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Foreword

This book consists of two volumes, edited by E.G. Tsionas, that provide a broad

and deep coverage of the literature about panel data. The first volume covers

theory, and the second volume covers various categories of empirical

applications.

This is not a textbook. There are some very good texts about panel data,

including Arellano, Panel Data Econometrics, 2003; Hsiao, Analysis of Panel
Data, 2003; and Baltagi, Econometric Analysis of Panel Data, 2013. A lot of

material about panel data can be found in Wooldridge, Econometric Analysis
of Cross-Section and Panel Data, 2010. These textbook treatments assume

some knowledge of statistics and econometrics, but do not assume any prior

knowledge about panel data techniques. This book is a collection of chapters

that require some background in panel data econometrics and attempt to take

the reader to the research frontier in the specific topic covered in the chapter.

Compared to the texts listed above, this book will appeal to more advanced

readers and will be extremely useful as a reference.

Some other edited books about panel data have the same general intent as

this one, including Mátyás and Sevestre, The Econometrics of Panel Data,
2008, and Baltagi, The Oxford Handbook of Panel Data, 2015. The field of

panel data is advancing quickly enough that being more up-to-date by even a

few years is a significant advantage. Compared to the two other edited books

cited, this book’s chapters are narrower, but deeper, in scope. That is, they cover

more specifically defined topics in more detail. In addition, many chapters con-

tain a significant amount of new material. Although there is naturally some

overlap in topics with the other edited books, there is less than might be

expected. As a result this book will be interesting and useful even for people

who already have access to all of the existing the panel data books.

Volume 1 (Theory) covers standard panel data topics such as dynamic

models, nonlinear models, nonparametric methods, Bayesian methods, and

panel cointegration. It also covers some important but less well-known topics,

such as endogeneity in stochastic frontier models, panel VARs with binary data

and implementation of estimation procedures for complicated panel data

models. Each of the chapters is written by a leading expert about the topic.

Volume 2 (Empirical Applications) discusses a wide array of empirical

applications in which panel data techniques have been or could be used. Some

of these chapters also contain useful theoretical material, about topics such as

xvii



spatial panels and factor models. A partial listing of fields of application that are

covered includes education, banking, energy, transportation, health, and inter-

national trade. As in Volume 1, each of the chapters is written by a leading

expert in the field.

The breadth and depth of the coverage of this book is impressive. It is an

important reference work for anyone interested in research in or application

of panel data.

xviii Foreword



General Introduction

Panel data always have been at the center of econometric research and have

been used extensively in applied economic research to refute a variety of

hypotheses. The chapters in these two volumes represent, to a large extent,

much of what has been accomplished in the profession during the last few years.

Naturally, this is a selective presentation and many important topics have been

left out because of space limitations. The books cited at the end of this Intro-

duction, however, are well known and provide more details about specific

topics. The coverage extends from fixed and random effect formulations to non-

linear models and cointegration. Such themes have been instrumental in the

development of modern theoretical and applied econometrics.

Panel data are used quite often in applications, as we see in Volume 2 of this

book. The range of applications is vast, extending from industrial organization

and labor economics to growth, development, health, banking, and the measure-

ment of productivity. Although panel data provide more degrees of freedom,

their proper use is challenging. The modeling of heterogeneity cannot be

exhausted to fixed and random effect formulations, and slope heterogeneity

has to be considered. Dynamic formulations are highly desirable, but they

are challenging both because of estimation issues and because unit roots and

cointegration cannot be ignored. Moreover, causality issues figure prominently,

although they seem to have received less attention relative to time-series econo-

metrics. Relative to time-series or cross-sections, the development of specifica-

tion tests for panel data seems to have been slower than usual.

The chapters in these two volumes show the great potential of panel data for

both theoretical and applied research. There are more opportunities as more

problems arise, particularly when practitioners and economic theorists get

together to discuss the empirical refutation of their theories or conjectures. In

my view, opportunities are likely to arise from three different areas: the inter-

action of econometrics with game theory and industrial organization; the prom-

inence of both nonparametric and Bayesian techniques in econometrics; and

structural models that explain heterogeneity beyond the familiar paradigm of

fixed/random effects.

1. Detailed Presentation

In Chapter 1, Stephen Hall provides background material about econometric

methods that is useful in making this volume self-contained.

In Chapter 2, Jeffrey M. Wooldridge and Wei Lin study testing and est-

imation in panel data models with two potential sources of endogeneity: that

xix



because of correlation of covariates with time-constant, unobserved heteroge-

neity and that because of correlation of covariates with time-varying idiosyn-

cratic errors. In the linear case, they show that two control function

approaches allow us to test exogeneity with respect to the idiosyncratic errors

while being silent on exogeneity with respect to heterogeneity. The linear case

suggests a general approach for nonlinear models. The authors consider two

leading cases of nonlinear models: an exponential conditional mean function

for nonnegative responses and a probit conditional mean function for binary

or fractional responses. In the former case, they exploit the full robustness of

the fixed effects Poisson quasi-MLE; for the probit case, they propose corre-

lated random effects.

In Chapter 3, William H. Greene and Qiushi Zhang point out that the panel

data linear regression model has been studied exhaustively in a vast body of

literature that originates with Nerlove (1966) and spans the entire range of

empirical research in economics. This chapter describes the application of panel

data methods to some nonlinear models such as binary choice and nonlinear

regression, where the treatment has been more limited. Some of the methodol-

ogy of linear panel data modeling can be carried over directly to nonlinear cases,

while other aspects must be reconsidered. The ubiquitous fixed effects linear

model is the most prominent case of this latter point. Familiar general issues,

including dealing with unobserved heterogeneity, fixed and random effects, ini-

tial conditions, and dynamic models, are examined. Practical considerations,

such as incidental parameters, latent class and random parameters models,

robust covariance matrix estimation, attrition, and maximum simulated likeli-

hood estimation, are considered. The authors review several practical specifi-

cations that have been developed around a variety of specific nonlinear

models, including binary and ordered choice, models for counts, nonlinear

regressions, stochastic frontier, and multinomial choice models.

In Chapter 4, Jeffrey S. Racine and Christopher F. Parmeter provide a survey

of nonparametric methods for estimation and inference in a panel data setting.

Methods surveyed include profile likelihood, kernel smoothers, and series and

sieve estimators. The practical application of nonparametric panel-based tech-

niques is less prevalent than nonparametric density and regression techniques.

The material covered in this chapter will prove useful and facilitate their adop-

tion by practitioners.

In Chapter 5, Kien Tran and Levent Kutlu provide a recent development in

panel stochastic frontier models that allows for heterogeneity, endogeneity, or

both. Specifically, consistent estimation of the models’ parameters as well as

observation-specific technical inefficiency is discussed.

In Chapter 6, Stefanos Dimitrakopoulos and Michalis Kolossiatis discuss

how Bayesian techniques can be used to estimate the Poisson model, a well-

known panel count data model, with exponential conditional mean. In particu-

lar, they focus on the implementation of Markov ChainMonte Carlo methods to

various specifications of this model that allow for dynamics, latent
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heterogeneity and/or serial error correlation. The latent heterogeneity distribu-

tion is assigned a nonparametric structure, which is based on the Dirichlet pro-

cess prior. The initial conditions problem also is addressed. For each resulting

model specification, they provide the associated inferential algorithm for con-

ducting posterior simulation. Relevant computer codes are posted as an online

supplement.

In Chapter 7, Chih-Hwa Kao and Fa Wang review and explain the tech-

niques used in Hahn and Newey (2004) and Fernandez-Val and Weidner

(2016) to derive the limit distribution of the fixed effects estimator of semipara-

metric panels when the time dimension tends to infinity jointly with the cross-

section dimension. The techniques of these two papers are representative and

understanding their working mechanism is a good starting point. Under a uni-

fied framework, this paper explicitly points out the difficulties in extending

from models with fixed dimensional parameter space to panels with individual

effects and from panel with individual effects to panel with both individual and

time effects, and how Hahn and Newey (2004) and Fernandez-Val andWeidner

(2016) solve them.

In Chapter 8, Bo Honore and Ekaterini Kyriazidou study the identification

of multivariate dynamic panel data logit models with unobserved fixed effects.

They show that in the pure VAR(1) case (without exogenous covariates) the

parameters are identified with as few as four waves of observations and can

be estimated consistently at rate square-root-n with an asymptotic normal dis-

tribution. Furthermore, they show that the identification strategy of Honore and

Kyriazidou (2000) carries over in the multivariate logit case when exogenous

variables are included in the model. The authors also present an extension of

the bivariate simultaneous logit model of Schmidt and Strauss (1975) to the

panel case, allowing for contemporaneous cross-equation dependence both in

static and dynamic frameworks. The results of this chapter are of particular

interest for short panels, that is, for small T.
In Chapter 9, Subal Kumbhakar and Christopher F. Parmeter notice that, in

the last 5 years, we have seen a marked increase in panel data methods that can

handle unobserved heterogeneity, persistent inefficiency, and time-varying

inefficiency. Although this advancement has opened up the range of questions

and topics for applied researchers, practitioners, and regulators, there are var-

ious estimation proposals for these models and, to date, no comprehensive dis-

cussion about how these estimators work or compare to one another. This

chapter lays out in detail the various estimators and how they can be applied.

Several recent applications of these methods are discussed, drawing connec-

tions from the econometric framework to real applications.

In Chapter 10, Peter Pedroni discusses the challenges that shape panel coin-

tegration techniques, with an emphasis on the challenge of maintaining the

robustness of cointegration methods when temporal dependencies interact with

both cross-sectional heterogeneities and dependencies. It also discusses some

of the open challenges that lie ahead, including the challenge of generalizing

General Introduction xxi



to nonlinear and time varying cointegrating relationships. The chapter is written

in a nontechnical style that is intended to make the information accessible to non-

specialists, with an emphasis on conveying the underlying concepts and intuition.

In Chapter 11, by P.A.V.B. Swamy, Peter von zur Muehlen, Jatinder

S. Mehta, and I-Lok Chang show that estimators of the coefficients of econo-

metric models are inconsistent if their coefficients and error terms are not

unique. They present models having unique coefficients and error terms, with

specific applicability to the analyses of panel data sets. They show that the coef-

ficient on an included nonconstant regressor of a model with unique coefficients

and error term is the sum of bias-free and omitted-regressor bias components.

This sum, when multiplied by the negative ratio of the measurement error to the

observed regressor, provides a measurement-error bias component of the coef-

ficient. This result is important because one needs the bias-free component of

the coefficient on the regressor to measure the causal effect of an included non-

constant regressor of a model on its dependent variable.

In Chapter 12, Arne Heggingsen and Geraldine Henningsen give practical

guidelines for the analysis of panel data with the statistical software R. They

start by suggesting procedures for exploring and rearranging panel data sets

and for preparing them for further analyses. A large part of this chapter dem-

onstrates the application of various traditional panel data estimators that fre-

quently are used in scientific and applied analyses. They also explain the

estimation of several modern panel data models such as panel time series

models and dynamic panel data models. Finally, this chapter shows how to

use statistical tests to test critical hypotheses under different assumptions and

how the results of these tests can be used to select the panel data estimator that

is most suitable for a specific empirical panel data analysis.

In Chapter 13, Robin Sickles and Dong Ding empirically assess the impact

of capital regulations on capital adequacy ratios, portfolio risk levels and cost

efficiency for banks in the United States. Using a large panel data of US banks

from 2001 to 2016, they first estimate the model using two-step generalized

method of moments (GMM) estimators. After obtaining residuals from the

regressions, they propose a method to construct the network based on clustering

of these residuals. The residuals capture the unobserved heterogeneity that goes

beyond systematic factors and banks’ business decisions that affect its level of

capital, risk, and cost efficiency, and thus represent unobserved network hetero-

geneity across banks. They then reestimate the model in a spatial error frame-

work. The comparisons of Fixed Effects, GMM Fixed Effect models with

spatial fixed effects models provide clear evidence of the existence of unob-

served spatial effects in the interbank network. The authors find a stricter capital

requirement causes banks to reduce investments in risk-weighted assets, but at

the same time, increase holdings of nonperforming loans, suggesting the unin-

tended effects of higher capital requirements on credit risks. They also find the

amount of capital buffers has an important impact on banks’ management prac-

tices even when regulatory capital requirements are not binding.
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In Chapter 14, Gerraint Johnes and Jill Johnes survey applications of panel

data methods in the economics of education. They focus first on studies that

have applied a difference-in-difference approach (using both individual and

organization level data). Then they explore the way in which panel data can

be used to disentangle age and cohort effects in the context of investigating

the impact of education on subsequent earnings. The survey next examines

the role of panel data in assessing education peer effects and intergenerational

socioeconomic mobility. The review ends by looking at adaptations of methods

to assess efficiency in a panel data context, and dynamic discrete choice models

and their importance in the context of evaluating the likely effects of policy

interventions. The survey is intended to highlight studies that are representative

of the main areas in which the literature has been developed, rather than to be

encyclopedic.

In Chapter 15, corresponding author Scott Atkinson analyzes panel data

studies of the most widely examined energy consumption industries—electric

power, railroads, and airlines. For electric power, the choices between utility

level versus plant-level data, cross-sectional versus panel data, and pooled-data

analysis versus fixed-effects (FE) estimation generally makes little difference.

A consensus also exists across estimates of cost, profit, and distance functions,

the systems including these functions. Generally, studies reject homogeneous

functional forms and find nearly constant returns to scale (RTS) for the largest

firms. Residual productivity growth declines over time to small, positive levels,

and substantial economies of vertical integration exist. Cost saving can accrue

from a competitive generating sector. Controversy remains regarding the

Averch-Johnson effect and the relative efficiency of publicly owned versus pri-

vately owned utilities. Railroads exhibit increasing RTS, substantial inefficien-

cies, and low productivity growth. Airlines operate close to constant RTS and

enjoy modest productivity growth. Substantial inefficiencies decrease with

deregulation. A valuable alternative to FE estimation is a control function

approach to model unobserved productivity.

In Chapter 16, Georgia Kosmopoulou, Daniel Nedelescu, and Fletcher

Rehbein survey commonly used methods and provide some representative

examples in the auction literature in an effort to highlight the value of panel data

techniques in the analysis of experimental data obtained in the laboratory.

In Chapter 17, Paul D. Allison, Richard Williams, and Enrique Moral-

Benito point out that panel data make it possible both to control for unobserved

confounders and to allow for lagged, reciprocal causation. Trying to do both at

the same time, however, leads to serious estimation difficulties. In the econo-

metric literature, these problems have been solved by using lagged instrumental

variables together with the generalized method of moments (GMM). In this

chapter, the authors show that the same problems can be solved by maximum

likelihood estimation implemented with standard software packages for struc-

tural equation modeling (SEM). Monte Carlo simulations show that the ML-

SEM method is less biased and more efficient than the GMM method under
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a wide range of conditions. ML-SEM also makes it possible to test and relax

many of the constraints that typically are embodied in dynamic panel models.

In Chapter 18, Rico Merkert and Corinne Mulley notice that panel data have

been widely used for analyzing both the demand and supply sides of transport

operations. Obtaining true panels at the international level, however, appears to

be difficult for various reasons. For the demand side, their peer review of the

transport literature has demonstrated that pseudo panel data can be treated as

if it is true panel data. For the supply side, this approach results in many studies

using unbalanced panels instead. In terms of methods, they find that the DEA

approach overcomes the problems of conflicting KPIs when considering overall

cost efficiency while providing a robust tool for implementing change through

the understanding of the key determinants of efficiency. Their case study about

determinants of urban and regional train operator efficiency has evidenced, that

the spatial context matters for the sample composition of DEA panel analysis in

transport and that separating the panel into context specific subsamples can pro-

duce more robust results.

In Chapter 19, David Humphrey outlines the problems encountered when

using banking panel data. Workarounds and solutions to these problems are

noted. Although many of these problems occur when selecting and obtaining

a panel data set, others are specific to the topics investigated, such as bank scale

and scope economies, technical change, frontier efficiency, competition, and

productivity. Illustrative results from published studies on these topics also

are reported.

In Chapter 20, Christoph Siebenbrunner andMichael Sigmund point out that

financial contagion describes the cascading effects that an initially idiosyncratic

shock to a small part of a financial system can have on the entire system. They

use two types of quantile panel estimators to imply that if certain bank-specific

drivers used by leading regulatory authorities are good predictors of such

extreme events, where small shocks to some part of the system can cause the

collapse of the entire system. Comparing the results of the quantile estimation

to a standard fixed-effects estimator they conclude that quantile estimators are

better suited for describing the distribution of systemic contagion losses. Com-

paring the results to the aforementioned regulations, they find several recom-

mendations for improvement.

In Chapter 21, Keshab Bhattarai reviews applications of panel data models.

The process of substitution of labor by capital as discussed in Karabarbounis

and Neiman (2014) and Picketty (2014) has increased the capital share, causing

a reduction in labor share of about 10% magnitude. They also studied the

impacts of trade and aid on economic growth. Fixed and random effect esti-

mates show that investment rather than aid was a factor contributing to growth.

Exports tied to aid are always harmful for growth of recipient countries.

Although the evidence is mixed for the individual economies, there appear to

be trade-offs between unemployment and inflation in the panel of Organisation

for Economic Co-operation and Development (OECD) countries as shown by

xxiv General Introduction



the random and fixed effect models in which the Hausman test is in favor of

random effect model. A simple VAR model with two lags on inflation and

unemployment shows persistence of inflation and unemployment rates among

the OECD economies. The ratio of investment to GDP (gross domestic product)

is a significant determinant of growth rates across OECD countries, and FDI

contributes positively to growth. Regression results are robust on the grounds

of stationarity and cointegration criteria. Threshold panel models developed

by Hansen (1997) and Caner and Hansen (2004) show how to study regime

changes occurring in the real world.

In Chapter 22, Andrew Jones, Apostolos Davillas, and Michaela Benzeval

add to the literature about the income-health gradient by exploring the associ-

ation of short-term and long-term income with a wide set of self-reported health

measures and objective nurse-administered and blood-based biomarkers, as

well as employing estimation techniques that allow for analysis beyond the

mean. The income-health gradients are greater in magnitude in cases of

long-run rather than cross-sectional income measures. Unconditional quantile

regressions reveal that the differences between the long-run and the short-run

income gradients are more evident toward the right tails of the distributions,

where both higher risk of illnesses and steeper income gradients are observed.

In Chapter 23, Steve Ongena, Andrada Bilan, Hans Degryse, and Kuchulain

O’Flynn review the data, econometric techniques, and estimates with respect to

two recent and salient developments in the banking industry, i.e., securitization

and globalization. The traditional banking market has become wider in its busi-

ness models, through securitization, and in its geographical dispersion, through

global operations. Both developments have brought new challenges for the

understanding of basic questions in banking. Questions such as what determines

credit flows or what are the channels of transmission for monetary policy

recently have been addressed through this new optic. This review establishes

that access to micro data has enabled researchers to arrive at increasingly better

identified and more reliable estimates.

In Chapter 24, Claire Economidou, Kyriakos Drivas, and Mike Tsionas

develop a methodology for stochastic frontier models of count data allowing

for technological and inefficiency induced heterogeneity in the data and endog-

enous regressors. They derive the corresponding log-likelihood function and

conditional mean of inefficiency to estimate technology regime-specific ineffi-

ciency. They apply our proposed methodology for the states in the United States

to assess efficiency and growth patterns in producing new knowledge in the

United States. The findings support the existence of two distinct innovation

classes with different implications for their members’ innovation growth.

In Chapter 25, Emmanuel Mamatzakis and Mike Tsionas propose a novel

approach to identify life satisfaction and thereby happiness within a latent vari-

ables model for British Household Panel Survey longitudinal data. By doing so,

they overcome issues related to the measurement of happiness. To observe hap-

piness, they employ a Bayesian inference procedure organized around
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Sequential Monte Carlo (SMC)/particle filtering techniques. Happiness effi-

ciency captures individuals’ optimal happiness to be achieved should they

use their resource endowment efficiently. In addition, they propose to take into

account individual-specific characteristics by estimating happiness efficiency

models with individual-specific thresholds to happiness. This is the first study

that departs from restrictions that happiness efficiency, and thereby ineffi-

ciency, would be time-invariant. Key to happiness is to have certain personality

traits; being agreeable and being an extrovert assist efforts to enhance happiness

efficiency. On the other hand, being neurotic would impair happiness

efficiency.

