, including the one of most inter-
est, the fixed effects probit model.

4.1.3 Conditional Estimation

For a few cases, the joint density of the T; outcomes conditioned on a sufficient
statistic, A;, is free of the fixed effects;

Xi, i, Ai) =gits - yir | Xi, Ai).

The most familiar example is the linear regression with normally distributed
disturbances, in which, after the transformation,

FOits oo yimil Xe ¢ ¥,) =N (2 — %), 0:%).

The within groups estimator is the conditional maximum likelihood estimator,
then the estimator of ¢; is ¥, — ¥'Z;. The Poisson regression model is another."”
For the sequence of outcomes, with A;, = exp(a)exp(Y'z;,) = nip;, (see
Cameron & Trivedi, 2005, p. 807),

f(yi,lw--’)’i,T;

(thl:l)’i,z)! < 1% ( ¢i,z )y,,r
H,T;1(Yi,t!) I\

Maximization of the conditional log likelihood produces a consistent estimator
of v, but none of the fixed effects. Computation of a partial effect, or some other
feature of the distribution of y; ,, will require an estimate of ; or E[a;] or a par-
ticular value. The conditional estimator provides no information about the dis-
tribution of a;. For index function models, it might be possible to compute ratios
of partial effects, but these are generally of limited usefulness. With a consistent
estimator of y in hand, one might reverse the concentrated log likelihood
approach. Taking y as known, the term of the log likelihood relevant to estimat-
ing a; is

FOits oo yin X Z 1 yi) =

15. The exponential regression model, f(y;,|X;,) = A; €xp(-yi i), yi, > 0, is a third. This model
appears in studies of duration, as a base case specification, unique for its feature that its constant
hazard function, h(y; ,|X; ) = f(yi(|X:)/[1 — Fi,|Xi )] = Ai,, is independent of y; .
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olnL . _ ia Inf (yi,| Xi., ¥ : ;)

—0, i=1....n.
oo oa; ! "

t=1

In principle, one could solve each of these in turn to provide an estimator of o;
that would be consistent in 7. Because T is small (and fixed), estimation of the
individual elements is still dubious. However, by this solution, &; =a; +w;
where Var(w,) = O(1/T). Then 52%2;’:10@ could be considered the mean of
a sample of observations from the population generating ;. (Each term could
be considered an estimator of E[a;|y;].) Based on the law of iterated expecta-
tions, & should estimate Ey[E[a|y;]] = E[a]. The terms in the mean are all based
on common ¥. But by assumption, Plim,, ¥ = y. Then, plim a(§) = plim a(y) =
E[a], which is what will be needed to estimated partial effects for fixed effects
model."®

4.1.4 The Incidental Parameters Problem and Bias Reduction

The disadvantage of the unconditional fixed effects estimator is the incidental
parameters (IP) problem (see Lancaster, 2000). The unconditional maximum
likelihood estimator is generally inconsistent in the presence of a set of inciden-
tal (secondary) parameters whose number grows with the dimension of the sam-
ple (n) while the number of cross-sections (7) is fixed. The phenomenon was
first identified by Neyman and Scott (1948), who noticed that the unconditional
maximum likelihood estimators of p and 6 in the linear fixed effects model are
the within groups estimator for y and 62 = €'e/(nT), with no degrees of freedom
correction. The latter estimator is inconsistent; plim 62 = [(T — 1)/T] 6’ < 6%
The downward bias does not diminish as z increases, though it does decrease to
zero as T increases. In this particular case, plim ¥ = y. No bias is imparted to §.
Moreover, the estimators of the fixed effects, a;= X,(y;, — ?'x,»,,), are unbiased,
albeit inconsistent because Asy.Var[a;] is O(1/T)

There is some misconception about the IP problem. The bias usually is
assumed to be transmitted to the entire parameter vector and away from zero.
The inconsistency of the estimators of «; taints the estimation of the common
parameters, 7y, but this does not follow automatically. The nature of the incon-
sistencies of & and fy(&)are different. The FE estimator, &;, is inconsistent
because its asymptotic variance does not converge to zero as the sample (n)
grows. There is no obvious sense in which the fixed effects estimators are sys-
tematically biased away from the true values. (In the linear model, the fixed

16. Wooldridge (2010, p. 309) makes this argument for the linear model. There is a remaining com-
plication about this strategy for nonlinear models that will be pursued again in Section 6. Broadly, &
estimates «; for the subsample for which there is a solution for &;. For example, for the Poisson
model, the likelihood equation for o; has no solution if X,y;, = 0. These observations have been
dropped for purposes of estimation. The average of the feasible estimators would estimate E
[o;|Z.y;, # 0]. This might represent a nontrivial truncation of the distribution. Whether this differs
from E[o;] remains to be explored.
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effects estimators are actually unbiased.) In many nonlinear settings, however,
the common parameters, vy, are estimated with a systematic bias that does not
diminish as n increases. No internally consistent theory implies this result. It
varies by model. In the linear regression case, there is no systematic bias. In
the binary logit case, the bias in the common parameter vector is proportional
for the entire vector, away from zero. The result appears to be the same for the
probit model, though this remains to be proven analytically. Monte Carlo evi-
dence (Greene, 2005) for the Tobit model suggests, again, that the estimator of
the scale parameter, o, is biased, but the common slope estimators are not. In the
true fixed effects stochastic frontier model, which has common parameters y
and two variance parameters, o,, and o,, the IP problem appears to reside only
in o,, which resembles the Neyman and Scott case.

As suggested by the Neyman and Scott application, it does seem that the
force of the result is actually exerted on some explicit or embedded scaling
parameters in index models. For example, the linear regression, Tobit, stochas-
tic frontier, and even in binary choice models, where the bias appears equally in
the entire vector. The only theoretically verified case is the binary logit model,
for which it has been shown that plim ¥ = 2y when T = 2 (see Abrevaya, 1997).
It also can be shown that plim ¥ = y as (n,T) —>oco. What applies between 2 and
oo, and what occurs in other models has been suggested experimentally (see
e.g., Greene, 2004a). A general result that does seem widespread is suggested
by Abrevaya’s result, that the IP bias is away from zero. But, in fact, this seems
not to be the case, either. In the Tobit case, for example, and in the stochastic
frontier, the effect seems to reside in the variance term estimators. In the trun-
cated regression, it appears that both slopes and standard deviation parameters
are biased downward. Table | shows some suggestive Monte Carlo simulations
from Greene (2004a, 2005). All simulations are based on a latent single index
model y; * = a; + px;, + 6d;, + o€;,; where ¢, , is either a standardized logistic
variate or standard normal, f =6 = 1, x; , is continuous, d; , is a dummy variable,
and ¢; is a correlated random effect (i.e., the DGP is actually a true fixed effects
model). Table entries in each case are percentage biases of the unconditional
estimators, computed as 100%[(b — B)/f] where § is the quantity being esti-
mated (1.0) and b is the unconditional FE estimator. The simulation also esti-
mates the scale factor for the partial effects. The broad patterns that emerge are,
first, when there is discrete variation in y;,, the slopes are biased away from
zero. When there is continuous variation, the bias, if there is any, in the slopes,
is toward zero. The bias in 6, in the censored and truncated regression models is
toward zero. Estimates of partial effects seem to be more accurate than esti-
mates of coefficients. Finally, the IP problem obviously diminishes with
increases in 7. Fig. 1 shows the results of a small experimental study for a sto-
chastic frontier model, y;; = a; + px;, + 6,v;; — 6,|u; ;| where, again, this is a
true fixed effects model, and v;, and u; , are both standard normally distributed.
The true values of the parameters f, ¢, and o, are 0.2, 0.18, and 0.10, respec-
tively. For f and o,, the deviation of the estimator from the true value is
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FIG. 1 Unconditional fixed effects stochastic frontier estimator.

persistently only 2%—3%. Fig. | compares the behavior of a consistent method
of moments estimator of o, to the maximum likelihood estimator. The results
strongly suggest that the bias of the true fixed effects estimator is relatively
small compared to the models in Table 1, and it resides in the estimator of o,.

Proposals to correct the unconditional fixed effects estimator have focused
on the probit model. Several approaches involving operating directly on the
estimates, maximizing a penalized log likelihood, or modifying the likelihood
equations, have been suggested. Hahn and Newey’s (2004) jackknife procedure
provides a starting point. The central result for an unconditional estimator based
on n observations and T periods is

1 1 1
li Y=7+=bi+=b+0( =,
pim, 7= T 1 T2 2 <T3>
where ¥ is the unconditional MLE, b; and b, are vectors and the final term is

a vector of order (1/T *)."” For any 1, a leave one period out estimator without
that ¢, has

. N 1 1 1
phmnﬁmy([) =Y+ T— lbl + (T_ 1)2b2+0<T3>

It follows that

. N . 1 1 1
plim, ., T¥r — (T —1)¥(, _Y—mbz+0<ﬁ> _7+0(ﬁ)'

17. For the probit and logit models, it appears that the relationship could be plimy = y g(T) where
g(2)=2, ¢ (T) < 0and limy_,,, g(T) = 1. This simpler alternative approach remains to be explored.
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This reduces the bias to O(1/T %). In order to take advantage of the full sample,
the jackknife estimator would be

A~ ~ ~ 1 T ~
T=Tyr—(T— 1)y where y=7%_ ()

Based on these simulation results, one might expect the bias in this estimator
to be trivial if T'is in the range of many contemporary panels (about 15). Imbens
and Wooldridge (2012) raise a number of theoretical objections that together
might limit this estimator, including a problem with ?(,)in dynamic models
and the assumption that b; and b, will be the same in all periods. Several
other authors, including Fernandez-Val (2009), Carro (2007), and Carro and
Browning (2014), have provided refinements on this estimator.

4.2 Random Effects Estimation and Correlated Random Effects

The random effects model specifies that ¢; is independent of the entire sequence
x, . Then, fc;|X;) = f(c). Some progress can be made analyzing functions of
interest, such as E[y|x,c] with reasonably minimal assumptions. For example,
if only the conditional mean, E[c] is assumed known (typically zero), then esti-
mation sometimes can proceed semiparametrically, by relying on the law
of iterated expectations and averaging out the effects of heterogeneity. Thus,
if sufficient detail is known about E[y|x,c], then partial effects such as
APE = E_ [0E[y|x,c]/0x] can be studied by averaging away the heterogeneity.
However, most applications are based on parametric specifications of c;.

4.2.1 Parametric Models
With strict exogeneity and conditional independence,

T;
FOits o yin] Xiy ) = thlf(yi,t| Xit, Ci)-

The conditional log likelihood for a random effects model is, then,

InL(B.0,0)= > n(T]", fOudl Bxis+ci:0.0)).

It is not possible to maximize the log likelihood with the unobserved c; present.
The unconditional density will be

JL (H,T;1f(yi,t| B'x; +ci: 9))f(ci :0)dc;.

The unconditional log likelihood is

n

T;
In Lum‘onditionul(ﬁ’ 9, G) — Z an (Hr:l f(yi,z' B/Xi,I +¢i: 0))f(cl : G)dC,'.

i=1 Ci
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The maximum likelihood estimator now is computed by maximizing the uncon-
ditional log likelihood. The remaining obstacle is computing the integral. Save
for the two now familiar cases, the linear regression with normally distributed
disturbances and normal heterogeneity and the Poisson regression with log-
gamma distributed heterogeneity, integrals of this type do not have known
closed forms, and must be approximated.'® Two approaches are typically used,
Gauss-Hermite quadrature and Monte Carlo simulation.

If ¢; normally is distributed with mean zero and variance &2, the uncondi-
tional log likelihood can be written

n

© T; 1 Ci
lnunconditinnal L(ﬁ, 0, 0) - Z In J [szlf(yi,f| X Ci: ﬁs 0)i| ;45 (;) dC,'

i=1
With a change of variable and some manipulation, this can be transformed to
n 00
_ K2
In Lunconditional(ﬁ, 0, O') = Z In J g(h,)e ki dh;,
i=1 —o0

which is in the form needed to use Gauss-Hermite quadrature. The approxima-
tion to the unconditional log likelihood is

In Lquadratuie ﬁ B O' Z IHZ |:Ht 1f Yi, I‘|XI tdp - ﬁ 0):|th

where a;, and w), are the nodes and weights for the quadrature. The method is fast
and remarkably accurate, even with small numbers (H) of quadrature points.
Butler and Moffitt (1982) proposed the approach for the random effects probit
model. It has since been used in many different applications.'’

Monte Carlo simulation is an alternative method. The unconditional log
likelihood is,

In L(B, 0, 0) Z an i L 70 X ci:8.9)] (1;4)(%)61@
= Z InE. [Hil.f(y,;,| X1 Ci B, 0)] .
i=1

By relying on a law of large numbers, it is possible to approximate this expectation
with an average over a random sample of observations on c;. The sample can be
created with a pseudo-random number generator. The simulated log likelihood is

In meulanon ﬁ 0 6 Z In— Z [Hjtzlf(yl,t| X 1 gi,r : ﬁ’ 0’ 6)]

18. See Greene (2018).
19. See, e.g., Stata (2018) and Econometric Software Inc. (2017).
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where ¢; , is the rth pseudo random draw.”’ Maximum simulated likelihood has
been used in a large and growing number of applications. Two advantages of
the simulation method are, first, if integration must be done over more than
one dimension, the speed advantage of simulation over quadrature becomes
overwhelming and, second, the simulation method is not tied to the normal
distribution—it can be applied with any type of population that can be simulated.

In most applications, the parameters of interest are partial effect of some sort,
or some other derivative function of the model parameters. In random effects
models, these functions likely will involve c¢;. For example, for the random effects
probit model, the central feature is Prob(y; , = 1|x; ;) = ®(§'x; ,+ ov;) where ¢; =
ov; with v; ~ N[0,1]. As we have seen earlier, the average partial effect is

APE = E, [Bp(B'x + ov)] = B(1 )" p(Bx(1-p)'").

The function also could be approximated using either of the previously noted
methods. In more involved cases that do not have closed forms, it would be
a natural way to proceed.

4.2.2 Correlated Random Effects

The fixed effects approach, with its completely unrestricted specification of
f(c|X) is appealing, but difficult to implement empirically. The random effects
approach, in contrast, imposes a possibly unpalatable restriction. The payoff is
the detail it affords as seen in the previous section. The correlated random
effects approach suggested by Mundlak (1978), Chamberlain (1980), and
Wooldridge (2010) is a useful middle ground. The specification is ¢; = # +
0'z; + u;. This augments the random effects model shown earlier.

In L(Y, T, 9, U) = Z In (Hilf(yi’t| 77+'y’z,-’,+9/i,- +l/ll'))

i=1
For example, if u; ~ N [0,62], as is common, the log likelihood for the correlated
random effects probit model would be

n

In L(y,7,0,0)= Z In Jw (HZICD[(Zy,;, —1)(z+Y'z;,+0% +0vi)})¢(vi)dvi

i=1
After estimation, the partial effects for this model would be based on”’

_ 0D(n+Y'z+0Z+0v)
B 0z

PE :y¢(ﬂ+Y/Z+9/i+dv):§(z,i, V).

20. See Cameron and Trivedi (2005, p. 394) for some useful results about properties of this estimator.
21. We note, in application, 0®(r + 'z +8'Z + 6v)/0z should include a term #8. For purpose of the
partial effect, the variation of z is not taken to be variation of a component of Z.
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Empirically, this can be estimated by simulation or, as before, with
PE=x(1=p)"p|(1=p)" (x+7/2+0)|

The CRE model relaxes the restrictive independence assumption of the random
effects specification, while overcoming the complications of the unrestricted
fixed effects approach.

4.2.3 Random Parameters Models

The random effects model can be written f(y; | X; ;,¢;) = fIyi| V2 + (7w + u;):0];
that is, as a nonlinear model with a randomly distributed constant term. We
could extend the idea of heterogeneous parameters to the other parameters.
A random utility based multinomial choice model might naturally accommo-
date heterogeneity in marginal utilities over the attributes of the choices with
a random specification y; = y + u; where E[u;] = 0, Var[u;] = X = I'T” and
I' is a lower triangular Cholesky factor for X. The log likelihood function for
this random parameters model is

n

T;
In L(ﬁ, 0’ Z) = Z an [H;:1f(3)f”| (ﬂ +FV,')/X,", : 9)]f(V,)dV,
i=1 vi
The integral is over K (or fewer) dimensions, which makes quadrature
unappealing—the amount of computation is O(HX), and the amount of
computation needed to use simulation is roughly linear in K.

4.2.4 A Semiparametric Random Effects Model

The preceding approach is based on a fully parametric specification for the ran-
dom effect. Heckman and Singer (1984) argued (in the context of a duration
model), that the specification was unnecessarily detailed. They proposed a
semiparametric approach using a finite discrete support over ¢;, ¢,, ¢ = 1,...,
O, with associated probabilities, 7,. The approach is equivalent to a latent class,
or finite mixture model. The log likelihood, would be

In L(B,0,c,T) Z In— Ziqu {Hilf(yi,A X/ Cq, B, 9)},

0<r, <1, Zgry=1.

Willis (2006) applied this approach to the fixed effects binary logit model pro-
posed by Cecchetti (1986). The logic of the discrete random effects variation
could be applied to more than one, or all of the elements of . The resulting
latent class model has been used in many recent applications.

4.3 Robust Estimation and Inference

In nonlinear (or linear) panel data modeling, robust estimation arises in two
forms. First, the difference between fixed or correlated random effects and pure



72  Panel Data Econometrics

random effects arises from the assumption about restrictions on f{(c;|X;). In the
correlated random effects case, f(c;|X;) = flc; |z + 0'Z;), and in the pure random
effects, case, flc;|X;) = flc;). A consistent fixed effects estimator should be
robust to the other two specifications. This proposition underlies much of the
treatment of the linear model. The issue is much less clear for most nonlinear
models because, at least in the small T case, there is no sharply consistent fixed
effects estimator because of the incidental parameters problem. This forces the
analyst to choose between the inconsistent fixed effects estimator and a possibly
nonrobust random effects estimator. In principle, at the cost of a set of probably
mild, reasonable assumptions, the correlated random effects approach offers an
appealing approach.

The second appearance of the idea of robustness in nonlinear panel data
modeling will be the appropriate covariance matrix for the ML estimator.
The panel data setting is the most natural place to think about clustering and
robust covariance matrix estimation (see Abadie et al., 2017; Cameron &
Miller, 2015; Wooldridge, 2003). In the linear case, where the preferred estima-
tor is OLS,

b—p= (=, (= x.x,)] (= (S0 %))

The variance estimator would be

~1 : ,
Est.Varb | X] = [Z, (Z7,x;.x. )] [Z, (Z xieir) (Z, X, i)
. —1

(= (2 xix,)]

The correlation accommodated by the cluster correction in the linear model
arises through the within group correlation of (x;e;,). Abadie et al. (2017)
discuss the issue of when clustering is important. For the linear model with nor-
mally distributed disturbances, the first and second derivatives of the log like-
lihood function are g;, = X,»_,s,-,,/cs2 and H; , = -x; x;/ /o>. In this case, whether
clustering is important would turn on whether (fZ,T;lI:I,; ) = X/X;/6? differs
substantially from

T, & T, T, T ~ T, <T; & &
(Etzlgi,r) (Zrzlg,i,z) = 21:1z“s:lei,tei»sxi,txﬁ,s/ff4 = Et:1Zs:1gi,zg;,f
(apart from the scaling 7). This, in turn, depends on the within group correla-
tion of (X;e;,), not necessarily on that between e;, or X;, separately.

For a maximum likelihood estimator, the appropriate estimator is built up
from the Hessian and first derivatives of the log likelihood. By expanding
the likelihood equations for the MLE ¥ around v,

T-v=~ [T (ErT;lHiJ)] o =L, (Ezilgi,t)}
The estimator for the variance of ¥ is then

Est.Var[y] = [2?:1 (ZLI:II‘J” - [er‘lzl (221%,:) (ZZT':u‘g/i,z)] [27:1 (Z:Té'lHi‘t)] -
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where the terms are evaluated at y. The result for the nonlinear model mimics
that for the linear model. In general, clustering is important with respect to the
within group correlation of the scores of the log likelihood. It might be difficult
to interpret this in natural terms, such as membership in a group. Abadie et al.
also take issue with the idea that clustering is harmless, arguing it should be
substantive. We agree with this, especially given the almost reflexive (even
in cross-section studies) desire to secure credibility by finding something to
cluster on. The necessary and sufficient condition is that some form of unobser-
vable be autocorrelated within the model. For example, the mere existence of
some base similarity within defined groups in a population is not alone suffi-
cient to motivate this correction.

Clustering appears universally to be viewed as conservative. The desire is to
protect against being too optimistic in reporting standard errors that are too
small. It seems less than universally appreciated that the algebra of the cluster
correction (and robust covariance matrix correction more generally) does not
guarantee that the resulting estimated standard errors will be larger than the
uncorrected version.

4.4 Attrition

When the panel data set is unbalanced, the question of ignorability is consid-
ered. The methodological framework for thinking about attrition is similar to
sample selection. If attrition from the panel is related systematically to the unob-
served effects in the model, then the observed sample might be nonrandom. (In
Contoyannis et al.’s (2004) study of self-assessed health, the attrition appeared
to be most pronounced among those whose initial health was rated poor or fair.)
It is unclear what the implications are for data sets affected by nonrandom attri-
tion. Verbeek and Nijman (1992) suggested some variable addition tests for the
presence of attrition bias. The authors examined the issue in a linear regression
setting. The application of Contoyannis et al. (2004) to an ordered probit model
is more relevant here. The Verbeek and Nijman tests add (one at a time) three
variables to the main model: NEXT WAVE is a dummy variable added at
observed wave ¢ that indicates if the individual is observed in the next wave;
ALL WAVES is a dummy variable that indicates whether the individual is pre-
sent for all waves; NUMWAVES is the total number of waves for which indi-
vidual i is present in the sample. (Note that all of these variables are time
invariant, so they cannot appear in a fixed effects model.) The authors note these
tests might have low power against some alternatives and are nonconstructive—
they do not indicate what response should follow a finding of attrition bias. A
Hausman style test might work. The comparison would be between the estima-
tor based only on the full balanced panel and the full, larger, unbalanced panel.
Contoyannis et al. (CRJ) note that this approach likely would not work because
of the internal structure of the ordered probit model. The problem, however, is
worse than that. The more efficient estimator of the pair is only more efficient
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because it uses more observations, not because of some aspect of the model
specification, as is generally required for the Hausman (1978) test. It is not
clear, therefore, how the right asymptotic covariance matrix for the test should
be constructed. This would apply in any modeling framework. The outcome of
the VN test suggests whether the analyst should restrict the sample to the bal-
anced panel that is present for all waves, or they can gain the additional effi-
ciency afforded by the full, larger, unbalanced sample.

Wooldridge (2002) proposed an inverse probability weighting scheme to
account for nonrandom attrition. For each individual in the sample, d; , = 1[indi-
vidual i is present in wave ¢, t=1,...,T]. A probit model is estimated for each
wave based on characteristics z;; that are observed for everyone at wave 1.
For Contoyannis et al. (2004), these included variables such as initial health
status and initial values of several characteristics of health. At each period,
the fitted probability p; , is computed for each individual. The weighted pooled
log likelihood is

n T;
InL= Z Z (di1/pi.;)logLi,.

i=1 t=1

CRIJ suggested some refinements to allow z to evolve. The application of the set
of procedures suggested the presence of attrition bias for men in the sample, but
not for women. Surprisingly, the difference between the estimates based on the
full sample and the balanced panel were negligible.

4.5 Specification Tests

The random effects and fixed effects models each encompass the pooled model
(linear or not) via some restriction on f(c;|X;). The tests are uncomplicated
for the linear case. For the fixed effects model, the linear restriction, Ho:o; =
o, I = 2,...,n can be tested with an F statistic with (n—1) and N—n—K degrees
of freedom. Under the normality assumption, a likelihood ratio statistic, —2In
(eLspv’eLspv/€pooLED €pooLep) Would have a limiting chi-squared distribution
with n—1 degrees of freedom under H. There is no counterpart to the F statistic
for nonlinear models. The likelihood ratio test might seem to be a candidate, but
this strategy requires the unconditional fixed effects estimator to be consistent
under H,. The Poisson model is the only clear candidate. Cecchetti (1986) pro-
posed a Hausman (1978) test for the binary logit model based on a comparison
of the efficient pooled estimator to the inefficient conditional ML estimator.””
This option will not be available for many other models; it requires the condi-
tional estimator or some other consistent (but inefficient under H) estimator.
The logit and Poisson are the only available candidates. The strategy certainly

22. The validity of Cecchetti’s test depends on using the same sample for both estimators. The obser-
vations with %, y; , = 0 or T; should be omitted from the pooled sample even though they are useable.
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is not available for the probit model. A generic likelihood ratio test will not be
available because of the incidental parameters problem, and, for some cases, the
fixed effects estimator must be based on a smaller sample.

A useful middle ground is provided by the correlated random effects (CRE)
strategy. The CRE model restricts the generic fixed effects model by assuming
¢;i = mo + O'Z + u;. If we embed this in the generic fixed effects model,

f(y,',l, ~~-,yi,Ti| X,‘, C,‘) :H[f(ﬂ+y’z,-,t+9’i,»+u,~).

This model can be estimated as a random effects model if a distribution (such
as normal) is assumed for u;. The Wald statistic for testing Hy:0 = 0 would
have a limiting chi-squared distribution with K degrees of freedom. (The test
should be carried out using a robust covariance matrix because of the loose
definition of ¢;.>)

The test for random effects likewise has some subtle complications. For the
linear model, with normally distributed random effects, the standard approach is
Breusch and Pagan’s LM test based on the pooled OLS residuals:

2 —
__(=LT) L (Tie)
25\ Ti(Ti— 1) |z 20 2

it

LM —1| —=21].

Wooldridge (2010) proposes a method of moments based test statistic that uses
Cov(e;e;,5) = Var(e;,) = o,

1 T
227:1 (Zfillzf’:r, + 1ei,fei.s)
Z= —NI0, 1]

1 2
n Ti—15T;
\/; 5:1(21:1 Zs:r,+1ei,t€i,x>

Some manipulation of this reveals that Z = /nF/s, where r; = [(T,—E,—)2 - e;e,} .

The difference between the two is that the LM statistic relies on variances (and
underlying normality) while Wooldridge’s relies on the covariance between e; ,
and e;; and the central limit theorem.

There is no direct counterpart to either of these statistics for nonlinear
models, generally because nonlinear models do not produce residuals to provide
a basis for the test.”* There is a subtle problem with tests of Hoy:o,> = 0 based on
the likelihood function. The regularity conditions required to derive the limiting
chi-squared distribution of the statistic require the parameter to be in the interior

23. The same test in the linear regression presents a direct approach. Linear regression of y; ,on (z; ,,Z;)
is algebraically identical to the within estimator. A Wald test of the hypothesis that the coefficients on
Z; equal zero (using a robust covariance matrix) is loosely equivalent to the test described here for
nonlinear models. This is the Wu (1973) test, but the underlying logic parallels the Hausman test.
24. Greene and McKenzie (2015) develop an LM test for H, for the random effects probit model
using generalized residuals (see Chesher & Irish, 1987). For a single index nonlinear (or linear)
model, the generalized residual is u;, = 0lnf(y;,|®)/0(p'x), i.e., the derivative with respect to the
constant term. For the linear model, this is 8,3;/082.
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of the parameter space, not on its boundary, as it would be here. (Greene and
McKenzie 2015) examine this issue for the random effects probit model.)
Under the fairly strong assumptions that underlie the Butler and Moffitt or
random constants model, a simpler Wald test is available. For example, for the
random effects probit model, maximization of the simulated log likelihood,

InL(B, o) = ; In I%Zf:l [ " D2y~ 1)(B'xis +0vi,)

produces estimates of f and o. The latter can form the basis of a Wald or like-
lihood ratio test. The Butler and Moffitt estimator produces an estimate of
p = 6°/(1 + ¢°) that can be treated similarly.

The random and fixed effects models are not nested without some restric-
tions; Hoy: flc|X) = f(c) requires some formal structure to provide a basis for
statistical inference. Once again, the correlated random effects model provides
a convenient approach. The log likelihood function under a suitable definition
of flc|X;) would be

InL(B,0,0) = Z In J {Hil FOidl (x+4'2,+ 07 +ou;)| f(u;)du;
i=1 —o0
A Wald test of Hy:0 = 0 tests the difference between fixed and random effects
under this specification.

5 Panel Data

Panel data are found in several forms. Broadly, n observational units each are
observed T times in sequence. One useful distinction can be made by delineating
the sampling frame that generates n and 7. In the longitudinal data settings of
interest here, we treat T as fixed, though not necessarily very small. The Panel
Survey of Income Dynamics (PSID) contains more than 50 years of data; the
German Socioeconomic Panel (GSOEP) is near 20 years. The European
Community Household Panel (ECHP) data set was ended after eight waves.
Econometric considerations in such data generally are based on n multivariate
(T-variate) observations. The statistical theory for longitudinal analysis is labeled
fixed T. In particular, although some of these data sets might be long enough to be
considered otherwise, the time series properties of the data (e.g., stationarity) are
not of interest. The Penn World Tables (http://www.rug.nl/ggdc/productivity/
pwt/) consist of T = 65 years of data on n = 182 countries (as of version 9.0
in 2017). In analyzing these aggregate time series data, the time series properties
are of paramount importance. These could be regarded as fixed n, though the
number of countries in any particular analysis is typically not an important feature
of the analysis. Asymptotic properties of estimators in this context, for example,
hinge on T, not n. A style of analysis rather different from longitudinal modeling
is called for in this setting. In contrast, the Center for Research in Security Prices
(CRSP) data (http://www.crsp.com) provide financial analysts with extremely
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wide (large n) data on some very long time series (large T), such as stock and bond
data for corporations. Each of these settings calls for its own classes of models and
methods. In this (now, admittedly parochial) survey, we are interested in longi-
tudinal analysis (small or fixed T and large n). Some examples of these national
(or international) data sets are as follows:

e European Community: SHARE (Survey of Health, Ageing and Retirement
in Europe);

e European Community: ECHP (European Community Household Panel);

e Australia: HILDA (Household Income and Labor Dynamics in Australia);

e UK: BHPS (now, Understanding Society, previously the British Household
Panel Survey);

e Germany: GSOEP (German Socioeconomic Panel);

Mexico: ENEU (Encuesta Nacional de Empleo Urbano, Urban Employment

Survey)

China: CFPS (China Family Panel Study);

Italy: WHIP (Work Histories Italian Panel);

USA: PSID (Panel Survey of Income Dynamics);

USA: MEPS (Medical Expenditure Panel Survey);

USA: NLS (National Longitudinal Survey);

USA: SIPP (Survey of Income and Program Participation).

We note an immediate complication in the previous description. In practice, most
longitudinal data sets do not actually involve a fixed T observation on 7 units.
Rather, units come and go from the sample for various reasons. This could be
by design. In arotating panel, such as the SIPP and ENEU data, units enter the panel
for a fixed number of waves, and the entry of specific units is staggered. In a par-
ticular wave of the panel, the number of appearances of any unit could be any of
1,...,T. (T varies from two to four years for the SIPP data and is five for the ENEU
data) The reasons for exit and possible reentry by any unit, however, might be unex-
plainable in the context of the study. Full generality would require us to specify that
the i = 1,...,n observations each is observed T; times. In nearly all received cases,
this sort of variation merely presents a notational inconvenience for the econome-
trician and a practical, accounting complication for the model builder. It is neces-
sary, however, to distinguish randomly missing observations from attrition. For
purpose of the analysis, attrition will have two features: (1) It is an absorbing state;
the unit that attrites from the sample does not return later. (There is churn in some of
the data sets listed above.); (2) In the context of whatever model is under consid-
eration, the unobservable features that explain attrition will be correlated with the
unobservables that enter the model for the interesting variable under analysis.
These two results produce a complication because of nonrandom sampling. For
example, it is not simply association of attrition with the dependent variable that
creates an attrition problem. The association is with the unobservable effects in the
model. In a model for Income, if attrition is explainable completely in terms of
Income—individuals whose income reaches a certain level are asked to exit the
panel—then the phenomenon can be modeled straightforwardly in terms of
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truncation. Butif the attrition is associated with the disturbance in the Income equa-
tion, matters become much more complicated. To continue the example, in an
Income model, attrition that is related to Health might well be nonrandom with
respect to Income. We will examine a subsequent application.

A panel data set that consists precisely of T observations on N units is said to
be a balanced panel. In contrast, if the number of observations 7; varies with i,
then the panel is unbalanced. Attrition is a potential problem in unbalanced
panels. Table 2 displays an extract from an unbalanced panel data set. The anal-
ysis in the remainder of this survey is concerned with data such as these. (The
data are extracted from the GSOEP sample that was used in Riphahn et al.
2003.) For our purposes, the interesting variables in this data set are HSAT,
health satisfaction, and DOCVIS, number of doctor visits.

6 Modeling Frameworks and Applications

We illustrate the applications of the panel data methods in several different non-
linear settings. We begin with the binary choice model that dominates the received
literature, and then examine several others. A few relatively uncommon applica-
tions such as duration models (Lee 2008) are left for more extensive treatments.

6.1 Binary Choice

The probit and logit models for binary choice are the standard settings for exam-
ining nonlinear modeling, in general, and panel data modeling, in particular. The
canonical origin of the topic would be Chamberlain’s (1980) development of the
fixed effects model and Butler and Moffitt’s (1982) treatment of the random
effects model.”” The unconditional fixed effects estimators for the panel probit
and logit models (see Greene 2004a, 2004b, 2018) exemplify the incidental
parameters problem and therefore are unappealing approaches. The literature
about extensions and less parameterized alternatives to the two models includes
Hahn and Kuersteiner (201 1), Hahn and Newey (2004), Carro (2007), Fernandez-
Val (2009), Honoré and Lewbel (2002), Honoré and Kesina (2017), Manski
(1975), Aguirrebiria and Mira (2007), and Lewbel and Dong (2015).

6.1.17 Random and Unconditional Fixed Effects Probit Models
The log likelihood function for a panel probit model”® is

T,

InL(B, o) = ZZ In®[q; (7 +Y'2;,+ci)],qi0 =2y — 1).

i=1 t=1

25. Rasch (1960) is a precursor to the fixed effects logit model.
26. We distinguish this from the panel probit model described in Bertschuk and Lechner (1998),
which was essentially a constrained seemingly unrelated regressions model for a set of T binary
choices;

Vie = 1P'x; + &, > 0] with Cov(g; ..¢;) = 1[i = j1p;, with p,, = 1. Their formulation describes
cross period correlation, not individual heterogeneity.



Nonlinear and Related Panel Data Models Chapter | 3 79

TABLE 2 Unbalanced Panel Data

ID Female Year Age Educ Married  Docvis  Hsat  Income Children
1 0 1984 54 15 1 1 8 0.305 0
1 0 1985 55 15 1 0 8 0.451005 0
1 0 1986 56 15 1 0 7 0.35 0
2 1 1984 44 9 1 0 7 0.305 0
2 1 1985 45 9 1 1 8 0.318278 0
2 1 1986 46 9 1 2 7 0.35 0
2 1 1988 48 9 1 1 8 0.35305 0
3 1 1984 58 11 0 0 10 0.1434 0
3 1 1986 60 11 0 0 9 0.3 0
3 1 1987 61 11 0 10 10 0.11 0
3 1 1988 62 11 0 3 10 0.1 0
4 1 1985 29 18 0 4 10 0.13 0
5 0 1987 27 118182 0 1 9 0.065 0
5 0 1988 28 11.8182 0 2 10 0.06 0
5 0 1981 31 118182 0 0 10 0.155 0
6 0 1985 25 9 0 2 10 0.16 1
6 0 1986 26 9 1 3 9 0.3 1
6 0 1987 27 9 1 0 8 0.3 1
6 0 1988 28 9 1 1 10 0.2 1
6 0 1991 31 9 1 18 2 0.18 1
7 1 1987 26 10 1 0 9 0.3 1
7 1 1988 27 10 1 0 7 0.2 1
7 1 1991 30 10 1 2 9 0.18 1
8 0 1984 64 10.5 0 7 0 0.15 0
9 0 1984 30 13 0 6 9 0.24 0
9 0 1987 33 13 0 7 8 0.265 0
9 0 1988 34 13 1 0 8 0.6 1
9 0 1991 37 18 1 4 7 0.7 1
9 0 1994 40 18 1 0 9 0.75 1
10 1 1988 30 18 0 0 6 0.36 0

10 1 1994 36 18 1 0 6 0.92 1
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The pooled estimator was examined earlier. The random effects estimator
would be based either on simulation or Hermite quadrature. There is no condi-
tional likelihood estimator for the fixed effects form of this model. To illustrate
the model, we will compare the various estimators using the GSOEP health data
described earlier. The data are an unbalanced panel with 7293 groups, 27,326
household/year observations. We have used the 877 households that were
observed in all seven waves (so there are no issues of attrition embedded in
the data). For purposes of computing the dynamic models, the last six years
of data were used in all cases. The outcome variable is Doctor;, = 1[Doc-
Vis;, > 0]. Groups for which X, Doctor;, equals 0 or 6 were omitted from
the sample, leaving n* = 597 observations.

Estimates for random and unconditional fixed effects for a small specifi-
cation are shown in Table 3. (Standard errors are not shown, because the dis-
cussion of the various models is not concerned with efficiency of different
estimators.) Overall, the pooled and fixed effects (FE) estimators seem dis-
tinctly removed from the random effects (RE) counterparts. The correlated
random effects model seems likewise to have substantial effect on the esti-
mated partial effects. Based on the LM test, the pooled approach is rejected
for any static or dynamic form. The simple RE form also is rejected in favor of
the CRE form for both cases, which would argue in favor of the FE model. A
direct test for the FEM soundly rejects all other forms of the model, static or
dynamic. It is not clear whether this is a valid test, however, because the FE
log likelihood is not based on a consistent estimator of the parameters esti-
mated by any other form. Still using the LR test, the dynamic CRE rejects
the static one, so the preferred model is the dynamic CRE. Comparing to
the static pooled model, the extensions substantially change the partial
effects.

6.1.2 Logit Model and Conditional Fixed Effects Estimation

The binary logit model is the most familiar of the few models that provide a
conditional estimator (see Lancaster, 2000). The probability with fixed effects is

Prob(y;, = 1|x;;, a;) = Aa; +Y'z;,) = e er/Z"“/ [1 +e°‘"+7/”"’] .

The unconditional logit log likelihood is

n* T;
In Ly, 00) = > InA[gi, (¥ 20+ )] qis = (21— 1).
i=1 =1
Groups for which %, y; , equals 0 or 7; do not contribute to this log likelihood, so
the sum is over the n* observations for which 0 < X,y; , < T;. The unconditional
log likelihood is straightforward to maximize over (y,ot) using the remaining
observations. The conditional log likelihood is the sum of the logs of the

probabilities conditioned on S; = Zil Vit
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TABLE 3 Estimated Probit Models (Estimated Partial Effects in Parentheses)

Pooled
Constant

Age

Education

Income

Health

Married

Age
Educ
Income
Health
Married
Doctor;_4
Doctor,

p
Ln L

LM

Prob(yi 1, yi2, --» Vi1, 1Si) =

Pooled
1.603
0.007
(0.002)
—0.042
(-0.014)
0.051
(0.018)
—0.180
(-=0.062)
0.119

(0.041)

0.436

—3212.59

Static
RE CRE
1.612 2.668
0.015 0.033
(0.004) (0.009)
-0.052 0.178
(-0.014) (0.046)
0.046 -0.119
(0.012) (-0.031)
-0.197 —0.144
(-0.052) (-0.037)
0.105 -0.007
(0.028) (-0.019)
-0.029
-0.221
0.220
-0.175
0.250
0.430
—2923.37  —-2898.88
215.754 212.28

FE Pooled
0.648
0.040 0.005
(0.008) (0.002)
0.109 -0.026
(0.019) (~0.008)
—-0.177 0.005
(-0.315) (0.001)
-0.180 -0.141
(~0.032) (~0.044)
0.016 0.099
(0.003) (0.031)
0.667
0.475
—-1965.63  —2898.18

T;
exXp Z)’i,ﬂ/zi,t

t=1

T,
/

X i Z;

Zz,d,-,,:s;e P Zd”” b

T;
exXp Z)’i, IY/Zi,t

t=1

t=1

Dynamic
RE
0.880
0.010
(0.003)
—0.035
(-0.009)
0.054
(-0.014)
—0.171
(-0.046)
0.099

(0.027)

0.230
0.799
0.300
—2826.68

112.64

CRE
1.449
0.030
(0.008)
0.165
(0.044)
-0.116
(-0.031)
—0.143
(—0.038)
—0.146
(=0.004)
-0.027
-0.198
0.105
—0.079
0.220
0.207
0.774
0.305
—2815.87

121.03

>

T;

i

different ways

that 2d; ,can equal S;

Tl
/
exp E di Vi,
=1
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The denominator is summed over all the different combinations of T; values of
T; .
yi. that sum to the same total as the observed data. There are ( S’) terms. This
i

might be large. With T = 6 (as in our example), it reaches 30 at § = 3. With T =
50, it reaches 10'* at § = 25.%’ The algorithm by Krailo and Pike (1984) makes
the computation extremely fast and simple. The estimators of a; are not individ-
ually consistent, but one might expect (1/n*)Z;a; to be a consistent estimator of
Ela;]. A remaining question to be considered is whether E[a;|0 < S; < T}]
differs from E[a;]. Assuming not, partial effects for the fixed effects logit model
can be estimated with

5 » 1 nx = . & ~ o~
APE = Y{;EHZ,TLI [A(a+72)][1 - A(@+72:,)] }

(The average could be over n* alone using Z;.) Table 4 shows the estimates.
They are quite close even though n* is moderate and T; = 6 for all i, which is
small by modern standards. The unconditional estimates are uniformly slightly
larger. The percentage differences between the two estimates are shown in
parentheses in the table. The results are consistent with the results for 7 = 8
in Table 1. This does suggest that the effect diminishes from the benchmark
of 100% at T = 2 rather rapidly. We also examined the estimated fixed effects.
The unconditional estimates are estimated with y. The conditional estimates are
computed by solving the unconditional likelihood equation for «; using the con-
sistent conditional estimator of y. The means of the conditional and uncondi-
tional estimators are —2.4 for the unconditional and —2.1 for the conditional.
Fig. 2 compares the two sets of estimates.

TABLE 4 Estimated Fixed Effects Logit Models (Percentage Excess in
Parentheses)

Unconditional Conditional
Estimate PEA Estimate PEA
Age 0.065 (14) 0.017 (21) 0.057 0.014
Educ 0.168 (17) 0.041 (14) 0.144 0.036
Income —0.284 (21) —0.070 (21) —0.234 —0.058
Health —0.304 (21) —0.074 (19) —0.251 —0.062
Married 0.041 (24) 0.010 (25) 0.033 0.008

27. Estimation of a model with n = 1000 and T = 50 required about 0.5 seconds. Of course, if T = 50,
the incidental parameters problem would be a moot point.
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AIC Estimated fixed effects: conditional vs. unconditional

=

-2

-3

-7

FIG. 2 Plot of estimates of a; conditional vs. unconditional.

Chamberlain (1980) also proposed a conditional estimator for a multinomial
logit model with fixed effects. The model is defined for a sequence of choices
from J + 1 alternatives by individual i in repetition ¢, J choices and an opt-out
or none choice that is taken a substantive number of times. The choice proba-
bilities are then

e%ini Y700,
Prob(y;;  =1|z;; ;) = ; Prob(y;;0=1|z;
(yl,l,j | l,[,j) 1437 18""””"'7/2[”’"’ (yl,t,O | l,t,O)
m—
1

1 +3) etz J

where the outcome is d;,; = 1[individual i makes choice j in choice task ] and
z;,; = a set of alternative specific attributes of choice j. Individual specific,
choice invariant characteristics, such as age or income, could be introduced into
the model by interacting them with J alternative specific constants. The prob-
ability attached to the sequence of choices is constructed similarly, but the sum-
ming in the denominator of the conditional probability is for the sum of d; , j over
(J + DT terms for individual i. The summing for the conditional probability
itemizes terms for which the denominator X; d; ;, equals S;, subject to the con-
straint that the terms in each block of (J + 1) sum to 1 (only one choice is made)
and the sum in the 7 blocks equals the sum for the observed blocks. The coun-
terpart to the uninformative observations in the binomial case are individuals
who make the same choice, j, in every period, ¢. There is an enormous amount
of computation (see Pforr 2011, 2014), but there is a much simpler way to pro-
ceed. For each of the J alternatives, there is a set of T blocks of two alternatives,
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each consisting of alternative j and the opt-out choice. In each n(27) set, there is
a binary logit model to be constructed, in which the individual chooses either
alternative j or the opt-out choice. Each of these binary choice models produces
a consistent estimator of vy, say (), j=1,...,J. Because there are J such
estimators, they can be reconciled with a minimum distance estimator,

o= =L fen} | [ {e0) v =sawono,

W(j)= {ZJJ.I {Q(/)}l} B {fl(j)}il such thath:1W(j) =1,

where Q( J) is the estimated asymptotic covariance matrix for the jth estimator.
The amount of computation involved is a very small fraction of that developed
in Pforr (2011, 2014). The reduction in the amount of computation is enormous
at the possible cost of some efficiency. For Pforr’s example, which involves
26,200 individual/period choices and J + 1 = 2 alternatives, the author reports
the full Chamberlain computation requires 101.58 seconds. Partitioning the
problem and using the minimum distance estimator produces the numerically
identical result in 0.297 seconds.”®

6.2 Bivariate and Recursive Binary Choice

The bivariate probit model (there is no logit counterpart), and recursive bivariate
probit (probit model with an endogenous binary variable) has attracted some
recent attention.”” The two-equation model with common effects would be

i =1B/X1i+¥'2 +c1 i+ €15, >0
Vo, = 1By X0 i1 +8y1ic+Coi+ €20, > 0]

A full fixed effects treatment would require two sets of fixed effects and would
be affected by the IP problem; no conditional estimator is available. The random
effects model, or the correlated random effects model would be a natural choice.
A dynamic model would proceed along the lines developed earlier for the single
equation case. (Rhine and Greene (2013) treated y; as the initial value and y, as
the second value in a two-period RBP.)

28. Pforr’s data for this application are obtained from Stata at http://www.stata-press.com/data/r1 1/r.
html under the CLOGIT heading. The data are reconfigured for NLOGIT (Econometric Software
Inc., 2017). The data can be downloaded from the author’s website at http://people.stern.nyu.edu/
wgreene/DiscreteChoice/Data/felogit.csv. A second example involving J=3, T=8 and n=400
required 0.229 seconds using the MDE.

29. Wilde (2000), Han and Vytlacil (2017), Mourifie and Meango (2014), Filippini et al. (2018),
Rhine and Greene (2013), Scott et al. (2009), Gregory and Deb (2015).
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6.3 Ordered Choice

Contoyannis et al. (2004) used the dynamic CRE model in their analysis of
health satisfaction in the BHPS. One of the complications in their case is the
treatment of lagged effects for an ordered choice outcome that takes J + 1
values, 0,...,J. The solution is a set of J endogenous lagged dummy variables,
one for each category. A fixed effects treatment of the ordered probit (logit)
model presents the same complications as the binary probit or logit model.
Ferrer-i-Carbonell and Frijters (2004) note that the ordered choice model can
be broken up into a set of binary choice models. If

Prob(y;,=j) = A(/Aj —a;— Y/Zi,z) — A(/Aj,l —a;— Y/Zi,t)
then
Prob(y;, >j) = A(ai + }/z,;, —ﬂj) .

The transformed model can be treated with Chamberlain’s conditional fixed
effects approach. The time invariant threshold becomes an outcome-specific
constant and will be lost in the fixed effects. Like the multinomial logit model
considered earlier, this produces multiple estimates of y, which can be recon-
ciled with a minimum distance estimator. Bias corrections for the fixed effects
ordered probit and logit models are developed by Bester and Hansen (2009),
Carro (2007), Carro and Trafferri (2014), Muris (2017), and others.

6.4 Censored or Truncated Regression

Much less is known (or studied) about the censored (Tobit) and truncated
regression models. Greene’s (2005) results (in Table 1) suggest that the inciden-
tal parameters problem appears, but in a fashion different from discrete choice
models, and the censored and truncated models behave differently from each
other. Honoré and Kesina (2017) examine a number of issues in this setting
and a semiparametric specification. A serious complication will arise in a
dynamic Tobit models; it is unclear how a lagged effect that is either zero or
continuous should be built into the model.

6.5 Stochastic Frontier: Panel Models

Panel data considerations in the stochastic frontier model focus on both ineffi-
ciency and heterogeneity. The model framework is built from the canonical
model

/
Vi =BXi Vi, — Ui,

where u;, < 0 and typically v; , is N[O,avz]. Aigneretal.’s (1977) base case spec-
ifies u; , as N* (0,6,%). The early developments for panel data treatments focused
on u, ,, not on heterogeneity. Pitt and Lee (1981) specified u; as a time invariant,
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random one-sided term that represented inefficiency. Schmidt and Sickles
(1984) and Cornwell et al. (1990) developed a fixed effects approach that respe-
cified u;, as a fixed value, q; or time varying, a;(f). Subsequent developments as
given by Kumbhakar et al. (2014) and Battese and Coelli (1995) and Cuesta
(2000) extended the time variation of u;, by various specifications of o,(¢).
These developments oriented the focus on inefficiency measurement while
leaving unobserved heterogeneity ambiguous or assumed to be time varying
and embedded in v; ;. Greene (2005) proposed the true random effects and true
fixed effects models

!
Vie=(a+wi)+¥zi+vi; — ui,

where u;, is as originally specified in Aigner et al. and w; is treated as either a
true fixed or random effect. The latter model, with its combination of normal w;
and skew normal (v;, — u;,) is estimated by maximum simulated likelihood.
Kumbhakar et al. (2014) completed the development with the generalized true
random effects model,

Vi = (OH'Wi _fz) +lei,t+Vi,t — Uj;

where f; now has a truncated normal distribution like u; ,, and the full model is
based on the sum of two skew normal variables, which has a closed skew normal
distribution. The authors developed a full maximum likelihood estimator.
Greene and Filippini (2015) showed how the estimation could be simplified
by simulation.

6.6 Count Data

With the binary probit and logit models, the Poisson regression model for count
data has been the proving ground for methods of nonlinear panel data modeling.
A comprehensive early reference is Hausman et al. (1984).”" The fixed effects
conditional estimator is identical to the unconditional estimator, so the latter is
consistent. The random effects model (or correlated random effects) is a
straightforward application of Butler and Moffitt’s method. As a nonlinear
regression, the specification provides a convenient framework for modeling
multiple equations. Riphahn et al. (2003) specified a two equation random
effects Poisson model,

Yirj ™~ Poisson with /li,t,j = exp(ﬂ, + lezi,t,j + Eirj + Lt,"j),j =12,i=1,...,n,
t= 1,. . .,T,‘.

The two equations are correlated through the means, p = Cov(e;, 1,€:..2)-
(A natural extension would be to allow correlation between the random effects

30. Hausman et al.’s (1984) formulation of the fixed effects NB model embedded the fixed effects in
a variance parameter, not as an offset in the conditional mean as is familiar in other models. As a
consequence, their FE model permits time invariant variables in the mean function, a result that
continues to surprise researchers who are not warned about this (see Greene, 2018, p. 901).
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as well, or instead of.) In the univariate, cross-section case, the heterogeneous
Poisson regression is specified with conditional mean 4;, = exp(z + Y'z; , + u,).
If u; ~ log-gamma with mean 1, the unconditional distribution after integrating
out u; is the negative binomial (NB). This convenience has motivated use of the
NB form. The usually convenient log-gamma is extremely inconvenient (intrac-
table) in a model such as RWM’s. Recent applications of mixed models have
used the normal distribution, and computed the necessary integrals by Monte
Carlo simulation.

The Poisson and negative binomial models also have been frequently the
setting for latent class models. Jones and Schurer (2011) examined the fre-
quency of doctor visits in a two-class negative binomial latent class model.
Their methodology provides a useful example for using latent class modeling.
Two questions that attend this type of modeling are: Is it possible to characterize
the latent classes (other than by number)? and Is it possible to assign individuals
to their respective classes? Strictly, the answer to both classes is no. Otherwise,
the classes would not be latent. It is possible, however, to do both probabilis-
tically. The latent class Poisson model is
exp (—4iq| class = q) (4| class = qf
J!

Prob|y;,=j| class=q] =

(Ais| class=q) = exp (ﬁ' x,;,) InL

S 9 | e i ulay
i=1 =1
:Zizl lnzqzqu (Hi| 9)

Maximization of the log likelihood produces estimates of (fy,...,8o) and
(T1,...,Tg)- (A more elaborate specification that bears some similarity to the
correlated random effects model would make 7, a function of exogenous fac-
tors, z; and/or the group means of x; , (see Greene, 2018, Section 18.4). With the
estimates of (f,,7,) in hand, the posterior class probabilities for each individual
can be computed;

PO 7y (H,| CI)
i, — N ~
Tx2 3 (i)

Individuals then can be assigned to the class with the highest posterior
probability. Jones and Schurer (2011) then characterized the two classes as
light users and heavy users by the average frequency of doctor visits within
the classes. They also computed characteristics such as average partial
effects by the two groups to characterize the system. Table 5 repeats this exer-
cise with the GSOEP data used earlier. The three classes do appear to be sep-
arating individuals by the intensity of usage. The pattern of the partial effects
suggests
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TABLE 5 Latent Class Model for Doctor Visits

Class 1 Class 2 Class 3
Parameter APE Parameter APE Parameter APE

Constant 3.253 - 1.524 - 0.116 -
Age 0.015 0.132 0.024 0.102 0.038 0.048
Educ —0.061 —-0.535 -0.035 —-0.137 —-0.040 —0.050
Income -0.178 -0.156 —0.274 -0.107  0.301 0.038
HSAT —-0.220 -1.929 —-0.178 —-0.696 -0.275 —0.347
Married 0.134 1.175 0.080 0.313 0.005 0.006
DocVis|q; 10.423 4.174 1.642
MeanEls]|g, 8.771 3.914 1.262
4 0.158 0.474 0.368

6.7 A General Nonlinear Regression

Papke and Wooldridge (1996, 2008) proposed a model for aggregates of binary
responses. The resulting outcome is a fractional variable. Minimum chi-squared
methods for fractional variables have long provided a useful consistent
approach. The model developed here builds from a common effects binary
choice model. The resulting treatment is a heteroscedastic nonlinear regression
that lends itself well to the correlated random effects treatment (see, also
Wooldridge (2010), pp. 748-755 and 759-764). No obvious likelihood-based
approach emerges, so the preferred estimator is nonlinear (possibly weighted)
least squares.

6.8 Sample Selection Models

Most treatments of sample selection have layered the fixed and/or random
effects treatments over Heckman’s (1979) sample selection model. Verbeek
(1990) and Verbeek and Nijman (1992) proposed a hybrid fixed and random
effects specification,

di =1[y'z;;+u; +n;,>0] (random effects probit)
Viel(dii=1)=p'%;,+o;+e;,; (Fixed effects regression)

Zabel (1992) argued that the FE model should have appeared in both equations.
He then proposed the CRE form for the usual reasons. The system that results is
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two CRE models with correlation of the idiosyncratic disturbances. A natural
extension would be correlation of u; and v;.

diy=1[n+v'2;,,+0'Z;+u;+7,,>0] (correlated random effects probit)
yiil(dii=1)=w+¥z;,+N7;+v;+¢;,; (correlated random effects regression)

Vella (1998) provides some details about this strand of development.
Fernandez-Val and Vella (2009) continue the analysis with bias corrections
based on the fixed effects specification. Kyriazidou (1997) suggested a semi-
parametric approach based on a fixed effects logit selection and weighted least
squares with kernel estimators for the weights. Refinements are considered by
Vella and Verbeek (1999), Barrachina (1999), Dustman and Rochina-
Barrachina (2007), and Semykina and Wooldridge (2010).

In all of these treatments, the selection process is run at the beginning of each
period—the selection equation is repeated, without autocorrelation, for every .
Bravo-Ureta et al. (2012) applied the selection model in a setting in which the
selection occurs at the baseline, and is unchanged for all T periods. The selec-
tion effect becomes a correlated random effect. In their application, the main
outcome equation is a stochastic frontier model. Greene (2010a, b) shows
how the model can be estimated either by full information maximum likelihood
or by Monte Carlo simulation.

6.9 Individual Choice and Stated Choice Experiments

The choice probability in the multinomial choice model we examined in
Section 6.1 is

exp (ﬁ'x,-, j)
=l exp (B'xi)

More than any other model examined in this survey, the coefficients in this
model are not of direct use. After the parameters have been estimated, the model
will be used to compute probabilities, simulate market shares under policy sce-
narios, estimate willingness to pay and distributions of willingness to pay, and
compute elasticities of probabilities. Because all of these require a full set of
components for the probabilities, the fixed effects model that bypasses compu-
tation of the fixed effects does not seem helpful. A random effects approach is
considered in Hensher et al. (2007)

The counterpart of a panel in recent applications of choice modeling is the
stated choice experiment (see Hensher et al., 2015). The individual being inter-
viewed is offered a choice task involving J alternatives with a variety of attri-
butes, x; . ;. In the typical experiment, this scenario will be repeated T times with
widely varying attribute sets in order to elicit the characteristics of the respon-
dent’s preferences. The common fixed or random effect that is persistent across
choice settings serves to accommodate the feature that this is the same

Prob(choice =j) =
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individual with the same latent attributes making the choices with short inter-
vals between tasks. It is unlikely that the random utility formulation of the
model could be so complete that the choice tasks would be independent condi-
tioned on the information that appears in the utility functions. The mixed logit is
the current standard in the modeling of choice experiments. The model is

exXp (V,",’j)
> exp(Vic)
ﬁi:ﬁ+Az,~+Fu,-

PI'Ob(ChOiCé,',I :j| X,) = , V,',[,j =o;+ ﬁ?xi,,,j + &

Revelt and Train (1998) modeled results of a survey of California electric utility
customers. Train (2009) summarizes the theory and relevant practical aspects of
discrete choice modeling with random parameters.

6.10 Multilevel Models Hierarchical (Nonlinear) Models

The general methodology of multilevel modeling (often linear modeling) builds
a random parameters specification that bears some resemblance to the corre-
lated random effects model (see Raudebush and Bryk, 2002). A generic form
would be

FOid Xi;: B Z) =f (yiis (B+Tw) X :0) =1 (vi.io Bi'Xis: 0).

A useful extension is §; = p + Az; + I'u;, where z; indicates exogenous factors; z;
also could include the correlated random effects treatment with the group means
of x; ,. For a linear model, estimation often is based on manipulation of feasible
generalized least squares. For a nonlinear model, this will require multivariate
integration to deal with the unobserved random effects. This can be done with
Monte Carlo simulation.

6.11 Fixed Effects With Large N and Large T

The gravity model is a standard approach to analyzing trade flows between
countries. A typical application, with fixed effects might begin with

/ ..
yijf=aity+Pxite, Lj=1,...,n

The model involves two sets of incidental parameters. Charbonneau (2017)
examined the case in which y;; = 1[y; * > 0] indicates whether or not trade
takes place, a binary response. The conditional logit approach will eliminate
either a; or y;, but will retain the other. By applying the conditioning recursively,
the author arrives at the conditional log likelihood,

e exp (B (0 306) — (30, - %))
nL=p 2 2 ™ (1 vexp (8 () —x00) (v —x,-,k>>>>

where Z; ; is the set of all potential [,k that satisfy y,j +y;r = 1,y;j+ yix = 1 and
¥ij+ yi; = 1 for the pair i,j. As the author notes, because the fixed effects have
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been eliminated, it is not possible to compute partial effects. To explore the
effects of covariates, e.g., the log of distance, on the probability of trade, the
unconditional probabilities are computed at the means of x; ; and with the fixed
effects all set to zero.

The gravity model contains two sets of fixed effects that grow equally with
the sample size. The incidental parameters problem, if there is one, is accom-
modated by using a conditional estimator. Fernandez-Val and Weidner (2016)
consider a similar case with more general data observation mechanism—two
cases considered are a probit binary response model and a Poisson regression.
Both begin with an index function model,

/ .
yiit=ai+y,+Pxi, i=1,...mt=1,...,T,

where for the probit model, y;, = 1[y; /* + &;, > 0] while in the Poisson model, E
[yi/|x:..] = exp(y;*). The model extension allows both i and # to grow, such that
N/T converges to a constant. The authors focus on bias-corrected unconditional
estimators. This enables estimation of partial effects as well as coefficients.
Consistent with Greene’s (2004a, 2005) results, they find that the bias of esti-
mators of APEs is much smaller than that of the coefficients themselves. For
their case, with biases diminishing in both n and T simultaneously, they find
the biases in the partial effects to be negligible.
Interactive effects of the form

/
Vit =y B+ e

were examined by Bai (2009). Chen et al. (2014) treat this as a fixed effects
model, and derived a two-step maximum likelihood estimator for probit and
Poisson regression models. Boneva and Linton (2017) extend the model to
allow multiple common latent factors.
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1 Introduction

Although panel data models have proven particularly popular among applied
econometricians, the most widely embraced approaches rely on parametric
assumptions. When these assumptions are at odds with the data generating pro-
cess (DGP), the corresponding estimators will be biased and worse, inconsis-
tent. Practitioners who subject their parametric models to a battery of
diagnostic tests often are disappointed to learn that their models are rejected
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by the data. Consequently, they might find themselves in need of more flexible
nonparametric alternatives.

Given the popularity of panel data methods in applied settings, and given
how quickly the field of nonparametric panel methods is developing, this
chapter presents a current survey of available nonparametric methods and out-
lines how practitioners can avail themselves of these recent developments.
The existing literature that surveys semi- and nonparametric panel data
methods includes Li and Racine (2007), Ai and Li (2008), Su and Ullah
(2011), Chen, Li, and Gao (2013), Henderson and Parmeter (2015), Sun,
Zhang, and Li (2015), and Rodriguez-Poo and Soberon (2017), among others.
Our goal here is to unify and extend existing treatments and inject some addi-
tional insight that we hope is useful for practitioners trying to keep abreast of
this rapidly growing field. By way of illustration, Rodriguez-Poo and Soberon
(2017) provide a nice survey of available estimators, however, they do not
address inference, which is a practical necessity. We attempt to provide a
more comprehensive treatment than found elsewhere, keeping the needs of
the practitioner first and foremost.

2 How Unobserved Heterogeneity Complicates Estimation

To begin, we start with the conventional, one-way nonparametric setup for
panel data:

y,*,:m(X,‘,)+a,‘+8it, i=1,...,n, t=1,...,T, (1)

where X;, is a ¢ X 1 vector, m(-) is an unknown smooth function, a; captures
individual specific heterogeneity, and ¢;, is the random error term. The standard
panel framework treats i as indexing the individual and ¢ as indexing time,
though in many applications ¢ might not represent time. For example, in the
metaanalysis field, i represents a given research study and ¢ the individual esti-
mates produced from the study. As in a fully parametric setting, the ;s need to
be accounted for because of the incidental parameters problem under the fixed
effects framework. Two common transformations to eliminate «; prior to esti-
mation are linear differencing or time-demeaning.

Consider time-demeaning: In this case we use the standard notation
Z;. = T’lztilzi, to represent the mean of variable z for individual i. Given that
a; is constant over time, time-demeaning will eliminate «; from Eq. (1):

T
— —1 —

Vi =i =m(xie) =T~ m(xie) + i — .. (@)

=1
Unfortunately, we now have the function m(-) appearing T + 1 times on the
right side. Given that m(-) is unknown, this causes problems with standard esti-
mation because we must ensure that the same m(-) is being used. Moreover,
even if m(-) were known, if it is nonlinear in the parameter space, then the
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resulting nonlinear estimating equation might complicate optimization of the
associated objective function. This is true in other settings as well, for example,
in the estimation of conditional quantiles with panel data. As we will discuss, a
variety of approaches have been proposed for tackling the presence of unob-
served heterogeneity.

In the random effects framework, the incidental parameters problem no lon-
ger exists, however, a complicating factor for estimation is how to effectively
capture the structure of the variance covariance matrix of v;; = a; + €;,. In this
case it is not clear how best to smooth the data, and a variety of estimators have
been proposed. At issue is the best way to smooth the covariates while simul-
taneously accounting for the covariance structure. As we will discuss, several
early estimators that were proposed were not able to achieve asymptotic gains
because the smoothing procedure advocated did not adequately capture the
covariance structure, asymptotically.

We also could discuss the two-way error component setting, but in this case
if the fixed effects framework is assumed, then it is easier to treat time as a
covariate and smooth it appropriately (using an ordered discrete kernel),
although in the random effects framework it further complicates the variance
matrix of the error term. In light of this, we will focus on the one-way error
component model.

Prior to moving on to the discussion of estimation in either the fixed or ran-
dom effects framework in a one-way error component model, some definitions
are in order. Under the random effects framework, we assume that E[a; | X;1, ...,
x,7] = E[a;] = 0, whereas under the fixed effects framework we assume that £
[@; X1, --., X;7] = a;. The difference between the two should be clear; under the
random effects framework, «; is assumed to be independent of x;, for any ¢,
whereas under the fixed effects framework a; and x;, are allowed to be depen-
dent upon one another. No formal relationship on this dependence is specified
under the fixed effects framework. One could relax this set of all or nothing
assumptions by following the approach of Hausman and Taylor (1981), how-
ever, this is an unexplored area within the field of nonparametric estimation
of panel data models. We now turn to a discussion of nonparametric estimation
under both the fixed and random effects frameworks.

3 Estimation in the Random Effects Framework
3.1 Preliminaries

If we assume that a; is uncorrelated with x;,, then its presence in Eq. (1) can be
dealt with in a more traditional manner as it relates to kernel smoothing. To
begin, assume that Var(e;,) = oz and Var(a;) = 03. Then, for v;; = a; + ¢;; we
set v; = [vi1, Vi, ..., virl’, a T x 1 vector, and V; = E(vp/;) takes the form

Vi =06’ +o2iriy, 3)
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where I is an identity matrix of dimension T and irisa T x 1 column vector of
ones. Because the observations are independent over i and j, the covariance
matrix for the full nT x 1 disturbance vector u, Q = E(vv’) is a nT x nT block
diagonal matrix where the blocks are equal to V;, fori =1, 2, ..., n. Note that
this specification assumes a homoskedastic variance for all i and .

Note that serial correlation over time is admitted, but only between the dis-
turbances for the same individuals. In other words

Cov (v,»,, vjs) =Cov (a,— +&i, o + ejs) = E(a,—aj) +E (ei,ejs) ,

given the independence assumption between a; and €;; and the independent and
identically distributed (i.i.d.) nature of &;. The covariance between two error
terms equals ai + 63 when i =j and t =, it is equal to ai when i = and
t # s, and it is equal to zero when i # j. This is the common structure in para-
metric panel data models under the random effects framework as well. Estima-
tion can ignore this structure at the expense of a loss in efficiency. For example,
ignoring the correlation architecture in £, standard kernel regression methods,
such as local-constant or local-linear least-squares could be deployed.

Parametric estimators under the random effects framework typically require
the use of Q' so that a generalized least squares estimator can be constructed.
Inversion of the nT x nT matrix is computationally expensive but Baltagi
(2013) provides a simple approach to inverting Q based on the spectral decom-
position. For any integer r,

Q = (To:+a2) P+ (c?) 0, )

where P=1,8Jr, Q =1, ® Ey, Jr is a T x T dimensional matrix where each
element is equal to 1/T and E; = (I — J7). Q is infeasible as both 6(2, and aﬁ
are unknown; a variety of approaches exists to estimate the two unknown var-
iance parameters, which we will discuss in the sequel. An important feature of Q
is that its structure is independent of m(x;,). Thus, when we model the unknown
conditional mean as either parametric or nonparametric it does not influence the
manner in which we will account for the variance structure.

3.2 Local-Polynomial Weighted Least-Squares

Lin and Carroll (2000) and Henderson and Ullah (2005) were among the first
attempts to properly capture the architecture of the covariance of the one-way
error component model. To begin, take a pth order Taylor approximation of
Eq. (1) around the point x:

Yie =m(X) +a; + €,

where

mx)= > pyxi—x)

0<ljl<p
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Where j = (jl, ---7jq)7 |j | = Z;{:lji’ XJ = H;I:lx{:i, j ' = H:[:].]l ' =
Ji! x - xj,!and
DSOS
0<fi<p =0 =0 =0
j1+...+jq:[

where we have used the notation of Masry (1996). j!#;(x) corresponds to (Dim)
(x), the partial derivative of m(x), which is defined as:

(Dim)(x) = om(x)

0(xy )./1 -"a(xq)j" 5
and f vertically concatenates f; (0 <|j| < p) in lexicographical order, with
highest priority to the last position so that (0, ..., 0, i) is the first element in
the sequence and (i, O, ..., 0) is the last element.

Thus, the pth-order local-polynomial estimator corresponds to the mini-
mizer of the objection function

2

N T
mm (NT) 122 Vir — Zﬂj(xit_x>j Kirxns )

=1 = 0<[il<p

where K;x, = H Vhy g ("” “) is the standard product kernel where k() is any
second-order unlvarlate Kernel (e.g., Epanechnikov, Gaussian) and /; is the sth
element of the bandwidth vector # and smooths the sth dimension of x. Let
Ky = diag(Kq1x, Ki2x -+ K17% K21x5 -+ K,u1x)- Finally, collecting y;, into the
vector y and denoting the matrix D;,, which vertically concatenates (x;; — X)j
for 0 <|j| <p, in lexicographical order, we use the notation Dy = [Dyy,
D12x, '~-»D1Txy D2]x: cees DnTx]/-

For example, D;x = 1 for p = 0 (the local-constant setting), and D;x = [1,
(x;; — X)']’ for p = 1 (the local-linear setting).

It can be shown that the local polynomial estimator for the minimization
problem in Eq. (5) is

(%) = (DikxDx) ™' DKy 6)

The local-polynomial estimator in Eq. (6) ignores the covariance structure in
the one-way error component model. Both Lin and Carroll (2000) and
Henderson and Ullah (2005) proposed alternative weighting schemes to capture
this covariance structure. Henderson and Ullah (2005) focused on the specific
setting of p = 1, and thus used what they termed the local-linear weighted least-
squares (LLWLS) estimator. This estimator is identical to that in Eq. (6) except
that the diagonal kernel weighting matrix KCy is replaced with a nondiagonal
weighting matrix, designed to account for within individual correlation. This
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nondiagonal weighting matrix is designated as Wy and can take an array of
shapes.
Ullah and Roy (1998) propose

Wlx _ Q—l/ZICXQ—l/Z
while Lin and Carroll (2000) propose
WZX = Q_IICX

and

Wix = VEQ 'K

resulting in the LPWLS estimator
B.(X) = (DLWDx) ' DiWiy, r=1,2,3. 7

When Q is diagonal Wy = W) = Wi, both Wi and W3y are symmetric
and amount to local-polynomial estimation of the transformed observations
VELQ 12y on /KxQ'/?x and Q@ *Kyy on Q?Kx, respectively.' Given
that Q is unknown, because of the presence of af, and ag, a feasible matrix must
be constructed. This can be accomplished most easily by deploying the local-
polynomial least-squares estimator in Eq. (6) first, obtaining the residuals, and
then using the best linear unbiased predictors for these variances as provided in
Baltagi (2013):

. y gl )
G%:N le’

i=1

1 N L = \2
Ag:NT—N, Z(‘%-W),

where v;. = T’IZ:ZT:1 Vi 1s the cross-sectional average of the residuals for cross-
section i and V;; = y; — mi(X;;) is the LPLS residual based on the first stage esti-
mator of #(x). Here 67 = Too + o2 in Eq. (4).

Lin and Carroll (2000) derive the bias and variance of #(x) while Henderson
and Ullah (2005) provide the rate of convergence of f(x) for p = 1 under the
assumption of N — oo.

Most importantly, Lin and Carroll (2000) note that the asymptotic variance
of the LPWLS estimator in Eq. (7) for r = 1, 2, 3, is actually larger than that of
the LPLS estimator in Eq. (6). Although this result seems counterintuitive,
Wang (2003) explains that this is natural when T is finite. By assumption, as
N — o0, h — 0, and the kernel matrix, evaluated at the point, x;,, for example,

1. The most popular weighting scheme is W3y of Lin and Carroll (2000). See Henderson and Ullah
(2014) for a Monte Carlo comparison of these alternative weighting schemes.
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implies that the other points for individual i, x;,, s # ¢, will not provide weight
asymptotically. This is true because, as N — oo, we obtain information about
more individuals, not more information about a given individual. Under the
common assumption in the random effects framework that we have indepen-
dence across individuals, this suggests that the most efficient estimator occurs
when W,x = Kx.

A more general approach for local-polynomial estimation in the presence of
specific covariance structure is found in Rucksthul, Welsh, and Carroll (2000)
and Martins-Filho and Yao (2009). While Martins-Filho and Yao (2009) con-
sider a more general structure for Q, both provide a two-step estimator which
that achieve asymptotic efficiency gains relative to the LPLS estimator. The
proposed estimator can be explained as follows. First, premultiply both sides
of Eq. (1) by Q"% to obtain

Q 2y = Q7 Pm(xi) + Qv
and then add and subtract m(x;,) from the right side
Q7 12y, = Q7 Pm(xy) + m(x;) — m(xi) + Q2.
This results in
Q 2y — Q7 Pm(xir) — m(xir) = m(xi) + Qv
yi, =m(Xi) + Q 12y,
where y;, = Q.il/zyit — Q "m(x;) + m(x;) = 971/2))” +(1 — Q "*)m(x;,). For
given y;,, m(X;;) can be estimated using local-polynomial least-squares. Unfor-
tunately y;, is unknown because of the presence of Q and m(x;,). Rucksthul et al.

(2000) and Martins-Filho and Yao (2009) propose estimation of € in a first
stage that ignores the error structure. The two-step estimator is

1. Estimate m(x;,) using local-polynomial least-squares, and obtain the resid-
uals to construct .

2. Run the local-polynomial least-squares regression of 57” on x;, where

A a2 A—1/2\ .

Yie=8 Y+ (1 —Q )m(xit)'
Both Su and Ullah (2007) and Martins-Filho and Yao (2009) discuss the large
sample properties of this random effects estimator.

3.3 Spline-Based Estimation

Unlike Ullah and Roy (1998), who consider kernel-based procedures, Ma,
Racine, and Yang (2015) consider a B-spline regression approach toward non-
parametric modeling of a random effects (error component) model. Their focus
is on the estimation of marginal effects in these models, something that perhaps
has not received as much attention as it might otherwise. To describe their
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estimator, first, for the vector of covariates, X;; = (X;s, ..., Xjzg) assume for
1 <s <d, each x;; is distributed on a compact interval [ay, b,], and without
loss of generality, Ma et al. (2015) take all intervals [ay, bs] = [0, 1]. Further-
more, they allow ¢; to follow the random effects specification, where
g = (&1, ..., &1) be a T x 1 vector. Then V = E(g;e/') takes the form

V=cly+c’1r1},

where I is an identity matrix of dimension 7 and 1risaT X 1 column vector of
ones. The covariance matrix for e = ¢/, ..., &) is

Q=E(ed ) =IyoV,Q ' =IyoV!

By simple linear algebra, V' = (V) ,_; = VI + Vol Uz with Vy = 6,2
and Vo, = — (62 + 62T) ‘625, 2.

Ma et al. (2015) use regression B-splines to estimate the mean function m (-)
and its first derivative. Let N = N,, be the number of interior knots and let g be
the spline order. Divide [0, 1] into (N + 1) subintervals I; = [rj, rj1),j =0, ...,
N — 1, Iy = [ry, 1], where {”_i};‘vzl is a sequence of interior knots, given as

r*(Q*l):“':rO:O<rl <"'<rN<1:rN+1:"':rN+q'

Define the g-th order B-spline basis as By, = {B; (x,): 1 —¢ <j <N}
(de Boor, 2001, p. 89). Let G, = Ggf’q_z) be the space spanned by B, ,, and
let G, be the tensor product of G 4, ..., G44, Which is the space of functions
spanned by

;Bq(x) :Bl’q®...®3d,q

d I
- HHBA,[,(%) 1—g¢<js <N, 1 gsgd} ]
s=1 K, x1

. !
=By g 1—g i <N 1 <s<ay]
where x=(x;,...,x;) and K,=N+¢" Let B,=[{B,x1), ...,
B, (x,0)} 1nrxk Where X;; = (X;;1, ..., X;zg)'. Then m (x) can be approximated
by B, (x) §, where fisa K, x 1 vector. Letting Y = [{(Y:)1</<7, 1<i<n} Jurs1s
they estimate f by minimizing the weighted least squares criterion,

{Y o Bq/)’}/Qfl {Y - Bqﬁ}'
Then the estimator of g, j, solves the estimating equations Bq’Qfl{Y -
B3} = 0, which gives the GLS estimator
-1
a_ I —1 I O—1
p-(B,07'B,) BQ'Y.

The estimator of m (x) is then given by rit(x) = B,(x)8. In de Boor (2001,
page 116), it is shown that the first derivative of a spline function can
be expressed in terms of a spline of one order lower. For any function
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s (x) € G, that can be expressed by s(x) = EJ-“ o jdBi,, gx1) ... Bj, /(xy), the
first derivative of s (x) with respect to x; is

)= @ () ]]B
/
0xs =2 2 a1—qjy <N 1< #s<d 1o Bjig1(xs o0 (%

s'ts

In which a(h) ..... (f] 1)(aj| s JSsens jd — ajl L Js—1,..., _]d)/( g — t )

for 2 — q<]¢§Nandl<s 45<d, 1 —q<js<N.LetL, —(N+q)d 1(N
+qg— 1), and

!
B 1 (%) = [ {Big ) Bt () Ba () Yy iy i gmion, -

For 1 <s <d, % (x), which is the first derivative of m (x) with respect to x,,
the estimate is

g—)’: (x) = By.y_1 (x)'Dy (B;Q—qu) 71B;Q"Y,
in which Kn = {I(N_',q).v—l ® MII(N+q)“’*»"}L”><Km and
: __llz_q m _ltz_q 0 0
—1 1
My=(qg-1) 0 n-fq D-Bg 0
L s

IN+q-17IN IN+q=1 "IN/ (N4 4 1)x(N+q)

Let Vm (x) be the gradient vector of m (x). The estimator of Vm (x) is

Vin(x) = {jjjf( x). ...,a—m<x>}

axd
-1
-8, (B,Q'B,) BQY,

in which 8, _(x) = [{D;, o1, 1(X), ... .Dy, ¢B 1, a(X)}]K, xq- For any p €
(0, 1], we denote by CcO+ [0, 1] the space of order p-H{““o}1der continuous func-
tions on [0, 1]d, i.e

CO,ﬂ[O, l]d{¢||¢”0y sup M< +00}

x#x',X,x€(0, ]]" ||X_X/||g

in which ||x[|, = "% )" is the Euclidean norm of x, and ||¢||o, ,, is the
C"*-norm of ¢.

Givenad-tuplea = (ay, ..., ay) of nonnegative integers, let [a] = a; + ... + ay
d[a]
dxll” ~~0de :

and let D” denote the differential operator defined by D* =
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Ma et al. (2015) establish consistency and asymptotic normality for the esti-
mator 72(x) and Vm(x), i.e.,

o, (x){rm(x) —m(x)} —N(0, 1)

and

@, 2 (x){Vr(x) — Vm(x)} — N(04, 1),

in which 0, is a d x 1 vector of 0’s, and where 65(x) = B,(x)’Z"'B(x) and
where @,(x) = {B; 1(0'Z "' B, 1)} axa-

Maetal. (2015) use cross-validation to determine the degree vector for their
B-spline method, and the approach admits discrete covariates. (See Ma et al.
2015 for details.)

Although the previous description might be notationally cumbersome, the
approach is in fact extremely simple and requires only a few lines of code
for its implementation.

3.4 Profile Likelihood Estimation

Profile likelihood methods often are used when traditional maximum likelihood
methods fail. This is common in nonparametric models where the unknown
function is treated as an infinite dimensional parameter. These methods com-
monly require specifying a criterion function based around an assumption of
Gaussianity of the error term.” In the current setting, we would have, for indi-
vidual i, the criterion function

L) = L0 m(x) =~ 0= m(x))'V; (i = m(x),

where Vi = (yilr Vids eees yiT)/ and m (X,) = (m (Xil)’ m (Xiz), e m (XiT))/. Differ-
entiating £,(-) with respect to m(x) yields

oL ,
Lim=>5" ev;! Za Yis — m(Xis)) ®)

where e, is a T dimensional vector whose fth element is unity and all other ele-
ments are zero and where ¢” is the (¢, s) element of V,»_l.3

Lin and Carroll (2006) show that m (x) can be estimated in a local-linear
fashion by solving the first-order condition

N T
O:ZZKzrxh ztxﬁnm yu (Xi))’

i=1 t=1

where G, vertically concatenates (x;, — x)J @ K for0 <|j| < pin lexicograph-
ical order, m(x;)= (m(x,l) m(x) +x,[/;’( ), . m(x,T)), and X; =X; =X.

2. Note that the assumption of Gaussianity is required only to construct a criterion function.
3. 6" and 6" will differ across cross-sectional units in the presence of an unbalanced panel.
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Note that the argument for L, is 7i(X;) for s # ¢ and rit(x) +X;,3(x) for s = 1.
Plugging in Eq. (8) and solving yields
T
Eltm (yu (Xl)) - t(yit - }’;‘l(X) - i,,ﬂ(X)) + Z (le (XH‘))
s=1

sF£t

Wang (2003) developed an iterative procedure to estimate m(x). This esti-
mator is shown to produce efficiency gains relative to the local-linear estimator
of Lin and Carroll (2000). The iterative estimator is composed of two parts: one
based off a standard local-linear (or polynomial) least-squares regression
between y and x, and a secondary component that uses the residuals.

The first-stage estimator is constructed using any consistent estimator of the
conditional mean; the pooled LLLS estimator suffices in this setting. To high-
light the fact that we have an iterative estimator, we will refer to our first-stage
estimator as 77y (X) (the subscript [1] represents that we are at the / = 1 step);
the residuals from this model are given by Vyj;; = yir — ) 1)(xir). At the Ith step,
it (), and the gradient, ﬁ ( ), are shown by Wang (2003) to be

(1) s

where
N T
E E o KIthG thltX’
i=1 t=1
N T

1 =YY o"KiniGinyirs

i=1 t=1

N T T
J3= ZZ Z O-StKitthitx‘;[K—l]il'

i=1 =1 g1

sFEt

If one ignores the presence of /3, then the estimator of Wang (2003) is nearly
identical to the pooled LLLS estimator, outside of the presence of ¢ (which has
an impact only if there is an unbalanced panel). The contribution of J3 is what
provides asymptotic gains in efficiency. /5 effectively contributes the covariance
among the within cluster residuals to the overall smoothing. To see why this is the
case, consider the LLWLS estimator in Eq. (7). Even though the within cluster
covariance is included via W,x, asymptotically this effect does not materialize
since it appears in both the numerator and denominator in an identical fashion.
For the estimator of Wang (2003), this effect materializes given that the within
cluster covariance occurs only in the numerator (i.e., through J3).

The Wang (2003) estimator is iterated until convergence isachieved; for exam-
ple a useful convergence criterion is S~ ST, g (Xie) — i) (xie } /
SV ST Ty (x)? <@, where @ is some small number. Wano (2003)
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demonstrates that the estimator usually converges in only a few iterations and
argues that the once-iterated (¢ = 2) estimator has the same asymptotic behavior
as the fully iterated estimator.

Feasible estimation requires estimates of ¢” that can be obtained using the
residuals from 7;)(x). The (¢, s)th element is

2 2

ts _O¢ — O]
- 2 27

oio:T

and the (¢, )th element is

o2+ (T—1)o}

It
o
2 2

oio;T

4 Estimation in the Fixed Effects Framework
4.1 Differencing/Transformation Methods
Consider first differencing Eq. (1), which leads to
Vi = Yieer =m(Xig) —m(Xj—1) + € — €1,  i=1,...,N, 1=2,...T.

By assuming a fixed number of derivatives of m(x) to exist, Ullah and Roy
(1998) posited that the derivatives of m(x) would be identified and easily esti-
mated using local-linear (polynomial) regression. For example, consider ¢ = 1,
and use the notation A z;, = z;; —z;, _ resulting in

Ay =m(x;) —m(xj—1) + Agg.
Next, a first-order Taylor expansion of m(x;,) and m(x;, _;) around the point x
results in
Ay =m(x) +m' (x)(x; —x) — (m(x) + n’ (x) (x;_1 —x)) + Ag,
=m(x) —m(x) +m' (x)((x; —x) — (xir_1 — X)) + Agir
= Ax;m’ (x) + Agjy

This same argument also could be done using the within transformation. The

local-linear estimator of 77/(x) as proposed in Lee and Mukherjee (2014) is

N T
Z Z KixnAxi Ayis

AN =1 =2
it (x) = N T
E 2
Kitthxit

i=1 =2

&)

There are two main problems with this differencing estimator. First, the con-
ditional mean is not identified in this setting. Second, as Lee and Mukherjee
(2014) demonstrate, the local-linear estimator possesses a nonvanishing asymp-
totic bias even as 7 — 0. Note that in the construction of Eq. (9), the linear expan-
sion is around the point x;, (which is acceptable in a cross-sectional setting).
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However, in the panel setting, information from the same individual (i.e., x;5, § 7 £)
cannot be controlled as # — 0. In particular, we took the Taylor expansion around
both the points x;, and x;, _; in our first differencing, however, the kernel weights
account only for the difference between x and x;. This means that the Taylor
approximation error will not decay to zero as the bandwidth decays.

Several approaches have been proposed to overcome the nonvanishing
asymptotic bias. For example, Mundra (2005) considers local-linear estimation
around the pair (x;;, x;; _1), which produces the estimator (termed the first-
difference local-linear estimator, or FDLL)

T

N
SN KinKi-1xnAxinAyie

N =1 1=2
Hipppr (X) =+ N[

T

2

E E KinKi—1xnAx;,;
=1

=2

Even with this simple fix, however, the issue remains that only the derivatives
of the conditional mean are identified. In some settings this is acceptable. For
example, in the hedonic price setting the gradients of the conditional mean are
of interest because they can be used to recover preferences of individuals.
Bishop and Timmins (2018) use this insight and follow the previous logic (albeit
using the within transformation) to recover the gradients of a hedonic price func-
tion to value preferences for clean air in the San Francisco Bay area of California.

As an alternative to the first-difference transformation, the within transfor-
mation also could be applied, as in Eq. (2). Again, as noted in Lee and
Mukherjee (2014), direct local-linear estimation in this framework ignores
the application of the Taylor approximation and results in an asymptotic bias.
To remedy this, Lee and Mukherjee (2014) propose the local within transfor-
mation. To see how this estimator works, consider that the standard within
transformation calculates the individual specific mean of a variable z as
Z,. =T ZtT:lz,»,. Lee and Mukherjee (2014) replace the uniform 1/7 weighting
with kernel weights, producing the local individual specific means

§ KtchZzt T
zi. = E WitzhZit-
=1
E szh

Using the notation z;:zif—fi,, the locally within transformed local-
constant estimator is

T
* %
§ Kirxhxi[yit

=

M=

1

T—'
ZKITX]‘I

i=1 t=

ﬁ?/LWTLc (x) =

Mz
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These local differencing and transformation methods are simple to imple-
ment. However, it is not clear if they can be used to recover the conditional
mean, which would be important in applications where forecasting or prediction
is desirable.

4.2 Profile Estimation

The obvious drawback of the differencing/transformation approaches proposed
by Ullah and Roy (1998), Mundra (2005), and Lee and Mukherjee (2014) is that
the conditional mean cannot be identified. To remedy this, Henderson, Carroll,
and Li (2008) consider estimation of Eq. (1) under the fixed effects framework
using the first difference transformation based off period 1:

Vi =Yie—yi =m(Xy) —m(Xp) + € — €1 (10)

Although this estimator could be implemented using period # — 1, as is more
common, we follow their approach here. The benefit of this transformation is
that, the fixed effects are removed, and, under exogeneity of the covariates, E
[m(x;)] = E(y;;). The problem as it stands with Eq. (10) is the presence of both
m(x;,) and m(x;1). The main idea of Henderson et al. (2008) is to exploit the var-
iance structure of €; —e;; when constructing the estimator, which is similar to
Wang (2003)°s approach in the random effects setting.

Start by defining ey—=ey—e and g = (:E'v,‘z, ceey ET)
covariance matrix of &;,V; = Cov(¢|x;1, ..., X;7), is defined as

i .
. The variance-

V,‘ = Ug (ITfl +iT,1i;~71),

where I7_; is an identity matrix of dimension T — 1, and iy _;isa (T — 1) x 1
vector of ones (note that in the random effects case it was of dimension 7). Fur-
ther, V;i'' = o, %Iy — ir_ip_{//T). Following Wang (2003) and Lin and
Carroll (2006), Henderson et al. (2008) deploy a profile likelihood approach
to estimate m(-). The criterion function for individual i is

Li(-)= ﬁ(lyi, m(x;))
= —56\;’ — m(X,) + m(Xﬂ )iT—l )IV;I (')71 — m(x,) + m(X“ )iT—l ), (1 1)
where y; = (¥, - -+ )7,7)' and m(x;) = (m(X;2), m(X;3), ..., mX7))'.
As in the construction of Wang (2003)’s random effects estimator, define
Lizm = 0L,(-)/om(x;;). From Eq. (11) we have

Litm = —i/pr,'_Nl(?f —m(x;) +m(X1)ir—1);
Ligm =, V(¥ —m(x;) + m(x;1)ir—1) for T >2,

where ¢, 1 is a vector of dimension (T — 1) x 1 with the (t — 1) element being 1
and all other elements being 0.
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We estimate the unknown function m(x) by solving the first-order condition

T
ZKztthltx['ztm Yi,m (th) (X) +§itﬂ(x), ceey m(xiT)] 5

1 =1

Mz

I

where the argument of L, is 7i1(x;s) for s # t and m(x) +X;,f(x) when s = 1.

As in Wang (2003), an iterative procedure is required. Denote the estimate
of m(x) at the [¢ — 1]th step as M) A(X) Then the current estimate of m(x), and
its derivative, f}(x), are 7y (x) and S, (x), which solve:

N T
0= ZZKitthirx»Citm [yi, mjg—1)(Xi1), .., My + ;(itﬁ[g] (X), ..., ity (XiT):| .

i=1 t=1

Henderson et al. (2008) use the restriction S>% 527 (y;; — ria(x;1)) =0 so
that m(-) is uniquely defined because E(y;) = E [m(x;,)].
The next step estimator is

N/
(ﬁim,ﬁm) =D;'(D2+D3),

where
l ng ZZI:ZKUthUXGUX
2 T62 Z]ZKltthztme 1] th)
€ 1 t
D3 *ZZ( lehGl[XC[ 1 ilthilxi/T_]) Vlei,[é—I]’
i=1 t=
and
e
Hijp= : - 6,[/1 I]inl
el
1T
where s,[-f_l] = yis —Hy_1)(X;s) are the differenced residuals. Henderson and

Parmeter (2015) note that the derivative estimator of Henderson et al.
(2008) is incorrect; o defined previously needs to be divided by /4 to produce
the correct vector of first derivatives of 7 (x). Regarding the asymptotic
properties of this profile likelihood estimator, Henderson et al. (2008) provide
only a sketch of the form of the asymptotic bias, variance, and asymptotic nor-
mality, whereas Li and Liang (2015), using the theory of Mammen, Stgve, and
Tjgstheim (2009), provide a full derivation of asymptotic normality and also
demonstrate the robustness of the estimator to which period is used for
differencing.
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Recall that the estimator proposed by Wang (2003) required a consistent ini-
tial estimator of V; to be operational. There, setting V; to be an identity matrix
resulted in the pooled local-linear least-squares estimator as an ideal choice.
The same is true here; if we replace V; by an identity matrix, Eq. (10) is an addi-
tive model with the restriction that the two additive functions have the same
functional form. Either a fourth order-polynomial or a series estimator can
be used in this setting to construct an initial consistent estimator of m(-) and
subsequently, of V;. The variance parameter o2 can be consistently estimated by

~2 ~ ~ 2
O, = 2NT N ; 2 Vie = yir — {m(xir) —ia(xi1) })”

However, note that [72 is necessary only in order to estimate the covariance
matrix of 72(x). It is not necessary for the construction of {7, ﬂ[[ given that
&z simply drops out of Eq. (10).

4.3 Marginal Integration

An alternative to the iterative procedure of Henderson et al. (2008) is to estimate
the model in Eq. (10) using marginal integration. This was proposed by Qian
and Wang (2012). To describe their estimator we first restate the first-
differenced regression model as follows:

Ayir = yir — Yie—1 =m(Xir) —m(Xi—1) + Agjy. (12)

Qian and Wang (2012) suggest estimating the model in Eq. (12) by
estimating

Ayi =m(Xi, Xj—1) + Agj

and then integrating out X;, _; to obtain an estimator of m(x;,). The benefit of this
approach is that any standard nonparametric estimator can be used, such as
local-polynomial least-squares. Consider our earlier discussion of local-
polynomial least-squares estimation in which the estimator was defined in
Eq. (6). Now, instead of estimation at the point X, we have estimation at the pair
(x, z), resulting in the estimator

5 —1
B(x,2) = (D,KxzDxz)  Dig,KxzAy.

Here we have used the notation Ky, = K /C, and Dy, is the same vertically
concatenated matrix, but now combined over the points x and z. Regardless of p,
m(x,z) = €, f(x,z) where e, is a vector with 1 in the first position and zeros
everywhere else. After this estimator has been constructed, we can estimate
m(x) from 7i(x, z) by integrating out z. The easiest way to do this is

N T
=(NT)' Y i xi). (13)

i=1 t=1
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There are two main issues with the marginal integration estimator of Qian
and Wang (2012). First, given the well-known curse of dimensionality, estima-
tion of m(x, z) is likely to be plagued by bias if ¢ is large and/or N T is relatively
small. Second, the marginal integration estimator in Eq. (13) requires counter-
factual construction, which implies that to evaluate the estimator at a single
point requires N' T function evaluations and so (N T)* evaluations are needed
to estimate the function at all data points. Even for moderately sized N and T
this could prove computationally expensive. In simulations, Gao and Li
(2013) report that the marginal integration estimator takes substantial amounts
of time to compute even for small N and 7.

Even given these two drawbacks, the marginal integration estimator of Qian
and Wang (2012) has much to offer. First, given that the only transformation
that is required is first-differencing, this estimator can be implemented easily
in any software that can conduct kernel smoothing and allow the construction
of counterfactuals. Moreover, this estimator does not require iteration or an
arbitrary initial consistent estimator. Both of these advantages might lead to
the increasing adoption of this estimator in the future. Qian and Wang
(2012) prove asymptotic normality of the estimator for the local-linear setting.
They demonstrate that the estimator works well in Monte Carlo simulations, and
they show that the marginal integration estimator outperforms the profile like-
lihood estimator of Henderson et al. (2008).

4.4 Profile Least Squares

Gao and Li (2013), Li, Peng, and Tong (2013), and Lin et al. (2014), following
Su and Ullah (2006) and Sun, Carroll, and Li (2009), propose estimation of the
model in Eq. (1) through profile least squares. Assuming the data are ordered so
that 7 is the fast index, then the profile least-squares estimator of Li et al. (2013)
and Lin, Li, and Sun (2014) begins by assuming that a; is known. In the local-
linear setting, M(z) = (m(z), h © m(z)') (where © represents Hadamard mul-
tiplication) is estimated from
M,(x) = arg mﬂéqn (Y =Dy — DxM)'KCx (Y — D, — DM), (14)
Mc +1
where D = (I, Qir) - d,, d, = [—i,_1,1,_1],and i, is an x 1 vector of ones. D
is introduced in such a way to ensure that N ’IZi-V:Ia,« =0, a necessary identi-
fication condition. Define the smoothing operator

S(x) = (DLKxDy) ™' DLk,
and the estimator that solves the minimization problem in Eq. (13) is
My(x) = S(x)é

where E:Y—Da...Ma(x) contains the estimator of the conditional mean,
1, (x) as well as the g x 1 vector of first derivatives, scaled by the appropriate
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bandwidth, h@ﬁza(x)'. Define s(x)) =€ S(x) with e=(, 0,...,0) the
(g + 1) x 1 vector. Then 1, (x) = s(x) é.
After the estimator of m(x) is obtained, « is estimated through profile least

squares from

a=arg min(Y — Dy — 1i1a(X)) Kx (Y — Dy — 1itg(X)),

with l’;la(X) = (I’IA’la(Xl 1 ), l’;la(Xlz), ey ”ha(xlT), I’IA’la(XZI ), ceey I’IA’I(Z(XNT))/. Lin et al.
(2014) show that the parametric estimator that solves the profile least-squares
problem is

with D= (1yr —S)D and Y = (Iyy — S)Y. Here S = (s(X11), 5(X12), ..., s(X17),
5(X21), -0 S(XNT))'.

Finally, &1 = —Z;’:2&,‘.

The profile least-squares estimator for M (x) is given by

M(x) = Mq(x) = S(x) (15)
with € =Y — Da.

Su and Ullah (2006) discuss the asymptotic properties of the profile-least
squares estimator in the context of the partially linear model, Sun et al.
(2009) for the smooth coefficient model, and Gao and Li (2013), Li et al.
(2013), and Lin et al. (2014) in the full nonparametric model setting. The ele-
gance of the profile least-squares estimator is that neither marginal integration
techniques nor iteration are required. This represents a computationally simple
alternative to the other estimators previously discussed. To our knowledge only
Qian and Wang (2012) and Gao and Li (2013) have compared the profile least-
squares estimator in a fully nonparametric setting. Gao and Li (2013) run an
extensive set of simulations, comparing the profile least-squares estimator,
the profile likelihood estimator of Henderson et al. (2008), and the marginal
integration estimation of Qian and Wang (2012), finding that the profile least
squares estimator outperforms these other estimators in a majority of the set-
tings considered. Lastly, we know of no application using the profile least-
squares approach to estimate the conditional mean nonparametrically, which
would be a true test of its applied appeal.

The practitioner might find the profile least-squares estimator to be the most
accessible of all of the fixed effects estimators described herein. This is no doubt
in part because iteration is not required, nor is counterfactual analysis necessary
when performing marginal integration. Moreover, in the local-linear setting
described here, both the conditional mean and the corresponding gradients
are easily calculated (unlike the local within transformation). Lastly, the profile
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least-squares estimator can be adapted easily to any order local polynomial and
readily modified to include other panel type settings. For example, both time
and individual specific heterogeneity could be accounted for, or if three-way
panel data were available, as in the gravity model of international trade, a range
of heterogeneity types could be included, such as importer, exporter, and time-
specific heterogeneity. This estimator offers a range of attractive features for the
applied economist, and we anticipate it will become increasingly popular
over time.

4.4.1 Estimation With Unbalanced Panel Data

Given the way in which the data are ordered and how the smoothing is con-
ducted, if unbalanced panel data is present, the only modification to the estima-
tor is the construction of the matrix D. Whereas in the balanced setting where D
isan nT X (n — 1) matrix, D becomes a T x (7 — 1) matrix where T = Z?:le
is the total number of observations in the data set and 7; is the number of time
periods that firm i appears in the data.

To understand how D changes when unbalanced panel data is present, define
Ay as the T x (n — 1) matrix consisting of all -1 s and A}, j € (2, ..., n) as the
T x (n — 1) matrix that has all entries 0 except for the j — 1 column, which con-
tains 1 s. Then in the balanced case

Ay
A,
Dpy =

A n

In the unbalanced setting let ¢; be the vector of 1 s and 0 s representing in
which of the T time periods individual j appears. Let I'; be the T; x T matrix that
contains 1 s along the main diagonal and O s everywhere else. Finally, I'; be the
matrix that vertically concatenates all of the e;s. If we assume that the first indi-
vidual appears T times, then in the unbalanced case we have

oA,
A,
Dunbal =
AW

Aside from this specification of D, no other changes are needed to imple-
ment the profile estimator of Li et al. (2013) or Lin et al. (2014) in the presence
of panel data.
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5 Dynamic Panel Estimation

Su and Lu (2013) consider kernel estimation of a dynamic nonparametric panel
data model under the fixed effects framework that can be expressed as

Yir = m()’i,tfl , Xit) +a; + €.

To construct a kernel estimator for this dynamic model, we first eliminate
the fixed effect, obtaining

Ayie =m(yi -1, Xir) —m(Vi,1—2, Xi—1) + A€y, (16)

where Ay, =y, —yi,—1 and A g, = €;, —&;,_1. The model in Eq. (16) is iden-
tified only up to location, and a further restriction is needed to ensure full iden-
tification. Because E (y;,) = E [m(z;; )], recentering is a simple way to achieve
full identification of the unknown conditional mean. This model can be esti-
mated using additive methods, following the marginal integration approach
of Qian and Wang (2012), however, as noted earlier, several complications
arise. First, the fact that the two functions are identical is not used by the mar-
ginal integration estimator, most likely resulting in a loss of efficiency. Second,
the marginal integration estimator requires counterfactual construction, which
can be prohibitive for large N T. Third, the curse of dimensionality is likely to
impede reliable estimation of the first-stage function. Given these hurdles, Su
and Lu (2013)’s proposed estimator is a simplification of the profile likelihood
estimator of Henderson et al. (2008), being computationally easier to
implement.

To describe how Su and Lu (2013) construct a dynamic nonparametric panel
data estimator, define z;, _; = (y;, _1, X;;) and assume that E [A ¢;|z;, _»] = 0.
Then

E(Ayi| zi2) =E[m(zi 1) 2i-2] — m(z;,-2).
Setting z;, _, = z and rearranging we have

m(z) = —E(Ayy| zi,—» =2) +E[m(z;,—1)| Z;,,—2» = 7]

a7
=—E(Ay| zi,2=12)+ Jm(v)f(v| zZi;2=12)dv.

The last equality is known as a Fredholm integral equation of the second
kind (Kress, 1999). Although a variety of avenues exists to solve integral equa-
tions of the second kind, perhaps the most straightforward is through iteration,
which is the way Su and Lu (2013) constructed their estimator.

To see how an iterative approach works, assume that 7(z) is known. In this
case the integral in Eq. (17) could be evaluated by setting v = z;, _; and running
local-polynomial least-squares regression with z;, _, as the covariates and
m(z;, _1) as the regressand. Obviously, m(z) is unknown and thus an initial con-
sistent estimator is required. (Su and Lu (2013) propose a two-stage least-
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squares sieve estimator.) The iterations are designed to mitigate the impact that
the initial estimator has on the final estimates.
Su and Lu (2013)’s iterative estimation routine is implemented as follows:

1. For a given bandwidth, perform local-polynomial least-squares estimation
of —Ay; on z;, ,, evaluating this conditional mean at z;, ;. Call these
estimates 7.

2. Define ry) = (NT,) 'SV S yi where NT; =SV (T —j). Using the
same band- width as in Step 1, regress o on z;, _, using local-polynomial
least-squares, evaluating this conditional mean at z;, ;. Recentering our
estimates of i) by (NT' IR DD D (vir — o) (2i,1-1) ), the initial estima-
tor of the unknown conditional mean is

ﬁ[] 0]+ NT -

1

Z Yit — m[O Zi— l))

N T
i=1 t=2

3. Our next step estimator of m(z;, _) is

) (zi-1) = mp)(Zi-1) + 7.

Agam for identification purposes, recenter #j(z;,—1) by (NTI)_IZ?/:]

Zt 2(y,, 1](Zz — 1)) to produce mm(z,,, 1)
4. Repeat step 3, which at the ¢th step produces

ng) (zi-1) = my_1)(Zip—1) +7

Lastly, recenter 7 (2; ;1) to obtain the (th step estimator of the unknown
conditional mean, myg(z; ;1)

The estimator should be iterated as with the estimators of Wang (2003) and
Henderson et al. (2008). Given that the evaluation of the unknown conditional
mean does not change, there is no need to recalculate the kernel weights across
iterations, potentially resulting in dramatic improvements in computational
speed for even moderately sized panels. The previously listed steps are for
the estimation of the conditional mean, through application of local-polynomial
least-squares estimation. If higher order derivatives from the local-polynomial
approach are desired, they can be taken from the corresponding higher order
derivatives of the last stage estimator, along with the appropriate derivatives
from 7, given that recentering amounts to a location shift. Su and Lu (2013)
demonstrate that the limiting distribution of this estimator is normal.

5.1 The Static Setting

Nothing prevents application of the Su and Lu (2013) estimator in the static set-
ting of Eq. (1). In comparison to Henderson et al. (2008)’s iterative estimator,
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Su and Lu (2013)‘s estimator is less computationally expensive given that it
requires only successive local polynomial estimation of an updated quantity.
This estimator also avoids performing marginal integration as required by
Qian and Wang (2012) for their fixed effects nonparametric panel data
estimator.

In the static setting Su and Lu (2013)‘s iterative estimation routine is imple-
mented as follows:

1. For a given bandwidth, perform local-polynomial least-squares estimation
of -Ay;, onXx;, _,, evaluating this conditional mean at x;,, . Call these esti-
mates 7.

2. Define riyy = (NT2)"'S°N 5oy Using the same bandwidth as in Step 1,
regress g on X;, _» using local-polynomial least-squares, evaluating this
conditional mean at X;, _;. Recentering our estimates of n%[o] by (NTl)_l

Zl 12, 2( it — 1) (X 1)), the initial estimator of the unknown
conditional mean

N T
myo) = it + (NT'1) IZZ)’U o) (Xi 1)

i=1 t=2

3. Our next step estimator of m(X;, _1) is

mg) (Xi, 1) = my (Xi 1) + 7.

Again, for identification purposes, recenter rf)(x;,—1) by (NTI)_IZZ.VZI

Z;TZZ (yit — (X,-,H)) to produce ;) (X;,—1).
4. Repeat step 3, which at the /th step produces

1) (Xi,—1) = M1y (Xi—1) + 7.

Lastly, recenter ry(X;,—1) to construct the (th step estimator of the
unknown conditional mean, 7y (X;,—1).

Outside of Qian and Wang (2012) and Gao and Li (2013), there are no finite
sample comparisons of the range of nonparametric estimators of the static non-
parametric panel data model under the fixed effects framework. This would be
an interesting avenue to explore for future research to help guide authors toward
the most appropriate estimator for this model.

6 Inference

6.1 Poolability

Having access to panel data affords researchers the ability to examine the pres-
ence (or lack thereof) of heterogeneity in many interesting dimensions that do
not exist when cross-sectional data are present. One of the main tests of homo-
geneity is that of poolability. Baltagi et al. (1996) proposed one of the first non-
parametric tests of poolability. The importance of such a test is that the size and
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power of a parametric test of poolability (such as a Chow test) could be
adversely affected by parametric misspecification of the conditional mean.
Baltagi, Hidalgo, and Li (1996) consider a test of poolability for the model

y,~,zm,(x,~,)+8n, i=1,..,N, t=1,...,T, (18)

where m;, (Xx;,) is the unknown functional form that can vary over time, X, is a
1 X g vector of regressors, and ¢;, is the error term. For the data to be poolable
across time, m, (x) = m (X) V¢ almost everywhere, with m (x) representing the
unknown functional form in the pooled model. More specifically, Baltagi et al.
(1996) test

Hy :my(x) =m(x)Vt
almost everywhere versus the alternative that

H, :my(x) # m(x)

for some ¢ with positive probability.

Under Hy, E (¢;;|x;;) = 0 almost everywhere, where ¢;; = y;; —m (x,,). Under
H\, & from the pooled model will not converge to ¢; and hence E (g]|x) # 0
almost everywhere. Hence, a consistent test for poolability based on E [¢ E
(e]x)] is available.

Baltagi et al. (1996) construct the test statistics as

. NP
InT :M’
ONT
where
N N T N )
=TT 2 St (7 5).
JF£i
and
N T
6;2\/r N_1 sz Z ,f Xir) xj,) Kftxuh
i=1 t=1
J#l

with || = hy ... h,. Baltagi et al. (1996) prove that Jyr has a standard normal
distribution under HO Although the limiting distribution of Jy7 is available, typ-
ically in nonparametric inference it is recommended to use resampling plans
(bootstrapping or subsampling) to construct the finite sample distribution.
The steps used to construct the wild bootstrap test statistic are as follows:

1. Fori=1,2,...Nand t =1, 2, ... T generate the two-point wild bootstrap

error 822(172\/5) (¢ —¢) with probability p:% and u :@
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(¢ — &) with probability 1—p where &, =y;, —m(x;) is the residual from
the pooled estimator. Here we are using the common wild bootstrap weights,
but Rademacher weights could also be used.

2. Construct the bootstrap left side variable y!, =ni(x;) + ¢}, fori=1,2,...,N
and =1, 2, ... T. The resulting sample {y#,x;} is the bootstrap sample.
Note that these data are generated under the null of a pooled sample. Using
the bootstrap sample, estimate #m*(x;) via pooled LCLS where y; is
replaced by y#.

3. Use the bootstrap residuals &, to construct the bootstrap test statistic f;T

4. Repeat steps 1-3 a large number (B) of times and then construct the sam-
pling distribution of the bootstrapped test statistics. The null of poolability
is rejected if Jnr is greater than the upper a-percentile of the bootstrapped
test statistics.

Lavergne (2001) is critical of this test partially because the smoothing param-
eter used in the pooled model is the same in each period. Further, he disagrees
that the density of the regressors, f (x), should remain fixed across time.
Lavergne (2001) argues that if f (x) varies over time it can lead to poor perfor-
mance of Baltagi et al. (1996)’s test of poolability.

An alternative approach to test poolability is that of Jin and Su (2013). They
consider the model

yi,:m,‘(X,‘,)+€i1’ i=1,...,N, t=1,...,T,

where m,(X;,) is the unknown functional form that can vary over individuals with
everything else defined as in Eq. (18). For the data to be poolable across indi-
viduals m; (X) = m; (x) Vi, j almost everywhere, with m(x) representing the
unknown functional form in the pooled model. More specifically, the null
hypothesis is

Ho :mi(x) = m](X)Vl,j
almost everywhere versus the alternative that
H, :mj(x) # mj(x)

for some i # j with positive probability.

Jin and Su (2013) do not consider a conditional moment based test for pool-
ability as do Baltagi et al. (1996), but rather a weighted integrated squared error
statistic, defined as

N—-1 N )
FNT:Z,Z J(m,»(x)—mj(x)) w(x)dx, (19)

=i+1

where w(x) is a user-specified probability density function. Under Hy, ['yy = O,
otherwise I'yy > 0. Jin and Su (2013) point out that I'ys cannot distinguish all
departures from H,. Rather, Eq. (19) corresponds to testing
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Hy: A, =0 versus H;: A, >0

where A, = limy o (N (N — 1)) ! Tyy. The difference between H, and H is
that H, allows for some i # j, mi(x) # m; (x) with probability greater than zero,
but the count measure of such pair has to be of smaller order than N (N — 1).
That is, it can happen that m,(x) # m; (X), but these occurrences cannot increase
as N increases. This is intuitive because the test of poolability in this case is
predicated on increasing the number of cross sections, and as more cross-
sections become available, it would seem likely that it will be difficult to rule
out that m;(x) # m; (x) for every pair (i, j). Jin and Su (2013) show theoretically
that under H, the poolability test is consistent as long as (N (N — 1) ' Tyrdoes
not shrink too fast to 0.

The statistic in Eq. (19) is calculated under H, and requires the user to esti-
mate m;(x) across all individuals. For example, using local-polynomial least-
squares, with 171;(x), the Iyr is estimated by

N-1 N
tr=>"%" J (g (x) — 1y (X)) w(x) dx.
i=1 j=i+1
Jin and Su (2013) show that after appropriate normalization, Dyris normally
distributed under reasonable assumptions.” A bootstrap approach similar to that
of Baltagi et al. (1996) can be deployed to construct the finite sample distribu-
tion of the test statistic.

6.1.1 Poolability Through Irrelevant Individual and Time Effects

An informal way to determine whether the data is poolable is to directly smooth
over both individual and time and assess the size of the bandwidths on these two
variables. It is well known that discrete variables whose bandwidths hit their
upper bounds are removed from the smoothing operation. Thus, rather than
splitting the data on time (Baltagi et al., 1996) or individual (Jin & Su,
2013), individual and time heterogeneity can be included directly in the set
of covariates and the pooled regression model can be estimated. If the band-
widths on either of these variables are at their corresponding upper bounds, then
this would signify the ability to pool in that dimension. This approach was advo-
cated by Racine (2008) and would seem to hold promise, though further devel-
opment of the theoretical properties as they pertain to the data-driven
bandwidths is warranted.

We again note that this is informal, but it will reveal poolability in either the
individual and/or time dimension. Further, there is no need to construct a test
statistic or use resampling plans. The problem facing practitioners will occur

4. Jin and Su (2013)’s theory focuses on the setting where mi(x) is estimated using sieves, but it can
be adapted to the kernel setting.
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when the estimated bandwidth is close, but not equal, to its upper bound. In that
case, a more formal approach would need to be undertaken.

An alternative to the approach of Racine (2008) would be that of Lu and Su
(2017), who develop a consistent model selection routine for the fixed effects
panel data model. Although their test is developed and studied in a parametric
setting, m(X) = xf3, it can be extended easily to the nonparametric setting that we
have described here. Lu and Su (2017)’s selection device entails choosing the
estimator from the model that has the lowest leave-one-out cross validation
score. For example, if we compare the pooled model against the one-way, indi-
vidual effects model, we estimate both models omitting a single observation,
predict y;, for the omitted observation, and repeat this over all nT observations,
to calculate the squared prediction error. The model with the lowest squared
prediction error is then chosen as the best model. Lu and Su (2017) demonstrate
that this approach works remarkably well even in the presence of serial corre-
lation or cross-section dependence and substantially outperforms more common
model selection approaches such as AIC or BIC.

6.2 Specification Testing

Lin et al. (2014) provide an integrated squared error statistic to test for correct
specification of a panel data model under the fixed effects framework. The null
hypothesis is

Hy: Pr{m(x)=xp,} =1,
for some S, € R? against the alternative hypothesis

Hy: Pr{m(x)=xp,} < 1,

for any fy € R?. Let B denote the parametric estimator of S, (perhaps using
within estimation) and 7(x) the profile least-squares estimator. Then a consis-
tent test for Hy is based off

J (m(x) — xﬁ)zdx.

However, as noted in Lin et al. (2014), this test statistic would possess sev-
eral nonzero centering terms that, if not removed, would lead to an asymptotic
bias. To avoid this Lin et al. (2014) use the approach of Hardle and Mammen
(1993) and smooth X,',ﬂA. More specifically, estimate m(x) using local-constant
least-squares (our earlier discussion focused on local-linear least-squares) as

(%) = (irg S(X)int) ™ iny S(X)y (20)

where S(x) = O(x)'KCxO(x) and Q(x) = Iyy — D (D'KCxD)™' D'Kx with 1y7 an
NT x 1 vector of ones. Note that we smooth over y in Eq. (20) as Q(x)
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D = 0, which will eliminate the presence of the fixed effects as in Eq. (15). The
same smoothing is applied to the parametric estimates to produce

titpara (%) = (irgS(%)int) ™ iy S(x) (xi).

Leté; =y — X,-,ﬁ (the parametric residuals, free of the fixed effects). Then it
holds that 71(X) — Ripara(X) = (ij\,TS(x)iI\/Ty1 inyS(x)é. Lin et al. (2014) discuss
the fact that the presence of the random denominator in 71(X) — iy, (X) Will
complicate computation of the asymptotic distribution of the integrated squared
error test statistic.

Instead, Lin et al. (2014) propose a simpler leave-one-out test-statistic
(which omits center terms), given by

T T
INT N2|h|ZZZZ tejS itjsh» (21)

L j#i =1 s=1

where éi, =¢&;; — €;.. An alternative test statistic is proposed by Henderson et al.
(2008), however, this test is less appealing because it involves iteration of the
estimator of the unknown conditional mean. The test statistic of Lin et al. (2014)
requires only kernel weighting of the within residuals from parametric estima-
tion.” This simplicity allows Lin et al. (2014) to demonstrate that when I NT 1S
appropriately normalized it has an asymptotically normal distribution. They
focus on the asymptotic behavior of Iy for N — co, but the theory can be estab-
lished if both N and T are increasing.

Kernel-based nonparametric tests commonly display poor finite sample size
and power. To remedy this Lin et al. (2014) propose a bootstrap procedure to

approximate the distribution of the scaled test statistic Iyt =Ny/ |hlInT /4 / &3

where

2 N N T
63 NZ\h|ZZZZ it€js njvh' (22)

i=1 j#i 1=1 s=1
Their bootstrap procedure is

1. Estimate the linear panel data model under the fixed effects framework
using the within estimator and obtain the residuals €; = y;, — x;,f.
2. Fori=1,2,...Nandt =1, 2, ..., T generate the two-point wild bootstrap

error ¢ ==Y (2,-7) with probability pZ(H—\/\() and uf =125

5. This fact can be used to exploit existing software to implement the test. For example, the np pack-
age (Hayfield & Racine, 2008) offers a test of consistent model specification in the cross-sectional
setting. However, the adept user could simply within transform their data and call npcmstest(), mak-
ing implementation straightforward.
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(éi — ) with probability 1 —p. Then construct y; = Xifp+ €. Call (v, Xy)
fori=1,2,...,Nand r =1, 2, ..., T the bootstrap sample.

3. Use the bootstrap sample to estimate  based on the bootstrap sample using
the within estimator. Calculate the residuals &} = y* — x;,f*. N

4. Compute J{r, where J¥7 is obtained from Jyr using the residuals ¢;,.

5. Repeat steps (2)—(4) a large number (B) of times and reject Hy, if the esti-
mated test statistic Jyr is greater than the upper a-percentile of the boot-
strapped test statistics.

Lin et al. (2014) demonstrate that this bootstrap approach provides an asymp-
totically valid approximation of the distribution of Jy7. Moreover, in the sim-
ulations that they conduct, the bootstrap test has correct size in both univariate
and bivariate settings and also displays high power.

6.3 A Hausman Test

In addition to testing for poolability of the data, another interesting question that
researchers can ask in the presence of panel data is whether the fixed or random
effects framework is appropriate. As should be obvious from our earlier discus-
sion, the estimators for Eq. (1) under the fixed or random effects framework take
on different forms. Further, if the random effects estimator is applied errone-
ously, then it is inconsistent. The common approach to testing between these
two frameworks is to use the Hausman test (Hausman, 1978). Even with the
range of estimators that we have discussed for the fixed effects framework,
to our knowledge, only Henderson et al. (2008) describe a nonparametric Haus-
man test. One of the benefits of using a random effects estimator (Martins-Filho
& Yao, 2009, for example), when the random effects framework is true, is that
the gains in efficiency relative to a fixed effects estimator, profile least-squares,
say, can be substantial. In general, the larger T is or the larger that o, is relative
to o,, the more efficient the random effects estimator is over the fixed effect
estimator.

Recall that a Hausman test works by examining the difference between esti-
mators in which one estimator is consistent under both the null and alternative
hypotheses, while another estimator is consistent only under the null hypothesis.
Formally, under the random effects framework, the null hypothesis is

H() N E(a,»| X,‘;) = 0
almost everywhere. The alternative hypothesis is
H1 :E(a,»| X,‘t> 750

on a set with positive measure. Henderson et al. (2008) test H, based on the
sample analogue of J = E [v;; E(v;|X;,)f (x;)]. Note that J = 0 under H, and
is positive under H;, which makes this a proper statistic for testing H,.
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Let m(x) denote a consistent estimator of m(x) under the fixed effects
assumption, profile least-squares for example. Then a consistent estimator of
vi; is given by Vi, = y; —m(x;,). A feasible test statistic is given by

jNT NT—I Z Z I‘ﬁ/_\ itjsh-

l:l t=1 j=1 s=1

(> sy 1}

It can be shown that J, N7 18 a consistent estimator of J. Hence, J NT 2,0 under
the null hypothesis, and J. NTLC if H is false, where C > 0 is a positive con-
stant. This test works by assessing if there is any dependence between the resid-
uals and the covariates. Under H,), the fixed effects estimator is consistent and so
the residuals, V;;, should be unrelated to the covariates, Xx;,.

Henderson et al. (2008) suggest a bootstrap procedure to implement this test
to approximate the finite sample null distribution of J. The steps are as follows:

N T N T

1. Let v; = (Vi1, ..., vir)', where v; = y;, — m(x;) is the residual from a random
effects model, and m(x) is a random effects estimator of m(x). Compute the
two-point wild bootstrap errors by vi = {(1 —+/5)/2}; with probability
p=(1+5)/(2V/5) and v = { (1+/5) /2}¥; with probability 1 —p. Gen-
erate y} via yj;, =m(x;) +vj,. Call {yf, X; )21 ,_1 the bootstrap sample. Note
here that all residuals for a given individual are scaled by the same point of
the two-point wild bootstrap.

2. Use { y,?'i,xi,}fif 1 to estimate m(x) with a fixed effects estimator and
denote the estimate by m*(x). Obtain the bootstrap residuals as

=i ir 1 (le)

3. The bootstrap test statistic J, 7 18 obtained as for J ~r except that v;, (V,S) is
replaced by v, ]*S wherever it occurs.

4. Repeat steps (1) (3) a large number (B) of times and reject if the estimated
test statistic J is greater than the upper a-percentile of the bootstrapped test
statistics.

6.4 Simultaneous Confidence Bounds

Li et al. (2013) provide the maximum absolute deviation between 71(x) and
m(x), allowing for the construction of uniform confidence bounds on the profile
least-squares estimator for Eq. (1) under the fixed effects framework. Their the-
oretical work focuses on the univariate case. Specifically, they establish that

6. Henderson et al. (2008) suggest using a random effects estimator. However, as pointed out in
Amini et al. (2012), asymptotically the performance of the test is independent of the estimator used
within the bootstrap, but in finite samples the use of the fixed effects estimator leads to improved
size.
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i(x) — m(x) — Bias (7
P (—210gh)1/2 sup m(x) — m(x) — Bias (m(x)) —d, e

xel0, 1] VAalr(n%(x)\ X)

(23)

where d, = (—2logh)"/* + W log (LR(K’)) , Bias (7 (x)) is a consistent

471.'\’0
estimator of the bias of the local-linear profile least-squares estimator, defined
as
Bias(r1(x)) = W2 kym” (x) /2,
Var(ri(x)| X) is a consistent estimator of the bias of the local-linear profile
least-squares estimator, defined as
Var(ii(x)| X) = vo5” (x) /f(x)

where k= [v/ K(udu, v;= [/ K*(u)du, X ={x;, 1 <i<N, 1<t<T},
F(x) =32 f.(x) where f(x) denotes the density function of x for each time
period t, %(x) = ZtT:latz (x)f;(x), with ¢?(x) = E[Ei| Xir :x] with &; =¢&;; — &;
and R(K) = [K*(u)du.

From Eq. (23), a (1 —a) x 100% simultaneous confidence bound for () is

(1i(x) ~ Bias ((x) & A o))
where
Apa(x) = (d,, +(log2 — log (—log (1 — a)))(—2log h)l/z) Var(m(x)| X).

As with inference, it is expected that a bootstrap approach will perform well
in finite samples. To describe the bootstrap proposed by Li et al. (2013) set

e sup 1M —m@|
€0, 114 /Var (i (x)| (X).

Denote the upper a-quantile of T as ¢,. When ¢, and Var(it(x)| X) are
known, the simultaneous confidence bound of s(x) would be

1(x) £ cq\/ Var(rin(x)| X). As these are unknown in practice, they need to be
estimated. The bootstrap algorithm is

1. Obtain the residuals from the fixed effects framework model and denote
them as &;.

2. Foreachiand ¢, compute €}, = a;€; where g; are i.i.d. N (0, 1) across i. Gen-
erate the bootstrap observations as y;, = #(x;) + €}, Call { yExi el the
bootstrap sample. Note here that all residuals for a given individual are
scaled by the same factor.
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3. With the bootstrap sample { y?ﬁ,x,',}ﬁvz’Tl,,:l, use local-linear profile least-
squares to obtain the bootstrap estimator of m(x), denoted as 7*(x).

4. Repeat steps 2 and 3 a large number (B) of times. The estimator
Var*(sir(x)| X) of Var(ri(x)| X) is taken as the sample variance of the B esti-
mates of #m*(x). Compute

—_— |m <> )
x€[0, 1] \/Var (X)forb=1,...,B.

5. Use the upper a-percentile of {T#},—;. ... p to estimate the upper a-quantile
¢, of T, call this ¢, construct the simultaneous confidence bound of 7i(x) as

(%) £ &gy / Vart (i (x)| X).

The simultaneous confidences bounds, in the univariate setting, can be used to
provide a graphical depiction of when to reject a parametric functional form for
m(x), offering an alternative to the functional form test of Lin et al. (2014).

7 Conclusions

This chapter has reviewed the recent literature focusing on estimation and infer-
ence in nonparametric panel data models under both the random and fixed
effects frameworks. A range of estimation techniques were covered. This area
is ripe for application across a range of domains. Nonparametric estimation
under both fixed and random effects allows the practitioner to explore a wide
range of hypotheses of interest, while consistent model specification tests pro-
vide a robustness check on less than fully nonparametric approaches. Band-
width selection remains less studied, but as these methods are more widely
embraced, it is likely that a potentially wider range of data-driven approaches
will become available. We are optimistic that the interested practitioner can
keep abreast of this rapidly expanding field by digesting this chapter and the
references herein.
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1 Introduction

Stochastic frontier literature originated with Aigner, Lovell, and Schmidt (1977)
and Meeusen and van den Broeck (1977). Jondrow, Lovell, Materov, and
Schmidt (1982) provided a way to estimate technical efficiency. These studies
are framed in a cross-sectional framework, however, a panel contains more.
As noted by Kumbhakar and Lovell (2003), an immediate implication is that,
in a panel data model, we can relax some of the distributional assumptions that
we make in cross-sectional models or get efficiency estimates that have more
desirable statistical properties such as consistency of efficiency estimates.

Pitt and Lee (1981) and Schmidt and Sickles (1984) are among the first
studies that applied fixed and random effects models in which the inefficiency
is time-invariant. Panel data models that allow time-varying efficiency, such
as Cornwell, Schmidt, and Sickles (1990), Kumbhakar (1990), Battese and
Coelli (1992), and Lee and Schmidt (1993), followed those early models.
More recently, papers that allow dynamic efficiency have been published, with
authors including Ahn, Good, and Sickles (2000), Desli, Ray, and Kumbhakar
(2003), Tsionas (2006), Huang and Chen (2009), Assaf, Gillen, and Tsionas
(2014), Duygun, Kutlu, and Sickles (2016), and Kutlu (2017). A recent
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development in panel data models is identifying heterogeneity and efficiency
separately (Chen, Schmidt, & Wang, 2014; Greene, 2005a, 2005b; Wang and
Ho, 2010). In sum, myriad studies about the panel data stochastic frontier
concentrate on a variety of aspects of efficiency estimation.

Although the endogeneity issue has been a concern in production models in
which the firms are assumed to be fully efficient, e.g., Olley and Pakes (1996),
Levinsohn and Petrin (2003), Ackerberg, Caves, and Frazer (2015), the endo-
geneity issues have been ignored for long time in the stochastic frontier litera-
ture and haven’t been studied in the papers cited earlier.' This is surprising,
because it seems that the endogeneity is likely to be a more serious problem
in the stochastic frontier models than in the standard production/cost function
models as the presence of the one-sided (non-negative) inefficiency term intro-
duces additional complications regarding endogeneity. The standard stochastic
frontier models generally assumed this one-sided inefficiency term to be inde-
pendent from the two-sided error term, but this assumption can be violated
easily for a variety of reasons. For example, in the context of health care cost
function estimation, Mutter, Greene, Spector, Rosko, and Mukamel (2013)
argue that if quality is one of the relevant factors that affects costs, then endo-
geneity issues occur when the parameter and efficiency estimates obtained from
a standard stochastic frontier model that ignores endogeneity are inconsistent.
Moreover, omitting the quality variable from the frontier does not solve the
inconsistency problem. Besides quality variables, there might be many other
endogenous variables in a stochastic frontier model, including input prices
and market concentration measures.

The purpose of this chapter is to provide a recent development in panel
stochastic frontier models that allows for heterogeneity, endogeneity, or both.
Specifically, consistent estimation of the models’ parameters as well as
observation-specific technical inefficiency is discussed. Section 2 presents
the panel stochastic frontier models that allow for heterogeneity under the
exogeneity assumptions of regressors. Section 3 discusses the panel stochastic
frontier models that allow for endogeneity of regressors under homogeneity
assumption. Models that allow for both heterogeneity and endogeneity are
presented in Section 4. Section 5 concludes the chapter.

2 Panel Stochastic Frontier Models With Heterogeneity

In this section, we discuss a recent theoretical development of general panel sto-
chastic frontier model that incorporates heterogeneity and time-varying techni-
cal inefficiency.” Most of the discussion in this section draws heavily on the

1. See Shee and Stefanou (2014) for a stochastic frontier study in the Levinsohn and Petrin (2003)
context.

2. See Kutlu and McCarthy (2016) for an empirical study, in the context of airport cost efficiency,
illustrating consequences of ignoring heterogeneity.
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work of Wang and Ho (2010), Chen et al. (2014), and Kutlu, Tran, and Tsionas
(2019). For exposition simplicity, we focus on production functions. The bench-
mark model for our discussion is given by Wang and Ho (2010):

Vit = i+ X1ieff — Uig + Vi, (1)
Uy = h,-,u:f, ()

hie =f (X209, 3)

u; ~N+(/4, 63), 4
vie~N(0,07), Q)

where y;, is the logarithm of the output of the ith panel unit at time #; a; is a time-
invariant unit specific term that captures the firm heterogeneity; u;, >0 is the
one-sided inefficiency term; xy;; is a (1 X ky) vector of input variables; x,;; is
(1 x ky) vector of environmental variables that effect the inefficiency term;
and v;, is the conventional two-sided error. For identification purposes, we
assume that neither xy,, nor x,;, contains constant terms (intercepts). This model
is fundamentally different from earlier treatments of panel data, such as Pitt and
Lee (1981) and Schmidt and Sickles (1984), in which the only source of
heterogeneity was the normal error v;,, and the inefficiency was time invariant.
A simpler and closely related model in which steps 2-5 are replaced by
u;; ~ N*(0,6,%) has been discussed by Greene (2005a, 2005b), Kumbhakar
and Wang (2005), and Chen et al. (2014). In addition, by setting a; = a in
Eq. (1) and the term u;, is modeled as in Eq. (2), this model also nests many
of the earlier stochastic frontier models including Kumbhakar (1990),
Reifschneider and Stevenson (1991), Battese and Coelli (1992), and Caudill
and Ford (1993). The main motivation for the frontier in Eq. (1) is to allow
for time invariant factors that affect the firm’s output but that are beyond the
firm’s control. These factors are captured in the term ; which are allowed to
be freely correlated with x;; and x,;. Let v; = (v;1, ... ,vi7), x1; and x,; are
defined similarly. The following assumptions regarding the nature of xj;,
Jj =1, 2 are essential to guarantee the consistency of the parameters and ineffi-
ciency estimates:

Al E(v;|x14,%0:,0;) = 0 for all i.

A2: E(ui*| x5, %0, ) = E(u;*) for all i.

A3: E(v;|ui*,a;) = E(v;) for all i.

Assumption A.1 states that both set of regressors xy;; and x,;, are strictly
exogenous with respect to the two-sided error v;.. Assumptions A.2 and A.3
require that u;* to be independent of x;;, and x,; as well as v;, respectively.
Under A.3, u;, still can be correlated with v;, if x,;, is correlated with v;,. Under
the above assumptions, Wang and Ho (2010) proposed two different approaches
that are based on first difference and within transformations. They show that
both approaches yield the same log-likelihood function and, therefore, they
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are numerically identical. To simplify our discussion, we present only the
within transformation approach here. Let w; = T_IZ,:ITwi,, Wit = Wi — Wi,

and w; = (W1, ..., w;r)', then the model after transformation is given by:
Vi =Xuf+vi —u, (6)
i~ MN(0, %), ™)
i = hiu; ®)
u; ~N*(u,02), i=1,2,...,n ©)

T

with I71s an identity matrix of dimension 7T, z7is a (T x 1) vector of 1’s, and the
definition of M is apparent; u; is a (T x 1) stacked vector of u; where
Uiy = Uiy — U, = E,uf. From Egs. (8) and (9), we see that the distribution of
u;* is unaffected by the transformation, making the derivation of the likelihood
function possible. Because X is an idempotent matrix, it is singular and, there-
fore, it is not invertible. To resolve this problem, Wang and Ho (2010) suggest
using Khatri (1968) singular multivariate normal distribution, which is defined
on a (T — 1)-dimensional subspace. Thus, the density of the vector v; is

T ’[{. . . . . ~
where £ = 03 {IT —L} = a%MT is a (T x T) variance-covariance matrix of v;,

~ (T 1 ~
f‘(V[) _ (2”) (T l)/zg;(T*I) exp <—§Tﬂjzv,) ’ (10)
where £~ denotes the generalized inverse of . Given Eq. (10), the marginal

likelihood function of the ith panel can be derived based on the joint density
of v; and u;, and the marginal likelihood function of the model is given by:

_ 2
lnL:—]%[ln(Zﬂ)+ln(crf)]—1 82 €+ 22(—) "

+i In (0*(13(/4*/0*>> i In (6, @(u/0u)),

where @(.) is the cumulative density function of standard normal
distribution, and

&=V — U =y; — Xif, (12)
uo= ((w/o2) == i)/ (Bz i+ (1/2)), (13)
o2 =1/(hz I+ (1/02)). (14)

Maximizing the marginal log-likelihood function in Eq. (11) with respect to
0=,¢,, 0,06, provides the within MLE (WMLE). Under assumptions
A.1-A.3 and subject to other regularity conditions (which we will not pursue
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here), the WMLE of 0 is consistent and asymptotically normal when n — o
with fixed T or T — oo. The asymptotic variance of the WMLE would be
evaluated at the inverse of the information matrix based on InL in Eq. (11).

It is important to point out that the WMLE solves the incidental parameter
problem as discussed in Greene (2005a), because a; has been eliminated by the
within transformation.

After the WMLE estimate of 6 is obtained, the main objective of estimating
the stochastic frontier model is to compute observational-specific technical
inefficiency, E(u; | €;;) evaluated at point estimate &;, = &;. There are two ways
to do this. One way is to adopt the conditional estimator proposed by Jondrow
et al. (1982), but this estimator requires the estimation of &; which can be
obtained as in Wang and Ho (2010, Eq. (31)). An alternative and simpler
way that does not require the estimation of q; is to compute the conditional
estimator of E(uy|%;) evaluated at & =& =y, —Xifwyg- This conditional
estimator is derived in Wang and Ho (2010) and it is given by:

E(ul’é) = hi | i+ m : (15)

where “denotes the WMLE and ¢(.) is the probability density function of stan-
dard normal distribution.

Chen et al. (2014) consider a simpler model than Wang and Ho (2010) where
Egs. (2)—(5) are replaced by u;, ~ N*(0,6,7), and propose a somewhat different
but related approach to solve the heterogeneity and the incidental parameter
problems. Their approach also is based on within transformation to eliminate
the «; as in Eq. (6), but the derivation of the log-likelihood function is based
on the closed skew normal (CSN) results of Gonzalez-Farlas, Dominguez-
Molina, and Gupta (2004). Specifically, they show that, with slightly abuse
of notations,

- _ Al lr_ T
&= (8., ~~’€iT1)/NCSNT1,T(OT1’02MT1» —;[ ’ 1}0TJT+/12%),

Tr—1

(16)

and

2 /

€,',NCSN1!T<O,%, —%TT, (1+12)IT—12%>, (17)
where ¢ = 6,% + 6,> and A = 6,/,. Based on Egs. (16) and (17), Chen et al.
(2014) derived the within and between log-likelihood function, respectively.
In fact, under the specification of u;, ~ N* 0,6,2), it is straightforward to show
that the derived within log-likelihood function is the same as the within
log-likelihood function of Wang and Ho (2010). The main advantage of
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Chen et al. (2014) approach is that the between log-likelihood function can be
used to obtain the consistent estimation of «;.

Kutlu et al. (2019) generalize the Wang and Ho (2010) model to allow for
time-varying heterogeneity and endogeneity problems (i.e., violation of
assumptions A.1-A.3). In their model, they maintain the same specifications
in Egs. (2)-(5), but the specification of Eq. (1) is modified as:

Vit = X300t + X138 — Uig + Vig, (18)

where x3;; is a (1 X k3) represents exogenous variables capturing the heteroge-
neity, variables that are allowed to be freely correlated with x;;, and x,;; ; is a
productive unit specific coefficient vector, and other variables are defined as
earlier. For identification purposes, it is assumed that x3;, and x,;, have no ele-
ments in common. For example, x;; contains the usual input variables (in
case of production) such as capital, labor, and materials; while a potential
choice for x3;, might be the firms’ research and development expenditures or
x3;, = (1,2, as in Cornwell et al. (1990). Another interesting choice for x3;,
would be x3;, = (1,d;,,d;>) where d;, stands for spatial distance for panel unit
i at time ¢, which might or might not refer to a physical distance. For example,
in differentiated products setting, the distance might be an index representing
the quality differences of a product relative to a benchmark. Therefore, the
heterogeneity can be modeled in a variety of ways.

To solve the heterogeneity and incidental parameter problems, under the
assumptions A.1-A.3, Kutlu et al. (2019) use the orthogonal projection
transformation to eliminate a;. To see this, let y; = (y;j1,y2, ... ,yi7) 1S a
(T x 1) vector, and other variables xy;, x3;, u; and v; are defined similarly.
Also let M, =1Ir— X330 X Vi =M yin X =My Xii, Vi =My,vi,
u; =M,,u;, and /7, =M., h; . By applying this transformation to Eq. (18), the
transformed model becomes:

i =X — i+, 19)

then it is clear from Eq. (19) that ¢; has been eliminated and the derivation of
the marginal likelihood function of the ith panel follows similarly to Wang and
Ho (2010) which is:

~ ﬁi*
1 ez 1 (i 42 ,,,*q><5>
B ) i€i I i*
InL;=~2(T ~ks) In(2z0) 2 2 (5’,2*_3> *In

Py s
o, P —
Ou
~~ (20)
—o2e; hitpuc? ~2 62a?

where p;, =—<=—= 5 =—52—, and e; =Yy; —X|;f. By maximizing the
o2h; hi+o? o2h; hi+ 6%

total log-likelihood function £=>""_ InL;, they obtain the ML estimates of
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all the parameters of the model. Under the standard regularity conditions, the
ML estimator is consistent for n — oo and T; is fixed.

Another variation of the stochastic panel frontier model discussed previ-
ously is the four-component stochastic frontier model that was considered by
Colombi, Kumbhakar, Martini, and Vittandini (2014), Kumbhakar, Lien, and
Hardaker (2014), and Lai and Kumbhakar (2017, 2018). It is given by:

Vit =X+ a; — v — i+ vig 21

where a; is time-invariant heterogeneity, v; is time-invariant firm persistent
inefficiency, u;, is time-varying transient inefficiency, and v;; is a symmetric
two-sided random error. This is a reasonably general model that nests models
of Schmidt and Sickles (1984), Greene (2005a, 2005b), Wang and Ho (2010),
and Chen et al. (2014) as special cases.

Kumbhakar et al. (2014) use a three-step approach. In the first step, the stan-
dard random effect estimation procedure is used to obtain the estimates of 3, and
the estimates of the remaining parameters are obtained in the second and third
steps using standard MLE. Colombi et al. (2014) take a different approach by
applying CSN distributions results similar to Chen et al. (2014) to obtain the
log-likelihood function and then maximize it directly to obtain the parameter
estimates in one step. Lai and Kumbhakar (2017) extend the model in
Eq. (5) to allow for the time-invariant and time-varying determinants of ineffi-
ciency to enter the variances of v; and u;, respectively; while Lai and
Kumbhakar (2018) also allow for x;, to be correlated with «; and v;. The estima-
tion procedures for both models use difference and within transformation to first
remove the time-invariant components, and then applying CSN distribution
results to construct the joint density and the log-likelihood function of the result-
ing transformation of the composed-error. Finally, the simulated MLE is used to
obtain the consistent estimates of all the parameters in the model.

We conclude this section by noting that all the previous discussion assumed
the distribution for either u;* or u;, is half-normal or truncated normal; however,
other distributions such as exponential (Meeusen & van den Broeck, 1977); the
gamma (Greene, 1980a, 1980b, 2003), and the doubly truncated normal
(Almanidis, Qian, & Sickles, 2014) also can be used. Therefore, it would be
a good idea to test for normal-half-normal distributional assumption of the data
in practice. Chen and Wang (2012) proposed one such test that is based on the
moment generating function of the assumed distribution. It can be written as:

cos (wye;) —E(cos (w€;,))
Cco : , (22)
cos (wye;,) — E(cos (wye;,))

where ¢ = ¢;, — E(g;,) is the centered composed error and w; is a predeter-
mined constant for j = 1, ..., ¢. In practice, setting ¢ = 1 would be sufficient
for most of the application. The test statistics given in Eq. (22) have a limiting
;((Zq) distribution.
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3 Panel Stochastic Frontier Models With Endogeneity

In this section, we present some developments of standard panel data stochastic
frontier models that allow for the regressors xy;, and x,;, to be correlated with
either v;, or u;* or both. Specifically, we focus mainly on the homogenous panel
stochastic frontier models. To this end, the benchmark model is given by:

Vit = A+ X1;ef — Uir + Vir, (23)
Xit = Ziy + €it (24)

Ujp = h,-tuf, (25)

his =f (X2i:0,,) (26)
N ), @
vie ~N(0,67), (28)

where x;; = (X1, X2i2) > Ziz 1s a (k1 + k») x ) matrix of exogeneous instruments
(I >ki + k»), €;1s a ((k; + k») x 1) vector of reduced form errors and all other
variables are defined in Section 2. Assume that E(g;;| Z;,, u;*) = 0 and, to facil-
itate our discussion, it would useful to distinguish different type of endogeneity
(i.e., violation of assumptions A.1-A.2 given in previous section). To this end,
we provide the following definition.

Definition 1 In the Model (23)-(28), (a) x;;, is endogenous of Type I if
EWj|x1i1) # 0, E(vi¢| x2;) = 0, and A.2—A.3 hold; (b) x1; is endogenous of Type
ILif E(v; | x1isX2i) # 0, and A.2—A.3 hold; (c) xy;, is endogenous of Type III if
EWi¢| x1inX2i2) 7 0, and E(u;| Xy, X2i0) 7 E(u;p).

Given this definition, the most common endogeneities that arise in many
practical applications are Type I and II. Type II endogeneity implies that v;,
and u;, are correlated, but v;, and u;* are independent. Type III endogeneity pro-
vides the most general case, in which x;;, and x,; are allowed to be correlated
with both v;, and u;,, and v;, and u;* are not independent.3

The Type I endogeneity problem, in which there are no environmental
variables, has been analyzed by Kutlu (2010) and Tran and Tsionas (2013).
Kutlu (2010) consider the case with no environmental variables,
hiy = exp(—y(t—T)), while Tran and Tsionas (2013) consider a special case
where u;, ~ N* (O,auz). Karakaplan and Kutlu (201721)4 introduce endogenous
environmental variables in the cross-sectional data framework; Karakaplan
and Kutlu (2017b) extend the panel data model of Kutlu (2010) to allow for
the endogenous environmental variables to solve Type II endogeneity problem.
In the earlier model, Type I and II endogeneities are introduced via the

3. In cross-section context, all three types of endogeneity have been analyzed by Tran and Tsionas
(2013) and Amsler, Prokhorov, and Schmidt (2016, 2017).
4. See Karakaplan and Kutlu (2018, 2019) for an application of Karakaplan and Kutlu (2017a).
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correlation between v;, and e;,. For exposition simplicity, we focus on the Type I
endogeneity problem because Type II endogeneity can be handled in
similar manner.

Kutlu (2010) suggests a one-step control function approach, in which
the estimation is done by the direct maximum likelihood method.” First, he

assumes that:
8; - le/zfit ~ 0 I, po,
|:Vit:| B { Vit N 0| |po 6% @9

where Q. is the variance-covariance matrix of €;, and p is the vector represent-
ing the correlation between & and v;,. Next, he applies a Cholesky’s decompo-
sition method to the variance-covariance matrix of (¢',v;,)':

€, _ I, 0 8; (30)
Vit p/dv Oy 1 _p/p it
where r¥ ~ N(0,1), r¥ and &7 are independent. Therefore, we have:

Yie =+ X1+ €] + €t
&ir = Xir — Zi0 (31)
Cit =Tir — Ujr
where = 06,Q 1/ p/NT=pp, 6, =0,T—p'p, riy = 6,(1 — p'p)'7ri¥ and e,
is the bias correctlon term. The log- hkehhood of this model is:
InL= InL; + InL,, (32)

where

n T

InL, °C — + Z (—— (yie—a—xuf— 8it’7)> -

26222 Yie—a—Xpff — €zt’7)

=1 t=

(33)

InLyoc —— ln (1)) ZZZE”Q Eits (34)

i=1 t=

where A =o,/0,(1 —p' ,0)1/2 and &; = x;; — Z;0. Under standard conditions,

consistent estimation of all the unknown parameters can be obtained by max-
imizing the log-likelihood function (32). The observation-specific efficiency
Elexp(—u;/)| ey, vi] can be calculated using the corresponding conventional
stochastic frontier formula of Jondrow et al. (1982).

5. The one-step or direct method of Kutlu (2010) is similar to the one used in Kutlu and Sickles
(2012) in the Kalman filter setting. These two papers were written concurrently.
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Maximizing Eq. (32) is equivalent to maximizing individual terms (33)
and (34). Moreover, maximizing Eq. (34) is the same as conducting OLS
regression of x;, on Z;, so the two-step estimation is also discussed in
Kutlu (2010). The main problems with the two-step approach, however,
are that it is generally inefficient and, more importantly, the second step stan-
dard errors are not correct because the estimation errors from the first-step
are not accounted for in the second-step estimation. Consequently, either
analytical approaches, such as that of Murphy and Topel (1985), or proper
bootstrapping methods need to be used to correct for the standard errors
in the second-step.

Tran and Tsionas (2013) propose an alternative estimation strategy under
the specification of u;, ~ N*(0,0,%). Their approach is based on GMM estima-
tion using the likelihood scores of Egs. (33) and (34) to form the moment
conditions. The GMM approach suggested by Tran and Tsionas (2013) is
asymptotically similar to the one-step MLE but computationally simpler, and
the asymptotic efficiency of the estimator can be obtained in just one iteration,
so that the numerical searches can be minimized or avoided.

Karakaplan and Kutlu (2017b) extend the Kutlu (2010) model to also allow
for endogenous environmental variables (i.e., Type II endogeneity). Estimation
approaches can be carried out similarly as previously discussed with some
minor modifications.

In Bayesian inference context, Griffiths and Hajargasht (2016) propose
several different but related panel stochastic frontier models that handled
all three types of endogeneity problems. First, they consider a model with
time-invariant inefficiency, in which the endogeneity is modeled through
the correlations between this time-invariant inefficiency and the regressors,
using the correlated random effects formulation of Mundlak (1978). Next,
they extended the model in two directions. The first extension is along the
lines of Colombi et al. (2014), in which they introduce a time-varying inef-
ficiency error into the original model, and the endogeneity is modeled as
before. The second extension of the model looks similar to Eqs. (23)—
(28), and they consider endogeneity problem of Type III. In all models,
Bayesian inference was used to estimate the unknown parameters and inef-
ficiency distributions. Finally, Kutlu (2018) generalizes the distribution-free
model of Cornwell et al. (1990) to allow endogeneity in both frontier and
environmental variables.

We conclude this section by pointing out that all the approaches discussed
previously have the advantage that the endogeneity problem, regardless
whether it is Type I or II, can be tested easily using standard F' or Wald-type
statistics on the joint significance of the coefficient vector 7. Other instrumental
variable approaches that do not use reduced form equations are possible but pre-
sumably more complex, and we have not seen any recent work with such
approaches.
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4 Panel Stochastic Frontier Models With Both Heterogeneity
and Endogeneity

Our discussion in the previous two sections has been confined to panel stochas-
tic frontier models that allow either for heterogeneity with exogenous regressors
or endogeneity with homogenous panel. In this section, we consider models that
allow for both heterogeneity and endogenous regressors, because these models
have important implications in empirical applications.

Little work has been done on panel stochastic frontier models that allow for
both heterogeneity and endogenous regressors. Guan, Kumbhakar, Myers, and
Lansink (2009) employ an input requirement stochastic frontier model to mea-
sure excess capacity in agriculture production for the Dutch crop cash farms.
They consider the following model:

kir :f(yit» Xits Wi ﬂ) + €,
€jr = Qi + Vi — Uj,

Vit ~N(0, a%(a)i,)),

Ui NN*(O, ai(zi,)),

35)

where k;, is the log of capital input; y;, is log of output; x;, is a vector of log of
other inputs; f{.) is known input production function; w; is a vector of logarithm
of exogenous variables that are time-invariant; «;, v;, and u;, are defined as
before; w;, and z;, are exogenous factors that affect the variance of v; and u;,
respectively. They also allow for y;, and some of the x;, to be correlated with
the composite error e;, (in essence, they consider the Type I endogeneity prob-
lem). To obtain consistent estimation of the unknown parameters in the model,
Guan et al. (2009) propose a two-stage estimation method that can be described
as follows. In the first stage, frontier parameter vector f is estimated using the
GMM method based on the moment conditions E(M;Ae;;) = 0, where M, is a
vector of exogenous instruments. In the second stage, using the residuals
obtained from the first stage as a dependent variable, ML is used on the follow-
ing auxiliary stochastic frontier equation:

i = Wiy +Vir — Ui, (36)

to obtain the estimates of the remainder parameter. In a different framework,
Orea and Steinbuks (2018) apply a similar methodology when estimating mar-
ket powers of firms by modeling the distribution of firm conducts by the doubly
truncated normal distribution.’

Kutlu et al. (2019) propose a general model that allows for time-varying
heterogeneity as well as endogeneity of all three types. Their model has been
considered in Section 2, which consists of Egs. (2)—(5) and (18) under the

6. Other related applications of stochastic frontier models with endogenous variables in the market
power measurement context include Kutlu and Wang (2018) and Karakaplan and Kutlu (2019).
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exogeneity assumptions of all regressors. We revisit their model in this section
to discuss the endogeneity problem. To this end, their model with endogenous
regressors can be written as:

Vit = X300 + X132 — Uig + vig,
Xip =z + €;

Uy = hitu;k,

hi=f (x2i90,,)

u; ~N+(,u, 03),

(37

vii ~N(0,07),

where x;; = (X1, X2i7), Zir is a matrix of exogenous instruments and ¢;, is a vector
of random errors. Generally speaking, this model can be considered to be an
extension and a generalization of Greene (2005a, 2005b), Guan et al. (2009),
Wang and Ho (2010), and Chen et al. (2014) to allow for various types of
endogeneity.

To obtain consistent estimation of the model’s parameters, using the same
notations as discussed in Section 2, Kutlu et al.(2019) suggest first to eliminate
a; using orthogonal projection transformation matrix M., , and then apply a Cho-
lesky’s decomposition method to the variance-covariance matrix of (¢3,v;,)’
where ¢ = Q."¢;, (see Eq. (29)) to obtain the bias correction term and the
log-likelihood function:

InL= InL, + InL, (38)
where
_ [ Fix
" N AR Gi*q)(h)
InLy=—3(T~k) 1n(2;m,2.)—212( ’) 22 g—’;—% +;1n m
““\ou

lan_f—(T k3) In(|27Qe ) + Zn rr)

where 6, =06,\/T—p'p, ji; w, E?* :j+ﬁ’ &=y —Xup—¢&m,n=
o2h; hi+o? o2h; hi+ o2
Q;'2p/\/T=p/p and & =X;—2;6. Estimates of model’s parameters are
obtained by maximizing the total log-likelihood of Eq. (38). Under standard
regularity conditions, the ML estimator is consistent as # — oo with either fixed
TorT — oo.
Kutlu et al. (2019) also extend the model to allow for Type III endogeneity

by allowing for x; to be correlated with both v;, and u;. To the best of our
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knowledge, they are the first to consider both heterogeneity and Type III
endogeneity in panel stochastic frontier framework. Griffiths and Hajargasht
(2016) also consider Type III endogeneity, but they do not allow for heteroge-
neity in their model. The consistent estimation for this case is more complex and
quite involved. It requires a construction of the joint density of (vi,u;,€;/),
which can be achieved using Copula function approach. Detailed discussion
about how to use Copula function method to obtain consistent estimation for
this case is given in Appendix A of Kutlu et al. (2019). Readers who want to
learn more about the use of Copula function method in stochastic frontier
models in cross-section context are referred to Tran and Tsionas (2015) and
Amsler et al. (2017).

5 Concluding Remarks

This chapter provides discussion about developments of panel stochastic fron-
tier models that allow for heterogeneity, endogeneity, or both. In particular, we
focus on the consistent estimation of the parameters of the models as well as the
estimation of observation-specific technical inefficiency. We hope that this
chapter provides useful guidance for practitioners using panel data to conduct
efficiency analyses.
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1 Introduction

This chapter deals with short panel count data regression models. In other words,
models for which the dependent variable takes nonnegative integer values (e.g.,
the number of doctor visits) and for which the time span is small but the number of
cross-section units (e.g., patients) can be large. Throughout the chapter, we also
assume that the panel data sets are balanced with no missing observations.
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As is the case with many classes of models, the regression analysis of event
counts constitutes a vast field in econometrics. For this reason, it is almost
impossible and also out of the scope of this chapter to cover all the advances
in panel count data models. Excellent textbooks that provide a detailed and thor-
ough (but mainly frequentist) introduction to a variety of panel count data
models are that of Winkelmann (2008) and Cameron and Trivedi (2013). For
a review of such models, refer to Cameron and Trivedi (2014).

In this chapter, we take a Bayesian approach to the analysis of the Poisson
model with exponential conditional mean, a well-known panel count data model.
We consider various specifications of this model step by step, by first setting up its
static version, which we then equip progressively with dynamics, latent heteroge-
neity, and serial error correlation. Dynamics are introduced in the Poisson model
through the inclusion of a one-period lagged dependent variable as an additional
explanatory variable in the latent regression. Serial correlation in the idiosyncratic
disturbances is captured by a stationary first-order autoregressive process.

The motivation behind such model specifications is that, in many empirical
applications of panel count data, a persistent behavior of counts across eco-
nomic units (individuals or firms) has been observed. That persistence can
be attributed to the past experience of economic units that induces a dependence
of the current realizations of a count process from past outcomes or to their
unobserved time-invariant heterogeneity. The first case is referred to as true
state dependence and usually is captured through a lagged dependent variable,
whereas the second one is known as spurious state dependence and is often
accounted for by a latent random variable (Heckman, 1981a). A third potential
source of persistence in panel counts can be attributed to the serial correlation in
the idiosyncratic errors.

However, our models suffer from what is known in the panel data economet-
rics literature as the initial conditions problem. This problem states that in
dynamic nonlinear panel data models with latent heterogeneity, the initial
observation of the dependent variable for each cross-sectional unit might be
endogenous and correlated with latent heterogeneity.

Treating the initial observations as exogenous tends to overestimate the
dynamic effects (true state dependence) and leads to biased and inconsistent
estimates (Fotouhi, 2005). Econometrics literature provides two main
approaches for tackling the initial values problem, both of which model the rela-
tionship between unobserved heterogeneity and initial values. The first
approach, proposed by Heckman (1981b), approximates the conditional distri-
bution of the endogenous initial observation given the latent heterogeneity and
the covariates. However, Heckman’s estimation procedure entails a computa-
tion burden for obtaining the parameter estimates and estimates of the average
effects.’ Alternatively, Wooldridge (2005) adopts a computationally simpler

1. Arulampalam and Stewart (2009) have proposed a simplified implementation of Heckman’s
estimator.
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method by focusing on the joint distribution of observations after the initial
period, conditional on initial observations. As such, Wooldridge (2005) speci-
fied the conditional distribution of the unobserved heterogeneity given the ini-
tial values and the within-means (over time) of the time-varying covariates
(Mundlak, 1978). In our analysis, we use the method of Wooldridge (2005)
to address the problem of endogenous initial conditions.

One last issue that remains to be solved is related to the acknowledgement of
Wooldridge (2005) that a misspecified latent heterogeneity distribution gener-
ally results in inconsistent parameter estimates. Therefore, we let this distribu-
tion be unspecified. To this end, we impose a nonparametric structure on it,
which is built upon the concept of Dirichlet Process (DP) prior (Ferguson,
1973). This prior has been widely exploited in Bayesian nonparametric model-
ing and it is a powerful tool for modeling unknown, random distributions. The
attractiveness of the DP prior is attributed to its theoretical properties. In this
chapter, we offer a brief introduction to this prior. A more detailed description
of the Dirichlet process prior is provided, among others, by Navarro, Griffiths,
Steyver, and Lee (2006) and Ghosal (2010).

Semiparametric Bayesian Poisson regression models based on DP priors
have been considered by Jochmann and Len-Gonzlez (2004) and Zheng
(2008). Jochmann and Len-Gonzlez (2004) proposed a Poisson panel data
model with multiple semiparametric random effects and parametric stochastic
disturbances, whereas Zheng (2008) set up a cross-sectional Poisson model with
a semiparametric idiosyncratic error term. However, none of these studies has
accounted for the three sources of persistence in panel counts (true state depen-
dence, spurious state dependence, and autocorrelated disturbances) and/or the
initial values problem. This is a gap in the Bayesian literature that we attempt
to fill.

To estimate our semiparametric Poisson panel models, we develop Markov
Chain Monte Carlo (MCMC) algorithms that enable us to sample from the pos-
terior distribution of the parameters of interest. We also show how we can cal-
culate the quantities of average partial effects, because the direct interpretation
of the regression coefficient is not possible because of the nonlinear nature of
panel count data models. We also display two criteria, the Deviance Information
Criterion (DIC) of Spiegelhalter, Best, Carlin, and Van Der Linde (2002) and
cross-validation predictive densities that can be used for model comparison.
Computer codes for implementing the MCMC methodologies of this chapter
also are provided.”

The MCMC sampling schemes that we propose rely heavily on two major
Bayesian tools, the Gibbs sampling tool and the Metropolis-Hastings tool. Both
these MCMC simulation techniques are described briefly in the next section.
For a more detailed exposition of the Markov Chain theory behind these tools,

2. These codes can be downloaded from the author’s website: https://sites.google.com/site/
sdimitrakopoulosweb/publications.
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refer to the papers of Chib and Greenberg (1995) and Chib (2001, 2004), as well
as to the standard Bayesian textbooks of Robert and Casella (2004) and of
Gelman et al. (2013).

The organization of the chapter is as follows. In Section 2 we introduce the
reader to the basic tools, while we also describe the main statistical/theoretical
properties of the Dirichlet process prior. Sections 3 and 4 present several para-
metric and semiparametric extensions of the static panel Poisson model, while
Section 5 exposes the reader to the MCMC algorithms that were used to esti-
mate the parameters of the proposed model specifications, as well as to the cal-
culation of the average partial effects and the model comparison criteria.
Section 6 concludes.

2 Bayesian Preliminaries
2.1 Bayesian Statistics

In order to conduct Bayesian analysis one first has to specify a probability
model for the data to be analyzed. Suppose that the observed data ia y =
(1, ..., y)' and that p(y | 0) is the conditional density of y given a k-dimensional
vector of unknown parameters @ = (61, ..., 0;). The density p(y|6) is known as
the likelihood function. After the data model has been selected, we need to
define a prior distribution for #. This distribution, denoted by p(@), reflects
our uncertainty about @ prior to seeing the datay. The goal is to make inference
about @ given the data y (i.e., a posteriori). Therefore, the conditional distribu-
tion p(@|y), known as the posterior distribution of , is of fundamental interest
in Bayesian statistics and is obtained by applying the Baye’s rule

p(0) xp(y| 0)
ply)

where p(y) = [ p(@) xp(y|0)d@ is the normalizing constant (also known as the
marginal likelihood).

Descriptive measures related to the posterior distribution are the posterior
mean

p(Oly) = M

+00

E0]y) =j 8p(6] y)do. @

and the posterior variance

+00

Var(@ly)= | (0E(61y))p(61)d0. ®
2.2  Markov Chain Monte Carlo Simulation Methods

Nowadays, Monte Carlo simulation methods based on Markov chains are very
popular for sampling from high dimensional nonstandard probability
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distributions in statistics and econometrics. This algorithm is called Monte
Carlo Markov Chain (MCMC). We construct a Markov chain, the limiting dis-
tribution of which is the correct posterior distribution from which we want to
sample. We start from some arbitrary (but sensible) initial values for the param-
eters and then the chain proceeds by updating each parameter of the model (or
suitably defined groups of parameters) sequentially. After some initial period,
which is discarded as burn-in and accounts for the time needed to reach the limit
distribution, the samples obtained are taken as samples from the true posterior
distribution of the model parameters.

The next two sections describe two particular Markov chains that can be
constructed by the Gibbs algorithm and the Metropolis-Hastings algorithm.

2.2.1 The Gibbs Sampler

The Gibbs sampling scheme (see, for example, Chib (2001)) is an MCMC
method that allows us to simulate intractable joint posterior distributions by
breaking them down to lower dimensional distributions, which are generally
easy to sample from.

Suppose that p(@|y) has an unknown distribution or one that is extremely
difficult to sample from. If we can sample from the conditional distribution
of each parameter 8,,p = 1, ..., k, in @, given y and all the remaining parameters
of @, denoted by 0_, = (64, ..., 6, _1, 01, ..., 0i), then we use the Gibbs sam-
pler, In other words, we cannot simulate from the full posterior distribution
p(@]y), but we can simulate from each of the full conditional distributions
p(0,|0_,, y). During this procedure, the most updated values for the condition-
ing parameters are used. The Gibbs sampler works as follows:

1. Define an arbitrary starting value 09 =, ...,6) and set i = 0.
2. Given 89 = (6, ... 60,

generate 6" from p(0, |6, ).

generate 65" from p(0, 0%, ).

generate 67" from p(6, |09 y).
3. Seti=1i+1 and go to step 2.

We can save these draws from each iteration of the sampler and use them in
order to conduct posterior inference. For example, we might want to calculate
posterior means and variances as defined in Egs. (2)-(3).

2.2.2 The Metropolis-Hastings Algorithm

In many real-life applications the full conditional distributions in the Gibbs
sampler are nonstandard. As such, one can instead use the Metropolis-Hastings
(M-H) algorithm; see, for example, Chib and Greenberg (1995). It is another
MCMC method, which is designed to sample from conditional posterior distri-
butions that do not have closed forms.
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The logic behind the M-H method is to generate a proposal (candidate) value
from a proposal density (also known as candidate generating density), from
which we can easily sample, and then reject or accept this value according to
a probability of move.

To be more specific, suppose that the posterior p(€|y) from which we want
to generate a sample, is broken into the Gibbs conditionals p(6p|0,p, y),
p=1,...,k, some of which might be unknown distributions. The sampling
scheme of the M-H method (to be more specific, a Metropolis-within-Gibbs
sampler) is summarized as follows:

1. Initialize 8 and set i = 0.

2. Given 6 = (Gﬁi), ,Hl(f)) (the current state of the chain), generate a candi-
date value 65, based on 91(1), by using the proposal density q(QI(,i),Q;).
The value 0;, is accepted as a current value (Hl(f”) = 0;) with probability

p(H,’;I 0Q},,y) X q<9;,9,(,"))
p(6016%,.y) < a(60.6;)

Otherwise, set 6,(,”1) = 9,(;). Repeat forp =1, ..., k.

a(&m 9*) = min

pYp

3. Seti=1i+1 and go to step 2.

It is not necessary to know the normalizing constant of the target density
because this term is canceled from the construction of the acceptance
probability. Furthermore, there are many ways to choose the proposal density
q(@l(f), 05). Generally, it is a good idea to make this proposal distribution as close
to the target distribution (i.e., the full conditional distribution) as possible. For
those parameters that have known full conditional distributions, the proposal
distribution is taken to be the target distribution and the M-H step is basically
a Gibbs step (it is easy to show that the acceptance probability is equal to 1).