In Chapter 26, Vasso Ioannidou and Jan de Dreu study how the introduction

of an explicit deposit insurance scheme in Bolivia in 2001 affected depositors’

incentives to monitor and discipline their banks for risk-taking. They find that

after the introduction of the explicit deposit insurance scheme, the sensitivity of

deposit interest rates and volumes to bank risk is reduced significantly, consis-

tent with a reduction in depositor discipline. This effect operates mainly though

large depositors—the class of depositors who were sensitive to their banks’ risk

in the first place. The authors also find that the larger the decrease in depositor

discipline is, the larger the insurance coverage rate is. Deposit interest rates and

volumes become almost completely insensitive to bank risk when the insurance

coverage is higher than 60%. The results provide support for deposit insurance

schemes with explicit deposit insurance limits per depositor.

In Chapter 27, Sarantis Kalyvitis, Sofia Anyfantaki, Margarita Katsimi, and

Eirini Thomaidou review the growing empirical literature that explores the

determinants of export prices at the firm level. They first present evidence from

empirical studies that link firm export pricing to destination characteristics

(gravity-type models). The main implications of channels that can generate

price differentiation, such as quality customization, variable markups, and

exchange rate pass-through, and financial frictions then are explored. A newly

compiled panel data set from Greek exporting firms is used to present evidence

from regressions with export price as the dependent variable and show how the

main economic hypotheses derived in theoretical models are nested in empirical

specifications.

In Chapter 28, Almas Hermati and Nam Seok Kim investigate the relation-

ship between economic growth and democracy by estimating a nation’s produc-

tion function specified as static and dynamic models using panel data. In

estimating the production function, they use a single time trend, multiple time

trends, and the general index formulations to the translog production function to

capture time effects representing technological changes of unknown forms. In

addition to the unknown forms, implementing the technology shifters model

enabled this study to find possible known channels between economic growth

and democracy. Empirical results based on a panel data of 144 countries

observed from 1980 to 2014 show that democracy had a robust positive impact

on economic growth. Credit guarantee is one of the most significant positive

xxvi General Introduction



links between economic growth and democracy. In order to check the robust-

ness of these results, a dynamic model constructed with a flexible adjustment

speed and a target level of GDP also is tested.

In Chapter 29, Almas Hesmati, Esfandiar Maasoumi, and Biwei Su examine

the evolution of well-being (household income) of Chinese households over

time, and its determinants. They study (stochastic) dominance relations based

on Chinese Household Nutrition Survey (CHNS) data. They reveal a profile of

general mobility/inequality and relative welfare in China over time and among

population subgroups. The authors report that from 2000 to 2009, welfare has

improved steadily along with Chinese economic development and growth. Pair-

wise comparison of subgroups reveals that there is no uniform ranking by

household type, gender of household head, or age cohort. Married group and

nonchild rearing group second order dominate single/divorced group and child

rearing group. Inequality in subgroups with different educational levels and

household sizes suggests groups with higher education and smaller household

size tend to be better off than their counterparts. Longitudinal data allow esti-

mation of permanent incomes, which smooth out short-term fluctuations. Treat-

ing the data as a time series of cross sections also avoids imposition of constant

partial effects over time and across groups. This is appropriate given the

observed heterogeneity in this population. Individual/group specific compo-

nents are allowed and subsumed in conditional dominance rankings, rather than

identified by panel data estimation methods.

In Chapter 30, Mike G. Tsionas, Konstantinos N. Konstantakis, and

Panayotis G. Michaelides present a production function, which is based on a

family of semi-parametric artificial neural networks that are rich in parameters,

in order to impose all the properties that modern production theory dictates.

Based on this approach, this specification is a universal approximator to any

arbitrary production function. All measures of interest, such as elasticities of

substitution, technical efficiency, returns to scale, and total factor productivity,

also are derived easily. Authors illustrate our proposed specification using data

for sectors of the US economy. The proposed specification performs very well

and the US economy is characterized by approximately constant RTS and

moderate TFP, a finding that is consistent with previous empirical work.
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1 Introduction

In this chapter, we provide a broad synopsis and background to standard econo-

metric techniques. The aim of this chapter is to act as a foundation for the rest of

this book and to make it a self-contained reference book. Inevitably, this will

mean a brief account of many of the issues we discuss, and we aim to provide

references that will give more complete and comprehensive accounts of each

section we address.

We begin by outlining some fundamental concepts that lie behind much of

what goes on in econometrics: the idea of a population, random variables, ran-

dom sampling, the sampling distribution, and the central limit theorem.We then

explore two of the basic approaches to constructing an econometric estimator:

the maximum likelihood principal and the general method of moments. We then

go through the standard linear model, the basic workhorse of econometrics, and
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the various problems that can arise in this familiar case. We then explore the

issue of nonstationarity, which has dominated many of the developments in

econometrics during the last 30 years.

2 Some Basic Concepts

At its heart, econometrics is about quantifying effects in the real world and

assessing these effects to gain some notion of their reliability. Economic theory

often can suggest the direction of a causal effect, but it rarely suggests the exact

magnitude of such an effect nor what the correct functional form should be. To

make the realm of econometrics operational, we need a statistical framework

that allows us to operate in a wide range of situations, at least to a good approx-

imation of the real world. This framework begins with the concept of the pop-

ulation. We assume that there is an infinitely large population of events or

outcomes that are of interest to us. We cannot know or observe all of these out-

comes, but we wish to make some inference about the population as a whole.

We then assume that this population is made up of individual events that are

random but drawn from the population that has some given distribution. This

distribution can be described by a set of moments (mean, variance, skewness,

kurtosis, and higher moments), so the mean is simply the average of the pop-

ulation distribution E(y) ¼ μy where y is some random variable, and μy is the
mean of the population distribution, the variance of the population distribution

is E(y � μy)
2 ¼ σy

2 and so on for the higher moments. We cannot observe these

population moments, of course, because we cannot observe the whole popula-

tion. Instead, we try to make some inference about the population by drawing a

sample from this population. Our statistical framework then rests on some key

assumptions about this sample; the first of which is that the sample is drawn at

random; y is a random variable that is part of a population with a population

distribution. When we draw a sample from this population of size n
(y1 … yn), these observations about y cease to be random variables and become

simple numbers. The basic notion of random sampling then has some important

implications. First, as we draw each yi at random from the sample, they should

be independent of each other. That is to say, for example knowing y3 will not
help us in any way to know what value y4 will take, so the observations about y
are independent. Also, as each observation is drawn at random from the same

population, they will have an identical distribution. Hence, the observations

have an independent identical distribution (IID) regardless of the shape or form

of the population distribution.

The next step is to begin to think about the properties of the sample we have

drawn. The sample (y1 … yn) can be used to make inference about the popula-

tion in a wide variety of ways, some of which might be sensible and some might

be highly misleading. For example, we could use the first observation as an esti-

mate of the population mean, although this might not be the best thing to do. We

also could take the average of the sample and use this as an estimate of the pop-

ulation mean. The important question is which would be better and how do we
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make an objective judgment. The answer to this question lies in another impor-

tant concept: the sampling distribution. Let’s suppose we derive some measure

from our sample, say τ ¼ f(y1 … yn). If we then pick another sample, we can

derive another estimate of this measure, τ0 ¼ f(y1
0
… yn

0). If we pick yet another
sample, we can derive another estimate, and so on. This then allows us to define

the sampling distribution of τ and this sampling distribution will have a mean

and a variance. We then would like to see this distribution being related to the

population distribution in a way we can clearly understand. If we are trying to

estimate the mean of the population distribution, we would like to find that

E(τ) ¼ μy, in which case we would say that τ is an unbiased estimate of the pop-

ulation mean, which means that even in a small sample the expected value of τ
equals the true population mean. In some circumstances, this is not possible and

then a weaker but desirable property is limn!∞(τ) ¼ μy, which says that, in the

limit, as the sample size grows to infinity τ equals the true population mean.

This is termed consistency. Of course, there might be more than one unbiased

estimation technique, and we need some way to judge between them. A natural

way to judge between two consistent procedures is to ask which of the two

makes smaller errors on average, that is, to ask which of the two has a sampling

distribution with a smaller variance. So, if we have another procedure, υ ¼ h
(y1 … yn), and both are unbiased, then we would prefer τ if var(τ) < var (υ).

This gives us a basic approach to estimation: We want to find unbiased and

efficient estimators. The other main part of econometric methodology is to draw

inferences about our estimated effects, that is, to be able to draw a confidence

interval around our central estimate and formally test the hypothesis. In order to

do this, we need to know the shape of the sampling distribution. At first sight,

this seems quite challenging. We have a population distribution that might have

any shaped distribution, then we draw a sample from this and derive an indic-

ative measure about that sample. To be able to conduct inference, we need to

know the shape of the sampling distribution. This seems to be a challenging

requirement, but a core theorem that underlies much of econometrics allows

us to do exactly that. This is the central limit theorem. There are actually many

versions of the central limit theorem (Davidson, 1994), but the result is that if

we have a sample of n observations from a population and we derive a statistic

which has a sampling distribution, then as n goes to infinity, the sampling dis-

tribution will converge on a normal distribution. The following multivariate

version of the central limit theorem is given by Greenberg and Webster (1983).

If (y1 … yn) are independently distributed random vectors with mean vector

μ and covariance matrices V1 … Vn and the third moment of y exists, then

n�1=2
Xn

i¼1

yi�μð Þ!N 0, Σð Þ (1)

where

Σ¼ limn�1
Xn

i¼1

Vi (2)
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The key thing here, common to the many extensions of the central limit

theorem, is that, without making any assumption about the distribution of

the population distribution, the sampling distribution is normally distributed.

This then allows us to conduct standard classical inference, which can typi-

cally be done in one of three equivalent ways: the classic student t test, the
P-value, or a confidence interval. In the case of a set of single values discussed
previously, if we had derived a particular value for y, say y* the t test would be
given by

t¼ y∗�μ
ffiffiffi
Σ

p (3)

showing the point on the t distribution where the value y* is located. As n
grows large, this converges on the normal distribution. The point on the nor-

mal distribution beyond which there is only 2.5% of the distribution is 1.96; so

a t value greater than 1.96 would allow us to reject the null hypothesis that the

true value of y is actually μ at a 5% critical value on a two-tailed test. In a con-

venient but broadly equivalent way, this often is expressed as a P-value; that is
the probability under the null that y* is a correct value.

P�value¼ PrH0
j y∗�μj > j yact�μjð Þ (4)

If the t value is exactly 1.96, the P-value will equal 0.05; as the t value rises

above 1.96, the P-value falls below 0.05. P-values are particularly useful when
the relevant distribution is not a normal one, and it is not easy to remember the

correct critical value.

The final largely equivalent way of presenting inference is in terms of a con-

fidence interval, which shows the range of values within which the true value

should lie with a particular degree of certainty. The formula for a 95% confi-

dence interval is

CI95% ¼ y∗ + 1:96
ffiffiffi
Σ

p
, y∗�1:96

ffiffiffi
Σ

pn o
(5)

These three methods of presenting basic inference are well known, but the

key point is that their existence is based on the central limit theorem, which

underlies the normality assumption that is being made in each of these

calculations.

The final point to emphasize in this section is that we were rather vague

regarding exactly what the function is when we previously stated τ ¼ f
(y1 … yn). This vagueness was deliberate because this function can go well

beyond simple descriptive statistics. Therefore, we could think of τ as simply

being the mean of y, but it also could be a regression coefficient or a wide range
of other statistics that are derived from a sample and therefore have a sampling

distribution.
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3 Two Basic Approaches to Estimation

In many basic textbooks, estimation is presented in a rather ad hoc way. It can

be argued, for example, that a model will generate errors and it is sensible to

minimize the squared error as a natural way to motivate ordinary least squares

(OLS) estimation. This is both simple and appealing, but a little extra thought

raises a number of questions: Why not minimize the absolute error? Why not a

higher power of the absolute error? Why not some other nonlinear transforma-

tion of the error, such as the absolute log? Historically, OLS has been pre-

ferred because it has an easy analytical solution that makes it feasible in

the absence of a modern computer, whereas most of the alternatives would

be infeasible. This is no longer an acceptable answer because computers

can do any of the previous calculations quite easily. The correct justification

for OLS and other techniques is that some underlying principles of estimation

make it possible under certain circumstances to justify OLS or other estima-

tion strategies. These principals are maximum likelihood (ML) and the Gen-

eralized Method of Moments (GMM).

4 Maximum Likelihood (ML)

The basic approach of maximum likelihood is both very general and powerful:

If we assume some specific model, this model generally will have some

unknown parameters to be estimated. Given this model structure and a specific

set of parameters, we then are generally able to calculate the probability that a

real-world event (or sample) actually would have occurred. We then choose the

unknown parameters of the model to maximize the probability (or likelihood)

that the real-world event would have occurred. This gives the maximum like-

lihood estimates of the unknown parameters, which then are generally consis-

tent and fully efficient. When it is possible to do maximum likelihood, it is

generally the best estimator. Hendry (1976) has shown that many other estima-

tion techniques, such as two-stage least squares, three-stage least squares, and

other instrumental variable estimation techniques can be interpreted as approx-

imations to the ML estimator.

Suppose we have a sample (y1 … yn) that is drawn from a population prob-

ability distribution P(y jA), where A is a set of unknown parameters to be esti-

mated. We assume that the yi are independent each with probability distribution
of P(yi jA). The joint probability distribution then is given by Πn

i¼1P(yi jA),
because the yi are a sample that are also fixed.We then can restate the joint prob-

ability distribution as the likelihood function.

L Að Þ¼Πn
i¼1P yij Að Þ (6)
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It is generally more convenient to work with the log of the likelihood function.

log L Að Þð � ¼
Xn

i¼1

P yij Að Þ (7)

This can then be maximized with respect to the parameters A to yield the max-

imum likelihood estimates. The advantage of this approach is that it can be

applied to any situation in which we can define the probability of a particular

event, and therefore it can be applied to many nonstandard situations.

If we consider as a starting point a general nonlinear model e ¼ Y � f(X,β),
where Y is a vector of n endogenous variables, X is a matrix of exogenous vari-

ables that would be n � k, e is a vector of n error terms and β is a vector of k
parameters, if we also assume that e�N(0,Σ), that is, the error terms are nor-

mally distributed, then the likelihood function for one period is proportional to,

log L Að Þð Þ��n log Σð Þ� e0Σ�1e (8)

That is to say, under the assumption of normally distributed errors, the likeli-

hood function is a function of the squared errors scaled by the covariance

matrix. This is very close to standard OLS, although it includes a term in the

variance of the residuals. Another useful concept, concentrating the likelihood

function, allows us to transform this into the standard OLS result, making

this function useful in much more complex situations. The idea of concentrating

the likelihood function starts from the idea that without loss of generality we can

always split the parameter vector A into two subvectors (A1,A2). If we know A1,

it is possible to derive an analytical expression for A2, such as A2 ¼ g(A1). Then

it is possible to substitute A2 out of the likelihood function and state a concen-

trated likelihood function just in terms of A1. This often is used to simplify ML

procedures. If we take the model given previously and assume the variance

matrix is a single constant scaler, then, over a sample of n observations, the

likelihood function becomes.

log L Að Þð Þ��n log σ2
� �� e0e=σ2 (9)

If we know the parameters A, we can then take the first-order conditions

with respect to σ2 to give

δ log L Að Þð Þ=δσ2 ¼�n=σ2 + e0e= σ2
� �2

(10)

Solving this for the variance gives

σ2 ¼ e0e=n (11)

We can use this expression to eliminate the variance from the standard

likelihood function to get the concentrated likelihood function

log L∗ Að Þð Þ¼�n�n log e0e=nð Þ (12)
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which is now simply a function of the squared errors. This is the maximum like-

lihood justification for OLS, under the assumption of independent normal resid-

uals with a constant variance OLS is the maximum likelihood estimator. After

we have estimated the parameters of the model, we can recover the maximum

likelihood estimate of the variance from Eq. (11).

Maximum likelihood is generally a consistent and efficient estimation tech-

nique on the assumption that the model being estimated is correctly specified.

Two important matrices that are derived from the likelihood function provide

the bases for most standard inference: the efficient score matrix and the infor-

mation matrix. The efficient score matrix usually is defined as

δ log L Að Þð Þ
δA

¼ S Að Þ (13)

This needs some explanation S(A) is actually a k � n matrix, where k is the

number of parameters; for each observation, 1…n, it contains the derivative

of the likelihood function with respect to each of the parameters at that obser-

vation. At the maximum, the sum down each columnwill be zero, because at the

maximum this will effectively be the first-order conditions. This matrix is tell-

ing us how far the maximum at each observation is away from the sample

average.

The information matrix is given by the second derivative of the likelihood

function with respect to the parameters.

E �δ2 log L Að Þð Þ
δAδA0

� �
¼ I Að Þ (14)

An important result is that the variance of the ML parameters is asymptotically

given by the inverse of the information matrix, and this is asymptotically equiv-

alent to the outer product of the score matrix.

Var AMLð Þ¼ I AMLð Þð Þ�1 ¼ S AMLð Þ0S AMLð Þ (15)

The Cramer-Rao lower bound theorem states that any other estimation tech-

nique must yield a variance that is equal to or greater than the ML variance.

For example, if A* is a set of parameters generated by any other estimation tech-

nique, then the lower bound theorem states that Var(A*) �(I(AML))
�1. This is

truly remarkable because it states that ML is better than any other technique,

even one we have not invented yet.

ML also forms the bases of most of the ways we construct hypothesis tests.

In any classic hypothesis test, we set up a null hypothesis (H0), and we see if we

can reject this against an alternative (H1). This typically involves deciding if an

unrestricted model (H1) is significantly different from a set of theoretical

restrictions (H0). ML provides a natural framework to formalize this idea,

so all we need to do is to compare the value of the likelihood function at the
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unrestricted point and the restricted point and to find a way to judge if this dif-

ference is significant. This is exactly what the fundamental likelihood ratio test

does. It also can be shown that in a testing context, twice the difference between

the value of the log likelihood function at the maximum point and the restricted

point has a χ2 distribution. The likelihood ratio test is given by

LRT¼ 2 log L AMLð Þð Þ� log L Arð Þð Þ� χ2 mð Þ�
(16)

where Ar is a set of restricted parameters and m is the number of restrictions.

This formulation is the fundamental of testing, but it is not always conve-

nient to employ because, in some circumstances, it can be difficult to estimate

either the restricted or unrestricted models. For this reason, two other basic test-

ing procedures allow us to approximate the likelihood ratio test without estimat-

ing either the restricted or unrestricted model. If we estimate only the

unrestricted model and approximate the likelihood ratio test from this point,

we are conducting a Wald test. If we estimate only the restricted model, then

we are performing a LaGrange Multiplier (LM) test.

The Wald (1943) test is given by

W¼ g AMLð Þ½ �0 G I AMLð Þð Þ�1G0
n o

g AMLð Þ½ � � χ2 kð Þ (17)

where G is a set of k restrictions on A, and g is the derivative of the restrictions
(δG(A)/δA). This test requires us only to estimate the model at the unrestricted

point. The most common example of a Wald test is the student t test, in which

we estimate an unrestricted model and then test individual coefficients for a

restricted value (typically zero), but without estimating the model subject to this

restriction.

The LaGrange Multiplier (LM) test estimates the model only at the

restricted point and then approximates the LR test from that point. The test

is defined as

LM¼ S Arð Þ½ �0 I Arð Þ½ ��1 S Arð Þ½ � � χ2 kð Þ (18)

where Ar is the restricted set of parameters. Common examples of the LM tests

are tests for ARCH or serial correlation in which we estimate the model without

these features (the restricted model) and then calculate a test against these fea-

tures as the alternative. A particularly common and convenient version of the

LM test under linear OLS estimation is to take the residuals from an OLSmodel

and regress them on the exogenous variable and the restrictions (lagged errors in

the case of serial correlation). The LM test then is given by nR2 from this aux-

iliary regression.