In this chapter, we will apply the so-called independence M-H algorithm
(Hastings, 1970) according to which the proposed value 6} is independent of
the current value 9},0, that is, q(@},f),e;;) = q»(6).

2.3 Bayesian Nonparametric Models

The term “Bayesian nonparametric models” might seem to be an oxymoron,
because in a Bayesian setting, one needs to have some parameters in the model.
Perhaps, the most intuitive way to think about these models is as probability
models with infinitely many parameters (Bernardo & Smith, 1994), in which
case they are directly comparable to the classical (nonBayesian) nonparametric
models.

There are a few ways to introduce infinite number of parameters in a model.
Some examples of infinite-dimensional models include species sampling models,
introduced by Pitman (1996), Polya trees, introduced by Ferguson (1974) and
developed by Lavine (1992, 1994), and Bernstein polynomials. For a more
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detailed review of Bayesian nonparametric methods, see Miiller and Quintana
(2004).

The most usual way in the Bayesian semiparametric literature to introduce
an infinite number of parameters is to consider some probability measures,
which also are considered random quantities. This way, if these measures are
defined on an infinite-dimensional probability space (which is the case in most
practical applications in econometrics), we end up with an infinite number of
parameters. Such probability measures are called Random Probability Mea-
sures (RPMs); see, for example, Crauel (2002).

Alternatively, as mentioned by Ferguson (1974), RPMs can be thought of as
random variables whose values are probability measures. Being in a Bayesian
setting, we need to assign a prior distribution to each of these. The far more
widely used prior is the Dirichlet process (DP), introduced by Ferguson
(1973) and is described in the next section. Other choices include the normal-
ized inverse-Gaussian process (N-IGP), which was proposed by Lijoi, Mena,
and Prinster (2005), and Pdlya trees.

2.3.1 The Dirichlet Process and the Dirichlet Process
Mixture Model

In this section, we present the Dirichlet Process and its statistical properties. We
begin by defining the Dirichlet distribution.

Definition:

Let Z be a n-dimensional continuous random variable Z = (Z,, ..., Z,) such
that Z,, Z,, ..., Z, > 0 and > ;= ;Z; = 1. The random variable Z will follow the
Dirichlet distribution, denoted by Dir(a,, ..., a,), with parameters ay, ...,
a, > 0, if its density is

Clar+...+ @) 17 a-t -
5 5 eees = i’ IS EEVARERT) >0’ ':1’
fz(Z] Zy Z,,) F(g])]_‘(az)‘“r(an)’l}% 21,22 Zn ;Z,

“

where I' is the gamma function.

The Dirichlet distribution is a useful property for random variables defined
in the unit simplex. It includes the well-known beta distribution as a special
case, for n = 2.

Consider, now a probability space (2, F, P) and a finite measurable parti-
tionof Q, {By, ..., B;}, witheach B; € . A random probability distribution G is
said to follow a Dirichlet process with parameters a and G, if the random vector
(G(By), ..., (G(B))) is finite-dimensional Dirichlet distributed for all possible
partitions; that is, if

(G(Bl), eey G(B[)) NDil‘(dGo(Bl>, ceey aG()(B])), (5)

where G(By) and Gy(By) for k = 1, ..., [ are the probabilities of the partition B,
under G and Gy, respectively.
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The Dirichlet Process prior is denoted as DP (a, Go) and we write G ~ DP
(a, Gp). The distribution G, which is usually a parametric distribution, is called
the baseline distribution and it defines the “location” of the DP; it also can be
considered our prior best guess about G. The parameter a is called concentration
parameter and it is a positive scalar quantity. It determines the strength of our
prior belief regarding the stochastic deviation of G from G. This interpretation
can be seen from the following moment results

Go(B)(1—-Go(B))

VB € F,E(G(B)) = Go(B), Var(G(B)) = — . ®)

The reason for the success and popularity of the DP as a prior is its nice the-
oretical and practical properties. The two moments in expression (6) are exam-
ples of the former, whereas a few of the latter will be presented later. These
practical properties allow for relatively easy simulation of models involving
the DP, when combined with MCMC methods.

A property that, in fact, characterizes the DP, is its conjugacy: given a sam-
ple (04, 6, ..., 8y) from G ~ DP(a, Gy), the posterior distribution of G is also a
DP with parameters a + N and Go + ) i 164 namely,

N
G91,02,...,9N~DP<a+N,G0+ZégI), @)
i=1

where d, denotes the Dirac measure giving mass 1 to the value x.

In more practical issues, an important property of the DP is its Polya-urn
representation. Suppose that the sample (9, 9, ..., 9y) is simulated from G
with G ~ DP (a, Gy). Blackwell and MacQueen (1973) showed that, by inte-
grating out G, the joint distribution of these draws can be described by the
Pélya-urn process

N
p®1, ..., Hp ] 91, ..., 8 )=JHp(19f|191, s 91, G)p(G 91,1)dG

i=1

=Go(8 ﬂ{a+l—l Tari1 i }

=2 =1

®)

The intuition behind Eq. (8), is rather simple. The first draw 9, is always
sampled from the base measure G (the urn is empty). Each next draw 9;, con-
ditional on the previous values, is either a fresh value from G, with probability
al(a+1 — 1) or is assigned to an existing value 9;, j =1, ..., 7 — 1 with proba-
bility 1/(a+i —1).

According to Eq. (8), the concentration parameter a determines the number
of clusters in (94, ..., dy). For larger values of a, the realizations G are closer to
Gy and the probability that a new §; is equal to one of the existing values is smal-
ler. For smaller values of a the probability mass of G is concentrated on a few
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atoms; in this case, we see few unique values in (9, ..., 9y), and realizations of
G resemble finite mixture models.

By using the distinct values of 9’s, denoted by 9*’s, the conditional distri-
bution of 9; given Iy, ..., §; _; becomes

(@)
1 M

()§ o (O
+a+i—1z”mésif”(8’>’ )

m=1

a
+i—1

9i(81,....9i- 1,G0Na Go(9)

where (977, ... ,9;12) are the distinct values in (8, 9,...., 9;_;). The term n)

represents the number of already drawn values §,, [ < i that are associated with
the cluster S;fi), m= 1 M(i), where M @ is the number of clusters in 94,
95, ..., 9;_1) and Zm ln(’) — 1. The probability that 9; is assigned to one
of the existing clusters 9% is equal to nOf(a +i— 1).

Furthermore, expressions (8—9) show the exchangeability of the draws,
which implies that the conditional distribution of 9; has the same form for
any i. To be more specific, because of the exchangeability of the sample
@y, ..., dv), any value 9;,i = 1, ..., N can be treated as the last value J, so that
the prior conditional of §; given §_; is given by

a .
919 ,Go~——Go () + ———— g o (9-,), 10
| Go a+N—lG0( ) a+N—1;nm 1%()( ) (10)

where 4_; denotes the vector of the random parameters & with 9; removed, that
is,9_;, =9, ....,8 _1, 841, ..., 9y)'. As aresult, one can easily sample from a
DP using the Pélya-urn representation in expression (10), which forms the basis
for the posterior computation of DP models. This general representation also is
used in the posterior analysis of this chapter.

Various techniques have been developed to fit models that include the DP.
One such method is the Pdlya-urn Gibbs sampling, which is based on the
updated version of the Pélya-urn scheme of expression (10); see Escobar and
West (1995) and MacEachern and Miiller (1998). These methods are called
marginal methods, because the DP is integrated out. In this way, we do not need
to generate samples directly from the infinite dimensional G.

Another important property of the DP is that it can be represented, using
what it is called the stick-breaking representation (Sethuraman, 1994,
Sethuraman & Tiwari, 1982): If G ~ DP(a, Gy), then

):thég;‘*('), where 62*%G0, W
=1
=Vi[[(1-V}). where V;,%Be(1,a) (11)
j<h

Expression (11) verifies the infinite dimension of G, because G can be con-
sidered to be an infinite weighted average of point masses 50 , where the atoms
{93*}p=, are drawn from the baseline distribution G, whlle the sequence
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{V, )iz forms a collection of independent and identically distributed (iid) ran-
dom variables that follow the Beta distribution.”

The term “stick-breaking process” arises because of the way the ran-
dom weights {wy,};2; are constructed. Imagine that we break a unit length
stick infinitely many times. Let the first broken piece have length V; and
that it is assigned to the atom 97*. Then, the proportion left to be allocated
to the remaining atoms is 1—V. A proportion V, of 1V is broken off and
is hence assigned to 95, leaving a remainder (1—V;)(1—V,) and so on.

Another implication of expression (11) is that any realization of the DP is,
with probability 1, a discrete distribution. This discreteness creates ties in the
sample (94, ..., dy), a result that is verified by expressions (8)—(10), and allows
for clustering the values of a random distribution following a DP. Depending on
the magnitude of a, the population distribution G can either mimic the baseline
distribution or a finite mixture model with few atoms.

It is also important to note that Gy usually is taken to be a continuous
distribution. This is in order to guarantee that all clusters will be different,
and therefore all ties in the sample are caused only by the clustering behavior
of the DP, and not by having matching draws from Gy, if it were discrete.

In cases of continuous data, and in order to overcome the discreteness of the
realizations of the DP, the use of mixtures of DPs has been proposed by Lo
(1984). The idea is to assume that some continuous data yy, ..., yy follow a dis-
tribution f(y;|6;, 1), where (some of) the parameters (in this case, 6;) follow a
distribution G ~ DP. This popular model is called the Dirichlet process mixture
(DPM) model and its general form is

Yi~f(Y;6,8),i=1,2,...,n
0. 4G
G ~DP(M, Go(y))

M~ i (M).& ~ ha(&).w ~ hs () (12)

where ¢ are any other parameters in the likelihood f not modeled using the DP, y
are any parameters in G, and Ay, h,, h; are suitable prior distributions.
Notice that the distribution of each Y, is given by convolving f with G ~ DP:

F¥:0) =Jf(Yf;0, £)dG(6;), where G ~DP(M. Go(y))

and this, together with the discrete nature of the realizations of the DP, will lead
to an infinite mixture model for Y; (Antoniak, 1974).

3. Notationally, 9" represents the h-th of the atoms in the stick-breaking representation and 8,
represents the m-th of the clusters in the sample of N individuals.
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3 Parametric Panel Count Data Regression Models
3.1 The Static Poisson Model

We start our analysis with the Poisson model that does not control for dynamics,
latent heterogeneity, or autocorrelated errors.

Suppose that y;, is a nonnegative integer-valued observed outcome for indi-
viduali =1, ..., Nattime t = 1, ..., T, which is Poisson distributed with prob-
ability mass function

Vit
£ s ) J%(,“ (13)
i
where /;, is the mean parameter (also known as the intensity or rate parameter).
We denote the Poisson model by Poisson(4;,).

For the Poisson distribution it holds E(y;; ;) =V (i 4i) = Ai. In other
words, the conditional mean E(y;; 4;) is equal to the conditional variance
E(yi; Air), which are both equal to the mean parameter A;. This property of
the Poisson distribution is known as equidispersion and often is violated in
real-life applications. Alternative count panel data models can be used to over-
come this type of problem (e.g., the negative Binomial model). However,
because the scope of this chapter is the Bayesian estimation of count panel data
regression models, we focus on the Poisson model, which is the simplest of all.

In regression analysis, y;, is allowed to be determined by a set of covariates
xit = (x1,it, ..., xk,it)'. The Poisson regression model parameterizes the mean
parameter as

dir=rexp (X},f), (14)

or
Ji=exp (Xf+eq), €a”SN(0,62), (15)

where the idiosyncratic error term ¢;, follows a normal distribution with mean
zero and variance ag. Also, ¢;, is assumed to be uncorrelated with the regressors
such that E(¢;; xi1, ..., x;7) =0, Ve, t=1, ..., T.

Equations (14)—(15), are called exponential mean functions and guarantee
that 4;, is strictly positive. Throughout the chapter we consider only models with
exponential conditional mean.

The Poisson model with exponential mean function also is known as the log-
linear model because the logarithm of the conditional mean E(y;; X;,) is linear in the
parameters. For example, using Eq. (14), we have that log log E(y;; X;,) = X; .

3.2 Extension I: The Dynamic Poisson Model

A more realistic approach would allow the current value of the observed out-
come y;, to depend on past realizations y;, _ x, kK > 0. The literature on count
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panel models has proposed a variety of dynamic specifications (Blundell,
Griffith, & Windmeijer, 2002; Crepon & Duguet, 1997; Zeger & Qagqish,
1988). An extensive review of various dynamic models for count panel
data is given in Chapters 7 and 9 of the textbook by Cameron and Trivedi
(2013).

In this chapter we model dynamics by considering the exponential feedback
model (EFM).

For the case of a single one-period lagged dependent variable (k = 1), the
EFM is defined as

A= exp (X B +yyi-1), (16)

or
A= exp (X +yyiu1+€1), €eN(0,0?). (17)

Equations (16)—(17), introduce autoregressive dependence via the exponen-
tial mean function, where the current realization of the count y;, depends on its
previous realization y;, _; and the coefficient y measures the strength of true
state dependence.

Furthermore, these equations, as they stand, suffer from a serious problem. It
is easy to see that, for example, the conditional mean in Eq. (16) becomes explo-
sive if y > 0 because y;,_; > 0. This problem is rectified by replacing y;; _;
by the logarithm of y;;_;, In y;,_;. In this case, Eq. (16) for example, becomes
exp(X;,$)y%_1, which entails that 1;, = 0 for y;,_; = 0. As such, we adopt a
strictly positive transformation when y;,_; = 0. In particular, the zero values
of y;, _ are rescaled to a constant ¢ according to the rule y}, | = max (y;; 1,
¢), ¢ € (0,1). Often the constant c is set to be equal to 0.5. See, also, Zeger
and Qagqish (1988). Similar analysis holds for Eq. (17).

Taking into account these considerations, Egs. (16)—(17), obtain the follow-
ing form

Nir = exp (x;,ﬂ +y lny;;fl), (18)
or
hi=exp (X f+y Iny, | +€), €SN (0,6?), (19)

respectively.

3.3 Extension Il: The Dynamic Poisson Model With Latent
Heterogeneity

The Poisson models of previous sections partially account for unobserved
heterogeneity, because the Poisson mean varies across i (and 7). Yet, there
might still be latent heterogeneity, which cannot be explained by the previous
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models. This unexplained heterogeneity can be captured, though, by adding the
random effect term ¢; in the conditional mean function as follows

Air = €xp (x;ﬂ +y Iny, |+ q;i), (20)

or
dir=-exp (X,f+y Iny;,_, +¢;+€;), e,-,%N(O, oz), 21

with ¢; being normally distributed, qoifiv‘I N (/lw, ai). The nonzero mean g
excludes the presence of a constant term from the covariate vector x;, for iden-
tification reasons. The random effect component ¢; captures spurious state
dependence.

The Poisson model with exponential conditional mean given by Eq. (20), but
without the lagged component (dynamics), has been considered, in a Bayesian
framework, by Chib, Greenberg, and Winkelmann (1998), Jochmann and
Len-Gonzlez (2004), Zheng (2008), and Mukherji, Roychoudhury, Ghosh,
and Brown (2016).

The Poisson distribution in Eq. (13), and the exponential mean function in
Eq. (20), can be regarded as a Poisson-lognormal model as the heterogeneity
term z; = exp(g;) is lognormal with mean one.

To tackle the initial values problem that we mentioned in the Introduction
we need to make some additional assumptions about the relationship between
the initial conditions and the random effects. We follow the approach of
Wooldridge (2005) and model ¢; in Egs. (20)—(21), as follows:

(ﬂi:hil 11’1y;0+g[h[2+l/l[, 121,,N (22)

As before, if the first available count in the sample for individual i, y;o, is
zero, it is rescaled to a constant ¢, that is, yjo = max (y;o,c), ¢ € (0,1). Also,
X; is the time average of x;, and u; is a stochastic disturbance, which is assumed
to be uncorrelated with y,y and X;. For identification reasons, time-constant
regressors that might be included in x;, should be excluded from X;. The slope
parameters /;; and h;, in Eq. (22), are heterogeneous because they are allowed
to change across i. This is a better way to capture cross-sectional heterogeneity.

It is usually assumed that the error term u; of the auxiliary regression is nor-
mal, that is,

jid
uilp,.05~N (u,. 07). (23)

where i, and o2 are the mean and variance of u;, respectively.

3.4 Extension Ill: The Dynamic Poisson Model With Latent
Heterogeneity and Serial Error Correlation

So far, the idiosyncratic error terms ¢;, were iid distributed. One can relax this
assumption and assume that the error terms are independently distributed over i
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but are serially correlated, having a first-order stationary autoregressive
structure

€u=peu1+vi, —1<p<1uNN(0,07). (24)

The random variables v;, are independently and identically normally distrib-
uted across all i and 7 with mean zero and variance 2. We assume that v;, and bi
are mutually independent.

4 Semiparametric Panel Count Data Regression Models

As we mentioned, the error terms u; usually belongs to some parametric family
of distributions; see, for example, expression (23). However, to ensure that our
conclusions about persistence are robust to various forms of unobserved hetero-
geneity, the unconditional distribution of u; is modeled nonparametrically. In
particular, we assume that u; follows the Dirichlet process mixture (DPM)
model, which is defined as

jid
il 07 ~N (i, 07),

(ﬁz) |G%G’ Gla,
Go™DP(a, Gy),

Go (i 07) =N (i o, 7007)1G <a,?; "’2‘”;0>

a®g(c.d). 25)

Conditional on the mean y; and variance 67, the u; are independent and nor-
mally distributed. The parameters y; and o7 are generated from an unknown dis-
tribution G on which the Dirichlet process (DP) prior is imposed. The DP prior
is defined by the prior baseline distribution Gy, which is a conjugate normal-
inverse gamma distribution, and a nonnegative concentration parameter a that
follows a gamma prior. Using the stick breaking representation of Sethuraman
and Tiwari (1982) and Sethuraman (1994)—see also Eq. (11)—it follows that
the DPM model is equivalent to an infinite mixture model; namely,

uilf}VNithN(' |HZ’5i*)’ (26)
=1

where fN(-|/4f,,aﬁ*) is the Gaussian density with mean uj, and variance ()'ﬁ*. The
mixture parameters (atoms), (ﬂ;,tf%*), have the same normal-inverse gamma
prior as the parameters (u;,07). The random weights w;, are constructed by
the process wy, = VhHZ;%(l — Vi), where the sequence {V}};2, is a collection

.. . . jid .
of beta distributed random variables, that is, V}, ’LBez‘a( 1, a), where a is the con-
centration parameter.
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An implication of expression (26) is the discreteness of the realizations from
the DP. Therefore, there will be ties in the parameters y; and a,-z. Because of the
discreteness of the DP, the countably infinite mixture of normal densities
reduces to a finite mixture distribution with an unknown (random) number of
components.

A nonparametric structure in the form of a DPM model can also be assigned
to the error term ¢;, in Eq. (21), or to the error term v;, in Eq. (24). In addition, the
DPM model can be imposed on the composite error term e;, = u; + ¢;, that fol-
lows from Egs. (21)—(22) or on the composite error term r;, = u; + v;, that fol-
lows from Eqgs. (22) and (24). In any case, these semiparametric versions of the
Poisson model are possible as long as there is some reasonable economic jus-
tification. In this chapter we consider exclusively the case where the DPM
model is used for the construction of the semiparametric structure of the random
effect ¢;.

5 Prior-Posterior Analysis
5.1 The Models of Interest

Based on the various extensions of the static Poisson model that were presented
in the two previous sections, we estimate the following three specifications.
Model 1

Yit|Air ~ Poisson(4;),
Air = exp (Xﬁ,ﬂ +ylny,  +¢+ eit) ,
iid 2 @7
€ = pPEi—1 +Vvi, —1<p <1, VitNN(O, GV),
®;=hi1 Iny;+X ihp +u;,
where u; follows the DPM model of expression (25).
Model 2
Yit|Air ~ Poisson(2),
dig=-exp (X,f+y Iny,_| +¢;+€), € %N(O, o?), (28)
@; =hiy Iny, +X'ihp +u;,
where again u; follows the DPM model of expression (25).
Model 3
Yir| Air ~ Poisson(4;),
Ait = exp (x;ﬂ +y Iny;, |+ zp,—), (29)

.
@; = hip Iny;, +x' hp +u;,

where u; follows the DPM model of expression (25).
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5.2 Prior Specification

The Bayesian analysis of the models in question requires priors over the param-
eters (6,h;,02,02,p), where 6 = (', y)' and h; = (h;;, hy). Therefore, we
assume the following priors

p(8)oc 1,h; ~ Ny, (h, H),h~N(ho, =), H~IW(5,A7"),

(30)
o33 o3 o ricn o

In particular, the prior distribution for é is flat, p(6) oc 1. A joint normal
prior is imposed on the heterogeneous slope parameters, h,-~Nk+1(f1, ﬁ)
where h follows a multivariate normal N(ﬁo, %) and H follows an Inverse
Wishart distribution IW(8, A™'). Because the autoregressive parameter is
restrictive to the stationary region, we propose a truncated normal for p,
N(po, 0;2,)1(,1,1)(;)), where I_;1y(p) is an indicator function that equals one if
p € (—1, 1) and zero otherwise. For the inverse error variance o, Za gamma
prior is used, o, LPNY (%‘%‘) A similar prior is used for the error variance

052, that is, g(%, %)

5.3 Posterior Sampling

In this section we present the MCMC schemes, which are used to estimate the
parameters for each model.

5.3.1 MCMC for Model 1

Following Tanner and Wong (1987), we augment the parameter space to include
the latent variables {4} };>1,,>1, where 4}, = w8 + @, + €, and w}, = (X}, Iny};_1).
The estimation procedure for model 1 consists of two parts.

In part I, we update at each iteration the parameters ({’1;}1'>1, 10 6. {o;},
{h;}, h, fI, 6‘%, /)) and recover the errors {u;} deterministically, using the aux-

iliary regression of Wooldridge (2005). In part II, we update the Dirichlet pro-

cess parameters &; = (/4,,02) =1, , N, and a.
If we stack the latent equation l,, = wW,0 + ¢; + €; over t we get
ﬂi :W,'6+iT§0i+€l‘, (31)
where W; = (W;q, ..., W;p), iris a T x 1 vector of ones and €; = (¢;1, ..., €7)

follows a multivariate normal with mean 0 and covariance matrix 62€;, which
is symmetric and positive definite with
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1 p p2 prl
P 1 p P
1
_ 2 T-3
Q; = =2 |7 p 1 p
prl pT72 pT73 1

Part |
e We sample 6,2, 6 | {AF), (), {@;}, ey, f1 in one block by sampling.

@) a;z\{kf},{ﬁi},{wi},el,ﬁ~Q<%,f5‘), where e1=e; +NT—k—1,fi =
— A\ —x% A T ok *

fi+ ()» 7W6> Q! (X fWE), A contains the elements A; =\, —@;,

i=1,...N,t=1,...,N that have been stacked over i and r, W = (W}, ...,

W4, 6 is the OLS estimator of & given by 6= (WQ "W)™ WQ '
and Q is a block diagonal matrix

Q
Q

Qn

v

* o 1 — !
(b) 5|{)\.i},6%,{Qj},{(0i}NN<5, (;W/Q ‘W) >
e We sample ¢;|Af, h;, 6, Q, 62, 9;~N(dy,Dy), i=1,..., N, where

1 -1 Ty * .

D() _ (2 +6V2i,7‘Q[IiT> and d() :D() (% +6;2i/7"Q;1 ()\,I —W,S)) with
o; !

ki = ( Inyj, X;).

i

o We sample h,-|g0,-,l~1,I:I,19,-NN(dh,.,Dh,.),i:1,...,N, where
e ki — s L kK !
dh,:Dh,(H 'h+M) andDh,.:(H 'y 2’) :
c o;

- i - ~ o
e We sample h|{h;},H,X,hy ~N(d|,D,), where d, :DI(Z’lhO+H !
T
S ihy) and Dy = (271 +NHC
e We sample I:I|{h,-},f1,A’1,6~IW<N+6, Zi\’:l (h; —ﬁ) (hy —ﬁ),+A’1).

e Wesample Af,i =1, ... ,NfromA} |6, a%, Q., ;,yi, which is proportional to
N W6 + irg:,62Q;) Poisson (vi| exp(M})), where y; = {y;;},>1. This density
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does not have closed form. Therefore, we use an independence Metropolis-
Hastings algorithm to update each A;. In this chapter, we orthogonalize the cor-
related errors so that the elements within each A} can be sampled independently
of one another (Chib & Greenberg, 1995).

In particular, we decompose the covariance matrix Q; as Q,-:§IT+I§,-,
where I is the T x T identity matrix, £ is an arbitrary constant that satisfies
the constraint &> &> 0, where & is the minimum eigenvalue of &; and R; is a
symmetric positive definite matrix. The algorithm becomes stable by setting
E=¢/2 (Chib & Greenberg, 1995). R; can be further decomposed into
R; = C!C; (Cholesky decomposition). Therefore, Q; = CiC; + &l

Using this decomposition, the latent regression for A, i = 1, ... , N can be
written as

)\: = W,8 + iT€0i + C;I]l +e;, (32)

where 1;~N(0, 5317) and e;~N(0, 50"2,IT). Using Eq. (32), the (intractable) full
conditional distribution of each A}, i=1,... ,N,tr=1, ..., T is given by

p(M18.07.p. ¢ yir) o< exp (*eXp (M) +Moyie — exp (25 5 (M —wib— o — qn)2>),
(33)

where g;, is the t — th element of 4i= Cin. Let St( | }”w Vi, vl) denote a
Student t distribution, where 7» denotes the modal value of’ the logp

N5 6, 62, P, @i, Yi) With respect to k,,, VA =(— Hx Yy lis deﬁned as the inverse
of the negative second-order derivative of the logp(?x |8, 62, p,9;,v:) evaluated
at 7\ vy is the degrees of freedom and c; is a positive-valued scale parameter.
Both vy and ¢ are essentially tuning parameters, which are determined by the
user prior to the main MCMC loop.

To obtain the modal value we use a few Newton-Raphson rounds implemen-
ted in the first-order derivative

b= —exp (1) 43— 3 (i~~~ a0).

v

and the second-order derivative

Hy» = —exp (7\;) — &7.

Of logp(}\';ﬂ 6’ G%,ps (l’i,Yit),
Then, sample a proposal value A% from the density St Al A
and move to A;? given the current point A%

( |6 Ul’p’(pl’ylf)St<}\4 ‘}\, CIV)LT,V1>
p(}\;‘ |6, 6‘2,,[7, %Ju)St( |}\,l[’clv)\;,vl)

it CIV)\:;, Vl)
with probabﬂlty of move

min

>
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e Toupdate g; = Cin;, i = 1, ..., N in each iteration we sample #; from #; | A}, 8,

(' —Wid—ir,, Ir CCN\~
@i, 63~N(py,Py), where py =P, (%) and P; = ( —+ 21)
oy O.v éav
e We sample ple, ov, po, 050 Y(p) x N(da, D)l _1.1)(p), where

/ 1\ / 1-p?
€=(€, ....€y), € =N\, — Wi — @i, Y(p)= (hp%”xexp(f(z;;>Z,”,e?1>,

1
_ 0, —2yWN T | T
dr=D, (ﬁ—z to, Zi:12r:2€ir€n71) and D, = (62 +o, E i E oS-t |
» = =
7

We use an independence Metropolis-Hastings algorithm in order to simulate
p. A candidate value p’ is generated from the density N (da, D2)I(_1.1y(p)
and is accepted as the next value in the chain with probability min(¥(p’)/
Y(p), 1); otherwise, the current value p is taken to be the next value in the
sample.

e We obtain deterministically the errors u; from u; =¢; —h; Inyjp —i', hy,
i=1,...,N.

Part 11

e To improve efficiency of sampling from 0| , Ho, To, €0, fo, We sample
from the equivalent distribution 60*, w|{u;}, uo, 70, €o, fo, where
0=, ...,%),00 =0, ..., %), M<N contains the set of unique values
from the @ with 95, m =1, ..., M representing a cluster location and w =
(w1, ..., wy) is the vector of the latent indicator variables such that y; = m
iff 9; =39;,. Together 0* and yw completely define @ (MacEachern, 1994).
Let also 0* =917, ... 95D denote the distinct values in 8, which is
the @ with the element 8 deleted. Also, the number of clusters in 0* is
indexed from m=1 to M(’) Furthermore, we define n() = Zjl(y/j:m,
jED,m=1,.., M to be the number of elements in 8 that take the distinct
element 9.

We follow a two-step process in order to draw from 6%, w|{u;}, uo, 7o, €0, fo-
In the first step, we sample y and M by drawing 9;,i =1, ..., N from

M)

109 4. UL 1y N (Y (9:
191‘0 9”1’G0 Ca+N—1qup(191|ul,ﬂO’TO’eo’fO)+;a+N—lnquM6‘9;z<’)(&l)’

setting y; = M @4+ 1and 9; = 93¢ when 9344 is sampled from p(8;| u;, po, 7o,
eo, fo) or yw; = m, when 9; = 8;9, m=1,... MY cisthe normalizing constant
and 5,9 (0;) represents a unit point mass at 19 = 8. The new cluster value 9}, is
sampled from p(9; | u;, uo, 7o, €0, fo), which is the posterior density of 9; under the
prior Gy. By conjugacy we have

9= ( i’61‘2)|”i’/‘0’707807.f0NN(/‘I‘“TO’%G?)Ig( |620 f;)
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where

__HotTOoUi _ T

2
7 == (ui — po)
0 1+79 ’ 0 1+79 '

, eo=eo+l, fo=fo+
0= e€o Jfo=/fo p—

The probability of assigning y; to a new cluster is proportional to the mar-
ginal density of u;, o = [ f (u;] 9)dGo(8;) = q, (u;| po, (1 + 70)fo/eo, €o), where
q, is the Student-7 distribution, y is the mean, e is the degrees of freedom, and
1+ ro)f(,/eo is the scale factor. The probablllty of y; equaling an existing cluster
m=1, ..., M is proportional to n')g,,,, where G Gim 1s the normal distribution of

u; evaluated at 9;”; hence, §;,, = n( i exp (—1 ( /4;,(1)) anz('))
In the second step, given M and y, we draw each 9;,, m =1, ..., M from

* * * | — — % * 2 f
gm:(Ium’0m2>|{uf}i€F,,l’/’l0’TO’eO’f0NN(Mm/’lm’Tmamz)Ig( = m)

where

ﬂo"‘TOZMi

= i€k, = 70
= m =
" 1+ 7on, ’ 1 +T()I’lm’
2
1

N | — g Ui —Ho 2
_ o ieF), 1
en=e0+nm, fu=fo+ Tt + E ui——» Ui,

Ton icF,, i icF,,

and F,,=1{i:9;,=439;,} is the set of individuals that share the same
parameter 39;,.

e To sample the precision parameter a, we first sample 7 from
fila,N ~ Beta(a+1,N), where 7 is a latent variable and then sample a from a
mixture of two gammas, a|f,c,d,M~m;G(c+M,d— In(7)) +(1—my;)
G(c+M—1,d— In(77)) with the mixture weight z; satisfying z;/ (1 — ;) =
(¢+M—1)/N(d— In(7)). For details, see Escobar and West (1995).

Average Marginal Effects for Model 1

Because of the nonlinear nature of the Poisson panel models, the direct inter-
pretation of the coefficients can be misleading. To overcome this problem,
we calculate the marginal effects. For model 1, the marginal effect for the itth
component with respect to the k-th continuous regressor is

aE()’zt| Wi, O, (B qll)

MEkl[ - ox
k,it

= f, exp (w§,6 +o,+ q,-t) .
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By integrating out all the unknown parameters (including the random
effects), the posterior distribution of M E;, is

#(MEy;| data) = Jﬂ(MEk,-f| 8, @;, qir, data)dn (6, @;, qir| data).

Using the composition method, we can produce a sample of M E,;, values,
using the posterior draws of 8, ¢;, ¢;,. Chib and Hamilton (2002) also used this
method to calculate average treatment effects. Given a posterior sample of M
Ey;; values obtained from z(M E;,| data), which we denote by { MEQ)}, the aver-
age marginal effect (AM E) can be defined as

T
AME, — Zz 121 1 MEk”

LxNxT ’

where ME(), = g exp w80 + o + ql(-,l)) and L is the total number of itera-
tions after the burn -in period.
If x i is binary, the partial effect is

Aj(xy,ir) = exp ((W;ﬁ - Xk,itﬁk) o+t qit)
— exp ((Wg,ﬁ - Xk,irﬂk) to;+ qit) .

5.3.2 MCMC for Model 2

The updating of {h;}, ﬁ, ﬁ, {u;}, {9;} and a is the same as in model 1. In addi-
tion, one has to update the latent variables {¢;} and {A};} as well as the param-
eters 6 and o-f. In this case, we use the equation

}» =W, 6+(p,+e,t, (34)

where now ¢;, is iid distributed.
e We sample the random effects, ¢;, i=1, ..., N, from N (dy, Do), where

1 T

1 T P Kh: + 4.

Dy= <2+2 and d():zf:1(gg i ) + N I;'H,.
€

. (7[
1 €

e We sample & and o7 in one block again:

(a) First, sample 67 marginalized over & from

2L W o) e 6( 55

_ ~ 2
where 2 = +NT —k — 1./, = ALl T (M- wib—a)
and 6 = (Z?]:IZtT:IW”w;t) {Zz 121 1W1f( (Pz)]
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(b) Second, sample & from its full posterior distribution:

8loz {1 } AW {W:}.{g:} ~N [ b, <Ulzzzwirw§z>

i=1 t=1

e Asinmodel 1, the posterior distribution of A}, fori =1, ..., Nand¢t =1, ..., T
is intractable and is given by

1
p(X;|8. 67, @, yir) o< exp (—exp (A,) + AL yie — exp (2 (M, — w6 — ;) ))
(35)

which is a modified version of Eq. (33). Again, we use a Metropolis-Hastings
step similar to that of model 1.

Average Marginal Effects for Model 2

For model 2, the marginal effect for the iz-th component with respect to the k-th
continuous regressor is

OE(an Wi, 0, (pi)

ME;;, =
i OXp it

=Brexp (Wid +g; +€i),

and the calculation of the average partial effects is similar to that of model 1.

5.3.3 MCMC for Model 3

The conditional distributions for h;, h and H are the same as those in model 1.
The same holds for the update of the DP parameters and the deterministic
update of u;.

The posterior densities of ¢; and § = (f, y)' in model 3 are intractable and
therefore we use the independence Metropolis-Hastings algorithm to make
draws from their posteriors.

In particular, the posterior distribution of ¢;, i =1, ..., N is given by

1
((p,l{yn},>1,h,,6 His O, )OCeXp( o 2( k/h ,u) )

HT exp [—exp (W, 8 +¢,)] [exp (W8 +¢;)]"
=1 Vir! )

A proposed draw ¢ is generated from the Student-r distribution
St((pi | @i, 2V, V2) , Where @, = a,,, rgmaxlogp (q)i| {yff}tzl’ h;, 8, u;, 0'1-2) is the
modal value of the logarithm of the posterior distribution of ¢;, Vi = (—H,,,i)71
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is the inverse of the negative Hessian of logp(¢;| {yi:};>1,h;, 8, /4,-,0,2) evaluated at
@;, v is the degrees of freedom and ¢, > 0 is a constant. To obtain the modal value
we use the Newton-Raphson method that requires the calculation of the gradient

ggﬂi: ( k/ —Hi /6 +Z yn_exp(“’,ﬁ*‘%)]
=1
where k! = ( Iny},,X!) and the Hessian
r
Hy =07 — Y exp (W +a)
=

Given the current value ¢{”, we move to the proposed point ¥ with
probability

p(qof”)l {yir}is1s 00 6. 41z, 6,»2)St<<0,(»">| P12V, Vz)
P(¢EC>| {yit}tzl’ h;, 6, p;, 0?)5f<(0§p)| @i 2V, VZ)

bl

((pf 2 . gﬂl(p)) min

The target density of  is also intractable,

N T Yit
—exp W, 6+(p,—) [exp (w 6+cp,)]
P10 ) 33 e I .
i=1 t=1 i

To generate § from its full conditional we use a multivariate Student-¢ dis-
tribution MVt (6| 5,335, V3) , where 8= arg gmaxlogp (6\ {yit}izl,rzl{%})
is the mode of the logarithm of the right side of the earlier conditional
distribution and 5= [—Hg}_l is the negative inverse of the Hessian matrix

of pG{yi}i >1.. =1, {¢;}) at the mode 5. The degrees of freedom v3 and the
scaling factor c¢3 are, as before, adjustable parameters. The maximizer

Newton-Raphson procedure with gradient vector & is obtained by using the
N T
:ZZ Vi — exp (Wi + ;) [ Wi,
i=1 =1

and Hessian matrix

N T
= [exp (Wid+;) | wiW,

i=1 t=1
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The algorithm to generate é works as follows:

(1) Let 6° be the current value.
(2) Generate a proposed value 6 from MVt (6\ 8,335, V3).
(3) A move from € to §* is made with probability

P (871 by o {0} )Mve(8) 8,335, v3)

min &L ’
P81 itz o {0} ) V(8] 8, c355.v3)

Average Marginal Effects for Model 3

For model 3, the marginal effect for the ifth component with respect to the k-th
continuous regressor is

()E()’ir| Wiz, 0, §0i)

MEkit = ox
k,it

=prexp (ngs + 4’1‘),

and the calculation of the average partial effects is similar to that of model 1.

5.4 Model Comparison

In this section we explain how we can conduct model comparison, using the
Deviance Information Criterion (DIC), proposed by Spiegelhalter et al.
(2002) and cross-validation predictive densities.

The Deviance Information Criterion (DIC) can be calculated easily because
it uses the conditional likelihood of the model. For model 1, where the idiosyn-
cratic errors are serially correlated, the DIC also can be computed because of the
orthogonalization of the error terms.

The DIC is based on the deviance D(®) = —2 In f (y| ©), where y is the vec-
tor of observations, In f (y | @) is the log-likelihood function and @ is the vector
of all model parameters. The DIC is defined as DIC =D(®) +pp, where

D(©) = —2Eg[logf(y| ©)|y] is the posterior mean deviance that measures
how well the model fits the data. The term p, measures model complexity
and is defined as pp=D(0) —D(®), where D(®)=—2logf(y|®) and
logf (y|@) is the log-likelihood evaluated at @, the posterior mean of ©.

The DIC is, therefore, defined as DIC=D(®)+pp=2D(0) —D(®). The
model with the smallest DIC has the best model fit. The DIC can be computed
using MCMC samples of the parameters, {©®}, where @ is the value of @ at
iteration / = 1, ..., L. Lower DIC values indicate better model fit.

An alternative model comparison criterion is based on cross-validation
predictive densities. In particular, we apply the leave-one-out cross validation
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(CV) method that requires the calculation of the conditional predictive ordi-
nate (CPO),

CPO;; :f(Yiz| Y—it) = Jf()’it‘ G))f(G‘ }’—it) :EG)‘yfl't[f(yiA 9)], i=1,...,N, t
=1,...,T,

where y_;; =y \ {y;}. Gelfand and Dey (1994) and Gelfand (1996) proposed a
Monte Carlo integration of CPO. More specifically,

-1
1

CPO; Zf()’iz| Yoir) = %XL: (f(y”| Y-its ®<1))>7 ’
=1

where L is the number of iterations after the burn-in period. Then, for each
model we calculate the average of the estimated CPO values,

A#Zf\': S8 F(vil y_is). Higher values of this average imply better “goodness
of fit” of a model.

6 Conclusions

In this chapter we presented various Markov Chain Monte Carlo algorithms for
estimating various versions of the panel Poisson model. These versions con-
trolled for dynamic, random effects, and serial error correlation. Furthermore,
we assigned a nonparametric structure to the distribution of the random effects,
using the Dirichlet process prior. We also tackled the initial conditions problem
from which models of this type suffer. As a byproduct of the posterior algo-
rithms, we showed how the average partial effects can be calculated, while
we used two Bayesian criteria for model comparison, the Deviance Information
Criterion (DIC) and cross-validation predictive densities.
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1 Introduction

Panel data has the advantage of controlling unobserved heterogeneity by includ-
ing individual effects and time effects. The random effects approach assumes
the unobserved effects are random and their distributions conditioning on the
regressors satisfy some special conditions. These conditions are crucial for
identification but cannot be verified easily. The fixed effects approach treats
the unobserved effects as parameters to be estimated, therefore allowing
arbitrary correlation between the unobserved effects and the regressors.
Estimation of the unobserved effects, however, brings in the incidental param-
eter problem.

Under the fixed T framework, some smart methods, such as differencing or
conditioning on sufficient statistics, are developed to get consistent estimator
of the regressor coefficients, e.g., Manski (1987), Honore (1992) and many
others. In general, however, the fixed T framework has limitations in dealing with
the incidental parameter problem. With the increased availability of large panels,
the literature gradually switched to the large T framework. Under this new
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asymptotic scheme, the estimated regression coefficients are shown to be asymp-
totically normal with biased mean, and various bias correction methods are
developed to provide valid confidence intervals. For example, see Hahn and
Newey (2004), Fernandez-Val and Weidner (2016), and Dhaene and
Jochmans (2015).

In this chapter, we focus only on the techniques used to derive the limit dis-
tribution of the estimated regression coefficients. Bias correction methods will
not be discussed here, nor panel with interactive effects and other extensions.
For a comprehensive survey, see Arellano and Hahn (2007) and Fernandez-Val
and Weidner (2017). These surveys mainly focus on the results, and only briefly
discuss the intuition for deriving these results. Understanding the joint limits'
asymptotic theory for the estimated parameters is still difficult and time-
consuming. Different papers use different notations and different techniques,
some are similar in nature, while others are totally different. This chapter seeks
to provide a unified framework to introduce and explain the main techniques
used in the literature.

When the number of parameters is fixed, consistency and limit distribution
of maximum likelihood estimator are well-established (see Newey &
McFadden, 1994). These classical results are not directly applicable for fixed
effects panel data models, because the number of parameters K + N + T goes
to infinity jointly with the sample size. The fixed effects panel models, however,
have certain sparsity structure, i.e.,

O li()=0 if i#],

dli(-) =0 if s#£1,
Opilin(+) =0 if i,

O lu(-) =0 if s#t,
Oulis(+) =0 if i) ors#t,
Opi,lu(-) =0 if i#],

Oplie(-) =0 if s#t,
i lie(-) =0 if i),

where /;/(-) is the likelihood function of the ith individual at time ¢. The fixed
effects panel literature uses this structure in extending the classical theory of
MLE to reestablish the consistency and limit distribution of /? For linear
dynamic panel with individual effects, see Hahn and Kuersteiner (2002). For
linear dynamic panel with individual effects and time effects, see Hahn and
Moon (2006). For nonlinear static panel with individual effects, see Hahn
and Newey (2004). For nonlinear dynamic panel with individual effects, see

1. N and T tend to infinity jointly.
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Hahn and Kuersteiner (2011). For nonlinear dynamic panel with individual
effects and time effects, see Fernandez-Val and Weidner (2016). Among these
papers, Hahn and Newey (2004) and Fernandez-Val and Weidner (2016) are
most representative for the techniques used to handle the incidental parameters
problem. Understanding these two papers is almost halfway to understanding all
of the bias correction literature. We provide detailed discussion about their
working mechanism.

Throughout the paper, (N, T) — oo denotes N and T going to infinity jointly.
-4, denotes convergence in distribution. For matrix A, let p,;n(A) denote its
smallest eigenvalue, ||A|| and ||A||max denote its spectral norm and max norm
respectively. For vector «, let ||a|| and ||a||4 denote its Euclidean norm and 4-
norm. Note that when a is high dimensional, different norms are not equivalent.
The rest of the chapter is organized as follows: Section 2 introduces notations
and preliminaries. Section 3, Section 4, and Section 5 provide asymptotic theory
for the fixed dimensional case, for panel with only individual effects and for
panel with both individual and time effects, respectively. Section 6 offers
conclusions.

2 Notations and Preliminaries

For panel models with both individual effects and time effects, the log-
likelihood function is

LB AN =3"0 ST L+, 1)

where [;(n;) =log gi(yi:|mi) and m; = Xp+f,+2A. yi is the dependent
variable. x;, is a K dimensional vector of regressors. Lagged dependent variables
are allowed for. The functional form of g;«(-|-) is allowed to vary across i and 7.
Let A=Ay, ..., W), =1 .0 f), ¢=, f/Y and 0= (B, /, f')'. When
letters have superscript 0, they denote the true parameters. For example,
o =xipP+f0+ 20, =0, ..., and fO= (Y, .... M. Also, let 0,
Li(m;), 02 1i(7;r), 03 1;(mir) and 0,41;(7;;) denote the first, second, third and fourth
order derivatives of /;(-) evaluated at x;, respectively.

Both individual effects and time effects are treated as parameters to be esti-
mated through maximum likelihood. For any 4;, f; and constant b, 1; + b and f; - b
has the same likelihood as /; and f;. Thus Z?’:M? and Z,T: L /Y are not identified.

We simply assume > ;47 = S, #2, and add the penalty

Pf) =3 (XL A=Y ) .

to the log-likelihood to get unique solution, where b is an arbitrary positive
constant.
Therefore, the criterion function is

O(p, 4.f) =L(B. A.f) + P(.f), 3)
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and the fixed effects estimator is

0= (ﬁ/,i/,fy = arg maxQ(f, 4, f). 4

N . / P
Also, let ¢ = (A/, fd ) and 7, = x},f+ A; + f,. For the first-order derivatives,
let

It follows that S,(0) = (S',(0),S/6)) and S(0) = (S3(0),S(0))'. For the
second-order derivatives, let
H(0) =gy Q(0)

be the Hessian matrix. When the argument of a function is suppressed, the true
values of the parameters are plugged in. For example, S = S(6°) and H = H(6°).
Because > N 49 = "L £°, we have 9,P = afP 0. Therefore,

N
Sp(0)=> > Oelicxi Q)
T
$i0) = Ocliss-. .,Z,:la,,zN,, ©)
N N
Sp(O) =) Oelitses ) Oulir. ™

The Hessian matrix can be written as:

Hpyp (0) H,,,(,,(a)]
Hyy(0) Hyy(0)]

Let Hypp () = 0ppr L(P) and Hp 44 () = 9y P (¢h). We have
Hyp(0)=>"" S 0 li(ma)xicd, ®)
Hpy (0) = ( 07[21“(7!11 Xirs - Z Oz Ine (e ) X,
Ziv:laﬂz iy (min )Xty -y Ziv:laﬂz lir (wir)Xir ),
Hyy (0) = Hppy (0) + Hpypy (). (10)

Hj 44 (0) can be further decomposed as

HLM’(G) HLif’(a)}
Hyzy(0) Hyp(0) ]

H(0) = {

©))

Hpyy (0) = { 1D
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Hy,y (@) is an N x N diagonal matrix and the ith diagonal element is
Z,Tzl Op2limi). Hyg (0) is aT x T diagonal matrix and the th diagonal element
is Zthld,,zl,-,(ﬂi,). Hpy (0) is an N X T matrix and the (i, H)th element is
0p2li(mi). Hyzy (0) is the transpose of H; - (6). Let 1y and 17 be vectors of ones
with dimension N and T, respectively, and let v = (1}, — 1})". We have

HP(/)(/)/ (¢) = —bVV/. (12)

Finally, let dggrg O(0) be the tensor cube of third-order partial derivatives eval-
uated at . Each cross section of dggg Q(0) is a matrix of dimension dim(8) x
dim(#), and the ith cross section is 6,99/9iQ(9). Thus dggg O(0) contains dyy ;0(0),
Opgp Q(0), etc. as subcubes. Also, let dyypQ(s) = dggaQ (6° + s(@ —6")) and
define dgg s O(S), Ay p0 (), etc. similarly.

The procedure for deriving the limit distribution of f has three steps: con-
sistency, asymptotic expansion, and bias calculation. We start from the classical
fixed dimension case discussed in Newey and McFadden (1994).

3 Fixed Dimensional Case

Following the notation of Section 2, let 6, 0, 1(6), 0), S(0), H(9), and T denote
the parameter, the estimator, the likelihood function, the criterion function, the
score, the Hessian, and the sample size, respectively. Also, let d denote the
dimension of the parameter space.

3.1 Consistency

Let © denote the parameter space of § and Q(#) =EQ(6). Consistency follows
from the following conditions:

1. O=arg max 0(0) and is unique.
(S _
2. " =arg max Q(0) and is unique.
S _ _
3. Q(0) converges uniformly in probability to Q(0), i.e., sup‘Q(G) —Q(Q)‘
=o0,(1). o<
4. Q(0) is continuous.
5. O is compact.

Conditions (1), (2), (4), and (5) can be considered as regularity conditions. Con-
dition (3) is crucial. Details about how to establish condition (3) for econometric
models can be found in Newey and McFadden (1994).

Conditions (1)—(3) together implies that, for any ¢ > 0,

0(6°)>0(0)>0(0) —e>0(6°) —e>0(6°) —2e, (13)

with probability approaching 1 (w.p.a.1). The four inequalities follow from con-
ditions (2), (3), (1), and (3) respectively. For any small ¢ > 0,0 N ||0 — 6°|| >c¢
is a closed subset of a compact set, and therefore is also compact. This together
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with condition (4) implies that 6* = arg max  Q(0) exists. Condition (2)
0€0.||o-6"||>c

implies 0(6°) > Q(6"). Now choose ¢ such that 2¢ < 0(6°) — O(6"), then we
have Q(é) > Q(6*) w.p.a.1, which implies ||@— 6°|| <c wpa.l.

3.2 Asymptotic Expansion

The first-order conditions are dyQ (é) = 0. Expand these conditions to the third
order,2 we have

0=000(0) =S+H x (0—6") +R, (14)

where R = (Ry,...,R)), R;= (9—90)/ UOI Jo! aggzgiQ(sz)dszdsl} (6—6°) and
0(s) = 0(6° + s(0 —O%). 1t follows that

0—60"=—H'S—H'R. (15)

Because the dimension d is fixed, it is not difficult to show that
[~ | =0,(T7). (16)
[R]l =0,(1). (17

Let H(#) = EH () denote the expected Hessian. lim 7~ 'H is assumed to be

—00

positive definite. First, after weak dependence conditions are imposed, each ele-
ment of T~ 'H converges in probability to its corresponding element of T~'H.
Because the dimension is fixed, this implies |T~'H —T~'H|| is o,(1). This
implies that pmin(Tle) converges in probability to p.;i, (T’lﬁ ) since
|Puin (T H) = pin (T7'H) | < ||T7'H = T"H||. pppiyy (T~'H) is bounded away
from zero, thus ||(T'H) ™| is O,(1). This proves equation Eq. (16).

Now consider R. Given consistency of 9, it can be easily shown that for each i,
each element of the K x K matrix fol Jo" 0g,0(s2)dsdsy is O,(T). Because the
dimension d is fixed, this implies that Hfol o' 09, 0(s2)dsydsy || is also O, (),

and thus |R;| = O, (T

~ 2 . . . .
|0 —¢° || ) . Again, because the dimension is fixed, we have

IR| =0, (T| 0—6° Hz) . This, together with Egs. (15) and (16), shows that

00" =—H'S+0,(||0—"|") =—H 'S+, (10-6"]).  (18)
1
It is easy to see that ||S|| is O, (Tf) after weak dependence condition is

imposed. Therefore,

5 1
0—6"| is 0, <T_ 5) , which further implies that

2. Note that mean value theorem for vector-valued functions does not exist. We use the integral
form of the mean value theorem for vector-valued functions.
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0—0"=—H'S+0,(T"). (19)

3.3 Bias Calculation
1 —
When dimension is fixed, we have T~ 2S i N(O, H). We have shown that
o 1. .
|71 ~17'H|| is 0,(1). Therefore, we have 72(§—¢°) N (0,7, that

is, the asymptotic bias is zero.

4 Panel With Individual Effects

In extending the fixed dimensional MLE previously discussed to panel models
with individual effects, we face two difficulties: consistency and asymptotic
expansion. For consistency, the main difficulty is that we need to show uniform
convergence in probability of Q(#) to Q(6) when the dimension of the param-
eter space tends to infinity jointly with the sample size. For asymptotic expan-
sion, the difficulty is that the dimensions of H, fol Jo" 0o0,0(s2)dsds, and R all
tend to infinity jointly with the sample size. The key step of asymptotic expan-
sion is to evaluate the magnitude of ||[H'|| and ||R||. The increasing dimension
makes this step much harder, if not impossible. Now we introduce how Hahn
and Newey (2004) overcome these two difficulties.

Following the notation of Section 2, for panel models with only individual
effects, the log-likelihood function is L(f,2) = S_1y S 1i(x[,p + A;), where
Lilr;) = log gi(yis | mir) and m;; = X, + A; is the dependent variable. x;, is a K
dimensional vector of regressors. Lagged dependent variables are allowed
for. The functional form of g;(-|-) is allowed to vary across i and ¢. Since 29
is uniquely identified when there are no time effects, we have Q(f, 1) = L(p,
A).LetA= (A, ..., Ay) and @ = (B, /). Let A° and 6° denote the true parameters

~ NN !
and 0= (ﬂ/, A,> = arg max Q(B, 1) denote the estimator. Also,
~ A ~ /
0—0"= ((ﬁ—ﬁo)/, (/1 —/10),> ,R= (R;;,R})/ and the Hessian matrix is

H , H ’
o |2 Hpr|
{Hzﬁ' Hy

H,,, is diagonal and the ith diagonal element is Z,il 021

4.1 Consistency

In general, we do not have uniform convergence in probability of Q(8) to Q(6)
when the dimension of @ tends to infinity. Hahn and Newey (2004) and Hahn
and Kuersteiner (2011) overcome this issue by using the individual effects
model specification. More specifically, given the model setup, we have

0(0) = S"N104B, ) and OB, 2) = 311 LifxiB + A;). Therefore, N~'T~'Q(0)
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is the average of T 'Q«f, 4). Similarly, N-'T~'Q(0) is the average of
T-'Q;(B, i), where Q;(f, ;) =EQ;(B, 4;). For each i, it would not be difficult
to show uniform convergence in probability of T 'Q,(8, ;) to T~'0,(5, 4;)
because (f, ;) is fixed dimensional. After we have uniform convergence for
each i, it suffices to show this uniform convergence is uniform over i, i.e.,

max stip|T’1(Qi(ﬂ, ) —Q:(p, /L'))| =o0,(1), (20)

1<i<N Vi

because sup, [N 1T~ (0(0) —0(0))| < max ;lip |T-! (Qi(B, 4:) — Q; (B, 4))|.

To show Eq. (20), Hahn and Newey (2004) and Hahn and Kuersteiner (2011)
show that

P(;L;pl T (Qi(B. 4r) — Q;(B. 44)) | zn> =o(T?). @D

This is because N = O(T) and P < max sup T~ (Qi(B, 4) — O; (B, )| > 17)
<i<N g,

is not larger than Z?’_J( supT " (Qi (8, Ai; I— 0:(, %)) > 17) .

s A

4.2 Asymptotic Expansion

The first-order conditions (14) is still valid and can be written as
0=Sp+Hpyy (B— ) +Hyy (A—2°) + Ry, (22)
0=S;+H,y (B—p°) +H,y (2—1°) +R;, (23)

and Ry and R, have the following expression:

Ry =Rppp+Rpzp+Risp,

1 psy .
Rppp = (/)’—/)’O) (J J aﬂﬁrﬂQ(sz)dszdsl> (ﬁ_ﬂO)’

0J0

1 psy R
Rmzz(ﬁ—ﬂ")'(J J aﬂi,ﬂg(sz)dszdm) (i—2°),

0J0

1 psy .
Rup= (4~ ’10)/ (L Jo aM’ﬁQ(S2>d52dsl) (4=2°),

(24)
Ry =Rppr+Rpps + Ry,

S

Ry, = (ﬁ —ﬁo)/ (J; Jo 0/}/}’,1Q(S2)d52d31> (ﬁ -7,

1 ps1 .
RﬂM :Z(ﬁ—ﬂo), (J J aﬁi/iQ(Sz)dSQdﬁ) (/1—/10),

0Jo
1 psy .
Rua= (1= 2°) (L L aM’AQ(SZ)dSZdﬁ) (A=2%).

Eq. (22) subtracts Eq. (23) left multiplied by Hy;,H;;), we have
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ﬁ—ﬂo - (H/}ﬁ, —H/M’H;A/lHiﬁ’)il (S/j —HﬁA/HIArlSj>

—(Hyy —HyH H, )~ (Ry — HyyH'R @
( sy pr Ly /1/5’) ( p pr Iy /1)'

First, consider the matrix Hyg — H, ,;,I,H{,ﬁH 2~ This expression does not rely
on any econometric model structure, because expression Eq. (25) is always true.
What’s special is that H g, is sum of NT terms, while H ,, is a vector of dimension
N and each elementis sum of T'terms, and H,,is a diagonal matrix of dimension N
and each diagonal element is sum of T terms. This specialty comes from the indi-
vidual effects model specification. Because of this specialty, we are able to show

| (Hyp — HypH! Hyg) ™ | = 0,(N'T7), (26)
which is not true in general. To show Eq. (25), let Hyy =EHy, Hyy =EH g,
and H,; =EH,;. After relevant regularity conditions are imposed, it’s easy
to show that is 0, (NT) ||Hyy—Hgyl is op N2T) and

|Hyy —Hpy

H 0 —Hyy ‘ is 0,(T ~"). These together imply that ||(Hyy —HyyH ' Hyp)

= o ol . . el T
_(Hﬂ[}’_H/M’HM’HA/}’)H is 0,(NT). Because (Nl;;ilmN 'T ' (Hyy —Hpyy

Hy 'H ,p) is assumed to be posmve definite,” this proves Eq. (25).
Next consider Sg — Hy,H S,. This term can be written as

Sp _Hﬁ/‘{/H/?AIlSl =Ss —ITI[M/H/;II,SA — (H[M’ —ﬁmr)H/afng—
— P — 1
Hyy (M3t =T ) 8, = (Hypw — ) (Hy =0 )S:.

Given relevant regularity conditions and noting that both H,;, and H,, are
diagonal, it would not be difficult to show that

1S5 — HypH;)', Si]| =0, <N%T%>,

_ 11
[H = Hpz || = Oy <N2T )

€2))

=
=
\
=
=
N |—
~
~_

\|H)

1 3
’ -0, (T z) . (28)

Jf =77

3. This is the standard identification condition that appears in almost all nonlinear panel literature.
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11
Therefore, the four terms on the right side of Eq. (27) are O, <N§T5> ,0,(N),
1
O,(N), and O, (NT‘E), respectively. Thus

- _ ——1 1
H (Hpr —Hpy) (HM} _HM’>SAH =0y (NT 2>’ (29)
11
1S5 — Hyie 32| = 0, (Nfﬁ) +0,(N). (30)

Now consider Ry — Hﬁ,l,Hj,l}R 5. Assume” that there exists ¢ > 0 such that
third-order derivatives of /;(f, 4;) with respect to § and 4; are’ uniformly
bounded in absolute value by M (x;;, y,,) within the neighborhood || — Al <c
and ||4; — 22| < ¢, and E(M (x;, yir))* is uniformly bounded over i and 7. Based
on this assumption, usmg consistency of ﬁ and ;, and using Eq. (24), direct cal-
culation shows that®

1Rasl| =0 (NTIIﬂ #II).

IRl =0, (W73 121
2
||Ru/f||=0p( 2| ) a1

uRWH: (Nﬂnﬂ #I7).

1Rl = 1),
||R,W|| =0, (T|}/1—/10H4).

To evaluate the six expressions in Eq. (31), consistency of ﬁ —p%and di— /1?
alone is not enough; we need their convergence rates. An important intuition

shared by the nonlinear panel literature is that A —2°~H!S,. For the moment,

A

let’s just suppose A== M,Sg and H/} ﬁOH =0, (N T~ 2) to evaluate

Eq. (31) first. The third and fifth equations of Eq. (28) imply [[1—2°||

4. This assumption is quite common for nonlinear panel models.
5. For example, 0p,,5,li (B 4)> Op,p 2. Lic(Br Ad)s -+ s Oaain Lid( B Ap).

6. For example, consider R . It is easy to see that ‘ fo] 15" 0452, 0(s52)dsds H <1 sup ||9p,00)|
0<s<1

T
and  sup H‘)ﬂ/i’l’Q(S)HSKZHM(X”’Y”) w.p.al.  Thus |[Rgp| is bounded by
0<s<1 =

[T S (MG i) ] which is 0 <N%T|\z;_ﬁo||2).
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1 1 ~ 1 1
=0, <N§T§>. It is not difficult to show that ||1—2°|,=0, <N§T§>,

1
because (310,20, 'O ,0,1;,) is O, T™2 ). It follows that
P

1Rgps | = 05 (1),
IRsall =0, ().
R = 0,0,

(32)
| Hp Hoy Rypa|| = 0, (1),

1
58y =0, (7).
|HpwHo Ri|| = O, (N).
Therefore, given N/TH K, Rﬂﬂﬁ, Rﬂi/% Hﬂﬂ/H/a}Rﬂﬂl, and Hﬂl/Hﬁ}Rﬂ/u are
asymptotically negligible compared to Sz — H ﬂ,yHﬁ’S 3 Rap and HMH;,JR A

are not negligible and will contribute to asymptotic bias. First, given consis-
tency of ﬁ p° and X /1 we have

1 S1
J J aM'/jQ(SZ)dSZdSINZE()M'/}Q
0

1 ps
_ : I— —1
H/’WHM/I (J J aM/ﬂQ(Sz)dSzdSl> zEH/M/HM/ Eaﬂ“Q.
0J0

This together with yEy zﬁ;}S , and the fourth and eighth equations of
Eq. (24) implies that

| R —1
Riip ~587H 1 (E0upQ) Hyr Si,
1 (33)
A — —
Rin= ESﬁIHM’ (Hﬂ/l’H/u’ ]Ea/u’/lQ)HM’ Si-

Taking the previous analyses together, we have

8=~ (Hyy ~Hye My ) (Sy—Hpllyys;)
+ (Hyy —Hy T Ty )
[(H/M’ _Hﬁl’)HM’ Si+Hpy (H/u’ __u’)si_ (34)
Sg f (EaM’ﬂQ HgyH ]EaM’/lQ) w SA]

1
+0, (T_5> +0p <N‘ T‘E).

Eq. (34) can be used to calculate the asymptotic variance and bias, which
will be shown later. The first term on the right side will have normal distribution

N |—
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with zero mean in the limit. The second term will contribute to the asymptotic
bias. The third and fourth terms are asymptotically negligible if N/T — k.
Therefore, the equation clearly shows the relationship between the asymptotic
variance and bias of Zf — ﬂo and the score, the Hessian, and third-order
derivatives.

In deriving Eq. (34), we already have used A= NHM}SA and ||,B —ﬂ0|| =

11
0, (N 2T 5) , which has not been proved yet. So far, we have only consistency
for each i, which is not enough to derive Eq. (34). Therefore, the remaining issue
. 11
is how to prove 1 — % ~ H, 'S, and Hﬁ ﬂOH = (N§T§> based on consis-

tency of — 8° and ||;1i — /1? || This is exactly where the difficulty occurs when
using first-order conditions Eqgs. (22) and (23) to derive the limit distribution. So
far, it is unknown how to tackle this difficulty directly.’

Now we introduce how Hahn and Newey (2004) and Hahn and Kuersteiner
(2011) solve this difficulty. First, g, A, and (x;;, y;;) correspond to 6, y and x;;,
respectively in these two papers. These two papers use empirical likelihood
method to transform the first-order derivatives from function of $ and 4 to func-

1 . 1
tion of f and ¢, where ¢ is defined as: F(¢) = €T2 (F —F) foree [0, T 2] ,F =

(Fy,...,Fy) and F; is the (marginal) distribution function of (x;, i),
F= (F Lo F v) and F; is the empirical distribution function of subject i. By
Egs. (22) and (23), B— A° is an implicit function of 42— 2. After the transfor-
mation, [3 — ﬂo becomes a function of ¢, so that we do not need to deal with -
% directly. This is crucial for asymptotic expansion because ¢ is a number and

1 5
we know its magnitude (|e| < T§> , while 2 — 1° is a high dimensional vector

and we do not know how to prove its magnitude.
More details about the transformation follows. Let A;(f)=

arg maxz I(p, A;) and ﬂ— arg maxz Ly ,B ﬂ ﬂ)) The first-order

conditions are

ST ol 4(B) =0 (35)

S D ulalB () =0 (36)

7. Because the dimension of 1—A° tends to infinity jointly as sample size, HA A H =0p(1) for

. 1
each i even does not necessarily imply H/l,» —/1?“ =0, (N§>.



Fixed Effects Likelihood Approach for Large Panels Chapter | 7 187

E( 9, lis
Let pio = ((af;,)) and Ui, Yi B, %) = 0 1B, ) =pios, 1B, %). Then
Egs. (35) and (36) imply that

S S Uiy B 4i(B)) =0 37)

Now for each given ¢, let 1,(f, ¢) be the solution of

Jaz,.z,-t(x,-,,y,-,;ﬁ, 3B, ))dF () =0, (38)

and let f3(¢) be the solution of

N . .
> JUf (xies yirs (), 2 (B(e), €) ) dFi(€) =0. (39)
By Egs. (38) and (39), 3(¢) is an implicit function of ¢, and it’s not difficult to
I I . .
see that f=p3 (T_i) and ° = 5(0). Apply Taylor expansion to (c), we have

Pl =T 3 (0) 5T 0+ T30, (40)
where () =dp(c)/de, p(c)=d*B(c)/de*, p“(€)=d’B(c)/de, and Te

1
[0, - 2}
Egs. (38) and (39) can be used to calculate 5(¢), f“(¢) and f““(¢). Let
hi(Xie, Yies €) = Ui (Xies vies Be), 4 (,Zf(e), €)). Eq. (39) can be written as
NN [ hixis i ©dF(€) = 0. (41)
Differentiating repeatedly with respect to ¢, we have

dh xl? s
IZ, 1J ’yt dF )+N” IZ J (Xit» yirs €)dAir =0, (42)

d h -xl 7yl ) ) _ N dhi(-xi[, yzt; 6)
-1 ts Vit | B
Zz IJ de? dF1(6)+2N Zi:] JTdAiT—O, (43)

dh xl9yl’ dh X,,y,, )
—1 t t 1 t t _
N J g+ 1J 2 g =0,

(44)
1, .
where A;r =T2 (F i —F ,-). Using these three equations together and Eq. (38), we
3
can get expressions of A°0) and S°(0), and show that T 25°‘(¢) is
11
0p (N Y 2). This step is tedious but not difficult. For detailed calculation

procedure, see the Appendices of Hahn and Newey (2004) and Hahn and
Kuersteiner (2011). It can be verified that $(0) and $°(0) corresponds to the
first and the second term on the right side of Eq. (34), respectively.
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4.3 Bias Calculation

Now we use Eq. (34) to calculate the limit distribution. Assume

W=— ( li§n NIT! (17[,/,/ —ﬁ/,,yﬁ/;}ﬁwr) exists. W also is assumed to be
N,T)—o0

positive definite. It can be verified that W corresponds to 7 in Hahn and
Newey (2004) and Hahn and Kuersteiner (2011). The calculation contains
the following four steps.

(1) N’%T’%(S,; —ﬁ,,ﬂ,ﬁ;lfsl) L0, W).

In the literature, the DGP of (x;;, y;,) is assumed such that d,, /;; and 9, /;.x;, are

independent across i and E(0,/;,0,1;;) =0 and E(0,l;,0,l;x;xis) = 0 for s # ¢.
Thenitis easy to see that N~ T %Sﬂ <4 N(0,—Hygy),N™ T %17/,,1/17;; S, 4

N(o,_ HyyHy 171,,/) and E (s;,ﬁ,,m;; sl) — —HyH,)H,y.

1 1 — — tXit
(2) N2T 2 (Hyy —Hy ) H ) S = VNIV Z”% IEEZ 1’/“))2” )4 o,(1).
— 24t
This is straightforward.
11
(3) N 2T 2y (Hy) ~ T, )Ss
— /KN~ 1ZN Zr 12; 1]E(6 lisdzﬂlir)ZrTzlE(anZZitxit)
Z[ 1 ( nZIiT) Z;F:IE(anzlif)

This is because H} —HM/:—HM, (HM/—HM/)HM,
1
(Hyt =T )S:=0p <N2T1> .
1 L 1. — =1 ——1
(4) —5N 2T S, (]EaWQ—HMHM,JE%Q)HM,SA

1 T E(0plix; B0 li) o0 E(0p i
:E\/EN—IZ?IZI Zt:Tl (9, txt)_ZtT:I (9 I)Z’:Tl (9l +0p(1)'
Z,:]E(a,,zln) Zz:lE(anzhf) Zt:lE(a”ZIi’)

This is because Ed;;Q is diagonal and the ith diagonal element is
S E(0plixa), E(S:8)) = —H,y, and HMH;;IMM%Q is also diagonal and

2 E(0,0 6 ) I E (0, 3/,,)
2 E(0,20)

+0p(1).

and

the ith diagonal element is

5 Panel With Individual Effects and Time Effects

There are some difficulties in extending Hahn and Newey (2004) and Hahn and
Kuersteiner (2011) to panels with both individual and time effects. First, the
proof of consistency cannot be extended to allow both individual and time
effects because, when time effects are present, the criterion function cannot
be written as the average of a sequence of functions, with each function
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depending on only a finite number of parameters. Second, it would be very
tedious, if not infeasible, to extend Hahn and Newey (2004)’s empirical likeli-
hood method for asymptotic expansion to allow both individual and time
effects. Now, we introduce Fernandez-Val and Weidner (2016)’s method.
5.1 Consistency
L*S
Let B(rp,°) be a shrinking neighborhood of #° and ry =0 ((NT)Z‘J ) for
0<e<i— %1 and ¢ > 4. Fernandez-Val and Weidner (2016)’s argument of con-
sistency can be summarized as follows. First, dﬂQ(ﬂ, q]b(ﬁ)) has a zero point
within  B(rg, A°). Second, 030 (ﬂ, (j)(ﬂ)) has unique zero point because
Q(ﬁ, (}S(ﬂ)) is globally concave. These two together implies that the zero point
of 950 (B, ¢(B)) must lie in B(r,4°). More specifically, from Egs. (55) and
(58)—(62), we have
4 -1 0 i1
040 (8. 3(8)) = (Hpy — HayHyjHyp ) (8= B°) + U+ 0, ( N2T2

+0, (NT||B—B"|)). (45)

uniformly within B(r,8°), where

1
— -1 -1 -1 -1
It is not difficult to show that Hyp — HpgHppHyp is O,(NT) and U is

11
0, <N§T§). Let n= —2(Hgs — HppHppHyp)™'  |U|, then 5 is

1 1
0, <N§T§>. Thus f°+n and f° —n are both in B(r4,A°) w.p.a.l. From
Eq. (45), it is not difficult to see that
QB +n. p(B"+n)) <0< 90 (8" —n. p(8* —n)).

Because 030 (ﬁ @ (ﬁ)) =0 and 930 (ﬂ, (}ﬁ(ﬂ)) is strictly decreasing in f
(because Q (3, ¢(3)) is strictly concave in f3), we have & — 5 < 3 < f° + 1. There-

. 11
fore, {ﬂ—ﬂ0| <n=0, (NETE). This proves for the case dim(f) = 1. The

previous argument can be generalized to case with dim(f) > 1, see Fernandez-
Val and Weidner (2016) for details.

5.2 Asymptotic Expansion

With 1 replaced by ¢, Egs. (22)—(25) and Eq. (27) still hold. Therefore, we have
the following equations:

0=Sy+Hyy (—B°) +Hyy (— ¢°) + Ry, (46)
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0=Sy+Hyy (B—f") +Hyy (¢ —4°) +Ry. 47)
=== (Hyr —HpyHyjH ) R (S5~ HawHy50) 48)
- (Hﬁﬂ’ —HyyHypH, ¢ﬂ’) B (Rﬁ —HpyH ¥$’R¢) ’
Sp—HyyH Sy :Sﬁ _ﬁﬁaﬁ’ﬁ ;;;/54) — (Hpy —Hyy ) H S

71 -5 -1 771

(49)
Rp=Rppp +Rppp + Rygps

1 sy
Rﬂﬂﬂ: (ﬂ_ﬁo) (JOJ aﬂﬂ’/)’Q 52 dSQdS1> ( ﬁo)

1 ps;
Rppp =2(p~ ") (LJ OpppQ(s2) d32d51> —4°),

~ ! 1

Rygp = (¢_¢O) (J J a¢¢/3Q Ky dSzdS|>

’ (50)

Ry =Rppp +Rppp + Rpgg,
1 psy
~ i
Ropp=(B—1") (J J O ¢ Q(s2 dSzdS1>( -5,
0

1 psy
Rops =2(8—1°) (JOJ O pQ (52 d52dsl>

1 psy R
R¢¢¢ = ((25 - ¢O), (JO JO a¢¢’¢Q(S2)dS2dS1) <¢ — ¢0)

We want to show that with A replaced by ¢, Eq. (34) still holds, i.e.,

=== (Hyy ~HyyHyyHyy ) (Sp—HyyHyySs)
+ (17 o —HyyH zﬁﬂ’) B [
(Hﬂ¢' ~Hyy)HyySp+Hyy (Hﬁ’ - ﬁq;«;’)5¢_ (51)
S¢ ot (EOuypQ —HyH 1y B0y 40 ) Hoy )

11
+op (N—zrz).

In last section, when we show Eq. (34), we first show Egs. (26), (29), (30),
(32), and (33). Given relevant regularity conditions, Eq. (26) relies on the last
equation of Eq. (28), Egs. (29) and (30) rely on Eq. (28), and Egs. (32) and (33)

N 1 1 ~ 1 1
ely on Ea. G, 5= #=0, (NI E). -2 =0, (W1 %),
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H/Al =0 ||4 =0, (N%T%> and 4—2° %H/a/' S,. Therefore, to show equation
(51), with N/T — «, it suffices to show
1l l=0, (V) 1 =0,01),
qAS -~ H;;,ng.
2. Egs. (28) and (31), with A replaced by ¢.

o—4°|,=0, (T}t> and

These two are the difficulties using first-order conditions (46) and (47) to derive
the limit distribution. We have encountered the first in panels with only indi-
vidual effects. For the second, the difficulty is that the proof of Eq. (28) needs
to use diagonality of H,y, but H, is not diagonal.” For example, the seventh
equation of Eq. (28) is ||[H;;/'|| = O,(T"). Although H,; is high dimensional,
this is not difficult to show since H,y is diagonal and each diagonal element is
sum of T terms. Since H ,, is nondiagonal, to show ||H || = O,(T"") is much
more difficult. The second is the extra difficulty of models with both individual
and time effects, compared to models with only individual effects. In the fol-
lowing, we introduce how Fernandez-Val and Weidner (2016)’s method solves
these difficulties. -

Note that A, f, O(8, ¢), H,p and S, here corresponds to a, y, N2T2L(p, ¢),

—N%T%H and N%T%S of Fernandez-Val and Weidner (2016), respectively.

For the second difficulty, Fernandez-Val and Weidner (2016)’s idea is to
show that Hy, can be approximated by a diagonal matrix. Lemma D.1 of
Fernandez-Val and Weidner (2016) shows that’

-1 R o G P
HH‘W_ dlag(HLM,,HLff,)‘ :O,,(N T l), (52)

max

where diag (ﬁ;;l, ﬁ;flf,) is a diagonal matrix with left-upper block H,,, and

lower-right block Hzf},. Lemma S.1(ii) in the supplementary appendix of
Fernandez-Val and Weidner (2016) shows that

=0, (T45_1> . (53)

These two solve the main difficulty in proving Egs. (31) (with A replaced
by ).

Now consider the first difficulty. By Eqs. (22) and (23), f — A is an implicit
function of A — A°. Hahn and Newey (2004) and Hahn and Kuersteiner (2011)
use empirical likelihood method to transform the first-order derivatives so that

-1 w51
HH¢¢,—H¢¢,

8. Eq. (31) (with 4 replaced by ¢) can be proved by direct calculation.
9. Note that the likelihoodlfqnction in Fernandez-Val and Weidner (2016) equals the likelihood
function here divided by N272.
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ﬁ — % becomes a function of e. Fernandez-Val and Weidner (2016) use Legen-
dre transformation to transform the criterion function Q(f, ¢) from function of
and ¢ to function of # and s, O*(p, s). Here, s denotes score and its true value is
S4. They correspond to S and § in Fernandez-Val and Weidner (2016) respec-
tively. This transformation is crucial for asymptotic expansion because (1) after
the transformation, the third-order terms in the asymptotic expansion would be
functions of S, (2) S, has explicit analytical expression so that we can calculate
the magnitude of [|S,||, for ¢ =1, 2, ..., which can be used to truncate the
remainder terms in the Taylor expansion. More details about the Legendre
transformation method follows.

Consider the shrinking neighborhood B(rs, [iO) x By, d)o) of the true
parameters (5°, ¢°). Within this neighborhood, define

0*(B.s)= max [O(B,$)—¢'s],
(ﬁG:Bq (1'4,, (/)0)
O(p,s)=arg  max [O(B,$)—¢'s].
¢€:Bq (l',/,, [/)0)

Given f, O*(f, s) as function of s is called Legendre transformation of
OB, ¢) as function of ¢. Since Q(f, ¢) is strictly concave w.p.a.1 within
B(rs, 0 x £q(r¢,¢0), Q*(p, s) is well-defined w.p.a.1. Define the correspond-
ing shrinking neighborhood of (ﬂo, Sp)s

SB,(B°,¢°) ={(B,s) eRM™ I (B D(B, 5)) € B(rp, ) x By (4. ¢°) }-

Fernandez-Val and Weidner (2016) prove within SB, (8%, ¢°), 0*(, s) is
four times continuously differentiable. Thus Q*(f, s) is well-behaved and Tay-
lor expansion can be used. In the following, for Q*(p, s), we also suppress the
argument when its true value (5°, Sp) is plugged in.

It is not difficult to see that ®(f,0) =¢(p) and Q*(5,0) :Q(ﬂ,g;ﬁ([i)).
Therefore, we have dsQ* (8, 0) =030 (, ¢(5)). It follows that the first-order
conditions for f is.

90" (B,0) = 950 (p. $(p)) =0. (54)
Using the integral form of mean value theorem to expand dg O*(f3, 0) at @, Sp)s

90" (,0) = 950" + (9 O*) (B —F°) — (9w Q") Sy +R*(B),  (55)

R*(B)= : (B —ﬂo)/ (Jl Jal 050" (az)dazdm) B-p")

8|

0J0
1 1a
+(=1) J J Opp Q" (az)dardar | Sy (56)
00
| 1a
+ iszl) JJ@SAaﬁQ*(az)dazdal S¢,,
00
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where Q*(a) = Q(8° + a(p — °), Sy + a(—S)). It follows that
B—B"=—(04p0") " (90" — (9 0*)Ss) — 04y Q") 'R*(B). (57

By definition of Legendre transformation, the derivatives of Q*(, s) have a
special relationship with derivatives of Q(f3, ¢). For example, S4(8, ®(5, 5)) = s,
and after taking derivative with respect to s, we have

0ySp(B, ®(B, 5))0y®(B, ) =Iy 7.

By definition, we have ®(f, s) = —d,0*(f, ). Thus —dsy O*(B, 5) = [0y
Sp(B, DB, s))]71 =[H(, O, s))]fl. Using this kind of special relationship,
part (ii) of Lemma S.2 proves that

* -1
Opp Q" =Hyy —HyyHyy Hyp, (58)
950" =S, (59)
Opy Q" =HpyyH (60)
* —1 —1 —1 —1 —1
0upQ" = Hy 04y QH gy — o (HypgHy 0y Q) Hyf (61)

Because R*(p) is function of S, Fernandez-Val and Weidner (2016) are able
to show that

1, 11 .
RUP) =R ()~ 55, 0.2}y =0p (NIT2) 40, (4T 5

), (62)

uniformly over f € B(rg, /)’O). See part (2) of Fernandez-Val and Weidner
(2016)’s Theorem B.1 for detailed proof. This is why the Legendre transforma-
tion works. Egs. (57)—(62) together show that

-1
y: 0 __ -1 -1
p=F == (Hﬂﬂ’ —HyHypH d»ﬂ’) (Sﬂ _Hﬂ¢’H¢¢’S¢)
-1 —1 -1 -1
- (Hﬂﬂ’ —HypyHyyH ¢ﬂ’> 5SeH gy (%’ﬂQ —HyyH a¢¢/¢Q) HyyS¢
11 .
+0p (Nzﬁ) +0,(NT||B—B°|))]-

(63)
After we have Eq. (63), proof of Eq. (51) is straightforward.

5.3 Bias Calculation

Now we use Eq. (51) to calculate the asymptotic variance and bias. The proce-
dure is similar to the case with only individual effects.
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1 1 —
(1) N“2772 (S,; —HM/H,/”/I,ng) SN0, W),

where W = - li;n N7IT! (ﬁﬂﬂ/ —-H ,,,/)rﬁ{;,/l},ﬁ(/,ﬂ/) is assumed to be positive
N,T)—
definite.'’ W also has the following interpretation:
W= dim ST E(-Oelia), (64)

where z;; = x;; —n; —h, and 5; and h, are solutions of the following weighted
least squares problem:

E(aﬂzli,x,-,) 2
mind 3 B0k | == (65)
To see this, write out the first-order conditions of (65),
T E(()”zll'[xl',) .
> B0l (E(a,,zz,-,)_”" —h ) =0 fori=1,...,N, (66)

N E(aﬂzli,x[,)
E i)l == — =0 forr=1,...,T.
> (aﬂzl,,)( B " h,) 0 forr=1,..., (67)

Letn = (1, ..., ny) and h = (hy, ..., hy)', then Egs. (66) and (67) imply that
— —1 E 0” Lirxis
(', 1) ZHﬁ¢’HL¢¢’ and Z?I:IE:T:lE(anZlit) (W —Ni— h,) (m; + hr)/ =0.
It follows that
Zl > E(Ouli) (14 o) (4 )’
— —] — —_ —] —
=3 > E @ lii)ny+ b = Hy gy H iy =Hpy Hpy Flyp.
This proves Eq. (64).
11 —= N\l
(2)N"2T"2(Hpy = Hpgr)H Sy
11 _ N 1 AN
=N 2 (Hyy ~Hyy) (S ) - (FipSr) ) +op(1)
— JEN~ 1ZN Zr 12 E(9elisOrlivxin)
thl]E( Or2lir)
_] Z Z 0 l,-,a,,zl,-tx,-,)
> EOel)

The first equality uses Eq. (52).

+0op(1).

e = = = = —
10. Note that ]E(S},HM,{{WS(,,) — ~Hpy g Hyy and B(S,S}) =Higy #Hyy, but HyyH,
HyyyHyyHyy =HpyH yyHyp . This is because Hyy = Hp gy —bv', Hygyv =0 and Hyyv =0.
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11
0 D b SR —
(3)N"2T 2y (Hyl ~Hop ) Sy
S0 U — 7! " =1\
=—-N2T 2H/;¢’H¢{/) (H¢¢ —H¢¢/)<( L}J/Sg) , (HLff’Sf) ) +0[J(1)'
_Jan- 'ZN Z; 12 ((7; + hy)0xlis0211)

T
> E(0pl)
Z, B0+ hy) Ol 1,,)+
o

Zi:lE Oralir)
1
(4)_51\/ 2T 2S’ ¢¢ <E0¢¢ﬂQ Hﬁ¢’H¢¢’Ea¢¢¢Q) ¢¢’S¢

\/_N 1ZN Z: 1 ,,zl,,z,, 127 Zz 1 (0p3liszi) +0p(1).
Z:IE(aﬂzll,) S E(0.h)

Take (2)—(4) together, the asymptotic bias is W~ 'b, and

Z[_ S E(0ulidrliza) +Z < ,,zl,,z,t>
ST E(0.l)
E 0 lltaﬂzlllzll + ﬂzlltzl[
> S B (j0ctie)
S E(0:l) '

_ 7IZT

o \/EN_IZI‘:I

| N
WT 121’:1

6 Conclusions

This chapter provides detailed discussion for the working mechanism of the
techniques used in Hahn and Newey (2004) and Fernandez-Val and Weidner
(2016) to deal with high dimensional MLE, and their relationship with the clas-
sical fixed dimensional MLE. It can be considered as a translation and reorga-
nization of the main techniques of fixed effects panel models. Therefore, it
could be a starting point for researchers who have interests in the theoretical
derivation. This chapter also provides a map for asymptotic analysis of more
general models. For example, the discussion in Section 5 clearly shows where
the difficulty is in extending to panels with interactive effects. Knowing where
the difficulty is also could help us understand how general the specification of
the unobserved effects could be.

Acknowledgment

We would like to thank Martin Weidner for very helpful discussion.



196 Panel Data Econometrics

References

Arellano, M., Hahn, J., 2007. Understanding bias in nonlinear panel models: Some recent develop-
ments. Vol. 43. Econometric Society Monographs, p. 381.

Dhaene, G., Jochmans, K., 2015. Split-panel jackknife estimation of fixed-effect models. Review of
Economic Studies 82, 991-1030.

Fernandez-Val, 1., Weidner, M., 2016. Individual and time effects in nonlinear panel models with
large N, T. Journal of Econometrics 192, 291-312.

Fernandez-Val, 1., Weidner, M., 2017. Fixed effect estimation of large t panel data models. (arXiv
preprint arXiv:1709.08980).

Hahn, J., Kuersteiner, G., 2002. Asymptotically unbiased inference for a dynamic panel model with
fixed effects when both N and T are large. Econometrica 70, 1639-1657.

Hahn, J., Kuersteiner, G., 2011. Bias reduction for dynamic nonlinear panel models with fixed
effects. Econometric Theory 27, 1152-1191.

Hahn, J., Moon, H.R., 2006. Reducing bias of mle in a dynamic panel model. Econometric Theory
22, 499-512.

Hahn, J., Newey, W., 2004. Jackknife and analytical bias reduction for nonlinear panel models.
Econometrica 72, 1295-1319.

Honore, B., 1992. Trimmed LAD and least squares estimation of truncated and censored regression
models with fixed effects. Econometrica 60, 533-565.

Manski, C., 1987. Semiparametric analysis of random effects linear models from binary panel data.
Econometrica 55, 357-362.

Newey, W.K., McFadden, D., 1994. Large sample estimation and hypothesis testing. Handbook of
Econometrics 4, 2111-2245.


http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0010
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0015
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0020
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0025
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0030
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0035
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0040
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0045
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0050
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0055
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0060
http://refhub.elsevier.com/B978-0-12-814367-4.00007-1/rf0060

Chapter 8

Panel Vector Autoregressions
With Binary Data

Bo E. Honoré* and Ekaterini Kyriazidou"
*Department of Economics, Princeton University, Princeton, NJ, United States, 7LDepartmem‘ of
Economics, Athens University of Economics and Business, Athens, Greece

Chapter Outline

1 Introduction 197 5 The General M-Variate,
2 The Univariate Logit Model 199 General T VAR(1) Case 212
2.1 Static Case 199 6 Contemporaneous
2.2 Dynamic Case (Pure AR(1)) 202 Cross-Equation Dependence 213
2.3 Dynamic Case With 6.1 Static Case 213
Exogenous Covariates 204 6.2 Dynamic Case 216
3 The Bivariate Pure VAR(1) 7 Monte Carlo Experiments 219
Logit Case 206 8 Conclusions 220
4 The Bivariate Logit Model With Acknowledgments 221
Exogenous Covariates 209  References 221

1 Introduction

Discrete choice models play an important role in theoretical and applied econo-
metric research. Static and dynamic models have been used to explain decisions
such as labor force participation, brand choice, whether to invest, go to college,
and predict a recession. Inference methods have been developed for cross-section
data in univariate parametric (Berkson, 1944; Bliss, 1934), semiparametric
(Cosslett, 1983; Ichimura, 1993; Klein & Spady, 1993; Manski, 1975, 1985),
and nonparametric settings (Matzkin, 1992), among others.

Multivariate parametric discrete choice models for cross-sectional data have
been considered in the literature for the logistic case in Theil (1969) and
Nerlove and Press (1973a, 1973b). Schmidt and Strauss (1975) considered a
simultaneous logit model. Substantive literature also is found in statistics, such
as Carey, Zeger, and Diggle (1993) and Glonek and McCullagh (1995), who
proposed generalizations of the binary logistic model. Ashford and Sowden
(1970) and Amemiya (1974) focused on generalizing the binary probit model
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to a multivariate setting in a static framework. The main difficulty in probit
models lies in evaluating the likelihood function. Chib and Greenberg (1998)
developed a simulation-based Bayesian and non-Bayesian approach; Song
and Lee (2005) relied on the expectation maximization algorithm to evaluate
the likelihood function for a multivariate probit model. Huguenin, Pelgrin,
and Holly (2009) have shown that a multivariate probit model cannot be esti-
mated accurately using simulation methods, as generally is done in the literature.
Its estimation instead requires the derivation of the exact maximum-likelihood
function. All these papers are in a static framework with strictly exogenous
explanatory variables and assume a large n.

Dynamic discrete choice models for univariate time series data case have
been considered among others by Eichengreen, Watson, and Grossman (1985),
Dueker (1997, 2005), Chauvet and Potter (2005), and Kauppi and Saikkonen
(2008).] The last develop a unified model framework that accommodates most
previously analyzed dynamic binary time series models as special cases.
Chauvet and Potter (2005) apply a Bayesian approach to a dynamic probit
model. Candelon, Dumitrescu, Hurlin, and Palm (2013) generalize Kauppi
and Saikkonen (2008) to a multivariate setting. Multivariate dynamic discrete
choice models also are considered by Eichler, Manner, and Tirk (2015),
Nyberg (2014), and Winkelmann (2012). All these papers take a fully paramet-
ric approach, and they require a large 7.

The literature about univariate and multivariate discrete choice models for
panel data is much more limited, because these models are difficult to estimate,
especially in short panels with individual specific heterogeneity if one is unwill-
ing to make assumptions about how the latter is related to the observable exog-
enous covariates and initial conditions. See Chamberlain (1985) for static as well
as pure (i.e., without exogenous covariates) dynamic fixed effects logit models
and Magnac (2000) for multinomial dynamic panel logit models; Manski (1987)
for the semiparametric static case; and Honoré and Kyriazidou (2000) for
dynamic logit and semiparametric models with exogenous covariates. Most of
the research, however has focused on univariate models. Static bivariate panel
logit models with random effects (i.e., with parameterized heterogeneity) have
been considered by Ten Have and Morabia (1999) and dynamic random effects
models by Bartolucci and Farcomeni (2009). Narendranathan, Nickell, and
Metcalf (1985) consider a simple case of the type of models analyzed in this
chapter.

We consider inference in dynamic multivariate discrete choice panel data
models with fixed effects, in the sense that we avoid making assumptions about
the nature of the individual effects and their relationship with the initial condi-
tions and/or the exogenous covariates. We show that in the logit pure VAR(1)
case (i.e., without exogenous covariates), the parameters are identified with four

1. Validity of dynamic probit ML estimation has been proven by DeJong and Woutersen (2011).
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waves of observations and therefore can be estimated consistently at rate /n
with an asymptotic normal distribution.” We show that the identification strat-
egy of Honoré and Kyriazidou (2000) carries over in the multivariate case when
strictly exogenous covariates are included in the model. We also present an
extension of the bivariate simultaneous logit model of Schmidt and Strauss
(1975) to the panel case, allowing for contemporaneous cross-equation depen-
dence both in a static framework and a dynamic framework. The results of this
chapter are of particular interest for short panels, that is, for small T.

The chapter is organized as follows: Section 2 discusses univariate static and
dynamic panel logit models. Section 3 introduces the bivariate pure VAR(1) logit
model and discusses identification with four periods of data. Section 4 introduces
strictly exogenous covariates in the bivariate logit model of Section 3. Section 5
provides the identification condition for the general M-variate general T case.
Section 6 presents extensions of the simultaneous logit model of Schmidt and
Strauss (1975) to the panel case. Finally, Section 7 contains some simple Monte
Carlo simulations for the model of Section 3 for different sample sizes (n = 100,
400, 1600) and different panel lengths (T = 4, 6, 8). Section 8 offers conclusions
and discusses directions of future research.

2 The Univariate Logit Model
2.1 Static Case

We first review the static panel data logit model with strictly exogenous explan-
atory variables. Recall the cross-sectional logit model:

yi=1{x{p+e>0}.

If we assume that ¢; is logistically distributed conditional on the explanatory
variable, x;, that is,

Pr(er <215) = ey 5= AG)
then
_ N — exp(xiﬁ) o /
Priys = 1]0) = o e = Ah)

Estimation of f can be done by maximizing the log—likelihood function

i=1

2. Fernandez-Val and Weidner (2016) show how to estimate parameters and obtain partial effects in
a variety of nonlinear panel models with fixed effects, including the ones we consider here, assum-
ing, however, large T.
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We now turn to the panel data version of the simple logit model. The setup
considered throughout this chapter is one in which the econometrician has
access to a data set on a large number of observations, n, each observed across
a relatively small number of time periods. The static panel data binary choice
model with individual effects is

y[t:1{x§lﬂ+ai+8ir20} t=1,...T

where we assume that ¢;, is distributed logistically conditional on x; = (x;1,
Xj2, ..., X;7) and @; and independent over time. The assumption that ;, is inde-
pendent over time assumption implies that the y;,’s are independent over time
conditional on x; and a;. As above, we have that

Pr(yii = 1]x;, ;) = Pr(eq > —x,f — | xi, )
= Pr(eq <X f+ai] xi, 1)

exp (x;,[} + a,-)
1+ exp (X, f+a;)

= A(x;tﬁ + a,») .

In this model, a; plays the same role as a so-called fixed effect in a linear
panel data model, and the challenge is to estimate f without making assump-
tions about the relationship between x; = (x;1, Xi, ..., X;7) and @;. In a linear
model, this can be accomplished by differencing. Such differencing does not
work in nonlinear models.

One generic approach that sometimes can be used to estimate f is to con-
dition on a sufficient statistic for a;. Specifically, assume that for each i we can
find a function of the data, §;, such that the distribution of y; = (y;1, yi2, ..., YiT)
conditional on (S, x;, a;) does not depend on «;, and that the distribution of y;
conditional on (S;, x;, ;) depends on the parameter of interest (here, ). Then
we can estimate the parameter of interest by maximum likelihood using the
conditional distribution of the data given (S;, x;). This is referred to as
the conditional maximum likelihood estimator. See Andersen (1970). The
main limitation of this approach is that it often is impossible to find such a
sufficient statistic S;.

In the logit model, it turns out that Z, y;, is a sufficient statistic for a;. See
Rasch (1960). To see why, consider, for example, the case where T = 2.
In this case

Pr(yi= 1|y +y=0,x;, ;) =0
Pr(yi=1|yn+yn=2,x, ) =1

i.e., individuals who do not switch states (i.e., who are O or 1 in both periods)
do not offer any information about §. Consider the events in which the individ-
ual switches states, Ag; = {y;; =0, y» =1} and Ajp = {y;1 =1, y» =0}.



Panel Vector Autoregressions With Binary Data Chapter | 8 201

Here Ay UAj is the event y;; + y,» = 1. It then is easy to see that because of
independence over time
Pr(Aoi| xi, i) = Pr(yn =0,y = 1| xi, o)
= Pr(yq =0| x;, &) - Pr(yo = 1| x;, ;)
1 exp (XpB+a;)
T+ exp (X, f+a;) 1+ exp (x)f+a;)

and
exp (¥, f+a;) 1
1+exp (X, f+a;) 1 +exp (Xpf+a;)

PI‘(A10| Xi, (1,‘) =

Therefore,

Pr( Ao N (Aot UA0)| xi, ;)
Pr( Ao UAjo| xi, a;)

_ Pr(Agi| x;, i)

~ Pr( Ao | x;, ;) + Pr(Ajg| x;, @)

1

Pr(Ao| x;, a;)

Pr( Ao i, &)

. 1

1+ exp ((xﬂ —X,'z)/ﬂ)

=1—A((xn —xn)'B)

Pr(Aoi| Aot U Ao, xi, ;) =

1+

and

Pr(Ajo| Aot U Ao, x;, ;) = 1= Pr( Aot | Aot UAig, xi, ) = A((xin —x2)'B).

In other words, conditional on the individual switching states (from O to 1 or
from 1 to 0) so that y;; + y,» = 1, the probability of observing {0, 1} or {1, 0}
depends on f (i.e., contains information about ) but is independent of a;. For
T = 2, estimation of # can be based on maximizing the conditional log-likelihood

Ec(b) = Zl{yll +yi = 1} [y“ log (A((X,’] —X,‘z)/b))

+ (1 —yil)log (1 —/\(()C,‘l —Xl‘z)/b))]

exp ((xi1 —x2)'b)yin
1+ exp ((X,‘] —Xiz)/b)

N

= 1{Yi1+)’f2=1}10g<

i=1

ey

which is nothing but logit estimation with first-differenced regressors per-
formed on the individuals who switch states in the two periods.
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For general T, the conditional log-likelihood can be shown to be

b (St
= og
i=1 Z(dl, ydr)eB P (Zﬂ,x@b)

where

= {(dl, ...,dr) suchthatd,=0orl andZd,:Zy,-,}.
t t

For T = 2, this gives

D=3 11 +52=0) s (220)

+ 21{);,-1 +y;n=2}log <M>

i=1 exp (), A +x)/)

N / /
exp (y,-lx-] b +y,'2x2b)
+§ {yit +ypp=1}1o ! . .
— Dir+ya =1} g(exp(l-x;1b+0~x§2b)+exp(0~x§lb+1-xizb’)

Obviously, those i that have y;; = y;» = 1 have no contribution to the log-

likelihood (we obtain log (%) = log (1) =0, and similarly for those
X1

with y;; = y;» = 0 since log (zgg ;) log (1) =0. Therefore, we can write

N exp (y,-lx{l b+ y,-zx,gb’)
& ; bnye = 1og <CXP (x1) + exp (xD)

N exXp (y,qx;lb + (1 — il )X:zb)
_iz:l:l{yil"'y&_l}log < exp (xglb)+exp (X:2b)

Y i

exp (yi1 (X1 —Xi2) b
ZI{Yi1+Yi2=1}lOg( p (yir (xin —xi) ))
i1

1+ exp (x; —x,-z)'b

which agrees with the expression we obtained previously.

2.2 Dynamic Case (Pure AR(1))

The conditional maximum likelihood approach also can be used to estimate
panel data logit models with individual effects and lags of the dependent var-
iable, provided that there are no other explanatory variables and that there are at
least four observations per individual (see Cox (1958), Chamberlain (1985), and
Magnac (2000)). The panel AR (1) logit model is
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Pr(yi = 1| ;) = pi(a;) )

exp (yyi—1 +a;)
1+ exp (yyi—1 +a;)

Pr(yi =1 ai, yit, ..o, Yi—1) = Pr(yie = 1| @i, yim1) =

t=2,....T;T>4

where y;; is observed, although the model need not be specified in the initial
period. The underlying errors are assumed here independent of initial conditions
and identically distributed with logistic distribution. Eq. (2) does not make any
assumptions about the distribution of the initial y and how it depends on «;.

To gain intuition, consider the case with four observations per individual
(T =4). Inference on y then is based on individuals switching states in the
two middle periods, 2 and 3. Consider the events:

Aot ={yit,y2 =0,y3=1,yu}
Ao={yi,y2=1,53=0, i }.

By sequential decomposition of the joint probability and by the first-order
Markovian property of y, the probabilities of events .4y, and Ao can be written
as follows

Pr(Ao1| &) = Pr(yi1| ;) - Pr(yin = 0| a;, yi1)-
Pr(ys =1| a;,yn =0) - Pr(yu| ai, y3 =1)
1
— i — ) o )
pl(al) ( pl(al)) 1+exp(yy,-1 +ai)

exp(a;)  exp(yiay +yisa;)
I+exp(a) 1+exp(y+a;)

and
Pr(Ao| ;) = Pr(ya| a;) - Pr(yn = 1| a;, yi1)-
Pr(yi3 =0[ a;, yo =1) - Pr(yia| @i, yi3 =0)
V(] () SRyt )
pi(a)™ (1=pi(a)) 1+ exp (yyn +a;)
1 _exp (yisa)
l+exp(y+a;) 1+exp(a)
Therefore,
Pr( Aot | Aot U Ao, a;) 1 1
T , ) = =
01} 201 =10 : Pr(Aio| ;) 1+exp(y(yin —yia))
4 \AMOJ )
PI'(.A01| (l,‘)

PI‘(A10| Ao U Ay, a,—) =1- Pr(A01| Ao U Ao, (X,‘) = I ixeig((;}é;jyli)j))
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which do not depend on the individual effects. The conditional log-likelihood of
the model for T = 4 periods is:

Lc(g)= Z 1{yn +yi3 =1}log (ffiii((y;(; yf )y) ;) '
p il i4

3

The conditional log-likelihood is similar in the static Eq. (1) and dynamic
case Eq. (3). For general T, the conditional log-likelihood is based on the
fact that

T
L exp (}’thz)’it)’it—l)
Pr{ yit, yits -.yir| yit, yirs Z)’mai = T
=2 Z(do, ndr)eB P (yZzzzdfdf“)

where

T T
B= {(do, ...,dr) suchthat d, € {0, 1} andde:Zyi,}.
t= =1

1

See Cox (1958) and Magnac (2000) for higher order AR models.

2.3 Dynamic Case With Exogenous Covariates

Honoré and Kyriazidou (2000) propose conditional maximum likelihood type
estimators for an extension of the AR(1) panel data logit model that also allows
for strictly exogenous regressors.” They consider models of the form

Pr(yn = 1] x;, ;) =p1(xi, ;)
exp (XS +7yi—1 +a)

Pr 'ZI,X‘,a', i1s Yit— =Pr ‘:lx',a" it— =
(ylt | i» Qi Yils Vit 1) (y,f | is Xy Vit 1) 1+exp <x§1ﬂ+yyl.t71+al.)

where x; = (x;1, X2, X3, X;4). The model is unspecified for the initial period. The
x’s need not be observed in that period though, that is, x;; need not be observed.
Similar to the previous AR(1) logit, Honoré and Kyriazidou consider the events:

Aot ={yi,yn=0,y3=1,yis}
Ao= i1,y =1,y3=0,yu}.

By sequential decomposition of the joint probability, the probabilities of
events Ag; and A;¢ can be written as follows

3. D’Addio and Honoré (2010) generalized the approach in Honoré and Kyriazidou (2000) to a
model with two lags.
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Pr(Aoi| a;, x;) = Pr(yit| @i, x;) - Pr(yia = 0| @i, yir, xi) -
Pr(ys=1|a;,yn=0,x;) - Pr(yus| i, yiz =1, x;)
1
1+ exp (x§2ﬂ+}’yi1 +ai) '
exp (Xsf+a;)  exp (viaXyB+Yiay +yiuar)
1+ exp (x§3/)’+a,-) 1+ exp (x§4ﬂ+y+a,-)

—Vil

=pi(a, )" (1= pi(ai, x;))'

and
Pr( Aol ai, x;) = Pr(yin| ai, xi) - Pr(yio = 1| az, yin, x;) -
Pr()’is = 0\ ai, yn=1, Xi) : Pr(yl‘4| a;, yiz = 07)51')

I=yi °Xp (x:’2ﬂ+}/y"l +ai) .
1+ exp (xzzﬂ +yyil+ ai)

=pi(a,x;)" (1 =pi(ai, x;))

1 _exp (viaXiuB + yis)) .
L+exp (Xaf+r+a;) 1+exp(xyf+a)

Identification of  and y in this model is based on the fact that if x;, = x;3, then
B 1
L+ exp ((xi2 —xi3) B+y(yin —yia))

Pr(Aoi| Aot U Ajo, ai, Xi, Xi3 = Xia)

exp ((xo —xi3)'B+7(yit —yia))
P is Xis X3 —Aj4 ) =
r( Aol Aot U Ao, i, Xi, Xi3 = Xi4) ey F—" e r—

that is, they are independent of ;. We can estimate § and y by maximizing the
weighted log-likelihood function where (discrete) explanatory variables, x;;,
satisfy the condition Pr(x;; = x;3) > 0:

n ( exp ((xiz —xi3)'b+g(yn — yi4))m )

H{yia+yi3 =1} 1{x;3 —xis =0} log
; 1+ exp ((xi2 —x;3) b+ g (yin — yia)
4)

leading to root-n asymptotically normal and consistent estimators of f and y.
The objective function Eq. (4) is similar to the log-likelihood in the static
Eq. (1) and pure AR(1) dynamic case Eq. (3).

Although inference based only on observations for which x;;3 = x;4 might be
reasonable in some cases (in particular, experimental cases where the distribution
of x; is in the control of the researcher), it is not useful in many economic appli-
cations. The idea then is to replace the indicator functions 1 {x;3 —x;4 = 0} in the
previous objective function with weights that depend inversely on the magnitude
of the difference x;;3 —x;4, giving more weight to observations for which x;; is
close to x;4. Specifically, they propose estimating f and y, by maximizing
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n / Yi2
Xj3 — Xj exp ((xi2 —x3) b+g(yin — yu
E 1{)’i2+}’i3—1}K< 3h 4) 10g< ul( ) ( ) >

— 1+ exp ((xp —x3)'b+g(vi1 — yu))
)

with respect to b and g over some compact set. Here K(-) is a kernel density
function that gives appropriate weight to observation i, and 4, is a bandwidth
that shrinks to O as n increases. The asymptotic theory will require that K(-)
be chosen so that a number of regularity conditions, such as K(v) — 0 as
|v| — oo, are satisfied. The estimators are shown to be consistent and asymp-
totically normal although the rate of convergence in distribution is slower than
the usual 1/n. The proposed estimators are extremum or M-estimators. The key
idea behind the estimation is that the limit of the previous objective function, is
uniquely maximized at the true parameter values, under appropriate assump-
tions. It is clear that identification of the model will require that x;; —x;4 be
continuously distributed with support in a neighborhood of 0, and that x;, —x;3
have sufficient variation conditional on the event that x;3 —x;4 = 0.

3 The Bivariate Pure VAR(1) Logit Case

Narendranthan et al. (1985) considered a bivariate extension of the univariate
dynamic logit model:

Vi = HYLi—1711 +Y2i— 1712 + @1+ €1, > 0}
V2. = HYLi-1721 +Y2.ir-1720 + @2, + €2,s > 0}
where {&; A and {ea, A are independent i.i.d. sequences of logistic errors,

independent of the individual effects a; ; and a, ;. The model holds (at least) for
periods t = 2, ..., T while it is not parametrically specified for the first (initial)

period, that is, P ( <yl’“ >
Y2,il

effects in the sense that they can be correlated arbitrarily while their relationship
with the initial conditions is not specified. In the sequel, we suppress the i sub-
script for notational simplicity. Under these assumptions

A(COUCT ()
(] (2)
=p(ol (1)) 2 (ol (31 )

_ exp (@ +yi—1711 +Y2-1712)Y11) ) exp ((@2 +y2,-1721 +Yi-1722)Y21)
L+exp((a +yi—1711 +Ya-1712)) 1+exp((@+yu—1721 +Y2-172))

ayi, 0, i> is not parameterized. a; ; and a, ; are fixed
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We will first discuss identification in the T = 4 case. Using the same key
insight as in the univariate 4-period case, namely that conditioning on the indi-
vidual switching states in the middle two periods, that is, for t = 2, 3, eliminates
the individual effect, we consider first the case that both y’s switch states from 0
to 1. We have that

al, a2>

() ()= () C2) - (0)-(2)
() | |

ap, a2 |-
> L+ exp(ar+ynyi +yayin) 1+ exp (a2 +ynra +y2172)

~exp(ar) exp(a) exp((ar+yi1 +712)y14) exp (@2 +721 +722)y24)
IT+exp(aj)l+exp(ay) l+exp(aj+y;+rn) l+exp(az+yy +72)
and

i1 Y12 1 Y13 0 Yi4
P , = , = , a,a
Y21 Y2 1 y23 0 Y24
P<<YI1) ) exp (a1 +y1171 +y21712)  exp(aa+y11721 +y21722)
= aj,a |-
Y21

L+exp (a1 +y11711 +y21712) L+ exp (@2 +y11721 +¥21722)
T+exp(ai+yy +710) L+ exp(aa+yay +72) 1+exp(ar)1+exp(a)’

1 1 _exp(a1y14) exp(azy24)

Define

A= { () ()= (1) G2) = () G)

for j, k, [, m € {0, 1}.
It is not difficult to see that

P(Ai1,00] y11, Y21, Y14, Y24, A1, O2)
P(Aoo,11| Y115 Y21, Y145 Y24, a1, )

=exp (711 (V11 —Y14) + 71221 = y1a) + 721 (V11 — Y24) + 720 (V21 —y24))
and therefore

P(Aoo, 11| Y11, Y21, Y14, Y24, a1, a2, Ago, 11 U A11,00)

o P(A00,11|Y11,y21,Y14,y247611,a2)

 P(Ago,11] Y11, Y21, Y14 240 a1, a2) + P(Av1 00| Y11, y21, yiss yoss a1, a2)

1
P(A11,00|)’11,)721,)’14,)’24,061,062)
P(Aoo,11| Y115 Y21, Y14, Y24, 01, 22)
1
L+ exp (11 (Vi1 = y14) +712(v21 = y14) + 721 (V11 —y24) + 722 (¥21 —y24))
(6)

1+
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We observe that Eq. (6) does not depend on the fixed effects, while it iden-
tifies the dependence parameters, the y’s, from the variation of responses
between the first and the fourth periods.

Similarly, for individuals whose y; switches from O to 1 and y, switches
from 1 to 0 in the middle two periods (t = 2, 3) we have that

yu yi2 0 yi3 1 Vi4 Vi4
P , = , = , = ap, o
y21 »2 1 y3 0 Y24 Y24
_p i aa - 1 exp (a2 +y11721 +Y21722)
y21 ’ L+exp(ap +y1ri1+y21712) L+ exp(az +y11721 +¥21722)
exp (a1 +712) 1 ~exp (a1 +y11)y14) exp((a2 +721)y24)

L+exp(a;+yip) L+exp(aa+yyn) 1+exp(ar+yy) 1+exp(az+ya)

ay, a2>

ar.a | - exp (a1 +y11711 +y21712) 1
’ 1+exp(ar +y11r1 +y21712) L+ exp (a2 +y11721 +y21722)

()00
A0

. 1 exp(az+yar)  exp((ai+7y12)yi4) exp (@2 +722)y24)
L+exp(ar+yy) L+exp(aa+yy) 1+exp(ar+yy) L+exp(az+ymn)

and therefore

P(Aot, 10l ¥11, ¥21, Y14, ¥24, a1, @2, A10,01 LiAouo)

CT+exp(ri (i —yis) +ro0ia +y21 — D) + o1 (L= yi1 —y24) 722 (024 —¥21))

All sequences where at least one switch occurs contain information about
at least some of the unknown parameters. For example, consider the case
where y; changes from O to 1 between periods 2 and 3, while y, is O in both

periods:
yii yi2 0 Y13 1 Yi4
P N = s = S ar, o
y21 y22 0 y23 0 Y24
Y1 1 1
=P ap,ay | -
a1 L+exp(ap +y1ri+y21712) L+ exp (a2 +y11r21 +¥21722)

exp(ay) 1 _exp((a1 +711)y14) exp (@2 +721)y24)
l+exp(ar)l+exp(az) 1+exp(ar+yy;) l+exp(az+yy)
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and

Y11 Y12 1 Y13 0 Y14
P , = , = , ap, o

21 Y22 0 y23 0 Y24

—pl (™ ar.a | - exp (a1 + Y1171y +y21712) 1
Y21 ' L+exp (a1 +y11711 +y21712) 1+ exp(aa +y11721 +Y21722)
. 1 1 _exp(a1y14) exp(a2y24)
IL+exp(a;+yy) 1 +exp(az+yy) 1+exp(ay)l+exp(ay)

Therefore

P(Alo,oo\ Y11, Y21, Y14, Y24, A1, (Xz)
P(Aoo, 10\ Y11, Y21, Y14, Y24, A2, az)

=exp (711 (V11 —Y14) + 71221 — ¥21Y24)

and

P(AOO,10| Y11, Y21, Y14, Y24, &1, Q2,4 -AIO,OO UAOO,IO)
1

C1+exp(r (i1 —Yia) + 712521 — Y21)24)

In this case, the parameter of the own lag (y,,) of the process with no
switches in the two middle periods (y,) is not identified.

4 The Bivariate Logit Model With Exogenous Covariates

We now add exogenous variables to the model and demonstrate how the ideas of
Honoré and Kyriazidou (2000) can be applied to obtain identification and con-
struct estimators. The model takes the form

Yiit = 1{)’1,1’#1711 +Y2,i-1712 +x’1,nﬁ1 +ayiteLi> 0}
Y2,it = 1{)’1,1':717/21 +¥2,it—1722 +X/2,itﬂ2 tagitéer; > 0}

where {&;, AL and {e2, AL are independent i.i.d. sequences of logistic errors.
ay; and oy are fixed effects, and x;; = (x; ;; U x2 ;) is a set of strictly exogenous

variables. Again, the initial conditions P ( <§ Lil >
2,il

left unspecified. The model for periods # = 2, ..., T is (dropping the i subscripts)

AU ()

exp ((011 Y1711 FYu—1712+ X, P )YIz) exp ((062 +Y2,0-1721 +Y1-1722 +X'2,ﬂz>yzr)

011,1',az,i,xil,xiz,xia,xizt) are

1+exp (((11 YU 1711 Y1712 +X’1,/f1>) 1+ exp ((az Y1721 +Y2u-1722 +X/2[/f2>)

where x = (x1, X», X3, X4). As in the univariate case, we need not observe xj.
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Concentrating again on sequences where there is at least one switch of state
in the middle two periods in a 4-period panel, we have that
ay, a2, X)

()61
()

1 1
1+ exp (al +yurn tyarn +x’12ﬂ1) 1+ exp (az + Y172 tY2ur» +x’22ﬂ2)
exp (a; +X38,)  exp(az+xy,)
1+ exp (a1 +x’13ﬂ1) 1+ exp (az +x’23ﬂ2)
exXp ((0‘1 Ty tre +X/14ﬂ1)}’14) exp ((‘12 t70+72 +x§4ﬂ2))’24)
L+exp(ar+yy +712+X4B1) 1+exp(ar+7yy +72 +X5/,)

(M) G120 (-G
(o)

exp (a1 +yuyi +ynrin+x,61)  exp(a+ynyy +yarn +¥6)

L+ exp (a1 +yuyn +yarin +X,61) 1+ exp (a2 +y11721 + 21720 + Xh3)
1 1

L+ exp (a1 +y1 +712 +X361) 1+ exp (a2 + 71 + 72 +X33f,)
exp (@1 +x1481)y1s) exp (a2 +x3,8,) y24)
1+ exp (a1 +x’14ﬂ1) 1+ exp (az +x’24ﬁ2) '

and

Therefore, similarly to Honoré and Kyriazidou (2000), if the exogenous var-
iables do not change in the last two periods that is, if x3 = x4 then

P(AOO,H | Vi1, Y21, Y14, Y24, A1, A2, -AOO,II UAH,OO,X3 :X4)
=1/(1+exp(yy;(yi1 —y14) +712(y21 — y14) + (13 = x12) B
+ 721 (V11 — Y24) + 720 (21 — y24) + (X220 — x23)'35))

does not depend on the fixed effects.
Similarly, we can show that

P(Ao1,10] Y115 215 Y14, Y24, @1, @2, Ao1,10, X3 = X4)
=1/(1+exp(yy;(yi1 = y1a) +712(1a +y21 — 1) + (x12 —x13)' B,
+721 (L= Y11 = y24) + 722 (24 — y21) + (23 —x22)',) ).

Because the right side does not depend on @; or a,, the same result holds
without conditioning on those,
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P(Ao1.10|Y11.¥21, Y14- 24, Aot 10 U A10,01, X3 = x4)
=1/(1+exp(r11 (11 —y1a) +71201a +y21 — 1)+ (x12 —x13) By + 721 (1 = y11 —y24)
/
+722(¥24 —y21) + (323 —x22) f2)).

This expression can be used to construct a conditional “likelihood” function
that can be used to estimate y11, 12, Y21, Y22, f1 and p, without making any
assumptions about a; or a, or about the distribution of the initial y’s.

The coefficients on the exogenous variables, the f’s, are identified from the
variation of the x’s between periods 2 and 3. Furthermore, both of the f’s are
identified under the same conditioning event, namely x3 = x4, even if only one
of the y’s switches states in the middle two periods while the other remains con-
stant in both periods (a case in which, as we saw in the previous section, only the
parameters of the switching process are identified when there are no exogenous
variables). Indeed, consider the case in which y, changes from 0 to 1 between
periods 2 and 3, while y, is O on both periods:

ay, Ay, X)

() ()= ()= (-2
»21 22 0 y23 0 Y24
:P<<)’11> (ll,az,x)' 1
Y21 1+eXp<0€1+y11711+)’21712+X'12ﬂ1)
1 ‘ exp(a1+x'13ﬁl). . 1
1+exp (052 +Y11721 +Y21722 +x’2252) 1 +exp (0!1 +x'13ﬂ1> 1 +exp (az +x'23ﬂ2>

exp (a1 +711 +x481)y14) ' exp (a2 +721 +x5482)y24)
1+exp (a1+y11+x’14ﬂ1) 1+ exp <a2+y21+x’24ﬁ2>

(o)} G- GGG Co))

<<y11>
=P
Y21 1+8XP<0!1+y11711+y21712+x/12ﬂ1)

1 1 1

and

exp (al Y711 +Y21712 +)/12/f1)
ap,a,x | -

L+ exp (az +Y11721 +321722 +X’22ﬂ2) L+ exp (a1 +711 +X’13ﬂ1) L+ exp (az +721 +X’23ﬂ2>

exp ((01 +X'14ﬂ1)y14) exp ((a +X'24/}z)y24>
1+ exp ((11 +x’14/}1) 1+ exp ((12 +x’24ﬂ2)

Conditioning in x3 = x4 we obtain

P(A10,00] Y11, Y21, Y145 Y24, 01, @2, X3 = X4)
P(Aoo,10] Y11, Y21, Y14, Y24, 02, @2, X3 = X4)
=exp (r11 (11 —y14) + 712921 + (¥ = X3 = X 4314) B1 — 721924 — X5 ¥24P2)
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Therefore

P(Ago,10] ¥11-¥21-Y14- Y24. a1, @2, X3 = x4, Ago, 10 U Ag0,10)
1

1+ exp (71 111 —Y14) 712521 — 721324 + (¥12 —x13)' B1 — ¥ 1451 *X'24Y24/”2)

5 The General M-Variate, General T VAR(1) Case

Let y;, denote the vector of M choices of individual i at time ¢, (Y1, Y2.ir> -+
Yuir)- Also let ¥, = Fonts Ym2s ---» ¥Ymm) be the dependence parameters of the
m’th choice. The multivariate VAR(1) logit model with fixed effects is

P(Yi =Y | Y =Y1s s Yiee1 = Yio1 Qi - Ou,i)

_ H €Xp ym ny,, 1Ym T Ym,itOm, 1)
1+exp (yn Vm+ O, ,)

Note that y, can take 2" distinct values. Denote each one by B, for
(=1,...,2" For £=1,...,2" let N,(¢)=>"""'1{y,=B/} be the total
number of incidences of the particular set of choices B, between periods 1
and T — 1. Let Sy(m) =3,y be the total number that the mth choice was
made between periods 2 and 7. Note that Sy (m) is known if Ny (¢) and y7 is
given. Then

P(y,-z =y2, s Y =Yl Y = Y1 Qs oo Ot i)

_ HH exXp ym Il‘ylt 17/m +ym ztam 1)

m=11=2 1+exp(y1t 17/m+am1)

eXP (Zm— 1= 2ym ”yzt 17m+S ( )arru)
M oM .

TTII(1+exp ((Birm+ami))) ™"

m=1/(=1

Now consider the ratio of the probabilities for two sequences (y1, ¥2, ---, Y1)
and (z,,7,, ..., Zr) withy; = z;, yr = zrand Ny (¢) = N, (0), £ = 1, ..., 2. This
last condition implies that Sy (m) = S, (m) for m =1, ..., M. We then have

P(Yyn =Y Yr =7l Y = Y1 @i, -, dimg)
P(yn =12, Yir =21| Yy = Y1, @it -» Ait)

M T ,
€xp (Zm:l t:zym,ityitflym)
= M T ,
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and therefore

P(Yo =Yz - Yir =¥rl Yo =1 Yir =yr. Ny (- ) v ... ang.i)
exp (> > miiarm) %)
S (3 S et )
where
B={z:y, =z, yy =zrandNy () =N,(¢{) for{ =1, 2M}.
In other words, y;, yr = zyand Ny (R) forR =1, ..., 2M are sufficient sta-
tistics for {a, ..., ap;}. It is clear that the ML estimator of y based on Eq. (7)

will be consistent and /n asymptotically normal.

6 Contemporaneous Cross-Equation Dependence

The setup considered so far assumes that the errors are independent across equa-
tions in a given time period. At some level, this is not a strong assumption
because the individual-specific fixed effects can be correlated arbitrarily across
equations. The individual-specific fixed effects, however, also help govern the
dependence in the observed data over time, so the setup implicitly links the
dependence over time and the dependence across equations. It is of interest,
therefore, to also study a generalization of the model in which the cross-
equation dependence is driven by a separate parameter. To do this, we adapt
the simultaneous logit model considered by Schmidt and Strauss (1975) to
our panel data setting, both in a static and a dynamic context, allowing for
cross-equation dependence. To simplify the exposition, we will restrict atten-
tion to the case in which there are two outcomes.

6.1 Static Case

Schmidt and Strauss (1975) proposed a cross-section simultaneous equations
logit model in which two binary variables are each distributed according to a
logit model conditional on the other and on a set of explanatory variables

P(yri=1]y2ix1ix2,i) = A B +py2,i)

and

P(y2i=1]y1,isx1,i,%2) :A(X/Z,iﬂl +P)/1,f),

where A (-) is the logistic cumulative distribution function.

In this section, we adapt this model to a static panel data setting in which
each outcome can also depend on an individual-specific fixed effect. Specifi-
cally, assume that
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P(y1,ie=1]y2, it, {y1,is, Y2,is }yeps (it Loy an, @) ®)
= Ao+, By +py2i)

and

P()’Z,it = ] | }’I,ir, {yl,ih yz,is}s<p {xl,it}z-:lv {xz,it}lT:p al,ia a2,i) (9)
= A(az,i +x,z,izﬂ2 +/))’1,ir),

In this model, a; ; and a, ; are the fixed effects, x; ; and x, ;, are strictly exog-
enous explanatory variables, and p is the cross-equation dependence parameter,
which, as Schmidt and Strauss (1975) show, needs to be the same in the two
equations given the structure in Egs. (8) and (9).

Following Schmidt and Strauss (1975), it can be shown that

T T
P(y1ie=ct, 2,0 =2 {V1iss Y2ris Fyers X1it e 1o $X2,00 ey @11 @2,7)
exp (cl (aly,- +xl1,irﬂ1) +cy (azy,- +x’2’n/}2> +clc2p)

/ / / /
1+ exp (al,,- +xl’itﬂ1> + exp (agq,‘ +x2’”ﬁ2> + exp (al,i +xlvitﬂ1 +ay +x27”ﬂ2 +p>

for ¢q, ¢, € {0, 1}.

We now show that all parameters of the model are identified with two time
periods (T = 2). Using the notation adopted in the rest of the chapter, and drop-
ping the i subscripts for simplicity, define the event

ann={(2)-()(2)- ()}

for j, k, I, m € {0, 1}.
Observe that

exp (‘11 +x'11ﬁ1)

P(-AIO,OO‘X"”I""Z): :
1+exp (al +x/1 1//’1> + exp <a2 +x’21ﬂ2> + exp (oq +x’11ﬂ1 +ay +x’21ﬂ2 +/)>

1

1+exp (al +x’12ﬁ'1) + exp <a2 +x/22ﬁ2> + exp (al +x’12ﬂ1 +ay +,k122ﬁ2 +p)

and
1

P(Aoo,lo\ 0!1»0!2) = :
1+exp <a1 +X/1 ]ﬂl) + exp (a2 +X/21ﬂ2) + exp (al +x/“/}1 +ay +x/2][52 +p>

exp <a1 +x’12ﬂl)

1+ exp ((11 +x’12/31) +exp ((12 +x’22/}2) + exp <a1 +¥),B1 +ax +x, o +/))

which implies that

P(A.00| ¥, a1, a2) _ exp (a1 +x1,81)
P(Ago,10] x, a1, 2)  exp (a) +x),5)

= exp ((x11 —x12)'By).
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Therefore, f; is identified from

1
P UAj0.00, X, a1, ap) =
(A00,10| Ao, 10 10,00, X, A1 0‘2) 1+P(A10,o(1)|x, a1,az)/P(Aoo,1o|x, 0!1,062)

- 1+ exp ((X11 —xu)’ﬂl) '

This line of argument uses that fact that conditional on (y5,1, ¥2.2) = (0, 0),
v1.i: follows the simple static logit panel data model discussed in Section 2.1. We
present the explicit derivation to set the stage for the dynamic version of the
model in the next section.

The parameter f, is identified by the same reasoning.

It is clear from the previous calculations that the cross-equation parameter,
p, can be made time-specific. We next show explicitly how p, can be identified.

Consider

exp (“1 +x’11/)’1 +ay +x’21[)’2 +/)1)

P(An.oo\x,al,az) = ; p p ; :
1+exp (al +x11ﬂ1) + exp (az +x21/32) + exp (’11 +x11ﬁ1 +ay +x21ﬂ2 +p1)

1

1+exp (al +x/12/51> + exp (az +x/22/)’2> + exp ((11 +x’12/31 +ay +x'22/52 +/)2)

1

1+exp <a1 +x’11/i1) +exp ({12 +x’21ﬁ2) +exp (“1 +2 B rag By +/)1)

P(Aoo,n\xsalsaz):

exp (0’1 +X,B1 +ay + 3,52 +p2)

1+exp ("‘l +x’12/31> +exp ((12 +x’22ﬁ2) +exp (0’1 +x 1 +ag+x, 6o +/12)

and

exp (az +x’21ﬂ2)

1+exp (al +x111/51> + exp (az +x/21/7’2> + exp ((11 +x’11/31 +ay +x'21/32 +/)1)

P(Aouo\xsalsaz):

Y
exp (oq +)&12ﬁ1)

1+ exp (’11 +x’12ﬁ1> +exp (a2 +x’22/}2) +exp (0’1 +x’12ﬂl +ay +,€22ﬂ2 +/)2>

Because the denominators are the same,

P(Ai1,00] x, a1, a2) __exp (0!1 +x1, 5 +P1)

=exp ((x1; —x12) By +
P(Ao1.10| X, a1, a2) exp(a1+x’12ﬂ1) p(( s by pl)

and

P(Ago,11] x, a1, a2)  exp (a2 +x5, 5, +py)

/
=exp ((x2 —x21) By +p5).-
P(.A()l!lo‘x, al,ag) exp (0!2 +X/22ﬁ2) p(( 1) 2 2>
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Therefore (p;, p,) are identified from

1
P A UA 9 b 9’ =
(Aot 10] Aot,10U Ai1,00, X, a1, a2) 1+P(A11,00|9167061,az)/P(A01,10|X, ar )

1+ exp ((x” —xlz)/ﬂ] +p1)

and

1
1+P(Aoo,11|T,a1,a2)/P(A01,10|X, ay, o)

P(Ao1,10] Aot 10U Ago, 11, X, a1, ) =

1+ exp ((xzz —xz1)/ﬁ2 +p2) '

Again, this is not surprising, because y; ; follows the simple static logit
panel data model discussed in Section 2.1 conditional on (y,;1, y2.2) and on
the explanatory variables. We present the previous explicit derivation to set
the stage for the dynamic version of the following model.

6.2 Dynamic Case

We next consider a dynamic version of the previous model that combines the
insights from Schmidt and Strauss (1975) with those in Narendranthan et al.
(1985). Assume that

P(y1,i=1] 2,0 {V1iss Y2uis by Ai @2, (10)
=A@+ Y1711 +Y2i-1712 +PY2.it)
and
P(y2,i =1 Y1,i0s {VLiss Y2uis by Ais @2, an
=A@+ Yyri-1721 + Y2172 +PY1it)-

Similarly to the static case, p is the same in the two equations. For our fol-
lowing calculations, however, we need p to be constant over time. When p = 0,
Egs. (10) and (11) are the same as the model considered in Section 3.

Similarly to Schmidt and Strauss (1975), it can be shown that

P(yl,ir =1, Y2, = C2| {Y1iss Y2uis Fyerr AL az,i)

_exp(erani+yi1yi +Y2i-1712) + 2(@2i +Y1i-1721 +Y2.i-1722) + €1€2p)
B Ay

where

A =1+exp(aii+yLi—1711+Y2i-1712) + €Xp (@i +Y1i—1721 +Y2.i-1722)
+exp(ani+ Y1711 +Y2i-1712 + Qi + VL1721 V201722 +P)-
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We now will study identification in this model. As discussed in the previous
section, we can think of the identification result for the static version of the
model as an application of the results in Section 2.1. This is not the case there.
Conditional on (y,1, ¥2.2) = (0, 0), y,;, does follow the simple AR(1) logit
panel data model discussed in Section 2.2. This implies that y; is identified.
The parameter, y,,, is identified for the same reason. It does not seem that
we can recover the remaining parameters, y1,, ¥»1 and p, by a similar argument,
and we therefore mimic the calculations in Section 3. The outcomes of these
calculations will cast light on the identification in this model. Define

ann={ ()= () (2)=(0)- ()= () Car) = ()}

an={ ()= () G2) = (1): )= () C) - (1)}
(7] ()

1
1+exp(a] +r119 +y12d2) +exp<a2+y21d1 +y22d2) + exp (al +r1141 +r12dy +ap +rp1d] +~/22d2+/7)
exp (rzl +ay +p)

1+exp (“1) + exp (“2) + exp ("1 +ay +p) ‘

exp (fl ("1 +711 +712) +h ('12 +721 +722) +f1.fzﬂ) '
1+exp(a| +7H +712) + exp ((12 +y21 +722) +exp(a] +7” +712 +(12+721 +y22+p)

551 dq
P(Au‘oo\alsaz):f’ = ap.ay |-
1 dy

exp (al +y11d1 +712d2 +ay +721d1 +722d2 +/))

(12)

and

1+ exp (al +711d1 +}'12d2) + exp (112 +}'21(11 +]/22d2) + exp (al +711d1 +}'12(12 +112 +}'21d1 +722d2 +p)
1

1+exp(rxl +711 +7l2) + exp (”‘2 +7721 +y22) +exp(rzl +711t712tan 1o +722+p)
exp (flrzl +f2(12 +f1f2p)

1+ exp (al) + exp (“2) + exp ("1 +ay +/})

(13)
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The denominators in Eqgs. (12) and (13) are the same (note that it is crucial
here that p be time-invariant), so the ratio of the two is

P(Aoo, 11| ar,a2)  exp(fi(yy +712) +f2(r21 +722))

P(Ai100| @1, 2) B exp (y11di +712d2 + 721 d1 +¥ppda)

and therefore

P(Ai1,00] Aoo, 11 UA1100, a1, 2)
_ P(Ai1,00] a1, a2)

~P(Ago 11| a1, a2) +1P(-A11,00| ai, o)

1 +P(Aoo, 11| a1, @) /P(Air,00] a1, a2)
_ exp (di(y1 +721) +da(y12+72))
exp (fi(yi1 +712) +2(ra1 +722)) + exp(di(y11 +721) +da(r12 +722))

does not depend on (a1, a,). Setting (d, d», f1,f>) to (0, 0, 1, 0), (0, 0, 0, 1), (0, 1,
1, 1) and (1, 0, 1, 1) identifies y11 + 712, 721 + Y22, Y11 + Y21, and y12 + 22,
respectively. Unfortunately, these alone are not sufficient to identify (yqy,

Y12, Y21, ¥22)-
Next define

Ann={ ()= () (2) = () ()= () i) = ()
Aon={(00) = () ()= (1)- ()= (o) ()= (2)

We have that
al,(lz) .

11 dq
P(A10.01\a1»02):1’ =
1 dy

exp ((11 +}/11d1 +}'12d2)

1+exp ((ll +ylld1 +712d2> + exp ((l2 +y21d1 +722d2> + exp ((ll +711d1 +712d2 +ay +721d1 +722d2 +/))

exp (“2 +721 )

1+ exp (0’1 +71 1) + exp (a2+y21) + exp (al +r11 a2 721 +p) ‘

exp (f1 (fn +712) +f (az +722) +f1f2ﬂ)

l+exp(a1 +y12) +exp<a2+y22) + exp (al +y12 +(12 +y22+p)

and
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11 dq
P<A01A100‘10’2) =P =\, e
¥21 p)

exp (“2 +7214dy +}/22d2)
1+exp ((11 +71141 +712d2) + exp ((12 +7214d1 +722d2) + exp ((11 +711d1 +r12dy +ap +yp1dy +ypdy +/1>

exp((zl +712) ‘
1+ exp (al +712) + exp (a2 +y22> + exp (al +r12tan +ron +p>
exp (f] (01 +711) +h (02 +721) +f1f20)

1+exp(a] +71 1) +exp(a2+y2])+exp (al +r11 T2 +r21 +p)

which implies that

P(Aworla,a2)  exp(rindi+7v12d2) exp (var) exp (fiv 1o +/2722)
P(Aoi, 10l @1, a2)  exp(ya1di +72da)exp(y12) exp (firy +forar)

and therefore

P(Am_lo\ A10,01 UAm,loﬂl’az)
_ P(Aouo\apaz)

P(AIO.OI lap, (12) +P(.A01'10\ ar, "2)
1

N 1 +P(A10v01 | 111,‘12)/})(“401.10‘ al,az)
oxp (12141 +72202) exp (112) 0 (711 +£2721)

] exp (721d1 +722d2) exp (m) exp (fml +f2721) +exp (Vlldl +712d2) exp (m)exp (fmz +f2V22) '

Setting (d,, da, f1, f>) to (1, 0, 0, 0) and (0, 1, 0, 0) identifies y;; —y;, and
¥21 —Y22. Because yi;+7y12 and y,; + o, already were identified from P
(Aoo.11 | Aoo.11UA11 00), this identifies (y11, 712, 721, ¥22)- Note that p is not iden-
tified by this argument.

It is not difficult to show that strictly exogenous covariates can be incorpo-
rated in the model similar to Section 4.

7 Monte Carlo Experiments

In this section, we report results from a small Monte Carlo experiment. We gen-
erate data according to the bivariate pure panel VAR(1) logit model of Section 3
with y;; =0.1, y1,=0.2, yo; =0.3, y»o =0.4. Mean bias and root mean
squared error (RMSE) across 1000 replications are reported for N = 100,
400, 1600 in Tables 1-3 for T =4, 6, 8, respectively. Biases in this correctly
specified model are small, not larger than approximately 20%, even with the
smallest samples (N =100, T =4). As expected, RMSE is approximately
halved as sample size (N) quadruples and is smaller for bigger 7.
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TABLE1 T =4
N =100
Bias RMSE
711 0.01727 0.58733
Y12 —0.00592 0.53998
Y21 0.03683 0.53702
Y22 0.06807 0.62488
TABLE2 T =6
N =100
Bias RMSE
711 —0.00151 0.27358
yi2  0.00174 0.26474
Y21 0.00004 0.28008
722 —0.00141 0.29543
TABLE3 T =38
N =100
Bias RMSE
148 0.00269 0.20842
Y12 —0.00924 0.20885
721 0.00054 0.21731
Y22 0.00889 0.21606

8 Conclusions

N = 400
Bias RMSE
0.00595 0.24058
—0.0002 0.24146
0.01512 0.23583

0.00975 0.26795

N = 400
Bias RMSE
0.00562 0.1326
0.00604 0.13038
0.00478 0.13485

—0.00973 0.1451

N = 400
Bias RMSE
0.00164 0.11059

—0.00045 0.10485
0.00049 0.10801
—0.00080 0.10674

N = 1600
Bias RMSE
0.00031 0.12155
0.00546 0.11358

—0.00032 0.11447

—0.00047 0.13008

N = 1600
Bias RMSE
—0.00116 0.07211
0.00446 0.06732
0.00129 0.06806
—0.00224 0.07129

N = 1600
Bias RMSE
—0.00414 0.05461
—0.00028 0.05342
—0.00076 0.05397

0.00333 0.05337

The chapter discusses an identification strategy for multivariate dynamic logit
models in short panels and how it relates to the conditional maximum likelihood
approach for univariate panel data logit models. Furthermore, it provides an
extension of the simultaneous logit model of Schmidt and Strauss (1975) to
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a panel context. Although the fixed effects approach adopted is robust to the
presence of unobserved individual heterogeneity of the usual (additive) form
that can be correlated arbitrarily with initial conditions, it suffers from the usual
critique, namely, it cannot identify coefficients of time-invariant variables, nor
can it provide predictions. Furthermore, the estimators in certain dynamic
models with exogenous covariates typically will not have the parametric /n
rate of convergence. Although the logistic assumption adopted throughout this
chapter can be restrictive, we conjecture that this assumption can be relaxed
similarly to Honoré and Kyriazidou (2000). It might also be of interest to con-
sider identification in models with more than one lag.
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1 Introduction

The use of panel data in models examining efficiency and productivity are ubiq-
uitous. The prevalence of panel data appears at the academic level and by reg-
ulators and policymakers. This is no coincidence. The academic interest in
stochastic frontier analysis with panel data stems from the ability to decompose
various forms of heterogeneity into noise and inefficiency and to examine the
behavior of technology over time. For policymakers and regulators, how firms
respond to regulation and benchmarks warrants use of panel data almost by
definition, and the increase in observations has the potential to improve estima-
tion efficiency and add power to any inference that is conducted. Thus, panel
data stochastic frontier models are legion and of broad appeal.

More recently, a sea change has arisen in how one views panel data stochas-
tic frontier models. As the literature has evolved, so too have the views of these
models and what they are capable of explaining. For example, until recently it
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was a commonly held belief that firm heterogeneity, firm-specific inefficiency,
and time-varying inefficiency could not all be modeled. This turned out to be
false and what has arisen is the four-component stochastic frontier model, or the
generalized panel data stochastic frontier model. Given the nascency of these
models, coupled with the lack of in-depth treatment of these models (though
there is some coverage in the recent reviews of Kumbhakar, Parmeter, &
Zelenyuk, 2018; Parmeter & Kumbhakar, 2014), this chapter seeks to provide
a rigorous overview of the various approaches to estimation and inference
specific for the four-component stochastic frontier model.

The discussion is important beyond academic interest. As noted by
Kumbhakar and Lien (2018, pg. 35), “Given that the efficiency estimates vary
widely depending on whether one models transient inefficiency, persistent
inefficiency, or both, the regulator ought to take extra care in using the appro-
priate model and the correct efficiency measures in practice, especially when
the efficiency measures are used to reward/punish companies as an incentive
for better performance.” Proper understanding of the most recent panel data sto-
chastic frontier models is important for practitioners so that they have the best
information to put forth when constructing benchmarks and recommending
policy.

2 Earlier Models and Shortcomings

A wide variety of panel data stochastic frontier models have been proposed, dat-
ing to the earliest work of Pitt and Lee (1981). A variety of texts have discussed
these models (Greene, 2008; Kumbhakar & Lovell, 2000; Parmeter &
Kumbhakar, 2014). We will highlight several of the more recently developed
models and discuss why they are still insufficient with respect to the generalized
panel data stochastic frontier model.

The time-invariant stochastic frontier model of Pitt and Lee (1981) can be
viewed as a standard panel data model in which «; is the unobservable individ-
ual effect and standard panel data fixed- and random-effects (REs) estimators
are applied to estimate the model parameters including a;. The estimated value
of a; then is transformed to obtain estimates of u;.

A notable drawback of this approach is that individual heterogeneity cannot
be distinguished from inefficiency: All time-invariant heterogeneity is con-
founded with inefficiency, and therefore #; will capture heterogeneity in addi-
tion to, or even instead of, inefficiency. Another potential issue of the model is
the time-invariant assumption of inefficiency. If T is large, it seems implausible
that the level of inefficiency of a firm will stay constant for an extended period
of time or that a firm that was persistently inefficient would survive in a
competitive market.

The question is: Should one view the time-invariant component as persistent
inefficiency or as individual heterogeneity that captures the effects of (unob-
served) time-invariant covariates and has nothing to do with inefficiency?
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If the latter setting holds, then the results from the time-invariant inefficiency
models are incorrect. A less rigid perspective is that the truth lies somewhere in
the middle; inefficiency might be decomposed into a component that is persis-
tent over time and a component that varies over time. Unless persistent ineffi-
ciency is separated from the time-invariant individual effects, one has to choose
either the model in which a; represents persistent inefficiency or the model in
which @; represents an individual-specific effect (heterogeneity).

First, we consider models in which inefficiency is time-varying, and the
time-invariant component is firm heterogeneity. Therefore, the models we
focus on is

y,‘z:ai+x§,ﬂ+vit*mz, (H

where y;, is the (natural) logarithm of output for firm i in period ¢, x;, is a vector
of the logarithm of inputs, v;, is stochastic noise, and u;, is time-varying ineffi-
ciency. Compared to a standard panel data model, we have the additional time-
varying inefficiency term, u;,, in Eq. (1).

If one treats a;, i = 1, ---, N as a random variable that is correlated with x;,
but does not capture inefficiency, then the model presented earlier becomes
what has been termed the true fixed-effects (TFE) panel stochastic frontier
model (Greene, 2005b). The model is labeled as the true random-effects
(TRE) stochastic frontier model when «; is treated as uncorrelated with x;;.

Estimation of the model in Eq. (1) is not straightforward. When o, i = 1, -,
N, are embedded in the fixed-effects (FE) framework, the model encounters the
incidental parameters problem. The incidental parameters problem arises when
the number of parameters to be estimated increases with the number of cross-
sectional units in the data, which is the case with the ¢; in Eq. (1). In this sit-
uation, consistency of the parameter estimates is not guaranteed even if
N — oo because the number of a; increases with N.

For a standard linear panel data model, one that does not have —u;,, the lit-
erature has developed estimation methods to deal with this problem. The
methods involve transforming the model so that @; is removed before estima-
tion. One can use the within-transformation or the first-difference transforma-
tion model to remove a;. Without a; in the transformed model, the incidental
parameters problem no longer exists and the number of parameters to be esti-
mated is not large. Greene (2005b) ignored the incidental parameter problem
and proposed estimating all the $ and a; parameters using the ML method. More
specifically, he assumes u;, follows a simple i.i.d. half-normal distribution and
includes N dummy variables directly into the model for a;, i = 1, ---, N and then
estimates the model by MLE without any transformation. Greene’s (2005b)
results show that the incidental parameters problem does not cause significant
bias to the model parameters () when T is large.

The problem using the transformed model was the derivation of the likeli-
hood function based on the within (or first-difference) transformation. Chen,
Schmidt, and Wang (2014) solved the problem by using the result that the error
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term in the transformed model has a closed skew normal (CSN) distribution.
Thus the log-likelihood function has a closed form expression and ML estima-
tion of the parameter is possible. One also can use the approach of Jondrow,
Lovell, Materov, and Schmidt (1982) to estimate u;,.

Wang and Ho (2010) solve the TFE problem in Greene (2005b) by propos-
ing a class of stochastic frontier models in which either the within or first-
difference transformation on the model can be carried out while also providing
a closed form likelihood function. The main advantage of such a model is that
because the a;s are removed from the model, the incidental parameters problem
is avoided entirely. As such, consistency of the estimates is obtained for either
N — o or T — oo, which is invaluable for applied settings. A further compu-
tational benefit is that the elimination of ;s reduces the number of parameters to
be estimated by N. The model, however, is quite complicated to estimate, com-
monly encountering convergence issues, using the ML method.

Formally, the Wang and Ho (2010) model is:

Yit = +x§,ﬁ + Eir, ()

withv;, ~ N (0,62), u;, = ;i and uf~N*(u, 62), the now-familiar scaling property
model with a truncated normal distribution for the basic distribution of ineffi-
ciency. For the scaling function, Wang and Ho (2010) set g;, = exp (z,, i/ 5").
The key feature that allows the model transformation to be applied is the scaling
property. Because u; does not change with time, the within and the first-difference
transformations remove q; leaving the stochastic ; intact, which helps in the der-
ivation of the likelihood function. The transformed model becomes

Ay; = Ax:,ﬂ + Agj, 3)

using the notation Aw; =w; —w;, _; for variable w;. The error terms
A= Avi — [gi() —gir —1()]uj, the pdf of which can be easily derived fol-
lowing the distributional assumptions on v;, and u;.

Let the stacked vector of Aw;,, for a giveniand t =2, ..., T, be defined as
AW, = (Awpp, Awgs, ..., Aw;r)' the log-likelihood function for the ith cross-
sectional unit is (Wang & Ho, 2010, p. 288)

1 1 1
1nL?:_§(T— 1) In(27) =3 In(T) =5(T — 1) In(c?)
2 2
I i~ 1 [(H
—EASI'E A8i+§<0'—£_6_5> 4)
+In <5*q><”—*>> I (GM(I) <ﬁ>>
Oy Oy
where
7/4/03—AE;Z_1A}7,-' ) 1

*[

- ~ > O i= = ~ >
ARE AR +1/62 AR E AR +1/02
and Ag; = Ay; — Ax,p.
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The (T — 1) x (T — 1) variance-covariance matrix X of Av; is

205 —O'% o - 0
—6% 26% —0% 0
=10 : : &)
L g
0 0o - —03 205

The matrix has 267> on the diagonal and — o2 on the off-diagonals. The final
log-likelihood function is

N
InL = Z In Cf-).
=1

After the model parameters have been estimated, the observation-specific
inefficiency index is computed from

¢(ﬂ*i/0*i>
(I’(M*i/a*i)

evaluated at Ag; = A’;?i. The model of Wang and Ho (2010) represents another
demonstration of the usefulness of the scaling property in applied settings. A
limitation of their model is that it does not completely separate persistent
and time-varying inefficiency. Moreover, both the mean and the variance of
u;, are functions of the scaling function that can complicate interpretation.

Although several models that can separate firm-heterogeneity from time-
varying inefficiency exist, none of these models considers persistent technical
inefficiency. Identifying the magnitude of persistent inefficiency is important,
especially in short panels, because it reflects the effects of inputs such as man-
agement and unobserved inputs that vary across firms but not over time. Unless
there is a change in something that affects the management practices at the firm
level (such as changes in ownership or new government regulations), it is
unlikely that persistent inefficiency will change. Alternatively, time-varying
efficiency can change over time without operational changes in the firm. This
distinction between the time-varying and persistent components is important
from a policy perspective because each yields different implications.

To help formalize this issue more clearly consider the model

E(uif| A€&;) = hiy |, + 04 , (6)

Yie =Py +x;zﬁ+5n =B +x;ﬁ+Vir* (711‘+Tiz)~ @)

The error term, g;,, is decomposed as ¢;; = v;; —u;, where u;, is technical inef-
ficiency and v, is statistical noise. The technical inefficiency part is further
decomposed as u;; = 1; + 7;, where 7; is the persistent component (for example,
time-invariant ownership) and z;, is the residual (time-varying) component of
technical inefficiency, both of which are nonnegative. The former is only
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firm-specific, while the latter is both firm- and time-specific. These models
were introduced by Kumbhakar (1991), Kumbhakar and Heshmati (1995),
Kumbhakar and Hjalmarsson (1993), and Kumbhakar and Hjalmarsson (1998).

In this model, the size of overall inefficiency, as well as the components, are
important to know because they convey different types of information. For
example, if the residual inefficiency component for a firm is relatively large
in a particular year, then it might be argued that inefficiency is caused by some-
thing that is unlikely to be repeated in the next year. If the persistent inefficiency
component is large for a firm, however, then it is expected to operate with a
relatively high level of inefficiency over time, unless some changes in policy
and/or management take place. Thus, a high value of #; is of more concern from
along-term point of view because of its persistent nature than a high value of z;,.

The advantage of the current specification is that one can test the presence of
the persistent nature of technical inefficiency without imposing any parametric
form of time-dependence. Further, by including time in the x;; vector, we sep-
arate exogenous technical change from technical inefficiency.

The model can be estimated using a single-step ML method (as a special
case of the four-component model to be discussed later) using say half-normal
distributions on #; and 7;, along with the normality assumption on v;,. It also can
be estimated using a multistep procedure. Again, see the work of Kumbhakar
(1991), Kumbhakar and Heshmati (1995), and Kumbhakar and Hjalmarsson
(1993), and Kumbhakar and Hjalmarsson (1998).

3 The Generalized Panel Data Stochastic Frontier Model
To begin, consider the benchmark parametric panel data regression model:
Yie =m(Xi; B) +ci+ Vi 3

Until assumptions are made regarding the structure of c; and v;,, this model is
nothing more than the classical panel data model that is common across applied
econometrics when m(x;; f) is linear in . This model is adapted to the stochas-
tic frontier setting by including inefficiency. Two specific forms of inefficiency
are included. First, there is persistent inefficiency, which varies across firms,
but not time. Second, there is transient inefficiency, which varies across both
firms and time. When both of these terms are included, it is the generalized
panel data stochastic frontier model (GPDSFM) or more colloquially as the
four-component stochastic frontier model.

The linear GPDSFM is

yit:m(xit;ﬂ)"'ci_’7i+vit_uit:x:'1ﬂ+ai+€ita 9

where a; = ¢; —n; with ¢; capturing time-invariant heterogeneity and #; encap-
sulating time-invariant (persistent) inefficiency, while &;, = v;;, — u;, with u;,
representing time-varying (transient) inefficiency. The panel data SFM is iden-
tical to the panel data regression model in Eq. (8), except that, because pf
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u;; > 0, €, no longer has mean zero, and a; no longer solely captures individual
specific heterogeneity.

Rote application of the linear panel data regression model faces a common
dilemma regarding the relationship between c¢; and x;. The most common
assumptions for modeling this relationship are the fixed-effects framework
and the random-effects (RE) framework. The benefit of the FE framework is
that no specific relationship need be specified between x;, and c;; the parameters
of the frontier, f, can be estimated consistently using the within or first-
difference transformation (Baltagi, 2013). Operating in the RE framework,
x;; and c; are required to be uncorrelated, leading to OLS being a consistent,
but ultimately inefficient, estimator. A feasible generalized least squares
approach is available to obtain asymptotically efficient estimators of the param-
eters of the regression model in this case. Alternative approaches, such as a
Hausman and Taylor (1981) or correlated random-effects (CRE) approach also
could be deployed. We do not cover those cases because, to our knowledge, they
have not been applied to estimate a stochastic frontier model. An approach akin
to the work of Mundlak (1978) does exist; and we will have some brief remarks
about this later.

Until recently, econometricians and applied researchers estimated variants
of the four-component model in (2) because it was unclear how specifically to
estimate all of the parameters of the model in a consistent fashion. This changed
with the proposals of Colombi, Kumbhakar, Martini, and Vittadini (2014),
Kumbhakar, Lien, and Hardaker (2014), and Tsionas and Kumbhakar (2014),
all of which use the one-sided structure of the two inefficiency terms to develop
estimators for the model.

In the GPDSFM, each of the four components takes into account different
factors affecting output, given inputs. As in Greene (2005b, 2005a), ¢; captures
heterogeneity that varies across firms but is time constant. Because this is not
inefficiency, it needs to be accounted for separately beyond persistent ineffi-
ciency. Failure to do so will result in an overstatement of time-constant ineffi-
ciency. Persistent inefficiency, #;, collects features that serve to lower firm
output but do not change over time. This component first was included in panel
data stochastic frontier models by Kumbhakar and Hjalmarsson (1993),
Kumbhakar and Heshmati (1995), and Kumbhakar and Hjalmarsson (1998).
The noise component, v;, captures stochastic shocks beyond control of the firm
(which has always appeared in any panel data stochastic frontier model). Lastly,
transient or time-varying inefficiency, u;,, represents inefficiency levels that, in
some sense, can be corrected by the firm. This component is similar to many of
the earliest panel data stochastic frontier models, including Kumbhakar (1990)
and Battese and Coelli (1992).

There are many reasons why practitioners should embrace estimation of the
GPDSFM. First, while earlier models that include time-varying inefficiency can
accommodate firm heterogeneity, these models fail to acknowledge the pres-
ence of persistent inefficiency. Next, those panel data stochastic frontier models
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that allow time-varying inefficiency commonly assume that the inefficiency
level of the firm at time ¢ is independent of its previous level of inefficiencys; it
is more reasonable to assume that a firm can eliminate some of its ineffi-
ciency by mitigating short-run rigidities, yet other sources of inefficiency might
remain over time. It is these rigidities that are captured by the time-varying
component, but the sources that remain are more aptly characterized through
n;. Lastly, although several earlier panel data stochastic frontier models have
considered time-invariant inefficiency, they have not simultaneously accounted
for the presence of unobserved firm heterogeneity. In doing so, these models
confound time-invariant inefficiency with firm effects (heterogeneity). Regula-
tors and policymakers should jump at the opportunity to separately capture firm
specific heterogeneity, persistent, and transient inefficiency. The ability to char-
acterize each of these aspects of variation in firm output should aid in bench-
marking, yardstick competition, carrot-and-stick policies, and more.

Given what we hope is an earnest motivation of the GPDSFM, we now turn
to estimation. A variety of proposals have been made recently, and, given the
nascency of this model in applied milieus, we believe it prudent to detail each of
these strategies. All of the approaches we will discuss center on maximum like-
lihood estimation based on assumptions of half-normality imposed on each of
the inefficiency components and normality imposed on firm-specific heteroge-
neity and idiosyncratic noise.

3.1 Plug-in Estimation

We begin discussion of estimation of the GPDSFM in Eq. (9) through a simple,
multistep procedure originally proposed in (Kumbhakar et al., 2014). This
approach is what is known as pseudo- or plug-in likelihood estimation (see
Andor & Parmeter, 2017).

First, rewrite the model in Eq. (9) as

yi,:ﬁ8+x;tﬂ+a;k+£;, (10)

where 5 = fo — Elni] — Elu;l; of = ¢; — n; + Elni]; and & = viy — u; + Elu;].
With this specification, both a; and &}, are zero mean and constant variance
random variables. Additionally, we will assume that v;, is i.i.d. N(O,a,%) and
U is i.i.d. N,(0,05) while ¢; is i.i.d. N(0,67), 7; is i.i.d. N.(0,57). The parameters
of the model are estimated in three steps. We discuss estimation of this model
under the RE framework.

Step 1: Use any of the standard random effect panel data estimators
(Amemiya, 1971; Nerlove, 1971; Swamy & Arora, 1972) to estimate
B. Useﬁ to generate predicted values of a; and &};, denoted by &;‘ and

& This step does not require any distributional assumptions.
Step 2: Time-varying technical inefficiency, u;,, is estimated using the infor-
mation contained in &;, from Step 3.1. We have €}, =v;, — u;; + \/2 /0,
under the assumption of half-normality. The parameters for the
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distributions of v and u can be estimated using maximum likelihood.
Doing so produces predictions of the time-varying technical ineffi-
ciency component u;;, E[e” “‘][¢};], which Kumbhakar et al. (2018)
term relenting technical efficiency (RTE).

Step 3: Estimate 7, following a similar strategy as in Step 3.1. For this, we use
a; from Step 3.1. Again, based on the common distributional assump-
tions, a; =c; —n;++/2 /7oy, can be estimated using maximum likeli-
hood. Estimates of the persistent technical inefficiency (PTE)
component, can be obtained from E [e~ " |a}]. Overall technical effi-
ciency (OTE) is constructed as the product of PTE and RTE,
OTE = PTE x RTE.

One must be careful in the implementation of maximum likelihood to recognize
that the likelihood functions for ¢, (a;) differ from that of &j,(a). This stems
from the fact that &j(«) is centered at zero, which requires subtraction of E
[u;] (E[n;]), which in turn depends on 6, (c,). If one were to erroneously pass
the time-varying (time-constant) residuals from a panel data routine calculated
in the first stage to a standard stochastic frontier estimation algorithm, it will
produce biased estimates of all the parameters in Step 2 or 3. The reason is
the failure to recognize the centering. This requires a slight modification of
the likelihood function (see Andor & Parmeter, 2017; Fan, Li, & Weersink,
1996). It is possible to extend the model just described (in Steps 3.1 and 3.1)
to include PTE and RTE that is distributed as truncated-normal or exponential
as opposed to half-normal.

The three-step approach of Kumbhakar et al. (2014) inefficiency to full
maximum likelihood, yet is straightforward to implement. Previous work has
shown that various stepwise approaches tend to perform nearly equally as well
as maximum likelihood in small sample settings. Olson, Schmidt, and Waldman
(1980) and Coelli (1995) both find that the corrected ordinary least squares esti-
mator (COLS) has similar performance to application of the normal-half normal
stochastic frontier model. Andor and Parmeter (2017) document that pseudo
likelihood has nearly identical performance to maximum likelihood as well.
These results suggest that concerns about loss of efficiency in applying stepwise
or corrected procedures might be overstated. No comparative study, however,
has been undertaken to determine if migrating from the cross-sectional setting
to the panel affects these conclusions in any way. This is an interesting inves-
tigation for future study.

An alternative multistep approach based on COLS follows from Kumbhakar
and Lien (2018). Rather than performing maximum likelihood estimation in
steps 2 and 3, method of moments are deployed to recover estimates of the
unknown distributional parameters. A benefit of this approach is that a modified
likelihood function is not needed, and these estimators can be constructed with a
few lines of code in any matrix-oriented statistical software. To see this, under
the assumption of normal-half normal for either ¢; or ¢, the variance parame-
ters can be constructed using the second and third moments of these terms. That
is, for the second and third moments of, say, f i
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T
i (€)= (nT) " e (11)
and

T
13 (&) = (nT) ™! 4 pyes (12)

&2 = max {0, [ﬁ(ﬂ”_él)mg(e)] 2/3} (13)

&2 =iy (%) — (”—_2>&5. (14)

T

For the estimation of the variance components of the time-constant compo-

nents, we have.
T/ T 2/3
~AD _ ~ Ak
G”—max{o, |: §<m)M3(a ):| } (15)

67 =iy (&) — (”_2>6§. (16)

As in standard cross-sectional settings, if either & or &, have the wrong
skew, then the variance estimate of the corresponding inefficiency term will
be zero (Olson, Schmidt, & Waldman, 1980). It is also possible to obtain neg-
ative variance estimates (what Olson et al. (1980) term a type 2 error) for the
normally distributed components, ¢; and v;,, but this is rare empirically.

In either of these stepwise procedures, if inference is to be done on the
distributional parameters, then specific variance estimates are needed. The
first stage standard errors for the estimates of f can be used directly, but
the approach detailed in Olson et al. (1980) is necessary for standard errors
for the parameters of the one-sided distributions. As pointed out by Olson
et al. (1980), the first six moments of the composed error term are needed
to correctly calculate standard errors (see also Coelli, 1995). In Olson et al.
(1980), the cross-sectional case is dealt with, but their application can be
extended easily to the GPDSFM just described. One application of this
method would apply to the random effects, and another application of this
method to the time-varying model errors. The variance of the intercept would
change because it is now dependent upon both the mean of time-varying and
persistent inefficiency, whereas in Olson et al. (1980) the intercept depends
only on the mean of the cross-sectional inefficiency. Alternatively, a bootstrap
approach could be deployed, though we have not seen this issue discussed in
the literature deploying COLS.
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3.1.1 Estimation in the Fixed-Effects Framework

So far, the discussion has centered on estimation in the RE framework, but one
can just as easily operate in the FE framework. In step 1 of Section 3.1, rather
than estimate f# using GLS, either first differencing or the within transformation
could be deployed. Here the first-differencing approach introduced by Chen
et al. (2014) delivers.

Ay,-t:Ax;tﬂ+Ael~,. (17)

The intercept and firm-specific heterogeneity terms are removed with the
differencing, and the first differenced residual does not contain the mean shift
because the differencing makes this obsolete. All of the pertinent information
can be derived from Eq. (31). A two-step procedure is detailed:

Step 1: Estimate (31) using OLS to obtain consistent estimates of f. Use these
estimates to construct AAe,-t =Ay; — Axf,ﬁ No distributional assump-
tions are made here.

Step 2: Time-varying technical inefficiency, u;, is estimated using the infor-
mation contained in Ag; from Step 3.1. The parameters for the distri-
butions of v and u can be estimated using maximum likelihood. Doing
so produces predictions of the time-varying technical inefficiency
component u;, E[e” “"|¢e};], termed relenting technical efficiency
(RTE), as in the RE setting.

A COLS procedure could be used alternatively if maximum likelihood is not
invoked. The caveats we detailed earlier hold here in the FE framework as well.
What is interesting about the FE framework is that PTE can be present, and is
allowed to be correlated with the covariates, but we cannot separately identify it
from individual heterogeneity. The reason is that it is no longer clear how #; is
distributed if it is allowed to be correlated with x. This approach is simpler to
implement than the one found in Chen et al. (2014) because they also invoke
distributional assumptions on v;, and u;, but propose estimation of the full like-
lihood function. Moreover, they treat all time-constant variation as unobserved
heterogeneity, but this is not required for the implementation we describe.

3.1.2 The FE Versus the RE Framework

In the FE framework, we have just outlined why it is not possible to identify
both persistent inefficiency and individual heterogeneity. Unfortunately, under
the RE framework, there is always the concern that omitted variable bias might
lead to inconsistent parameter estimates (therefore, the appeal of operating in
the FE framework). An alternative approach follows from the seminal work
of Mundlak (1978). In this case, unobserved heterogeneity is modeled as.

C[:f;_¢+a),', (18)

where the jth element of X; is equal to Xj;. = T-! Z;]xﬁ, and w; is assumed to be
uncorrelated with x. In this case, after X; has been controlled, there no longer
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exists correlation between the covariates and the unobserved heterogeneity, so
we migrate from the FE framework to the RE framework.
If this approach is followed, the GPDSFM takes the form.

Vie =Pyt X p+X p+a; +e, (19)

where a = w; — n;E[n;] and &j; and f; are as before. This model can be esti-
mated following the three-step approach listed for the RE framework. Both
Filippini and Greene (2016) and Filippini and Zhang (2016) use this approach
in their applications.

We note that the modeling of unobserved heterogeneity in this framework
ignores any dependence on time-persistent inefficiency. This is intended. If #;
depends in a meaningful way on some set of time-constant covariates, then this
should be modeled through the distributional assumptions, a point we will
return later when we discuss the approach of Badunenko and Kumbhakar
(2017).

3.2 Full Maximum Likelihood

Although the approaches we have just detailed are insightful and shed light onto
practical approaches to estimate the GPDSFM, there is always the desire to
implement a full-fledged maximum likelihood analysis that, under correct dis-
tributional assumptions, will produce estimates that are, theoretically, superior
to the stepwise approaches. To obtain a tractable likelihood function, Colombi
et al. (2014) invoked normal-half-normal assumptions about each distributional
pair of errors, noting that adding a normal random variable and a half-normal
random variable produces a random variable that has a skew normal distribu-
tion. The elegance of this is that the skew normal distribution is a more general
distribution than the normal distribution, allowing for asymmetry (Azzalini,
1985) and is closed under various operations (such as subtraction), making
attainment of the likelihood function a less treacherous undertaking.