Both the LM and Wald tests make a quadratic approximation to the likeli-

hood ratio test. If the likelihood function were quadratic (which it usually is

not), then all three would give the same answer. In general, however, we expect

that W > LR > LM, that it the Wald test overestimates the LR test, and the LM

test underestimates it (Berndt & Savin, 1977).
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One limiting assumption given previously is that so far we have assumed

that the observations on y are independent. This will be true under that

assumption of random sampling, but, in many cases, this is not valid. The most

obvious case is time series data in which an observation at period t is not gen-
erally independent of the observation at t � 1. There is, however, an important

extension to ML that allows us to deal with this case—the prediction error

decomposition (Harvey, 1981). This rests on a basic definition of conditional

probability, Pr(α,β) ¼ Pr (a jβ) Pr (β). Because likelihood functions are

essentially statements about probability, this can be applied directly to a like-

lihood function. Suppose we have a general joint log likelihood function for a

set of time series observations y1 … yT. This can be factorized to turn it into a
sequence of likelihood functions, each of which condition on the past vari-

ables as if they were fixed.

logðL y1…yTð Þ¼
XT�k

i¼0

log yT�ij y1…yT�1�ið Þ+ log y1…ykð Þ (19)

where k is the number of lags in the relationship between y and its past values.

The last term in Eq. (19) is essentially initial conditions that can be dropped

from the maximization.

It often has been said that a weakness of maximum likelihood is that we

assume that we have the correct model and, if this assumption is false, then

the whole procedure collapses. A much simpler process, such as OLS, might

be more robust. This argument was effectively countered by White (1982),

who introduced the notion of quasi maximum likelihood (QML). This states that

under a wide range of misspecifications, ML still will be a consistent estimator

although it will no longer be fully efficient because it will not be the correct ML

estimator. White, however, showed that what goes seriously wrong is the infer-

ence we draw under maximum likelihood, neither the inverse information

matrix nor the outer product of the score matrix are consistent estimators for

the correct covariance matrix of the parameters. Instead, he derives a generic

robust covariance matrix, which is consistent under full ML assumptions and

when QML is only a consistent estimator but not efficient. The formula for this

robust covariance matrix is

C AQMLð Þ¼ I AQMLð Þ�1 S AQMLð Þ0S AQMLð Þ� �
I AQMLð Þ�1

(20)

whereC(AQML) is the QML robust covariance matrix, given as a combination of

the information matrix and the outer product of the score matrix. Under full ML

assumptions, these two are equivalent, so the last two terms would cancel, giv-

ing us the standard information matrix. Under QML assumptions, these two

matrices are no longer even asymptotically equivalent, and we get this more

general formula. This is the basis of all the robust covariance matrices that have

been later developed in econometrics. In general, we can use this robust
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covariance matrix in the construction of either Wald or LM tests to give robust

test statistics. The LR test, however, is no longer valid because it runs directly

from the likelihood function, which in the case of QML, is incorrect.

5 Generalized Method of Moments (GMM)

GMM was introduced into econometrics by Hansen (1982), and an excellent

survey of the approach can be found in Hall (2005). Although ML is always

the best option when it is feasible, there are many circumstances in which it

is not a practical option: Theory rarely tells us exactly from which distribution

a set of errors should be drawn, a crucial factor in formulating the correct ML

estimator; it might not always be possible to fully specify the probability dis-

tribution; and the computational burden might be extreme or the likelihood

function might be relatively flat and therefore hard to maximize. In these

circumstances, GMM provides a computationally convenient alternative to

ML, which, although inevitably less efficient, is feasible and computationally

tractable.

As the name suggests, GMM is a generalization of a much earlier technique,

method of moments, which has been part of the statistical toolkit since the late

19th century. At its most basic level, method of moments is a technique that

allows us to estimate the moments of a population distribution based on the esti-

mated moments from a particular sample. The key distinguishing feature of

method of moments is that if we have K moment conditions that we wish to

satisfy, then we also will have K parameters to estimate. This implies that gen-

erally we will be able to make each of the moment conditions hold exactly. In

GMM estimation, we typically will have L > Kmoment conditions, where K is

the number of parameters being estimated. Because we will not be able to make

all the moment conditions hold at the same time, there must be a tradeoff

between competing moment conditions.

Method of moments estimation typically was used to estimate the form of a

particular population distribution. In the late 19th century, Karl Pearson devel-

oped what is now known as the Pearson family of distributions, which are

defined by a vector of four parameters that describe the form of a particular dis-

tribution. These four parameters can capture a wide variety of different standard

distributions. For example, suppose we want to know the first moment of the

population distribution of a random variable y, the moment condition we want

to satisfy is E(y) � μ ¼ 0 where μ is the population mean. The sample analogue

to this moment condition, for a sample of n is then n�1
Pn

i¼1yi� μ̂¼ 0. Here we

have one moment condition and one parameter to estimate, so we can solve this

condition exactly to give μ̂¼ n�1
Pn

i¼1yi. This basic idea of method of moments

can be extended to produce a range of standard instrumental variable estimators

(see Hall, 2005) in which the moment conditions involve orthogonality between

the instruments and the error terms. Instrumental variable estimation first
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entered mainstream econometrics in the 1940s as a solution to the error in vari-

ables problem (although strictly speaking, the first example of this technique

was in Wright (1925), which had little impact at the time). Consider a simple

case:

yt ¼ αx0t + u1t (21)

But the independent variable is observed with error such that

xt ¼ x0t + u2t (22)

Because the true regressor is unobservable in estimation, we replace this with

the observed variable

yt ¼ αxt + ut (23)

If we estimate this using OLS, we will have a biased coefficient because of the

correlation between the observed regressor and the error term. Reiersol (1941)

and Geary (1948) both suggested the instrumental variable approach as a solu-

tion to this problem. This suggestion was to propose the existence of another

variable z, which is correlated with x but uncorrelated with the error in

Eq. (23). This then gives the following moment condition

Cov zt, ytð Þ�αCov zt, xtð Þ¼ 0 (24)

This method of moments estimator gives rise to the instrumental variable esti-

mator for α. Sagan (1958) then gave a full statistical underpinning for instru-

mental variable estimation.

To set up the GMM estimator in its most general form, we first have to

define a set of population moment conditions, following Hall (2005). If we

let φ be a vector of unknown parameters to be estimated, ν a vector of random
variables, and g a vector of functions, then the population moment conditions

can be stated in a general form as

E g νt, φð Þ½ � ¼ 0 (25)

The example in Eq. (24) is a special case of this; when there are kmoments and k
parameters, it gives rise to a method of moments estimator and each moment

can hold exactly in a sample. In general, however, there can be more moment

conditions than parameters to be estimated, and all the moments generally can-

not be met simultaneously. Therefore, there must be a tradeoff between the

moments as to how close each is to zero. It is this tradeoff that gives rise to

the GMM technique. Therefore, the GMM estimator is given by the value of

φ, which for a given sample of T observations minimizes

Q φð Þ¼ T�1g νt, ϕð Þ0WtT
�1g νt, φð Þ (26)
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where Wt is a positive semi definite matrix that converges in probability to a

matrix of constants. GMM generally is consistent for any matrix Wt that obeys

this restriction. Clearly different matrices could give very different results, so

we need some way to choose between these alternatives. The question then

arises as to how we should choose the optimal weighting matrix and exactly

what we mean by optimal in this context. This is resolved by defining the opti-

mal weighting matrix W∗ to be the matrix that minimizes the asymptotic vari-

ance of φ. Similar to the argument that the Cramer Roa lower bound justifies the

use of ML over other estimation techniques, we choose the estimator within the

class of GMM estimators that is the most efficient.

It is possible to use the central limit theorem to show that

T�1
XT

t¼1
g νt, φð Þ�N 0, Sð Þ (27)

where S is the covariance matrix of the moment conditions; Hansen (1982) dem-

onstrated that W∗ ¼ S�1. This then has an apparent circularity, to estimate W∗

we must first know φ and to estimate φ we must first knowW∗. This circularity

can be resolved by implementing Hansen’s two-step procedure. First, we obtain

a consistent estimate of φ by using any admissible matrixW, often just the iden-

tity matrix. Based on this set of parameters, we estimateW∗, and given this esti-

mate, we estimate φ in a second estimation step. It would be possible to iterate

this procedure to convergence, but this is not often done because, theoretically

at least, there is no advantage in further steps.

6 Some Examples of Moment Conditions

It helps understanding to give some simple examples of moment conditions.

Consider the case of a standard linear model:

yi ¼ xiϕ+ ui (28)

where y is the dependent variable, x is a vector of n exogenous variables, ϕ is a

suitably dimensioned vector of parameters, and u is an error term. The moment

conditions that will generate exactly the same result as OLS will be

E x0iui
� �¼E x0i yi� xiϕð Þ� �¼ 0 (29)

which reflects that fact that OLS produces parameter estimates that make the

exogenous variables orthogonal to the error term. This is a method of moment’s

estimator because there will be exactly as many moment conditions as param-

eters to estimate. We can generalize this to be an instrumental variable estimator

or generalized methods of moment estimator by introducing a vector of vari-

ables zi of p suitable instruments, in which there are more instruments in the

z vector than x’s (p > n). The moment conditions then become

E z0iui
� �¼E z0i yi� xiϕð Þ� �¼ 0 (30)
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7 The Standard Linear Model and Least Squares

In this section, we consider the basic properties of least squares estimation of the

standard linear model, which has for years been the workhorse of econometrics.

Consider

yt ¼ xtϕ+ ut (31)

as defined previously and let the least squares estimate of the parameters be ϕ̂.
Now let us assume that following;

1. The vector xt is nonstochastic
2. The error term ut is a normal random error with mean zero and covariance

matrix E(uu0) ¼ σ2I

It is easy to show that we can write the least squares estimator as

ϕ̂¼ϕ + x0xð Þ�1
x0u (32)

In order to make statements about the behavior of ϕ̂, we need to know about the

behavior of(x0x)�1 and x0e. The strongest and usual assumption is that1

lim

t!∞
x0x
T

	 

¼Ω and

lim

t!∞
x0u
T

	 

¼ 0 (33)

where Ω is a finite nonsingular matrix. The x’s are not linearly dependent in the
limit, they settle down to a constant matrix on average and in the limit there is no

relationship between the x’s and the error term. Under these assumptions, the

least squares is the maximum likelihood estimator, and it is consistent and effi-

cient and often is described as the best linear unbiased estimator (BLUE). Given

these assumptions, it is easy to demonstrate the consistency of LS estimation.

We can restate Eq. (32) as

ϕ̂¼ϕ+ p lim
x0x
T

	 
�1 x0u
T

" #

(34)

ϕ̂¼ϕ + p lim
x0x
T

	 
�1
" #

p lim
x0u
T

� �
(35)

ϕ̂¼ϕ + lim
T!∞

x0x
T

	 
�1
" #

p lim
x0u
T

� �
(36)

ϕ̂¼ϕ +Ω�10 (37)

ϕ̂¼ϕ (38)

1. We define orders of magnitude and convergence in the appendix to this chapter.
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Therefore, LS estimation gives a consistent estimate of the true parameters.

The failures of OLS can be summarized in terms of failures of the two sets of

the previous assumptions in one way or another. Consider the following cases.

8 Failure of E(uu 0) 5 σ2I

This can occur in two principal ways: the identity matrix might have constant

diagonal elements but its off-diagonal elements might be non-zero. In the case

of a time series regression, this would be interpreted as a serially correlated error

term. In the case of a cross-section or panel regression model, this would be

interpreted as a spillover in the errors from one individual to another, giving

rise to spatial econometrics literature. It also is possible that the off-diagonal

elements might be non-zero, but the diagonal elements have different values.

This would give rise to the case of heteroskedasticity.

In both of these cases, LS remains a consistent estimation technique,

although it is no longer the maximum likelihood estimator and so it is not fully

efficient. Inference regarding the parameter estimates, however, is no longer

correct using the standard formulas, and inference then must be based on some

version of the quasi maximum likelihood covariance matrix (Eq. 20). In prac-

tice, when using LS, it is not generally possible to apply Eq. (20) directly.

Therefore, some specific form of the QML covariance matrix must be used; typ-

ically for serial correlation in a time series regression, this would be the Newey

andWest (1987) covariance matrix and for heteroscedasticity, it would be a ver-

sion of the White (1980) covariance matrix.

9 The Vector xt is Stochastic

Relaxing the assumption that x is nonstochastic has only minor consequences as

long as the second assumption in Eq. (33) still holds. LS will no longer be unbi-

ased in small samples, but it remains consistent and efficient.

10 Failure of
lim

t!∞
x 0u
T

� �
50

This can arise for a variety of reasons, but principally because either x is not

weakly exogenous or that u is not random, perhaps because it contains some

element of measurement error in the x0s.
There are various definitions of exogeneity, but in terms of obtaining con-

sistent parameter estimates, the key definition is weak exogeneity. Engle,

Hendry, and Richard (1983) found that this requires a weakly exogenous var-

iable to be independent of the current relevant endogenous variables and that the

parameters that generate the endogenous variable and the weakly exogenous

variable are variation free. The most obvious way in which this can be violated

is if x is a function of the current endogenous variable, giving rise to the standard
case of simultaneous equation bias.
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The other main cause of the failure of this condition is when the error terms

are contaminated by something other than a purely random component. The

principal way in which this can happen is when we measure the x variables with
error. Therefore, if x ¼ x∗ + υ where x∗ is the true value of the variable, υ is a

measurement error, and x is the observed value of the variable including the

measurement error. In this case, Eq. (31) becomes yt ¼ xtϕ + (ut � ϕυt) where
the term in brackets is the total error term. Now there is a clear correlation

between the error term and x because both contain υ and the condition will

be violated.

In both of these cases, LS estimation will give biased estimates of the param-

eters, and it is no longer consistent. The most efficient way forward would be to

specify an appropriate structural model and estimate it using maximum likeli-

hood. This is not always feasible, however, because it might not be possible to

specify a complete model nor to estimate it in a practical way. The usual alter-

native is to resort to an instrumental variable estimator or GMM, and then the

challenge is to find some appropriate set of instruments that are both properly

exogenous and not weak.

11 Failure of
lim

t!∞
x 0x
T

� �
5Ω

This assumption might be violated for a number of trivial reasons and for one

very important reason. The most obvious of the trivial reasons is where perfect

multicollinearity exists between the x’s. In this case, x0x/T becomes singular and

this assumption is violated. Themulticollinearity needs to be removed by reduc-

ing the size of the x vector.

Another trivial reason would be if one of the x variables contains a determin-

istic linear trend, although in this case the properties of LS estimation might be

recovered by a slightly more complex analysis.

The important reason why this condition might fail is simply that implicitly

behind this statement is the assumption that the x variables are weakly station-

ary. A stochastic process xt is weakly (second-order or covariance) stationary if
the first two moments of the process do not change over time. A stationary pro-

cess will obey the following conditions:

E xtð Þ¼ μ<∞ for all t (39)

E xt�μð Þ2
h i

<∞ for all t (40)

E xt�μð Þ xt+ k�μð Þ½ � ¼ γk for all t,k (41)

If any of these conditions is violated, then the variable is not weakly

stationary. One of the simplest forms of nonstationary process is the

random walk

xt ¼ xt�1 + εt (42)
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where εt is a white noise error process with constant variance σ
2. We can alter-

natively write this as

xt ¼ x0 +
Xt

i¼1

εi (43)

In this case, the expected value of xt is xt�1 and therefore it changes at each

point in time violating Eq. (39). Also, the variance of xt is easily shown to

be var(xt) ¼ var (ε1 + ε2 + ⋯ + εt) ¼ tσ2, which goes to ∞ as t ! ∞, thus

violating Eq. (40). This also means that

lim

t!∞
x0x
T

	 

6¼Ω (44)

as the variance of x will go to infinity. A process such as Eq. (42) can be ren-

dered stationary by taking the first difference xt � xt�1 ¼ wt ¼ εt, in which case
x is referred to as an integrated process. Because it needs only to be differenced
once to make it stationary, it is integrated of order 1, or I(1). A random walk

series such as Eq. (42) is of smaller order in magnitude than T, that is

T�1
PT

t¼1xt
2 � op Tð Þ.

The nonstationarity of the x variables raises another important issue. If both

x and y are stationary in the standard linear model yt ¼ xtϕ + ut, then the error

term ut also will be stationary. If either x or y is nonstationary, however, then

there is no guarantee of the stationarity of the error term, and it is again possible

that we have a failure in the assumption that
lim

t!∞
x0u
T

� �¼ 0. This is the classic

case of a spurious regression defined by Granger and Newbold (1974), which

comes about essentially when the last term in Eq. (34) is undefined and the LS

estimator does not converge to anything well defined.

12 Cointegration

Although it generally is true that if x and y are nonstationary then the error

term also will be nonstationary, this does not always have to be the case. When

this happens, it gives rise to the important special case of cointegration.

Following Engle and Granger (1987), we can define cointegration. Let wt be

a k� I vector of variables, then the components of wt are said to be cointegrated

of order (d,b) if

(1) All the components of wt are I (d)
(2) There is at least on vector of coefficients α such that αwt� I(d � b)

In other words, there is a combination of the wt variables that is integrated at a

lower order than the variables themselves.

This gives rise to the important Granger Representation Theorem.
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Let wt be a vector of k� I(1) components and assume that there exists r> 0

cointegrating combinations of wt. Then there exists a valid error correction

model of the form

φ Lð Þ 1�Lð Þwt ¼�πwt�k + υ + εt (45)

where π has rank r < n.
A moving average representation also exists.

1�Lð Þwt ¼C Lð Þ εt + υð Þ
¼C 1ð Þ εt + υð Þ+C∗ Lð ÞΔ εt + υð Þ (46)

where C(1) has rank n – r.
This theorem demonstrates several things. First, in the presence of nonsta-

tionary variables, cointegration is required for a model to be valid. Second, if

there are r cointegrating vectors, there are n – r common stochastic trends

(represented by the rank of the C(1) matrix). Third, in the absence of cointegra-

tion, the regression will be spurious. Fourth, the existence of cointegration

implies the existence of Granger causality in at least one direction. Finally, that

the time dating of the levels terms is unimportant.

Given these concepts, we now can define the property of an LS regression in

the presence of cointegration. We start with the formula for the LS estimator:

ϕ̂¼ϕ+ p lim
x0x
T

	 
�1 x0u
T

" #

(47)

We already have seen that x
0x
T � op Tð Þ that is, the x variables explode proportion-

ally to the sample size T. Because the model is cointegrated and the error is

stationary, we also can show that x0u
T � op 1ð Þ, therefore

T ϕ̂�ϕ
� ��Op 1ð Þ (48)

ϕ̂�ϕ
� ��Op T�1

� �
(49)

which means that the bias in the LS estimator disappears in proportion to the

inverse of the sample size T. This is in contrast to the standard case of LS with

stationary variables, in which ϕ̂�ϕ
� ��Op T�0:5

� �
, where the bias disappears

in proportion to the inverse of the square root of the sample size. This is known

as the super consistency of LS estimation with cointegrated nonstationary

variables.

13 Conclusion

In this chapter, we have reviewed some of the basic concepts that lie behind

standard estimation and regression work. This began with the simple ideas of

sampling, the population, and the sample distribution. We discussed the central
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limit theorem and the law of large numbers. We then outlined the two basic

approaches to classical estimation: the maximum likelihood approach and

instrumental variables/Generalized Methods of Moments. We then discussed

the basic linear regression model and the problems that can arise in LS estima-

tion when the underlying assumptions prove to be false. Finally, we outlined

the problem of nonstationarity and cointegration and showed how under

cointegration estimation actually can be more effective based on the super

consistency proof.

Appendix Order of Magnitude and Convergence

In this appendix, we summarize the important concept of orders of magnitude

and convergence, which is fundamental to understanding the analysis of state-

ments such as Eq. (33). More detail about these fundamental concepts are found

in Judge, Griffiths, Carter Hill, Lutkepohl, and Lee (1985).