Colombi et al. (2014) provide the likelihood function using the following
matrix representation of model (8). Let 17 be a vector of ones, 07 a vector
of zeros; and Iy the identity matrix of dimension 7. Moreover, y; is a
vector of the T observations on the ith unit; X; is the T X p matrix with rows
Xj;, u; is the (T + 1) vector with components n;, u;1, U, ..., u;r; and v; is the vec-
tor of the idiosyncratic random components of the ith unit. From Eq. (8), it
follows that:

yizlr(/fo+ci)+X1-ﬂ+Au,~+v,-, (20)

where A = —[17I7]. A assigns the inefficiency terms, both persistent and time-
varying, to output. This setup also can be modified easily to handle unbalanced
panel data.

Let ¢, (x, p, ) be the density function of a g-dimensional normal random
variable with expected value g and variance Q, while @, (u, Q) is the probability
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that a g-variate normal random variable of expected value g and variance matrix
Q belongs to the positive orthant.'

A random vector z, —oo < z <00, has an (o, g) closed-skew normal distri-
bution with parameters g, I', D, v, A if its probability density function is
(Arellano-Valle & Azzalini, 2006; Gonzalez-Farias et al., 2004):

¢ (zp, D)@y (D(z—p) —v, A)
B ®,(—v,A+DID) '

fzuL,D,v,A 0,q) (21)

The dimensions of the matrices I', D, A and of the vectors u, v are deter-
mined by the dimensionality o of the o-dimensional normal probability density
function and by the dimensionality ¢ of the g-dimensional normal distribution
function. Aside from the boldface and matrix notation, this is nothing more than
the multivariate generalization of the univariate skew normal distribution that
arises from the baseline cross-sectional stochastic frontier model. The
®,(—v, A+DI'D') term appearing in the denominator of Eq. (21) is to ensure
integration to 1 so that a theoretically consistent probability density function
arises. For clarity, consider the cross-sectional setup in which we would
have a (1, 1) probability density. Letting g =0, I' = 6> = ai + 03, v=0,
D= —.=0,/0, and A = 6" would produce f(e) =2¢(¢/c)®(—Ae/s). When
D = 0 the o-dimensional normal results. Thus, D controls the skewness, which
is akin to how we view 4 in the stochastic frontier setting. When A + DID isa
diagonal matrix, then @,(0, A+DID’) =2¢.

To minimize the notational burden introduce the following matrices:

o> 0
v=|" T | 2= +51r1}
OT 6517"

A=V—VA'(Z+AVA) 'AV= (V' +4's7'4) ",
R=VA'(S+AVA') ' =AA'S""
Colombi et al. (2014) show, conditional on X;, that the random vector y; has
a (T, T + 1) closed-skew normal distribution with the parameters: v = 0, u = 17

Po+Xp,T=X+AV A, D=R;and A = A. From this, conditional on X;, the
density of y; is.

Ory 1 (R(y;, —Xif—17p), A)
27(T+1)

Fi)=¢r0i 178, + Xip, Z+AVA') (22)

1. The multiple random-component SF model is related to the SF model introduced by
Dominguez-Molina, Gonzalez-Farias, and Ramos-Quiroga (2003) and to the linear mixed models
proposed by Lin and Lee (2008) and Arellano-Valle, Bolfarine, and Lachos (2005). Dominguez-
Molina et al. (2003) were the first to recognize the relevance of the closed-skew normal distribution
in SF analysis, but they did not examine multiple-random-component SF models. Lin and Lee
(2008) and Arellano-Valle et al. (2005) used the closed-skew normal distribution to relax the nor-
mality assumption in the mixed-regression models.
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It can be checked easily that it is not necessary to include both time invariant
and time-varying inefficiency to obtain a closed-skew normal distribution of the
error components. For example, a (T, T) closed-skew normal results in the
Kumbhakar (1987), Battese and Coelli (1988), and Greene (2005a, 2005b)
models. When time-varying inefficiency is omitted, a (7, 1) closed-skew normal
density arises, and, when the random firm-effects are omitted, the joint distri-
bution is given by the previous results with o, = 0.

The log-likelihood for the nT observations from Eq. (22) is:

InL= Z [ Ingr(y;—XiB. 17y, +AVA") + In®r, 1 (R(y, — Xif— 175,), A)]
=1

(23)

the sum of the log-likelihood for each of the n independent closed-skew normal
random variables y; — X;8. For T > 2 the computational complexity involved
to maximize the log-likelihood function is high. This stems from the T integrals
in ®7,1(R(y;—X:#— 17f,), A). Adroit users can avail themselves of the R
packages csn (Pavlyuk & Girtcius, 2015) and sn (Azzalini, 2018) to access a
range of commands that allow for command line calculation of closed-skew
normal densities, distribution, and random number generation. This allows
greater ease of implementation rather than hard coding everything by oneself.

3.2.1 Prediction of the Random Components

Aside from estimating f# and the parameters of the distributions of the random
components, predictors of both technical inefficiency and firm effects still are
needed. To do this, some additional notation is useful:

4
~2 -1 ~ o
o, =0, —0o,7Al;, Q=(Z+AVA')", A=A—-Rl;1:R=%.
7
Denote the errors as r; = y; — X;# — 17 po. With this, Colombi et al. (2014)
list the distributions of ; and u; conditional on y; as.

67"4_ 1 (Rri 7R17‘O"24’6v;2 (,ul- — UI%IT/QI‘Z‘) K)

21/ ~2
1y:) =, 21'Qr, = > (24
f(/t,\y,) ¢(H1 Ou d G”) ¢>T+1(Rrj,A) @9
¢ro1(ui, Rri, A)
|y) = u; > 0. 25
e A VR =

These distributions can be used to derive the conditional moments of
both the unobserved firm effects and time-varying and time invariant technical
inefficiency. This is done using the moment generating function of the (o, ¢)
closed-skew normal distribution:

@, (DTt —v, A+DID)

1
E /z})=—L fpu+—tTts. 26
(expte)) = P exp { e sme). o)
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Using the moment generating function, Colombi et al. (2014) provide the
conditional means of the random effects as (in their model y is in logarithmic
form):

67"4.1 (er RITG A) A 1~2
E(et]y;) = = Ol + 20, 27
( |yl> <DT+1(RI'1‘,A) ( )

E (et’u,- | yi) _ 6T+ 1 (Rri +Af, A) et’Rr,- + %t’At’

6T+1(er', A) (28)

The first element of Eq. (28) is the conditional expected value of time-
invariant inefficiency for firm i. Conditional on r;, the firm effect p;, does
not have a normal distribution as is the case in the standard random effects panel
model (Baltagi, 2013).

3.3 Maximum Simulated Likelihood

Although the log-likelihood of the generalized panel data stochastic frontier
model appears daunting to implement, Filippini and Greene (2016) recently
proposed a simulation-based optimization routine that circumvents many of
the challenges that can arise from brute force optimization in this setting.
Using the insights of Butler and Moffitt (1982), Filippini and Greene
(2016) note that the density in Eq. (22) can be simplified greatly by condition-
ing on y; and 5;. In this case, the conditional density is the product over time of
T univariate closed-skew normal densities. Thus, only a single integral, as
opposed to T +1 integrals needs to be calculated.
The conditional density, following Butler and Moffitt (1982), is.

100= | T |2otensoro(tenfo)| o0 000/, @)

where ¢;, = y;, —a — x;§ — 6; and 5; = u; —n;. We use the common A = 6,/0,
and 6 =+/02+02 notation for the time-varying skew normal density and
0= /o, +o, and y = o,/, for the time constant skew normal density. Pro-

vided we can generate random draws for §;, we can replace the one dimension
integral in Eq. (29) with a simple average.
Our simulated log-likelihood function is.

R T

InL,= ﬁ; In (R—‘ STI [ $(€:/0)D ﬂ%’,-,/o]), (30)

r=1 t=1

where €; =y —fy—x}p — 38y and &, = oW, —o,|Hiy| and W;, and H,, are
independent draws from a standard normal distribution. Maximization of this
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simulated log-likelihood is not more complicated from the cross-sectional case,
aside from the additional parameters. With the milestone work of Colombi et al.
(2014) and Filippini and Greene (2016), estimation of the generalized panel
data stochastic frontier model is accessible to applied researchers.

3.3.1 Rudiments of Maximum Simulated Likelihood
Implementation

Simulated maximum likelihood has a rich history in applied econometrics
(Train, 2009). Two key implementation issues that the practitioner faces are
the generation of the draws to build the simulated maximum likelihood function
and the production of the primitive draws across the simulation. For most sta-
tistical software, it is quite easy to generate random draws from a standard nor-
mal distribution for W;, and H,,. It is imperative, however, for the user to ensure
that the same draws of W, and H;, are used at each iteration of the optimization
routine. Failure to fix the draws across iterations will produce discontinuities in
the function being optimized.

Although the cost of generating random standard normal variates is inexpen-
sive, it is well known (Bhat, 2001; Train, 2009) that the use of nonrandom
sequences can produce sharply improved results over quasi-random generation.
This stems from the fact that nonrandom sequences can better cover the area
over which the draws are to be produced, say from [0, 1]. This will lead to better
approximation of the integral, which is what is desired. A popular, and common,
nonrandom technique to take draws is through a Halton sequence. In the case of
generating normal draws, the researcher could first construct a Halton sequence,
which lies between 0 and 1, and then use the quantile function of the standard
normal to produce the random draws from the normal distribution.

What is left to determine is the number of draws to take. Although there is no
optimal selection, Greene (2003, pg. 186) mentions that use of Halton draws can
cut down the required number of draws by a factor of 10.

4 Including Determinants of Inefficiency

Perhaps one of the most popular implementations undertaken by applied effi-
ciency and productivity researchers has been to model the parameters of the
inefficiency distributions with a set of covariates, the determinants of ineffi-
ciency (Parmeter & Kumbhakar, 2014). It is standard to model the variance
parameters, in this case a,% and o2, as exponential functions. Because u;, and
n; vary across different aspects of the model, they naturally would be modeled
with different sets of variables. The most common approach is to use exponen-
tial functions to ensure positivity.

More specifically, for the distributional assumptions, #;~N + (0,0,3, s
uy;~N(0,0; i), ci~N(0,0z ), and vi,~N(0,07. ;). These distributional
assumptions are imposed so that the sum of the time invariant composed errors
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(c; —n;) and the sum of the time-varying composed errors (v;, —u;,) each follow
the skew normal distribution. Each of the variance parameters of the four com-
ponents is dependent upon a set of covariates and specified as an exponential
function: 0',3, = aiez"‘ o, 03, i = 06 8, oy i, = 0™ 6", and o, ;, = oae™ .
The time-constant and time-varying z vectors can overlap because the assumed
distributional assumptions, that is, zc,i can share elements with z, ; and z,,;, can
share elements with z,, ;.. Therefore, we could have ¢, = c,,e‘s”zf and 6, = ¢,
where ¢, and ¢, are scaling constants on the exponential functions and z; and z;,
are the vectors of determinants to model the persistent and time-varying ineffi-
ciency components, respectively.

Including any of z,, ;, Z. ;, Zu,ir» and 2, is straightforward. The researcher can
simply replace o, ., 6, and/or o, in Eq. (23) directly and optimize over the
relevant parameter space. Alternatively, this approach also can be undertaken
in the maximum simulated likelihood context, which was proposed by
Badunenko and Kumbhakar (2017) following the logic of Filippini and
Greene (2016).”

As before, the benefit of this approach is that, rather than having T integrals
to evaluate, by conditioning on ¢; —#;, the likelihood function can be written as
the product of T univariate integrals. Simulation methods are required to con-
struct draws of ¢; —#; inside the convolution density. The final log-likelihood
function is.

n R T
2 Eitr Eirhi
L= log|R! o o)), 31
S toe (13 (T2 (2 o (%2 o

r=1 [t=1

7 7 7 ) P .
where o=V ezu,ilﬁl‘ + ez\',irﬁ", )'it — 1/ ezu,ira“ z\',itls"’ Einr = Ejt — ( e“(’,i{s‘ Vil'_

Ver®|U;|) and €; = y;, —m(x;; B). R is the number of draws over which to
numerically evaluate the integral. Lastly, both V;. and U,, are random draws
from a standard normal distribution. Implementation of this routine is straight-
forward if one has access to a standard normal random number generator (typ-
ically available in any general statistical software). After draws for V. and U;,
have been constructed, the likelihood is evaluated for the current set of param-
eters (8, 6,,6,, 6,, 6¢). This process then is iterated over different sets of param-
eter values. Naturally, one can impose constancy at various parts of the error
components by restricting 6, =0 for £ € {u, v, ¢, n}.

An even simpler approach is available to the researcher without requiring
maximum likelihood methods (simulated or direct). Assume for simplicity that

. /
oz, = o7 and o, = or. In this setup, we have that E[;,] = ﬁ%i = ﬁaﬂe"w‘w 2

and Efu;] = \/%Gu,it = augz’u,,ﬁu/ 2 1If we first difference the model in Eq. (10),

we have.

2. See also Lai and Kumbhakar (2018).
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2 ! !
Ayy=Ax,f— \/ﬂ (a2 = ™) 1 Ay, 31)

where Ag;; = Av;; — (Au;; —E [Au;)). Thus, E [Ag;,] = 0. . .
_ Estimation of this model using nonlinear least squares will provide f and §,,.
6, then can be used to estimate E[u;]. §, can be estimated by noting that

/ —
Yie =Xy B+ui =Pyt ci—n;+vi =y,

which can be rewritten as

2 /
Yie=Po— \/;Tanez”"ﬁ"/2 +c¢j— (n;—E[n;]) +vit

2 ;
=ho= \/;Gr/ez””ﬁ"/z +&irs

where E[¢;,] = 0 (though it does not have constant variance). We can replace y;,
with y;, —x;ﬁ+E [ui;] and then use nonlinear least squares a second time to
recover d,. E[n;] then can be estimated using 5,,.

This simple approach offers two advantages to the researcher. First, ¢; and v;,
are not required to follow normal distributions, only that their means are zero.
Second, we do not need 5, or u;, to have a particular distribution. Although we
have written the previous text in the context of both terms having distinct half-
normal distributions, one can simply assume the scaling property (Alvarez,
Amsler, Orea, & Schmidt, 2006) and follow the same logic. A potential third
benefit is that this approach lets the researcher estimate E[u;,] and E[#;] without
resorting to the conditional mean approach of Jondrow et al. (1982), which
would require distributional assumptions on both c; and v;,, as well as #; and u;,.

4.1 Semiparametric Approaches

An even more recent approach to estimating the GPDSFM in the presence of
determinants of inefficiency stems from the work of Lien, Kumbhakar, and
Alem (2018). This paper uses the insights of Tran and Tsionas (2009) and
Parmeter, Wang, and Kumbhakar (2017) to model the production frontier in
a parametric fashion, and the conditional mean of inefficiency in a fully non-
parametric fashion, what is known as a semiparametric model. The approach
taken by Lien et al. (2018) is to assume that firm heterogeneity falls under
the random effects framework and that only time-varying inefficiency depends
on determinants. In this setup, the model of interest is.

yil:x;fﬂ+ci_ﬂi+vit_M(Zi[)' (32)

This model is identical to the standard model discussed in Eq. (9) except that
time-varying inefficiency now depends on z;,. To minimize reliance on paramet-
ric assumptions the distribution of u is left unspecified. Recentering the model
so that the error terms have zero mean, and letting g(z;) = E[u(z;;)], we have.
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yie=g"(zir) +x,f + af + 8;, (33)

where g*(z;) = — (E[n;] + g(z;)). As before, both a; and &}, are mean zero. The
frontier and the conditional mean of time-varying inefficiency can be estimated
following Tran and Tsionas (2009) and Parmeter, Wang, and Kumbhakar
(2017), who in turn use the partly linear estimator proposed by Robinson
(1988). This estimator works in three steps.

To begin, take the conditional on z;, expectation of both sides of Eq. (33).
This produces.

Elyul zi] = g" (zu) + E[xie| z4]'B, 34)

where E[a}|z;] =0 and E[e};|z;;] = 0 by assumption. This is then subtracted
from Eq. (35), producing.

vir — Elyit| z;]] = (x;; — Elx;:| zii]) B + af + €}, (35) which, upon estimation
of E[y;|z;] and E[x;|z;], is nothing more than traditional random effects esti-
mation and does not require distributional assumptions about the error compo-
nents. What complicates this approach is that the conditional means of y;, and x;,
are unknown. Robinson’s (1988) insight was to estimate these conditional
means nonparametrically.

After ﬂ has been recovered, the random effects, & can be predicted and the
variance components, ¢, and o, can be recovered using either method of
moments or maximum likelihood as detailed earlier. Lastly, the unknown,
shifted, conditional mean of u;, is estimated by using the shifted residuals.

=y —xp-& (36)

and running a nonparametric regression of £, on z;. Lien et al. (2018) pro-
posed a parametric structure for g(z;) in their three-step procedure, which
limits some of the appeal of the modeling aspect for practical purposes. This
parametric structure, which also requires distributional assumptions, is really
necessary only if one wishes to correct the shift in the inefficiency function for
the unknown mean of the persistent inefficiency component. Additionally, for
identification purposes, the production frontier itself cannot have an intercept
because it is not identified. Therefore, without further assumptions, only
g*(z;;) can be identified. This is not viewed as a real problem for empirical
researchers because one still can rank firms by looking at differences across
the various estimates, and the impact of z;, on inefficiency can be determined
directly by looking at the derivatives of the estimated function (Parmeter et al.,
2017). For more details relating to the estimation of the partly linear model,
we refer to Li and Racine (2007) and Henderson and Parmeter (2015).

This model also could be estimated under the fixed-effects framework. In
this case, a slightly different estimation approach, known as profile least
squares, is required (Su & Ullah, 2006). We refer to the reader to Chapter 4
of Parmeter and Racine (2019) in this volume for a robust discussion about pro-
file least squares estimation and the work of Zhou, Parmeter, and Kumbhakar
(2018) for more details about implementation of the GPDSFM under the FE
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framework. As we mentioned above, under the FE framework, we cannot sep-
arate persistent inefficiency from time heterogeneity in this approach.

5 Recent Applications of the Generalized Panel Data Stochastic
Frontier Model

In applications, the ability to parse persistent from time-varying inefficiency is
important for practitioners. Moreover, also being able to control for unobserved
heterogeneity lends considerable insight into any policy recommendations that
might stem from such an analysis. As Filippini and Zhang (2016, pg. 1319) note
“... [the practitioner needs to] use an econometric specification that takes into
account of the presence of time-invariant unobserved heterogeneity variables,
time-invariant or persistent inefficiency, and transient inefficiency.” With
advances in the estimation of the generalized panel data stochastic frontier
model, it is no wonder that a range of applications have appeared that have
deployed this model to determine the structure of inefficiency and the presence
(or lack thereof) of inefficiency.

Filippini and Zhang (2016) study energy demand, which they use to assess
energy efficiency across 29 Chinese provinces in the early 2000s.” They esti-
mate four different variants of panel data stochastic frontier models, but none
is the generalized panel data stochastic frontier model. Although they note the
complexity in estimating this model, this offers little comfort with respect to
their findings. The models that include only persistent inefficiency suggest
strong levels of persistent inefficiency, and the models that allow only time-
varying inefficiency find strong levels of inefficiency (albeit with much less
variation). In this case, one might expect that a model that allows both (the
GPDSFM) to outperform any of these models, and yet the authors passed on
using such a model. The different models also suggest that the estimates of per-
sistent and transient energy efficiency are not highly correlated. Interestingly,
Beijing is classified as inefficient with regards to time-varying energy ineffi-
ciency and efficient with regards to persistent energy inefficiency. Although
this might make sense if these two terms were included together, the fact that
they stem from different, nonnested models makes direct interpretation diffi-
cult. The rank correlations between the panel data stochastic frontier models,
which include either persistent or time-varying inefficiency, is also quite
low. This is indicative that using the GPDSFM is apt to provide insights in prac-
tice that one would miss when using a more restrictive/limited model.

Ajayi, Weyman-Jones, and Glass (2017) study cost efficiency of the power
generation sector between OECD nations across 30 years. They consider models
that allow for only time-invariant inefficiency or only time-varying inefficiency, as
well as implementing the four-component model in the manner suggested by

3. See Marin and Palma (2017) for a similar study, with similar methods, for energy demand in the
United States.
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Kumbhakar et al. (2014). In their application, it is determined that little persistent
inefficiency exists, and only time-varying inefficiency is indicative of the power
generation sector. What is most interesting from this perspective is that a model
that includes only persistent inefficiency finds high levels of it. It appears in this
instance that what is being picked up is not really persistent inefficiency, but
time-varying inefficiency that is masquerading as persistent inefficiency. Their
preferred model is the true fixed-effects model of Greene (2005b).

Blasch, Boogen, Filippini, and Kumar (2017) use the GPDSFM to estimate
efficiency of electricity use in Swiss households following the maximum sim-
ulated likelihood approach of Filippini and Greene (2016). The GPDSFM is
well suited to their setup, as they note that ... residential consumers are typ-
ically very heterogeneous.” They find high levels of both persistent and tran-
sient inefficiency with an unbalanced sample across 1994 households.
Further, the level of persistent efficiency is much higher when the energy
demand function does not account for energy services provided. Transient
scores are lower without accounting for energy services. Lastly, Blasch et al.
(2017) note that investment literacy plays an important role in the overall level
of both persistent and transient inefficiency. The difference between households
deemed literate can be >10 percentage points on the efficiency scores, which
has important implications for policy analysis.

Kumbhakar and Lien (2018) deploy the GPDSFM, estimated using the
COLS approach described earlier, to study efficiency of Norwegian electricity
distribution from 2000 to 2013. Their approach is based on a translog input dis-
tance function for total expenditures. Kumbhakar and Lien (2018) estimate
models that consider only both persistent and time-varying inefficiency (but
no unobserved heterogeneity) along with a panel data stochastic frontier model
that accounts only for time-varying inefficiency as well to provide a base for
comparison with the GPDSFM estimates. The model that omits unobserved het-
erogeneity finds low levels of persistent efficiency and high levels of time-
varying efficiency (0.532 and 0.962, respectively, on average).” These contrast
with the estimates from the GPDSFM, which also allows for unobserved het-
erogeneity, where much higher levels of persistent efficiency are found
(0.935 on average) and the degree of time-varying efficiency is still high,
although lower than the more restrictive model (0.885 on average).’

The key from Kumbhakar and Lien’s (2018) work is that overall technical
efficiency is substantially different (both on average and in distribution)
between these two models. The fact that unobserved heterogeneity is ignored

4. Here and in the remainder of the paragraph, we are reporting Kumbhakar and Lien’s (2018) esti-
mates of efficiency, so inefficiency would be 1 minus the level of reported efficiency.

5. Not only does the average level change, but the variance also is greatly affected. Kumbhakar and
Lien (2018) surmise that this is because the firm effects can be positive for some electric generation
plants and negative for others. Therefore, it is likely see a larger dispersion of the persistent effi-
ciency estimates.
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implies that persistent inefficiency is, in this setting, higher than when this het-
erogeneity is acknowledged and properly modeled. Moreover, the large differ-
ences in these efficiency estimates are important to acknowledge because they
are used by the Norwegian regulator to construct the revenue-cap allocation for
firms, and allocations based on incorrect/inaccurate estimates of inefficiency
likely would send poor signals to the firms. Interestingly, all three models have
similar average estimates of returns to scale and technical change, which is sug-
gestive that the first-stage estimation of # is consistent regardless of how the
time constant term is treated.

6 Conclusion

This chapter has detailed the workings and intuition of the generalized panel data
stochastic frontier model. This model marks the culmination of >30 years of
research in properly modeling both heterogeneity and inefficiency in a panel data
framework. This model is flexible and fully identified, making it an exemplar for
the foreseeable future. Various alternative modeling and estimation strategies
still exist, but the basic structure and intuition of the model have been refined
and applied in just the past several years. We also mention that, although users
might find these new methods daunting to apply, the COLS methods described in
Section 3.1 are quite easy to implement in any matrix-oriented programming lan-
guage while NLOGIT/LIMDEP offers maximum simulated likelihood estima-
tion. Recently, R code, also offering maximum simulated likelihood, has
appeared in the psfm call (see www.davidharrybernstein.com/software).

Overall, the GPDSFM is an excellent addition to the armamentarium of the
applied researcher and offers many areas for continued expansion. An interest-
ing investigation would be a comparison of the various estimation methods for
the GPDSFM. Currently, no such study exists, and we have no indication which
of these approaches is likely to dominate. For an unlimited sample size, full
maximum likelihood is theoretically optimal, but the work of both Olson
et al. (1980) and Andor and Parmeter (2017) have revealed that COLS and
pseudo-likelihood methods perform nearly as well as maximum likelihood in
the cross-sectional setting. The transferrence of these insights to the panel set-
ting would be well worth the effort.
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1 Introduction

In this chapter, I discuss the development and status of panel cointegration tech-
niques and some of the open challenges that remain. During the past quarter-
century, the investigation of panel cointegration methods has involved many
dozens of econometric papers that have studied and developed methodology
and many hundreds of economic papers that have employed the techniques.
This chapter is not intended to be a survey of the vast literature about the topic.
Rather, it is written as a guide to some of the key aspects of the concepts and
implementation of panel cointegration analysis in a manner that is intended to
be intuitive and accessible to applied researchers. It also is written from the per-
spective of a personal assessment of the status of panel cointegration techniques
and the open challenges that remain.
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Notwithstanding the overall approach of the chapter, some occasional over-
view is instructive to understanding some of the key motivations that have
helped to shape the literature and the associated challenges. One of the earliest
motivations for panel cointegration methods in my Ph.D. dissertation, Pedroni
(1993), was the desire to import some of the remarkable features of the time
series properties of cointegration into a panel data framework where they could
be exploited in the context of data series that often are far too short for reliable
cointegration analysis in a conventional time series context. In particular, what
was at the time a relatively young field of cointegration analysis for pure time
series provided considerable promise in its potential to circumvent traditional
concerns regarding endogeneity of regressors because of certain forms of
reverse causality, simultaneity, omitted variables, measurement errors, and
so forth. The potential robustness with respect to these features stems funda-
mentally from the superconsistency properties under cointegration, which are
described in the next section.

Bringing superconsistency associated with cointegration to panel analysis,
however, naturally brought to the front numerous challenges for panel data
analysis that became more apparent in the treatment of the type of aggregate
level data that is typically used in cointegration analysis. In particular, although
cointegration analysis in panels reduces the need for series to be as long as one
would require for cointegration analysis in a pure time series context, it does
require the panels to have moderately long length, longer than we typically
would require for more conventional panel data techniques that are oriented
toward microeconomic data analysis. This leads many of the panels that are
used for cointegration analysis to be composed of aggregate level data, which
are more often observed over longer periods of time and therein fall into the
realm of what has come to be known as time series panels.

Typical data include formats such as multicountry panels of national level
data, multiregional panels, or panels composed of relatively aggregated indus-
try level data. With these data formats, the need to address cross-sectional het-
erogeneity becomes apparent, not just in the form of fixed effects, as was typical
in earlier panel data methods that were oriented toward microeconomic data,
but more importantly heterogeneity in both short-run and long-run dynamics.
Another challenge that becomes more readily apparent from these types of data
structures is that the nature of cross-sectional dependency is likely to be more
complex than was typical in the treatment of earlier micro-oriented panel
methods, particularly in the sense that the cross-sectional dependency is likely
to be intertwined with temporal dependencies. In short, both the cross-sectional
heterogeneity and the cross-sectional dependency interact with an essential fea-
ture of time series panels, namely temporal dependence.

The panel cointegration techniques discussed in this chapter can be applied
equally well to microeconomic data panels given sufficient length of the panels.
But by addressing the challenges that arise from the typical applications to
aggregate-level macro panels, they have helped to highlight some of the
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attractive features of panel time series techniques in general, which has helped
to fuel the growth of the literature. One way to better appreciate this is to com-
pare these methods in broad terms to alternative strategies for empirical analysis
of aggregate-level data. For example, at one end of the spectrum, we can con-
sider simply using cross-sectional methods to study aggregate country level
data. Although this has the attraction of providing ample variation in macroeco-
nomic conditions along the cross-sectional dimension, it runs into the usual
challenges in treating endogeneity and searching for underlying structural cau-
sation. Furthermore, when the cross sections represent point in time observa-
tions, the estimation can reflect the arbitrariness of the time period, and
similarly, when the cross sections represent averages over time, the estimation
can reflect a relationship that exists among the unconditional time averages
rather than for a well-defined sense of a long-run steady state relationship.

Another strategy might be to use more conventional static micro panel
methods for aggregate data. In fact, static micro panel methods can be viewed
as essentially repeated cross sections, observed in multiple time periods. But
aside from offering controls for unobserved fixed effects or random effects,
in the absence of cointegration, the challenges in treating endogeneity and
the issues associated with the temporal interpretation still pertain for these
methods. Although dynamic panel methods such as those of Holz-Eakin,
Newey, and Rosen (1988), and Arellano and Bond (1991), among others, exist
for micro data that can help give more precise meaning to temporal interpreta-
tions, the difficulty with these approaches is that they require the dynamics to be
strictly homogeneous among the individual members of the panel. When this
assumption is violated, as would be typical for most aggregate data, then, as
noted in Pesaran and Smith (1995) and discussed in detail in Section 3 of this
chapter, it leads to inconsistent estimation, even for the average dynamic rela-
tionships, which makes these dynamic panel methods unattractive for the anal-
ysis of dynamics in aggregate level macro type data.

At the other end of the spectrum of alternatives, it is worth considering what
we learn from time series estimation applied to the series of an individual coun-
try. In this context, plenty of methods exist for treating endogeneity without the
need for external instruments, and providing specific temporal interpretations
often is central to these methods. By using the data from an individual country,
however, the sample variation that pertains to a particular question of interest
can be limited. For example, learning about the economic consequences of
changing from one type of monetary policy regime to another type is difficult
when the time series data from a country spans only one regime. For this, cross-
sectional variation that spans both regimes in the form of multicountry time
series data becomes important and useful.

Viewed from this perspective, panel time series methods, which includes
panel cointegration techniques, provide an opportunity to blend the attractive
features of time series with potential aggregate level cross-sectional variation
in data settings where the time series length are moderate. Furthermore, as
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we will see, when the challenges posed by the interaction of temporal depen-
dencies with cross-sectional heterogeneity and cross-sectional dependence
are addressed properly, the techniques offer a further opportunity to study
the underlying determinants of the cross-sectional variation.

The remainder of this chapter is structured as follows. In the next section, I
use a simple bivariate example to review the concepts behind the superconsis-
tency result that is key to understanding the robustness properties that cointe-
gration brings to panel data analysis. In Sections 3—7, I describe how the
challenge of addressing cross-sectional heterogeneity in the dynamics has
shaped testing, estimation, and inference in cointegrated panels, including test-
ing for directions of long-run causality in panels. In Sections 8 and 9, I discuss
how addressing the interaction of both cross-sectional heterogeneity and cross-
sectional dependencies continue to drive some of the open challenges in panel
cointegration analysis, and in Section 10, I conclude with a discussion about
some open challenges being explored currently that are associated with gener-
alizing panel cointegration analysis to allow for time varying heterogeneity and
nonlinearities in the long-run relationships. Again, this chapter is not intended
as a comprehensive or even partial survey, because the panel cointegration lit-
erature on the whole is vast, and there are by necessity topics that are not
touched upon in detail here, including, for example, nonclassical, Bayesian
approaches, because they are reserved for another chapter.

2 Cointegration and the Motivation for Panels

In this section, I discuss the property of superconsistency and the motivation
that this gives to bringing cointegration to a panel setting in order to allow
for estimation that is robust to myriad issues typically associated with endog-
enous regressors. In particular, to gain some intuition, I illustrate these concepts
using a simple bivariate OLS regression framework.

Consider the following simple and standard example taken from a classical
time series perspective. Let

yi=a+px;+p, (D

fort =1, ..., T be the data generating process that describes the true unknown
relationship between y, and x, for some unknown error process ;. For simplicity
of notation, we will work with the time demeaned versions of the variables, so
that y* =y, — T~ "S°Fy, and similarly x} = x, — T~ ' 3. ,x,. Then we know
that the OLS estimator for # can be written as

1
()
Pos=—"T =1 ,

TZi:lxj

=f+Ry )
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Ri7 1 & I .
here Rr——0 Rip—— . Rop—— * 3
where Kt Ror’ 1T T;X,ﬂ; 2T T;X, 3

Thus, OLS is a consistent estimator of the true value f only when the
remainder term, Ry, is eliminated, and much of the use and adaptation of
OLS for empirical work revolves around the conditions under which this occurs.

When x, and g, are both covariance stationary, and in the simplest special
case are i.i.d. serially uncorrelated over time, then as we envision the sample
growing large and consider T — oo, the probability limit of both the numerator
and denommator go to constants, such that R, — E7[x} /4,] =0y, and
Ror — Eqlxf %] = 2. Thus, OLS becomes consistent such that ﬂOLg — [ only
when x, and y, are orthogonal, such that E7[x}p,] = 0y, = 0. When the condi-
tion is violated, one classic solution is to look for an external instrumental var-
iable, z,, such that E7[zu,] = 0 and E7{z} x}] # 0, which often can be difficult
to justify in practice, particularly for aggregate time series data.

In a different scenario, however, wherein x, and y, are not both covariance
stationary, but rather x, is unit root nonstationary, denoted x, ~ I(1), while g, is
covariance stationary, denoted y, ~ I(0), then y, and x, are said to be cointe-
grated, in which case the large sample OLS properties become very different.
Specifically, in this case, OLS becomes consistent in the sense that ﬁOLS —p
regardless of whether the regressor is orthogonal to the residual u,, and regard-
less of any serial correlation dynamics that endogenously relate the changes in
X, to y,. In a nutshell, this occurs because when x, is nonstationary, its variance
is no longer finite but rather grows indefinitely with respect to the sample size,
while by contrast, under cointegration, because of the stationarity of yu,, the
covariance between x, and y, does not similarly diverge.

To see this more precisely, it is worth introducing a few concepts that typ-
ically are used in the analysis of nonstationary time series, which also will be
useful in other sections of this chapter. For example, to allow for fairly general
vector stationary processes with jointly determined serial correlation dynamics,
we typically assume that the conditions are present for a multivariate functional
central limit theorem, which essentially generalizes more standard central
limit theorems to allow for time-dependent processes. Specifically, if we let
& = (us, 1) where Ax =g, is the stochastic process that describes how x,
changes, then we can replace the standard central limit theorem for i.i.d. pro-
cesses with one that allows for endogenous, jointly determined dependent pro-
cess by writing

—=> &=B,(Q) as T— oo for r€[0, 1], 4)

where B,(Q) is a vector of demeaned Brownian motion with long-run covari-
ance Q. This functional central limit theorem applies for a broad class of pro-
cesses for &, including for example linear time series representations such
as VARs.
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If we define the vector Z, = Z, _| + &, it is fairly straightforward to show
based on Eq. (4) and what is known as the continuous mapping theorem, that

1 T 1
TZZ@;:>J B (Q)dB,(Q) +A+Qq as T — co (5)
=1 r=0

T 1
%;Z,Z; = J’:OB,.(Q)B,.(Q)/dr as T — co. (6)

These expressions simply indicate that the sample statistics on the left of the
thick arrows converge in distribution to the expressions on the right of the thick
arrow, which are multivariate stable distributions expressed in terms of Brow-
nian motion, known as Brownian motion functionals. In the case of Eq. (5), the
distribution is further uncentered by constants, which come from the decompo-
sition of the long-run covariance matrix into its forward spectrum, A, and stan-
dard covariance, Qy, components such that Q = A+ A’ + Qy. But for our
current purposes, the more important detail to notice is that the OLS remainder
terms from Eq. (3) are closely related to the sample statistics on the left sides of
Egs. (5) and (6), such that the numerator and denominator terms correspond to
off-diagonal and lower diagonal elements of these matrix expressions, so that

Rir= (% Z,T: IZ,§:> y and Ryr = <%Zj 1Z,Z;) . Therefore, according to
Eq. (5), Ry converges to a stable distribution as the sample grows large. By con-
trast, according to Eq. (6), R,r is off by a factor of 7. In order to converge to a
stable distribution, one would need to divide R,7 by an additional factor of 7. By
not doing so in the construction of the OLS estimator, the implication is that R,
diverges to infinity at rate T so that the remainder term Ry = R{TIRIT collapses to
zero as the sample size grows large. Therefore, under cointegration we have

1
Rir= (J B,.(Q)dB,(Q)) +Ag1 + Qo188 T — o0 @)
r=0 21

Ror — o0, Ry —0, ﬁOLS — p,as T — 0. ®)

Notice that under cointegration, this occurs regardless of the covariance
structure between x, and p, in the DGP. Furthermore, because under Eq. (4)
the vector process for 4, and Ax, =y, is permitted to have very general forms
of dynamic dependence, the parameter f can be interpreted as the relationship
between x, and y, that is invariant to any stationary and therefore transitional
dynamics associated with either changes in x, or changes in y, conditional on
X,. In this way, the parameter § also can be interpreted as reflecting the stable
steady state relationship that exists between x/ and y;*, which under cointegra-
tion can be estimated consistently even when the transition dynamics are
unknown and omitted from the estimation.
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For these reasons, the presence of cointegration brings with it a form of
robustness to many of the classic empirical problems that lead to the so-called
violation of exogeneity condition for the regressors. Obvious examples include
omitted variables, measurement error, simultaneity, reverse causality, or any-
thing that leads the data generating process, for Ax, = #, to be jointly deter-
mined with the data generating process, hereafter referred to as the DGP, for
u;. To be clear, one must make sure that the reasons for the violation are not
so extreme as to essentially break the cointegration and thereby induce y, to
become unit root nonstationary. For example, measurement error that is station-
ary but unknown will not affect consistency of the OLS estimator, nor will
omission of a stationary variable, nor will omission of stationary transition
dynamics, and so forth. But if the measurement error is itself unit root nonsta-
tionary, or the omitted variable is unit root nonstationary and belongs in the
cointegrating relationship such that without it y, is nonstationary, then robust-
ness is lost. This is just another way to state the fact that y, and x, are not coin-
tegrated, in which case there is no claim to the robustness. In practice, one can
either assert on an a priori basis that the cointegration is likely to hold based on
economic reasoning, or more commonly, one can test whether the cointegrating
relationship appears to hold empirically, as I discuss in the next section.

Of course, these arguments are based on asymptotics, and the practical ques-
tion is how closely these properties hold as approximations in small samples. If
the empirical interest were limited only to the actual estimation of the steady
state relationship by OLS under cointegration, then one could say that estima-
tion performs reasonably well in small samples, though precisely how well it
performs depends on amyriad of details about what the regression omits relative
to the DGP.

The bigger practical issue, however, pertains to the performance of the var-
ious tests typically associated with cointegration analysis. For example, one
often is interested in confirming by empirical test whether a relationship is coin-
tegrated, so that one has greater confidence that the robustness properties asso-
ciated with cointegration are in play. Similarly, beyond robustly estimating the
coefficients associated with the long-run steady-state relationship, we are inter-
ested in conducting inferential tests regarding the estimated coefficients or sim-
ply reporting standard errors or confidence bands. In contrast to what is required
in order to consistently and robustly estimate the steady-state relationship, each
of these inferential aspects of cointegration analysis require us to account for the
stationary transitional dynamics, most commonly through estimation either
parametrically or nonparametrically. The classic methods for these also are
based on asymptotic arguments, and it is these methods for treating the dynam-
ics that often require distressingly long time series in order to perform well. It is
in this context that panels can help to substantially reduce the length of the series
required in order for the tests to perform well and for the inference to be reliable.

By using cross-sectional variation to substitute for temporal variation in the
estimation of the transitional dynamics, however, this is the context in which the
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challenges posed by the interaction of temporal dependencies with cross-
sectional heterogeneity and cross-sectional dependence arise. This is an impor-
tant theme for the next section, in which I discuss how these challenges help to
shape the strategies for testing cointegration in time series panels and construct-
ing consistent and robust methods of inference in cointegrated panels.

3 Strategies for Treating Cross-Sectional Heterogeneity in
Cointegration Testing and Inference

In the next several sections, I discuss some the key aspects of using panels to test
for the presence of cointegration and to test hypotheses about cointegrating rela-
tionships in panels. As discussed in the previous section, classic approaches to
this in time series contexts invariably require the estimation of dynamics. An
important challenge for panels occurs when these dynamics are cross-
sectionally heterogeneous, as one would expect for virtually all aggregate level
data, and I detail the challenge that this creates. Specifically, cross-sectional
heterogeneity in the dynamics rules out standard approaches to pooling data
cross sectionally as is done in tradition micro panel methods. This is because
if one pools the data when the true dynamics are heterogeneous, it leads to
inconsistent estimation of all coefficients of the regression. More precisely,
as pointed out in Pesaran and Smith (1995), in the presence of heterogeneity,
the pooled coefficients on lagged dependent variables do not converge to he
average of the underlying heterogeneous parameters.

To see this point more clearly, consider a simple illustration for a dynamic
process characterized by a first-order autoregressive process. For example, ima-
gine that for a panel y;, withi = 1, ..., N cross-sectional units, which I call mem-

bers of the panel, and r = 1, ..., T time periods, the data generating process for
the dynamics in stationary form can be represented as

Ayir = ot + i Ayir—1 + i ®

bi=d+n, mwiid(O,ai), o2 < o0, < 1V, (10)

so that the coefficient reflecting the stationary transition dynamics, ¢;, is heteroge-
neous among the members of the panel, i. But imagine that, in the process of esti-
mation, the dynamic coefficient is pooled across i, so that estimation takes the form

Ayi=a; +PAyi 1 +vip, (1D

so that we have imposed the homogeneity restriction ¢; = ¢ Vi, when in truth
¢; = ¢ + n;. This would not be a problem if the pooled estimation for (}) consis-
tently estimated the average or some other notion of the typical value of ¢;
among the members of the panel. But as noted by Pesaran and Smith (1995),
this is not what happens. To see this, notice that for the estimated residuals
in Eq. (11) we have



Panel Cointegration Techniques and Open Challenges Chapter | 10 259

Vie = My 18V 1, (12)

which now consists of both the original stochastic term y;, from the DGP plus a
contamination term 7; Ay;,_;. Consequently, E[(Ay;,—; — Ay;,_;)vi] # 0 and the
usual condition for consistency is violated so that the pooled OLS estimator no
longer estimates the average value for ¢; in the sense that ¢ppors —~ ¢. Most
importantly, there is no easy solution to this problem when the heterogeneous
coefficients are pooled, because the same value Ay; | appears in both the
regressor and the residuals, so that instrumentation is not possible. This is a sim-
ple illustrative example, but the principle generalizes to higher order dynamics
and multivariate dynamics. Indeed, this issue is pervasive in any panel time
series methods that estimate dynamics, and because both testing for the pres-
ence of cointegration and constructing consistent tests for hypotheses about
cointegrating relationships typically require estimation of dynamics, this issue
must be addressed in most panel cointegration techniques.

4 Treating Heterogeneity in Residual Based Tests
for Cointegration

In this section, I focus on the challenges that cross-sectional heterogeneity in the
dynamics creates for testing for the presence of cointegration in panels, with an
initial focus on residual based tests. Furthermore, it is important to understand
that in addition to the issue of heterogeneity in the stationary transition dynam-
ics as discussed in the previous section, the specifics of testing for the presence
of cointegration introduces another important heterogeneity issue, which is pos-
sible heterogeneity of long-run steady-state dynamics. This was an important
theme regarding cointegration testing in Pedroni (1993), as presented at the
1994 Econometric Society meetings, then circulated as Pedroni (1995), and
then published as part of Pedroni (1999, 2004). To understand this issue, which
is fairly unique specifically to testing for the presence of cointegration, consider
a panel version of the DGP described in Eq. (1) so that we have

Yie= o + Pixi + ey (13)

Imagine, analogous to the discussion surrounding heterogeneity of station-
ary transition dynamics, that the cointegration slope of steady-state dynamics
also are heterogeneous, so that by analogy

pi=p+n; niNiid(O,aﬁ), 0, <0, (14)

Again, imagine that in the process of estimation, the cointegration slope
coefficient is pooled across i, so that estimation takes the form

Vit = + X + Vi (15)
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so that the homogeneity restriction f; = f Vi has been imposed when in truth
pBi; = B+ n;. Now, similar to when we were studying the consequences of ignor-
ing heterogeneity in stationary dynamics, the regression error term in Eq. (15)
becomes

Vit = €jr + N Xit, (16)

which consists of both the original stochastic term e;, from the DGP plus a con-
tamination term #,X;;.

In this case, the consequences we wish to consider are specifically for testing
whether y;, and x;, are cointegrated. If the linear combination is stationary, so that
e;; 1s stationary, denoted e;, ~ 1(0), then y;; and x;, are cointegrated, whereas if the
linear combination is unit root nonstationary, so that e;, follows a nonstationary
unit root process, denoted e;, ~ I(1), then y;, and x;, are not cointegrated. Based on
Eq. (16), v;; ~ I(1) follows a unit root process because the contamination term
nix;; inherits a unit root from x;, ~ I(1). This implies that v; ~ I(1) regardless
of whether y;, and x;, are cointegrated. Consequently, if the true cointegrating rela-
tionships are heterogeneous across i in the sense that j; # § Vi, then tests con-
structed from pooled regressions that treat f§; = f Vi will produce inconsistent
tests, in that they cannot distinguish between the presence or absence of cointe-
gration regardless of the sample size. Even when the degree of heterogeneity is
small in the sense that #; is small, because it multiplies a unit root variable x;,,
substantial contamination of the stationary component of v;, occurs even for very
small deviations from a false homogeneity assumption. Therefore, the relatively
small possible gain in the degrees of freedom obtained from pooling is rarely
worth the risk of misspecification, particularly because panel cointegration
methods typically already have very high power under standard conditions.
For these reasons, although there are later exceptions such as Kao (1999) that
pools both the long-run steady-state dynamics and the stationary transition
dynamics, most other methods for testing for the presence of cointegration allow
for heterogeneity of both the short-run transition dynamics and the long-run
steady state dynamics, as reflected in the heterogeneity of the cointegration slope.

By now, many different approaches proposed for constructing tests for the
presence of cointegration take into account heterogeneity in both the transition
dynamics and the steady-state cointegrating relationship. Rather than surveying
all of the various approaches, I will focus on conveying the central idea of treat-
ing the cross-sectional heterogeneity in both the short-run and long-run dynam-
ics. I will use examples based on residual-based tests in this section, as well as
ECM-based tests in the next section. The first two examples are taken from
Pedroni (1999, 2004). Somewhat ironically, because of the lengthy and uneven
publication process, the 2004 paper is actually the original paper, with the 1999
one being the follow-up paper, which reported numerical adjustment values that
applied to the case in which larger numbers of variables were used in the coin-
tegrating regressions. Both papers studied seven different statistics spanning
various parametric and semiparametric approaches, but I will focus on only
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the parametric ADF-based test statistics to illustrate two different general
methods for treating heterogeneous stationary transition dynamics.

The first method uses a technique that conditions out the heterogeneity in the
pooled dynamics; the second uses a simple group mean technique for accom-
modating heterogeneous dynamics. I will use a bivariate regression example,
although all of the techniques generalize to multivariate regressions.

Because all of these methods account for potential heterogeneity, in long-
run steady-state dynamics, the first-stage regression of the residual-based
methods always takes the form

Yie =i + Pixic +ejy. a7

for the bivariate case. The only difference in the various methods of testing lies
in how the estimated residuals é;, from this regression are treated, either semi-
parametrically using long-run variance estimators or parameterically using
ADF principles, as I discuss here.

The first, taken from Pedroni (1999, 2004), is based on constructing a pooled
ADF regression on the estimated residuals é; by conditioning out the heterog-
enous dynamics. Toward that end, rather than estimating the full ADF regres-
sion with lagged differences, we estimate a simple DF type of regression, but
with the dynamics conditioned out individually for each member of the panel,
for both the regressor and regressand. Specifically, the regression takes the form

Vig :Pﬁi,t—l +uj (18)

where V;; and #j; ,_; are obtained as the estimated residuals from the regressions

K
Ae; = Z?n,kAéi,t—k +Vie (19)
=1
K
1= Z VoikAei—k +1; (20)
=1

applied to each of the members of the panel individually. Notice that Egs. (19)
and (20) condition out the member-specific dynamics for the significance of p in
the pooled DF style regression Eq. (18).

This method for conditioning out the heterogeneous dynamics is analogous to
the approach taken in Levin, Lin, and Chu’s (2002) panel unit root test. A further
refinement, consistent with LLC’s approach, can be made for the cross-sectional
heteroscedasticity of the long-run variances, in which case it is known as the
weighted pooled ADF-based test. As shown in Pedroni (2004), however, this
refinement is not necessary for the consistency of the test, even when the dynam-
ics and, therefore, the long-run variances are heterogeneous across i, provided
that the dynamics are conditioned out via regressions Eqgs. (19) and (20). The
unweighted pooled version computes the #-statistic associated with the pooled
estimator for p in Eq. (18), which we will denote here as tpo;s.
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The final step is to adjust the statistic in a manner that will allow it to con-
verge in distribution as the sample size grows large. The adjustment takes the
form

trors.p — Hpapr,pVIN
\/VPADF,p

The adjustment terms ppapp, and vpapr,, are numerical values that are
either computed analytically or simulated based on the properties of the distri-
bution of 7ppys . and depend on the moments of the underlying Wiener func-
tionals that describe the distributions. The numerical values that result from
these computations or simulations differ depending on details of the hypothe-
sized cointegrating relationship Eq. (17), such as whether intercepts or trends
are included, and on the number of regressors that are included, and are reported
accordingly in Pedroni (2004) for the case of a single regressor, and in Pedroni
(1999) for the case of multiple regressors. The adjusted statistic is distributed as
standard normal under the null hypothesis of no cointegration and diverges to
the left under the alternative of cointegration, so that for example —1.28
and —1.64 are the 10% and 5% critical values required to reject the null in favor
of cointegration.

As noted previously, conditioning out the member specific dynamics prior
to pooling is just one strategy for dealing with heterogeneous transition dynam-
ics. Another, more common technique is to use group mean methods rather than
the combination of pooling with heterogenous dynamic conditioned out of the
regression. Group mean methods have become more popular in large part
because they are relatively easier to implement and interpret. To illustrate this,
I use a second example taken from Pedroni (1999, 2004), namely the group
mean ADF residual-based test. To implement this test, we begin by estimating
the individual ADF regressions using the estimated residuals from the hypoth-
esized cointegrating regression Eq. (17), so that we estimate

ZpapF = 2

Ki
Aéii=pliir+ D Yl k+itis (22)
k=1
by OLS individually for each member i of the panel. The group mean
ADF t-statistic for the null of cointegration then is computed as
tGoLs,p = N7 Z{‘V:]ti’ADF, where t; spr is the standard ADF ¢-statistic for sig-
nificance of p; for member i. The statistic is adjusted to ensure it converges in
distribution as the sample grows large, so that

tGOLS,p\/N - ﬂGADF,p\/N
v/ VGADF,p .

where pcapr,, and vgapr, , are numerical values that are either computed ana-
lytically or simulated based on the properties of the distribution of 75y s ,, and

ZGApF = (23)
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depend on the moments of the underlying Wiener functionals that describe the
distributions. Although these values differ from those of ppapr, and vpapr,,
they also depend on the details of the hypothesized cointegrating relationship
Eq. (17), such as whether intercepts or trends are included, and also on the num-
ber of regressors that are included and are reported accordingly in Pedroni
(2004) for the case of a single regressor, and in Pedroni (1999) for the case
of multiple regressors. The statistic is distributed as standard normal under
the null hypothesis of no cointegration and diverges to the left under the alter-
native of cointegration, so that for example —1.28 and —1.64 are the 10% and
5% critical values required to reject the null in favor of cointegration.

Monte Carlo simulation studies reported in Pedroni (2004) show that for all
of the residual-based test statistics studied in the paper, including the two ADF-
based tests described previously, size distortions are low and power is extremely
high even in modestly dimensioned panels. For example, even when the time
series length, T, is too short for reliable inferences in a conventional time series
context, in the panel framework, panels with similarly short lengths for 7 and
modest N dimensions can in many cases deliver close to 100% power with rel-
atively small degrees of size distortion.

5 Comparison of Residual Based and Error Correction
Based Testing

Although residual-based methods are the most common approach, there are also
other methods for testing for cointegration in time series, which have been
extended to heterogeneous panel frameworks. One such example involves error
correction methods, and it is worth comparing these to residual methods in order
to understand the trade-offs. For example, Westerlund (2007) studied the use of
single-equation ECMs in panels with heterogeneous dynamics, including a
group mean version. In contrast to residual-based methods, single-equation
ECM approaches require the assumption of weak exogeneity. The basic idea
is to exploit this assumption in order to estimate the error correction loading
parameter from a single equation and use it to test for the null of no
cointegration.

The first step is to estimate by OLS what is known as an augmented form of
the ECM equation as

K,’ Ki
Ay =ci+ M Yi—1 +YiXi—1+ E Rij11Ay;—j+ E R j 12X 1—j+ €1t
j=1 J=—Ki

(24)

where y; = —11; f;. The equation has been augmented relative to the standard
ECM equation by the inclusion of lead terms of the differences in A x;, rather
than just the usual lagged terms of Ax;,. This allows us to loosen the exogeneity
requirements on x;, to one of weak exogeneity, rather than stronger forms of
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exogeneity. As discussed later, imposing weak exogeneity in this context can be
interpreted as imposing the a priori restriction that causality runs in only one
direction in the long-run cointegrating relationship, from innovations in x;, to
vi Imposing such an exogeneity restriction is contrary to the full endogeneity
that typically is permitted for most panel cointegration methods, and the impli-
cations are discussed in the following.

Under the maintained assumption of weak exogeneity in the relationship
between y;, and x;,, the null of no cointegration between y;, and x;, can be deter-
mined by testing whether ¢, ; = 0, and the group mean test is constructed by
computing the average value of the #-statistics associated with these such that
lcors., = N1 Zf/: 1t; 2, where ¢; ; are the individual ¢-statistics for significance
of 1;; for each member i. Analogous to the other tests, this statistic can be stan-
dardized as

_ toos, i VN — pgors VN
\VYGoLs, A '

where pugors., and vgops,, are the numerical adjustment values based on the
properties of the distribution of f5o;s.;, so that Zg, is similarly distributed as
standard normal under the null hypothesis of no cointegration and diverges
to the left under the alternative of cointegration.

To better understand the motivation for the ECM-based approach in relation
to residual based approaches and to see the consequences of violating the spe-
cialized weak exogeneity condition, it is worth comparing the details of the
ECM estimation equation to the residual-based estimation equation. In partic-
ular, consider rearranging the various terms in Eq. (24) as

26

(25)

K K,
Ayir — PiAxi; = A1 (Yi—1 — Bixi—1) + ZR:j,llAyizfj + ZRU, 15X

J=1 J=1
26)
+E Rij 128X — E Rij 11piDxiy_j+ei

Jj=0 Jj=0

where, for ease of notation, I have dropped the deterministics, c;, and the leads
of Ax;, from the equation because they are not central to the issues I discuss
next. Specifically, the previous form is convenient because it allows us to sub-
stitute e;, for y;; —f;x;, and similarly for Ae;; = Ay;, —B;Ax;; where they appear
in the first line of Eq. (26). This gives us the form
K,‘ K,‘ K,‘
Aejy=A1i€i—1 + ZRij, 11Ae;_j+ ZRU,DAxit—j - ZRij,l 1BiAx;—j+ €11,
j=1 Jj=0 j=0
27

which allows us to easily compare what the ECM equation is estimating relative
to what the residual-based methods are estimating. In particular, for a given finite
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lag truncation K;, we can see from Eq. (27) that estimating the ADF regression for
the residuals e;, is equivalent to setting Zf:"oRij,lexl-,,j = Ef:"(,RU’“ﬁ,-Axi,,j.
This is the so-called common factor restriction. One of the motivations for
ECM-based approaches is that residual-based tests ignore that these two factors
need not be the same, and ignoring this can add variance to the small sample dis-
tribution of the 4, ; estimator. This, however, is not a form of misspecification that
leads to inconsistency. The key is that the lag truncation is not treated as given in
residual-based methods and can increase to absorb any additional serial correla-
tion because of these terms. Therefore, the gain from using the ECM form for the
estimation is a potential increase in small sample power, although it is not guar-
anteed to increase power, because this depends on the tradeoff between the num-
ber of lag coefficients estimated by the ADF regression versus the number of
coefficients estimated by the ECM.

The tradeoff for this potential increase in small sample power, however, is the
specialized assumption of weak exogeneity. In light of this, it is worth consider-
ing what the consequences can be when this assumption does not hold, yet the
single-equation ECM test is used. In general, for the case in which y;, and x;,
are cointegrated, the VECM representation provides for a two-equation system
with the error correction coefficient taking the form A,8; where 4; is a loading
vector with two elements such that 4; = (1y;, 4,;)’. Cointegration between y;
and x;, requires that at least one of the values for /; is nonzero. In this context,
the weak exogeneity assumption can be interpreted as an a priori assumption that
Ari = 0. Therefore, because A,; is zero by assumption, then in order for y;, and x;,
to be cointegrated, 1,; must be nonzero, and therefore the test for the null of no
cointegration proceeds by testing whether 1,; = 0 via Eq. (24). The risk with this
strategy, however, is that if the a priori maintained assumption that 4,; = 0 cor-
responding to weak exogeneity turns out not to be true, then the test risks becom-
ing inconsistent because it cannot distinguish the null of no cointegration from the
alternative of cointegration no matter how large the sample size.

To see this, consider what the first equation of the VECM form looks like
when the weak exogeneity assumption is not true, so that potentially both ele-
ments of 4; appear in front of the error correction term, which can be written as

K,' Ki
Ayie = (A1,i—Ri0,1242,i) YVie—1 —BiXie—1) + g Rij11Ayi—j+ g Rij 10Ax; —j+ e
J=1 J=1

(28)

In this context, the single-equation ECM-based approach can be interpreted
as testing whether A;; —R;p 1242; = 0 under the null of no cointegration. In
general, however, the value for R, 124, ; is unrestricted under cointegration. There-
fore, if we consider the scenarios in which R0, 124>; < 0and 4, ; < 0,but | R;0.124> ;
| > |41, then (A1; —R;01242,) > 0, and the test will fail to reject the null of
cointegration with certainty as the sample size grows, despite the fact that the
null is false. In contrast to residual-based tests, the test becomes inconsistent
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because it will be unable to reject a false null even for large samples if the main-
tained assumption of weak exogeneity is not true. The tradeoff between residual-
based tests, therefore, amounts to a tradeoff between a potential gain in small
sample power at the expense of robustness in the sense that the test risks become
meaningless if the weak exogeneity condition is violated. Because small sample
power already is fairly large in almost all tests for the null of no cointegration
in panels, in most applications the potential gain is unlikely to be worth the risk
if one is not absolutely a priori certain of the weak exogeneity assumption.

So far, I have discussed panel cointegration tests that are designed to test the
classic null of no cointegration against the alternative of cointegration. For
some applications, we might be interested in reversing the null hypothesis, how-
ever, so that the null becomes cointegration against the alternative of no coin-
tegration. It can be useful to consider both types of tests, in particular when the
empirical application is likely to be such that results might be mixed—some
members of the panel are best described as cointegrated but others might not
be cointegrated. Although a test for the null of cointegration does not resolve
the issue of mixed panel applications, which we will discuss later, the combi-
nation of both types of tests sometimes can narrow the fraction of individual
members that are consistent with either alternative as discussed and illustrated
in Pedroni (2007). There are many proposed tests in the literature for the null of
cointegration in panels, starting with McCoskey and Kao (1998), which develop
a pooled panel version of the Shin (1994) time series test for the null of coin-
tegration. The difficulty with virtually all of the tests that have been proposed in
the literature, however, is that, similar to the corresponding time series based
tests, they inherit the property of high size distortion and low power in finite
samples, and they are unable to mitigate this problem even for fairly large
panels. Hlouskova and Wagner (2006) document these difficulties through a
series of large-scale Monte Carlo simulations for tests for the null of stationarity
that also apply to tests for the null of cointegration. A generalized solution to
this problem and the related problem associated with inference for mixed panel
applications remains an open challenge, which I will discuss later.

6 Estimation and Testing of Cointegrating Relationships
in Heterogeneous Panels

For panels in which cointegration has been established or is expected to hold,
the typical next step is to estimate the cointegrating relationships and construct
consistent tests of hypotheses pertaining to the cointegrating relationships. Dis-
cussion follows about some simple methods that account for heterogeneous
dynamics. As discussed previously, static OLS provides an immediate solution
for obtaining superconsistent estimates because it is robust to any features that
lead to endogeneity of the regressors, including the omitted dynamics. The
problem that presents itself with OLS, however, is that the associated standard
errors are not consistently estimated when the regressors are endogenous, even
when cointegration is present. The methods discussed here are designed to



Panel Cointegration Techniques and Open Challenges Chapter | 10 267

correct for this, such that both the estimates of the cointegrating relationship and
the associated standard errors are consistently estimated so that standard test
statistics that rely on standard error estimates, such as -statistics or F-statistics,
can be used.

Many ways of constructing cointegration estimators also produce consistent
standard error estimates for the purposes of testing hypotheses about cointegrat-
ing relationships. Two relatively easy-to-understand approaches are based on
the time series principles of fully modified OLS estimation and dynamic
OLS estimation. In both cases, the primary strategy is to adjust for a second-
order bias that arises from the dynamic feedback because of the endogeneity
of the regressors by using dynamics of the regressors as an internal instrument.
Fully modified OLS makes these adjustments via nonparametric estimates of
the autocovariances, while dynamic OLS makes these adjustments by paramet-
ric estimates using the leads and lags of the differenced regressors. Because
dynamics are estimated in both of these cases, an important issue for panels
is to accommodate any heterogeneity in the dynamics that is likely to be present
among the members of the panel. Analogous to previous discussions, we can
use either a pooled approach that conditions out the member-specific heteroge-
neous dynamics or a group mean approach.

Group mean approaches are popular in that they are easy to implement,
and the group mean estimates can be interpreted as the average cointegrating
relationship among the members of the panel. Another attractive advantage
for group mean approaches is that they produce a sample distribution of esti-
mated cointegration relationships for the individual members of the panel,
which can be further exploited in order to study what characteristics of
the members are associated with different values for the cointegrating rela-
tionships as illustrated in Pedroni (2007). Following are the details of the
group mean fully modified OLS (FMOLS) approach developed in Pedroni
(2000, 2001) and the group mean dynamic OLS (DOLS) approach intro-
duced in Pedroni (2001).

The group mean FMOLS approach simply makes the FMOLS adjustments
to each member of the panel individually, and then computes the average of the
corresponding cointegration estimators. For example, continuing with the
bivariate example of this chapter, the first step is to obtain the estimated resid-
uals ¢;, from the OLS regression for the cointegrating relationship, as described
in Eq. (17). These residuals are paired with the differences in the regressors to

create the panel vector series %it:(éi,, Ax,-,)'. From this, the vector of
/

autocovariances ‘i’,/ =7 Z;T:, . 1.%,-,% are estimated and then weighted using

it—j
the Bartlett kernel as per the Newey-West estimator to estimate the various ele-
ments of the long-run covariance matrix

Ki .
~ N ~ ~/ ~ J ~ ~ ~
Q=%+T;+T, h I''= 1— Y, X, =Y 29

. where jEzl ( K,-+1) ij 0 (29)
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for each member i for some bandwidth K}, typically set according to the sample

length as K; = 4(

10 0) 9, rounded down to nearest integer. These are used to

create the modification to the usual OLS estimator such that the FMOLS esti-
mator for each member i becomes

T
5ok ~
]xlfyli - TYI
Zr 1 ”

where analogous to earlier in the chapter, y& =y, —T ' Zthlyi, and
Xk =x; — Tflz,Tzlx,-, are the time demeaned versions of the variables, and
the FMOLS corrections are now such that

ﬁFMOLS, i= , (30)

~% * Q i ~ S 2, Q ira A
o=y — e Axy, =T+ a1 — ot (B + 00 G1)
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To understand the role of these adjustment terms, it is worth pointing out that,
according to Eq. (7), the numerator of the OLS estimator converges to a distri-
bution with a stochastic nonzero mean because of the feedback effect that arises
from the endogeneity of the regressors. After the adjustment terms Eq. (31) are
made, the distribution for the FMOLS estimator becomes centered around zero,
so that when the FMOLS #-statistic is computed based on the variance of the dis-
tribution, the #-statistic becomes asymptotically standard normal. In the special
case in which the regressors are exogenous, the off- diagonal elements of the auto-
covariances between A.x; and e;, 2o to zero, so that y;, — y% and 7; — 0, and there-
fore the ﬁFMOLs ; estimator becomes identical to the ﬁOLs ; estimator.

After the Bryors,; estimator is computed, the associated FMOLS #-statistic
is constructed on the basis of Eq. (30) in a manner analogous to conventional
t-statistics, except that in place of the usual standard deviation the standard devi-
ation of the long-run variance Ql 1.i is used as estimated by Eq. (29), so that the
FMOLS t-statistic becomes

Ak
Pevors,i — Po.i
IFMOLS,i = 0 (32)

A1 N7
2
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The group mean FMOLS estimator and group mean t-statistic are
computed as

N N

p -1\ ~1/2

Bermors =N ZﬂFMOLS,i, tormoLs =N~ Z IFMOLS, i (33)
i=1 i=1

where BFMOLS’ ; and tgpyors,; are the individual member FMOLS estimator and
t-statistic from Eq. (30) and Eq. (32), respectively. Because the individual
t-statistics have an asymptotic distribution that is standard normal, there is
no need to use the usual u, v adjustment terms to render the group mean
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asymptotically normal, and under the null tGry0r.s = N(0, 1) and under the
alternative tgryors — 00 as a two-tailed test, the critical values are the famil-
iar £1.96 for the 5% p-value, and so forth.

In pure time series applications, FMOLS is suffers from small sample size
distortion, which is inherited to some degree by pooled FMOLS as documented
in Pedroni (1996). As documented in Pedroni (2000), however, group mean
FMOLS has remarkably high power and very little size distortion in small sam-
ples. Intuitively, this appears to be because although the individual FMOLS ¢-
statistic distributions have fairly fat tails that lead to size distortion in short sam-
ples, they are nevertheless fairly symmetric so that, as the cross sectional dimen-
sion N increases, the group mean t-statistic converges quickly and is well
approximated by a standard normal even in short panels.

DOLS also appears to behave similarly, with the pooled version inheriting
the poor small sample properties, while the grouped version appears to do well.
As noted previously, DOLS also makes the adjustments to OLS that are neces-
sary in order to obtain consistent standard errors and thus produce standard tests
such as #-statistics that are consistent and nuisance parameter free under the null.
In contrast to FMOLS that uses estimated autocovariances to make the adjust-
ments, however, DOLS accomplished the adjustments via a parametric strategy
that uses leads and lags of Ax;, directly in the regression. In order to construct
the group mean DOLS estimator as described in Pedroni (2001), we first esti-
mate the individual DOLS regression for each member of the panel as

Ki
Yie =+ fixi + Z ¢i,ijit—j t+ej. (34)

=K

The inclusion of the leads and lags of Ax;, serve to center the distribution of
the numerator of the estimator for §; here, which we refer to as [}DOLSJ«, much in
the same way that the adjustment with the autocovariances in FMOLS served to
center the distribution. Again, analogous to the f-statistic for FMOLS, the
DOLS t-statistic then is constructed on the basis of Eq. (34) in a manner anal-
ogous to conventional 7-statistics, except that in place of the usual standard devi-
ation, the standard deviation of the long-run variance Ql 1.i is used, which can be
estimated by Eq. (29). The corresponding group mean DOLS estimators and
t-statistics then become

N N
Boors=N""Y_Bpows.i» tos=N"">> " tnoLs. (35)
i=1 i=1

and again there is no need to use y, v adjustment terms to render the group mean
asymptotically normal, and under the null z55;5 = N(0, 1) and under the alter-
native fpors — oo as a two-tailed test, so that the critical values here are also
the familiar 4 1.96 for the 5% p-value, and so forth.
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Pooled approaches are also possible, as for example, the pooled FMOLS
approaches studied in Pedroni (1996) and Phillips and Moon (1999) and the
pooled DOLS studied in Kao and Chiang (2000). In the DOLS approach the
dynamics are pooled, which can be problematic for reasons discussed previ-
ously, but one can easily imagine conditioning out the heterogeneous dynamics
in a pooled DOLS approach. Another approach that is used sometimes is the
panel autoregressive distributed lag approach of Pesaran, Shin, and Smith
(1999). Although autoregressive distributed lag approaches are, in general, built
around the assumption that the regressors are fully exogenous, the approach in
Pesaran et al. (1999) is able to relax the restriction to one of weak exogeneity,
analogous to the assumption discussed previously for the Westerlund (2007)
ECM-based approach. By contrast, FMOLS and DOLS approaches allow for
full endogeneity of the regressors as is typical in the panel cointegration liter-
ature. Finally, rank-based tests using VECM approaches also are possible, but
we defer this to a more general discussion of rank-based tests later in this chap-
ter, and instead turn to the use of the panel VECM framework for the purposes
of causality testing in cointegrated panels.

7 Testing Directions of Long-Run Causality in Heterogeneous
Cointegrated Panels

Although cointegration analysis in panels is in general robust to the presence of
full endogeneity of the regressors, as with any econometric method, consistent
estimation in the presence of endogeneity is not synonymous with establishing a
direction of causality. In order to establish causality, we need to impose further
restrictions that relate the structure of the estimated relationship to exogenous
processes, which, in general, requires additional a priori assumptions when the
observed processes are endogenous, and, therefore, is not synonymous with
consistency of estimation under endogeneity. In this regard, cointegration anal-
ysis is on par with any other econometric method that treats endogeneity to
establish consistency of estimation. Additional structure is needed to establish
the nature of the causal relationships.

In this context, cointegration can be interpreted as a type of identification
that already implicitly imposes some structure on dynamic systems, so that
the additional a priori structure that is needed to establish causal relationships
can be relatively easy to come by. As discussed previously, the presence of coin-
tegration in dynamic systems can be interpreted to imply the existence of a long-
run steady-state relationship among the variables. Continuing with the bivariate
example of this chapter, the implication is that if y;, and x;, are cointegrated, then
a long-run causal effect must exist that links the two variables in their steady
state. The long run causal effect, however, can run in either direction. It can
originate in something that induces an innovation in x that causes y to move
in the long run, or it can originate in something that induces an innovation in
y that causes x to move in the long run, or it can be both. In the following,
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I describe the panel VECM long-run causality tests introduced in Canning and
Pedroni (1997) and published in Canning and Pedroni (2008).

The technique relies on the panel VECM form to estimate the vector load-
ings, which provide the basis to construct panel tests. Both the direction of cau-
sality and the sign of the causal effect can be tested in this way. It is worth
considering how some of the implications of cointegration lead to a natural test
for these. I will use a simple bivariate example to illustrate, but to economize on
notation, I will use polynomial operator notation. Cointegration has three
important implications that can be used to understand the nature of the tests.
First, cointegration between y;, and x; implies that their relationship can be
represented in VECM form as

Pi
Ri(L)AZiy = ci+ JiBZiv1 + iy Ri(L)=1=) Ri;L/ (36)
j=1

where Z;, = (y;;, X;;)’ is the vector of variables, R; (L) contains the coefficients for
the lagged differences that reflect the heterogenous dynamics specific to member
i, u;, are the i.i.d. white noise innovations, and ;Z;,_; is the error correction term.
Because f; typically is unknown, when Eq. (30) is estimated for the purposes of
constructing long-run causality tests, this error correction term must be estimated
individually for each member, and it is important that it be estimated in a manner
that has no asymptotic second-order bias, such that the associated standard errors
are estimated consistently. Therefore, the Johansen procedure can be used to esti-
mate the VECM, or alternatively we can use estimated residuals, computed on the
basis of the FMOLS or DOLS estimator, so that for example

ermoLs.it = Vi, — Pi rmors Xy (37

is used in place of ﬁ;Zl-,_l in (36). When égyors.i is used in place of fiZ;,_, then
each of the equations of Eq. (36) can be estimated individually by OLS for each
member i to obtain consistent estimates of the loadings 4;, and the associated ¢-
statistics will be asymptotically standard normal.

The second, fairly trivial implication is that a stationary vector moving aver-
age representation exists for the differenced data, AZ;, which we write as

0i
AZy=ci+Fi(L)uy. Fill)=Y Fil/, Fio=I (38)
j=0

When we evaluate the polynomial F;(L) at L = 1, it gives us the total sum
F()= Z,-Q:'O F; ;, which can be interpreted as the total accumulated response of
AZ;, to the innovations u;;, which is equivalent to the long run steady state
response of the levels Z;, to the innovations. Therefore, the off-diagonal
elements of F;(1) can be interpreted as the long-run responses of the variables
to each other’s innovations, so that, for example, (1), represents the long-run
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response of x;, to a u;, ; unanticipated innovation in y;, and therefore can be inter-
preted as a measure of the causal effect from y to x.

The third and, in this context, most substantial implication of cointegration,
is known as the Granger representation theorem, which ties together the first
two implications. It tells us that the relationship between the loadings on the
error correction terms and the long-run steady-state responses of the levels is
restricted via a singularity such that

Fi(1)2;=0. (39)

If, for example, we are interested to test hypotheses regarding the long-run
causal effect represented by F;(1),;, then we can use one of the characteristic
equations of Eq. (39) to see the implications in terms of the loadings, 4;. Spe-
cifically, Eq. (39) implies that

F,‘(l)ZI/I,',1+F,'(1)22/1,"2 =0. (40)

Under cointegration, both elements of 1; cannot be zero, because in this case
the error correction term would drop out of Eq. (36). If we make the fairly innoc-
uous assumption that x causes itself to move in the long run, so that F(1), 5, # 0,
then Eq. (40) implies that F;(1),; = 0 if and only if 4,, = 0. This implies that
the construction of a test for the null hypothesis that 4, , = 0 becomes a test
for the null of no long-run causality running from y to x. A grouped panel ver-
sion of the ¢-statistic for this test can be constructed as

N
Zore=N""*Y "tis, (41)
i=1
where ¢; ;, is the individual z-statistic for the significance of 4; ; for unit i. Under
the null hypothesis of no long-run causality running from y to x, the grouped test
is asymptotically standard normal, while, under the alternative, the test diverges
to positive or negative infinity. By substituting #; ;, in place of 7; ;, in Eq. (41) we
can test for the null hypothesis of no long-run causality running from x to y.
Because these are two-tailed tests, it is possible that positive and negative
values for the loadings average out over the i dimension, so that the test effec-
tively asks whether there is no long-run causality on average. To address the
extent to which this might occur, we can use the same individual ¢; ;, values
to compute the corresponding Fischer style statistic, which is constructed as

N
Py=-2%"Inp, (42)
i=1

where In p; is the natural log of the p-value associated with either #;, or ¢;
depending on which causal direction one wishes to test. Under the null
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hypothesis of no causality, the P, statistic is distributed as y3y, that is, a chi-
square with 2N degrees of freedom. Because this is a one-tailed test with only
positive values, there is no canceling out of positive and negative values, and the
test can be interpreted as a test of how pervasive noncausality is in the long run
from y to x or x to y, depending on which element of /; is used.

Another advantage of this general framework is that we can use the impli-
cations of Eq. (40) to test the sign of the long-run causal effect. For example,
imagine we have rejected the null of no long-run causality running from y to x so
that 1; , # 0 and therefore F;(1),; # 0. If we are willing to make a sign normal-
ization such that we call an innovation to x positive if it increases x in the long
run and negative if it decreases x in the long run, so that Fi(1),, > 0, then
Eq. (40) implies that the sign of F,(1),; is the opposite of the sign of the ratio
of the two elements of the loading vector. If causality runs both directions in the
long run, so that neither 4;, nor 4, are zero, then

sign[F;(1),,] = sign [ jﬂ . (43)
i1

so that this ratio can be used to test the sign of the long-run causal effect. If
Ai1 =0, there is no need to compute such a ratio, because in that case causality
runs in only one direction and the sign of the OLS or FMOLS estimator reflects
the sign of the remaining long-run causal effect. Constructing the panel version
of a test based on the ratio is not as straightforward as some of the other tests
discussed in this chapter. This is because the ratio in Eq. (43) is distributed as a
Cauchy, which does not have a defined mean and variance. Instead the median,
which is defined for the Cauchy, is used to recenter the distribution, and the
panel distribution then is simulated by bootstrap from the estimated version
of Eq. (36).

In contrast to the other techniques discussed in this chapter, for which the
bivariate examples were illustrations of techniques that work for any number
of variables, the panel long-run causality tests are best suited for simple bivar-
iate investigations. In this regard, they can be interpreted easily as total deriv-
ative causal effects rather than partial derivative causal effects. If we are
interested in investigating multivariate channels, it is possible to generalize
to larger systems of variables. The generalizations are not trivial, however,
because they require additional restrictions beyond the normalization assump-
tions made for the bivariate case. If they are to be justified on the basis of eco-
nomic restrictions, then the approach begins to look like the heterogeneous
panel SVAR approach developed in Pedroni (2013), which also can be used
to test for long-run directions of causality whether or not cointegration is pre-
sent. Embedding an error correction term in the panel structural VAR approach
of Pedroni (2013) is conceptually straightforward, although the properties of the
approach specifically when the ECM term is embedded is a topic that will ben-
efit from further study.
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8 Strategies for Treating Cross-Sectional Dependence
in Heterogeneous Panels

The emphasis so far in this chapter has been on the treatment of heterogeneity in
the dynamics. As discussed in Section 1, however, it is also imperative to con-
sider how the heterogeneity of the temporal dependencies interacts with the
cross-sectional, or spatial, dependencies in such panels. In this section, I discuss
a number of approaches, each of which can be applied to the techniques dis-
cussed so far in this chapter.

One the earliest and simplest ways that was used to treat cross-sectional
dependencies was to use time effects, much in the way fixed effects were used
regularly. For this, we simply compute the time effects as
y,=N"'2¥ vy, X, =N"'EZ¥  x;, which can be used to purge the raw data so
that y;, = yi — y,» Xir = X;r — %;. Keeping with our bivariate example, we can pro-
ceed to use the purged data in place of the raw data for any of the techniques
discussed in this chapter. Mechanically, this treatment is symmetric with the
treatment of fixed effects discussed earlier, such that they were computed as
the means over time for each member and subtracted from the raw data. Keep-
ing with our bivariate example, if we account for both time effects and fixed
effects, then we can represent the prototypical cointegrating regression as

5;;; :ﬂiz’; t+ei (44)

where the * denotes that fixed effects also have been extracted, so that for exam-
ple ¥, =y, —T'S." 3, where y, is as defined, and similarly for X;. The
advantage of this approach is that it is easy to implement, and it can be applied
to the raw data as a standalone solution, which then can be fed into any one of
the techniques discussed in this chapter, as was typically done in empirical
applications. Furthermore, the asymptotic properties of estimators and tests
are unaffected.

Economically, the solution can be justified when most of the cross-sectional
dependency in the data derives from sources that commonly affect all members
of the panel. This is a typical assumption in microeconomic applications where
the members of the panel are small, and it can be a reasonable first approxima-
tion in macroeconomic applications when, for example, the panel consists of a
large number of small open economies that are responding to the global econ-
omy, but do not have much effect individually on the global economy. Similar
justifications can be used for regions of a large country or disaggregated indus-
tries of a large economy.

In many applications, however, time effects might not be sufficient to
accommodate all of the cross-sectional dependency. This can occur most obvi-
ously when the individuals that constitute the members of the panel are large
enough to affect one another rather than merely being affected by a common-
ality. More importantly, the cross-sectional dependencies can be intertwined
with the temporal dependencies so that one member affects another member
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over time. In other words, conceptually, one can think of autocovariances that
run across both time and space for the cross-sectional dimension, so that there is
an N x N long-run covariance matrix. A GLS approach for cointegration and
unit root testing in panels based on such a long-run covariance matrix estimation
was explored in a conference paper by Pedroni (1997).

Although the approach studied in Pedroni (1997) allows for a generalization
of the dependency structure relative to time effects, it suffers from two impor-
tant shortcomings. The first is that it requires the time series dimension to be
substantially longer than what one requires for time effects. The second is that
it falls apart when the cross-sectional dependencies that run across the members
of the panel are not temporally transitory, but are permanent. In other words, it is
possible that series are cointegrated not simply across variables for a given
member of the panel, but also for variables from different members of the panel,
sometime referred to as cross-member or cross-unit cointegration, so that for
example y;, might be cointegrated with y;, for i # j regardless of whether y;
is cointegrated with x;,.. In this case, the long-run covariance becomes singular,
and the estimators used for GLS might not be good approximations of the true
dependency.

A more elegant solution is a generalization that is more closely related to the
time effects solution, which is to model the commonalities in terms of a
dynamic factor model. One can think of time effects as a special case in which
a single common factor drives the dependency structure in the panel. The factor
model approach generalizes this in two regards. First, it allows for multiple fac-
tors and allows the individual members of the panel to respond in a heteroge-
neous manner by allowing member-specific loadings for the common factors.
Secondly, the factors themselves can be thought of as dynamic so that there is
temporal dependence in the evolution of the vector of common factors. This is
the approach taken for example in Bai and Ng (2004), among others.

Bai and Ng (2004) suggest estimating the common factors by principle com-
ponents and conducting the subsequent analysis on the defactored data. Bai and
Ng originally proposed the approach in the context of panel unit root testing and
showed that treating the cross-sectional dependency in this manner did not
affect the asymptotic properties of the subsequent panel unit root tests. Similar
to time effects, we can think of this as a standalone treatment that can be per-
formed prior to using the data for any of the techniques discussed in this chapter.
The technique works well for a small known number of factors. When the num-
ber of factors is unknown and must itself be estimated, the technique can be
sensitive to misspecification of the number of factors. The practical conse-
quence is that, when the number of factors is unknown, inference regarding unit
roots and cointegration can be sensitive to the number of chosen factors.

Another related approach advocated by Pesaran in numerous papers, includ-
ing Pesaran (2007), is to use the cross-sectional averages directly in the panel
regressions, in what is known as cross-sectional augmentation. This is equiva-
lent to estimating the time effects from the data as previously described, but
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rather than extracting them, we include them in the regressions. This has the
consequence of allowing the individual members of the panel to respond in a
heterogeneous manner to the time effects similar to the common factor
approach but without the need to estimate principle components. Pesaran
(2007) also proposed the method in the context of panel unit root testing, but
the approach also can be used in the context of any type of panel cointegration
technique. One important implication, in contrast to other approaches, however,
is that using the time effects in this way does affect the asymptotic distributions
of subsequent tests. This stems from the fact that member-specific coefficients
on the cross-sectional averages must be estimated jointly within the same equa-
tion as we estimate for the panel analysis. In contrast to the principle compo-
nents based factor model approach, the cross-sectional augmentation
technique should not be thought of as a standalone treatment for the data prior
to analysis, but rather as a method for adapting existing techniques. Westerlund
and Urbain (2015) compare the cross-sectional based approach versus the
principle-component based approach analytically and in Monte Carlo simula-
tions to draw out comparisons of the relative merits of the two approaches.
Although simple time effects extraction, common factor extraction, and con-
ditioning regressions on cross-sectional averages have econometric appeal, an
important practical concern stems from the idea that their implementation has
the potential to alter the economic interpretation of the results, depending on what
has been extracted. For cointegration analysis, this is particularly relevant when
the commonality that has been extracted or conditioned out potentially follows a
unit root process. To give a simple empirical example, imagine that we are testing
whether long-run purchasing power parity holds for a panel of real exchange
rates. Imagine, furthermore, that the truth is that the parity condition fails because
of a unit root process in the common total factor productivity frontier shared by
countries, which causes differential terms of trade effects in different economies
in the spirit of the Balassa-Samuelson hypothesis. The researcher, however, is
unaware of this truth and simply wants to control for possible cross-sectional
dependency by extracting a common factor by principle components or condi-
tioning out the effect of the common factor by means of a cross-sectional average.
In this case, we expect the raw data to reject PPP as the individual real exchange
rates will follow a unit root process because of the common TFP unit root, while
the data that has been treated for cross-sectional dependency in either of these
ways will fail to reject PPP. It would be a mistake, however, to conclude that
PPP holds in the data. In the name of controlling for cross-sectional dependency,
we would have unwittingly eliminated the very factor that is responsible for fail-
ure of PPP. This manner of controlling for cross-sectional dependency is not
innocuous, in that it has the potential to have a substantial impact on the economic
interpretation of the results in unknown ways if we do not know what the com-
monality is that has been eliminated. Rather than working with defactored data, it
would be preferable to work with the raw data in a way that accounted for the
dependency without potentially changing the interpretation of the results.
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There are several avenues for alternative approaches to controlling for cross-
sectional dependency that can work in modestly dimensioned panels without
the need to eliminate the source that creates the dependency. One such approach
is to account for the dependencies via bootstrap methods. Estimating and rep-
licating by bootstrap general forms of dynamic cross-sectional dependency
parametrically is not feasible in moderately dimensioned panels, so that sieve
bootstrap methods are likely to be a nonstarter if the hope is generality in the
dependence structure. By contrast, block bootstrap methods have the potential
to accommodate fairly general processes, as for example the approach devel-
oped in Palm, Smeekes, and Urbain (2011). The basic idea is to sample blocks
of random temporal length, 7,, < T for each draw » that span the entire cross-
sectional dimension with width N for each draw. In this way, whatever form of
cross-sectional dependency is present in the data will be captured and replicated
within the block with each draw. Performance of the bootstrap is sensitive to
some of the details, such as choices by which randomization of the block length
occurs, and at this point the Palm, Urbain, and Smeekes approach is designed
specifically for panel unit root testing rather than for cointegration applications.
This remains a promising area of current and future research.

In the next two sections, I discuss some other lines of research, which,
although not exclusively focused on the treatment of cross-sectional depen-
dency, nevertheless offer broad alternative solutions to accounting for general
unknown forms of cross-sectional and temporal dependencies in a manner that
does not alter the economic interpretation of the results, as potentially occurs
when commonalities are extracted.

9 A Nonparametric Rank Based Approach to Some Open
Challenges

In this section, I discuss a method for testing cointegration rank in panels using
robust methods and its relationship to some of the challenges in the literature. In
particular, the approach addresses four important challenges, some of which
have been touched upon in earlier sections of this chapter. One key challenge
is the ability to address the interaction of temporal dependencies with both
cross-sectional heterogeneities and dependencies in a general manner that does
not require the extraction of commonalities, as discussed in the previous sec-
tion. A second, related challenge is to do so in a way that creates sensitivity
to ad hoc choices. Examples of potentially ad hoc choices include not only
choices related to numbers of common factors when treating the cross-sectional
dependence, but also choices with respect to choosing lag length or the number
of autocovariances for the bandwidth when treating the cross-sectionally het-
erogeneous temporal dependence. A third challenge discussed previously in this
chapter is the problem of mixed panels, whereby different members of the panel
can exhibit different properties with regard to cointegration and unit roots.
Finally, a challenge for many of the techniques is that they tend not to perform
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well when incidental member-specific deterministic trends are present and esti-
mated in the regressions. For all of these challenges, it would be good to have
techniques that perform well without the need for exceedingly large panels.

As it turns out, these challenges are interrelated and can be viewed as stem-
ming fundamentally from the overriding challenge presented by the classic
curse of dimensionality problem. To see the connection, imagine treating a
panel of time series as if it were a large vector of time series to be investigated,
a large dimensional unrestricted VECM, with each member of the panel con-
tributing variables and equations to the VECM. For example, imagine a panel
with N members, each one of which includes M = 2 variables, y,;, x;,. This could
be loaded into an MN X 1 dimensional vector to produce a VECM of dimension
MN x MN. This is appropriate conceptually, because without restrictions, the
VECM would allow for both full heterogeneity of the dynamics among the
members as well as full unrestricted dynamic cross-sectional dependencies
among the members. The dependencies could include nontransitory, permanent
dependencies across the variables analogous to cross-member cointegration,
which would be reflected in a reduction in the rank of the VECM.

The question of rank is also of interest here because it relates to the issue of
mixed panels discussed earlier in this chapter. It is common to think of the prob-
lem of mixed panels in terms of questions about how many members of the panel
are consistent with the alternative when we reject the null. For example, if we
reject the null of a unit root or the null of no cointegration, if the empirical appli-
cation allows for the possibility that the answer differs across members of the
panel, then how many of the members are consistent with the alternative? There
is a conceptual problem in thinking about the question in this way, however, when
one recognizes that the members of the panel might be linked through cross-
member cointegration. For example, imagine a panel consisting of a hypothetical
state GDP price deflator series for the 50 states of the United States. Imagine that
each of the series follows a unit root process, but that the unit root in each of these
series is because of their common link to the US dollar, which creates a unit root
for the US national GDP deflator. In other words, the panel has a cointegration
rank of 1 rather than 50. In this case, depending on our perspective, we could
argue either that 50 of the state deflators have unit roots, or, after accounting
for the cross-sectional dependence structure, we could argue that, in effect, there
is really only one unit root shared among all 50. More generally, in applications
with unknown forms of cross-sectional dependency and unknown degrees of
cross-member cointegration dependencies, the answer can lie anywhere in
between. I believe that in this case, conceptually the more salient question is
not how many members have unit roots but rather what is the rank of the panel.
In effect, we would like to know how many unit roots are responsible for deter-
mining the properties of the panel and whether the rank is large and close to full
rank, or whether the rank is low and close to zero. The same applies if we are
asking about the number of members for which two variables within the same
member appear to cointegrate.
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Although the VECM approach helps us to sort through these various issues
conceptually, it is not feasible to apply the VECM form directly because the num-
ber of parameters that would need to be estimated is far too large. Consider the
example described previously, where we have N = 30 members with M = 2 vari-
ables, and, say, K = 8 lags. Estimating the VECM would require the estimation of
NzMz(K + 1) + NM parameters, which comes to 32,460 parameters. If we require
at least 10 data points per parameter in order to allow enough degrees of freedom,
which is likely an understatement, then we should look for panels of length
T =10x(32,460/30), hence panels of length T = 10,820. This makes the
approach infeasible and contrary to the spirit of the panel cointegration literature,
which attempts to find techniques that work well in panels of moderate length.

One way to think about this is that the vast majority of the parameters that
would need to be estimated for such a VECM approach are parameters that are
associated with nuisance features of the data, which are not necessarily central
to the questions of interest. A different strategy is to look for approaches that do
not require that the nuisance features be controlled for by estimation of the asso-
ciated parameters. This is central to the approach discussed in this section, as
well the very different approach discussed in the next section. In this section,
I discuss the approach taken in Pedroni, Vogelsang, Wagner, and Westerlund
(2015) to test for the cointegration rank in panels in a way that is robust to
the interaction of cross-sectional dynamic heterogeneity and cross-sectional
dynamic dependence of unknown form. The approach is based on using untrun-
cated kernel estimation. An added advantage to the untruncated kernel estima-
tion is that it does not require the choice of any tuning parameters, such as
numbers of lags or autocovariances or common factors to be estimated, and,
therefore, eliminates the sensitivity to them. Because the dependence structure
is not explicitly modeled or estimated, the method can be implemented with
much shorter panels, provided that the time series dimension, T, is greater than
the cross-sectional dimension, N. Finally, freeing up degrees of freedom in this
way leaves enough room for the tests to perform almost as well with the inclu-
sion of member-specific deterministic trends as without.

To gain some understanding about the technique, imagine that we are inter-
ested whether a single series or potentially cointegrated linear combination of
series follows a unit root or is stationary. We will take the series to be y, to
denote the idea that any deterministics, such as intercepts or trends, are
accounted for by regressing the individual member series against an intercept
and possibly also a trend. Then consider estimating the untruncated kernel
for u,. This is equivalent to estimating Eq. (29) for a single series for a single
member, but with the bandwidth K; set to the maximum possible for the sample,
so that K; = T. Ordinarily, this would not be done if we are interested in esti-
mating the long-run covariance, because it will lead to an inconsistent estima-
tion of the long-run variance. In this context, however, the nature of the
inconsistent estimation turns out to be useful. Specifically, Kiefer and
Vogelsang (2002) show that when y, follows a unit root process



280 Panel Data Econometrics

T2&* =20°D; as T — o, (45)

where @? is the untruncated Bartlett kernel estimate of 4, o~ is the true long-run
variance, and D, is a known nuisance parameter-free distribution based on a
Brownian bridge. If one computes the standard variance for a process that fol-
lows a unit root, then

T7'$*=26°D, as T — oo, (46)

where §” is the standard variance estimate of Mo, o’ is the true long-run variance,
and D, is a different but known nuisance parameter-free distribution based on a
Wiener functional. The implication of Egs. (45) and (46) is that for their ratio we
have

?

-1
T 2

D
=221 as T— oo, (47)
D,

so that the ratio converges to a known nuisance parameter-free distribution
when g, follows a unit root. By contrast, if y, is stationary, then §* — s* con-
verges to a constant given by the true standard variance, while T~ '®* — 0,
so that the ratio in Eq. (47) collapses to zero as T — oo. In this way, the ratio
in Eq. (47) can be used to test consistently whether y, follows a unit root process
against the alternative that it is stationary without the need to consistently esti-
mate and control for the unknown dynamics associated with 67,

Consider now the case of a panel imagined as a large vector of variables.
This can be for a univariate case, or for the case in which the variable represents
a linear combination of unit root variables that are hypothesized to be cointe-
grated for each member i of the panel. In this case, y, becomes an N x 1 vector
of variables. If we use these to compute the untruncated Bartlett kernel, we
obtain the analogous symmetric matrix estimate such that

T20=20Q"2D; x Q" as T— oo, (48)

where € is the untruncated kernel estimate, Q is the true unknown long-run
covariance structure, and D g is a known nuisance parameter-free vector Brow-
nian bridge of dimension R, which will be explained shortly. For the standard
covariance matrix estimator, we obtain

T7'8= QYD) x " as T — oo, (49)

where ¥ is the standard covariance estimate, € is the same true unknown long-
run covariance structure, and D; g is a different but known nuisance parameter-
free vector Wiener functional, also of dimension R. The long-run covariance
matrix  summarizes all possible heterogeneous temporal and cross-sectional
dependencies and is unknown. Unfortunately, it is no longer the case that these
simply cancel out if we form the ratio Q1 Fortunately, however, if we per-
form the trace operation over the ratio, then the Q terms do cancel out, so that
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T7'QS ™' = DDy as T— . (50)

Notice what this has accomplished. Because the € terms that contain all the
information about the heterogeneous temporal and cross-sectional dynamic
dependencies has dropped out, there is no need to estimate any of them, and
we are left with a pure nuisance parameter-free known distribution, which
can be used for testing in a manner that is robust to the temporal and cross-
sectional dependencies. The dimensionality R of the vector distributions and,
therefore, the tail values of the distributions, depend on the rank of the vector
Uy, so that we can use them to test the rank of the panel. In this light, conven-
tional panel unit root tests can be viewed as testing hypotheses that are special
cases. In the simplest interpretation of conventional panel unit root tests such
that they are used in applications in which the individual members either all
follow a unit root or are all stationary, conventional panel unit root tests can
be interpreted as special cases of the rank test of this section whereby the null
of full rank R = N is tested against the alternative of zero rank R = 0. In more
nuanced mixed panel applications of conventional panel unit root tests, in which
individual members are free to follow either a unit root process or a stationary
process, a conventional test can be interpreted as a special case of the rank test
whereby we test the null of full rank R = N against the alternative of any
reduced rank R < N. By contrast, here we have a continuum of possibilities
to test for the null as well as the alternative, ranging anywhere between full rank
to zero rank. Pedroni et al. (2015) describe a sequential step-down procedure to
determine the rank.

Although the test has high power even in the presence of deterministic trends
to distinguish full rank from zero rank, or in general high rank from low rank,
the test does not have sufficient power to reliably distinguish the exact numer-
ical ranks in moderately dimensioned panels. The precise numerical rank, how-
ever, is not likely to be of interest in most economic applications. For example,
it is hard to foresee many economic hypotheses that revolve around whether a
panel of dimension N = 30 has a rank of say 17 or 18. Instead, I believe that
what is typically of interest is whether the rank of the panel is relatively high
or relatively low so that we know whether there are many or only a few unit
roots that drive the properties of the panel. This also can be useful as a type
of empirical cross-check for more conventional panel unit root and panel coin-
tegration tests. Imagine, for example, that we have confirmed through panel
cointegration testing that the null of no cointegration has been rejected. In
mixed applications, if we would like confirmation that the fraction of members
consistent with this rejection is high, then we can use this type of rank test to
check the rank of the residuals. If the rank is low, then the fraction of the mem-
bers consistent with the rejection is high. Because we estimate N x N untrun-
cated kernels, we require 7 > N to implement the rank test. In cases where
T < N, however, it is always possible to break the panel into smaller subsets
of members for the purposes of rank testing.
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In unpublished versions of the study, tests for the null of stationarity also
were explored initially, but were dropped in order to focus on the pure rank tests,
and that the general approach of using untruncated kernels also holds promise
for constructing tests for the null of stationarity or the null of cointegration that
have good small sample properties. In general, the testing framework of this
section is one in which we obtain robustness to unknown forms of temporal
and cross-sectional dependencies in panels of moderate sample length because
we do not need to estimate the associated parameters. In the next section, I con-
tinue this discussion with some more recent techniques that do so in a
completely different manner while attempting to address further open
challenges.

10 New Directions and Challenges for Nonlinear and Time
Varying Long-Run Relationships

In this section, I discuss some new directions and their relationships to the open
challenges of treating nonlinearities and time varying relationships in heteroge-
neous cross-sectionally dependent panels. In particular, I discuss some of the
details of an approach introduced by application in Al Masri and Pedroni
(2016) and studied econometrically in terms of its asymptotic and small sample
properties in Pedroni and Smeekes (2018).

The basic idea is to exploit some the desired robustness properties discussed
in this chapter and to estimate long-run nonlinear relationships and, potentially,
time varying long-run relationships by using the form

yie =f Xir, Zi) (5D

for some vector of unit root variables X;;, possibly conditional on the value of
some vector of cross-sectional observations Z;. This is a challenging goal
because cointegration was developed in the time series literature as a fundamen-
tally linear concept, and, although nonlinearities have been explored in the
recent time series literature, it often is hard to retain the superconsistency
robustness properties that come from cointegration after nonlinearities are
introduced. To gain some understanding for this, imagine a nonlinear relation-
ship among unit root variables naively estimated by grouped OLS in the follow-
ing form

Vit = Yo + V1 + Y22+ €iy. (52)

The problem with this format relates to the way in which unit root variables
contribute to the regression properties when they appear in nonlinear form. For
example, imagine that y;, and x;, follow unit roots and are cointegrated. If we
then square the x;, variable, the stochastic properties are altered and it becomes
difficult to think about y;, being cointegrated with both x;, and xiina way that
preserves the conventional superconsistency. Conversely, if we start by
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thinking about y;, being cointegrated with x2, it is difficult to imagine that it also
is cointegrated with the square root of this variable in a way that preserves the
superconsistency associated with cointegration in a conventional sense.
Therefore, the approach we take is not to estimate anything like the format in
Eq. (52), but is entirely unrelated to existing approaches to treating nonlinearities in
nonstationary time series. Rather, we take an approach that is uniquely possible
only in a heterogeneous panel context. The result allows us to estimate a general
class of functions of unknown form in a way that is robust to any of the forms of
temporal and cross-sectional dependency discussed in this chapter, including
dependencies in the form of cross-member cointegration, which we will not need
to extract or identify in order to estimate the function. The approach works by esti-
mating what can be interpreted as the Taylor polynomial approximation to Eq. (51)
in a way that envisions different members i of the panel as being realizations along
different portions of the domain of the function Eq. (51). A cross-sectional sam-
pling of a linear approximation of the polynomial is taken across these different
portions of the domain that correspond to the different units of the panel. This
is then interacted with fixed point in time observations, s, of the regressors X;
(s) via a second-stage regression in order to approximate the Taylor polynomial.
If we continue with the bivariate example used throughout this chapter, we
can describe the technique as composed of two key steps. The first step is to
estimate a static time series regression for each unit of the panel in the form

Vit = 0 + PiXi + ;. (53)

The second stage is to take the heterogeneous estimated slope values, Bi
from Eq. (53), and use them in a second-stage cross-sectional regression as

P

Bi=> cisxi(s)+v; (54)

=0

where the order of the polynomial P in Eq. (54) is chosen by data dependent methods,
and x; (s) is a point in time observation of x;, at any fixed point in time s from the
observed sample. In practice, Eq. (54) can repeated for any and all available values
of 5. Furthermore, if the data generating process is understood to be time invariant,
then the group mean values can be used to obtain the time invariant estimates
¢;=8"125 ¢, forany value j. If instead the data generating process is understood
to be time varying, subject to smoothness constraints, then one can use individual or
rolling window averages of the ¢; ; to trace their evolution over time.

To gain some further understanding about the technique, consider a simple
case in which the polynomial being estimated is relatively low order. For exam-
ple, imagine that the chosen value for P in Eq. (54) is P = 1. If we take the fitted
values from Eq. (54) and imagine plugging them into the fitted values of
Eq. (53), for the case of P = 1, we obtain

Vir = @ + CoXig + C1X:(8)Xiz, (55)
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so that by setting P = 1 in Eq. (54) we obtain a quadratic relationship in x for
Eq. (55). The quadratic term in Eq. (55), however, is specialized in that it is not
x,~2,, but rather x;(s)x;,. It is this detail that allows us to use variation in the domain
realizations of x;(s) over the cross-sectional dimension i to trace out the poly-
nomial. Specifically, if we picture the polynomial as having the curvature of a
quadratic, take a fixed point x;(s), and then vary x;, over ¢ around this point, we
obtain a line representing the tangency of the curve at that location. If we do this
at various points along the x axis corresponding to the different i realizations for
xi(s), with enough variation over i, we begin to trace out the entire polynomial.
In this way, we exploit the heterogeneity among the i realizations to map out the
details of the polynomial. The same principle applies when we take higher order
values for P, so that we are, in effect, taking a higher order expansion around the
linear relationship between y;, and x;, corresponding to unit .

Although the regressions Eq. (53) and Eq. (54) are both static and linearly
additive, the data generating process y; and x; is permitted to be dynamic,
cross-sectionally dependent and potentially nonlinear, with the idea being that
these regressions are able to consistently estimate the underlying nonlinear
long-run relationship between y and x in a way that is robust to these features,
without the need to specify and estimate the dynamics and cross-sectional depen-
dencies. The robustness properties owe much to the fact that the nonlinear panel
form has been decomposed into two simple sets of regressions, the first a static
time series regression for each member i and the second an additively linear
cross-sectional regression for each fixed time point s. In particular, the first-stage
regressions Eq. (53) needs to estimate a linear approximation that is appropriate
for the range over which the data is realized for each member i. Because these are
unit-root variable, stationary transition dynamics play only a second-order role in
this estimation and vanishes asymptotically as the number of observations for the
range associated with a given 7 increases.

In the second-stage regressions Eq. (54), the cross-sectional distribution of
these estimates is related to the corresponding cross-sectional distributions of
observations taken at a given point in time s. Because this step is done as a
cross-sectional regression for a given period s, dynamic cross-sectional depen-
dencies do not play a role in the consistency of the estimation viewed from the
perspective of the cross-sectional estimation as the number of members grows
large. More broadly, the fact that the interaction of the linear approximation
based on the relationship between y;, and x;, and the cross-sectional point in time
observations on x;(s) are used to obtain the robustness properties can be inter-
preted as exploiting the fact that the specific historical realizations x;(s) matter
in the way they interact in the incremental relationship between x;, and y;, to
create the nonlinearities that we observe.

Another interesting aspect of the approach is that, because for the first-stage
regressions Eq. (53) we do not require the variables to be cointegrated in the
conventional sense of a linear combination of variables that are stationary,
the technique also is robust to the omission of unit-root common factors that
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would, in a more conventional setting, break the cointegrating relationship
between y;, and x;,.. In this regard, the technique also offers the possibility of
a type of robustness for mixed panel applications, because we do not require
each member to be individually cointegrated in the conventional sense. Monte
Carlo simulations for both the Al Masri and Pedroni (2016) and Pedroni and
Smeekes (2018) studies show that the technique works well even when the
length of the panel is relatively short, even in the presence of omitted dynamics
and common factors. Pedroni and Smeekes (2018) study the conditions under
which the distributions are asymptotically normal, and under which standard
t-statistics have good size and strong power even in relatively short samples.

I have described a simple bivariate example, but as shown in both studies,
and as applied in Al Masri and Pedroni (2016), the technique also can be used in
the general case when X, is an M x 1 vector, and the corresponding multivariate
polynomials also can be conditioned on cross-sectional variables. Because the
generalization is less obvious than for some of the other techniques discussed in
this chapter, it is worth elaborating briefly on how this is done. When Eq. (53) is
replaced with a multivariate regression of the form

Vie = + X + (56)

where X;; is an M x 1 vector, the second-stage regressions now take the form
ZC, Xi(s) +vi, (57)

which represents a system of equations, one for each estimate of the M x 1 vec-
tor ﬁl» from Eq. (56), where X;(s) is an M x 1 vector realization of X;, for some
fixed time period s and the C; are the M x M estimated matrices, which is diag-
onal for j = 0, symmetric for j = 1 and unrestricted for j > 1. In this way, the
form of the approximating polynomial is interacted among the various elements
of the vector version of Eq. (51). For example, in Al Masri and Pedroni (2016)
arguments, X ;, and X, ;, reflecting measures of development of financial insti-
tutions and measures of development of financial markets, respectively, are
allowed to interact with one another in their relationship to per capita income.
By taking time derivatives of the estimated relationships, we can infer the impli-
cations of different relative rates of development in financial institutions versus
financial markets for various types of countries.

Furthermore, it is also possible to condition these polynomial relationships
on any vector of cross-sectional observables, Z;. In such cases, Eq. (58) can be
extended to take the form

K P
Zc, XU($)+ D0 D XU(8)Zi+vi (58)
k=1 j=0

Z; is K x 1 vector of unit specific variables and D, ; are conformably dimen-
sioned M x M matrices. In practice, Z; can take the form of static cross-
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sectional variables, or either point in time realizations or time averaged reali-
zations of stationary time series variables. In this way, cross-sectional and sta-
tionary variables also can have a role in shaping the form of the polynomials.
For example, Al Masri and Pedroni (2016) show how the relationships between
the different types of financial development and long-run economic growth
depend in part on the degree of financial openness, which is incorporated as
a static conditioning variable, Z;, that reflects the financial openness of the
member. Furthermore, by estimating the relationship over a rolling window
for s, we can see the evolution of the polynomials over time.

Although this general line of research about nonlinear and time varying
long-run relationships is in its early stages, it should be clear that the promise
is fairly high for addressing some of the open challenges about panel cointegra-
tion that remain and for having broad empirical applicability. In that spirit, far
from being an exhaustive survey of the literature on panel cointegration
methods, this chapter has instead selectively touched on a simple manner about
what I believe to be some of the key challenges that have helped to shape the
literature, as well as some the key challenges that I expect are likely to be a part
of what continues to motivate the literature, both in its theoretical development
and its broad empirical applicability.
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Consistency of Certain

1 Introduction

Econometricians have traditionally used one of three types of data sets for esti-
mation: single cross-section, single time series, and panel data. Data on a number
of units for a single time period with one observation per unit constitute a single
cross-section. A time series is a realization of a stochastic process, being a
sequence of observations on a single unit, usually ordered in time. Panel data refer
to time-series of cross-sectional data obtained by assembling cross-sections over
several periods, with the same cross-section units appearing in all periods. Cross-
section units can be households, firms, or any microeconomic unit. Sometimes
countries, states, or regions are used as cross-section units. The periods for which
time-series data are available can be years, quarters, months, hours, or intervals
shorter than an hour, such as observations received from satellites. Market interest
rates, such as the federal funds rate, change every minute. In this chapter, we are
concerned exclusively with panel data. We do not consider data with missing
values and combined single time series and single cross-section data.
Depending on the type of data, various complications in estimation can
occur. In cross-sectional data, we might need to account for interindividual het-
erogeneity. This heterogeneity varies depending on whether cross-section units
are micro units or aggregates. For example, if the cross-section units are coun-
tries rather than firms, then economy-wide production functions do not exist
even though firm-level production functions exist, as aggregation theories show
(see Felipe & Fisher, 2003). Thus, in the study of any economic relationship,
one must consider issues of existence first. Another complication, arising in
capital theory and first identified by Sraffa (1960) and Robinson (1953-54),
concerns the phenomenon of re-switching, which denies any unique relation-
ship between capital intensity and the rate of profits. To analyze yet another
complication, consider Shephard’s duality theorem which, as restated by
Diewert (1971, p. 482), asserts that “technology may be equivalently repre-
sented by a production function, satisfying certain regularity conditions, or a
cost function, satisfying certain regularity conditions,” which he enumerated.
Later, Swamy, Tavlas, and Hall (2015) defined uniqueness of the coefficients
and error term of any model and proved that production and cost functions hav-
ing unique coefficients and error terms and satisfying Diewert’s regularity con-
ditions are difficult to find. For example, to handle the typically unknown
correct functional form of a production or cost function, Swamy, Tavlas, and
Hall (2015) employed a rich class of functional forms that can cover the
unknown correct functional form as a special case. With this approach, how-
ever, there remains an issue of deciding whether the correct but unknown func-
tional form, covered as a special case of a class of functional forms, satisfies the
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regularity conditions because it is difficult to apply Shephard’s duality theorem
under these circumstances. If we relinquish uniqueness, however, the results
will be incorrect, as we will show. For this reason, we study cost and production
functions with unique coefficients and error terms, without applying Shephard’s
duality theorem. Keeping this in mind, we assert that intercountry heterogeneity
in the case of economywide production functions is a nonexistent problem,
because such functions do not exist, whereas interfirm heterogeneity in the case
of firm-level production functions with unique coefficients and error terms and
intercountry heterogeneity in the case of aggregate consumption functions and
other functions with unique coefficients and error terms do constitute real and
solvable problems.

In time series, successive observations might be dependent, and such depen-
dence, if present, should be taken into account. In the time-series literature, a
distinction is made between stationary and nonstationary processes.' Time-
varying coefficients models define nonstationary processes for their dependent
variables.” In panel-data analyses, both interindividual heterogeneity and tem-
poral dependence of observations, and nonstationary processes generating
observations on dependent variables should be analyzed carefully. This chapter
shows how this could be done. Another point to note is that researchers have
been able to use panel data to examine issues that could not be studied in either
cross-sectional or time-series data alone, such as the separate estimation of
economies of scale and technological change, as exemplified by Greene
(2012, p. 345), who believed that data about output and factors of production
for a number of firms, each observed over several years, can provide estimates
of both the rate of technological change over time and economies of scale for
different firms at each point in time. We will point out several difficulties raised
by this procedure.

Swamy, Mehta, and Chang (2017) (hereafter SMC) showed that when the
error term of an econometric model is made up of omitted relevant regressors,
its coefficients and error term are nonunique. Such nonuniqueness is far more
prevalent in econometric practice than nonuniqueness of the relationship
between capital intensity and the rate of profits noted by Sraffa and Robinson.
Again, when the error term of a model is made up of omitted relevant regressors,
the assumption that the included regressors are independent of the error term is
the same as the assumption that the included regressors are independent of the
omitted regressors. Pratt and Schlaifer (1988) (hereafter PS) pointed out that

1. The statistical properties of stationary processes do not change over time. All processes that do
not possess this property are called nonstationary (see Priestley, 1981, p. 14).

2. In the time domain, a model with time-varying coefficients is used to define a class of functional
forms to cover the unknown true functional form of the model as a special case, as will be made clear
later. By contrast, in the case of general types of nonstationary processes, it is not possible to esti-
mate the spectrum at a particular instant of time, but if the spectrum changes only smoothly over
time, then using estimates that involve only local functions of the data, an attempt can be made
to estimate some form of average spectrum of the process in the neighborhood of any particular time
instant (see Priestley, 1981, p. 818).
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this is a meaningless assumption. SMC (2017) further showed that nonunique-
ness of the coefficients and error term of a model implies that none of the
included regressors can be exogenous, and therefore nonunique coefficients
are not identifiable. Unfortunately, unidentifiable coefficients are not consis-
tently estimable. Therefore, there is a problem, one that we intend to solve in
this chapter by extending techniques applied to our previous models having
unique coefficients and error terms to a case involving panel data. The essence
of the problem to be solved is to find a way to estimate separately an omitted-
regressor bias component and a bias-free component that are inherent in the
unique coefficients of the proposed model. As we will show, using appropriate
coefficient drivers, to be defined later, we can solve this problem.

The remainder of this chapter is divided into five sections. Section 2 gives
the reasons why models with nonunique coefficients and error terms produce
incorrect inferences. To do away with these models, Section 3 develops models
with unique coefficients and error terms for panel data. The section shows how
such a model, in conjunction with time-series data on each individual in a panel
data set, can be used to estimate the causal effects of the included nonconstant
regressors on the dependent variable. The difficult part of this estimation is
separating the estimates of causal effects from those of omitted-regressor and
measurement-error biases. For this separation, certain coefficient drivers are
needed. The section shows the impediments to estimating the causal effects
using the entire panel data. Under a reasonable assumption about interindividual
heterogeneity, only mean effects can be estimated using non-Bayesian methods
and the entire available panel data set. We provide two examples to highlight a
number of problems with existing methods of handling spatial autocorrelation
and cross-section dependence in the econometrics literature. Section 4 discusses
the difficulties in using Bayesian methods to estimate mean effects and pro-
poses a method for improving the precision of the estimators of causal effects
based on time series data for each individual. This section also proposes a cor-
rection to the existing method of simulation-based estimation and inference.
Section 5 presents empirical estimates of the causal effects of wives’ education
on their earnings. Section 6 provides our conclusions.

2 Models With Nonunique Coefficients and Error Terms
for Panel Data

In this section, we provide a definition of uniqueness of the coefficients and error
term of any model for panel data and discuss problems that arise when this unique-
ness condition is not satisfied. Typically, panel data contain a large number of
cross-section units and only a few periods. For such data, time-series methods
requiring long time series can be problematic, but useful techniques can be focused
on cross-sectional variation, or, equivalently, on interindividual heterogeneity.

To achieve greater flexibility in modeling differences in behavior across
individuals than a cross-section allows, econometricians have been studying
panel data sets. A model setup considered in the econometric literature for
the analysis of such a data set is
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Yit:x:‘tﬂ+€;a+1';§+€it- (1)

where i (= 1, ..., n) indexes individuals, ¢ (= 1, ..., T) in Eq. (1) indexes time,
and y is a dependent variable. There are K regressors in x;, (including a constant
term), called the included regressors. The scalars ¢/a and ’Z'; £ can be represented
by u; and ¢,, respectively. The term ¢/ a represents interindividual heterogene-
ity, with ¢; being a vector of time-invariant and individual-specific variables,
such as race, sex, location, individual skill, ability, and preferences, some of
which can be observed. Note that ¢; does not contain a constant term.” The term
7,/ is the time effect, with 7, being a vector of individual-invariant and time-
varying variables, not all of which may be unobserved. The vector z, also does
not contain a constant term. Model (1), which Swamy (1971) and Swamy and
Arora (1972) estimated under certain assumptions, and Mehta, Narasimham,
and Swamy (1978) used to estimate a dynamic demand function for gasoline,
is called the random effects model if ¢/a and 7/¢ are treated as random vari-
ables. One of these assumptions is that every element of § has the interpretation
of a partial derivative.
Assumption Al:

p= aE()’ir| xir)/dxit- (2)

When x;, is random, the conditional expectation, E(y;| x;,), exists if the con-
ditions of Lemma 1 stated next are satisfied.

Lemma 11If, for all ; and ¢, ¢/ a and 7,/ are such that g(x;,) is a Borel function of
Xi» and E|y; | < oo, E|y;g(x;)| < oo, then E(y;|x;,) in E[g(x;)(yie| Xi)] = g(xi)
E(y;|x;) exists such that E{g(x;)[y;, — EQi|x;)]} = 0.

Proof

See Rao (1973, p. 97).

Under the conditions of Lemma 1, Assumption Al follows from Eq. (1),
provided E(y; | x;,) is a continuous function of x;.. We will describe some situ-
ations in which the conditions of Lemma 1 are not satisfied. In these situations,
the interpretation that ¢;, containing y; and ¢, is the deviation of y;, from the con-
ditional mean, E(y;| x;,), might not hold.

The main objective of the analysis is to obtain a consistent and efficient esti-
mator of . The question of whether this objective can be achieved cannot be
answered without first providing a real-world interpretation of ¢;, as Pratt
and Schlaifer (1984, p. 11) pointed out.

. /
Interpretationlof €;;: €; =W, ® 3)
where w;, = (Wi, ..., wr;,)' is a vector of omitted relevant regressors other than
¢;i and 7,, L is the unknown number of such regressors, and ® = (w1, ..., ;) is

the vector of the coefficients of omitted relevant regressors. In words, the error
term ¢;, of Eq. (1) is made up of all relevant regressors w;, omitted from Eq. (1).

3. A better method of modeling interindividual heterogeneity is presented in Section 3 below.
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These are called omitted regressors. None of these regressors is time-invariant
or individual-invariant because such variables are already removed from w;, and
are put in either ¢; or 7, in Eq. (1).

Substituting w;/@ for ¢;, in Eq. (1) gives

yi=xXB+ca+rié+w,w 4

Treating this as a linear deterministic equation, Pratt and Schlaifer (1988,
p- 13) showed that the omitted regressors w;;, and the coefficients f and w
are not unique. By the same logic, the vectors ¢;, 7, and the coefficient vectors
a and ¢ also are not unique if ¢; and 7, are not observed. We adopt the following
definition of uniqueness:

Definition (Uniqueness): The coefficients and the error term of any econo-
metric equation are unique if they are invariant under the addition and subtrac-
tion of the product of the coefficient of any omitted relevant regressor and any
included regressor on the right-hand side of the equation.

Axiom by Pratt and Schlaifer (1988, p. 34): The condition that the included
regressors be independent of “the” omitted regressors themselves is meaning-
less unless the definite article is deleted and then can be satisfied only for certain
sufficient sets of omitted regressors, some if not all of which must be defined in
a way that makes them unobservable as well as unobserved.

These considerations, which will become clear as we proceed further in this
chapter, have been useful in our earlier research.

Theorem 1 Under interpretation I of ¢;, in Eq. (3), the coefficient vectors,  and
, and omitted regressors (w;,) in Eq. (4) are not unique; the included regressors
X;; cannot be uncorrelated with every omitted regressor in w;; and the econome-
trician’s reduced-form equations and instrumental variables do not exist.
Proof

Using interpretation I of ¢;; in Eq. (3), rewrite Eq. (4) as

K—1 L
Yie=Po+ ijirﬁj + G:'a"‘ T;é + Zwmwe 5)
(=1

J=1

where this equation is the same as Eq. (4). Let ;' be one of the values the sub-
script j takes and ¢ be one of the values the subscript £ takes. Following the
definition of uniqueness, add and subtract the product x;w, on the right-hand
side of Eq. (5). Doing so gives

K-1 L

Vit :ﬁo + Z xjitﬂj +Xjir (ﬁj’ + a)(;/) + g;a +T;§+ Z Weir@y + (Wl’it —)er,‘,)a)[
=1 (=1
J#T L#L

(6)

Eq. (6) is the same as (5), but going from Eq. (5) to Eq. (6) changes the coef-

ficient of x;,, from f; to (f; + w,) and further changes an omitted regressor from

weir 1o (Wer;r — Xpi). These changes would be inadmissible if the coefficients and
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the error term of Eq. (5) were known, but they are not. Because the subscripts j/
and ¢ are arbitrary, we conclude from Egs. (5), (6) that the coefficients and the
error term of Eq. (5) are nonunique for all i and ¢, thus confirming the Pratt and
Schlaifer (1984, p. 13) result.

Not knowing anything about the omitted regressor wy;, in Eq. (5), we cannot
say whether it is uncorrelated with the included regressor x;,. But in Eq. (6), the
included regressor xj;, is definitely correlated with the omitted regressor
(Weir — X)) because xj;, is common to both xj;(fy + wy) and Wy — xpi)wy.
Therefore, an assertion that x;;, and w;, are correlated can be made to be uncer-
tain and certain at the whim of an arbitrary choice between the two equivalent
Egs. (5) and (6). This proves that the lack of correlation between xj;, and wy, is
not based on reality. Here we should take guidance from Pratt and Schlaifer
(1984, p. 14), who proved that x;, in Eq. (4) cannot be uncorrelated with every
omitted relevant regressor in Eq. (5). Given that the subscripts j/ and ¢’ are arbi-
trary, we conclude from Eq. (5) and Eq. (6) that under interpretation I of ¢; in
Eq. (3), x;, cannot be uncorrelated with every element of the vector w;, and there-
fore cannot be exogenous. Pratt and Schlaifer (1988, p. 34) even proved the
stronger result that the condition that the included regressor xy;, be independent
of “the” omitted regressor wy,, itself is meaningless. In this case, it is usual to
assume that there exists a set of m (m > K) instrumental variables, denoted by
z¥, such that z} is correlated with x;,, but not with &;,. The method of instrumental
variables uses such a vector z} to construct an estimator of . However, the
proof of the consistency of this estimator given in the econometric literature
is unsatisfactory because it does not take into account the nonuniqueness of
p and w;, in the case where interpretation I of €;, in Eq. (3) holds. In the presence
of this nonuniqueness, any method of finding instrumental variables should take
both wy;, and (W, — X;;) as the plausible values of the ¢'th omitted regressor.
Therefore, we see that any attempt to find an instrumental variable that is
correlated with x;;, and uncorrelated with both wy;, and (Wg;, — x;;,) will fail.
This argument shows that we should accept the conclusion that instrumental
variables do not exist when interpretation I of ¢; in Eq. (3) holds.

If the included regressors in Eq. (5) cannot be uncorrelated with the error
term ng:lwef,a)g, then Eq. (5) cannot be a reduced-form equation. Because
Eq. (5) is an arbitrary equation, we can conclude from the previous argument
that any equation with nonunique coefficients and error term cannot be a
reduced-form equation.

Lemma 2 If, for all i and ¢, f(x;, t = 1, ...) is a Borel function of the vectors x;,,
t=1, .., E|lp| < o0, E|uf(x;, t =1, ...)| < o0, then E(u;|x;, t =1, ...) in E
i t =1, )@ |xi)] = (i, t =1, . DEu; | x;) exists.

Proof

See Rao (1973, p. 97).

In the econometric literature, Eq. (1) is estimated under different assump-
tions about E(y;|x;, t = 1, ...). When x;,, t = 1, ... are all endogenous, the con-
ditions of Lemma 2 are not satisfied, and these estimations lead to inconsistent
estimators.
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To show some problems that Theorem 1 leads to, we consider the following
assumption:

Assumption A2: For all i and ¢, E(e;;| X1, X, ...) = E(g;;) = 0.

Assumption A2 is stronger than the assumption that the x;,, t = 1, 2, ..., are
uncorrelated with ¢; for all i and #.* Some econometricians take this stronger
assumption to mean that the x;, t =1, 2, ..., are exogenous for all i and ¢
(see Greene, 2012, p. 52). Under interpretation I of &, in (3), Assumption A2
is false, as Theorem 1 shows. In the context of endogenous regressors, it is use-
ful to recall Greene’s (2012, p. 320) demonstration that the ratio of the first dif-
ferences in two endogenous variables is meaningless without first determining
what caused the change in the denominator variable. But nowhere in the econo-
metric literature do we find the partial derivative of an endogenous variable
with respect to another endogenous variable. Therefore, the partial derivatives
in Assumption A1l should be questioned, because x;, is endogenous under inter-
pretation I of ¢; in Eq. (3).

The econometric literature features four tests: the tests of hypotheses on £ in
Eq. (1); the Lagrange multiplier test of the null hypothesis that the variance of
the random effects ¢/ a is zero; the specification test for a random effects model;
and the test for fixed versus random effects. All these tests are based on
Assumption A2. It follows from Theorem 1 that under interpretation I of &;,
in Eq. (3), Assumption A2 is false, the conditions of Lemma 1 are not satisfied,
and all these tests are invalid.

3 Models With Unique Coefficients and Error Terms
for Panel Data

Section 2 teaches us that when omitted regressors constitute the error term ¢;, of
Eq. (1), its coefficient vector § and its error term w;/w are not unique. The sec-
tion also shows us the undesirable consequences of this nonuniqueness. To
develop a model with unique coefficients and error term, we proceed as follows:

3.1 Linear-in-Variables and Nonlinear-in-Coefficients Functional
Form for Economic Relationships

K1 Ly
* % * % * *
Yig = g T § Xjiy @iy T § Wi @y (7N
=1 =1

where y;, is the dependent variable, the x7;,’s are K — 1 determinants of y;, the
wy;,’s are the remaining determinants of y;;, and the values with asterisks are the
unobserved true values. The wy;’s include time-invariant, individual-specific

4. For a proof of this statement, see Swamy and von zur Muehlen (1988, p. 110).



Alternative Approaches to the Econometrics of Panel Data Chapter | 11 297

(¢;) and individual-invariant, period-specific (z,) determinants of yj;, and all rel-
evant pre-existing conditions. In Eq. (4), we provide a reason why the coeffi-
cients on nonconstant regressors cannot be treated as partial derivatives. For
the same reason, in Eq. (7) forj > 0 and ¢ > 0, we do not treat cx_;}t as the partial
derivative of y; with respect to xj;, and wy;, as the partial derivative of yj,
with respect to wy;,. The total number of wy;, may depend on both i and ¢ and
is denoted by L;. By assuming that L; is unknown, we avoid missing any
relevant wy;,.

3.2 A Deterministic Law

Eq. (7) contains the full set of the determinants of its dependent variable. We
will show that the functional form of the unknown true (or real-world) relation-
ship between yj, and its determinants is not misspecified in Eq. (7). Therefore, it
satisfies Pratt and Schlaifer’s (1984) definition of a deterministic law. It is the
first deterministic law for panel data, in the sense that it is proposed here for the
first time for such data.

Definitions of measurement errors: Let y;, = y, + v, and let X;;, = Xy, + Vjy,
j=1, ..., K — 1 where 1y, is the measurement error in y; and forj =1, ..., K —
1, yj—‘,—, is the measurement error in xj;.

The asterisks mean that the indicated variables are not observed. The vari-
ables without asterisks are observed. We do not assume that measurement errors
are random variables. This assumption is weaker than the assumption that they
are distributed with mean zero. In what follows, we call the xj;, “the included
regressors” and the wy;, “omitted regressors.”

Spurious and True Correlations: We define the wy;,’s as including all rele-
vant pre-existing conditions. If Eq. (7) involves some spurious correlations,
then they disappear when we control for all relevant pre-existing conditions,
as Skyrms (1988, p. 59) pointed out. He further observed that “statistical cau-
sation is positive statistical relevance which does not disappear when we control
for all relevant pre-existing conditions.” We will show how we control for all
such conditions.

Interindividual Heterogeneity: Allowing all the coefficients of Eq. (7) to
differ among individuals both at a point in time and through time is a sure
way of capturing interindividual heterogeneity. This much generality in the type
of variation in the coefficients of Eq. (7) is convenient in the absence of knowl-
edge about the type of variation needed to capture interindividual heterogeneity
in our cross-sectional data. The constant coefficient vector § in Eq. (1), even
with the inclusion of terms ¢/ a and 7,/£, cannot represent interindividual hetero-
geneity. Another justification for the specification in Eq. (7) is given in the next
paragraph.

A rich class of functional forms: We assume that the functional form of the
true (real-world) relationship between y;; and its determinants is not known. In
this case, any particular functional form we specify may actually be incorrect.
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Choosing a sufficiently rich class of functional forms, however, allows us to
cover the true functional form as a special case. We believe that the functional
form of Eq. (7) represents such a class in that variations in its coefficients gen-
erate a rich class of nonlinear functional forms that can cover the true functional
form as a special case and, as a bonus, turns out to be one that is easy to work
with. We refer to the functional form of Eq. (7) as “linear in variables and non-
linear in coefficients.”

Real-world relations: We say that any mis-specifications-free equation is a
real-world relationship. Accordingly, Eq. (7) with the correct functional form,
being free of misspecifications, represents a real-world relationship. This claim
would have been false had we used a stationarity inducing transformation of
observable y;, or logy;, as the dependent variable of Eq. (7) (see Basmann,
1988, p. 98). In that event, Eq. (7) would not have been free of the most serious
objection, that is, nonuniqueness. According to Basmann (1988), there is noth-
ing wrong with using the word “causality” to designate a property of the real
world.”

True functional forms: Intrinsic functional forms of real-world relationships
are, by definition, true. Conversely, any relationship expressed with an incorrect
functional form cannot be a mis-specifications-free relationship.

Potential-outcome notation: Rubin (1978) showed that Eq. (7) cannot be a
causal law unless it is stated in terms of Neyman’s potential-outcome notation.
Such outcomes are denoted by Yy;,, which is the value that outcome Y" would
take for individual i at time 7, had the value of the regressor vector xj; been at
level x (see PS 1988). This is how we interpret the outcome variable yj, in
Eq. (7), although, for notational simplicity, we suppress the subscript x.

Sufficient sets of omitted regressors: If we treat the last term Z?’:’l Wy, @7, on
the right-hand side of Eq. (7) as its error term, then it must be considered as
being made up of omitted regressors. But then we are back to the case of a model
with nonunique coefficients and nonunique error term. To avoid this situation,
we adopt the previously stated axiom by PS (1988, p. 34) introducing sufficient
sets. The question then arises: How do we find these sufficient sets? We will
answer this question presently.

3.3 Derivation of the Unique Error Term From the Deterministic Law

Stochastic law: For £ = 1, ..., L;,, let

W&t /1[011‘ + Z jltllljlt 1,.., Lil) )]

5. Basmann (1988) used the term “real-world relations.” We also use it after giving it a definition of
our own choice. Some econometricians prefer the term “data-generating process” to the term “real-
world relation.” We do not believe that the former term is appropriate to our model containing omit-
ted regressors because any notion of data generating process says nothing about omitted regressors.
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where each omitted regressor of Eq. (7) is related to the included regressors. Not
all of these L;, relationships can be absent because Pratt and Schlaifer (1984,
p- 14) proved that the included regressors on the right-hand side of Eq. (8) can-
not be uncorrelated with every omitted regressor on its left-hand side. As in
Eq. (7), the functional form of Eq. (8) is linear in variables and nonlinear in
coefficients. For this functional form, the equality sign in Eq. (8) is easily sat-
isfied because the A’s are allowed to vary freely. The intercept /o, of Eq. (8) is

the remainder of the omitted regressor wy;, after the effect Z;:ll)c_;‘it/lzﬁt of the
Xj;i’s on wy;, has been removed from it. Pratt and Schlaifer (1984, p. 14) proved
the important result that although the xj;,’s cannot be independent of every omit-
ted regressor wy;, that affects yj;, they can be independent of the remainder of
every such regressor. While Pratt and Schlaifer (1984, p. 13) treated the A/o;,
¢ =1, ..., L, as L-dimensional, independently and identically distributed (i.i.
d.) random vectors with mean vector zero, we treat A5, as a random variable.
Eq. (8) satisfies Pratt and Schlaifer’s (1984, p. 13) definition of a stochastic law
and therefore constitutes the first set of stochastic laws for panel data.

Because some of the wy;,’s are relevant pre-existing conditions, Eq. (8) per-
mits us to control for these conditions by controlling the included regressors.
These controls serve the important purpose of removing any spurious correla-
tions implied by Eq. (7) (see Skyrms, 1988, p. 59). The point of Eq. (8) is that it
takes into account Theorem 1, which invalidates a condition of exogeneity on
any of the included regressors in Eq. (7), a condition, moreover, that has been
widely, albeit erroneously, used in studies about small and large-sample prop-
erties of the estimators of the coefficients of econometric models.

3.4 Stochastic Law With Unique Coefficients and Error Term

Substituting the right-hand side of Eq. (8) for wy;, in Eq. (7) gives

Li K-1 Li

* * * * * * * *

Yir = Qi T E A0 ®pi + E Xiig | i E Ay @y )
=1 =1 =1

where the remainders Ajg;;, £ = 1, ..., L;, of omitted regressors in conjunction
with the included regressors x_fit, j=0,1, ..., K—1, are at least sufficient to
determine the value of y}; exactly. This is the reason why PS (1988, p. 50) called
the Ajoin £ = 1, ..., L;, “sufficient sets of omitted regressors, i, £ = 1, ..., Ly,
respectively.” Following Pratt and Schlaifer (1984, p. 13), we treat Eq. (9) as a
stochastic law, which is derived from the deterministic and stochastic laws in
Eq. (7) and Eq. (8), respectively.® Eq. (9) is the first stochastic law for panel
data.’

6. Many economists believe that there are no well-established laws in economics and Zellner (1988,
p. 12) was one of them. Eq. (9) will enable us to establish economic laws.
7. Model (9) was extended to autoregressive models in Swamy, Chang, Mehta, and Tavlas (2003).
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Interpretation Il of the Error Term Zﬁ’;lﬁmtw}}t of Eq.(9): This error term is
made up of certain sufficient sets of all omitted relevant regressors contained in
the vector, wy,.

Eq. (9) has the following properties:

1. The second term Z?L’lﬂ%“a)zﬁ on the right-hand side of Eq. (9) is its error
term (see Pratt & Schlaifer, 1984, p. 12). This error term is not the same as
the deviation of y;, from its conditional expectation E(y;|xj, j=1, ...,
K — 1), even when it exists. We will clarify that we do not assign a mean
zero to the error term Y77 At @5

2. This error term enters additively into Eq. (9).

3. The included regressors (xf,»,, j=1, ..., K—1) can be independent of the
sufficient sets (A%, £ = 1, ..., L;,) of omitted regressors (wp;, £ = 1, ...,
L;,). This statement is based on PS’ (Pratt & Schlaifer, 1984, p. 14; Pratt
& Schlaifer, 1988, p. 34) assertion that, although the included regressors
(x_}?,, j=1,..., K—1) cannot be uncorrelated with every omitted regressor
(i.e., with every wy;,, £ = 1, ..., L;,) that affects y}, they can be independent
of the remainder (47y;,) of every such variable. For this reason, the included
regressors (xf,»t, j=1,..., K—1) can be considered as exogenous without
the need to find instrumental variables that are highly correlated with the
included regressors and uncorrelated with the sufficient sets of omitted
regressors. The included regressors (xf,»,, j=1,...,K—1) are endogenous
under interpretation I in Eq. (3) of the error term of Eq. (4), as shown by
Theorem 1, and are exogenous under Interpretation II of the error term of
(9), as shown by PS (Pratt & Schlaifer, 1984; Pratt & Schlaifer, 1988).

4. The coefficients and the error term of Eq. (9) are unique—a consequence of
Eq. (8). This uniqueness supports our treatment of Eq. (9) as a causal rela-
tionship because causal relations are unique in the real world, as Basmann
(1988, p. 73) pointed out. For the convenience of the reader, we reproduce
Swamy, Mehta, Tavlas, and Hall’s (2014) proof of this uniqueness in
Appendix A.

5. The bias-free component of the coefficient on x};, is aj;,. Another name for
this component is the direct effect of xj;, on y;. In another article dealing
with empirical measurement of treatment effects, Swamy, Hall, Tavlas,
Chang, Gibson, Greene, Mehta (2016, p. 8) expressed the effect of the
treatment Xj;, on the ith treated individual by x}; aj;. The direct effect is
not unique because the coefficients of Eq. (7) are not unique.

6. The omitted-regressor bias of the coefficient on xj; in Eq. (9) is

ﬁ”z’l/lzﬁtw;fﬁ, which can also be called an indirect effect of xj, on yj.
The sum of products, 47, wz;, is the indirect effect because of the effect
of xj;, on each omitted relevant regressor, which appears in Eq. (8), and

the effects of omitted relevant regressors on y;; that appear in Eq. (7).

The indirect effect of each x};, is nonunique because the coefficients of

Eq. (7) and Eq. (8) are nonunique. The sum of direct and indirect effects
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of xj;, is its total effect, which appears in Eq. (9). Importantly, the total
effects of included regressors are unique because the coefficients of
Eq. (9) are unique. Another property of the total effect of each x7; is that
although its components, that is, its separate direct and indirect effects
depend on the omitted relevant regressors chosen to define them, the total
effect does not. As a consequence, when omitted relevant regressors are not
identified, total effects can be estimated meaningfully, even though no
meaningful distinction exists between direct and indirect effects. We note
that PS (Pratt & Schlaifer, 1984, 1988) proved all the results stated in this
paragraph.

Simpson’s paradox: This paradox refers to a phenomenon whereby the
association between a pair of variables X and Y reverses sign upon condi-
tioning of a third variable Z, regardless of the value taken by Z. Resolution:
Eq. (9) has K — 1 nonconstant regressors. In this equation, either the con-
version of any one of its omitted relevant regressors into an included
regressor or the deletion of any one of its included regressors changes only
the omitted-regressor bias components but not the bias-free components of
the coefficients on its included regressors. It is only the bias-free compo-
nent of the coefficient on an included regressor that measures the causal
relationship between the regressor and the dependent variable. This proves
that Simpson’s paradox cannot arise if the coefficients and error term of a
relationship are unique, as in Eq. (9) (see Swamy, Mehta, Tavlas, &
Hall, 2015).

. For all j, the bias-free and omitted-regressor-bias components of the coef-

ficient on xj;, appear additively in Eq. (9).

. Manifestations of defects such as the wrong sign or a wrong magnitude of

an estimate of a coefficient in a fixed-coefficient econometric model of a
conventional type can be explained as arising from: (a) nonuniqueness of
the coefficient lacking a distinction between its bias-free and omitted-
regressor bias components, (b) nonuniqueness of the model’s error term,
(c) the incorrect restriction of exogeneity on some or all of the model’s
regressors, (d) the use of an incorrect functional form, and (¢) measurement
errors that have been ignored. Given this list, chances are high that any
model with nonunique coefficients and error term leads to incorrect
inferences.

The advantage of the linear-in-variables and nonlinear-in-coefficients
functional-form of Eq. (7) is that it has all the good properties of PS’
(Pratt & Schlaifer, 1984, p. 13) linear stochastic law, without its
limitations.

Production functions and Diewert’s (1971) regularity conditions: Suppose that
Eq. (9) is a microproduction function with y}, denoting the output produced by
the ith firm at time 7, and the xj;, denoting a set of inputs used in the production of
vir- The functional form of Eq. (9) is not misspecified because it is derived from
the class of functional forms in Egs. (7), (8) that covers the unknown true
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functional form of the production function as a special case. Therefore, the pro-
duction function in Eq. (9) is mis-specifications free and therefore can be treated
as areal-world relationship. According to Basmann (1988), causality designates
a property of the real world. It cannot be shown, however, that the true func-
tional form of Eqgs. (9) covered as a special case of the class of the functional
forms in Egs. (7), (8) satisfies the regularity conditions of Diewert (1971,
pp. 484-485). Therefore, Shephard’s duality theorem may not apply to
Eq. (9). This is the consequence of working with a class of functional forms.
If we do not work with a class of functional forms, however, then any specific
functional form that satisfies the regularity conditions can be misspecified.
But causal effects can be measured only using appropriate real-world
relationships; and unfortunately, production functions with misspecified func-
tional forms are not real-world relationships. Let us compare Eq. (9) with the
following Diewert production function satisfying regularity conditions: y =

K K 1/2.1)2 . .
h (ijlzgzlaj/ng/ x/ ) where aj; = a;; > 0, and h is a continuous, monoton-

ically increasing function that tends to plus infinity and has 4(0) = 0. This
specification has three problems: its functional form may be misspecified, its
coefficients are not unique, and it has no error term. Note that merely adding

j
to inconsistent estimators of the a;,’s because (i) the included x;’s cannot be
independent of every omitted relevant regressor constituting the added nonuni-
que error term, (ii) omitted-regressor biases are completely ignored, and (iii) a
possibly wrong functional form is applied to data.® In this chapter, the frame-
work encompassing the class of functional forms giving rise to models with
unique coefficients and error terms would be more attractive if, within it, Die-
wert’s regularity conditions were to be satisfied. Unfortunately, the dual goal of
achieving uniqueness and meeting the regularity conditions is not attainable in
the current context.

anonunique error termtoy = h (Z[il Zf: . aj/;x; / zxé / 2) before estimation leads

3.5 Stochastic Law in Terms of Observable Variables

Using previously given symbols for measurement errors, Eq. (9) can be
written as

K-1
Yit =Yoir T ijithiz (10)

J=1

where

8. Here we hasten to point out that we are only expressing our difficulties without criticizing Die-
wert, who is doubtless a brilliant mathematical economist and whose work we admire. Had we not
understood his work, we would have misapplied Shephard’s duality theorem to our production or
cost function with unique coefficients and error term. We are grateful for his role in our avoiding this
mistake.
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Li
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Yiie = ( _m) (“fn*‘ Z’an@n) (12)
=1

Xjit

Note that the choice of x;;;’s to be included in Eq. (10) is entirely dictated by
the causal effects one wants to learn.

Measurement-Error Bias Components of the Coefficients of the Stochastic
Law in (10): Forj=1, ..., K — 1, they are

I/* Li
— I (o, + S 00 (13)
; Xy 1jit @it
Xjit =

For all j=1, ..., K — 1, measurement-error bias of the coefficient of xj;
enters multiplicatively into Eq. (10).

Latent stochastic law: Suppose that the dependent variable in Eq. (10) is not
observable and that only the outcome of a binary choice depending on the sign
of the regression on the right-hand side of (10) is observable. Then model (10)
can be called “a latent regression model” that algebraically resembles Greene’s
(2012, p. 686) latent regression model. This resemblance suggests that the coef-
ficients and the error term of the latter latent regression model can be made
unique by deriving it from Eq. (9). The maximum likelihood method of estimat-
ing such a model is considered in Swamy et al. (2016).

Special features of the stochastic law in (9) and (10): (i) The coefficients and
error term of (9) are unique, (ii) the observable dependent variable (y;,) and regres-
sors (x;;,'s) satisfy a general equation in (10), with coefficients that differ among
individuals both at a point in time and through time. Each of these coefficients con-
tains three components, and (iii) given that (9) is a real-world relationship with
unique coefficients and error term, the bias-free component of the coefficient on
each of its nonconstant regressor is used to measure the (direct) causal effect of
the regressor on the dependent variable, as shown by property (5) of (9).

Main objective of the analysis and nature of the approach to be followed.:
The objective is to accurately estimate causal effects, with accuracy referring
to the size of deviations from the true causal effects. The suggested approach
contrasts with past econometric practice in studies of small and large sample
properties of econometric estimators of what turn out to be nonunique coeffi-
cients in econometric models containing some exogenous regressors and non-
unique error terms without an understanding that the regressors considered as
exogenous are not really exogenous, as shown by Theorem 1. Moreover,
because such nonunique coefficients do not implicitly contain omitted-
regressor and measurement-error biases, there has been no perceived need to
deal with the problem of separating the estimators of bias-free components from
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those of omitted-regressor and measurement-error bias components of hope-
fully unique model coefficients. The purpose of this chapter, then, is to confront
this problem head-on by answering the question: How does one formulate unbi-
ased or consistent estimators of the bias-free components of the coefficients
of (10)?

3.6 Simultaneous Estimation of the Bias-Free and Omitted-Regressor
Bias Components of the Coefficient on Each Nonconstant Regressor
of a Stochastic Law

An inherent message in Eq. (10) is that the estimates of its coefficients cannot be
obtained sensibly by a mere regression of panel data y;, on panel data x;, but that,
instead, we need to estimate this equation subject to the restriction that its coef-
ficients satisfy Eqgs. (11) and (12). For this purpose, we parameterize (10) using

the following coefficient equations: for j =0, 1 ..., K — 1, define
p—1
Yiie = mjoi + Zﬂijhn + ujis (14)

h=1

where the z;;,’s are observed and are called “the coefficient drivers” with the
restriction that they have the same range as yj;, the n’s do not depend on ¢,
and the u’s are random error terms.” The restrictions that the z’s do not vary
over time are needed to estimate them using the time-series data set of every
individual in the given panel data set. Because the z’s in Eq. (14) cannot be
shown to be unique, we make sure that they have strong connections with
the unique coefficients of (9).

We have designed the K equations in (14) so that not all coefficient drivers in
(14) appear in all those equations. Therefore, some of the z’s in each equation in
(14) will be zero. An example of such exclusion restrictions is given in Swamy,
Mehta, Tavlas, and Hall (2014, p. 213).

It is important to note that Egs. (7)—(10) and (14) provide a method of elim-
inating models with nonunique coefficients and error terms from the economet-
ric literature because such models are shown to be misspecified in Section 2.
Inserting the right-hand side of Eq. (14) for y;;, in (10) gives

p—1 K—1 p—1
Yie =m00i + Y TohiZhis + Uoir + E Xjir | 7joi + E TCjniZhit + Uiz (15)
=1 =1 =1

which is a fixed-coefficient model for a given i. In this model, the coefficient

drivers, the xj;, and the interactions of each xj;, with the coefficient drivers

9. Models appear with different labels, such as “hierarchical models,” “mixed models,” “random
parameters models,” or “random effects models,” in different fields (see Greene, 2012,
pp. 639-641). These models, which algebraically resemble the model in (10) and (14), have non-
unique coefficients and error terms and therefore have all the problems the models in Section 2 have.
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appear as regressors, and the error term ug;; + Zf: jlxj,-,uj,-, is heteroscedastic. We
call the z’s of Eq. (15) “time invariant and individual-specific coefficients of the
stochastic law.” Another way of looking at the dependent variable of (15) is that
for each i, {y;} is a nonstationary process.

Sources of the error terms of Eq. (15): These are the sufficient sets of omit-
ted regressors in (9) and the coefficients of (10). These two sources of the error
terms justify our treatment of the coefficients of (10) as stochastic. Our assump-
tions about the u’s in (14) follow. Complete explanations of the components of
the dependent variable of (14) might require some additional coefficient drivers
to those included in (14). These omitted drivers justify our inclusion of the error
terms in (14), which, in turn, justify our treatment of the coefficients of (10) as
stochastic.'” It follows from Eq. (14) that the error term of (9) has a nonzero
mean if some of the 7y;;’s in (14) are nonzero.

Conditions for the appropriateness and adequacy of coefficient drivers: We
assert that the coefficient drivers included in (14) are appropriate and adequate,
and our guesses about v}, j = 1, ..., K—1, are appropriate if, forj = 1, ..., K — 1,

Vi * Lip g%k ) o=l i
(1 — #) (aﬁ, + Zg;lﬂéji,wm) = Wjoi + ) TjniZnir + Ujiy Such that the following

Xjit

decomposition of y;; holds:

% -1 . * -1 -1
N Vit a0 i ot — Vjiy S
(aj=|1-—=] mpian (II)E i@ = | 1 == TjniZhic + Uit
Xjit =1 Xjit =1

(16)

for all i and ¢. It is this mapping of the terms on the right-hand side of (14) on to
the terms on the right-hand side of (12) that determines the decomposition of y;;,
into its components. The equations in (16) establish strong connections between
the #’s and the unique coefficients of (9). All variables except 7o, in Egs. (16)(i)
and all variables except the 7;,;’s in Egs. (16)(ii) are allowed to vary over time.
Given that we cannot allow the z’s to vary over time to help estimation of (15)
by using the time-series data on each individual of the given panel data set, it is
desirable to allow the other variables in (16)(i) and (16)(ii) to vary over time.
This requirement motivates the conditions that in (16)(i), time variation in aj;
* -1
U
should match thatin | 1 — xij , and in (16)(ii), time variation in Zéfz’llzji,wzit
ji
o\ —1
..
should match that in ( — i’) (Z‘Z;iﬂjmzhi, + u;;). If these conditions hold,
Xjit
then we can say that the coefficient drivers included in (14) are appropriate and
adequate. The time-invariance restrictions on z’s in (16)(i) are the restrictions

10. Not all econometricians accept the notion that coefficients of econometric models can be
random.
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on the estimators of the bias-free components of the coefficients of (9), and the
time-invariance restrictions on the z’s in (16)(ii) are the restrictions on the esti-
mators of the omitted-regressor biases of the coefficients of (9).

Conditions (i) and (ii) in (16) mean that for j =1, ..., K — 1, the bias-free
component a;, of the coefficient y;;, on x;;, in (10) should be made to depend
on the coefficient zjy; on x;;, in (15) but not on the coefficients on the interactions
of x;;; with the coefficient drivers in (15), and the omitted-regressor bias com-
ponent of the coefficient yj;; on xj;; in (10) should be made to depend on the coef-

ficients on the interactions of x;;, with the coefficient drivers in (15) but not on

the coefficient on x;;, in (15). w0\ 1
< ) joi | » the

U

. . 113

Later, we develop the estimator of zjy; in /
: X

jit

w\ =1
V.
estimators of 7j,;’s, and the predictor of uj; in (1 —if) (Zﬁ;}njhizh;, +
' ’ Xjit
Mj,'t),jzl .o K- 1.
Properties of estimators (16)(i) and (16)(ii): The coefficient drivers in (14)
are chosen to achieve the following results: (i) The smaller the magnitude of u;,,

p—1_ vy * Li g%
the closer the sum 7zjo; + > )| ZjniZyir to the sum (1 —o) (@ + Zzzliéﬁ,wm .

* -1
V..
(ii) The sign of aj;, is the correct sign of ( — J”) mjo; in (16)(i), which can be
' Xjit

known a priori from economic theory. (iii) The magnitude of a;;, is the correct
*

~1

..

magnitude of — 70i, Which is not usually known a priori. (iv) Data

g J y p

X -
jit

N
about < —?) ,j=1, ..., K—1, are rarely, if ever, available, so we need
Jit
to make some plausible assumptions about them. (v) For j=1, ..., K — 1,
the z-variables that rightly belong in the omitted-regressor bias component
(16)(ii) of the jth coefficient of (10) should be included as the coefficient drivers
on the right-hand side of (14). Such coefficient drivers are related to the
omitted-regressor bias component of the jth coefficient of (10). How one deals
with issues (i)-(v) in estimating the causal effects of wives’ education on their
earnings is discussed in Section 5. To the extent the available data permit, it is
always a good practice to experiment with different sets of relevant coefficient

N
drivers and different plausible assumptions about the factors <1 — %) and

jit
compare the results.

Given that all models with nonunique coefficients and error terms should be
rejected in favor of models of the type (9), the question that naturally arises is:
Where and how do we find valid coefficient drivers? The choice of regressors
to be included in (10) is dictated entirely by the causal effects one wants to learn.
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A good estimate of the bias-free component of the coefficient on an included
regressor, such as xj;;, is needed to estimate the causal effect of x;;, on the depen-
dent variable y;,. Eq. (16)(i) is formed to obtain the estimate of this bias-free com-
ponent. This estimate will be accurate if the coefficient drivers included on the
right-hand side of (14) satisfy the equality sign in (16)(ii).'' It is easy to see from
(16)(ii) that such coefficient drivers are those variables that completely absorb
the omitted-regressor bias component of the coefficient yj; on xj;. The
omitted-regressor bias component of y;; is given by Zéllﬂ,}ﬂth-t in (16)(i1).
The wy;,’s are the coefficients on omitted regressors in (7), and the /121-,-,’5 are
the coefficients on the included regressors in (8). Obviously, variables that per-
form well in explaining most of the variationin Z?"z’l Ayjir@};, are valid coefficient
drivers. The metric for judging performance is: When the coefficient yj; is
equated to a function of these coefficient drivers with nonzero intercept plus
an error, as in (14), the coefficient drivers should have the same range as the coef-
ficient, y;;. We follow this same procedure to find the coefficient drivers that
absorb the omitted-regressor bias components in the other coefficients of (10).

Desirable Properties of the Model in (10) and (14) not shared by Model (4):
(i) Model (10) is not based on the assumption that the included regressors are
independent of the relevant omitted regressors. That such an assumption would
be meaningless was first pointed out by PS (1988, p. 34). (ii) The coefficients of
(10) are derived from the unique coefficients of (9) with unique error term with-
out ignoring omitted-regressor biases. (iii) The coefficients of (10) account for
any measurement errors present in the available data on the dependent variable
and on the included regressors of (10) fori =1, ...,nand¢t =1, ..., T. (iv) Spu-
rious correlations are made to disappear from (10) by controlling for all relevant
pre-existing conditions via (8). (v) No incorrect exogeneity restrictions are
imposed on the regressors of (10).

Difficulties in Separating Economies of Scale and Technological Change:
Suppose that (15) is a production function, with y;, representing output, x;,
and the w7;;’s, not including all relevant pre-existing conditions, representing
the vector of inputs used in the production of y;;, i indexing firms, and ¢ indexing
time. As we pointed out earlier, the production function in (15) is not without
virtues. Those who have followed the Cambridge-Cambridge capital contro-
versy are aware of the problems of measuring capital services used in the pro-
duction of y;;, but there are other problems. “Returns to scale” describes the
output response to a proportionate increase of all inputs. To determine that
response, we should introduce a proportionate increase of all inputs in (7)
and then work out its effect on the dependent variable of (10). After doing
so, we should search for coefficient drivers that should be included in (14)
and (16)(ii). After these coefficient drivers are found, the formulas to measure
the bias-free and omitted-regressor bias components of the coefficients on
inputs are given in (16). The next step is to use Chang, Hallahan, and

11. Accuracy refers to the size of deviations from the true bias-free component.
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Swamy’s (1992) and Chang, Swamy, Hallahan, and Tavlas’ (2000) method of
iteratively rescaled generalized least squares (IRSGLS) to estimate the coeffi-
cients mjo; on Xj;, j = 1, ..., K — 1, in (15). From these estimates, it may not be
easy to obtain estimates of bias-free economies of scale and bias-free techno-
logical change for the ith firm as time progresses.

Matrix Formulations of (10), (14), and (15): Leti =1, ...,nand lett =1,
..., T where T is large.12 Then (10) in vector form is

Yoir
Yir = (1X1its «oos Xk—1,i) }:’m
VK—1,it
Yie = XY a7
In matrix form model (14) is
Yie =iz + i (18)
where I, is a K X p matrix having (z;o;, 7j1;, ... ,7j, p—1, ;) a8 its jth row, z;, =

(1, z1jps - » Zp—1, i) is p-vector of coefficient drivers, and u;, = (uoir» Ui, -
ug_1. i) is a K-vector of random variables. The following condition should be
imposed on x;, for our method of estimating the equations in (17) and (18) to
be valid.

Admissibility condition: The vector Z;, = (1, Zyy, ... ,Z,_1, ;) in Eq. (18) is
an admissible vector of coefficient drivers if, given Z;, the value that the coef-
ficient vector (y;,) of Eq. (17) takes for individual i at time # is independent of X,
=(1,X1ip ...» Xx_1, i) foralli and t whenever X;, = (1, X1, ..., Xg_1, 1) takes
the value x; = (1, Xyj oy Xg_1, i)'

By definition, in any panel data set, one time-series data set is associated
with each individual i = 1, ..., n. The next section turns to the assumptions that
one needs to make about time series properties for each individual. Following a
note about prediction in Section 3.7.1, Section 3.8 discusses parallel assump-
tions about cross-section properties at each period of time.

3.7 Assumptions Appropriate to Time-Series Data Sets Within
a Given Panel Data Set

Assumption A3: For each i =1, ..., n, the errors u; (¢t =1, ..., T) are the
realizations of a stationary stochastic process following the first-order vector
autoregressive equation.

12. Greene (2012, p. 378) pointed out that for the typical panel data set “it does not make sense to
assume that T increases without bound or, in some cases, at all.” In these cases, we have to be careful
not to let T increase without bound.
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ujr = Djlti -1 + it (19

where ®; is a K x K matrix and {a;}, (t=1, ..., T), is a sequence of uncorre-
lated K-vector variables with

2 Agi if i=i' and r=¢

E (air\ Zits xi,) =0E (a,',a},,| Zit Xir) = {8 mif ii" and 11’ (20)

where A,; is a K x K nonnegative definite matrix.

We set ®; = 0 if T is small and set ®; # 0 and do the following otherwise.
Swamy and Tinsley (1980) assumed that {u;} can be represented by a vector
autoregressive and moving average processes of finite orders, for which
Chang et al. (1992), and Chang et al. (2000) developed IRSGLS. The latter
two studies together answer our question: How general can the process {u;}
become before an IRSGLS method of estimating the Swamy and Tinsley model
stops stabilizing? The answer is that the process {u;,} cannot be more general
than (19), where ®; is diagonal, its diagonal elements lie between —1 and 1, and
A,; is nondiagonal.

The issue of parsimony: Parsimony, a relative and possibly subjective term,
is highly prized in econometrics, so the seemingly complex causal model in
Egs. (17)—(20) might strike some readers as unparsimonious. This impression,
however, would rely on what we believe to be a superficial interpretation of
parsimony. Our preferred definition is: of two models, both of which perform
equally well in prediction and explanation, the one with fewer unknown param-
eters is more parsimonious.

Thus, parsimony is a relative term. Without the qualification, “perform
equally well in prediction and explanation,” the above definition of parsimony
is meaningless.

Inserting Eq. (18) into Eq. (17) gives, for the ith individual,

yir = (2, @x, )vec(TL) +xuy (t=1, ..., T) (21)

where ® denotes the Kronecker product, and where the Kp x 1 vector vec(Il;) is
a column stack of the K x p matrix II;.

Non-existence of instrumental variables: From Eq. (21) we see that instru-
mental variables that are highly correlated with x; but not with x;/u;, do
not exist.

This conclusion follows directly, because all the coefficients, that is, the ele-
ments of the vector y,, on x;;, including the intercept in (17), are equal to I1;z;, +
u;, on the right-hand side of (18). The forms of Eqs. (17) and (18) are the weakest
of all possible forms, and therefore specification errors can arise if they are writ-
ten in any other form.
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From Egs. (19) and (20) it follows that forr = 1, ... , T, E(u;,| zi1,x;) = 0, and
the TK x TK conditional covariance matrix of the TK x 1 vector u; = (ul, ...,
ujr)’ given z; and x;, is

Lo Coi®, To®; - Tpd]

/ /T2
E(M,M” Zits X[t) = nggui = Gii q)‘ir()i l—:()[ FO[.q)i o F()iq) i (22)

o 'Ty ®I Ty dI Ty -+ Ty

where E(u;tl, | zixi) = 65l 0r = ®ioal 0@/ + 020, is a K x K matrix (see
Chang et al., 1992, p. 45).

Let y; = (y;1 ... yi7)’ be the T x 1 vector. Then the conditional covariance
matrix of y;, given z;, and x;;, is

O'Lzlizy,‘ = Dxio-gjguiD;-[ (23)

where D,; = diag[x}; ... x/7] is a T x TK block diagonal matrix, and where the
covariance matrices Q,;, I'p;, and X,; are nonnegative definite.

Because the covariance matrices, A;, ', €4, and Z,; are symmetric non-
negative definite matrices, they have the factorizations

Ay = WaW,;, Lo = WoW,, Qui = WuW,; and Zy; = DWW, W,,.D, (24)

ar’ ur— xi

such that W,;, Wy,, and W, are lower triangular matrices, where W,; can be
explicitly written in terms of ®;, W,, and Wy; as Chang, Hallahan, and
Swamy (1992, p. 45) have done.

The unknown parameters of model (21) consist of the unknown elements of T1;,
the diagonal elements of @;, 6;, and the diagonal and above-diagonal elements of
A,;. If the ratio of T to the number of these unknown parameters is not large, then it
may not be possible to obtain precise and unique estimates of all the unknown
parameters. The T equations of model (21) can be written compactly as

y,‘:XZ,‘ﬂ',‘+DX,‘M,' (i: 1, ,I’l) (25)

where X_;is T x Kp having (2}, ® x},) as its tth row, &; = vec(I1;) is Kp x 1, and u;
is TK x 1.
Generalized least squares estimation of n; and u;: The generalized least
squares (GLS) estimator of x; is
—1
. ~1 —1
ri= (X020 XL (26)
where the regular inverses of Z,; and X./ Zy_ile,» can be changed to the appro-
priate generalized inverses whenever the former inverses do not exist (see
Chang et al., 1992).
Under the assumption that E(D,u;|x;,z;) = 0, #; is the minimum variance
linear unbiased estimator of z;. The covariance matrix of 7; is
2 (v y-1 !
o2 (X2 X ) 27)

zi<yi
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Swamy and Mehta (1975b, p. 595) showed that the minimum variance linear
unbiased predictor of u; is

it; = QDX (v — X)) (28)

xi <y

where the regular inverse of Z,; can be changed to an appropriate generalized
inverse whenever the former inverse does not exist.'”

Feasible generalized least squares estimation of n; and u;: The IRSGLS
method of estimating ;, based on the residual-based estimates of ®@;, o2, and
A, i =1, ..., n,proceeds as follows: for each i, starting with the initial values
®; = 0and A,; =1, iteratively solve Egs. (26) and (28) to find the estimates, 7;
and (ﬁ)i,Aai,c}zi), until they are stabilized. In their studies, Chang et al. (1992),
and Chang et al. (2000) accepted estimates of x;, @, 62, and A,; obtained in the
last iteration of this method, and so named it “an iteratively rescaled generalized
least squares (IRSGLS) method.” The purpose of iterating is to (i) eliminate the
effects of the arbitrary initial values on the estimates of the unknown parame-
ters, I1;, ®,, 62;, and A;, obtained in the last iteration, and (ii) make consistent
the estimators of all these parameters used in the last iteration. After estimating
all these unknown parameters, the degrees of freedom that remain unused are
positive if T > Kp + K+ 1 + K(K + 1)/2.

Let the IRSGLS estimator of z; be denoted as

= (x;,.iyj.lxzi) X i =1, ) (29)
where ﬁ‘.yi is obtained by using the IRSGLS estimates of ®;, 03,-, and A; in place
of their true values used in Z,;. X
The approximate covariance matrix of 7; is
"2 (1 1 -1
&2 (X8, X) (30)
Sampling properties of estimator (29): Under our admissibility condition for
the coefficient drivers shown previously, x;, and u;, are conditionally indepen-
dent, given z;, for all i and ¢. Independence permits us to make use of Cavanagh
and Rothenberg’s (1995) derivation with some modifications. These authors
considered a linear regression model with nonunique coefficients and error term
not dependent on D,; in Eq. (25) and constructed for its coefficient vector the
standardized arbitrary linear combinations of the elements of the vector of gen-
eralized and feasible generalized least squares estimators. To avoid all the
problems that arise with nonuniqueness of the coefficients and error
term in Cavanagh and Rothenberg’s (1995) model, we replace their model
by (25) and their standardized arbitrary linear combinations of the
elements of vector generalized and feasible generalized least squares estimators

13. Rao (2003, p. 96) attributed predictor (28) to Henderson (1950).
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ziyi

_1 112 R R
with A = c/(fr,-—m)/{c’oii( ’Z’IXZ,) c] and A= c’(frl-—zr,-)/

_1 71/2
{c’aii (X’ Z’IXZ,-) c] , where ¢ is a Kp X 1 vector of arbitrary constants,

zi=yi

respectively. Their method gives us the o(T~") approximation to the difference
between the distributions of A and A. Earlier, Swamy, Tavlas, Hall, and
Hondroyiannis (2010, pp. 18-20) extended Cavanagh and Rothenberg’s
method to model (25) for a single individual i by setting the v, j=1, ...,
K — 1, equal to zero and examining the o(T~ ') approximation to the difference
between the distributions of A and A. This study gives conditions under which A
and A have the same mean, skewness, and kurtosis. To present these conditions,
we introduce the following notation.