Order of magnitude of a sequence: A sequence aT is at most of order Tk if
there exists a real number N such that

T�k|aT |�N (A.1)

This is written as aT ¼ O(Tk).
Smaller order of magnitude: A sequence aT is of smaller order of magnitude

than Tk if

lim
T!∞

T�kaT ¼ 0 (A.2)

This is written as aT ¼ o(Tk).
These definitions can be extended to vectors and matrices by applying

the definitions to every element of the matrix under consideration.

There are also some useful algebraic results in this area. Let aT ¼ O(Tk)
and bT ¼ O(Tj), then

aTbT ¼O Tk + j
� �

aTj js ¼O Tks
� �

aT + bT ¼O max Tk, Tj
� �� �

(A.3)

Convergence in probability: A sequence of random variables x1, x2, … , xT con-
verges in probability to the random variable x if, for all ε > 0

lim
t!∞

¼P j xT � xj > ε½ � ¼ 0 (A.4)

That is, the probability that |xT � x | is greater than some small positive number

is zero. Then, x is called the probability limit of xT, which is written as

p lim xT ¼ x or alternatively xT !p x.
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Almost sure convergence: This is a stronger concept of convergence than

convergence in probability, the basic idea here for T > T0. The probability that

any two xt
0s differ from x by more than an arbitrarily small amount is vanish-

ingly small. The random variable xT converges almost surely to the random var-

iable x if

Pð lim
T!∞

xT � x> εÞ¼ 0 (A.5)

We write this as xT !a:s: x
Slutsky’s theorem is important when working with probability limits. It

states that, for any continuous function g thenp lim (g(xT)) ¼ g(p lim (xT)). This
is in contrast to Siegel’s paradox, which states that for standard expectations

E(g(xT)) 6¼ g(E(xT)).
Order in Probability: We can combine the ideas of probability limits and

order in magnitude to give a weaker version of orders in magnitude. A sequence

of random variables xT is at most of order in probability Tk if for every ε > 0

there exists a real number N such that

P T�kj xT j �N
� �� ε for all T (A.6)

This is expressed as xT ¼ Op(T
k).

Similarly to orders in magnitude, we can say that xT is of smaller order in

probability than Tkif

p limT�kxT ¼ 0 (A.7)

Which again is expressed as xT ¼ op(T
k).

A final useful relationship in this area of econometric theory is Chebyshev’s

inequality, which states that if x is a random variable with mean x, then for

everyδ > 0

P j x�xj � δ½ � �
E x� xð Þ2
h i

δ2
(A.8)
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1 Introduction

The availability of panel data can greatly facilitate the estimation of causal

effects from nonexperimental data. For example, for studying policy interven-

tions using linear models, the methods of fixed effects (FE) estimation and first

differencing (FD) estimation are used routinely. The primary attractiveness of

the FE and FDmethods is because of their eliminating additive, unobserved het-

erogeneity that is thought to be correlated with the policy variable or variables

of interest. Fixed effects-type approaches are available in special cases for non-

linear models, although in such cases they are best viewed as conditional max-

imum likelihood or conditional quasimaximum likelihood estimators, in which

a conditioning argument essentially removes the dependence of an objective

function on unobserved heterogeneity. The leading cases are the FE logit and
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FE Poisson estimators. To handle heterogeneity more generally in a microeco-

nometric setting, in which the number of available time periods, T, is typically
small, the correlated random effects (CRE) approach can be effective.

Wooldridge (2010) shows how the CRE approach can be used for a variety

of nonlinear panel data models used in practice. See also Wooldridge (2018)

for some developments using unbalanced panels.

One drawback to FE, FD, and CRE approaches is that they allow for only

one kind of endogeneity: correlation between the time-varying explanatory var-

iables, often through sometime like the time average of these variables, and

time-constant heterogeneity. But in many contexts we might be worried about

correlation between at least some of the covariates and unobserved shocks—

often called idiosyncratic errors. In the case of a linear model, combining instru-

mental variables (IV) approaches with the FE and FD transformations can be

quite powerful. For example, Levitt (1996, 1997) uses IV approaches after elim-

inating heterogeneity at either the state or city level.

Fixed effects IV approaches explicitly recognize two potential sources of

endogeneity: “heterogeneity endogeneity,” which arises when one or more

explanatory variables is correlated with time-constant heterogeneity, and “idi-

osyncratic endogeneity,” which arises when one or more explanatory variables

is correlated with time-varying unobservables. Both kinds of endogeneity also

can be present in nonlinear models. Papke and Wooldridge (2008) [hereafter,

PW (2008)], in the context of a probit fractional response model, show how

to combine the CRE and control function approaches to allow for heterogeneity

endogeneity and idiosyncratic endogeneity. [More recently, Murtazashvili &

Wooldridge, 2016 use a similar approach for panel data switching regression

models with lots of heterogeneity.] The approach is largely parametric,

although it is robust to distributional misspecification other than the conditional

mean, and it allows unrestricted serial dependence over time—a feature not

allowed, for example, by random effects probit or fixed effects logit

approaches. The PW (2008) approach is attractive because it leads to simple

estimation methods, robust inference, and easy calculation of average partial

effects. It does, however, have a couple of potential drawbacks. The first is that

the method does not allow one to tell whether a rejection of the null hypothesis

of exogeneity of the covariates is because of heterogeneity or idiosyncratic

endogeneity. Second, the explanatory variables that are potentially endogenous

in the structural equation are not rendered strictly exogenous in the estimating

equation. Rather, they are only contemporaneously exogenous, which means

that only pooled methods, or method of moments versions of them, produce

consistent estimators. This leaves out the possibility of applying quasigenera-

lized least squares approaches, such as the generalized estimating equations

(GEE) approach that is popular in fields outside economics.

In this paper, we show how to modify, in a straightforward way, the CRE/

CF approach of PW (2008) so that we can easily separate the two kinds of

endogeneity. One benefit is that we can test the null hypothesis of idiosyn-

cratic exogeneity while allowing for heterogeneity exogeneity, which
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effectively allows us to determine whether an IV approach is needed.

Section 2 covers the linear case, in which we show that our new control func-

tion approach leads to a test statistic that is identical to the variable addition

Hausman test discussed in Wooldridge (2010, Chapter 11). This sets the

stage for two leading cases of nonlinear models, an exponential mean func-

tion and a probit mean function. The exponential mean case, treated in

Section 3, is interesting because the robustness properties of the Poisson

FE estimator can be combined with the control function approach to obtain

a test for idiosyncratic exogeneity that is fully robust to distributional mis-

specification, as well as to serial dependence of arbitrary form. We also

cover the issue of estimating average partial effects, and discuss the merits

of a CRE/CF approach. In Section 4 we turn to a probit response function—

as in PW (2008)—and show how to modify PW’s CRE approach to sepa-

rately analyze the two kinds of endogeneity. Section 5 discusses how the

approach applied to general nonlinear unobserved effects models, and pro-

vides a discussion of the pros and cons of using a joint MLE—such as ran-

dom effects probit or random effects Tobit—in the second stage. Two

empirical applications in Section 6 show how the methods are easily applied,

and Section 7 contains concluding remarks.

2 Models Linear in Parameters

We start with a “structural” equation

yit1 ¼ xit1β1 + ci1 + uit1 (1)

where, for now, the explanatory variables are

xit1 ¼ yit2, zit1ð Þ:
The vector zit1 typically would include a full set of time effects to allow for sec-

ular changes over time. We suspect the vector yit2 is endogenous in that it might

be correlated with the unobserved effect (or heterogeneity), ci1, and possibly

with the idiosyncratic error, uit1. In what follows, we allow all exogenous vari-

ables, which include the vector zit1 and variables excluded, zit2, to be correlated

with the heterogeneity. Therefore, we proceed as if all explanatory variables can

be correlated with the unobserved heterogeneity, ci1. In other words, we are not
taking a traditional random effects approach.

The difference between yit2 and zit is that we take the latter to be strictly

exogenous with respect to {uit1}:

Cov zit, uir1ð Þ¼ 0,all t, r¼ 1,…,T:

By contrast, {yit2} can be correlated with {uit1}, either contemporaneously or

across time periods.

Given a suitable rank condition, which is discussed in Wooldridge (2010,

Chapter 11), β1 can be estimated by fixed effects 2SLS (FE2SLS), sometimes

called FEIV. To describe the estimator, define the deviations from time aver-

ages as
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€yit1 ¼ yit1�T�1
XT

r¼1

yir1, €yit2 ¼ yit2�T�1
XT

r¼1

yir2, €zit ¼ zit�T�1
XT

r¼1

zir:

Given a random sample (in the cross section) of size N, one characterization
of FE2SLS estimator is that it is pooled 2SLS applied to the equation

€yit1 ¼ €xit1β1 + €uit1, t¼ 1,…,T

using IVs €zit. With fixed T and N ! ∞, the estimator is generally consistent andffiffiffiffi
N

p
-asymptotically normal. Fully robust inference that allows arbitrary serial

correlation and heteroskedasticity in {uit1} is straightforward.

In terms of precision, the FE2SLSestimator can have large standard errors.We

first remove much of the variation in the data by removing the time averages, and

thenweapply 2SLS.At aminimum,we require sufficient variation in the excluded

exogenous variables that serve as instruments foryit2. Therefore, it is of some inter-

est to test the null hypothesis that {yit2} is exogenous with respect to {uit1}.
A common approach is to apply the Hausman (1978) principle, where the

two estimators being compared are the usual FE estimator and the FE2SLS esti-

mator. The usual FE estimator is consistent if we add the assumption

Cov yit2, uir1ð Þ¼ 0,all t, r¼ 1,…,T:

The FE2SLS estimator does not require this stronger form of exogeneity of yit2.

There are a couple of drawbacks to the traditional Hausman test. Most

importantly, because it assumes that one estimator is relatively efficient—in

this case, the FE estimator plays the role of the efficient estimator—it is not

robust to serial correlation or heteroskedasticity in {uit1}. If we make our infer-

ence concerning β1 robust to departures from the standard, usually unrealistic,

assumptions, then it is logically inconsistent to use nonrobust specification

tests. Wooldridge (1990) makes this point in the context of a variety of speci-

fication tests. The second problem with the traditional Hausman test is the

asymptotic variance required is singular, and this can lead to computational

problems as well as incorrect calculation of degrees of freedom.

A simpler approach is to obtain a variation addition test (VAT), which is

based on the control function approach. Wooldridge (2010, Chapter 11)

describes the procedure:

Procedure 1 (FE Variable Addition Test):

1. Estimate the reduced form of yit2,

yit2 ¼ zitΠ2 + ci2 + uit2,

by fixed effects, and obtain the FE residuals,

€̂uit2 ¼€yit2�€zitΠ̂2

€yit2 ¼yit2�T�1
XT

r¼1

yir2
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2. Estimate the equation

yit1 ¼ xit1β1 + €̂uit2ρ1 + ci1 + errorit1

by usual FE and compute a robust Wald test of H0: ρ1 ¼ 0. □

The VAT version of the Hausman test has a simple interpretation, because the

β̂1 obtained in the second step is actually the FEIV estimate. If we set ρ1 to zero,
we are using the usual FE estimator. If we estimate ρ1, we obtain the FEIV esti-

mator. Importantly, it is very easy to make the test robust to arbitrary serial cor-

relation and heteroskedasticity. As a practical matter, it is important to

understand that the nature of yit2 is unrestricted. It can be continuous, discrete

(including binary), or some mixture. Later, we will discuss what happens if we

allow more general functional forms.

In motivating our general approach for nonlinear models, it is useful to

obtain a test based onMundlak’s (1978) CRE approach. Wemust use some care

to obtain a test that rejects only in the presence of idiosyncratic endogeneity. We

start with a linear reduced form for yit2, but we emphasize that, for linear

models, this equation is not restrictive. A linear unobserved effects reduced

form is

yit2 ¼ zitΠ2 + ci2 + uit2

whereΠ2 is dimension L � G1 whereG1 is the dimension of yit2. Now we apply

the Mundlak (1978) to the vector of unobserved heterogeneity, ci2:

ci2 ¼ψ2 + ziΞ2 + ai2,

where zii ¼ T�1
PT

t¼1zit is the row vector of time averages of all exogenous vari-

ables and Ξ2 is L � G1. Plugging into the previous equation gives

yit2 ¼ψ2 + zitΠ2 + ziΞ2 + ai2 + uit2, t¼ 1,…,T:

In what follows, we operate as if

Cov zit, uis2ð Þ¼ 0, all t,s

Cov zit, ai2ð Þ¼ 0, all t,

but, as we will see, even these mild assumptions need not actually hold.

The key now in obtaining a test of idiosyncratic endogeneity is how we

apply the Mundlak device to ci1 in the structural equation

yit1 ¼ xit1β1 + ci1 + uit1:

One possibility is to project ci1 only onto zi. It turns out that this approach is
fine for estimating β1 but, for testing endogeneity of yit2, it does not distinguish
between

Cov yit2, ci1ð Þ 6¼ 0
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and

Cov yit2, uis1ð Þ 6¼ 0:

Instead, it is better to project ci1 onto (zi,vi2) where

vit2 ¼ ai2 + uit2:

Then we have

ci1 ¼ η1 + ziλ1 + vi2π1 + ai1

Cov zi, ai1ð Þ¼ 0

Cov yi2, ai1ð Þ¼ 0

Importantly, the remaining heterogeneity, ai1, is uncorrelated not only with

zi ¼ {zit: t ¼ 1, …, T} but also with yi2 ¼ {yit2: t ¼ 1, …,}. Plugging into the

structure equation produces the following estimating equation:

yit1 ¼ xit1β1 + η1 + ziλ1 + vi2π1 + ai1 + uit1

¼ xit1β1 + η1 + ziλ1 + yi2�ψ2� ziΛ2ð Þπ1 + ai1 + uit1

� xit1β1 +ψ1 + yi2π1 + ziξ1 + ai1 + uit1:

Now, by the Mundlak device, ai1 is uncorrelated with all RHS observables, that

is, (yit2, zit1, yi2,zi). By the strict exogeneity assumption on {zit: t ¼ 1, …, T},
uit1 is uncorrelated with (zit1, zi). Therefore, we can now test whether yit2, is

uncorrelated with uit1 by testing whether vit2 is uncorrelated with uit1.

Procedure 2 (CRE/CF Variable Addition Test):

1. Run a pooled OLS regression

yit2 ¼ψ2 + zitΠ2 + ziΞ2 + vit2,

and obtain the residuals, v̂it2.

2. Estimate

yit1 ¼ xit1β1 +ψ1 + yi2π1 + ziξ1 + v̂it2ρ1 + errorit1 (2)

by POLS or RE and use a robust Wald test of H0: ρ1 ¼ 0. □

Because the derivation of the estimating equation in Procedure 2 uses the Mun-

dlak device, it nominally appears that it is less robust than that based on fixed

effects in Procedure 1. This turns out not to be the case; in fact, the two

approaches yield identical estimates of β1 and ρ1. The estimate of β1 is still

the FEIV estimate. Therefore, we can use either the FE approach or theMundlak

CRE approach, and it does not matter whether the residuals we add to the equa-

tion are the FE residuals, €̂uit2, or the Mundlak residuals, v̂it2. These residuals are

not the same, but in the appendix it is shown that

v̂it2 ¼ €̂uit2 + r̂i2
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where

r̂i2 ¼ yi2� κ̂2� ziΛ̂2

are the between residuals from regressing yi2 on 1, zi. In particular, r̂i2 is a linear

combination of (yi2, 1, zi). It follows immediately that replacing v̂it2 in Eq. (2)

does not change β1 and ρ̂1. Only ψ̂1, π̂1 and ξ̂1 would change.

Interestingly, if we drop yi2 from step (2) in Procedure 2, the resulting esti-

mate of β1 is still the FEIV estimate. But we obtain a different estimate of ρ1,
and basing a test of endogeneity on the equation without including yi2 conflates

heterogeneity endogeneity and idiosyncratic endogeneity. Evidently, this point

has gone unnoticed, probably because Procedure 1 is the usual VAT in testing

for idiosyncratic endogeneity. Neverthless, this observation is very important

when we must use the Mundlak CRE approach in nonlinear models (because

an FE approach is not available).

The conclusion from this section is that, for using the CRE/CF approach for

testing

H0 :Cov yit2, uis1ð Þ¼ 0,

we should use the equations

yit2 ¼ ψ̂2 +€zitΠ̂2 + ziΞ̂2� v̂it2
yit1 ¼ xit1β1 +ψ1 + yi2π1 + ziξ1 + v̂it2ρ1 + errorit1,

being sure to include yi2.

As an aside, one might want to know what happens if the seemingly less

restrictive Chamberlain (1982) version of the CRE approach is used in place

of Mundlak. The answer is: nothing. At least not if we use the basic estimation

methods that do not attempt to exploit serial correlation or heteroskedasticity in

the {uit1}. To be clear, letting

zi ¼ zi1,…, ziTð Þ, yi2 ¼ yi12,…, yiT2ð Þ,
the equations

yit2 ¼ ψ̂2 + zitΠ̂2 + ziΞ̂2� v̂it2
yit1 ¼ xit1β1 +ψ1 + ziξ1 + yi2π1 + v̂it2ρ1 + errorit1

result in the same estimates of β1 and ρ1 as the Mundlak approach, provided we

use either pooled OLS or RE in the second equation.

How can one use the test of idiosyncratic endogeneity? Guggenberger

(2010) shows that the pretesting problem that exists from using the Hausman

test to determine an appropriate estimation strategy can be severe. Nevertheless,

such practice is common in empirical work. If the VAT rejects at, say, the 5%

significance level, one typically uses the FEIV estimator. If one fails to reject, it

provides some justification for dropping the IV approach and instead using the

usual FE estimator.
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3 Exponential Model

If yit1 is nonnegative, and especially if it can take the value zero, an exponential

conditional mean function is attractive. (The common alternative when yit1 > 0

is to use log(yit1) in a linear model, but some researchers prefer to model yit1
directly.) An unobserved effects model that allows for heterogeneity endogene-

ity and idiosyncratic endogeneity is

E yit1j yi2, zi, ci1, rit1ð Þ¼E yit1j yit2, zit1, ci1, rit1ð Þ¼ ci1 exp xit1β1 + rit1ð Þ, (3)

where, again, xit1 ¼ (yit2, zit1). Now the heterogeneity, ci1, is nonnegative and
multiplicative. We use rit1 to denote time-varying omitted factors that we sus-

pect are correlated with yit2. We could make rit1 multiplicative but it is slightly

more convenient to have it appear inside the exponential function.

3.1 An FE Poisson/CF Approach

As discussed in Wooldridge (1999) and Wooldridge (2010, Chapter 18), with-

out rit1 an appealing estimator is what is typically called the fixed effects Pois-

son estimator. In Hausman, Hall, and Griliches (1984), the FE Poisson estimator

was obtained as a conditional MLE, in which the Poisson assumption was

assumed to hold along with conditional independence. Wooldridge (1999)

showed that the neither assumption is needed to ensure consistency and asymp-

totic normality of the FE Poisson estimator. Viewed as a quasiMLE, the esti-

mator is fully robust in the sense that it only requires, in the current notation

(with idiosyncratic endogeneity),

E yit1j xi1, ci1ð Þ¼E yit1j xit1, ci1ð Þ¼ ci1 exp xit1β1ð Þ:
The first equality imposes a strict exogeneity requirement with respect to

idiosyncratic shocks. It will be violated if rit1 is present and correlated with

yis2 for any time period s, including, of course, s ¼ t.
To obtain a test of the null hypothesis that there is no idiosyncratic endo-

geneity, we again need time-varying, strictly exogenous instruments that are

excluded from zit1. Formally, the null hypothesis is

E yit1j yi2, zi, ci1ð Þ¼E yit1j yit2, zit1, ci1ð Þ¼ ci1 exp xit1β1ð Þ,
where the key is that zit2 is exclused from the mean function. Also, all variables

are strictly exogenous conditional on ci1. In order to obtain a test, we need to

specify an alternative, and this is where explicitly introducing a time-varying

unobservables into the structural model, and a reduced form for yit2, come into

play. But we emphasize that these do not play a role under the null hypothesis.