Let 6; be a vector containing the unknown distinct elements of (®;,A,;, aﬁ,-)

(for the ith individual), and let 9,- be a vector containing the distinct, nonzero
elements of ((i)[,Aa,-,&gi). The elements of 95 are written in the same order as
those of #;. Because these elements are obtained from the residuals Dx,fti =
Vi — Xzi%i» following Cavanagh and Rothenberg (1995), we call 9,~ “the
residual-based estimator” of ;. Suppose that 0, is a consistent estimator of ;
satisfying the conditions under which d = /T (@I» — Gi) converges in law to a
normal distribution uniformly on compact intervals of 0;.'* We assume that

the vector b = dA / 00; | 9=, and the matrix C = %322\ / 0@,0[9; ~ are stochas-
6i=6;

tically bounded as T —o0. Cavanagh and Rothenberg (1995, p. 279) use the
matrix symbol X, and the vector symbol o4, to denote the asymptotic covari-
ance matrix for the vectors b and d and the asymptotic covariance between A
and d, respectively.

Our conjecture is that the following propositions follow from Cavanagh and
Rothenberg’s (1995) results:

(i) The variable A is asymptotically independent of b and C.

(ii) Based on moments of the o(T ") Edgeworth approximation to the distri-
butions, (a) the skewness of A is always the same as that of A; (b) if Z,;, =
0, then the mean of A is the same as that of A; (c) if 644= 0, then the kur-
tosis of A is the same as that of A.

(iii) To a second order of approximation, the difference in location and shape
between the 7; and 7; distributions depends only on the asymptotic covari-
ances o4, and X;,.

(iv) If dis asymptotically independent of A and b, then 7; and 7; have approx-
imate distributions differing only in covariance matrix.

14. The definition of uniform convergence is given in Lehmann (1999, pp. 93-97).
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Forj=1, ..., K -1, an estimate of the intercept (;o;) of (14) is needed to esti-
mate the bias-free component of the coefficient on the jth nonconstant regressor
of (10) which, in turn, is needed to measure the causal effect of the regressor on
vir. Therefore, the sampling properties of the estimators in (29) of these inter-
cepts are of interest. However, the sampling properties of the estimators in (29)
of the coefficients zj,;,j=1,...,K—1and h =1, ...,p—1 of (14) may not be of
interest, since these coefficients appear in the estimators of omitted-regressor
bias components ((16)(ii)) of the coefficients of (10). Forj =1, ..., K—1, when
the regular inverses in (29) exist, the estimators in (29) of the intercepts of (14)
are unbiased if E(u;|X.;,z;;) = 0, and the u;’s are normally distributed (see
Swamy et al., 2014, pp. 219-223).

An estimator of E{ (77:, — 77.',)(71', —7;)'|Xis 21} to the desired order of approx-
imation when u; is normal and ®; = 0, is given in Swamy et al. (2014,
pp. 223-225). In Appendix B, we provide the conditions under which estimator
(29) is consistent.

The estimators of the components of the coefficients of (10) for the ith indi-
vidual provided by estimator (29) are:

Estimator of the bias-free component of the coefficient yj;; of (10):

Ak —1
U .

( —i’> moi (j=1,....,K—1) (31)
Xjit

Estimator of the omitted-regressor bias component of the coefficient yj;; of
(10):

N\ L e
<1ﬂ> (Z%ﬂ,,zhﬁﬁﬂ,) (i=1,....K—1) (32)
Xjit =1

In formulas (31) and (32), the 7’s are the IRSGLS estimates given by (29),
ftj,», is the feasible best linear unbiased predictor of uj; involving the IRSGLS
estimates of ®;, 6%, and A;, and 19;-,, which is our guess about v};,. The IRSGLS
estimators are consistent under general conditions. The accuracy of the esti-
mates given by (31) depends on the appropriateness and adequacy of the coef-
ficient drivers included in (14) and on the accuracy of our guesses 1/ of the
Vjir. 15 We can establish the relevance of the coefficient drivers in (14) usmg eco-
nomic theories. Thus, selected coefficient drivers and guessed 2, used to obtain
the estimates in (31) of bias-free components are inappropriate and ill-chosen if
the signs and magnitudes of the estimates are implausible. A further guide is the
prior based on theory. Another is comparison of the estimates in (31) with the
estimates of these bias-free componen;s obtained in other studies.

The vector 7p;= | Z10i, ---» Tk—1,0i 1s a subvector of the vector 77,', in (29).

The o(T™ 1) approximate distribution of 7 n'o,-, its approximate covariance matrix,

15. Accuracy refers to the size of deviations from the true value, 1{7?,.
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and the approximate distribution of the ratio of an element of 7oi to its standard
error can be found following the method of Cavanagh and Rothenberg (1995) in

-1
work that needs yet to be done. The matrix 551‘ (X’ »y lei) can give a very

zi =yl
crude approximation to the o(T~ ') approximation to the exact covariance matrix

of ﬁ:i. According to Cavanagh and Rothenberg (1995), the distribution of 73501‘ is
not normal unless the distribution of u; is normal.

t-Ratios: A rule followed by econometricians is to accept (or reject) the null
hypothesis that a single slope coefficient in a regression model is equal to zero,
if the #-ratio, defined as the ratio of the least squares estimate of the coefficient
to its standard error, is less (or greater) than 2 in absolute value.'® Theorem |
proves that under Interpretation I of the error term in (3), this rule is incorrect.
To remedy this situation, we use the model in (10) and (14), where extra infor-
mation in the form of coefficient drivers is used and (K — 1)(p — 1) degrees of
freedom are spent in estimating omitted-regressor biases (see (32)). The ratio of
the IRSGLS estimator of 7;y;, with 0 < j < K, to its standard error given by the
square root of the corresponding diagonal element of the matrix in (30) can be
called a r-ratio.'” To distinguish this ¢ from its conventional counterpart, let our
t-ratios be denoted by Newt;, j=1, ..., K — 1. Under certain conditions,
Cavanagh and Rothenberg’s (1995, p. 287) method can be used to derive the
o(T~") approximate distribution of (Newt;). They also provided the conditions
under which Newt; is approximately distributed as Student’s ¢ with T — Kp
degrees of freedom. Under these conditions, if |(Newt))| > t(1.q/2), (1-kp}, Where
t(1-as2), (1-kp1 18 the 100(1 — a/2) percent critical value from the ¢ distribution
with (T — Kp) degrees of freedom, then the null hypothesis that 7;y; is zero is
rejected and the estimated mj; is said to be statistically significant (see
Greene, 2012, p. 116).

If all the (p — 1) coefficient drivers are dropped from (21), then the estimate
of the bias-free component of the coefficient on any included nonconstant
regressor of (10) cannot be separated from that of the omitted-regressor bias
component of the coefficient. Certain sentences in PS (Pratt & Schlaifer,
1984, p. 14) can be interpreted as implying that exclusion of a coefficient driver
because its estimated coefficient is not statistically significant can make sense
when one wants to predict y;,, given a naturally occurring x;,, but not when one
wants to know how x;, affects y;,.

We say that model (15) performs well in explanation if, forj =1, ..., K — 1,
(31) is an accurate estimate of the bias-free component of the coefficient on
each of the included nonconstant regressors.

16. The definition of “s-ratio” is given in Greene (2012, p. 116).
17. We like to replace this definition with Cavanagh and Rothenberg (1995) definition of the ¢-ratio.
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3.7.1 Prediction

Suppose that all the distinct nonzero elements of z;, ®;, 6%, and A,; are known.
Then the problem of predicting a single drawing of the dependent variable y;,,
given the vectors x;, and z;, for the prediction period, can be solved. The actual
drawing for each i = 1, ..., n and for the post-sample period T + s will be

Vi,T+s = (Zg,T+5®x§,T+S)7[i+x;,T+Sui,T+s (33)

The criterion of minimum mean square error linear predictor is explained in
Swamy and Tinsley (1980, p. 111). Using their derivation, we have

i1y = DI D En (vi — Xoimy) (34)

xi<yi

where i; 7. is the K x 1 vector of the predictions of the errors in the coeffi-
cients of (17), @, is the K x K diagonal matrix appearing in the autoregressive
process of order 1 in (19), Q7 is the TK x K matrix formed by the last K col-
umns of Q,;in Eq. (22), X, is defined in Eq. (23), and y;, X, and z; are defined in
Eq. (25).

The feasible error vector, denoted by fti,Tﬂ, is obtained by using the sample
estimates of 7;, ®;, 62;, and A, in place of their true values used in i; 7+ 5. Sim-
ilarly, the feasible minimum mean square error linear predictor, denoted by
Yi14s» also is obtained by using 7; and i;, Ts in place of z; and u; 7., used in
Eq. (33), respectively. An estimator of E [ (y Tas— Vi, 745 ) | Xir» Z;7] to the desired
degree of approximation when u; is normal is given in Swamy, Yaghi, Mehta,
and Chang (2007, pp. 3388 and 3389).

Our practical experience with f}i’T +5 has taught us that the magnitude of the
absolute relative forecast error |(§in +s = YiTes)YiTes| Will be smaller if ®; # 0
than if ®; = 0. In some models, removing the coefficient drivers can decrease the
absolute relative forecast error. This can happen if the chosen coefficient drivers
are inappropriate, thus providing a further clue to the validity of their selection.

Omitted-regressor biases are rarely, if ever, constant. For this reason, con-
stant coefficient models without coefficient drivers cannot perform as well in
prediction as model (21) with appropriate coefficient drivers. Working with real
data, Swamy et al. (2007) observed this result. The time-varying coefficient
model in (10) without the equations in (14) for its coefficients can
predict the out-of-sample values of its dependent variable better than model
(21) in those cases where appropriate coefficient drivers are difficult to find.
Making the coefficients of Eq. (14) also time-varying Yokum, Wildt, and
Swamy (1998) conducted very informative simulation experiments and noted
the following:

This paper addresses the problem of forecasting economic data generated by causal
models exhibiting structural change. The structural change is represented by
unexpected systematic coefficient shifts superimposed on random variation and is
denoted as disjoint data structures. An extensive simulation compares four
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app-roximate coefficient structures, including constant and stochastic, on their abil-

ity to discount six different structural shocks to the true coefficients and still maintain

adequate forecast accuracy over multiple forecast horizons. The results indicate that

stochastic first-order autoregressive coefficient structures, especially those repre-

sented by the Swamy-Tinsley estimation procedure, yield more accurate forecasts.
Yokum, Wildt, and Swamy (1998, p. 1)

The preceding conclusions extend to full panel data, because in any given panel
data, one cross-sectional data set will be in each time period t =1, ..., T.

3.8 Assumptions Appropriate to Cross-Sectional Data Sets Within
a Given Panel Data Set

Reconsider (25): y; = X_;x; + D u; for individual i. Recall Assumption A3 about
u;. In Section 3.7, each individual is considered separately. We will change this
treatment in this section. Suppose that i/ indexes micro units. Then the following
assumption may be appropriate.
Assumption A4: Fori = 1, ..., n, r; = 7 + n;, where the vectors 7, for different i
are independently distributed with mean vector 0 and covariance matrix A.

This assumption, first proposed by Zellner (1969) and later adopted by
Swamy (1970, 1971, 1974), Feige and Swamy (1974), Swamy and Mehta
(1975b), and Swamy et al. (2007), states that the coefficient vectors s;,
i =1, ..., n, for different individuals are independent drawings from the same
multivariate distribution.'® As Zellner (see Swamy, 1971, p. 18) pointed out,
Assumption A4 stands between the limiting assumptions that the z;’s are fixed
and the same, and that the 7;’s are fixed and different. Given that micro units are
possibly different in their behavior, the former assumption is often found to be
restrictive, although the latter assumption requires the use of many parameters
and therefore is not always satisfactory or even feasible in the analysis of panel
data pertaining to many individuals.

Assumption A4 permits us to write Eq. (25) as

i =Xiw+ X, + Dyiu; (l =1,..., l’l) (35)
Stacking these equations gives
y=X.m+Dx.n+Dp.u (36)

where y = (y!, ..., y,) isnT x 1,y,,i = 1, ..., n, are as defined in Eq. (25), X, =
XLy, ..., XY isnT X Kp,X.;,i = 1, ..., n, are as defined in Eq. (25), 7isKp x 1,
Dy, =diag(X,q, ..., X.,)isnT x nKp,X.;,i = 1, ..., n, are as defined in Eq. (25),
n=W....n) is nKp x 1, n; is Kp x 1, it is as defined in Eq. (35), Dp, =
diag(D.i, ..., Dy,)" is nT x nTK, D,;, i =1, ..., n, are as defined in (25), u =
(uy, ..., u,Y isnTK x 1,and u;, i = 1, ..., n are as defined in Eq. (25)."

18. Hildreth and Houck (1968) did not consider panel data (see Swamy, 1971, pp. 10-11).

19. Model (36) removes all the defects of Swamy’s (1970, 1971, 1974) model for panel data. The
defects of this model arise as a direct consequence of the nonuniqueness of its coefficients and error
term.
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Assumption AS5: (i) The vector 7; is independent of u; for all ;. (ii) The u;,i = 1,
.., n, are independently distributed with the same mean vector 0, and the
covariance matrix of u; is given in Eq. (22).

Comparison of Model (35) with Lehmann and Casella’s (1998, p. 253) Hier-
archical Bayes model: In specifying the hierarchical Bayes model, Lehmann and
Casella (1998, p. 253) (LC hereafter) were not at all concerned with omitted-
regressor and measurement-error biases. Model (35), involving such biases, is
derived from Egs. (7)-(16). Of these, Eq. (9), derived from Egs. (7) and (8),
has unique coefficients and error term, so LC (1998, p. 176) are not able to
achieve uniqueness of coefficients and the error term in their normal linear
model. Eq. (10) expresses Eq. (9) in terms of observed variables. The equations
in (14) decompose the coefficients on the nonconstant regressors of (10) into
their respective components, as in (16). Although (16) distinguishes between
the bias-free component and the omitted-regressor and measurement-error bias
components of the coefficient on each non-constant regressor of (10), LC’s nor-
mal linear model does not. To make the mean of the error term of (9) nonzero, this
error term is made to be related to the coefficient drivers in (14). LC’s normal
linear model has an error term with mean zero, but like all models with nonunique
coefficients and error terms described in Section 2, LC’s hierarchical Bayes
model is bound to provide incorrect inferences.

Under Assumptions A3-AS5, E[(Dx.n + Dpu)|X.] = 0 and the covariance
matrix of the error term of Eq. (36) is

%, =E[(Dx.n+Dp.u)(Dx-n+Dp.u)'| X:]
= DXz (I,, ®A)D;(z + DDXQD/DX (37)

where Q = diag[aﬁlﬂul, cees 62,Q,,,] and 62,Q,, is as shown in Eq. (22).
Generalized least squares estimation of @, 17, and u: The generalized least
squares estimator of 7 is

N -1
= (ng;lxz) X%y (38)
and its covariance matrix is
-1
(X;Z;IXZ) (39)

Following derivations in Swamy (1974, pp. 163) and Swamy and Tinsley
(1980), the minimum variance linear unbiased predictors of 7 and u are”’

O[5 Yy

20. The formula in (40) corrects an error in a formula given in Swamy & Mehta (1975b, p. 600,

(3.7)).
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Estimation of A: In Section 3.7, we discussed estimation of all the unknown
parameters involved in Q. The only matrix that remains is A, the estimator of
which we now present. That estimator (38) can be written as

-1

- Zx’ (X AX, + Do QD) " Xui

Zx' (X AX, + Do QD) " i 1)

which can be given another more convenient form via a matrix identity in Rao
(1973, p. 33, Problem 29). Application of this identity to
(X7IAX" + Dxidgigulif/)71 giVeS

1
(05ID_rin,iD;i +X, AX;I.> =(a2, DX,QM,D )
"X

-1 -1
(agliiguiD;i) X [X;i(a}”aﬁgmb } X!, 02DMQM,D’> +

—1
—1 17!
(aili,-QmD;i) X,; {x (2D, ) } {[ 2D QD). ) XZ,-] +A} x

-1 _
{X zi ("i‘Dxi QlliD,/vi) X Zl} X ("i'Dxi QMD}:’)
(42)

Inserting the right-hand side of Eq. (42) for its left-hand side in Eq. (41)
gives

el

n -1 -1\ ! n -1 -1
7 2 ! 1 (2 / -1
=329 1%, (a Dy QD' ) X, +A > Xzi("aliiQulii) X, +A
i=1 i=1
-1 7-1 1
x [X;i(DxiQmD; i) X_,,-] x!, <D ssz ) i
(43)
This estimator 7 is a matrix-weighted average of the estimators, 7; =
[XLi(D D)™ Xo) T XL(D QD)™ yiy i =1, ..., n, the weight of ;
being equal to

-1

- ’ (2 1\l -1 - 7 (2 1y -1 !
Z{[Xzi("aliiQulii) Xzi] +A} {[Xzi("aliiQulii) Xzi] +A}

i=1
(44)

The estimator 7; here is the same as (26), with prediction error

i ( :lzy,lx,,) XL2, Do (45)

This error is a linear function of u; involving the unknown covariance
matrix, 6-€2,;. Now define
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n 1 n n
A Al ~ ~/
S; = E i, - g i I (46)
i=1 i=1 i=1
SA

where >4 is the sample covariance matrix of the 7;. We justify this label by
treating, 7;, i =1 ... n, as a random sample of size n, z; being the ith draw.
The matrix S is nonsingular if n > Kp.

Taking expectations on both sides of Eq. (46) gives

-1
ES;=n(A+77) Zaal( LE ) —(A+77)— (n—1)z7
. 1
__Zam( zi“yi XZI)
:(n_1)A+Qia2.(x{.zilxﬁ)_
n ai \ “*zi“yi 2z

i=1

A=Si lzn: <X2 lx) l 47)
Tn—1 né= iy A

An operational version of this estimator is

3: ( 15x) (48)

where S; = Y0 i, — 10 AL .

Here 7 77:, is defined in Eq. (29), and the estimators Zy, and ¢ a ; are defined using
the methods of Chang et al. (1992).

The estimator (48), however, can create a problem in that, in small samples,

some or all of the diagonal elements of A can turn out to be negative, even though

n > Kp and the estimand A is known to be nonnegative definite. Therefore, Ais
an inadmissible estimator of A against any loss function for which the risk func-
tion exists (see Lehmann & Casella, 1998, p. 323). The difficulty can be avoided

by replacing A by a nonnegative definite matrix, denoted by B, that is closest to A
in the sense that the Euclidean norm of A — B is smallest, i.e., infz HA —B|| (see

Rao, 1973, p. 63, 1.2 (v)). Let 4; >+ >, be the eigenvalues of A and let P,
., P, be the corresponding eigenvectors. Suppose that m (< Kp) eigenvalues of

Aare nonnegative and the remaining are negative. Then the nonnegative definite

matrix B = 1, PP, + -+ + AnP P, provides the closest fit to A.
IRSGLS nonnegative definite estimator of A:B (49)

The efficiency of B exceeds that of A because the former estimator is
obtained by putting the correct constraint of nonnegative definiteness on the lat-
ter estimator. A proof of the consistency of A can be constructed, as in Swamy
(1971, p. 117).
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Under conditions set out by Swamy (1971, p. 117), the problem of negative
diagonal elements of A disappears for large T because the second term on the
right-hand side of Eq. (48) converges in probability to the null matrix as 7' — oo.
If for a small 7, all the diagonal elements of A are negative, then A without its
second term on the right-hand side of Eq. (48) can be used. Under this modifi-
cation, A is still consistent.

Feasible Generalized Least Squares Estimation of @: Turning to 7, its
IRSGLS estimator is

2 P L
7= (x5 '%.) Xy (50)

where the IRSGLS estimates of A, ®;, and a,%,—Aal-, i=1, ..., n, replace their
respective true values used in X, = Dyx.(I, ® A)Dx. + DpQDj, (see
Eq. (37)).”"

We note the following properties of the estlmator 7 (1) It gives the estlmates

of the means of the coefficients of all equations in (14). (2) A subvector of 7 7 that

: : 2 / . . .
is of interest is 7y = (ﬁlo, ee, ﬁK,m) . This subvector gives the estimates of the

means of the intercepts of all equations in (14). (3) The distribution of % to order
o((nT)fl) and its approximate covariance matrix can be found by extending the
method of Cavanagh and Rothenberg (1995, p. 279). (4) The matrix

— — . . . &1 .
Xz, 'X.)~" with Z, replaced by its sample estimate X, , developed earlier,
can give a crude approximation to the o((nT)"') approximation to the exact
covariance matrix of 7. (5) Based on results in Cavanagh and Rothenberg

(1995), one may guess that the distribution of 7 is not normal, unless the dis-
tributions of 7 and u are normal. Their derivation can be extended to find all

the properties of 7 implied by its first four moments.

From the estimator 7 we obtain the following estimators:

Average value of the bias-free component of the coefficient y;;; with j > 0 of
model (10):

*

1 S iy _11 .
. Z 1-= To(j=1,....K—1) (51)
i=1 t=1 i
where ﬁjo is the (j, 0) element of (50).
Average value of the omitted-regressor bias component of yj; with j > 0 in
model (10):

21. Conditions for the consistency of % are given in Appendix B.
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7 —1
1 n T lA/'i p—li . '
ﬁE 1 El [1j;1 <hglﬂthhn+Mjn j=1..,K-1) (52)
i=1 1= —

where %ﬂ, is the (j,h) element of (50), and ftj;, is the jth element of zii, which is a
subvector of the feasible version of # in Eq. (40).

We assert that model (10) performs well in explanation if, forj =1, ..., K—1,
(51) is an accurate estimate of the average bias-free component of model (10)’s
jth coefficient.””

Two examples of cases when Assumptions A4 and A5(ii) are not satisfied: If i

indexes countries, states, or regions, then Assumptions A4 and A5(ii) are not
satisfied in the presence of spatial or cross-section dependence. To explore this
contingency, we analyze model (25) under either kind of dependence using two
models for panel data, where either spatial autocorrelation or a kind of cross-
section dependence is present.
Example 1 (Model of Spatial Autocorrelation): Let i index regions or countries.
Then effects of neighboring locations could spill over into each other resulting
in clustering effects, as described in Greene (2012, pp. 352-354 and 390-391).
To capture such effects, Greene worked with the following model:

Yit :x;z/’)"' Eir Tt Y; (53)

where the common ; is the unit (e.g., country) effect. The correlation across
space is implied by the spatial autocorrelation model

Eir =@ Wiej+ 1, (54)

n

j=1

where the scalar ¢ is the spatial autoregressive coefficient, the W;’s are conti-
guity weights that are assumed known, and z, is random time effect. It is further
assumed that y; and 7, have zero means, variances 0,24 and 63, and are indepen-
dent across countries and of each other.

Greene (2012, p. 391) pointed out that ¢ has no natural residual-based esti-
mator. Rao (2003, p. 86) pointed out that if i indexes neighborhoods, then a
drawback of the model in (53) and (54) is that it depends on how neighborhoods
are defined. Upon addition of a normality assumption, the unknown parameters
of Egs. (53) and (54) are estimated using the method of maximum likelihood.
Because of its heavy computational burden for large n, a generalized method of
moments estimation was developed for the model in (53) and (54).

However, there remains a basic nonuniqueness of the coefficient vector S
and the error components &;, and y; resulting from the discrepancies x}, #
(a0 + j{(:_llx_,«,»,yﬁ,) and (g, + p) # Woir + Sov Aipu®l,), between model
(10) and the model in (53) with all the undesirable implications discussed in

22. Accuracy refers to the size of deviations from the true average bias-free component.
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Section 2. The complexity of model in (53) and (54) becomes unmanageable if
u; is dropped, and the restrictive assumption that f is fixed and does not vary
across individuals is changed to the assumption that j3; varies randomly across
individuals. Thus, the interindividual heterogeneity reflected in random f;’s and
spatial autocorrelation in (54) cannot be handled simultaneously. Further, the
functional form of (53) may also be incorrect.

To remove nonuniqueness of the coefficients and error components of (53),
we resort to the methodology advanced in this chapter by introducing cross-
section dependence into model (21): y;, = (z/; @ x})vec(IT;) + xj;u;, because
of its superior properties. This model has K error terms, whereas (53) has only
one nonunique error term and one nonunique common unit effect, ;. We next
use u; to develop a vector spatial autocorrelation structure. Let (21) be
written as

Vi =Xumw + Dy (55)
where y,= (yis ... ,yn) isn x 1, X, is an n X Kp matrix having (z;, ® x/,) as its
ith row, z is vec(I1;) which is restricted not to vary across individuals and is Kp
x 1, D, = diag(x{,, ... ,xp) isn X nK, u, = (ui,, ... ,uy;) isnK x 1, and u;, =
(Uoirs Wiy -+ » Ug—1, i) is K x 1.

Forj=0,1, ..., K -1, let the jth element of u;, denoted by u;;, be equal to
n

Ujjy :p_,‘ZWii’uji’t +Vj (56)
=1

where p;is the spatial autoregression coefficient and the elements W, are spatial
(or contiguity) weights that are assumed known. Eq. (56) can be written as

uj; :ijuj, + Vil 67

where u; = (1, ... ,u,,) 18 n x1, Wis an n x n known spatial weight matrix
that is symmetric, has zero diagonal elements, and is usually row-normalized,
vj, is a remainder effect that is assumed to be i.i.d. (0, 6;), and 7is an n x 1 vector
of 1’s.

There are two methods of assigning values to the elements of W. In one
method, the element W;; will equal one for (i, i') pairs that are neighbors,
and zero otherwise. In another method, W;; can reflect distances across space,
so that W;; decreases with increases in |i —i’|. When | p;| < 1 and the elements of
W are such that (I - p;W) is nonsingular, we can write u; = (I — ij)*IVj,z. For
i=1,...,nandt=1,...,T, the conditional covariance matrix of u; given z;, and
X, 1S

1

(1=pW) ™ [oju ] (1= W)~ (58)

The conditional covariance matrix between u;, and uy,, given z;, and x;, is

(L=pW) " [} (1= py W) "

(59)
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Let u, = (uo,, iy, ... ,uk—1,.) whereuy,j=0,1,...,K—1,are givenin (57).
Let Q,, denote the covariance matrix of u,. The jth diagonal block of Q,, is given
in (58) and (j, /) above the diagonal block of Q,, is given in (59). The dimension
of Q,, is nK x nK.

In (55) and (56), we have a model with spatially correlated disturbances,
derived from model (9), which has unique coefficients and error term. The task
before us is to determine the best feasible method of estimating the parameters
of the model in (55), (58), and (59). A disconcerting result is that when
Assumption AS5(ii) is not satisfied, model (56) cannot be estimated without
restricting the coefficient vector z of model (55) to be individual-invariant, a
restriction not imposed on the coefficient vectors of models (25) and (36). In
the model in (55) and (56), interindividual heterogeneity is assumed away.
Example 2 (Pesaran’s (2007) Simple dynamic panel with cross-section depen-
dence): Let

Vie= (1= ;)i + byie—1 + it (60)

where Pesaran assumed that the initial value y;y has a given density function
with a finite mean and variance, and the error term u;, has the single-factor
structure

U =y +ei (61)

where the symbol f; is the unobserved common effect, and ¢;, is the individual-
specific (idiosyncratic) error. It is the common factor f; that produces cross-
section dependence. Using the model in (60) and (61), Pesaran (2007) con-
ducted the unit-root test of the hypothesis ¢; = 1. Again, the differences (1 —
Pu; + ¢iyi, —1 F (a?)ir + j[‘{:]lxjitfjiz) and u;, # (Vsit + Z?i:lllz()itw;iz) between
the model in (60) and (61) and model (10) imply nonuniqueness of the coeffi-
cients and error term of the former model. As in the preceding example, we con-
jecture that this nonuniqueness can seriously affect the consistency properties of
Pesaran’s unit-root test.

4 Bayesian Analysis of Panel Data

Recall that the covariance matrix Z, in (37) depends on (i) the unknown ele-
ments of the K x K diagonal matrices ®;, i = 1, ..., n, (ii) the unknown scalar
variances aﬁ,«, i=1, ..., n, (iii) the unknown distinct elements of the K x K non-
negative definite matrices A,;, i = 1, ..., n, and (iv) the unknown distinct ele-
ments of the Kp x Kp nonnegative definite matrix A. Thus, the number of
unknown parameters on which X, depends is n[K + 1+ K(K + 1)/2] +
Kp(Kp + 1)/2. Even though this number depends on 7, no incidental parameter
problem arises if Assumptions A4 and A5 hold, as shown by Swamy (1971). To
ease the computational burden, we can set K = 2, that is, model Eq. (10) as con-
taining one intercept and a single included regressor. To begin, write all the
unknown parameters on which X, depends in the form of a vector, 0. Let the
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means of the intercepts of (14) needed to measure the causal effects of the non-
constant regressors of (10) on its dependent variable be included in the vector 7
= (ﬁlo---ﬁ;(_l,o)/ and the remaining elements of 7 be included in the vector, 71,
so that 7 = (7,,7))’.

The elements of the vector (77}, 7;,6’)’ are fixed but unknown. It is knowledge
about these unknowns that Bayesians model as random, using a method that, after
careful reflection, considers all the possible alternatives in order to distribute
among them in a way that will appear most appropriate, one’s own expectations
and perceptions of probability (see Swamy & Mehta, 1983). Such a method pro-
vides the prior probability density function (pdf) for (77,7} ,0")". The prior distri-
bution is improper if it has infinite mass. Use of Bayes’ theorem shows that the
posterior pdf for (7}, 7} ,0)’ is proportional to the product of the likelihood function
of (7}, 7| ,0') and the prior pdf for (7}, 7,.0'). Therefore, we can write

p((@7.0) 15X ocp (7,70, 0) )L (7,71, 0) | v.X.) (@)
where p( (ﬁg, 7, 0’)/ y.X:) is the posterior pdf for (7, 7}.0"), p( (ﬁg, 7, 6”)/) is
the prior pdf for (7}, 7),0')’, and L( (ﬁ(), 7, :9’)/| ¥,X;) is the likelihood function,
which is defined as the sample density p(y|X., (7}, 7}, ¢') ") considered as a func-
tion of (7}, 7},0') for fixed y and X..

The elements of the vector 7 are the parameters of interest. If the joint posterior
density for (7)), 7;,0') in (62) is proper, then the marginal posterior density for 7
can be obtained by integrating out (7},6)’. In (62), the posterior density is proper if
the prior density is proper. In some cases, the posterior density for an improper prior
density is proper, but improper posterior densities are meaningless. A word of cau-
tion: In applying Bayesian analysis to (36), a case of misapplication of Bayes’ the-
orem occurs when the likelihood function of a parameter vector, such as fj, is
multiplied by the unmatched prior pdf for R, where R # I. This insight comes from
Kashyap, Swamy, Mehta, and Porter (1988), who studied a case in which attempts
to avoid this misapplication resulted in prior and posterior distributions of  that do
not possess density functions.

Bayesians emphasize the importance of carefully assessing both the likeli-
hood function and the prior pdf before inserting them into Bayes’ formula (62).
As statisticians are aware, however, likelihood functions adopted for such pur-
poses are typically model based, which raises a concern because, generally,
models cannot be completely trusted, especially if, as we proved, their coeffi-
cients and error terms are not unique. This would certainly be true if L
(7 7,0)
term.”” However, as we have indicated, L((7), 7|, ¢/ )/| y,X.) is based on models

v,X,) were based on a model with nonunique coefficients and error

23. Such a model can be written as y;, = x}, ; + &;, where ; = f + I1z; + u; and ¢;;, = w}, w;, and is
called “a hierarchical linear model” in the econometrics literature (see Greene, 2012, p. 639). In
Section 2, we showed that this model has nonunique coefficients and error term. Nevertheless, it
is used in some estimation methods, including simulation-based estimation and inference (see
Greene, 2012, p. 639-641).
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(25) and (36), which are constructed carefully to be unique and therefore trust-
worthy. We note further that the function L( (ﬁg, 7,0 )/ ¥,X;) is the result of
simultaneous rather than two-step estimation in (16), (51), and (52), a choice
made necessary because the coefficients on the nonconstant regressors of
(10) contain more than one component. This choice is fortuitous because simul-
taneous estimation is, in principle, superior to two-step estimation.

Statisticians also like to assert that likelihood functions become less satis-
factory as the number of parameters involved is raised and apply this criticism
to the model in Egs. (10) and (14). This would be mistaken, however, because
after following all the steps in Egs. (7)—(10), (14), (19), and (20), and applying
Assumptions A4 and AS5, it becomes evident that reducing the n[K + 1
+ K(K + 1)/2] + Kp + Kp(Kp + 1)/2 unknown parameters of the model in
(36) to a smaller number would lead to serious specification errors and other-
wise gain nothing.

If a proper prior pdf for (7, 7,,0') is available, then it should be used in
place of p((z, @;,6')') in Eq. (62). If such a prior pdf is not available, then
we should use only those improper prior pdf’s for (7, 7),0') that, when used
in place of p( (ﬁg, 7, 0’)/) in Eq. (62), give the proper joint posterior distribu-
tions and consistent generalized Bayes estimators of (7, 7,,0).”* Any gener-
alized Bayes estimator is not a proper Bayes estimator, because it is obtained by
using an improper prior distribution. It can be conditionally admissible, even
though its average risk (Bayes risk) is infinite.”” In general, the Bayes estimator
of 7y under squared error loss is given by the mean of the marginal posterior
distribution of 7y. To avoid unacceptable posterior distributions, Swamy and
Mehta (1973) used improper prior pdf’s recommended by Stone and
Springer (1965) in a Bayesian analysis of the random effects model in (1). In
a pair of other studies in models with missing observations, Mehta and
Swamy (1973) and Swamy and Mehta (1975a) used certain improper priors
to get proper posterior pdf’s.

Lindley (1971, p. 8) pointed out that within the framework of coherence,
statements, such as “a prior distribution does not exist in this problem,” is
“demonstrably” not true. DeGroot (1970) pursued this framework and presented
an axiomatic system for subjective probabilities originally due to Savage,
including a proposal for a method of specifying a unique prior pdf using a uni-
form distribution. The importance of uniqueness was emphasized by Lehmann
and Casella (1998. p. 323), who gave a proof of the admissibility of any unique
Bayes estimator. Brown (1990) showed earlier that conditionally admissible
estimators might be unconditionally inadmissible, meaning that they must be
rejected in favor of estimators that are admissible both conditionally and uncon-
ditionally, provided the latter estimators are available. Finally, we stress PS’
(Pratt & Schlaifer, 1988, p. 49) admonition regarding Bayesian analysis of a

24. The definitions of Bayes and generalized Bayes estimators are given in Lehmann and Casella
(1998, pp. 228 and 239). The latter Bayes estimator is based on an improper prior pdf.
25. The definition of admissible estimators is given in Lehmann and Casella (1998, p. 48).
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stochastic law: “... a Bayesian will do much better to search like a non-Bayesian
for concomitants that absorb ... ['proxy effects’ for excluded variables].” This
is the intent behind Eq. (16)(ii), where the coefficient drivers included in (14)
estimate omitted-regressor bias components of the coefficients of (10). With
the exception of Pratt and Schlaifer (1984, 1988), statisticians have so far
not managed to develop models with unique coefficients and error terms.

Lehmann and Casella (1998) pointed out that “it is not the case that all gen-
eralized Bayes estimators are admissible.” (p. 383), so we should not use an
improper prior pdf if it leads to an inadmissible generalized Bayes estimator
of (@), 7;,0').”® Consistency being a desirable property of estimators, Brown
(1990) pointed out that “Ordinary notions of consistency demand use of proce-
dures ... [that] are valid and admissible both conditionally and unconditionally”
(p.491).” He further pointed out that “estimators which are formally Bayes with
respect to prior measures having infinite mass [otherwise known as improper
prior distributions] may easily be conditionally admissible and yet uncondition-
ally inadmissible” (p. 491). Lehmann and Casella (1998, p. 239) note that

From a Bayesian view, estimators that are limits of Bayes estimators are somewhat
more desirable than generalized Bayes estimators. This is because, by construction,
a limit of Bayes estimators must be close to a proper Bayes estimator. In contrast, a
generalized Bayes estimator may not be close to any proper Bayes estimator.”®

Assumption A6: The conditional distribution of the dependent variable y in
Eq. (36) is multivariate normal, given X, with mean X,7 and covariance matrix
2, defined in Eq. (37).

Under this assumption, the noninformative prior postulates are that 7, A, and
Q are independent with improper densities, p(7)oc const, p(A) oc | A|~"* and
the MDIP pdf for Q, respectively. In this case, the posterior distribution of
(ﬁ{), 7,0 )/ in Eq. (62) is improper, so that the calculation of a posterior expec-
tation is meaningless. Instead, let us consider the noninformative prior postu-
lates that 7 and X, are independent with improper densities p(7)oc const and
p(EZy) o< |Zy|71/2, respectively. The posterior distribution of (ﬁ, Ey) is then
proper. This posterior, however, is also not acceptable because the noninforma-
tive prior p(Z,) o< |X,| /> depends on the likelihood function, an outcome not
generally acceptable to Bayesians.

26. Arnold Zellner, whose work included specifying carefully and appropriately selected improper
prior distributions, is widely acknowledged as the father of Bayesian econometrics. In his early
work, Zellner used Jeffreys’ ideas to select improper prior pdf’s, and in his later work, he created
what are known as maximal data information prior (MDIP) pdf’s (see Zellner, 1971, 1977), which,
we emphasize, are also improper prior pdf’s.

27. Note that this shows the connection between consistency and admissibility.

28. The definition of a limit of Bayes estimators is given in Lehmann and Casella (1998, p. 239).
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4.1 Improvements in the Precisions of the Estimators of
Time-Invariant and Individual-Specific Coefficients
of the Stochastic Law

Our interest centers on the estimators in Eq. (31) because they are needed to
estimate the causal effects of the nonconstant regressors of Eq. (10) on this
equation’s dependent variable. Since we assume that these effects are different
for different individuals because of interindividual heterogeneity, the estimators
in Eq. (51) provide only average causal effects for all n individuals. But there
may not be much interest in these average effects. Therefore, we investigate
whether there is any way the mean-square errors of the estimators in
Eq. (29) can be reduced.
Fori =1, ..., n, an estimator of x; is

—1
X' 21X X' 31y,
Tiy = <%J +/4A_l> (%’yl +/1A_1ﬁ (63)
ai ai

This estimator is obtained by minimizing the Lagrangean (y; —Xzizr,»)'%’_l
(yi—Xumi) + pu|(mi—7) A (m; — %) —r?] (see Swamy & Mehta, 1976) and
Chang, Swamy, Hallahan, and Tavlas (2000, pp. 125 and 126)). Chang et al.
(2000, p. 125) pointed out that estimator (63) can be used to estimate x;, subject
to certain equality and inequality restrictions. Estimator (63) is a biased estima-
tor of z;, and when y = 1, it is the minimum mean square error linear estimator
of 7;, as shown by Chipman (1964, pp. 1104-1107), who attributed the estimator
with y = 1 to Foster (1961).

Lehmann and Casella (1998) proved the admissibility of several estimators
under a sum-of-squared-errors loss. This loss function is inappropriate for our
purposes because an error of fixed size is much more serious for values of the
sub-vector 7 of 7 than for values of its other sub-vector 7;. Therefore, we pro-
ceed as follows: Swamy and Mehta (1977) proved that a necessary and suffi-
cient condition for the second-order moment matrix E(z; — ;) (7 — ;) of
estimator (26) around the true value of r; to exceed the second-order moment
matrix £ (iziﬂ — 7z,<) (ir,-” — 7[,‘)/ of estimator (63) around the same true value by a
positive semidefinite matrix is

-1

(m: —7_1)/{ G)Aﬂﬁi (X;iz;‘xz,-)l} (m—7) <1 (64)

The importance of this result is that it gives a necessary and sufficient con-
dition under which the superiority of the biased linear estimator in (63) over the
minimum variance linear unbiased estimator in (26) will be reflected in any pos-
itive semidefinite weighted sum of mean square and mean product errors and
also in the generalized mean square error, i.e.,

E(friﬂ — 777,') "p (fr,-ﬂ — ir,-) < E(#; — n;)"¥P(#; — x;) for all positive semidefinite ¥
(65)
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and
|E(f[iﬂ — 7'[,') (ﬁ'iﬂ —JT,'),l S |E(ﬁ', —ﬂi)(JAT,' — ll'f)ll (66)

where 7; is defined in (26).

If A is singular, then condition (64) can be satisfied, but (63) does not exist.
In this case, using a formula in Swamy and Mehta (1976, p. 811), estimator (63)
can be rewritten as

i = AX, (X AX, + 2 Zy) 'y + [1 — AX (X AXL + 0% 2y) ‘XZ,} 7 (67)

which exists when A is singular.

The availability of the minimum mean square error estimator of z; in (67) is
important because its feasible form can provide more efficient estimators of the
causal effects of the nonconstant regressors of (10) on its dependent variable
than (31).

Computation of estimator (63) merely requires a priori values of (7, A). In
terms of prior information, estimator (63) is less demanding than Bayes’ for-
mula in (62) because, by examining the sample estimates given by (49) and
(50) based on a previous sample, we can more easily formulate our prior beliefs
about (7, A) than about the prior pdf p((7),7},60')’). Swamy and Mehta (1979)
considered the case where o2; and y are sample estimates. For this case, they
proposed a new estimator by introducing suitable constants at the appropriate
places in estimator (63) and derived a necessary and sufficient condition for
E(#; — m;)(#; —x;)" of a much simpler version of (26) to exceed the second-
order moment matrix about z; of the new estimator by a positive semidefinite
matrix. Swamy, Mehta, and Rappoport’s (1978) methods of evaluating a ridge
regression estimator can be extended to find methods of evaluating (63) using
the available data.

4.1.1 A Complete Inference System

The preceding establishes that a complete system of inferences is composed
of the following elements:

I. A model: Egs. (10), (14).

ITA. Estimators of the bias-free components of the coefficients of the model:
Eq. 31).

IIB. Improved estimators of the bias-free components of the coefficients of
the model based on the estimators in (63).

IIC. Kernel density estimates using the point estimates and the improved
point estimates of the bias-free components of the coefficients of the model.

III. Predictions of the out-of-sample values of the dependent variable of the
model: Egs. (33), (34).
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4.2 Simulation-Based Estimation and Inference

In Section 2, we have demonstrated that models with nonunique coefficients
and error terms, in other words, models that have typically been employed in
the past for simulation-based estimation and inference, yield incorrect infer-
ences. For his simulation-based estimation and inference, Greene (2012,
p. 643) considered a sampling density based on a hierarchical model with non-
unique coefficients and error term.”” We modify this model to make its coeffi-
cients and error term unique, because models with nonunique coefficients and
error terms yield incorrect results, as we have already shown.

From (21) and Assumption A3, it follows that conditional on (x;;, z;;, 7;), Vir
has sampling density.

P (iel Xies Zis 701, @i, 02D ai) (68)
and conditional on 7 and A, z; has prior density p(x;|7,A) for all i. This is a
single prior Bayes model for each i. From this model, we calculate the posterior
distribution, p(r;|y;, X.i, @i,aiiAai,ﬁ, A) for individual i. The virtue of the pdf in
(68) comes from model (21) because the latter is derived from model (9) having
unique coefficients and error term.

The joint pdf of y; and z; is

p(Yi» ﬂi' Xzi’ (I)i’ Aui, oﬁi, ﬁ’ A) :P()’:| le" T, q)i’ Auis 03[)p(”i| 7_7:’ A) (69)

Suppose that ®@;, A, af,,-, 7, and A are known. Then using Bayes’ theorem
gives

p (il Xziv 71, @, 6% 00 p(mi| 7, A)
p (il Xei, @1, 0200, 7, A)
 p(il X, 7w, @i, 0%, 80)p (7| 7, A)

Jp(yf, 7| Xi, @, 62500, 7 A)dn;
7

_ p (il Xuiy 71, @, 6% 00 p(mi| 7, A) 70)

JP()’[\ Xei, 71, @1, 02D (1| 7, A)dm;

i

[?(7[,'| Vi, Xzi, q),', O-cztiAﬂi’ T, A) =

where the pdf for z; is used as the prior density. This is in contrast to (62), in
which the distribution of z; is used as part of the likelihood function. The advan-
tage of Bayes’ formula in (62) is that the sample data in (25) can be used to
estimate 7 and A, as in (49) and (50).

29. See also Train (2003).
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The Bayes estimator under squared error loss is given by

Jﬂ'ip (}’z‘| X, i, ®;, Uzl'Aai)p<”i| 7T, A)dr;

i

JP(Yl| Xzi’ Ty q)i’ GiiAa[)p(ﬂ[| 7_77, A)dﬂ:l

i

E(ﬂ',‘| Vi, XZ,', q),‘, GziAfl'" T, A)

(71)

Unfortunately, Greene’s (2012, p. 644, (15-39)) equation cannot be used to
compute the integral in Eq. (71), because the error term of Eq. (21) is both het-
eroscedastic and serially correlated. We need reasonably straightforward and
general methods of evaluating the integral in Eq. (71) and, to this end, we con-
sider using a theory based on Markov chain limiting behavior defined in
Lehmann and Casella (1998, pp. 306-307). If this theory can be extended to
make it applicable to the model with heteroscedastic serially correlated distur-
bances in Eq. (21), then we may use the extended theory to evaluate the integral
in Eq. (71). If it cannot be extended, then we can use only the non-Bayesian
estimators in Egs. (29) and (31).

The estimators (29) and (71) are of the same 7z; but are obtained using two
different methods. The question then becomes: Which of the two do we choose?
To decide this, consider the following: An inference based on Eq. (29) proceeds
conditionally on X_;, where potential difficulties in choosing a prior density in
Eq. (69) are no serious impediment. By contrast, an inference based on the pos-
terior pdf in Eq. (70) is more complex in that (i) it is appropriate only if the dis-
tribution of z; is used as the prior, and proceeds conditionally (ii) on the T
observations in (y; and X;) available for the ith individual and (iii) on the values
of the parameters ((Dj,dgiAai,ﬁ, A) which are assumed to be known. Because the
parameters (CDf,ogiAa,-,Tr,A) are not known, any inference based on Eq. (70) is
heavily dependent on the accuracy of their non-Bayesian estimates. For estima-
tor (29), the ease or difficulty of managing the unknown parameters (®;, agiAa,-)
is intrinsic to the probabilistic structure of the particular problem with which we
are dealing. Thus, although estimator (71) appears to cope easily with the
unknown parameters that estimator (29) finds difficult, this benefit is earned
at the expense of assuming away this obstacle in the form of a convenient inte-
gral in Eq. (71). Therefore, there is really not much advantage of Eq. (71) over
Eq. (29). We now turn to an example.

5 Empirical Evidence of the Causal Effects of Wives’ Education
on Their Earnings

To illustrate the methods discussed in Sections 2 and 3, we use the following
example of Eq. (10):

earnings; = y,; +y;education; (72)
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where i indexes individuals, earnings; = the ith wife’s earnings measured as
hourly wage times hours worked, and education; = the ith wife’s education
measured in years of schooling. Because time-series data about these variables
are not available for any i, Eq. (72) can be considered a special case of (10),
where subscript ¢ is suppressed, the dependent variable is replaced by the var-
iable “earnings,” K is set equal to 2, x,; is replaced by the variable “education,”
and corresponding changes are made in (7)—(9) above. It then follows from
(11) that ys; = [(measurement error in earnings;) + (the intercept of
(7)) +(the error term of (9))]. It further follows from (12) that y,; = [(Bias-Free
Component (BFC) + omitted-regressor bias component)(1 — the proportion of
measurement error in education;)]. The BFC of y;; is needed to measure the
causal effect of the ith wife’s education on her earnings, as shown in (9)
(see Property (5) of (9)). We assume that both earnings; and education; in
(72) are measured with error. The variable education; is the sole regressor
in (72) because we are interested in learning only the causal effect of educa-
tion; on earnings;. In the following, we provide an example of (14) to complete
the specification of (72).

To estimate the BF and omitted-regressor bias components of y,; separately,
we need to make y(; and y;; functions of appropriate coefficient drivers, as in
(14). Before we do so, we examine three previous studies on the earnings-
education relationship to determine if they contain any useful ideas about the
coefficient drivers that we will need for our estimation. Also, we will attempt
to find out to what extent the specification of model (72) can remedy apparent
defects in extant models for earnings attainment and elite college attendance.
Model (72) is most conveniently described in the context of earlier work, of
which we give three examples.

Krueger and Dale’s model:

log (earnings) = X'+ 6T + ¢ (73)

where individual earnings are for a given time period, x is education in number
of years, and T equals 1 for those who attended an elite college and is zero
otherwise.

Mincer’s Model:

log (earnings) = a + bS +cx +dx* + ¢ (74)

where S denotes years of completed education, and x denotes the number
of years an individual of age A could have worked, assuming he or she
started school at age 6, finished schooling in exactly S years and began
working immediately thereafter: x =A — § — 6, and ¢ is an added random
error term.

The sources of models (73) and (74) are Greene (2012, p. 251) and Card
(1999), respectively. Card’s paper surveyed a number of studies about the
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earnings and education relationship done before 1999. Finally, Greene offers
three approaches of his own to modeling the effects of education on earnings:
Greene’'s Models:
(i) Semi-log equation.

log (earnings) = 8, + f3,age + f;age” + f3,education + ffskids + & (75)

9 <

where hourly wage times hours worked are used to measure “earnings,” “edu-
cation” is measured in years of schooling, and “kids” is a binary variable that
equals one if there are children under 18 in the household.

(i) Exponential equation.

Income = exp (/)’ | +PrAge+p3 Ag62 + f4Education + ffsFemale + fgFemale x Education +

B7Age x Education) + ¢ (76)

where two interaction terms are included as regressors.
(iii) Discrete choice.

Prob(LFP; = 1) =®(f, +B,Age; + B3 Age? + ,Education; + sKids, + yHHrs; )
(77

where LFP; denotes the ith wife’s labor force participation, and HHrs; denotes
the husband’s hours defined as

HHrs; = o + a;HAge; + asHEducation; + a4Family Income; + u; (78)

Greene (2012, pp. 14-15, 195 and 708) explains the selection of regressors
in models (75)—(77) as follows: (i) Most people have higher incomes when they
are older than when they are young, regardless of their education. This justifies
the inclusion of age as a regressor in models (75)—(77). (ii) Income tends to rise
less rapidly in the later earning years than in the early ones. This justifies the
inclusion of age2 as a regressor in (75)—(77). (iii) Labor force participation is
the outcome of a market process whereby the demanders of labor services
are willing to offer a wage based on expected marginal product, and individuals
themselves make a decision whether to accept the offer, depending on whether
it exceeded their own reservation wage. Employers’ expected marginal product
depends on education, among other things, and female employees’ reservation
wage depends on such variables as age, the presence of children in the house-
hold, other sources of income (husband’s), and marginal tax rates on labor
income. These arguments justify the inclusion of some or all of the variables
(kids, family income, and HHrs) as regressors in (75)—(77).

To study models (72)—(77), consider first their functional forms. In light of
this chapter’s main theme, estimation of the causal effects of education on earn-
ings requires an underlying real-world relationship between earnings and edu-
cation (EE). When the true functional form of such a relationship is unknown, as
it usually is, the specific semi-log form of (73)—(77) can be false. A commitment
to such a specific form then might yield incorrect inferences. For this reason, we
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posit the far more general alternative equation in (72), which is derived from a
model that is linear in all relevant observed and unobserved regressors but non-
linear in all coefficients that are cross-sectionally varying. Because of its gen-
erality, this functional form can cover the true (but unknown) functional form of
the real-world relationship between EE as a special case. Applying Basmann’s
(1988, p. 98) argument to (73)—(77) means that these equations are not free of
the most serious of defects: non-uniqueness. Lack of uniqueness arises from two
sources: functional form, because the log of earnings instead of earnings them-
selves is used as the dependent variable, and nonuniqueness of the coefficients
and error terms. Such models cannot represent a real-world relationship and
therefore cannot be causal. It follows that the coefficient of T in Eq. (73), the
coefficient of S in Eq. (74), and the coefficients of education in Eqgs. (75)—
(77) cannot describe causal effects. Needless to say, these comments also apply
to other models covered by Card (1999).

As specified, the error terms in Egs. (73)—(78), as well as those in the models
examined by Card (1999), comprise omitted relevant regressors, as in Eq. (4) of
Section 2. Consequently, the assumption that the regressors included in these
models are independent of the error term consisting of “the” omitted regressors
is meaningless for all the reasons outlined earlier. Therefore, the least square
estimators of the coefficients of Eqgs. (73)—(76) and the maximum likelihood
estimators of the coefficients of Eqs. (77) and (78) are inconsistent, as are
the instrumental variable estimators of the coefficients of models tabulated
by Card (1999), as Theorem 1 proves.

Another problem with Eq. (73), pointed out by Greene (2012, p. 220), is that
some unobserved determinants of lifetime earnings, such as ambition, inherent
abilities, and persistence, can also determine whether the individual had an
opportunity to attend an elite college in the first place. The least squares esti-
mator of 6 then will inappropriately attribute the effect to the treatment rather
than to these underlying factors. This incorrect attribution produces correlation
between T and &, which results in inconsistency of the least squares estimator
of o.

In Eq. (72), a correlation between education and the component of y;, called
“the error term of (9)”, cannot arise because, in the formulation of Eq. (72),
every omitted regressor is first split into two pieces: a “sufficient” piece, and
a piece consisting of the effect of the included regressor, education, on each
omitted regressor, using a functional form that is linear in the included regressor
and nonlinear in its coefficients (see Eq. 8). The proposed protocol is then (i) to
define sufficient pieces—certain “sufficient” sets of omitted regressors—as the
arguments of a function called the unique error term, and (ii) to use the effect of
the included regressor on each omitted regressor piece as an argument of the
function called omitted-regressor biases of the coefficient on the included
regressor (education). It can be shown that this regressor is uncorrelated with
the unique error term, which is a function of sufficient sets of omitted regres-
sors. Omitted-regressor bias components, which in our proposed model (72)
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constitute a formal accounting of such biases, are missing from the coefficients
of Egs. (73)—(78). Their absence renders all coefficients and error terms in these
models nonunique, so that they cannot be estimated consistently.

By construction, Eq. (72) is without specification errors, meaning that it can
be a real-world relationship. The explanation that follows Eq. (72) clarifies that
the components of its coefficients are exactly of the type that the coefficients of
an equation must have if it is derived from a real-world relationship, with alge-
braic expressions for their components being given in (10)—(12). Property (5) of
(9) further implies that the causal effect of the ith wife’s education on her earn-
ings is exactly the bias-free component of y; X the true value of education,.

To estimate this causal effect, we need to estimate the components of yy;
separately. For this purpose, we seek coefficient drivers strongly related to
the omitted-regressor bias component of y;; and select them accordingly on
the basis of arguments that follow Eq. (78) and originally provided by
Greene (2012, pp. 14 and 15, 683 and 684, 699-701, 708-711, 888). The
selected coefficient drivers are: z;; = Wife’s Age;, zp; = Wife’s Age,z, Z3; =
Kids,, z4; = Husband’s Age;, zs; = Husband’s education;, z; = Family income;.
The difference between Greene’s approach (2012, pp. 116 and 117) and ours is
that we employ as coefficient drivers of (72) the same variables he used directly
as regressors in a fixed-coefficient latent regression of earnings in (77). Accord-
ingly, for j = 0, 1, the jth coefficient in (72) becomes an equation like (14).

rji:ﬂj()+”jlzli+-~~+”j626i+uji (79)

Substituting (79) for both j = 0 and j = 1 in (72) gives a fixed-coefficients
model where not only education and the coefficient drivers but also the inter-
actions of education with each of the coefficient drivers appear as regressors.
Indeed, one of these interaction terms also appeared in Greene’s (2012,
pp. 699-701) model not shown here. Of course, we can put different exclusion
restrictions on the coefficients of y,, and yq;. Eq. (79) is an example of (14).%°

Greene’s (2012, p. 116) Appendix Table F5.1 contains 753 observations
used in Mroz’s study of the labor supply behavior of married women. Of the
753 individuals in the sample, 428 were participants in the formal labor market.
For these 428 individuals, we fit the fixed coefficients model implied by (72)
and (79) under the assumptions that for i, i/ = 1, ..., 428: u; = (ug;,u1;),

30. We note as an aside that the present discussion is related to the debate about discrimination in
the work place, which prominently relied on a so-called reverse linear regression, reproduced in
Greene (2012, pp. 176-178). But here, as proved in Theorem [, we emphasize that least squares
estimators of the coefficients from such a regression are inconsistent if the error term is made up
of relevant regressors omitted from the regression, so that the conclusion regarding the presence
or absence of work place discrimination based on that work needs to be viewed with skepticism.
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E(u,| Zlis «vvs Z6is education,-) = O,E(u,u” Zlis ++vs Z6is educationi)
= GMZA”,andE(u,-u;,| Zlis +- vy Z6is education,-)
=0ifi#7 (80)

Because Mroz’s data provide a single crosss-section data set only, we must
assume that the coefficients of (79) do not vary across individuals. Still, this
assumption is not as strong as the assumption that y; and y,; are constant. This
is because under our assumption that, although the coefficients of (79) do not
vary across i, yo; and yy; still vary with the z’s. For estimation, we choose
IRSGLS to fit the data. We also will seek empirical best linear unbiased pre-
dictors of u, and uy;, denoted by ity; and ity;. Using the IRSGLS estimates of
7’s in (79) we get

]A/Ol- = —15733 + 351.7221,'— 1.331622,‘ + 33046 Z3j
(t—ratio) (—0.051158) (0.2262) (—0.07653) (1.3315)
— 298.11 z4i— 21.843z5; + 0.063717 zg; 81)

(—1.0455) (—0.070343) (0.78745)

7, = 505.17 —18.922 zj;+ 0.0042111 z;
(raio)  (0.1964) (—0.14541)  (0.0028917)

— 39058 zy+ 20.847 z;— 17.520 z5;+0.0070177z4;
(=1.9074) ~  (0.88043) (—0.67717)  (1.0908)

(82)

where the errors in (79) are set at their zero-mean values and the figures in
parentheses below the estimates of z’s are the #-ratios.
The estimate of the BFC of yy; in Eq. (72) given by Eq. (82) is:

505.17 (83)
(0.1964)

This is the first estimate on the right-hand side of Eq. (82) and is the same as
one we would have obtained had we used the formula in (31) after equating frj()i
with the IRSGLS estimate of z;y with j =1 in (79), setting i/;‘” equal to zero,
because no data about measurement errors are available, and setting K to 2.

Suppose that the correct functional form of the BFC of the coefficient, y4;, on
education; in (72) is a constant and does not vary across individuals. In this case,
the estimate of BFC is the same as that of the intercept of Eq. (79), which is
505.17.1964)- Because it has the correct positive sign for all i, the causal effect
of the ith married woman’s education on her earnings is unambiguously
505.179.1964y xeducation;). Constancy of the BFC of y,; does not mean that
y1; 18 a constant because its omitted-regressor bias component varies as a func-
tion of the coefficient drivers, as in (32).

Because the estimates of individual causal effects are too numerous to dis-
play in tabular form, we show them in Fig. 1 as a histogram and its implied ker-
nel density of the causal effect (505.17(g.1964) X education;) of the ith wife’s
education on her earnings, the total number of married women being 428.
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FIG.1 Histogram and kernel density estimate for the causal effects of different married woman’s
education on their earnings when the BFC of y,; is a constant.

The formula ;rm x education; ) is the estimate of the causal effect of the ith
married woman’s education on her earnings, shown in dollars on the horizontal
axis in Fig. 1, with frequencies indicated on the vertical axis. Note the bimodal
nature of the implied distribution.

Calculations (not reported here) show that if the causal effect of a married
woman’s education on her earnings is her actual earnings, given by the dependent
variable of (72), then the estimate 0.0070177 1 g90g) % Family income; x education;
generally is closer to the actual earnings; than the estimate
505.170.1964) X education;, meaning that it is more accurate.”’ The intercept
(m10) of y1; in (79), however, is actually the coefficient on education; in the fixed
coefficient model implied by Eqgs. (72) and (79). So it is proper to interpret an esti-
mate of the coefficient (r¢) times education; as an estimate of the causal effect of

31. Here, accuracy refers to the size of deviations from the true causal effect, whereas precision,
widely used in statistical work, refers to the size of deviations from the expectation of an estimator of
a causal effect.
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education; on the dependent variable of Eq. (72). A great advantage of this approach
is that this fixed coefficient model eliminates all specification errors in
Egs. (73)(77).2

One can object that our estimates of causal effects in (79), displayed in
Fig. 1, are obtained with a statistically insignificant estimated intercept of
(79) for j = 1. What these estimates then tell us is that we may have used
too many coefficient drivers in (79) with j = 0 and 1, or perhaps not even a rel-
evant set thereof. If by including any combination of six coefficient drivers in
Eq. (79) for yo; and y,;, we cannot increase the f-ratio of the estimated intercept
with j = 1 to above 2 in absolute value, then we must conclude that none of the
coefficient drivers in (79) having ranges different from that of yq; (or yy;) is
appropriate for yg, (or y;;), requiring a renewed search for a new set. This even-
tuality, however, is not grounds for rejecting the methodology that led to esti-
mator (31), for which we have given principled reasons based on uniqueness
and consistency. We emphasize that the method proposed here may not guar-
antee the discovery of truth for a single set of coefficient drivers; it merely pre-
vents our committing to a path that prevents discovery for sure. It is to clarify
our position that a failure to find “statistically significant” estimate for the inter-
cept of Eq. (79) with j = 1 is not grounds for reverting to conventional models
with nonunique coefficients and error terms that we provide a numerical exam-
ple, based on the same data.

Before we do, it is important to emphasize that, when testing between the
hypotheses, Hy: 719 = 0 and H;: 7,9#0, the mere specification of a 5% type
I probability of error for the #-test used, and of the decision, accept H, reached,
often is viewed as an unsatisfactory form of the conclusion to our problem. This
uneasiness was well articulated by Kiefer (1977) and was shared by all the dis-
cussants of his paper. The example given in Kiefer (1977) might clarify this
apprehension further.

Example 3 Suppose we observe a normally distributed random variable X with
mean # and unit variance, and must decide between the two simple hypotheses,
Hy: 0 = —1and Hy: 6 = 1. The symmetric Neyman-Pearson test rejects H if X
> 0 and has (type I and II probabilities of errors) = (0.16, 0.16). Thus we make
the same decision d; in favor of H; whether X = 0.5 or X = 5, but the statement
of error probabilities and decision reached, “(the type I and II probabilities of
errors, decision) = (0.16, 0.16, d;)” that we make for either of these sample

32. In practical terms, this chapter is able to determine how much, say, $1000 spent on education
will increase a woman’s earnings. Suppose that in Eq. (7) of Section 3.1, y;; represents earnings, x*;,
represents education, and all other relevant regressors are omitted regressors. Then aTi,(x/{ i — X{i) is
the amount by which y}; will necessarily be greater if on any one observation x7}; is deliberately set
equal to x/{ .+ rather than x{;, where a7 is the bias-free component of the coefficient on education in
(72) and (xll/ i« — X1;,) is the difference between two different values of x7;,. It also should be noted that
(x/ll i — X1i/) is measured in years and yj, is measured in dollars.
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values does not exhibit any detailed data-dependent measure of conclusiveness
that conveys our stronger feeling in favor of H; when X = 5, than when X = 0.5.

From this Kiefer’s (1977, p. 789) example, it follows that in (82), our spec-
ification of 0.05 type I probability of error, our lack of knowledge of the cor-
responding type II probability of error for a t-test of the null hypothesis, Hy:
m1o = 0 against the alternative hypothesis Hy: 719 # 0, and our decision to
accept Hy: m19o = 0, do not exhibit any detailed data-dependent measure of
conclusiveness that conveys our stronger feeling in favor of H; when the esti-
mate of 7z is 505.17. In his article, Kiefer (1977) gave an exposition and
discussion of a systematic approach to stating statistical conclusions with
the suggestion that incorporating a measure of conclusiveness that depends
on the sample may assuage the uneasiness he and the discussants of his paper
expressed. It is difficult, however, to apply Kiefer’s procedures to the model in
Egs. (7)-(20).

5.1 llluminating the Contrast Between (72) and (79) and
an Estimated Earnings and Education Relationship Based
on an Incorrectly Specified Error Term in (4)

A direct comparison between our estimate 505.17 ¢, 1964) for the intercept of (79)
with j = 1 and any of the estimates of the coefficient on education in Greene
(2012) and Card (1999) is not strictly possible, because, although our model
is in level form, their models use the logarithm of earnings as the dependent
variable. To allow comparison, however, consider

earnings; = fy + fz1i + B, 22i + f323: + p,education; + u; (84)

where all the coefficients are unknown but misspecified to be constants. Unlike
the error term of (72), the error term u; of (84) is equal to the sum of the products,
ww;p, £ =1, ..., L, where the w;,’s are relevant regressors omitted from Eq. (84),
wy is the unknown constant coefficient of w;,, and L is the unknown number of
relevant regressors omitted from (84).

Because the error term of (84) is composed of omitted relevant regressors,
the following propositions, echoing earlier assertions in this chapter, must hold:
(i) The condition that the regressors included in (84) be independent of “the”
regressors omitted from (84) is meaningless, and (ii) the error term and the coef-
ficients of (84) are not unique. (iii) From statement (i) it follows that E(u;| z 1,22,
z3;,education;)# 0 or, equivalently, all the included regressors in (84) are endog-
enous. As noted at the beginning, a proof of statement (i) is given in PS (1988,
p. 34), and the proofs of propositions (ii) and (iii) appear in Section 2. These
observations apply this chapter’s central theme to arrive at the conclusion that
least squares estimators of the coefficients of (84) are inconsistent whenever its
error term is made up of omitted relevant regressors.

Least squares applied to (84) leads to
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carnings; = — 9656.827 + 436.735z;,— 5.103 z;
(—1.595) (1.520)  (—1.509)

— 1609.335 z3; + 545.890education; + iz; (85)
(—3.184) (6.311)

where the figures in parentheses beneath the coefficient estimates are the
t-ratios. Because these estimates are based on inconsistent least squares estima-
tors, all the given “z-ratios” in parentheses are invalid, and therefore uninterpre-
table. It is clear then that a mere failure to obtain a statistically significant
intercept for (79) with j = 1 does not justify resorting to models with nonunique
coefficients and error terms, even though the estimated coefficient on education
in Eq. (85) is numerically not too far from the estimate of the intercept in (79)
with j =1 in (83).

Therefore, we return to our model in (72) and (79). Suppose that with exten-
sive experimentation, we could find the appropriate and adequate number of
coefficient drivers and included them in (79) with j =0, 1. Now assume the
model in (72) and (79) is true. From this, we can generate the misspecified
model in (84) by setting mos= o5 =7Tpc =711 ="12=F13="14="15=7"16= 0
in (79) and assuming that the distribution of uy; in (79) with j = 1 is degenerate
at zero. This being the case, the estimates in (85) are then, from everything that
has been said so far, subject to omitted-regressor biases as well as biases
because of the misspecification of the distribution of u,;. The two conditions
that (i) “causality” is a property of the real world and (ii) a real-world relation-
ship must be mis-specifications-free imply that the BFC of the coefficient on
education in the mis-specifications-free model in (72) is needed to estimate
the causal effect of education on earnings. In light of this demonstration, it is
now obvious that the coefficient on education in the misspecified model in
(85) cannot be the causal effect of education on earnings.

6 Conclusions

This chapter has sought to bring together strands from time-series modeling and
cross-section analysis by proposing a coherent approach to modeling panel data
combining features from both disciplines, based on concepts developed in pre-
vious work about time series and cross sections. We take seriously admonitions
by PS (1984, 1988) and Basmann (1988) that models purporting to represent
causal relationships must be unique in the sense that their error terms and coef-
ficients be unique. Our proof that nonunique models yield inconsistent estima-
tors and inferences—that is, statistically uninterpretable results—leads us
directly to the approach advocated in Section 3 of this chapter, which we then
apply in Section 5. Having developed a methodology that unambiguously pro-
duces models for panel data with unique coefficients and error terms, we are
confronted with the task of estimating simultaneously a “bias-free component,”
an “omitted-regressor bias component,” and a “measurement-error bias compo-
nent.” We estimate these components simultaneously, because, in principle,
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simultaneous estimation is superior to any two-step estimation. Accordingly,
the coefficient on each included regressor of a model is regressed on a set of
coefficient drivers with nonzero intercept and nonzero error term, and this inter-
cept times a factor is then identified as the bias-free component of that coeffi-
cient. The sum of the products of coefficient drivers and their respective
coefficients plus the error term, after this whole quantity is multiplied by a fac-
tor, becomes the omitted-regressor bias component of the coefficient in ques-
tion. Estimates of these separate elements are necessary because it is the bias-
free component of the coefficient on a nonconstant regressor that is needed to
measure the causal effect of the regressor on the model’s dependent variable. As
we indicate, the most challenging aspect of the theory and the proposed tech-
nique outlined here is the search for necessary coefficient drivers able to provide
both an accurate estimate of the omitted-regressor bias component and a statis-
tically significant estimate of the bias-free component of the coefficient on each
nonconstant regressor in a model. It is here where intuition, theory, and prior
experience play important roles.

Appendix A Proof of the Uniqueness of the Coefficients and Error
term of a Stochastic Law

Without loss of generality, we present this proof for the simple case of one
included regressor and one omitted regressor. For such a case, Eq. (7) becomes

* % * % * *

Yie = Qo T X130 + W1 @1 (A.1)

where x7;, is the included regressor, wi;, is an omitted regressor, and wi; @}, is

the error term made up of this omitted regressor. Eq. (A.1) is treated as

deterministic.

We add and subtract the product w7;.x7;; on the right-hand side of Eq. (A.1)

without changing it. Doing so gives
* * * * * * * *
Vi = U+ Xy (@ + o) + (W — )0l (A.2)

This equation shows that the coefficients and error term of (A.1) are not
unique. To make them unique, we introduce the version of Eq. (8) that is appro-
priate to Eq. (A.1):

% g% * %
Wi = Aoie ¥ X111 (A.3)

where 1], is the random error term.
Substituting the right-hand side of Eq. (A.3) for wj;, in (A.1) gives

* * * * * * * *
Vie = O + A10p @ + X7y (am ""111”‘015:) (A.4)

In (A.2), (W];, — x1;,) is the omitted regressor. For this omitted regressor
(A.3) becomes

Wi — X150 = Aoi X7 (/me - 1) (A5)
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Substituting the right-hand side of this equation for (w}; — x};) in (A.2)
gives
yn aOlt +x1n (allt +wln) + [’1*{0:1 +xTit (}’Tlit - 1)]wTiz (A.6)

This equation is the same as Eq. (A.4). The equality between Eqgs. (A.4) and
(A.6) proves that in the presence of (A.3), the coefficients and error term of
(A.4) are unique. This proof can be generalized easily to prove that the coeffi-
cients and the error term of (9) are unique in the presence of (8). The above
proof is from Swamy et al. (2014).

Appendix B Conditions for the Consistency of Certain Estimators
of the Coefficients of a Stochastic Law

Conditions under which 7; in Eq. (29) is asymptotically equivalent to 7; in
Eq. (26) are

phm[( X.5, XZ,) (TXZZy,IXw)] -0 (B.1)

and

pth XX, Dx,-u,-> ( i X!, y,lDMu,ﬂ =0 (B.2)

Conditions for 7 in Eq. (50) to be asymptotically equivalent to 7 in

Eq. (38) are
. 1 1
plim [( Txgzy X) ( Txgzy 1x>} =0 (B.3)
and
. 1 o1 1 15 —1
plim ﬁxzzy (Dx.n+Dpyu) | — \/ﬁxzzy (Dxn+Dpyu) ) | =0
(B.4)

All four conditions in (B.1)—(B.4) can be verified using the methods of
Cavanagh and Rothenberg (1995).
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1 Introduction

Imagine we want to estimate a model for the demand for natural gas in both
residential and industrial buildings. We have aggregated data for only 36 states
of the United States, however, so that a cross-sectional analysis with several
explanatory variables and only 36 observations might suffer from a small num-
ber of degrees of freedom. We are lucky, however, that our data set contains the
state-level aggregated demand for 13 years (1950-1962). This is the setting that
Balestra and Nerlove (1966) faced when they kick-started the application of
panel data models in economics with their study. Balestra and Nerlove
(1960) first used ordinary least-squares (OLS) to estimate a dynamic demand
model based on the pooled data set. This estimation returned implausible
results, e.g., for the depreciation rate of gas-related appliances. These results
put them on track: Could it be that unobserved state effects messed up their
results? After they started to control for these effects, their results started to
make sense. Balestra and Nerlove (1966) did not develop any of the modern
panel data estimators that we use today, but they made the scientific community
aware of problems when applying pooled OLS to panel data.

Initially, the uptake of panel data analysis was slow, with only sporadic pub-
lications in the 1960s and 1970s. During the 1990s, however, panel data econo-
metrics experienced a quantum leap, and today, it has become standard material
in econometrics textbooks.

At the same time, panel data sets have become increasingly available for
researchers and analysts. In fact, we are in the middle of a new development
in panel data econometrics, as the number of panel data sets that include both
a large number of individuals (n) and a large number of time periods (7) is
increasing rapidly. Panel data sets that include a large number of time periods
(T) create new challenges because the statistical inference of commonly used
panel data estimators is based on the assumption that the data sets have a large
n and a small T, which used to be the case for most panel data sets. Later in this
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chapter, we will discuss how a large T dimension affects the suitability of
dynamic panel data models.

According to Hsiao (2007), the usage of panel data has the following advan-
tages compared to cross-sectional data (7 = 1) or time series data (n = 1):

e more accurate inference of model parameters because of more degrees of
freedom,
e greater capacity to capture complicated behavioral processes because of:
greater capacity to construct and test complex behavioral assumptions
(e.g., when testing effects of policies),
the possibility to control for the impact of omitted variables,
greater capacity to uncover dynamic relationships,
more accurate predictions for individual outcomes than predictions
based on a time series for a single individual, and
the ability to provide a micro-foundation for aggregate data analysis, and
e surprisingly, often simpler computation and statistical inference.'

In short, in comparison to cross-sectional or time series data, panel data contain
more information, and therefore, allow for more elaborate analyses.

In this chapter, we demonstrate how the statistical software R (R Core Team,
2018) can be used to analyze panel data.

2 Loading Data

R can import data sets in many different formats. Several different
procedures to import (and export) data in different formats are described in
the (official) R manual “R Data Import/Export” (https://cran.r-project.
org/doc/manuals/r-release/R-data.html). For example, the add-on package
foreign can be used to import data files in formats used by other (statistical)
software packages such as SPSS, STATA, or SAS. The add-on package
readstatal3 can be used to read data files from all STATA versions (including
versions 13 and 14), while the “standard” function for reading STATA data
files (read.dta() in package foreign) can read data files only for STATA
versions 5-12.

The R software and many add-on packages include data sets that can be
loaded with the data () command. In this chapter, we will use two data sets that
are included in the p/m package:

e The data set Emp1UK was used by Arellano and Bond (1991) and is an unbal-
anced firm-level panel data set that focuses on employment. It contains
observations of 140 firms from 1976 to 1984 with 1031 observations in total.

e The data set Grunfeld was used initially by Grunfeld (1958) and was used
later in many other publications and textbooks (see, e.g., Kleiber & Zeileis,

1. See Hsiao (2007) for more details on theses points.
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2010). This is a balanced firm-level panel data set that focuses on invest-
ments and contains observations of 10 firms from 1935 to 1954, i.e., it
has 10 x 20 = 200 observations in total.

The following commands load these two data sets:

data( "EmplUK", package="pIm" )
data( "Grunfeld", package="pim" )

More detailed information about these data sets, e.g., a description of the vari-
ables that are included in these data sets, can be obtained from their help pages:

help( "EmplUK", package="plm" )
help( "Grunfeld", package="pIm" )

3 Exploring the Data Sets

Panel data sets by definition contain a cross-sectional dimension (i = 1, ..., n)
and a time dimension (¢t = 1, ..., T). Panel data sets, however, can have more
complicated structures and hierarchies, e.g., observations from firm i in city j
in country k at time ¢. Furthermore, panel data sets can be balanced or unbal-
anced. A balanced panel data set includes observations from all possible com-
binations of the cross-sectional dimension (i = 1, ..., n) and the time dimension
(t =1, ..., T) so that its total number of observations is N = n x T. In contrast,
in an unbalanced panel data set, observations are missing for some combina-
tions of the cross-sectional dimension (i =1, ..., n) and the time dimension
(t =1, ..., T) so that its total number of observations is N < n x T and individ-
ual time series can differ in length. Unbalanced panel data sets can sometimes
cause problems with certain tests, and not all estimators in the p/m package can
handle these panel data sets. Therefore, in order to know what we are dealing
with, it is wise to first explore the data set at hand.

In this section, we explore the employment data set (Emp1UK). The invest-
ment data set (Grunfeld) can be explored in the same way. Exploring the invest-
ment data set is even simpler than exploring the employment data set because
the investment data set is a balanced panel data set, while the employment data
set is an unbalanced panel data set.

What are the names of the variables in the data set?
names( EmpTUK )

Display the first six observations:
head( EmplUK )

What is the number of observations?

nrow( EmplUK )
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What are the identifiers of the firms in the data set?
unique( EmpTUK$firm )

What is the number of firms in the data set?
Tength( unique( EmplUK$firm ) )

Which years are included in the data set?
unique( EmpTUKS$year )

What is the number of years that are included in the data set?
length( unique( EmplUK$year ) )

How many duplicate firm-year combinations are in the data set?
sum( duplicated( EmplUKL, c("firm", "year")1))

There are no duplicate firm-year combinations. Therefore, the number of
unique firm-year combinations is equal to the number of observations (1031):

nrow( unique( EmplUKL , cC "firm", "year" ) 1))
How many observations are included in each of the 9 years?
table( EmplUK$year )
Illustrate this graphically:
pbarplot( table( EmplUK$year ) )
How many firms are how many times (years) included in the data set?
table( table( EmplUK$firm ) )

Only 14 out of the 140 firms are in the data set for all 9 years, while most of the
firms (103) are in the data set for 7 years.

How did the wage rate (unweighted average wage rate of the firms included
in the data set) change over time?

aggregate( wage ~ year, EmplUK, mean )
How did the distribution of the wage rates change over time?

boxplot( wage ~ year, data = EmplUK )
lines( aggregate( wage ~ year, EmplUK, mean )$wage,
col="blue", lwd=2 )

How did the distribution of employment change over time? As the distribution
of the employment is highly right-skewed (i.e., many firms have a relatively
small number of employees and a few firms have a large number of employees),
we display the employment in log-scale:

boxplot( log( emp ) ~ year, data=EmplUK )
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4 OLS Regression
4.1 Pooled OLS Regression

We use the investment data set (Grunfeld) to estimate a (static) investment
equation:

inviy = Bo + pvaluei; + p,capital;, + uj, €))]

where inv;, indicates the firm’s gross investment, value;, indicates the firm’s
value, capital;, indicates the firm’s capital stock, u;, is an unobserved error term,
subscript i = 1, ..., n indicates the firm, subscript t =1, ..., T indicates the
year, and f, 1, and 3, are coefficients to be estimated. In case of the investment
data set (Grunfeld), the number of firms is » = 10 and the number of time
periods is T = 20. The following command estimates this model by OLS
and, thus, ignores the panel structure of the data set, any dynamic (nonstatic)
processes, and any potential endogeneities of the explanatory variables:

invOLS <- Tm( inv ~ value + capital, data=Grunfeld )

The problem with this approach—as demonstrated in Balestra and Nerlove
(1966)—is that a panel data set usually does not fulfill the assumptions of a sim-
ple linear regression model such as OLS. A standard linear regression model
assumes that the observations (y;;, X;,) are i.i.d. random draws from a target pop-
ulation with fixed distributional parameters. The model further assumes that the
outcome of the dependent variable y;, is conditioned on a (column) vector of
covariates x;; (potentially including a constant):

E(yit| Xit) :X;[:B VZ’Z (2)
Var(yu| xi) = 6> Vist, 3)

where £ is a (column) vector of unknown coefficients with the same length as x;,
and o° indicates the variance of the conditional distribution of Vir. In case of
panel data, we often do not have a common conditional probability density
function of y;, conditional on x;, for all cross-sectional units i at all times ¢,
i.e., the conditional probability density function of y,; conditional on x;, differs
between cross-sectional units i and/or between time periods 7. Often there are
time-invariant individual effects and/or individual-invariant time effects
(observed or unobserved) that affect individual outcomes. The OLS estimator
usually will produce smaller standard errors and, therefore, have higher signif-
icance levels than estimates of panel data estimators, such as the fixed- or
random-effects estimators, that properly take said effects into account. Ignoring
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invariant effects, however, leads to inefficient estimators (in every case) and
biased ones if the individual effects are correlated with some covariates. There-
fore, OLS in a panel data context is likely to produce biased and, thus, poten-
tially misleading estimates.

4.2 Least-Squares Dummy Variables Estimation

If the conditional density of y given x varies between individuals (i) or between
time periods (#), fundamental theorems for statistical inference, such as the law
of large numbers and the central limit theorem, are difficult to implement. One
way to restore homogeneity across individuals (i) and/or over time periods (?) is
to add further explanatory variables, say z;, so that the conditional expectation
becomes:

E(}’iz‘ Xits Zif)~ 4)

In order to take into account (at least to some extent) the panel structure of
the data set in our example of the investment model, we can add firm-specific
(a;) and/or time-specific (y;) effects:

n T
inviy =Py + B value; + p,capital;, + Z ail(i=j)+ Z yl(t=j)+up, (5)
=2 =2
where /(.) is an indicator function that is one if the condition is fulfilled and zero
otherwise, a;;j=2,...,nand y;; j =2, ..., T are additional coefficients to be
estimated, and all other symbols are defined as before.