They are used only to obtain a test. In addition to Eq. (3), we write

yit2 ¼ zitΠ2 + ci2 + uit2, t¼ 1,…,T,

and, because the {zit} is strictly exogenous, we test for correlation between

{rit1} and functions of {uit2}. We use the analog of the test from Procedure 1.
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Procedure 3 (Poisson FE/VAT):

1. Estimate the reduced form for yit2 by fixed effects and obtain the FE

residuals,

€̂uit2 ¼ €yit2�€zitΠ̂2

2. Use FE Poisson on the mean function

E yit1j zit1, yit2, €̂uit2, ci1
� �

¼ ci1 exp xit1β1 + €̂uit2ρ1
� �

and use a robust Wald test of H0 : ρ1 ¼ 0. □

It turns out that, as in the linear case, the fixed effects residuals can be replaced

with the Mundlak residuals. Again let v̂it2 be the OLS residuals from estimating

yit2 ¼ψ2 + zitΠ2 + ziΞ2 + vit2:

Then, as shown in the appendix, step (2) in Procedure 3 produces the same esti-

mates of (β1, ρ1). This follows from the form of the FE Poisson quasilog-

likelihood function and the fact that v̂it2 ¼ €̂uit2 + r̂i2, and so removing the time

averages of v̂it2 produces the FE residuals €̂uit2.
As in the linear case, it is useful to remember that, under the null hypothesis,

no restrictions are placed on yit2. In fact, the EEVs could include binary variables,

in which case the reduced forms are linear probability models estimated by FE or

the CRE approach. Under the null hypothesis that {yit2} is exogenous, we can use

any way of generating residuals that we want. More power might be obtained by

using different models for the elements of yit2, but that is a power issue.

The equivalance between the between using the FE residuals €̂uit2 and the

Mundlak residuals v̂it2 means that we can obtain sufficient conditions for

Procedure 3 to correct for idiosyncratic endogeneity when it is present. But

now we need to make assumptions on the reduced form of yit2. We can get

by with somewhat less, but a convenient assumption is

ri1, ui2ð Þ is independent of ci1, ci2, zið Þ,
where ri1 is the vector of omitted variables in Eq. (3) and ui2 is the reduced

form error. This assumption that vit2 is independent of means that the Mundlak

equation is in fact a conditional expectation. Moreover, there cannot be

heteroskedasticity.

Now, if we make a functional form assumption,

E exp rit1ð Þj ui2½ � ¼ exp θ1 + uit2ρ1ð Þ¼ exp θ1 + vit2�ai1ð Þρ1½ �,
which follows under joint normality of (ri1, ui2) but can hold more generally.

The structural expectation is in Eq. (3), where now we also assume this is

the expectation when we add ci2 to the conditioning set. Then

E yit1j yi2, zi, ci1, ci2, vi2ð Þ¼ ci1 exp xit1β1 + θ1 + vit2�ai1ð Þρ1½ �
¼ gi1 exp xit1β1 + vit2ρ1ð Þ
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where gi1 ¼ ci1 exp(�ai1ρ1). Now we can use Procedure 3, with either the FE

residuals or the Mundlak residuals, to consistently estimate β1, along with ρ1,
using the Poisson FE estimator. We require nothing more about the Poisson dis-

tribution to be correctly specified, and serial independence is entirely unrest-

ricted. However, because we now allow ρ1 6¼ 0, the standard errors need to

be adjusted for the two-step estimation. One can use the delta method, or use

a panel bootstrap, where both estimating steps are done with each bootstrap

sample.

3.2 Estimating Average Partial Effects

In addition to consistently estimating β1, we might want to obtain partial effects

on the conditional expectation itself. One possibility is to estimate the average

structural function (Blundell & Powell, 2004), which averages out the unob-

servables for fixed xt1:

ASFt xt1ð Þ¼E ci1, rit1ð Þ ci1 exp xt1β1 + rit1ð Þ½ �
¼E ci1, rit1ð Þ ci1 exp rit1ð Þ½ � exp xt1β1ð Þ:

Let

vit1 ¼ ci1 exp rit1ð Þ
θt1 �E vit1ð Þ:

Because we have a consistent estimate of β1—which typically would

include time effects—we just need to estimate θt1 for each t (or, we might

assume these are constant across t). Write

yit1 ¼ vit1 exp xit1β1ð Þeit1
E eit1j xi1, ci1, ri1ð Þ¼ 1:

In particular,

E vit1eit1ð Þ¼E vit1E eit1j vit1ð Þ½ � ¼E vit1ð Þ¼ θt1:

Therefore,

θt1 ¼E
yit

exp xit1β1ð Þ
� �

and so a consistent estimator of θt1 is

θ̂t1 ¼N�1
XN

i¼1

yit

exp xit1β̂1
� �

" #

:

Therefore, a consistent and
ffiffiffiffi
N

p
-asymptotically normal estimator of

ASFt(xt1).
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is

dASFt xt1ð Þ¼ θ̂t1 exp xt1β̂1
� �

:

One can compute derivatives or changes with respect to the elements of xt1
and insert interesting values. A valid standard error for the resulting partial

effects can be obtained via the delta method or bootstrapping.

Sometimes one wishes to have a single measure of partial effects, averaged

across both the unobservables and observables. If xt1j is continuous—for exam-

ple, an element of yt2—we usually obtain the derivative and then average. The

average partial effect (APE) is

APEtj ¼ β1jE xit1, ci1, rit1ð Þ ci1 exp xit1β1 + rit1ð Þ½ �
and this is particularly easy to estimate because, by iterated expectations,

E xit1, ci1, rit1ð Þ ci1 exp xit1β1 + rit1ð Þ½ � ¼E yitð Þ:
(This simplification comes because of the exponential mean function.) There-

fore, for each t,

APEtj ¼ β1jE yitð Þ,

and a simple, consistent estimator is β̂1j N�1
PN

i¼1yit

� �
. In many cases one

would average across t as well to obtain a single partial effect.

3.3 A CRE/Control Function Approach

A CRE/CF approach can be used, although it requires more assumptions. Let

E yit1j yit2, zit1, ci1, rit1ð Þ¼ ci1 exp xit1β1 + rit1ð Þ
vit1
yit2

¼
¼

ci1 exp rit1ð Þ
ψ2 + zitΠ2 + ziΞ2 + vit2:

Then there are two possibilities. Papke and Wooldridge (2008) suggest model-

ing the conditional distribution

D vit1j zi, vit2ð Þ,
where and assuming that this depends only on (zi, vit2). Although this approach

leads to consistent estimation under maintained parametric assumptions, it does

not lead to a straightforward test of idiosyncratic endogeneity: vit1 might be

related to vit2 because of heterogeneity or idiosyncratic endogeneity. In addi-

tion. because we obtain an equation for E(yit1 jxit1, zi, vit2), only contemporane-

ous exogeneity holds because we are only conditioning on vit2 at time t.
Therefore, only pooled methods can be used for consistent estimation.

Drawing on the linear case, a second possibility is attractive: Model the

distribution
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D vit1j zi, vi2ð Þ:
Here, we use a Mundlak assumption:

D vit1j zi, vi2ð Þ¼ D vit1j zi, vi2, vit2ð Þ
¼ D vit1j zi, yi2, vit2ð Þ:

By construction, strict exogeneity holds for the conditioning variables, and so

GLS-type procedures can be used. Moreover, even before we use a parametric

model, this approach endogeneity of {yit2} with respect to ci1 and {uit1}.
If we use a linear index structure, the estimating equation is

E yit1j zi, yi2ð Þ¼ exp ψ1 + xit1β1 + yi2π1 + ziξ1 + vit2ρ1ð Þ:
Identification of the parameters follows because the time-varying exogenous

variables zit2 are excluded from xit1, and therefore generate variation in vit2.
The presence of yi2 and zi allows the unobserved heterogeneity to be correlated

with all explanatory variables and the excluded exogenous variables. The test of

H0: ρ1 ¼ 0 is a clean test of idiosyncratic endogeneity, provided we assume our

instruments are strictly exogenous and that the Mundlak device holds.

There are several approaches to estimating. The simplest is to use the pooled

Poisson QMLE; naturally, we need to use fully robust inference to allow serial

correlation and violations of the Poisson assumption. But we also can use a gen-

eralized least squares approach, where a working variance-covariance matrix is

used to potentially increase efficiency over pooled estimation. Typically, one

would use the Poisson variance, up to a scaling factor, as the working variances,

and then choose a simple working correlation matrix—such as an exchangeable

one, or at least one with constant pairwise correlations. Wooldridge (2010,

Chapter 12) shows how the GEE approach is essentially multivariate weighted

nonlinear least squares with a particular weighting matrix.

Because of the properties of the exponential function, it is possible to esti-

mate the parameters β1 using a generalized method of moments approach on a

particular set of nonlinear moment conditions. The GMM approach does not

restrict that nature of yit2. (See Wooldridge (1997) and Windmeijer (2000).)

At a minimum, one can use the test for idiosyncratic endogeneity based on

the Poisson FE estimator before proceeding to a more complicated GMM

procedure.

4 Probit Response Function

With a probit conditional mean function, there are no versions of a fixed effects

estimator that have attractive statistical properties, at least when T is not fairly

large. Therefore, we consider only CRE/CF approaches to testing and correct-

ing for endogeneity.
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A probit conditional mean for yit1 2 [0, 1], which we consider the structural

equation, is

E yit1j zi, yi2, ci1, uit1ð Þ¼E yit1j zit1, yit2, ci1, uit1ð Þ¼Φ xit1β1 + ci1 + uit1ð Þ, (4)

and this can hold when yit1 is binary or when it is a fractional response. We

assume that yit2 continuous and write a Mundlak reduced form, as before:

yit2 ¼ψ2 + zitΠ2 + ziΞ2 + vit2:

The important restriction (which can be relaxed to some degree) is

vit2 is independent of zi:

Define

rit1 ¼ ci1 + uit1:

Now we assume

D rit1j zi, vi2ð Þ¼D rit1j zi, vi2, vit2ð Þ¼D rit1j zi, yi2, vit2ð Þ,
where the second equality holds because of the relationships among zi, yi2, and
vi2. In the leading case, we use a homoskedastic normal with linear mean:

rit1|zi,yi2,vit2 �Normal ψ1 + yi2π1 + ziξ1 + vit2ρ1, 1ð Þ:
We set the variance to unity because we cannot identify a separate variance, and

it has no effect on estimating the average partial effects—see Papke and

Wooldridge (2008) for further discussion. Then, an argument similar to that

in Papke and Wooldridge (2008) gives the estimating equation

E yit1j zi, yi2ð Þ¼Φ ψ1 + xit1β1 + yi2π1 + ziξ1 + vit2ρ1ð Þ,
which is clearly similar to the estimating equation in the exponential case.

Procedure 4 (CRE/CF Probit):

1. Obtain the Mundlak residuals, v̂it2, by pooled OLS.

2. Insert v̂it2 in place of vit2, use pooled (fractional) probit of

yit1 on 1,xit1,yi2,zi, v̂it2, t¼ 1,…,T; i¼ 1,…,N: □

As in the linear case, Procedure 2, because v̂it2 ¼ €̂uit2 + r̂i2 we can replace v̂it2
with €̂uit2 and not change β̂1 or ρ̂1; only ψ̂1, π̂1 and ξ̂1 would change.

As before, we can use a cluster-robust Wald test of H0: ρ1 ¼ 0 as a test of

idiosyncratic exogeneity. Compared with Papke andWooldridge (2008), yi2 has

been added to the equation, and doing so allows one to separate the two

sources of endogeneity. Further, because the conditional mean satisfies a strict

exogeneity assumption, we can use a GEE (quasiGLS) procedure, although

bootstrapping should be used to obtain valid standard errors. Technically, the

assumptions under which Procedure 4 is consistent are different from those

for the PW procedure, but in practice the difference is unlikely to be important.
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Procedure 4 leads to a cleaner test and also has the potential to produce more

efficient estimators. Namely, GEE approaches can be used in place of the

pooled probit estimation.

Consistent estimation of the APEs is also straightforward. Using the same

arguments in Papke and Wooldridge (2008),

APEtj ¼ β1jE xit1, zi, yi2, vit2ð Þ ϕ xit1β1 +ψ1 + ziξ1 + yi2π1 + vit2ρ1ð Þ½ �

dAPEtj ¼ β̂1j N�1
XN

i¼1

ϕ xit1β̂1 + ψ̂1 + ziξ̂1 + yi2π̂1 + v̂it2ρ̂1
� �

" #

:

To obtain a single value, dAPEtj can be averaged across t, too, and this is what

would be produced by applying the Stata margins command after pooled esti-

mation or GEE estimation. The standard error of the APE is complicated

because of the two-step estimation and the averaging. Bootstrapping the entire

procedure is practically sensible and not difficult computationally.

It can be shown that, just like the parameters, estimation of the APEs does

not depend on whether v̂it2 or €̂uit2 is used as the control function.

It is easy to make Procedure 4 more flexible. For example, rather than just

entering each variable linearly, any nonlinear functions of

xit1, zi, yi2, v̂it2ð Þ
can be included. These would typically include squares and cross products, but

maybe higher order terms, too. One still can obtain the APEs by differentiating

or differencing with respect to the elements of xt1 and then averaging across

everything. For example, if we extend the estimating equation to

E yit1j zi, yi2ð Þ¼Φ ψ1 + xit1β1 + yi2π1 + ziξ1 + vit2ρ1 + xit1�xi1ð Þψ1 + xit1�vit2ð Þδ1ð Þ,

then we simply add the terms xit1�xi1 and xit1�v̂it2 to the probit or fractional

probit estimation. We then have to account for the interactions when taking

derivatives, and then average the resulting function.

Another possibility is to allow the variance in the probit equation, whether

fractional or not, to depend on

zi, yi2, vit2ð Þ:
Then, one uses heteroskedastic probit or fractional heteroskedastict probit to

allow ci1 to have nonconstant variance.

5 Other Nonlinear Models

5.1 Pooled Methods

The approach taken in the previous section applies to other nonlinear models,

including the unobserved effects Tobit model. The approach is unchanged from
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the model with a probit response function. First, model the heterogeneity as a

function of the history of the exogenous and endogenous variables, (zi, yi2), typ-

ically (but not necessarily) through simple functions, such as the time averages,

zi, yi2ð Þ. Then add reduced-form Mundlak residuals, v̂it2, in a pooled Tobit esti-

mation. The key assumption is that for each t, yit1 conditional on (zi, yi2) follows
a Tobit model with linear index ψ1 + xit1β1 + yi2π1 + ziξ1 + vit2ρ1 and constant

variance. If we use a pooled estimation method, then abitrary serial dependence

is allowed. As usual, we must account for two-step estimation in calculating

standard errors, and we must cluster to account for the serial dependence.

If yit1 is a count variable, and we prefer to use, say, a negative binomial

model, then we can simple assume that, conditional on zit1, yit2, zi, yi2, vit2ð Þ,
yit1 follows the appropriate model. Notice that we would not be able to derive

such a model if we start with the assumption that the structural model for yit1—
conditional unobservables (ci1, uit1) as in the previous section—follow a

negative binomial model. Therefore, purists might be reluctant to adopt such

a strategy even though it would perhaps provide a good approximation that

accounts for the count nature of yit1.
One can even apply the approach to less obvious situations, such as two-part

models. For example, suppose the Tobit model is replaced by the Cragg (1971)

truncated normal hurdle model—see also Wooldridge (2010, Section 17.6).

Then one can model the two parts both as functions of zit1, yit2, zi, yi2, vit2ð Þ,
and then separately test for endogeneity of yit2 in each part by testing coeffi-

cients on v̂it2. Average partial effects are obtained easily by averaging out

zi, yi2, v̂it2ð Þ, across i or across (i, t), in the partial derivatives with respect to

xt1. The form of the partial effects is given in, for example, Wooldridge

(2010, Eq. (17.48)).

5.2 Joint Estimation Methods

So far our discussion has centered on pooled estimation methods. There are two

reasons for this. First, pooled two-step methods are computationally simple, and

panel bootstrap methods run quickly in most cases for obtaining valid standard

errors. Second, and just as important, pooled methods are robust to any kind of

serial dependence.

It is possible to apply the CRE/CF approach to joint MLE estimation in the

second stage. For example, rather than using pooled probit, as in Section 5, one

might want to estimate a so-called random effects probit in the second stage.

The explanatory variables would be

xit1, zi, yi2, v̂it2ð Þ,
where recall xit1 is a function of (zit1, yit2). Or, we could use more flexible func-

tions of the histories (zi, yi2). Although joint MLEs can be used in the second

stage, one should be aware of the costs of doing so. First, computationally joint

MLEs are usually significantly more difficult to obtain than pooled MLEs.
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Although the difference in computational times often is irrelevant for one pass

through the data, adding v̂it2 to account for idiosyncratic endogeneity of yit2
requires some sort of adjustment for inference, although testing the null hypoth-

esis that v̂it2 has zero coefficients does not require an adjustment. If one uses the

bootstrap, then the increased computational burden can be nontrivial.

The second cost to use joint MLE in the second step is lack of robustness to

distributional misspecification and serial dependence. Standard joint MLEs

used for nonlinear random effects models maintain that innovations—what

we would call {uit1} in Eqs. (1) and (4)—are independent over time, as well

as being independent of ci1 and zi. None of random effects probit, RE logit,

RE Tobit, RE Poisson, and so on has robustness properties in the presence of

serial correlation of the innovations. Moreover, even if the innovations in

Eq. (4) are serially independent, the RE probit joint MLE is not known to be

consistent.

When we apply a joint MLE in the second step, there is another subtle point.

Suppose we express the relationship between innovations in, say, Eq. (4) and

those in the reduced form of yit2, vit2, as

uit1 ¼ vit2ρ1 + eit1:

The relevant innovations underlying the joint MLE in the second step are

{eit1}, not {uit1}—unless ρ1 ¼ 0. Consequently, serial correlation in the reduced

form of yit2 can cause serial correlation in the second stage MLE, even though

there was none in the original innovations.

For robustness and computational reasons, the pooled methods generally are

preferred. Future research could focus on how to improve in terms of efficiency

over the pooled methods without adding assumptions.

6 Empirical Example

Papke and Wooldridge (2008) estimate the effect of spending on fourth-grade

mathematics test using data from Michigan. The years straddle the Michigan

School Reform, which was passed in 1995. The response variable, math4, is
a pass rate, and so we use a fractional probit model response in addition to a

linear model estimated by fixed effects IV. The variable of interest is the natural

log of real per-pupil spending, averaged over the current and previous 3 years.

The instrumental variable is the foundation allowance. Which is the amount

given by the state to each school district—after the spending reform. A kinked

relationship between the allowance and prereform per-pupil revenue means

that, after controlling for a district effect, the foundation allowance is exoge-

nous. Not surprisingly, its log is a very strong instrument for the log of average

real spending. Other controls include the proportion of students eligible for free

and reduced lunch and the log of district enrollment. A full set of year effects

also is included. There are N ¼ 501 school districts over the 7 years 1995

to 2001.
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The results of the test are given in Table 1 for the spending variable. The

linear fixed effects estimate, 0.377, implies that a 10% increase in average

spending increases the pass rate by about 3.8 percentage points, and the effect

is very statistically significant. The FEIV estimate actually increases to 0.420,
and remains strongly significant. The fully robust test of idiosyncratic endo-

geneity, where the null is exogeneity, gives t ¼ �0.41, which is not close to

being statistically significant. Therefore, the evidence is that, once spending

is allowed to be correlated with the district heterogeneity, spending is not

endogenous with respect to idiosyncratic shocks.

Columns (3) and (4) in Table 1 apply the fractional probit CRE/CF approaches.

In column (3) we apply Procedure 4, which includes the time average of lavgrexp
along with the time average of all exogenous variables, including lfound, the log
of the foundation allowance. The coefficient is 0.821 and it is strongly statistically
significant. The APE, which is comparable to the FEIV estimate, is quite a bit

lower: 0.277, but with t¼ 2.47 is still pretty significant. The test for idiosyncratic
endogeneity fails to reject the null of exogeneity, with t¼ 0.52. This is entirely
consistent with the linear model estimates and test. By contrast, when we apply

the Papke-Wooldridge approach in column (4), the t statistic for the coefficient

on the reduced form residual v̂2 is t ¼ �1.68, which is significant at the 10% level.

This is not a strong rejection of exogeneity, but it is much stronger than when the

time average of lavgrexp. The outcomes in columns (3) and (4) are consistent

with the conclusion that spending is correlated with district-level heterogeneity

but not district-level shocks, which is why the test in column (3) marginally

rejected exogeneity and that in column (4) does not come close to rejecting. In

the end, the new approach in column (3) and the PW approach in column (4) give

similar estimates of the APE of spending: 0.277 versus 0.269, and the standard

errors are similar.

TABLE 1 Effects of Spending on Test Pass Rates

Model: Linear Linear FProbit FProbit

Estimation: FE FEIV PQMLE PQMLE

Coef Coef Coef APE Coef APE

lavgrexp 0.377
(0.071)

0.420
(0.115)

0.821
(0.334)

0.277
(0.112)

0.797
(0.338)

0.269
(0.114)

€̂uit2 – �0.060
(0.146)

– – – –

v̂2 – – 0.076
(0.145)

– �0.666
(0.396)

–

lavgrexp? – – Yes No
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7 Extensions and Future Directions

The main message in this chapter is that, when combining the CRE and control

function approaches in nonlinear panel data models, there is a good case to sep-

arately model—even if only implicitly—the distribution of the heterogeneity

conditional on all explanatory variables and outside exogenous variables. In this

way, adding the control functions to account for idiosyncratic endogeneity leads

to a pure test of the null hypothesis of exogeneity. In linear models, a common

variable addition test after fixed effects estimation achieves this goal. We have

shown how the same goal can be achieved for two popular nonlinear models.

We have used parametric assumptions in our discussion and applications.

Nevertheless, when the EEVs yit2 are continuous, there is a more general mes-

sage when semiparametric, or even purely nonparametric, approaches are

taken. For example, when applying the insights of Blundell and Powell

(2004), it makes sense to separately include functions of the entire history,

(yi2, zi), and the control functions, v̂it2. We touched on this at the end of

Section 5, where we showed a model with interactions between the variables

of interests, the time averages, and the control functions can be added for flex-

ibility. The general point is that by adding, say, yi2 along with zi we then obtain

an estimating equation in which v̂it2 is added to account for possible idiosyn-

cratic endogeneity.

In nonlinear models, the assumptions imposed on the reduced form of yit2
will not be met when yit2 has discreteness. Even allowing for a single binary

EEV, yit2 poses challenges for nonlinear unobserved effects panel data models.

In particular, the parametric assumptions that can be viewed as convenient

approximations when yit2 now have real bite when it comes to identifying

the average partial effects. If one is willing to make distributional assump-

tions—such as normality in the probit case—the methods in Wooldridge

(2014) and Lin and Wooldridge (2016) can be extended to allow CRE. As a

simple example, if yit2 is assumed to follow a reduced form probit, one can

use as a control function the generalized residuals,

bgrit2 ¼ yit2λ witθ̂2
� �

� 1� yit2ð Þλ �witθ̂2
� �

,

where wit ¼ 1, zit, zið Þ. But then the issue of how to best model the relationship

between heterogeneity and (yi2, zi) arises. The Munklak device, or Chamber-

lain’s version of it, might work reasonably well, but neither might be flexible

enough. We leave investigations into the quality of CF approximations in dis-

crete cases to future research.

As discussed in Wooldridge (2018), unbalanced panels pose challenges for

the CRE approach, although the challenges are not insurmountable. In the con-

text of heterogeneity endogeneity only, Wooldridge suggests a modeling strat-

egy in which unobserved heterogeneity is a function of {(sit, sitxit): t ¼ 1,…, T},
where sit is a binary selection indicator that is unity when a complete set of data

is observed for unit i in time t. This approach can be extended to the current

setting, but the details remain to be worked out.
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Appendix

This appendix verifies some of the algebraic claims made in Sections 2 and 3.

A.1 Relationship Between the FE and Mundlak Residuals

We first find a relationship between the FE residuals and the Mundlak residuals.

Let wi be any collection of time-constant variables. The FE and Mundlak resid-

uals are, respectively,

€̂uit ¼ €yit�€xitβ̂FE

v̂it ¼ yit�xitβ̂FE� ψ̂�xiiξ̂�wiλ̂,

where we use the fact that the estimates xit are identical using FE and the Mun-

dlak approaches. Further, because €xit is a nonsingular linear combination of xit
and xii, we obtain the same Mundlak residuals if instead we run the pooled

regression

yit on €xit,1,xi,wi:

In fact, we can add xiβ̂FE and subtract it off:

v̂it ¼ yit� xit�xið Þβ̂FE� ψ̂�xi ξ+ β̂FE
� �

�wiλ̂

¼ yit�€xitβ̂FE� ψ̂�xi ξ+ β̂FE
� �

�wiλ̂

� yit�€xitβ̂FE� ψ̂�xiδ̂�wiλ̂

FromMundlak (1978), it is known that ψ̂ , δ̂, λ̂
� �

are the between estimates, that

is, from the cross-section OLS regression yi on 1,xi,wi:
This is easy to see directly in our setup. Define zi ¼ 1, xi,wið Þ and let θ̂ be the

set of coefficients: ψ̂ , δ̂, λ̂
� �

. Then

XT

t¼1

z0i€xit ¼ z0i
XT

t¼1

€xit ¼ 0

so that the regressors are orthogonal in sample. By Frisch-Waugh, θ̂ also is

obtained by dropping €xit, that is, from

yit on zi, t¼ 1,…,T;i¼ 1,…,N:

But

θ̂¼
XN

i¼1

XT

t¼1

z0izi

 !�1XN

i¼1

XT

t¼1

z0iyit

¼ T
XN

i¼1

z0izi

 !�1XN

i¼1

z0i
XT

t¼1

yit¼
XN

i¼1

z0izi

 !�1XN

i¼1

z0i T�1
XT

t¼1

yit

 !

¼
XN

i¼1

z0izi

 !�1XN

i¼1

z0iyi ¼ θ̂B:
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Now we can write

v̂it � yit� yi�€xitβ̂FE + yi� ψ̂B�xiδ̂B�wiλ̂B

¼ €yit�€xitβ̂FE + yi� ψ̂B�xiδ̂B�wiλ̂B
� �

¼ €̂uit

+ r̂i,

where r̂i is the between residual. One important feature of this relationship is

that r̂i does not change over time. Therefore,

XT

t¼1

r̂i €̂uit ¼ 0:

More importantly, for demeaned variables €xit,

XT

t¼1

€x0itv̂it ¼
XT

t¼1

€xit €̂uit

because
PT

t¼1€x
0
itr̂i ¼ 0:

A.2 Equivalence in Using the FE andMundlak Residuals in FE Poisson
Estimation

Nowwe obtain a general result that shows that adding time-constant variables to

the explanatory variables does not affect β̂ in the Poisson FE case. For a cross-

section observation i, the quasilog likelihood is

‘i βð Þ¼
XT

t¼1

yit xitβ� log
XT

r¼1

exp xitβð Þ
" #( )

,

and the score is

si βð Þ¼
XT

t¼1

yit x0it�
XT

r¼1
xit exp xitβð Þ

XT

r¼1
exp xitβð Þ

8
<

:

9
=

;

Therefore, the FOC is

XN

i¼1

si β̂
� �

¼ 0

Now suppose

xit ¼ git + hi,

which allows for the case that some hi are identically zero for all i. Then for

any i,
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si β̂
� �

¼
XT

t¼1

yit x0it�
XT

r¼1
x0ir exp girβ̂ + hiβ̂

� �

XT

r¼1
exp girβ̂+ hiβ̂
� �

8
<

:

9
=

;
¼
XT

t¼1

yit x0it�
exp hiβ̂
� �XT

r¼1
x0ir exp girβ̂

� �

exp hiβ̂
� �XT

r¼1
exp girβ̂
� �

8
<

:

9
=

;

¼
XT

t¼1

yit x0it�
XT

r¼1
x0ir exp girβ̂

� �

XT

r¼1
exp girβ̂
� �

8
<

:

9
=

;
¼
XT

t¼1

yit g0it + h
0
i

� ��
XT

r¼1
g0ir + h

0
i

� �
exp girβ̂
� �

XT

r¼1
exp girβ̂
� �

8
<

:

9
=

;

¼
XT

t¼1

yit g0it�
XT

r¼1
g0ir exp girβ̂

� �

XT

r¼1
exp girβ̂
� � + h0i�h0i

XT

r¼1
exp girβ̂
� �

XT

r¼1
exp girβ̂
� �

8
<

:

9
=

;

¼
XT

t¼1

yit g0it�
XT

r¼1
g0ir exp girβ̂

� �

XT

r¼1
exp girβ̂
� �

8
<

:

9
=

;
:
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Note that the final expression is the score with explanatory variables git, and

so we have shown β̂ is the same whether we use xit or git.

The previous result applies to the control function estimation in Section 3

because, as shown in Appendix A.1,

v̂it2 ¼ €̂uit2 + r̂i2,

where r̂i2 are the between residuals and do not vary over time. The other explan-

atory variables are unchanged. Therefore, we obtain the same estimates whether

we obtain the FE residuals in the first stage or the Mundlak residuals.
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1 Introduction

This chapter explores the intersection of two topics: nonlinear modeling and the

treatment of panel data. Superficially, nonlinearity merely compels parameter

estimation to use methods more involved than linear least squares. But, in many

ways, nonlinear models are qualitatively different from linear ones; it is more
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than a simple matter of functional form, i.e., nonlinearity is more than the

simple difference between [y ¼ β0x + ε] and [y ¼ h(β,x) + ε]. Analysis often

involves reinterpreting the objects of estimation. Most of the received analysis

of panel data models focuses on the treatment of unobserved heterogeneity. The

full set of issues that appear in the (fixed or random effects) linear panel data

regression appear in more complicated forms in nonlinear contexts.

The application of panel data methods to nonlinear models is a subarea of

microeconometrics (see Cameron & Trivedi, 2005). The analyst is interested in

the behavior of individual units, such as people, households, firms, etc., in

which the typical model examines the outcome of an individual decision.

We are interested in nonlinear models, using methods and models defined

for panel data. To cite a template example, many researchers have analyzed

health outcomes data, including health satisfaction (a discrete, ordered, categor-

ical outcome), retirement (a discrete, binary outcome), and health system utili-

zation (usually a discrete count of events), in the context of the German

Socioeconomic Panel data set or the European Community Household Panel

data set. These are repeated surveys of a large number of households gathered

over a number of years. We are interested in models and methods that extend

beyond linear regression.

Many of the longitudinal data sets that are used in contemporary microeco-

nometric research provide researchers with rich studies of outcomes such as

fertility, health decisions and outcomes, income, wealth and labor market expe-

riences, subjective health, and well-being and consumption decisions. Most of

these variables are discrete or discontinuous and not amenable to conventional

linear regression modeling. The literature provides a wide variety of theoretical

and empirical frameworks for nonlinear modeling, such as binary, ordered and

multinomial choice, censoring, truncation, attrition, and sample selection.

These nonlinear models have adapted econometric methods to more compli-

cated settings than linear regression and simple instrumental variable (IV) tech-

niques. This chapter will provide an overview of these applications. Some

theoretical developments are presented to give context to the practical imple-

mentations. The particular interest is in the extension of panel data methods

to these nonlinear models that have long provided the econometric platforms.

This includes development of treatments of fixed and random effects models

and random parameter forms for unobserved heterogeneity, models that involve

dynamic effects and sample attrition. We also are interested in the theoretical

issues and complications that define this area of analysis and in a number of

specific kinds of applications, such as random utility based discrete choice

models, random parameter, and latent class models and applications of the

stochastic frontier model.

Overall, we are interested in a general arena of models that have appeared in

empirical applications. The treatment leans more toward the parametric treat-

ments than some recent treatments, such as Honor�e (2002) and Arellano and

Hahn (2006). Some essential theory is presented, as well as a variety of
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applications. The selection of topics in this survey is wider than in some others

(e.g., Honor�e, 2002, 2013, Honor�e and Kesina, 2017), but not exhaustive.

A large literature about deeper theory (see Wooldridge, 2010) and results that

advance the fundamental methodology, such as set vs. point identification in

discrete choice models (e.g., Chesher, 2013) is left for more advanced treat-

ments. Many additional practical results appear in Cameron and Trivedi

(2005). One of the important features of the analysis described here is that

familiar results for the linear model cannot be carried over to nonlinear ones.

We begin in Section 2 by examining the interpretation of parameters and partial

effects in nonlinear models. Specific aspects of panel data modeling, notably

heterogeneity under different assumptions, the incidental parameters problem,

and dynamic effects are treated in Section 3. Section 4 describes features that

are common to most nonlinear panel data models. Applications, including the

essential layout of longitudinal data sets are treated in Sections 5 and 6. The last

two sections also consider the problem of attrition and issues related to robust

estimation and inference.

The following notation is used throughout the survey:

Panel data set dimensions:
i ¼ index for observations (individuals),

t ¼ index for periods, or replications,

n ¼ sample size; i ¼ 1,…,n,
Ti ¼ number of observations in group i, not assumed constant,

N ¼ Σn
i¼1Ti;

Panel data:
yi,t ¼ variable of interest in the model, might be one or more than one

outcome,

xi,t ¼ exogenous variables ¼ (1,zi,t
0)0, column vectors,

yi ¼ (yi,1,…,yi,Ti)
0 ¼ sequence of realizations of yi,t,

Xi ¼ sequence of observations on exogenous variables, Ti � K; xi,t
0 ¼

row t of Xi,

d(i)¼ d(i)j,t¼ di¼ 1[j¼ i, t¼ 1,…,Ti]¼ sample length dummy variable for i,
i ¼ constant term ¼ column of ones.

Functions:
ϕ(t), Φ(t) ¼ standard normal pdf, cdf,

Λ(t) ¼ logistic cdf,

N[μ,σ2] ¼ normal distribution,

N+[μ,σ2] ¼ truncated at zero normal distribution ¼ ju j where u � N
[0,σ2],

f(c jX) ¼ conditional density of c given X,

f(c:σ) or f(c jX:σ) ¼ density of variable that involves parameter σ,
f(yi,t j…) ¼ density for yi,t, used generally for the model for yi,t,
1[condition] ¼ 1 if condition is true, 0 if false,

E[c] ¼ expected value,

Ec[g(x,c)] ¼ h(x) ¼ expected value over c.
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Model components:
εi,t ¼ general idiosyncratic disturbance in model,

ci ¼ unobserved heterogeneity, usually univariate,

αi ¼ fixed effects version of ci, α ¼ (α1,…,αn)0,
ηi ¼ exp(αi),
ui ¼ random effects version of ci,
β ¼ slope vector in index function model, appears as β0xi,t ¼ π + γ0zi,t,
γ ¼ subvector of β omitting the constant,

π ¼ constant term, β ¼ (π,γ0)0,
ϕi,t ¼ exp(γ0zi,t),
λi,t ¼ exp(β0xi,t + ci) ¼ ηiϕi,t, ci ¼ αi or ui,
θ ¼ one or more ancillary parameters in parametric model,

σu
2 ¼ variance of ui in random effects model,

σε
2 ¼ variance of εi,t in random index function model.

2 Nonlinear Models

The linear panel data regression model is

yi, t ¼ β0xi, t + ci + εi, t, i¼ 1,…,n, t¼ 1,…,Ti,

where yi,t is the outcome variable of interest, xi,t is a vector of time varying and

possibly time invariant variables, also possibly including yi,t�1, ci is unobserved
time invariant heterogeneity that is independent of εi,t and εi,t is a classical dis-
turbance. Since ci is unobserved, no coefficient or scale is attached to it. The

linearity of the model relates (1) to the way that the natural estimator of the

parameter vector of interest, β, is computed, that is, by using some variant of

linear least squares or instrumental variables (IV) to solve a set of linear equa-

tions, and (2) to the way that the unobserved heterogeneity, ci enters the function
of interest, here the conditional mean function.

We are interested in models in which the function of interest, such as a

conditional mean, is intrinsically nonlinear. This would include, for example,

the Poisson regression model (see Cameron & Trivedi, 2005; Greene, 2018):

Data generating processð Þ Prob yi, t ¼ jj xi, t, cið Þ¼ exp �λi, tð Þλji, t
h i

=j!;

Function of interestð Þ E yi, tj xi, t, ci½ � ¼ λi, t ¼ exp β0xi, t + cið Þ:
Most models of interest in this area involve missing data in which yi,t, the
outcome of some underlying process involving β as well as ci, passes through
a filter between the data generating process (DGP) and the observed outcome.1

The most common example is the familiar (semiparametric) random effects

binary choice model:

1. Nearly all of the models listed above in Section 6 are of this type.
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RandomutilityDGPð Þ yi, t∗ ¼ β0xi, t + ci + εi, t,
yi, t∗ ¼ unobserved randomutility;

Revealed preferenceð Þ yi, t ¼ 1 yi, t∗ > 0½ �:
(The model becomes parametric when distributions are specified for ci and εi,t.)
In this case, the nonlinear function of interest is

F β0xi, t + cið Þ=σε½ �,
where F[.] is the cdf of εi,t. This example also fits into category (1).2 It will not

be possible to use least squares or IV for parameter estimation; (2) Some alter-

native to group mean deviations or first differences is needed to proceed with

estimation in the presence of the unobserved, heterogeneity. In the most familiar

cases, the issues center on persuasive forms of the model and practicalities of

estimation, such as how to handle heterogeneity in the form of fixed or random

effects. The linear form of the model involving the unobserved heterogeneity is

a considerable advantage that will be absent from all of the extensions we

consider here. A panel data version of the stochastic frontier model (Aigner,

Lovell, & Schmidt, 1977) is

yi, t ¼ β0xi, t + ci + vi, t � ui, t

¼ β0xi, t + ci + εi, t,

where vi,t � N[0,σv2] and ui,t � N+(0,σu2) (see Greene, 2004a, 2004c). Superfi-
cially, this is a linear regression model with a disturbance that has a skew normal

distribution,

f εi, tð Þ¼ 2

σ
ϕ

εi, t
σ

� �
Φ

�λεi, t
σ

� �
,

λ¼ σu
σv

,

σ2 ¼ σ2v + σ
2
u:

In spite of the apparent linearity, the preferred estimator is (nonlinear) maxi-

mum likelihood. A second, similar case is Graham, Hahn, Poirier, and

Powell’s (2015) quantile regression model, yi,t (τ) ¼ β(τ, ci)0xi,t + ε(τ)i,t (see
Geraci & Bottai, 2007). The model appears to be intrinsically linear. The pre-

ferred estimator, however, is, again, not linear least squares; it usually is based

on a linear programming approach. For current purposes, in spite of appear-

ances, this model is intrinsically nonlinear.

2. In cases in which the function of interest is a nonlinear conditional mean function, it is sometimes

suggested that a linear approximation to quantities of intrinsic interest, such as partial effects, be

obtained by simply using linear least squares. See, e.g., Angrist and Pischke (2009) for discussion

of the canonical example, the binary probit model.
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2.1 Coefficients and Partial Effects

The feature of interest usually will be a nonlinear function, g(xi,t,ci) derived
from the probability distribution, f(yi,t jxi,t,ci), such as the conditional mean

function, E[yi,t jxi,t,ci] or some derivative function such as a probability in a dis-

crete choice model, Prob(yi,t ¼ j jxi,t,ci) ¼ F(xi,t,ci). In general, the function

will involve structural parameters that are not, themselves, of primary interest;

g(xi,t,ci) ¼ g(xi,t,ci: θ) for some vector of parameters, θ. The partial effects will
then be PE(x,c)¼ δ(x,c: θ)¼ ∂g(x,c : θ)/∂x. In the probit model, the function of

interest is the probability, and the relevant quantity is a partial effect,

PE x, cð Þ¼ ∂Prob yi, t ¼ 1j x, cð Þ=∂x:
Estimation of partial effects is likely to be the main focus of the analysis.