This model still can be estimated by OLS. If one specifies categorical vari-
ables (called factor variables in R) as explanatory variables, R automatically
generates dummy variables for all but the first levels of these categorical vari-
ables. The following commands estimate model (5) with: firm-specific effects
only, time-specific effects only, and both firm-specific and time-specific effects:

invLSDVi <- Tm( inv ~ value + capital + factor( firm ),
data=Grunfeld )

invLSDVt <- Tm( inv ~ value + capital + factor( year ),
data=Grunfeld )

invLSDV2<- Tm( inv ~ value + capital + factor( firm )+
factor( year ), data=Grunfeld )

Using the investment equation with only one explanatory variable (capital) as
(simplified) example, the following code creates a figure that demonstrates the
effect of taking into account individual time-invariant effects in comparison to a
simple pooled OLS regression (thick black line):

invLSDVil<- Tm( inv ~ capital + factor( firm ),
data=Grunfeld )
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invHat <- fitted( invLSDVil )

library( "car" )

scatterplot( invHat ~ capital | firm, data=Grunfeld,
legend=1ist( coords="bottomright" ) )

abline( Tm( inv ~ capital, data=Grunfeld ), Twd=3,
col="black" )

lTegend( "topleft", "Pooled OLS regression line",
col="black", lwd=3 )

The resulting Fig. 1 indicates that the intercepts (and, but to a lesser extent, also
the slope parameter) notably differ between the 10 firms and the pooled OLS
estimates, which demonstrates the bias that results from the pooled estimation.
The reasoning is as follows (Balestra & Nerlove, 1966): Let’s assume a panel
data set with time-invariant individual effects. We then can write the error
term as:

Ujp = a; + €j;. (6)

We assume that E(a,e;,) = 0 and that E(«;) = E(¢;;) = 0. Furthermore, we
assume that:
ek ifi=j
E(“"“f'){o if i) ™
and that:

2

y_ o ifi=j, t=s
E(circs) {O otherwise ®
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FIG. 1 Pooled regression vs. regression with firm-fixed effects.
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For one individual in the panel data set, the covariance matrix of the error
term u; = (u;y, ..., U;7) is:

ol+o2 o o2
2 2, 2 2
+ .
E(uu}) = % 9T a Vi 9)
o’ o o’ +o
Please note that—by assumption—FE(u,u’) = E(usu’) = ... = E(u,u,).
If we assume no cross-sectional dependence or any other disturbances, the
covariance matrix of the entire error term u = (i), u5, ... ,u},) is:
E (u 1 ”/1) 0 0
0 E(uoulh) - 0
E(uu')= . ( 2 2) ) . (10)
: : . ‘o
0 0 ) (unun)

We can clearly see that the off-diagonal elements of the individual blocks,
E(u;u}), are nonzero unless the variance of the time-invariant individual effects
also is zero, which would remove all individual effects (i.e.,; =0Vi=1, ...,
n) and, therefore, result in the pooled model. If there are individual effects and
we conduct a pooled OLS estimation without taking into account the previously
discussed error structure, the OLS estimator still will be consistent as long as the
composite error u;, and, in particular, its component ¢;, is independent from the
regressors. The OLS estimator, however, will be inefficient, and the OLS esti-
mate of the parameters’ covariance matrix and, therefore, the standard errors,
will be biased. If, on the contrary, any part of the composite error, and in par-
ticular the individual effect, is correlated with the regressors then the OLS
estimates for the parameters will be biased and inconsistent as well.

Model specifications as in Eq. (5) that take into account individual or time
effects by including dummy variables as additional explanatory variables are
safe in this respect, their consistency relying only on the usual exogeneity con-
dition (E(e|X) = E(e)). They are called “least-squares dummy variables”
(LSDV) estimators. However, if a panel data set contains observations from
many different individuals or many different time periods, the estimation
includes a large number of coefficients of the individual and/or time dummy
variables (n+ 7T — 2 in case of both individual-specific and time-specific
effects), which could result in numerical problems and/or could require com-
puters with large amounts of memory (RAM). A further problem is that the
inclusion of such dummy variables can confuse the relationship between y;,
and x;,, which is often the researcher’s main interest, because of a considerable
loss in degrees of freedom and/or multicollinearity. These are some of the rea-
sons for using specific panel-data specifications for econometric estimations
with panel data, for example, those that we will later discuss in this chapter.
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5 Organization, Management, and Preparation of Panel Data
5.1 Re-Ordering of Observations

In the investment data set (Grunfeld), the observations are ordered primarily
according to the firm and secondarily according to the year:

Grunfeldl[ c( 1:3, 198:200 ), 1:2 ]
JHF firm year

1k 1 1 1935
iHE 2 1 1936
1HE 3 11937

fH# 198 10 1952
fHF199 10 1953
fH# 200 10 1954

The following command reorders the observations so that they are ordered
primarily according to the year and secondarily according to the firm:

GrunfeldSortYear <- Grunfeld[

order(Grunfeld$year, Grunfeld$firm ), ]
GrunfeldSortYear[ c( 1:3, 198:200 ), 1:2 1]
iHE firm year

1 1 1935
fHE 21 2 1935
fHF 41 3 1935
jHE 160 8 1954
jHE 180 9 1954
#HF 200 10 1954

5.2 Conversion between “Long Format” and “Wide Format”

Both the employment data set (Emp1UK) and the investment data set (Grunfeld)
are in “long format,” that is, each row of the data set corresponds to a specific
individual-time (in our examples: firm-year) combination. In this section, we
use the investment data set (Grunfeld) as an example. The following command
converts this data set to “wide format” so that each row of the data set corre-
sponds to one specific firm®:

GrunfeldFirms <- reshape(Grunfeld, idvar="firm",
timevar="year", direction="wide")

dim( GrunfeldFirms)

4 [11 10 61

2. Package tidyr provides the functions gather () and spread() that can be used instead of
reshape() to convert data sets between “long format” and “wide format.”
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When reshape() converts a data set from “long format” to “wide format”, it
adds an attribute "reshapeWide" that provides information about the data struc-
ture. When converting a data set that has an attribute "reshapelide" from “wide
format” back to “long format,” the user does not need to provide additional
information on the data structure because this information is available in the
attribute "reshapeWide":

Grunfeld?2 <- reshape(GrunfeldFirms, direction="1ong")

The following command confirms that the resulting data set is identical to the
original data set (except for some of the variable names and the ordering of the
observations):

all.equal(Grunfeld2, GrunfeldSortYear,
check.attributes = FALSE)
fHF [11 TRUE

The following code removes the attribute "reshapeWide" so that we can dem-
onstrate how one can convert a data set from “wide format” to “long format”
that has not been converted from a data set in “long format” by using
reshape() and, thus, does not have an attribute "reshapeWide":

attr(GrunfeldFirms, "reshapeWide") <- NULL
Grunfeld2b <- reshape( GrunfeldFirms, idvar="firm",
timevar="year",
varying=Tlapply( c( "inv.", "value.", "capital." ),
function(x) paste0( x, 1935:1954 ) ),
times=1935:1954, direction="Tong" )
all.equal( Grunfeld?2, Grunfeld2b, check.attributes = FALSE )
fHF [11 TRUE

Sometimes, we want to obtain a data set in “wide format,” where each row of the
data set corresponds to one specific time period (e.g., year) rather than to one
specific individual (e.g., firm). The following command converts the invest-
ment data set (Grunfeld) to “wide format” so that each row corresponds to
one specific year:

GrunfeldYears <- reshape( Grunfeld, idvar="year",
timevar="firm", direction="wide" )

dim( GrunfeldYears )

fHE [11 20 31

As before, reshape () added an attribute "reshapeWide" that provides informa-
tion about the data structure.

Because the data set GrunfeldYears has an attribute "reshapeWide",
reshape() does not require additional information about the data structure
for converting the data set from “wide format” back to “long format”:

Grunfeld3 <- reshape( GrunfeldYears, direction="long" )
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The following command confirms that the resulting data set is identical to the
original data set (except for some of the variable names and the ordering of the
variables):

all.equal( Grunfeld3[ , cC 2, 1, 3:5 ) 1, Grunfeld,
check.attributes=FALSE )
#HF [11 TRUE

As before, we remove the attribute "reshapeWide" so that we can demonstrate
how one can convert a data set from “wide format” to “long format” that has not
been converted from “long format” by using reshape () and, thus, does not have
an attribute "reshapelide":

attr( GrunfeldYears, "reshapeWide" ) <- NULL
Grunfeld3b <- reshape( GrunfeldYears, idvar=year,
timevar="firm",
varying=Tlapply( c( "inv.", "value.", "capital." ),
function(x) pasteO( x, 1:10 ) ), direction="long" )
all.equal( Grunfeld3, Grunfeld3b, check.attributes = FALSE )
fHE [1] TRUE

5.3 Creating a Balanced Panel Data Set from an Unbalanced
Panel Data Set

Because the investment data set (Grunfeld) already is balanced, we use the
employment data set (Emp1UK) in this section as an example.

The following command identifies the firms that are in the data set in all of
the 9 years that are covered in this data set:

firmsAllYears <- names( table(EmplUK$firm) ) [
table(EmplUK$firm) == 9 ]

Now, we can extract the observations of the firms that are in all 9 years of the
data set:

EmpTUKBal <- subset( EmplUK, firm %in% firmsAllYears )
dim( EmplUKBal )

fHE [1] 126 7

Tength( unique( EmpTUKBal$firm ) )

#HE (1] 14

Tength( unique( EmplUKBal$year ) )

#HE L1119

The balanced data set has observations from 14 firms and 9 years and, thus, in
total 14 x 9 = 126 observations.

Alternatively, we can create a balanced panel data set that includes all time
periods, for which observations from all individuals are available. The
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following command identifies the years for which data from all 140 firms are
available:

yearsATT1Firms <- names( table(EmpTUK$year) ) [
table(EmplUK$year) == 140 ]

Now, we can extract the observations of the years for which data from all 140
firms are available:

EmplUKBalYears <- subset( EmplUK, year %in% yearsAllFirms )
dim( EmplUKBalYears )

fHF [11 700 7

length( unique( EmplUKBalYears$year ) )

HE [1] 5

length( unique( EmplUKBalYears$firm ) )

HE [1] 140

This balanced data set has observations from 140 firms and 5 years and, thus, in
total 140 x 5 = 700 observations.

5.4 Aggregating Panel Data Sets

The following command creates a data set, in which each observation corre-
sponds to one firm and the values of the variables indicate the sums over all
of the firm’s observations in all available time periods:

GrunfeldFirmSum <- aggregate( Grunfeld,
by=1ist( Grunfeld$firm ), FUN=sum )

The following command creates a data set, where each observation corresponds
to one firm and the values of the variables indicate the mean values over all of
the firm’s observations in all available time periods:

GrunfeldFirmMean <- aggregate( Grunfeld,
by=1ist( Grunfeld$firm ), FUN=mean )

5.5 Preparing the Data Set for Estimations with the p/m Package

In this chapter, we will use the p/m package (Croissant & Millo, 2008) to esti-
mate various specifications and to conduct various specification tests of panel
data models. The following command loads the p/m package:

lTibrary( "pIm" )

The estimation of panel data models with the p/m package requires that the data
sets are in “long format.” If a data set is in “wide format,” it can be converted to
“long format” using the reshape() command as briefly illustrated in
Section 5.2. Because the two data sets that we use in our analysis, i.e., the
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investment data set (Grunfeld) and the employment data set (Emp1UK), are
already in “long format,” we do not need to convert them.

The pdata.frame() function is used in the plm package to add information
about the panel data structure to the data set, implicitly or explicitly. The fol-
lowing command explicitly adds this information to the investment data set
(Grunfeld):

GrunfeldPdata <- pdata.frame( Grunfeld,
index=c( "firm", "year" ) )

The function pdata.frame() modifies the data set in the following ways:
e It sets the class to "pdata.frame” (inheriting from class "data.frame"):

class( GrunfeldPdata )
fHE [1] "pdata.frame" "data.frame"

e Itadds an attribute "index" to the data set and to each variable in the data
set, which is a data.frame with two variables, namely the individual
identifier and the time identifier:

attr(GrunfeldPdata, "index")[c(1:3, 198:200),]

1HE firm year
HE 1 1 1935
HE 2 1 1936
HE 3 1 1937

fHF 198 10 1952

HE 199 10 1953

HE 200 10 1954

all.equal( attr( GrunfeldPdata, "index" ),
attr( GrunfeldPdata$inv, "index" ) )

fHF [11 TRUE

e It sets the class of each individual variable to "pseries", inheriting from
the original class of the variable, e.g.:

class( GrunfeldPdata$inv )
fHF [11 "pseries" "numeric"

e It modifies the row names of the data set so that they indicate the indi-
vidual identifier and the time identifier:

rownames( GrunfeldPdata ) [ c( 1:3, 198:200 ) ]
jHF [1] "1-1935" "1-1936" "1-1937" "10-1952" "10-1953" "10-1954"

e It converts the variables that identify the individuals and the time periods
to categorical (factor) variables:

class( GrunfeldPdata$firm )
fHF [11 "pseries" "factor"
class( GrunfeldPdata$year )
fHF [11 "pseries" "factor"
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The explicit conversion of the data set with pdata.frame() is not necessary if
the first variable of the data set is the individual identifier and the second var-
iable is the time identifier. In this case, the data set can be used as is; the con-
version will be done internally by the software, transparently to the user.

Because in both of the data sets that we use in our chapter, i.e., the invest-
ment data set (Grunfeld) and the employment data set (Emp1UK), the first var-
iable is the individual identifier and the second variable is the time identifier, we
do not need to use pdata.frame() to prepare our data sets. For example, the
function pdim() can identify the panel structure of these two data sets even with-
out having applied pdata.frame() to these data sets:

pdim( Grunfeld )

#HF Balanced Panel: n =10, T = 20, N = 200
pdim( EmplUK )

JHF Unbalanced Panel: n=140, T=7-9, N=1031

5.6 Lagged Variables and First Differences

If functions Tag() and diff() that create lagged variables and first differences
of variables, respectively, are applied to variables inside regular data. frames,
they do not take into account the panel structure and assume that the values from
the previous rows are the values from the previous time periods. If the data set
has been transformed into a pdata.frame, then the variables inside will be of
class pseries; therefore, the functions 1ag () and di ff () will correctly take into
account the panel data structure:

cbind(

firm = Grunfeld$firm,

year = Grunfeld$year,

inv = Grunfeld$inv,

invilag = c( NA, Tag( Grunfeld$inv )[ -200 1 ),

invDiff = c( NA, diff( Grunfeld$inv )[ -200 1 ),

invLagPanel = Tag( GrunfeldPdata$inv ),

invDiffPanel = diff( GrunfeldPdata$inv ) )[

c( 1:3, 19:23 ), 1

JHF firmyear inv invlag invDiff invlLagPanel
JHF 1-1935 11935 317.6 NA NA NA
JHF 1-1936 11936 391.8 317.6 74.2 317.6
JHF 1-1937 11937 410.6 391.8 18.8 391.8
jHF 1-1953 11953 1304.4 891.2 413.2 891.2
JHF 1-1954 11954 1486.7 1304.4 182.3 1304 .4
JHF 2-1935 21935 209.9 1486.7 -1276.8 NA
JHE 2-1936 21936 355.3 209.9 145.4 209.9
JHF 2-1937 21937 469.9 355.3 114.6 355.3
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il invDiffPanel
jHF 1-1935 NA
JHF 1-1936 74.2
fHE 1-1937 18.8
JHF 1-1953 413.2
jHE 1-1954 182.3
jHE 2-1935 NA
JHF 2-1936 145.4
JHF 2-1937 114.6

If functions 1ag() and di ff () are used directly to specify the model for panel
data estimations (in argument formula), these functions take into account the
panel data structure even if one has not applied pdata.frame() to the data set.

6 Estimation of OLS-Based Linear Panel Data Models

To capture the heterogeneity in the data that is not captured by x;,, we could assume
that the parameter vector 8;, = (f;,, 03) varies with time and over all individuals:

E(yiu| xit) = Xitfp;, (11)

Such a model is not estimable. Therefore, the idea of panel data estimators is to
impose a structure on 8, that levels a compromise between estimability and het-
erogeneity. This is mainly done by decomposing 6;, into 6;, = (8, X, 6°) where /3
and ¢” are fixed structural parameters, which are the same over all i and all ¢, and 4;
are incidental parameters, which vary across i and/or ¢, and, thus, can capture time-
invariant individual effects (a;), individual-invariant time effects (y,), or both.

The assumption that all slope parameters § are structural parameters, how-
ever, should not be taken lightly. Especially for panel data sets with large T, there
is clearly a trade-off between the advantages of a panel data model, as discussed
in the introduction, and loss of fit by assuming fixed slope parameters across the
individuals. In any case, the poolability of the individual models should be tested.

In this section, we use the investment data set (Grunfeld) and various OLS-
based panel data specifications to estimate the (static) investment equation (Eq. 1).

6.1 Variable Coefficients Model

The variable coefficients model for panel data allows the coefficients to vary
either between individuals or between time periods. Therefore, the (static)
investment equation (Eq. 1) would become either:

invy = po; + pvalue;, + p,;capital;, + €, (12)
or:

invye = Bo, + pr,value; + p,,capital;, + €, (13)
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respectively, where B;;j =0, ...,2;i=1,...,nand B;;j =0, ..., 2;t=1, ...,
T are the coefficients to be estimated and all other symbols are defined as before.
These two models can be estimated by the following commands:

invVCMi <- pvem( inv ~ value + capital, data = Grunfeld )

invVCMt <- pvem( inv ~ value + capital, effect = "time",
data = Grunfeld )

The variable coefficients model with individual-specific coefficients (Eq. 12)
might be inefficient or even infeasible if the number of time periods (7' is small
compared to the number of explanatory variables (k, including a constant)
because it requires the estimation of n x k coefficients with n x T observations
in balanced panel data sets and fewer observations in unbalanced panel data sets.
Likewise, the variable coefficients model with time-specific coefficients (Eq. 13)
might be inefficient or even infeasible if the number of individuals (n) is small
compared to the number of explanatory variables (k, including a constant)
because it requires the estimation of T x k coefficients with T x n observations
in balanced panel data sets and fewer observations in unbalanced panel data sets.

6.2 Fixed-Effects Estimator Based on “Within” Transformation

The most commonly used estimators for linear panel data models are fixed-
effects estimators based on the “within” transformation. We demonstrate the
“within” transformation with a model that includes individual effects (a;)
but—for simplicity—no time effects (y,):

Vit =X+ i+ ¢y (14)
We define the following variables:
T
=T v (15)
=1
T
iiETilint (16)
=1
T
ZiET_l ZE” (17)
t=1
Yie =Yie = Vi (18)
Xit =X — X; (19)
E,‘;EE” — E,‘ (20)

Now we can conduct the “within” transformation:

Yi=Yit =i ey
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T
Vi=xBrai+e—T"Y yi (22)
=1
T
V=X pt+a+e—T" Z (X, +ai +é€i) (23)
=1

T T T
)Z:x;tﬁ+(x,-+e,«,—T’IZXﬁtﬁ—Tflz(xi—TﬂZ&z (24)
=1 =1 =1

T ! T
S=X,p+ai+e;— (wa,-,) p—aT™' > 1-§ (25)
=1 =1

Vi=Xif+ai+e; —Xif —a; — € (26)
Y= (X — X)) f+e; —€ 27
Y =Xif+E (28)

The fixed-effects “within” estimator can be obtained by applying the OLS
method to the model with “within” transformed variables (Eq. 28). If the model
contains time effects (instead of or in addition to individual effects), the time
effects can be removed in a similar way as the individual effects were removed
earlier.

In case of the investment equation (Eq. 1), the fixed-effects model is spec-
ified as:

inviyy = fo + pyvalue;, + Bycapital;, + uj (29)

Uy =aj+y,+cp, (30

where the overall error term u;, can be divided into three components, of which
a; i =1, ..., n picks up firm-specific effects, y; t =1, ..., T picks up time-
specific effects, and ¢;; picks up the remaining (idiosyncratic) component of
the overall error term u;. The model specified in Eqs. (29) and (30) is the
so-called two-ways fixed-effects model because it takes into account both
firm-specific effects and time-specific effects. When setting all time-specific
effects to zero (y, =0V t=1, ..., T), the model specified in Egs. (29) and
(30) becomes a one-way individual-fixed-effects model. Similarly, when set-
ting all individual-specific effects to zero (o; =0V i =1, ..., n), the model
specified in Egs. (29) and (30) becomes a one-way time fixed-effects model.

The fixed-effects model allows individual- and/or time-specific effects to
be correlated with the covariates x;,, which is an advantage over the random-
effects estimator, as such correlations are more the rule than the exception.
The fixed-effects estimator, however, loses degrees of freedom as n or T
increase and the fixed-effects estimator rules out the inclusion of time invari-
ant variables, because their effects are absorbed by the fixed-effects
coefficient.
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The “within” transformation subtracts the group-specific mean values from
the dependent variable and the explanatory variables, which removes the firm-
specific effects (¢; =0V i =1, ..., n) or the time-specific effects (y, =0 V
t=1,...,T) so that the model can be estimated by applying the OLS method
on the “within”-transformed variables.

The following commands use the “within” estimator to estimate the fixed-
effects model specified in Egs. (29) and (30) with: firm-specific effects only,
time-specific effects only, and both firm-specific and time-specific effects:

invFEi <- pIm( inv ~ value + capital, data=Grunfeld )

invFEt <- pIm( inv ~ value + capital, effect = "time",
data = Grunfeld )

invFE2 <- pIm( inv ~ value + capital, effect="twoways",
data = Grunfeld )

The slope coefficients estimated by the “within” estimators are equal to the
slope coefficients estimated by the corresponding LSDV estimators’:

all.equal( coef( invFEi ), coef( invLSDVi ) [
c( "value", "capital" ) 1)

#HF [11 TRUE

all.equal( coef( invFEt ), coef( invLSDVt ) [
c( "value", "capital"™ ) 1)

fHE [11 TRUE

all.equal( coef( invFE2 ), coef( invLSDV2 ) [
c( "value", "capital" ) 1)

#HE [11 TRUE

As briefly discussed in Section 4.2, the LSDV has several disadvantages compared
to the fixed-effects estimator based on the “within” transformation, e.g., larger
memory requirements of the computer and lower numerical accuracy. Therefore,
we recommend applying “within” estimators instead of LSDV estimators.

6.3 Pooled Estimation

The pooled model (Eq. 1) that ignores the panel data structure not only can be
estimated by the 1m() function but also by the pIm() function with argument
model set to "pooling":

invPool <- pIm( inv ~ value + capital, model = "pooling",
data = Grunfeld )

3. It can be proven mathematically that the least-squares dummy variables (LSDV) estimator and
the fixed-effects “within” estimator are identical. Because this proof is lengthy and not essential for
understanding panel data econometrics, we do not show it here.
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Bi=Bi=1,...,n Br=pt=1,....,T
Pool
o =01=1,...,n y=0t=1,...,T

FIG. 2 Relationships between the previously estimated panel data models.

The estimated coefficients and standard errors are identical to those obtained in
Section 4.1.

all.equal( coef( summary( invPool ) ),
coef( summary( invOLS ) ), check.attributes = FALSE )
fHE [1] TRUE

6.4 Testing Poolability

The relationships between the previously estimated panel data models are illus-
trated in Fig. 2. If two models are connected by an arrow, the lower model is
nested in the upper model, whereas the implied parameter restrictions are indi-
cated beside the arrow. In the following, the parameter restrictions of all nested
relationships between the previously estimated models are tested.

The following two commands conduct the same Wald test (F-test) for testing
the null hypothesis that the slope coefficients are equal across all individuals
Hy: pi=p;i=1,..., n):

pooltest( invFEi, invVCMi )

iHE

fHE F statistic

1t

jHE data: inv ~ value + capital

fHf F = 5.7805, dfl = 18, df2 = 170, p-value = 1.219e-10
jHE alternative hypothesis: unstability

pooltest( inv ~ value + capital, data = Grunfeld )

1t

HE F statistic

i

fHf data: inv ~ value + capital

HE F = 5.7805, dfl = 18, df2 = 170, p-value = 1.219e-10
fHE alternative hypothesis: unstability

The test results indicate that the slope coefficients differ significantly between
individuals.
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The following two commands conduct the same Wald test (F-test) for testing
the null hypothesis that all coefficients (slope coefficients and intercepts/indi-
vidual effects) are equal across all individuals (Hy: f;i=pf; i=1,...,n and
a;=0i=1,...,n):

pooltest( invPool, invVCMi )

1HE

JHF F statistic

1HE

JHF data: inv ~ value + capital

HEF = 27.749, dfl = 27, df2 = 170, p-value < 2.2e-16

JHF alternative hypothesis: unstability

pooltest( inv ~ value + capital, data=Grunfeld,
model="pooling" )

1HE

HE F statistic

1HE

fHF data: inv ~ value + capital

HEF = 27.749, dfl = 27, df2 = 170, p-value < 2.2e-16

JHF alternative hypothesis: unstability

The test results indicate that the slope coefficients and/or the intercepts differ
significantly between individuals.

The following two commands conduct the same Wald test (F-test) for testing
the null hypothesis that the slope coefficients are equal across all time periods

Hy: pi=pt=1,...,7T):

pooltest( invFEt, invVCMt )

1HE

fHE F statistic

1HE

JHF data: inv ~ value + capital

JHF F = 1.5495, dfl = 38, df2 = 140, p-value = 0.03553

JHF alternative hypothesis: unstability

pooltest( inv ~ value + capital, data=Grunfeld,
effect="time" )

1HE

HE F statistic

1HE

jHF data: inv ~ value + capital

JHF F = 1.5495, dfl = 38, df2 = 140, p-value = 0.03553

JHF alternative hypothesis: unstability

The test results indicate that the slope coefficients differ significantly between
time periods at 5% significance level.

The following two commands conduct the same Wald test (F-test) for testing the
null hypothesis that all coefficients (slope coefficients and intercepts/time effects)
are equal across all time periods (Ho: f, = f;t=1,...,Tandy,=0;¢t=1, ..., T):
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pooltest( invPool, invVCMt )

iHE

fHE F statistic

iHE

JHF data: inv ~ value + capital

HE F = 1.1204, dfl = 57, df2 = 140, p-value = 0.2928
jHE alternative hypothesis: unstability

pooltest( inv ~ value + capital, data=Grunfeld,

effect = "time", model = "pooling" )
1H
fHF F statistic
1

fHE data: inv ~ value + capital
fH F = 1.1204, dfl = 57, df2 = 140, p-value = 0.2928
JHF alternative hypothesis: unstability

The test results do not reject the null hypothesis that all coefficients (slope coef-
ficients and intercepts/time effects) are equal across all time periods.

The following commands test the (joint) null hypothesis that there are no
individual effects and no time effects (Hy: a;=0; i=1,...,n and y,=0;

t=1,...,7):

pooltest( invPool, invFE2 )

ild

fHF F statistic

iHE

JHF data: inv ~ value + capital

HE F = 17.403, dfl = 28, df2 = 169, p-value < 2.2e-16

#HE alternative hypothesis: unstability

pFtest( invFE2, invPool )

iHE

HE F test for twoways effects

iHE

jHE data: inv ~ value + capital

HF F = 17.403, dfl = 28, df2 = 169, p-value < 2.2e-16

JH alternative hypothesis: significant effects

pFtest( inv ~ value + capital, effect="twoways",
data=Grunfeld )

il

jHE F test for twoways effects

i3

fHF data: inv ~ value + capital

HFF = 17.403, dfl = 28, df2 = 169, p-value < 2.2e-16

jHE alternative hypothesis: significant effects
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These three commands conduct the same F-test that tests the pooled model
against the two-ways fixed-effects model. Therefore, these three commands
return exactly the same results.

If the random-effects hypothesis holds, i.e., if correlation between the indi-
vidual effects (if any) and the regressors is excluded, but one still wants to test
whether individual effects are present at all (typically, for deciding whether to
use OLS or a random-effects estimator), one can use a Lagrange Multiplier test:

pImtest( invPool, effect = "twoways" )

1HE

jH# Lagrange Multiplier Test - two-ways effects (Honda) for
J# balanced panels

1HE

#HF data: inv ~ value + capital

JHF normal = 18.181, p-value < 2.2e-16

JHF alternative hypothesis: significant effects

This command tests the same null hypothesis as the previous three commands,
but it conducts the Lagrange multiplier test instead of the F-test. The LM test is
appropriate only under the random-effects hypothesis and will be inconsistent if
the individual effects are of the correlated (fixed) type. All test results indicate
that there are significant individual effects and/or time effects.

The following commands test the null hypothesis that there are no individual
effects (Hy: a; =0;i=1, ..., n):

Tibrary( "Imtest" )
pooltest( invFEt, invFE2 )

1HE

fHE F statistic

1HE

jHF data: inv ~ value + capital

HE F = 52.362, dfl =9, df2 = 169, p-value < 2.2e-16
jHF alternative hypothesis: unstability

waldtest( pIm( inv ~ value + capital + factor(firm),
effect = "time", data = Grunfeld ), 3, test = "F" )

fHE Wald test

1HE

JHF Model 1: inv ~ value + capital + factor(firm)
fHF Model 2: inv ~ value + capital

fHF Res.Df Df F Pr(>F)
HE 1 169

HE 2 178 -9 52.362 <2.2e-16 ***
HE - -

fHE Signif. codes:
0 ’x*%x'0.001 ***'0.01 ’*'0.05°.'0.1" "1
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pFtest( invFEi, invPool )

il

fHE F test for individual effects

iHE

jHE data: inv ~ value + capital

HFF = 49.177, dfl = 9, df2 = 188, p-value < 2.2e-16
fHE alternative hypothesis: significant effects

pFtest( inv ~ value + capital, effect="individual",
data=Grunfeld )

ild

fHF F test for individual effects

HE

JHF data: inv ~ value + capital

HEF =49.177, dfl =9, df2 = 188, p-value < 2.2e-16
jHE alternative hypothesis: significant effects

The first command loads package /mtest that provides the function waldtest().
The following two commands conduct two identical F-tests for individual
effects by testing the time-fixed-effects model against the two-ways fixed-
effects model (i.e., in the presence of time-fixed effects). The fourth and fifths
commands also conduct identical F-tests for individual effects, but these com-
mands test the pooled model against the individual-fixed-effects model (i.e., in
the absence of time-fixed effects). All test results indicate that there are signif-
icant individual effects.

The following commands test the null hypothesis that there are no time
effects (Hyp: y,=0;¢t=1, ..., T):

pooltest( invFEi, invFEZ )

iHE

fHE F statistic

iHE

jHE data: inv ~ value + capital

HE F = 1.4032, dfl = 19, df2 = 169, p-value = 0.1309
JHF alternative hypothesis: unstability

waldtest( pIm( inv ~ value + capital + factor(year),
data=Grunfeld ), 3, test="F" )

fHE Wald test

1t

JHF Model 1: inv ~ value + capital + factor(year)
JHF Model 2: inv ~ value + capital

fHF Res.Df Df F Pr(>F)

fHE 1 169

HE 2 188 -19 1.4032 0.1309
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pFtest( invFEt, invPool )

1H#

fHE F test for time effects

1HH

jHF data: inv ~ value + capital

JH F = 0.23451, dfl = 19, df2 = 178, p-value = 0.9997
#HE alternative hypothesis: significant effects

pFtest( inv ~ value + capital, effect="time",
data=Grunfeld )

1HE

fHE F test for time effects

1HH

jHF data: inv ~ value + capital

JHF F = 0.23451, dfl = 19, df2 = 178, p-value = 0.9997
JHF alternative hypothesis: significant effects

plmtest( invPool, effect="time" )

1HE

JHF Lagrange Multiplier Test - time effects (Honda) for
balanced panels

1HE

JHF data: inv ~ value + capital

#HE normal=-2.5404, p-value=0.9945

JHF alternative hypothesis: significant effects

The first two commands conduct identical F-tests for time effects by testing the
individual-fixed-effects model against the two-ways fixed-effects model (i.e.,
in the presence of individual-fixed effects). The third and fourth commands also
conduct identical F-tests for time effects, but these commands test the pooled
model against the time-fixed-effects model (i.e., in the absence of individual-
fixed effects). The fifth command tests the same null hypothesis as the third
and fourth commands, but it conducts the Lagrange multiplier test instead of
the F-test, testing the absence of individual effects against the alternative of
individual effects of the random type. Neither the F-tests tests nor the Lagrange
multiplier test rejects the null hypothesis that there are no time effects. There-
fore, we can conclude that the time effects are statistically insignificant.

6.5 Obtaining Estimates of the Fixed Effects

In a “within” model with individual fixed effects (a;), the estimates of the fixed
effects can be obtained by taking the average values of both sides of Eq. (14)
over all time periods ¢ for each individual i:

T T
TS =T (X pta+e)Vi 31
i=1 i=1
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T T T

TS T Y Y @)
i1 i=1 i=1

Y =Xif+a;+6Vi (33)

@ =y, —Xp—eVi (34)

Replacing f by its estimator ,B and replacing €i by its expectation (0), we can
obtain estimates of the individual effects:

&=, ~%if (35)
These estimates of the fixed effects can be obtained by function fixef()™:
fixef( invFEi )

These estimates are individual-specific intercepts that are identical to the inter-
cept of the corresponding least-squares dummy variables (LSDV) model plus
the coefficients of the firm-level dummy variables:

all.equal( c( fixef( invFEi ) ),
coef( invLSDVi )[ "(Intercept)" I+
c(0, coef( invLSDVi )[
grep( "firm", names( coef( invLSDVi ) ) ) 1),
check.attributes=FALSE )
#HF [11 TRUE

Argument type of fixef() can be used to specify a different normalization of
the estimates of the fixed effects. If this argument is set to "dfirst", differences
to the fixed effect of the first individual are returned, which are identical to the
coefficients of the firm-level dummy variables in the corresponding least-
squares dummy variables (LSDV) model:

fixef( invFEi, type="dfirst" )

all.equal( c( fixef( invFEi, type="dfirst" ) ),
coef( invLSDVi )[
grep( "firm", names( coef( invLSDVi ) ) ) 1,
check.attributes = FALSE )
fHF [11 TRUE

If argument type is set to "dmean", fixef () normalizes the fixed effects so that
their mean value is zero:

fixef( invFEi, type="dmean" )

4. Fixed effects have been used frequently in Fixed Effects Vector Decomposition (FEVD) estima-
tions, i.e., in two-stage analyses, where time-invariant explanatory variables are regressed on the
fixed effects in a second stage (Plimper & Troeger, 2011). However, Breusch, Ward, Nguyen,
and Kompas (2011a, 2011b) and Greene (2011) have shown that the FEVD is an instrumental var-
iable (IV) estimator that has several problematic properties.
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all.equal( mean( fixef( invFEi, type="dmean" ) ), 0 )
#HE [11 TRUE

One can test whether the fixed effects differ from zero, from the first
fixed effect, or from their mean (depending on argument type) by applying
the summary () method to fixed effects obtained by fixef():

summary (fixef(invFEi, type = "dmean"))

1HF Estimate Std. Error t-value PrO>ft])
HE1 -11.5528 49.7080 -0.2324 0.8164700

HE 2 160.6498 24.9383 6.4419 9.627e-10%**
3 -176.8279 24.4316 -7.2377 1.130e-11#%**
JHE 4 30.9346 14.0778 2.1974 0.0292129~*
jHE 5 -55.8729 14.1654 -3.9443 0.0001129**x*
HE 6 35.5826 12.6687 2.8087 0.0054998**
HE 7 -7.8095 12.8430 -0.6081 0.5438694

JHE 8 1.1983 13.9931 0.0856 0.9318489
HE9 -28.4783 12.8919 -2.2090 0.0283821~*
jHE 10 52.1761 11.8269 4.4116 1.725e-05%**
HE - --

JHF Signif. codes: 0 '***' (0,001 '"**' 0.01 '*'" 0.05 '." 0.1 ' ' 1

If fixef () is applied to a time fixed-effects model, it returns time effects that
can be obtained in a similar way as the individual effects:

fixef( invFEt )

In the case of a two-ways fixed-effects model, we can set argument ef fect to either
"individual" or "time" in order to obtain either individual effects or time effects:

fixef( invFE2, effect="individual" )
fixef( invFE2, effect="time" )

6.6 First-Difference Estimator

The first-difference estimator takes the first differences of both the dependent
variable and the explanatory variables in order to remove individual effects in
panel data models:

Vit = Yir-1 =X+ + € — Xy, f— i — € (36)
YVie = Vi1 = (Xie — Xig—1)' B+ €ir — €ir—1 37
Ay = Ax;yf+ Ae; (38)

The first-difference estimator is more appealing than the “within” estimator
if the errors of the original model are assumed to be nonstationary, as in this case,
taking first differences is likely to reduce them to stationarity. If the untrans-
formed model errors are stationary to begin with, however, first-differencing
will introduce error correlation and, therefore, make the estimator inefficient.
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The first-difference estimator also could be used to remove time effects, but
this is generally not done in practice, because there is no natural ordering of the
individuals (e.g., firms) so that the first-differencing would depend on the arbi-
trarily chosen order of the firms in the data set.

Lastly, one should be aware of that using a first-difference model reduces
the time dimension by one time period.

Function pIm() estimates a first-difference model if its argument mode]l is
set to "fd":

invFDi <- pIm( inv ~ value + capital, model="fd",
data=Grunfeld )

The same estimates can be obtained manually by:

invFDim <- Tm( diff( GrunfeldPdata$inv ) ~
diff( GrunfeldPdata$value )+
diff( GrunfeldPdata$capital ) )

all.equal( coef( invFDi ), coef( invFDim ),
check.attributes=FALSE )

fHE [1] TRUE

According to our derivation in Eq. (38), the first-difference model should not
have an intercept. However, pIm( ..., model="fd") estimates the first-
difference model with an intercept, because this can improve the statistical
properties of the estimation (e.g., this guarantees that the residuals sum to zero).
The estimated intercept in the first-difference model corresponds to the coeffi-
cient of a linear time trend in the original model because a linear time trend as
explanatory variable in the original model (x;;, = f) corresponds to a constant
explanatory variable in the first-difference model (Axy;, = Xgir — Xpir—1 = —
(t — 1) = 1). The intercept in the first-difference model can be suppressed by
adding “—1” to the model formula:

invFDii <- pIm( inv ~ value + capital - 1, model="fd",
data=Grunfeld )

invFDiim <- Tm( diff( GrunfeldPdata$inv ) ~
diff( GrunfeldPdata$value ) +
diff( GrunfeldPdata$capital ) - 1)

all.equal( coef( invFDii ), coef( invFDiim ),
check.attributes=FALSE )
#HE [11 TRUE

In panel data sets with only two time periods, the first-difference estimator gives
exactly the same estimates as the corresponding “within” estimator:

invFD2y<- pIm( inv ~ value + capital - 1, model="fd",
data=Grunfeldl Grunfeld$year <= 1936, 1 )
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invFE2y<- pIm( inv ~ value + capital - 1,
data=Grunfeld[ Grunfeld$year <= 1936, 1)
all.equal( coef( invFD2y ), coef( invFE2y ) )

fHF [1] TRUE

In panel data sets with more than two time periods, the FD estimator is prone
to (negative) serial correlation, because E[A€; A€; ;1] = E[(€;; — €;,—1)(€i—1
—€r2)] =El€j€is—1 — €4€iyn — eﬁ,,l + €1 €i,—2] is likely negative unless
there is strong positive serial correlation in the original disturbance terms,
ie., E[e;€;;—1] = El€;,—1 €;,—2] > 0. Therefore, one should test for serial cor-
relation. If the errors of a FD model are significantly serially correlated, it is
advisable to estimate the model by the “within” estimator or, alternatively, to
calculate robust standard errors.

7 “Between” Estimator for Panel Data

7.1 Specification of the “Between” Estimator

The “between” estimator takes only the variance in the cross-sectional dimen-
sion into account, averaging over the time dimension. As such, it ignores the
information contained in the time dimension. The “between” estimator is basi-
cally an OLS estimator applied to a time-averaged equation:

yi :i,-ﬂ+a,~ +ﬁ,‘ (39)

where 3, =T-'S" v, andX; = T~'Y_ X;;. This estimator is not much used in
practice, because it is consistent only if the (unobserved) individual effects («;)
are uncorrelated with the explanatory variables and in this case, the individual
random-effects estimator is more efficient than the “between” estimator
(Wooldridge, 2010).

7.2 Estimation of the “Between” Estimator

The “between” estimator can be estimated by using p1m() with argument mode]
set to "between":

invB <- pIm( inv ~ value + capital, data=Grunfeld,
effect="individual", model="between" )

The “between” estimator also can be obtained manually by applying the OLS
method to the data set in which each observation corresponds to one firm and
the values of the variables indicate the mean values over all of the firm’s obser-
vations in all available time periods (as created in Section 5.4):

invB2<- Tm( inv ~ value + capital, data=GrunfeldFirmMean )
all.equal( coef( invB ), coef( invB2 ) )
fHF [11 TRUE
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8 Linear Random-Effects Panel Data Models

The random-effects estimator belongs to the group of feasible generalized least-
squares (FGLS) estimators. This estimator requires that the individual and/or
time effects are uncorrelated with the covariates, while the fixed-effects estima-
tor does not require this assumption. If this assumption is fulfilled, the random-
effects estimator is more efficient than the fixed-effects estimator and, there-
fore, is the preferred estimator. Importantly, however, the random-effects esti-
mator will be inconsistent if it is not.

8.1 Specification of the Random-Effects Model

We can avoid the loss of degrees of freedom resulting from the model specifi-
cation of the “within” estimator if we assume that the invariant effects A;; are
random. In the following discussion, we focus on time-invariant individual
effects, a;, but the discussion also applies for individual-invariant time effects,
7.- Two-ways effects are more complicated and are therefore omitted.

In this case a;~1ID(0,02) and €;,~1ID(0,52). Also, E(a€;,) = 0 and—most
important—E(a;x;;) = 0 and E(g;X;,) = 0 for all i and ¢, which means that we
assume strict exogeneity between the covariates and the error terms. The
random-effects estimator is an appropriate specification if we draw a random
sample of N observations from a large population, e.g., a household panel
(Baltagi, 2008).

Random-effects models are estimated by means of Feasible GLS estimators,
which means that one somehow needs to identify the variance-covariance
matrix of the combined error terms Q = E(uu'). This block-diagonal covariance
matrix displays serial correlation over time only between the observations of the
same individual or cross-sectional correlation over individuals only between the
observations of the same time period. In the case of two-ways effects, however,
the covariance matrix becomes more complicated.

Different methods have been proposed to obtain Q, they can be accessed
through option random.method in the p1m() function:

e "walhus": Wallace and Hussain (1969) propose to substitute # by the OLS
estimates iy g, as under the random-effects model assumptions OLS esti-
mates are inefficient but still unbiased and consistent.

e ‘"amemiya": Amemiya (1971) suggests using the LSDV residuals instead of
the OLS residuals.

e "swar":Swamy and Arora (1972) suggest running a “within” regression and
a between regression in order to get estimates for the variance components,
6% and o2, from the corresponding mean square errors of the two regressions.
It can be shown that BGLS is the weighted average of the /A;’w,-,hin and ﬁbg,ween
estimators.

e "nerlove": Nerlove (1971) suggests estimating o as >+ (& — 5)2/(11 —1),
where @&; are the dummy coefficients estimated by LSDV. The o> are
estimated from the “within” residual sum of squares divided by N.
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8.2 Estimation of the Random-Effects Model

To estimate a random-effects model, we can use the pim() function with
argument model set to "random". As with the fixed-effects estimator,
argument effect can be used to specify whether the estimation should include
individual, time, or two-ways (random) effects. The following command uses
the investment data (Grunfeld) to estimate the investment equation with the
two-ways random-effects estimator:

invREZ <- pIm( inv ~ value + capital, data=Grunfeld,
effect="twoways", model="random" )

By default, p1m() estimates random-effects models by applying the procedure sug-
gested by Swamy and Arora (1972). This procedure, however, can give a negative
value for the estimate of the variance of the time effect. If this is the case, p1m( ) sets
the variance of the time effect to zero (as in the previous estimation).

We can use argument random.method to choose a different procedure for
estimating the random-effects model, e.g., the procedure of Amemiya (1971):

invREZ2a <- pIm( inv ~ value + capital, data=Grunfeld,
effect="twoways", model="random",
random.method="amemiya" ).

Although earlier versions of the p/m package were not able to estimate two-
ways random-effects models with unbalanced panel data sets, it is now possible
with the latest version of this package (1.6-6):

emplRE2 <- pIm( emp ~ wage + capital, data=EmplUK,
effect="twoways", model="random" ).

8.3 Estimates of the Variance of the Error Components

To get the variance of the error components of a random-effects model, we can
use function ercomp():

ercomp( invREZ2a)

1HE var std.dev  share
fHE idiosyncratic  2644.13 51.42  0.256
JHF individual 7452 .02 86.33 0.721
JHE time 243.78 15.61 0.024

jHE theta: 0.868 (id) 0.2787 (time) 0.2776 (Total)

8.4 Testing the Assumptions of the Random-Effects Model

The assumption of the random-effects estimator is that the invariant effects are
uncorrelated with the covariates. If this condition is fulfilled, the random-effects
estimator is preferred because the estimates are more efficient. The Durbin-Wu-
Hausman test examines the difference between estimates from a fixed-effects
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model and a random-effects model. Because the FE estimators are consistent if
the invariant effects are correlated with the covariates, but the random-effects
estimators are not, a statistically significant difference is interpreted as a rejec-
tion of the random-effects estimator.

phtest( invFE2, invRE2a )

il

fHE Hausman Test

iHE

JHF data: inv ~ value + capital

fHF chisq = 8.9626, df = 2, p-value = 0.01132

jHE alternative hypothesis: one model is inconsistent

The same test can be conducted by the command:

phtest( inv ~ value + capital, effect="twoway",
random.method="amemiya", data=Grunfeld )

id

#HF Hausman Test

iHE

JHF data: inv ~ value + capital

fHF chisq = 8.9626, df = 2, p-value = 0.01132

jHE alternative hypothesis: one model is inconsistent

The following command uses the auxiliary-regression based version of this test
that was suggested by Wooldridge (2010, Sec. 10.7.3.):

phtest( inv ~ value + capital, effect="twoway",
data=Grunfeld, method="aux" )

1

jHf  Regression-based Hausman test

i

JHF data: inv ~ value + capital

fHF chisq = 13.117, df = 2, p-value = 0.001418

jHE alternative hypothesis: one model is inconsistent

This test can be conducted with robust standard errors:

phtest( inv ~ value + capital, effect="twoway",
data=Grunfeld, method="aux",
vcov=Ffunction(x) vcovHC( x, method="white2",

type="HC3" ) )

1t

JH Regression-based Hausman test, vcov: function(x)

JHF vcovHC(x, method = "white2", type = "HC3")

iHE

jHE data: inv ~ value + capital

fHE chisq = 11.164, df = 2, p-value = 0.003765

JH alternative hypothesis: one model is inconsistent
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9 Tests for the Error Structure in Panel Data Models

As we have seen before, serial and/or cross-sectional correlation affecting the
error terms of the same individual and/or time period are inherent to panel data
sets. The idiosyncratic error term, however, also can be affected by serial or
cross-sectional correlation, in which case the random- or fixed-effects estima-
tors won’t help.

This section presents some of the most important tests of the error structure
that should be run on every panel data estimation model in order to find irreg-
ularities from the standard matrix (Eq. 10). The difficulty in detecting serial
correlation in the idiosyncratic error term is to separate the serial correlation in
the invariant effects from the serial correlation in the idiosyncratic error term.
Simple marginal tests for one direction of departure from the hypothesis of
spherical errors often are substantially biased; joint tests have power against
both directions, but do not return any information about which error term
causes the problem; conditional tests that actually return this information have
power only against the alternative of interest. Although they are the most pow-
erful tests, they depend strongly on the normality and homoscedasticity of the
error terms (see Croissant & Millo, 2015, for further discussions on this
subject).

9.1 Tests for Serial Correlation

9.1.1 Unobserved-Effects Test

The unobserved-effects test is a semiparametric test for the Hy: 62=0. It is
robust toward nonnormality and heteroscedasticity. The test does not differen-
tiate between time-invariant unobserved effects and serial correlation in the idi-
osyncratic error term. Therefore, rejection of the H, does not necessarily imply
that time-invariant effects are present.

pwtest(inv ~ value + capital, data = Grunfeld)

1HE

fHE Wooldridge’s test for unobserved individual effects
1HE

fHF data: formula

fHE z = 1.4922, p-value = 0.1356

JHF alternative hypothesis: unobserved effect

9.1.2 Locally Robust Tests for Serial Correlation and Random
Effects

Function pbsytest() conducts a joint LM test that simultaneously tests
random effects and serial correlation in the idiosyncratic error term. It
assumes normality and homoscedasticity of the idiosyncratic error. Rejection
of the H,, however, does not give any information about the direction of the
deviation.



378 Panel Data Econometrics

pbsytest( inv ~ value + capital, data=Grunfeld,
test="j" )

HE

J# Baltagi and Li AR-RE joint test - balanced panel

iHE

{HF data: formula

fHF chisq = 808.47, df = 2, p-value < 2.2e-16

jHF alternative hypothesis: AR(1) errors or random effects

In another specification, function pbsytest () can test either for random effects:

pbsytest( inv ~ value + capital, data = Grunfeld,
test = "re" )
il
JHE Bera, Sosa-Escudero and Yoon locally robust test
#HE (one-sided) - balanced panel
il
{4 data: formula
HE z = 25.787, p-value < 2.2e-16
JH alternative hypothesis: random effects sub AR(1) errors

or AR(1) serial correlation in the idiosyncratic error term:

pbsytest(inv ~ value + capital, data=Grunfeld,
test="ar" )
ild
j#HE Bera, Sosa-Escudero and Yoon locally robust test -
fHE balanced panel
id
fHF data: formula
jHF chisq = 10.31, df = 1, p-value = 0.001323
JHE alternative hypothesis: AR(1) errors sub random effects

Either test for one effect (random effects or serial correlation) is robust against
local (i.e., moderate) departures from zero of the other effect (serial correlation
or, respectively, random effects). Both tests are inferior to more specific tests
for random effects or serial correlation (e.g., Baltagi-Li test), but can indicate
the right direction of departure from the H of no serial correlation and no ran-
dom effects.

9.1.3 Conditional Tests for AR(1) and MA(1) Errors Under
Random Effects

Baltagi and Li (1995)’s LM test for the detection of serial correlation under ran-
dom effects has the null hypothesis that there is no serial correlation of the idi-
osyncratic error term. The test can be one-sided (only positive correlation) or
two-sided (default):



Analysis of Panel Data Using R Chapter | 12 379

pbltest( inv ~ value + capital, data = Grunfeld )

1HF

JH#F Baltagi and Li two-sided LM test

1HF

JHF data: inv ~ value + capital

fHF chisq = 69.532, df = 1, p-value < 2.2e-16

jHE alternative hypothesis: AR(1)/MA(1) errors in RE panel
fHF model

9.1.4 General Serial Correlation Tests

The Breusch-Godfrey test and Durbin-Watson test for panel data uses the resid-
uals of a demeaned (fixed-effects) or quasidemeaned (random-effects) model,
under the H, assumption that, under these conditions, the remaining idiosyn-
cratic errors are serially uncorrelated. Unlike most other serial correlation tests
for panel data, the Breusch-Godfrey test allows to test for higher-order serial
correlation.

pbgtest( invFE2, order = 2 )

1HE

jHF  Breusch-Godfrey/Wooldridge test for serial
J#H# correlation in panel models

1HE

fHF data: inv ~ value + capital

fHF chisq = 53.093, df = 2, p-value = 2.959e-12
JHF alternative hypothesis: serial correlation in
fHE idiosyncratic errors

pbgtest( invRE2a, order = 2 )

1HE

jHE Breusch-Godfrey/Wooldridge test for serial
JH  correlation in panel models

1HE

jHF data: inv ~ value + capital

#HF chisg = 53.909, df = 2, p-value = 1.967e-12
JHk alternative hypothesis: serial correlation in
jHF idiosyncratic errors

Likewise, one can apply the Durbin-Watson test on the demeaned data.

pdwtest( invFE2 )

1H#

JHE Durbin-Watson test for serial correlation in panel
JHE models

1HE

jHF data: inv ~ value + capital

JHE DW = 0.96869, p-value = 1.209e-13
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jHE alternative hypothesis: serial correlation in
jHF idiosyncratic errors

pdwtest( invRE2a )

iHE

#HE  Durbin-Watson test for serial correlation in panel
jHE models

il

jHF data: inv ~ value + capital

fHE DW = 0.96267, p-value = 4.631le-14

jHE alternative hypothesis: serial correlation in
jHF idiosyncratic errors

The Breusch-Godfrey test does not perform well on fixed-effects models with
short T. In fact, for finite 7, if the errors of the original model were spherical,
those of the demeaned model are serially correlated with a coefficient inversely
proportional to 7: —1/(T — 1). This issue becomes negligible in long panels, but
in short ones the test is severely biased toward rejection. Wooldridge (2010),
therefore, suggests a test for fixed-effects models with short 7 that is implemen-
ted in function pwartest() and that does not rely on large T asymptotics and,
therefore, has good properties in short panels.

pwartest(log(emp) ~ log(wage) + lTog(capital), data = EmplUK)
1

j#HE Wooldridge's test for serial correlation in FE

HE panels

iHt

jHE data: pIm.model

HE F = 312.3, dfl =1, df2 = 889, p-value < 2.2e-16

jHF alternative hypothesis: serial correlation

9.1.5 First-Difference Based Tests

The pwfdtest () is a serial correlation test that also works as a specification test
to choose the most efficient estimator between the “within” estimator and the
first-difference estimator. The starting point is the assumption that if the errors
in the model in levels are not serially correlated, then the errors of the first-
difference estimator will be serially correlated with —0.5, while any invariant
effect is wiped out in the differencing. So basically, for a given model:

iljr = Oljr—1 + Vit (40)

the test examines whether 6 = — 0.5, corresponding to the H of no serial corre-
lation in the first-difference estimation. If the differenced errors i1;, — i1;;_; turn out
to be serially uncorrelated, however, then it follows that u;, is a random walk. In
this case, the first-difference estimator is the most efficient one, otherwise the
fixed-effects estimator is preferred.
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We can use the pwfdtest() command to test for serial correlation in the
first-difference estimator:

pwfdtest( log( emp ) ~ log( wage ) +log( capital ),
data=EmplUK )

1HE

JHE Wooldridge's first-difference test for serial

fHF correlation in panels

1HE

JHF data: plm.model

jHF F = 1.5251, dfl = 1, df2 = 749, p-value = 0.2172

JHF alternative hypothesis: serial correlation in differenced

HF errors

The following command conducts a test for serial correlation in the idiosyn-
cratic errors of the fixed-effects model:

pwfdtest( Tog( emp ) ~ log( wage ) +log( capital ),
data=EmplUK, hO="fe" )

1HE

JH Wooldridge’s first-difference test for serial

fHE correlation in panels

1HE

JHF data: plm.model

HFF = 131.55, dfl = 1, df2 = 749, p-value < 2.2e-16

JHF alternative hypothesis: serial correlation in original

JHE errors

9.2 Tests for Cross-Sectional Dependence

The problem of cross-sectional dependence arises if the » individuals in our
sample are no longer independently drawn observations but affect each other’s
outcomes. For example, this can result from the fact that we look at a set of
neighboring countries, which are usually highly interconnected.

To test for cross-sectional dependence in the model residuals, we can use the
Pesaran CD test, which is based on a scaled average of the pairwise correlation
coefficients between the residuals of each individual unit:

pcdtest( invFEi, test="cd" )

1HF

JH# Pesaran CD test for cross-sectional dependence in
HE panels

1H#

jHF data: inv ~ value + capital

HE z = 4.6612, p-value = 3.144e-06

JHF alternative hypothesis: cross-sectional dependence

Rejection means that the residuals are cross-sectionally dependent.
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10 How to Handle Serial Correlation

After we’ve established that we have serial correlation or cross-sectional depen-
dence in the idiosyncratic error term, we need to handle this problem somehow.
There are basically two approaches: We can use parameter tests with robust
covariance matrices for panel data models or we can exploit the characteristics
of the feasible GLS estimator.

10.1 Parameter Tests with Robust Covariance Matrices

Error correlation per se does not cause inconsistency of the OLS estimators for
the parameters, but of the classical OLS standard errors. By using robust covari-
ance matrices in the parameter tests, we can overcome serial correlation, cross-
sectional dependence, and heteroscedasticity across groups or time, a third
problem we haven’t touched yet.

There are three generic functions which can be used to derive robust tests on

panel data with serial correlation or cross-sectional dependence:

e coeftest(): Can be used to conduct z-tests and (quasi)#-tests on esti-
mated coefficients. coeftest () works in particular for objects that were
created by 1m() and g1m() but it also can be applied easily to objects that
were created by pim().

e waldtest(): A generic function for the comparison of models using a
Wald test.

e linearHypothesis(): Another generic function for testing linear
hypotheses with a flexible interface for specifying the linear hypotheses.

In all three functions, one can replace the nonrobust covariance matrix from the
model by a robust covariance matrix using the argument vcov.

The most common function for robust covariance matrices is vcovHC () from
the sandwich package. The p/m package includes a specialized panel data
method for the vcovHC() generic function, which can apply three different
methods to calculate White’s heteroscedasticity-consistent covariance matrix.
All three methods, however, are not robust toward cross-sectional dependence.
Although all three methods are robust against group-wise heteroscedasticity,
only method "arellano" is fully robust against serial correlation.

coeftest( invFEi, vcovHC( invFEi, method="arellano",
type="HC3" ) )

il

fHE t-test of coefficients:

1HE

1 Estimate Std. Error t value PrO>t])

HE value 0.110124 0.016312 6.7509 1.774e-10 ***

HE capital 0.310065 0.062248 4.9811 1.427e-06 **x*
HE———

JHE Signif. codes:

JHE O 'x**' 0,001 '**' 0.01 '*" 0.05 '." 0.1 ''1
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Other robust covariance estimators for panel data models are:

vcovBK(): An unconditional estimator for robust covariance matrices
developed by Beck and Katz (1995). If observations are clustered by
“group”, the estimator will account for time-wise heteroscedasticity
and serial correlation. If observations are clustered by “time”, the esti-
mator will account for group-wise heteroscedasticity and cross-sectional
dependence.

vcovDC(): An estimator for robust covariance matrices for error struc-
tures that cluster along both dimensions, in other words, for models with
two-ways effects.

vcovNW(): A nonparametric estimator for robust covariance matrices for
panel data models with serial correlation, which is a special case
of vcovSCC() assuming no cross-sectional correlation.

vcovSCC(): A nonparametric estimator for robust covariance matrices
for panel data models with serial correlation and cross-sectional
dependence.

Function TinearHypothesis() thatis provided by the R package car can be
used to perform Wald tests of linear parameter restrictions—both with and with-
out using a robust covariance matrix. As an example, we will test the (null)
hypothesis f; + >, = 0.4:

linearHypothesis( invFE2, "value + capital = 0.4" )

1
1
1
1
1
1
1HF
1
1
1
1
1HF
1
1

Linear hypothesis test

Hypothesis:
value + capital =0.4

Model 1: restricted model
Model 2: inv ~ value + capital

Res.Df Df Chisqg Pr(>Chisq)
1 170
2 169 1 10.881 0.0009715 ***
Signif. codes:
0 '"***' 0.001 "**'" 0.01 '*' 0.05 '." 0.1 " "1

The following command repeats this test with robust standard errors:

linearHypothesis( invFE2, "value + capital=0.4",

1
1
1
1
1HF

vcov. = vcovHC )
Linear hypothesis test

Hypothesis:
value+capital=0.4
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fHE Model 1: restricted model
fHF Model 2: inv ~ value + capital

i

JHF Note: Coefficient covariance matrix supplied.
il

fH+  Res.Df Df Chisq Pr(>Chisq)

fHF 1 170

1 2 169 1 2.3586 0.1246

linearHypothesis( invFE2, "value + capital=0.4",

vcov. = vcovHC( invFE2, method = "arellano",
type = "HC3" ) )

jHt Linear hypothesis test

iHE

JHF Hypothesis:

#HE value + capital = 0.4

i

jHE Model 1: restricted model

jHF Model 2: inv ~ value + capital

it

JHE Note: Coefficient covariance matrix supplied.
1

fH+  Res.Df Df Chisq Pr(>Chisq)

HE 1 170

HE 2 169 1 1.2124 0.2709

Argument vcov. can be either a function that returns the (robust) covariance
matrix or the covariance matrix itself.

10.2 FGLS Estimator

The FGLS estimator is based on a two-step procedure. First, an OLS (pooling),
fixed-effects (“within”), or first-difference model is estimated, and then the
residuals, #;; are used to estimate the covariance matrix of the error term:

Y
~ Uil
Q= ZJ (41)
P
which is the used as a correcting factor in the second step GLS estimator:
Brovs = (X Q™ "xi) %, Q" yi 42)

By using the covariance matrix of the error term as weighting factor, the
covariance structure within a group (for effect "individual") or time period
(for effect "time") becomes fully unrestricted and, therefore, will be robust
against group-wise serial correlation and heteroscedasticity. It is important to
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note, however, that this correction of the covariance matrix is identical across
groups, which makes the FGLS estimator inefficient in cases of group-wise het-
eroscedasticity. Also, the FGLS estimator with individual effects cannot handle
cross-sectional dependence. If looking at time effects, however, the FGLS can
handle cross-sectional dependence, under the condition that the effect is con-
stant across all time periods.

The FGLS estimator can be estimated using function pggls() with either
pooled ("pooling"), fixed-effects ("within"), random-effects ("random"), or
first-difference ("fd") and with individual or time effects, e.g.:

emplFGLSr <- pggls( Tog( emp ) ~ log( wage ) +log( capital ),
data = EmplUK, model = "pooling" )

empl FGLST <- pggls( log( emp ) ~ log( wage ) +log( capital ),
data = EmplUK, model = "within" )

11 Simple Instrumental Variable Estimators

In the following section, we will estimate the (static) investment equation by
instrumental-variable estimators for panel data. In these estimations, we instru-
ment the firms’ current value by its lagged value in order to take into account
that the firm’s current value might be influenced by the same unobserved vari-
ables as its current investments.

11.1  Fixed-Effects Estimation

Because the use of a lagged variable implies that observations from the first year
in the data set cannot be used in the estimation, we start by estimating a standard
fixed-effects model without observations from the first year in the data set so
that it uses the same observations as the instrumental-variable fixed-effects
estimation:

invFEt1<- pIm( inv ~ value + capital,
data=Grunfeld[ Grunfeld$year !=1935, 1)

invFEIV <- pIm(inv ~ value + capital |
lag(value)+capital, data=Grunfeld)

In this instrumental-variable estimation, a complete list of all instruments is
specified as the second part of a two-part formula. Alternatively, the instrumen-
tal variables can be specified as a modification of the list of explanatory
variables:

invFEIV2<- pIm( inv ~ value + capital |

. - value + lag( value ), data=Grunfeld )
all.equal( coef( invFEIVZ2 ), coef( invFEIV ) )
fHF [1] TRUE
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By default, p1m() estimates instrumental-variable models by the procedure sugges-
ted by Balestra and Varadharajan-Krishnakumar (1987). Argument inst.method
can be used to select the procedure suggested by Baltagi (1981). When using
fixed-effect estimators, both procedures give the same estimates:

invFEIVB <- pIm( inv ~ value + capital |
lag( value )+capital,
inst.method="baltagi", data=Grunfeld )
all.equal( coef( invFEIVB ), coef( invFEIV ) )
fHF [11 TRUE

11.2 Random-Effects Estimation

When estimating random-effects instrumental-variable models, the procedures
suggested by Balestra and Varadharajan-Krishnakumar (1987) and Baltagi
(1981) give different estimates:

invREt1<- pIm( inv ~ value + capital, model="random",
data=Grunfeld[ Grunfeld$year !=1935, 1)

invREIV <- pIm( inv ~ value + capital |
lag( value )+capital, model="random",
data=Grunfeld )

invREIVB <- pIm( inv ~ value + capital |
lag( value )+capital, model="random",
inst.method="baltagi", data=Grunfeld )

11.3 Hausman Test

The following command conducts a Hausman test of the null hypothesis that the
OLS estimates of the fixed-effects model are consistent against the alternative
hypothesis that these estimates are inconsistent, while the instrumental variable
estimates of the same model are still consistent:

phtest( invFEt1, invFEIV )

1

#H#f  Hausman Test

il

jHE data: inv ~ value + capital

fHF chisq = 4.8306, df = 2, p-value = 0.08934

jHE alternative hypothesis: one model is inconsistent

The null hypotheses cannot be rejected at 5% significance level, which could be
used to justify estimation of the fixed-effects model by OLS, because if the OLS
estimates are consistent, they are more efficient than the instrumental-variables
estimates.



Analysis of Panel Data Using R Chapter | 12 387

The following commands apply the same Hausman test to the random-
effects models:

phtest( invREt1l, invREIV )

1HE

fHE Hausman Test

1HE

jHF data: inv ~ value + capital

# chisq = 5.5093, df = 2, p-value = 0.06363

JHF alternative hypothesis: one model is inconsistent
phtest( invREtl, invREIVB )

1H#

fHF Hausman Test

1HE

JHF data: inv ~ value + capital

JHF chisg = 0.90909, df = 2, p-value = 0.6347

JHF alternative hypothesis: one model is inconsistent

12 Panel Time Series Models

In the context of long panels, also called “panel time series,” in which the time
dimension is sufficient for estimating separate regressions for each individual,
Pesaran and Smith (1995) popularized a heterogeneous estimator called “mean
groups” (MG) based on averaging the individual coefficients. Notably, the
individual OLS regressions will provide consistent estimates also for
dynamic models, a property that carries on to the averaged coefficients.
Function pmg() in the p/m package can estimate such models:

invMG <- pmg( inv ~ value + capital, data=Grunfeld )

Panel data can be subject to pervasive cross-sectional dependence, whereby all
units in the same cross-section are correlated. This is usually attributed to the
effect of some unobserved common factors, common to all units and affecting
each of them, although possibly in different ways. Examples are technological
evolution, world prices, such as oil prices, or risk-free interest rates. If the com-
mon factors, which are omitted from the model, are correlated with the regres-
sors, which is usually the case, both the standard homogeneous estimators for
panel data (FE, RE, or FD) and the heterogeneous MG estimator are inconsis-
tent. In this case, Pesaran (2006) suggested to approximate the unobserved com-
mon factors by cross-sectional averages of the regressand and regressors,
augmenting the model with the latter to obtain unbiased estimates. This kind
of augmentation, known as “common correlated effects” (CCE), is implemen-
ted in the pmg () function by setting the model argument to "cmg":

invCMG <- pmg( inv ~ value + capital, data=Grunfeld, model="cmg" )

Standard errors for these estimators are computed based on the sample variance
of the individual coefficients.
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13 Unit Root Tests for Panel Data

A popular procedure for testing panel time series for unit roots, suggested by Im,
Pesaran, and Shin (2003), is to extend the well-known ADF test to the panel
context, averaging the results of the relevant #-tests.

These tests (known as first-generation unit root tests), however, do not take
into account cross-sectional dependence, which can occur in panel data (see,
e.g., Section 9.2). Pesaran (2007) suggested to employ a CCE procedure to
robustify the panel ADF procedure against unobserved common factors. This
last goes under the name of CIPS test, for cross-sectionally augmented IPS.

To apply the unit-root tests that are provided by the p/m package, one must
use a panel data set that has been returned by pdata. frame(). Therefore, we use
the data set GrunfeldPdata in this section.

The following code tests the (null) hypothesis of a unit root in the investment
variable (inv) by applying the procedure suggested by Im et al. (2003):

cipstest( GrunfeldPdata$inv, type = "trend", Tags =14,
model = "mg" )

JHE Warning in cipstest( GrunfeldPdata$inv, type = "trend",
#HF lags =4, model = "mg" ): p-value greater than printed
#HE p-value

1t

fHF  Pesaran’s CIPS test for unit roots

iHE

JHF data: GrunfeldPdata$inv

jHE CIPS test = -1.2031, lag order =4, p-value =0.1

jHE alternative hypothesis: Stationarity

This test does not reject the null hypothesis that the investment variable (inv)
has a unit root.

The following code conducts the CCE-augmented variant of the test by
Pesaran (2007) and is robust against cross-sectional dependence:

cipstest( GrunfeldPdatas$inv )

jHE Warning in cipstest(GrunfeldPdata$inv): p-value greater
J#HE than printed p-value

iHE

fHE Pesaran’s CIPS test for unit roots

1t

fHE data: GrunfeldPdata$inv

JHE CIPS test = -1.397, lag order =2, p-value =0.1

JHF alternative hypothesis: Stationarity

The mode1 argument is left at the default value of "cmg". According to this test,
we still cannot reject the null hypothesis (at the 10% or at an even greater sig-
nificance level, see the warning) that the investment variable (inv) has a
unit root.
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14 Dynamic Panel Data Models

In cases in which we want to estimate dynamic models with panel data, the usual
approaches such as fixed-effects or random-effects models won’t work. For the
random-effects estimator, it can be shown that a dynamic panel data model does
not fulfill the exogeneity condition E(a;x;,) = 0. Therefore, by default, this rules
out the usage of the RE estimator. The “within” transformation can be applied in
principle, however, one can show that the resulting estimates will be severely
biased for the autoregressive parameter p > 0. The closer p gets to zero and the
larger T is, however, the smaller also the bias; a larger n, on the other hand, has
no effect.

Instead, we can use the IV estimator by Andersson and Hsiao or the Arellano
Bond GMM estimator. Both estimators use the first-difference transformation
to get rid of the time invariant effects. This comes at a price, however, that
we generate a correlation between the differenced lagged dependent variable,
Ay;, 1 =Yir1 — Yiro, and the differenced error term, A;, = €;, — €, |, because
Yir11s correlated with ¢; ,_;. Therefore, Andersson and Hsiao propose to use the
second lag as an IV for the first lagged variable. Likewise, Arellano and Bond
(AB) propose to use all available IVs, defined by the dimensionality of 7. Both
estimators return consistent results, but only the AB GMM estimator exploits all
available orthogonality conditions.

The underlying assumptions of both estimators are stationarity of the time-
series (p < 1) and an i.i.d. distribution of the original (nondifferenced) idiosyn-
cratic error term, i.e., no serial correlation in the original errors.

We should be aware that, because of the lag structure, gaps in unbalanced
panels will widen, because a missing link in the time series will lead to two
missing differences, and so on. Also, for panels with large 7, the number of
IVs in the GMM estimator might become too large because the number of
moment conditions grows exponentially with 7. For example, for T =4 we
get 6 valid moment conditions, however, for T = 9 the number of moment
conditions becomes 36. Therefore, for a long panel, especially if n is compar-
atively small, an unrestricted inclusion of lagged IVs risks reducing the effi-
ciency of the GMM estimates. In fact, Monte Carlo studies show that for
panels with large T (> 30) and small n, the asymptotic properties of the
GMM estimator no longer hold. Results still are inconclusive to some degree,
but it seems that as long as T /N — 0, the GMM estimator is consistent even for
large T. It is advisable, however, to reduce the number of lags to around 2-5.
One should bear in mind that because of the autoregressive structure of the
model, the first-differencing to get rid of the time invariant effects, and the
lag structure of the IV, the AB GMM estimator reduces T by at least 2 time
periods (Table 1).

For an example of T'= 4 and a simple autoregressive model:

Yie=pYi-1ta;+¢; (43)
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TABLE 1 Losses in T by Using the A-B GMM Estimator

t Vit Yie — 1 Ayit Ayi—1
0 Yes No No No
1 Yes Yes Yes No
2 Yes Yes Yes Yes

we get the following IVs and moment conditions:

t=2:E[Acpnyip] =0
t=3:E[Acsyi] =0
E[A¢3yi] =0
t=4:E[A¢yyp] =0
E[A€isyi] =0

[ =0

where the instrumental variables are y;, y;1, and y;,.
So far, two types of panel GMM estimators are implemented in plm:

e Difference GMM, which is the classical Arellano-Bond estimator that uses
only differenced variables as [Vs. For the previous example, instead of using
Yio, Yi1» and y;», the estimator uses A y;; and A y;, as IVs, which unfortunately
means that we lose yet another time period, i.e., we start at t = 3.

e System GMM (Blundel-Bond), which additionally adds the corresponding
levels as IVs. Simulations show that the System GMM estimator often is more
efficient and, in some cases, even more consistent than the Difference GMM.
Especially if the instruments of the Difference GMM are weak, applying the
System GMM often leads to dramatic improvements of the GMM estimator.

In the R function pgmm(), the Difference GMM estimator is the default
estimator. If we wish to apply the System GMM estimator, we need to set
option transformation="1d".

When using the R function pgmm(), we also have the possibility to use a
one-step or two-step approach to compute the weighting matrix of the moments.
In the one-step approach, the weighting matrix is calculated based on the covar-
iate matrix and a known weighting matrix (see Croissant & Millo, 2015, for
details). The two-step approach uses the residuals of the one-step model to cal-
culate the weighting matrix. The two-step approach usually results in more
asymptotically efficient estimates, because the two-step approach uses the con-
sistent covariance matrix from one-step GMM and it is more robust toward het-
eroscedasticity and other disturbances. In older textbooks or articles, the two-
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step approach often is described as suboptimal because it produces biased esti-
mates. This point no longer applies, because modern applications use the Wind-
mejer correction procedure, which alleviates this problem.

In function pgmm( ), we set option model="twosteps" if we want to overrule
the default one-step setting. Furthermore, we can choose option effect =
“individual” if we want to estimate the classical AB GMM estimator
where we get rid of the time invariant effects through first-differencing or
option effect = "twoways" (the default) if we want to additionally capture time
effects by adding time dummies.

We use the employment data set (Emp1UK) to estimate specification (b) of the
employment equation of Arellano and Bond (1991):

log (emp;,) =p, log (empl-@fl)) +p,log (emp,»(tfz))
+plog(wage,,) + f,log (wagei<t71)> +p3log (capitaly,) . (44)

+ p4log (output;,) + pslog (outputi(,,l)) +ai+y,+ U

The following code’ reproduces the results of model (b) in Table 4 of
Arellano and Bond (1991):

empl1GMM <- pgmm( Tog(emp) ~ lag(log(emp), 1:2)+
lag(log(wage), 0:1)+1log(capital)+
lag(log(output), 0:1) | Tag(log(emp), 2:99),
data=EmplUK, effect="twoways", model="twosteps" )
summary( emplGMM, robust = FALSE )

The part of the formula behind the vertical line (]) specifies that all available
lags beyond lag 1 of the dependent variable, i.e., log(emp;_;); j >2, should be
used as GMM instruments; all other explanatory variables, i.e., log(wage;,),
log(wage;;_1)), log(capital;), log(output;), and log(output;,_,,), are used
as normal instruments. If we choose to use lagged variables of the other cov-
ariates as instrument variables, the number of instrument variables increases
accordingly:

emp1GMM2 < - pgmm( Tog(emp) ~ lag(log(emp), 1)+
lag(log(wage), 0:1)+1ag(log(capital), 0:1)
lag(log(emp), 2:99)+1ag(log(wage), 2:99)+
lag(log(capital), 2:99), data=EmplUK,
effect="twoways", model="onestep",
transformation="1d" )

5. This code was taken from or inspired by Croissant and Millo (2008, p. 18), Kleiber and Zeileis
(2008, p. 87-89), Croissant and Millo (2015, p. 23-24), and Kleiber and Zeileis (2015, p. 3).
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14.1 Tests for Panel GMM

Given that we use lagged variables as IVs in the panel data GMM estimator,
we need to be extra careful about AR(#) processes in the idiosyncratic error
term. Because the basic assumption of GMM are i.i.d. idiosyncratic errors,
theoretically, we shouldn’t worry about much more than the usual AR(1)
process generated through the first-difference transformation. This is not nec-
essarily fulfilled in reality, however, so we also should check higher order
processes in the error term. By default the summary() command tests AR(1)
and AR(2) processes, however, we can use the Arellano-Bond test for serial
correlation, mtest (), to test higher order processes:

mtest( emplGMM, order=3 ).

i

jHE Autocorrelation test of degree 3

i

fHF data: log(emp) ~ lag(log(emp), 1:2)+
#F lag(log(wage), 0:1)+1log(capital)+...
#HE normal=0.18874, p-value=0.8503

Also, by default summary () returns the results from the Hansen-Sargan test on
the overidentifying restrictions. The hypothesis being tested with the Hansen-
Sargan test is that the instrumental variables are uncorrelated to some set of
residuals, and therefore they are acceptable, healthy instruments. If the null
hypothesis is confirmed statistically (that is, not rejected), the instruments pass
the test; they are valid by this criterion.

The test can be accessed through

sargan( emplGMM, weights="twosteps" )

1t

fHF  Sargan test

il

jHE data: log(emp) ~ Tag(log(emp), 1:2) +

4+ lag(log(wage), 0:1)+1log(capital)+...
JHF chisq = 30.112, df = 25, p-value = 0.2201

15 Systems of Linear Equations

In this section, we use the systemfit package (Henningsen & Hamann, 2007)
and the investment data set (Grunfeld) to estimate the investment model as
system of equations. In contrast to recent versions of the p/m package, the cur-
rent version of the systemfit package does not recognize the panel data struc-
ture unless the data set has been created by pdata.frame(). Therefore, we will
use the data set GrunfeldPdata, which we created with pdata.frame() in
Section 5.5.
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The specification of a panel data model as a system of equations is basi-
cally the same as the specification of the variable coefficients model with
individual-specific coefficients (Eq. 12). The only difference is that the
variable coefficients model ignores contemporaneous correlation of the
error term, while the estimation as system of equations can account for
contemporaneous correlation of the error term, i.e., E[e;€;] =0V ¢ # s and
Ele;c;] = oy

The estimation of a system of equations by the OLS method ignores
contemporaneous correlation of the error term and, therefore, gives the
same estimates as the variable coefficients model with individual-specific
coefficients:

lTibrary( "systemfit" )
invSysOLS <- systemfit( inv ~ value + capital,
method="0LS", data=GrunfeldPdata )
all.equal( coef( invSysOLS )[c(1:3,7:30,4:6)1,
c( t( coef( invVCMi ) ) ), check.attributes=FALSE )
fHF [1] TRUE

In contrast, the estimation of a system of equations by the seemingly unrelated
regression (SUR) method (a FGLS method) takes contemporaneous correlation
of the error term into account’:

invSysSUR <- systemfit( inv ~ value + capital,
method="SUR", data=GrunfeldPdata )

We can use a likelihood-ratio test to compare the fit of the OLS model with the
fit of the SUR model and, therefore, test whether the off-diagonal elements of
the residual covariance are jointly zero, i.e., 6;; = 0 Vi # j, and the diagonal
elements of the residual covariance are all equal, i.e., 6;; =0 V i:

Trtest( invSysOLS, invSysSUR )

fHF Likelihood ratio test

1

JHF Model 1: invSysOLS

JHE Model 2: invSysSUR

fHF 4#Df  LoglLik Df Chisq Pr(>Chisq)
1 31 -738.54

JHF 2 85 -728.60 54 19.877 1

This test indicates that there is no significant contemporaneous correlation of
the error term in this model so we can estimate the model by OLS, making it
unnecessary to use the SUR method.

6. The SUR/FGLS estimator also can be iterated, but the iterated SUR estimation of this model does
not converge.
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Argument pooled of systemfit() can be used to restrict the coefficients to
be equal across all firms. If this model is estimated by the OLS method, which
ignores contemporaneous correlation of the error term, the estimated coeffi-
cients are equal to those of the pooled model that we estimated in Sections
4.1 and 6.3:

invSysPoolOLS <- systemfit( inv ~ value + capital,
method="0LS", pooled=TRUE, data=GrunfeldPdata )

all.equal( coef( invSysPoolOLS )[1:3]1, coef( invPool ),
check.attributes=FALSE )

#HF [11 TRUE

In the following, we estimate the system of equations by the seemingly unre-
lated regression (SUR) method that considers contemporaneous correlation
of the error term:

invSysPoolSUR <- systemfit( inv ~ value + capital,
method="SUR", pooled=TRUE, data=GrunfeldPdata )

In case of the pooled estimation, the test also indicates that there is no signif-
icant contemporaneous correlation of the error term so we can estimate the
model by OLS, making it unnecessary to use the SUR method:

Trtest( invSysPoolOLS, invSysPoolSUR )

fHE Likelihood ratio test

iHE

JHF Model 1: invSysPoolOLS

jHF Model 2: invSysPoolSUR

##+  #Df LogLik Df Chisg Pr(>Chisq)
1 4 -881.1

2 58 -877.7 54 6.7985 1

Further likelihood-ratio tests confirm our results from Section 6.4 and clearly
indicate that the coefficients significantly differ across firms:

Trtest( invSysPoolOLS, invSysOLS )

JHF Likelihood ratio test

iHE

jHF Model 1: invSysPoolOLS

JHF Model 2: invSysOLS

fH+  fIDf LogLik Df Chisqg Pr(>Chisq)
1 4 -881.10

2 31 -738.54 27 285.11 <2.2e-16 ***
tHE ———

#HE Signif. codes: 0 '***'(0.001 '**'0.01 '*'0.05 '.'0.1 "' '1
Trtest( invSysPoolSUR, invSysSUR )

jHE Likelihood ratio test

iHE
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JHF Model 1: invSysPoolSUR

jHE Model 2: invSysSUR

fHF 4Df LogLik Df Chisqg Pr(>Chisq)

j#HE 1 58 -877.7

JHE 2 85 -728.6 27 298.19 <2.2e-16 ***
HE - --

fHE Signif. codes:

jHE 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1

16 Conclusion

This chapter has demonstrated the use of the statistical software R (R Core
Team, 2018) to explore and prepare panel data, to analyze these data with sev-
eral frequently used panel data estimators, and to conduct various statistical
tests for panel data and panel data estimators. Further and more detailed infor-
mation can be found in various sources, e.g., Henningsen and Hamann (2007),
Croissant and Millo (2008), or Croissant and Millo (2018).
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