Computation of partial effects will be problematic even if θ is estimable in

the presence of c, because c is unobserved and the distribution of c remains

to be specified. If enough is known about the distribution of c, computation

at a specific value, such as the mean, might be feasible. The partial effect at

the average (of c) would be

PEA xð Þ¼ δ x, E c½ � : θð Þ¼ ∂Prob yi, t ¼ 1j xi, t, E ci½ �ð Þ=∂x,
while the average (over c) partial effect would be

APE xð Þ¼Ec δ x, c : θð Þ½ � ¼Ec ∂Prob yi, t ¼ 1j x, cð Þ=∂x½ �:
One might have sufficient information to characterize f(ci jxi,t) or f(ci jXi).

In this case, the PEA could be based on E[ci jXi] or the APE might be based

on the conditional distribution, rather than the marginal. Altonji and Matzkin

(2005) identify this as a local average response (LAR, i.e., local to the subpop-

ulation associated with the specific realization of Xi). If ci and Xi are indepen-

dent, then the conditional and marginal distributions will be the same, and the

LAR and APE also will be the same.

In single index function models, in which the covariates enter the model

in a linear index function, β0xi,t, the partial effects usually simplify to a

multiple of β;

PEA xð Þ¼ βh β0xE c½ �ð Þ where h β0xE c½ �ð Þ¼ ∂g tE c½ �ð Þ
∂t t¼β0x

�� ,

APE xð Þ¼ βEc h β0x, cð Þ½ �:
For the normalized (σε ¼ 1) probit model, Prob(yi,t ¼ 1 jxi,t,ci) ¼ Φ(β0xi,t+ci).
Then, g(β0x,c) 5 Φ(β0x + c) and h(β0x,c) ¼ βϕ(β0x + c). The coefficients have
the same signs as partial effects, but their magnitude might be uninformative;

APE xð Þ¼ β
ð

c

ϕ β0x+ cð ÞdF cj xð Þ:
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To complete this example, if c � N[0,σ2] and ε � N[0,12]. Then, y* ¼ β0x +

c + ε ¼ β0x + w, where w � N[0,1 + σ2]. It follows that

Prob y¼ 1j x, c½ � ¼ Prob ε< β0x+ cð Þ¼Φ β0x + cð Þ,

Prob y¼ 1j xð Þ¼ Prob w< β0xð Þ¼Φ β0x=σwð Þ¼Φ β0x= 1 + σ2
� �1=2h i

:

Then PEA(x) ¼ β ϕ(β0x + 0) ¼ β ϕ(β0x) while

APE xð Þ¼ β
ð

c

ϕ β0x+ cð Þ 1=σð Þϕ c=σð Þdc

¼ β= 1 + σ2
� �1=2� �

�ϕ β0x= 1 + σ2
� �1=2h i

¼ δϕ δ0xð Þ:

2.2 Interaction Effects

Interaction effects arise from second-order terms; yi,t ¼ βxi,t + γzi,t + δxi,tzi,t +
ci + εi,t, so that

APE xj zð Þ¼Ec ∂E yj x, z, c½ �=∂xf g¼Ec ∂ βxi, t + γzi, t + δxi, tzi, t + cið Þ=∂x½ �
¼ β + δzi, t:

The interaction effect is ∂APE(x jz)/∂z ¼ δ. What appear to be interaction

effects will arise unintentionally in nonlinear index function models. Consider

the nonlinear model, E[yi,t jxi,t,zi,t,ci]¼ exp(βxi,t + γzi,t + ci). The average partial
effect of x jz is APE(x jz) ¼ Ec{∂E[y jx,z,c]/∂x} ¼ βexp(βx + γz)E[exp(c)]. The
second-order (interaction) effect of z on the partial effect of x is βγexp(βx + γz)E
[exp(c)], which generally will be nonzero even in the absence of a second-order
term. The situation is worsened if an interaction effect is built into the model.

Consider E[y jx,z,c] ¼ exp(βx + γz + δxz +c). The average partial effect is

APE xj zð Þ¼Ec ∂E yj x, z, c½ �=∂xf g¼E exp cð Þ½ � β+ δzð Þexp βx+ γz+ δxzð Þ�:
The interaction effect is, now,

∂APE xj zð Þ=∂z¼E exp cð Þ½ �exp βx+ γz+ δxzð Þ� δ+ β + δzð Þ γ + δxð Þf g:
The effect contains what seems to be the anticipated part plus an effect that

clearly results from the nonlinearity of the conditional mean. Once again, the

result generally will be nonzero even if δ equals zero. This creates a consider-

able amount of ambiguity about how to model and interpret interactions in a

nonlinear model (see Mandic, Norton, & Dowd, 2012; Ai & Norton, 2003;

Greene, 2010a for discussion).

2.3 Identification Through Functional Form

Results in nonlinear models can be identified through the form of the model

rather than through covariation of variables. This is usually an unappealing
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result. Consider the triangular model of health satisfaction and SNAP (food

stamp) program participation by Gregory and Deb (2015):

SNAP¼ βS0x + δ0z+ ε

HSAT¼ βH 0x + γSNAP +w:

Note that x is the same in both equations. If δ is nonzero, then this linear

simultaneous equations model is identified by the usual rank and order condi-

tions. Two stage least squares likely would be the preferred estimator of the

parameters in the HSAT equation (assuming that SNAP is endogenous, that

is, if ε and w are correlated). However, if δ equals 0, the HSAT equation will

fail the order condition for identification and be inestimable. The model in

the application, however, is not linear—SNAP is binary and HSAT is ordered

and categorical—both outcome variables are discrete. In this case, the param-

eters are fully identified, even if δ equals 0. Maximum likelihood estimation of

the full set of parameters is routine in spite of the fact that the regressors in the

two equations are identical. The parameters are identified by the likelihood

equations under mild assumptions (essentially that the Hessian of the full infor-

mation log likelihood with respect to (βS,δ,βH,γ) is nonsingular at δ ¼ 0). This is

identification by functional form. The causal effect, γ is identified when δ ¼ 0,

even though there is no instrument (z) that drives SNAP participation indepen-

dently of the exogenous influences onHSAT. The authors note this, and suggest
that the nonzero δ (exclusion of z from the HSAT equations) is a good idea to

improve identification, in spite of result.3

2.4 Endogeneity

In the linear regression model, yi,t ¼ α + βxi,t + δzi,t + εi,t, there is little ambigu-

ity about the meaning of endogeneity of x. Various theories might motivate it,

such as omitted variables or heterogeneity, reverse causality, nonrandom sam-

pling, and so on. In any of these events, however, the ultimate issue is tied to

some form of covariation between xi,t (the observable) and εi,t (the unobserva-
ble). Consider, instead, the Poisson regression model described earlier, where

now, λi,t ¼ exp(α + βxi,t + δzi,t). For example, suppose yi,t equals hospital or

doctor visits (a health outcome) and xi,t equals income. This should be a natural

application of reverse causality. No mechanism within this Poisson regression

model, however, supports this notion of endogeneity. The model leaves open

the question of what (in the context of the model) is correlated with xi,t that
induces the endogeneity (see Cameron & Trivedi, 2005, p. 687). For this

3. Scott, Schurer, Jensen, and Sivey (2009)make the same observation. Rhine and Greene (2013) is a

similar application. See also Filippini, Greene, Kumar, andMartinez-Cruz (2018),Wilde (2000) and

Mourifie and Meango (2014) for discussion of some special cases.
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particular application, a common approach is to include the otherwise absent

unobserved heterogeneity in the conditional mean function, as

λi, t|wi, t ¼ exp βxi, t + δzi, t +wi, t

� �
:

As a regression framework, the Poisson model has a shortcoming:

It specifies the model for observed heterogeneity, but lacks a coherent specifi-

cation for unobserved heterogeneity (a disturbance). The model suggested

above is a mixture model. For the simpler case of exogenous x, the feasible

empirical specification is obtained by analyzing

Prob yi, t ¼ jj xi, t, zi, tð Þ¼
ð

wi, t

Prob yit ¼ jj xi, t, zi, t, wi, tð ÞdF wi, tð Þ:

This parametric approach would require a specification for F(w). The tradi-

tional approach is a log-gamma that produces a closed form, the negative bino-

mial model, for the unconditional probability. Recent applications use the

normal distribution. A semiparametric approach could be taken as well if less

is known about the distribution of w. This might seem less ad hoc than the para-

metric model, but the assumption of the Poisson distribution is not innocent at

the outset. To return to the earlier question, a parametric approach to the endo-

geneity of xi,t would mandate a specification of the joint distribution of w and x,
F(wi,t,xi,t). For example, it might be assumed that xi,t¼ θ0fi,t + vi,t where w and v
are bivariate normally distributed with correlation ρ. This completes a mecha-

nism for explaining how xi,t is endogenous in the Poisson model. This is

precisely the approach taken in Gregory and Deb’s SNAP/HSAT model.

3 Panel Data Models

The objective of analysis is some feature of the joint conditional distribution of

a sequence of outcomes for individual i;

f yi,1, yi,2,…, yi,Ti j xi,1, xi,2,…, xi,Ti , ci,1,…, ci,Mð Þ¼ f yijXi, cið Þ: (1)

The sequence of random variables, yi,t is the outcome of interest. Each will

typically be univariate, but need not be. In Riphahn, Wambach, and Million’s

(2003) study, yi,t consists of two count variables that jointly record health care

system use, counts of doctor visits, and counts of hospital visits. In order to have

a compact notation, in Eq. (1), yi denotes a column vector in which the observed

outcome yi,t is either univariate or multivariate—the appropriate form will be

clear in context. The observed conditioning effects are a set of time varying

and time invariant variables, xi,t (see, e.g., EDUC and FEMALE, respectively
in Table 2). The matrix Xi is Ti � K containing the K observed variables xi,t
in each row. To accommodate a constant term, Xi ¼ [i,Zi].

For now, xi,t is assumed to be strictly exogenous. The scalars, ci,m are unob-

served, time invariant heterogeneity. The presence of the time invariant,
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unobserved heterogeneity is the signature feature of a panel data model. For cur-

rent purposes, with an occasional exception noted later, it will be sufficient to

work with a single unobserved variate, ci.
Most cases of practical interest depart from an initial assumption of strict

exogeneity. That is, for the marginal distribution of yi,t, we have

f yi, tj xi,1, xi,2,…, xi,Ti , cið Þ¼ f yi, tj xi, t, cið Þ: (2)

That is, after conditioning on (xi,t,ci), xi,r for r 6¼ t contains no additional

information for the determination of outcome yi,t.
4 Assumption (2) will suffice

for nearly all of the applications to be considered here. The exception that

will be of interest will be dynamic models, in which, perhaps, sequential

exogeneity,

f yi, tj xi,1, xi,2,…, xi,Ti , cið Þ¼ f yi, tj xi,1, xi,2,…, xi, t, cið Þ, (3)

is sufficient.

Given Eq. (2), the natural next step is to characterize f(yi jXi,ci). The condi-
tional independence assumption adds that yi,t jxi,t,ci are independent within the

cross section group, t ¼ 1,…,Ti. It follows that

f yi,1, yi,2,…, yi,Ti jXi, cið Þ¼
YTi

t¼1
f yi, tj xi, t, cið Þ: (4)

The large majority of received applications of nonlinear panel data modeling

are based on fully parametric specifications.With respect to the previous model,

this adds a sufficient description of the DGP for ci that estimation can proceed.

3.1 Objects of Estimation

In most cases, the platform for the analysis is the distribution for the observed

outcome variable in Eq. (1). The desired target of estimation is some derivative

of that platform, such as a conditional mean or variance, a probability function

defined for an event, a median, or some other conditional quantile, a hazard rate

or a prediction of some outcome related to the variable of interest. For conve-

nience, we restrict attention to a univariate case. In many applications, interest

will center on some feature of the distribution of yit, f(yit jxi,t, ci), such as the

conditional mean function, g(x, c) ¼ E[y jx, c]. The main object of estimation

often will be partial effects, δ(x, c) ¼ ∂g(x, c)/∂x, for some specific value of x

such as E[x] if x is continuous, or Δ(x,d,c) ¼ g(x,1, c) � g(x,0, c) if the margin

of interest relates to a binary variable.

4. For some purposes, only the restriction on the derived function of interest, such as the conditional

mean, E[yi,t jXi, ci] ¼ E[yi,t jxi,t,ci] is necessary (see Wooldridge, 1995). Save for the linear model,

where this is likely to follow by simple construction, obtaining this result without (2) is likely to be

difficult. That is, asserting the mean independence assumption while retaining the more general (1)

is likely to be difficult.

54 Panel Data Econometrics



A strictly nonparametric approach to δ(x,c) offers little promise outside the

narrow case in which no other variables confound the measurement.5Without at

least some additional detail about distribution of c, there is no obvious way to

isolate the effect of c from the impact of the observable x. Because c is unob-
served, as it stands, δ is inestimable without some further assumptions. For

example, if it can be assumed that c has mean μc (zero, for example) and is

independent of x, then a partial effect at this mean, PEA(x, μ) ¼ δ(x, μ) might

be estimable. If the distribution of c can be more completely specified, then it

might be feasible to obtain an average partial effect,

APE xð Þ¼Ec δ x, cð Þ½ �:
Panel data modeling is complicated by the presence of unobserved hetero-

geneity in estimation of parameters and functions of interest. This situation is

made worse because of the nonlinearity of the target feature. In most cases,

the results gained from the linear model are not transportable. Consider the lin-

ear model with strict exogeneity and conditional independence, E[yit jxit,ci] ¼
β0xit + ci + εit. Regardless of the specification of f(c), the desired partial effect

is β. Now consider the (nonlinear) probit model,

DGPð Þ yi, t∗ ¼ β0xi, t + ci + εi, t,εi, t|xi, t,ci �N 0, 12
	 


,

Observationð Þ yi, t ¼ 1 yi, t∗ > 0½ �,
Function of interestð Þ Prob yi, t ¼ 1j xi, t, cið Þ¼Φ β0xi, t + cið Þ:

With sufficient assumptions about the generation of ci, such as ci� N[0,σ2],
estimation of β will be feasible. The relevant partial effect is now

δ x, cð Þ¼ ∂Φ β0x+ cð Þ=∂x¼ βϕ β0x+ cð Þ:
If f(c) is sufficiently parameterized, then an estimator of PE(x jĉ) ¼ βϕ(β0x + ĉ)
such as

PEA xj ĉð Þ¼ βϕ β0x+ Ê cð Þ	 


might be feasible. If c can be assumed to have a fixed conditional mean, μc ¼
E[c jx] ¼ 0, and if x contains a constant term, then the estimator might be

PEA(x,0)¼ βϕ(β0x). This is not sufficient to identify the average partial effect.
If it is further assumed that c is normally distributed (and independent of x) with

variance σ2, then,

APE xð Þ¼ β= 1 + σ2
� �1=2 ϕ β0= 1 + σ2

� �1=2
x

h i
¼ β 1�ρð Þ1=2 ϕ β0 1�ρð Þ1=2x

h i

¼ γϕ γ0xð Þ,

5. If there are no x variables in E[y jx, c], then with independence of d and c and binary y, there might

be scope for nonparametric identification.
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where ρ is the intragroup correlation, Corr[(εi,t + ci),(εi,s + ci)] ¼ σ2/(1 + σ2).
In the context of this model, what will be estimated with a random sample

(of panel data)? Will APE and PEA be substantively different? In the linear

case, PEA(x jĉ) and APE(x) will be the same β. It is the nonlinearity of the

function that implies that they might be different.

If ci were observed data, then fitting a probit model for yi,t on (xi,t,ci) would
estimate (β, 1). We have not scaled ci, but because we are treating ci as observed
data (and uncorrelated with xi,t), we can use c*¼ ci/sc as the variable, and attach
the parameter σc to ci*. Therefore, a fully specified parametric model might

estimate (β, σc). If ci were simply ignored, we would fit a pooled probit model.

The true underlying structure is yi,t ¼ 1{β0xi,t + ci + εi,t > 0 jεi,t �N[0,12]}.
The estimates, shown before, would reveal γ ¼ β(1 � ρ)1/2. Each element of

γ is an attenuated (biased toward zero) version of its counterpart in β. If the
model were linear, then omitting a variable that is uncorrelated with the

included x, would not induce this sort of omitted variable bias. Conclude that

the pooled estimator estimates γwhile the MLE estimates (β, σc), and the atten-
uation occurs even if x and c are independent.

An experiment based on real data will be suggestive. The data in Table 1 are

a small subsample from the data used in Riphahn et al. (2003).6 The sample

contains 27,326 household/year observations in 7293 groups ranging in size

from one to seven. We have fit simple pooled and panel probit models based on

Doctori, t∗ ¼ β1 + β2Agei, t + ci + εi, t; Doctor¼ 1 Doctori, t∗ > 0½ �
where Doctor ¼ 1[Doctor Visits > 0]. The results are

Pooledð Þ Doctori:t∗ ¼�0:37176 + 0:01625Agei, t

Panelð Þ Doctori, t∗ ¼�0:53689 + 0:02338Agei, t + 0:90999ci∗,

where ci* is normalized to have variance 1.7 The estimated value of ρ ¼ σ2/
(1 + σ2) is 0.45298, so the estimated value of σ is 0.90999. The estimator of

the attenuation factor, (1 – ρ)1/2, is 0.73961. Based on the previous results,

6. The original data set is found at the Journal of Applied Econometrics data archive, http://qed.

econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/. The raw data set contains variables

INCOME and HSAT (self-reported health satisfaction) that contain a few anomalous values. In the

27,326 observations, three values of income were reported as zero. The minimum of the remainder

was 0.005. These three values were recoded to 0.0015. The health satisfaction variable is an integer,

0,..,10. In the raw data, 40 observations were recorded between 6.5 and 7.0. These 40 values were

rounded up to 7.0. The data set used here, with these substitutions is at http://people.stern.nyu.edu/

wgreene/text/healthcare.csv. Differences between estimators computed with the uncorrected and

corrected values are trivial.

7. The model was estimated as a standard random effects probit model using the Butler and Moffitt

(1982) method. The estimate of σ was 0.90999. With this in hand, the implied model is as shown.

When the model is estimated in precisely that form (β0x + σc*) using maximum simulated likeli-

hood, the estimates are 0.90949 for σ and (–0.53688,0.02338) for β. Quadrature and simulation give

nearly identical results, as expected.
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then, we obtain the estimate of γ based on the panel model, 0.02338 �
0.73961 ¼ 0.01729. The finite sample discrepancy is about 6%. The average

value of Age is 43.5 years. The average partial effects based on the pooled model

and the panel model, respectively, would be

Pooledð Þ APE Age : γð Þ¼ 0:01625�ϕ �0:37176 + 0:01625�43:5ð Þ
¼ 0:00613

Panelð Þ APE Age : β, σð Þ¼ 0:02338 1�0:45298ð Þ1=2
�ϕ 1�0:45298ð Þ1=2 �0:53689 + 0:02338�43:5ð Þ
h i

¼ 0:00648:

The estimate of APE(Age:γ) should not be viewed as PEA(Age,E[c]) ¼ PEA

(Age,0). That estimator would be PEA(Age,0:β,σ) ¼ 0.02338 � ϕ(–0.53689 +

0.02338 � 43.5) ¼ 0.008312.8 This estimator seems to be misleading. Finally,

simple least squares estimation produces

TABLE 1 Bias of Unconditional Fixed Effects Estimators in Limited

Dependent Models

T 5 2 T 5 8 T 5 20

Parameter APE Parameter APE Parameter APE

Logit β +102.00 +67.60 +21.70 + 19.10 +06.90 + 3.40

δ +103.00 + 66.00 +19.10 +12.80 +06.20 +5.20

Probit β +108.30 +47.40 +32.80 +24.10 +10.80 +8.80

δ +93.80 +38.80 +24.30 +15.20 +6.80 +4.70

Ordered
probit

β +132.80 – +16.60 – +5.80 –

δ +160.50 – +12.20 – +6.80 –

Tobit β +0.67 +15.33 +0.29 +1.30 +0.05 +0.08

δ +0.33 +19.67 +0.54 +2.16 +0.14 +0.27

σ �36.14 – �8.40 – �3.30 –

Truncated
regression

β �17.13 �7.52 �4.92 �1.72 �2.11 � 0.67

δ �22.81 �11.64 �7.51 �3.64 �3.27 �1.53

σ �35.36 – �9.12 – �3.75 –

8. The slope in the OLS regression ofDoctor on (1,Age) is 0.00601. This suggests, as observed else-

where, that to the extent OLS estimates any defined quantity in this model, it likely will resemble

APE(x).
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Linear PMð Þ Doctori, t ¼ 0:36758 + 0:00601Agei, t + ei, t:

This appears to be a reasonable approximation.9

Most situations to be considered in the subject of this chapter focus on non-

linear models such as the probit or Poisson regression and pursue estimates of

appropriate partial effects (or causal effects) in many cases. As we will see in

Section 6, there are a variety of situations in which something other than partial

effects is of interest. In the stochastic frontier model,

yi, t ¼ α + γ0zi, t + ci + vi, t�ui, t,

¼ α+ γ0zi, t + ci + εi, t,

the object of interest is an estimator of the inefficiency term, ui,t. The estimator

used is ûi, t ¼Ec E ui, tj εi, t½ �½ �. The various panel data formulations focus on the

role of heterogeneity in the specification and estimation of the inefficiency

term.

In the analysis of individual data on multinomial choice, the counterpart to

panel data modeling in many studies is the stated choice experiment. The ran-

dom utility based multinomial logit model with heterogeneity takes the form

Prob Choicei, t ¼ j½ � ¼ exp αi, j + γ0zi, t, j
� �

1 +
XJ

j¼1
exp αi, j + γ0zi, t, j
� � , j¼ 1,…,J:

Some applications involve mixed logit modeling, in which not only the alter-

native specific constants, αi,j but also the marginal utility values, γi ¼ γ + ui
are heterogeneous. Quantities of interest include willingness to pay for specific

attributes (such as trip time), WTP ¼ Ec[E[γi,k/γi,income]] and elasticities of sub-
stitution, ηj,l j k ¼ Ec[�γiPi,jPi,l], and entire conditional distributions of random

coefficients.

3.2 General Frameworks

Three general frameworks are employed in empirical applications of panel data

methods. Except for the cases we will note below, they depart from strict exo-

geneity and conditional independence.

3.2.1 Fixed Effects

If no restriction is imposed on the relationship between c and X, then the con-

ditional density f(c jx1,…,xT) depends on X in some unspecified fashion. The

assumption that E[c jX] is not independent of X is sufficient to invoke the fixed

9. There is no econometric framework available within which it can be suggested that the OLS slope

is a consistent estimator of an average partial effect (at the means, for example). It just works much

of the time.
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effects setting. With strict exogeneity and conditional independence, the

application takes the form

f yitj xi, t, cið Þ¼ fy yi, t, β0xi, t + cið Þ,
such as in the linear panel data regression.10 In most cases, the models are

estimated by treating the effects as parameters to be estimated, using a set of

dummy variables, d(j). The model is thus

f yitj xi, t, cið Þ¼ fy yi, t, β0xi, t +Σjαjd jð Þi, t
� �

:

The dummy variable approach presents two obstacles. First, in practical

terms, estimation involves at least K + n parameters. Many modern panels

involve tens or hundreds of thousands of units, which might make the physical

estimation of (β,α) impractical. Some considerations follow. The more impor-

tant problem arises in models estimated byM estimators; that is, by optimizing a

criterion function such as a log likelihood function. The incidental parameters

problem (IP) arises when the number of parameters in the model (αi) increases
with the number of observation units. In particular, in almost all cases, it appears

that the maximum likelihood estimator of β in the fixed effects model is incon-

sistent when T is small or fixed, even if the sample is large (in n), and the model

is correctly specified.

3.2.2 Random Effects

The random effects model specifies that X and c are independent so f(c jX) ¼
f(c). With strict independence between X and c, the model takes the form

f(yit jxi,t,ci) ¼ f(yi,t,β0xi,t + ui). Estimation of parameters still can be proble-

matic. But, pooled estimation (ignoring ui) can reveal useful quantities such

as average partial effects. More detailed assumptions, such as a full specifica-

tion of ui� N[0,σ2] will allow full estimation of (β0,σ)0. It still will be necessary
to contend with the fact that ui remains unobserved. The Butler and Moffitt

(1982) and maximum simulated likelihood approaches are based on the

assumption that

Eci f yi,1,…, yi, tjXi, cið Þ½ � ¼
ð

ci

YTi

t¼1
f yi, tj β0xi, t + ci : θð ÞdF ci : σð Þ

depends on (β0,θ0,σ)0 in a way that the expected likelihood can be the framework

for the parameters of interest.

10. Greene (2004c) labels index function models in this form true fixed effects and true random

effects models. There has been some speculation as to what the author meant by effects models that

were not true. The use of the term was specifically meant only to indicate linear index function

models in contrast to models that introduced the effects by some other means. The distinction

was used to highlight certain other models, such as the fixed effects negative binomial regression

model in Hausman, Hall, and Griliches (1984). In that specification, there were fixed effects defined

as in the text in terms of f(c jx), but the effects were not built into a linear index function.
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3.2.3 Correlated Random Effects

The fixed effects model is appealing for its weak restrictions on f(ci jXi). But, as

noted, practical and theoretical shortcomings follow. The random effects

approach remedies these shortcomings, but rests on an assumption that might

be unreasonable: that the heterogeneity is uncorrelated with the included vari-

ables. The correlated random effects model places some structure on f(ci jXi).

Chamberlain (1980) suggested that the unstructured f(ci jXi) be replaced with

ci|Zi ¼ π + θ10zi,1 + θ20zi,2 +⋯ + θTi0zi,Ti + ui:

with f(ui) to be specified—ui would be independent of zi,t. A practical problem

with the Chamberlain approach is the ambiguity of unbalanced panels.

Substituting zi¼ 0 for missing observations or deleting incomplete groups from

the data set, are likely to be unproductive. The amount of detail in this speci-

fication might be excessive; in a modern application with moderate T and large

K (say 30 or more), this implies a potentially enormous number of parameters.

Mundlak (1978) and Wooldridge (2005, 2010) suggest a useful simplification,

c|Xi ¼ π + θ0zi + ui:

Among other features, it provides a convenient device to distinguish fixed

effects (θ 6¼ 0) from random effects (θ ¼ 0).

3.3 Dynamic Models

Dynamic models are useful for their ability (at least in principle) to distinguish

between state dependence such as the dominance of initial outcomes and depen-

dence induced by the stickiness of unobserved heterogeneity. In some cases,

such as in stated choice experiments, the dynamic effects might themselves

be an object of estimation (see Contoyannis, Jones, & Rice, 2004).

A general form of dynamic model would specify f(yi,t jXi,ci,yi,t�1,yi,t�2,…

yi,0). Because the time series is short, the dependence on the initial condition,

yi,0, is likely to be substantive. Strict exogeneity is not feasible, because yi,t
depends on yi,t�1 in addition to xi,t, it also must depend on xi,t�1. A minor sim-

plification in terms of the lagged values produces the density f(yi,t jXi,ci,yi,t�1,

yi,0). The joint density of the sequence of outcomes is then

f yi,1, yi,2,…, yi,TijXi, yi, t�1, ci, yi,0ð Þ¼
YTi

t¼1
f yi, tj Xi, yi, t�1, ci, yi,0ð Þ:

It remains to complete the specification for ci and yi0. A pure fixed effects

approach that treats yi,0 as predetermined (or exogenous) would specify

f yi, tjXi, yi, t�1, ci, yi,0ð Þ¼ f yi, tj γ0zi, t + θyi, t�1 + γyi,0 + αi
� �

,

with Zi implicitly embedded in αi. This model cannot distinguish between

the time invariant heterogeneity and the persistent initial conditions effect.
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Moreover, as several authors (e.g., Carro, 2007) have examined, the incidental

parameters problem is made worse than otherwise in dynamic fixed effects

models. Wooldridge (2005) suggests an extension of the correlated random

effects model,

ci|Xi,yi,0 ¼ π +π0zi + θyi,0 + ui:

This approach overcomes the two shortcomings noted earlier. At the cost of the

restrictions on f(c jX,y0), this model can distinguish the effect of the initial con-

ditions from the effect of state persistence because of the heterogeneity.

Cameron and Trivedi (2005) raise a final practical question: How should a

lagged dependent variable appear in a nonlinear model? They propose, for

example, a Poisson regression that would appear

Prob yi, t ¼ jjXi, yi,0, ci½ � ¼ exp �λi, tð Þλji, t
j!

,λi, t

¼ exp η0zi, t + ρyi, t�1 + θ0yi,0 + π + θ0zi + uið Þ
Contoyannis et al. (2004) proposed a similar form for their ordered

probit model.

4 Nonlinear Panel Data Modeling

Some of the methodological issues in nonlinear panel data modeling have been

considered in Sections 2 and 3. We examine some of the practical aspects of

common effects models.

4.1 Fixed Effects

The fixed effects model is semiparametric. The model framework, such as

the probit or Tobit model is fully parameterized (see Ai, Li, Lin, & Ment,

2015). But the conditional distribution of the fixed effect, f(c jX) is unrestricted.
We can treat the common effects as parameters to be estimated with the rest

of the model. Assuming strict exogeneity and conditional independence, the

model is

f yi,1, yi,2,…, yi,Ti jXi, cið Þ¼
YTi

t¼1
f yi, tj xi, t, cið Þ¼

YTi

t¼1
f yi, tj γ0zi, t + αi : θð Þ,

where θ is any ancillary parameters such as σε in a Tobit model. Denote the

number of parameters in (γ,θ) as K* ¼ K + M. A full maximum likelihood

estimator would optimize the criterion function,

lnL γ, α, θð Þ¼
Xn

i¼1

XTi

t¼1

ln f yi, tj zi, t : γ, αi, θð Þ¼
Xn

i¼1

XTi

t¼1

ln f yi, t, γ0zi, t + αi : θð Þ, (5)

Nonlinear and Related Panel Data Models Chapter 3 61



where α is the n � 1 vector of fixed effects. The unconditional estimator pro-

duces all K* + n parameters of the model directly using conventional means.11

The conditional approach operates on a criterion function constructed from the

joint density of (yi,t, t ¼ 1,…,Ti) conditioned on a sufficient statistic, such that

the resulting criterion function is free of the fixed effects.

4.1.1 Unconditional Estimation

The general log likelihood in Eq. (5) is not separable in γ and α. (For current
purposes, θ can be treated the same as γ, so it is omitted for convenience.)

Unconditional maximum likelihood estimation requires the dummy variable

coefficients to be estimated along with the other structural parameters. For

example, for the Poisson regression,

Prob yi, t ¼ jj zi, t : γ, αið Þ¼ exp �λi, tð Þλji, t
j!

,λi, t ¼ exp αi + γ0zi, tð Þ:

The within transformation or first differences of the data does not eliminate the

fixed effects. The same problem will arise in any other nonlinear model in

which the index function is transformed or the criterion function is not based

on deviations from means to begin with.12

For most cases, full estimation of the fixed effects model requires simulta-

neous estimation of β and αi. The likelihood equations are

∂ lnL

∂γ
¼
Xn

i¼1

XTi

t¼

∂ ln f yi, tj zi, t : γ, αið Þ
∂γ

¼ 0,

∂ lnL

∂α
¼
XTi

t¼1

∂ ln f yi, tj zi, t : γ, αið Þ
∂αi

¼ 0, i¼ 1,…,n: (6)

Maximum likelihood estimation can involve matrix computations involving

vastly more memory than would be available on a computer. Greene (2005)

noted that this assessment overlooks a compelling advantage of the fixed effects

model. The large submatrix of the Hessian, ∂2lnL/∂α∂α0 is diagonal, which

allows a great simplification of the computations. The resulting algorithm

11. If the model is linear, the full unconditional estimator is the within groups least squares estima-

tor. If zi,t contains any time invariant variables (TIVs), it will not be possible to compute the within

estimator. The regressors will be collinear; the TIVwill lie within the column space of the individual

effects, D ¼ (d1,…,dn). The same problem arises for other true fixed effects nonlinear models. The

collinearity problem arises in the column space of the first derivatives of the log likelihood. The

Hessian for the log likelihood will be singular, as will the OPGmatrix. A widely observed exception

is the negative binomial model proposed in Hausman et al. (1984) which is not a true fixed effects

model.

12. If the model is a nonlinear regression of the form yi,t ¼ ηih(γ0zi,t) + εi,t, then, E[yi,t/yi] � hi,t/hi,

does eliminate the fixed effect (see Cameron & Trivedi, 2005, p. 782).
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reduces the order of the computations from (K + n) � (K + n) to K � K + n.
Fernandez-Val (2009) used the method to fit a fixed effects probit model with

500,000 fixed effects coefficients.13 The method can easily be used for most of

these models considered.

Unconditional fixed effects estimation, in fact, is straightforward in princi-

ple, however, it is still often an unattractive way to proceed. The disadvantage is

not the practical difficulty of the computation. In most cases—the linear regres-

sion and Poisson regression are exceptions—the unconditional estimator

encounters the incidental parameters problem. Even with a large sample (n)
and a correctly specified likelihood function, the estimator is inconsistent when

T is small, as assumed here.

4.1.2 Concentrated Log Likelihood and Uninformative
Observations

For some models, it is possible to form a concentrated log likelihood for

(γ,α1,…,αn). The strategy is to solve each element of Eq. (6) for αi(γ jyi,Xi), then

insert the solution into Eq. (5) and maximize the resulting log likelihood for γ.
The implied estimator of αi then can be computed. For the Poisson model,

define

λi, t ¼ exp αi + γ0zi, tð Þ¼ ηi exp γ0zi, tð Þ¼ ηiϕi, t:

The log likelihood function is14

lnL γ, αð Þ¼
Xn

i¼1

XTi

t¼1

�ηiϕi, t + yi, t lnηi + yi, t lnϕi, t� lnyi, t!
	 


:

The likelihood equation for ηi is ∂ lnL/∂ηi ¼�Σt ϕi,t + Σt yi,t/ηi. Equating this to
zero produces

η̂i ¼
ΣTi
t¼1yi, t

ΣTi
t¼1ϕi, t

¼ yi
ϕi

: (7)

Inserting this solution into the full log likelihood produces the concentrated log

likelihood,

lnLconc ¼
Xn

i¼1
� yi
ϕi

XTi

t¼1
ϕi, t + ln

yi
ϕi

 !
XTi

t¼1
yi, t +

XTi

t¼1
yi, t lnϕi, t� ln yi, t!ð Þ� �

" #

13. The Hessian for a model with n ¼ 500,000 will, by itself, occupy about 950gb of memory if the

symmetry of the matrix is used to store only the lower triangle. Exploiting the special form of the

Hessian reduces this to less than 4mb.

14. The log likelihood in terms of ηi ¼ exp(αi) relies on the invariance of the MLE to 1:1 transfor-

mations (see Greene, 2018).
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The concentrated log likelihood now can be maximized to estimate γ. The solu-
tion for γ then can be used in Eq. (7) to obtain each estimate of ηi and αi¼ ln(ηi).

Groups of observations in which Σt yi,t ¼ 0 contribute zero to the concen-

trated log likelihood. In the full log likelihood, if yi,t ¼ 0 for all t, then ∂ lnL/
∂ηi¼ Σtϕi,twhich cannot equal zero. The implication is that there is no estimate

of αi if Σt yi,t ¼ 0. Surprisingly, for the Poisson model, estimation of a nonzero

constant does not require within group variation of yi,t but it does require that

there be at least one nonzero value. Notwithstanding the preceding issue, this

strategy will not be available for most models, including the one of most inter-

est, the fixed effects probit model.

4.1.3 Conditional Estimation

For a few cases, the joint density of the Ti outcomes conditioned on a sufficient

statistic, Ai, is free of the fixed effects;

f yi,1,…, yi,Ti jXi, ci, Aið Þ¼ g yi,1,…, yi,Ti jXi, Aið Þ:
The most familiar example is the linear regression with normally distributed

disturbances, in which, after the transformation,

f yi,1,…, yi,TijXi, ci, yið Þ¼N γ0 zi, t� zið Þ, σε2
	 �

:

The within groups estimator is the conditional maximum likelihood estimator,

then the estimator of ci is yi� γ̂0zi. The Poisson regression model is another.15

For the sequence of outcomes, with λi,t ¼ exp(αi)exp(γ0zi,t) ¼ ηiϕi,t (see

Cameron & Trivedi, 2005, p. 807),

f yi,1,…, yi,Ti jXi, ΣTi
t¼1yi, t

� �¼ ΣTi
t¼1yi, t

� �
!

ΠTi
t¼1 yi, t!ð Þ�ΠTi

t¼1

ϕi, t

Σsϕi,s

� �yi, t

:

Maximization of the conditional log likelihood produces a consistent estimator

of γ, but none of the fixed effects. Computation of a partial effect, or some other

feature of the distribution of yi,t, will require an estimate of αi or E[αi] or a par-
ticular value. The conditional estimator provides no information about the dis-

tribution of αi. For index function models, it might be possible to compute ratios

of partial effects, but these are generally of limited usefulness. With a consistent

estimator of γ in hand, one might reverse the concentrated log likelihood

approach. Taking γ as known, the term of the log likelihood relevant to estimat-

ing αi is

15. The exponential regression model, f(yi,t jxi,t) ¼ λi,texp(-yi,tλi,t), yi,t > 0, is a third. This model

appears in studies of duration, as a base case specification, unique for its feature that its constant

hazard function, h(yi,t jxi,t) ¼ f(yi,t jxi,t)/[1 – F(yi,t jxi,t)] ¼ λi,t, is independent of yi,t.
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∂ lnL

∂α
γ̂j ¼

XTi

t¼1

∂ ln f yi, tj xi, t, γ̂ : αið Þ
∂αi

¼ 0, i¼ 1,…,n:

In principle, one could solve each of these in turn to provide an estimator of αi
that would be consistent in T. Because T is small (and fixed), estimation of the

individual elements is still dubious. However, by this solution, α̂i ¼ αi +wi

where Var(wi) ¼ O(1/T). Then α̂¼ 1
n

Pn
i¼1α̂i could be considered the mean of

a sample of observations from the population generating αi. (Each term could

be considered an estimator of E[αi jyi].) Based on the law of iterated expecta-

tions, α̂ should estimate Ey[E[α jyi]]¼ E[α]. The terms in the mean are all based

on common γ̂. But by assumption, Plimn γ̂ ¼ γ. Then, plim α̂ γ̂ð Þ¼ plim α̂ γð Þ ¼
E[α], which is what will be needed to estimated partial effects for fixed effects

model.16

4.1.4 The Incidental Parameters Problem and Bias Reduction

The disadvantage of the unconditional fixed effects estimator is the incidental

parameters (IP) problem (see Lancaster, 2000). The unconditional maximum

likelihood estimator is generally inconsistent in the presence of a set of inciden-

tal (secondary) parameters whose number grows with the dimension of the sam-

ple (n) while the number of cross-sections (T) is fixed. The phenomenon was

first identified by Neyman and Scott (1948), who noticed that the unconditional

maximum likelihood estimators of β and σ2 in the linear fixed effects model are

the within groups estimator for γ and σ̂2 ¼ e0e/(nT), with no degrees of freedom
correction. The latter estimator is inconsistent; plim σ̂2 ¼ [(T � 1)/T] σ2 < σ2.
The downward bias does not diminish as n increases, though it does decrease to
zero as T increases. In this particular case, plim γ̂¼ γ. No bias is imparted to γ̂.
Moreover, the estimators of the fixed effects, α̂i¼ Σt(yi,t � γ̂0xi,t), are unbiased,
albeit inconsistent because Asy.Var[α̂i] is O(1/T)

There is some misconception about the IP problem. The bias usually is

assumed to be transmitted to the entire parameter vector and away from zero.

The inconsistency of the estimators of αi taints the estimation of the common

parameters, γ, but this does not follow automatically. The nature of the incon-

sistencies of α̂i and γ̂ α̂ð Þare different. The FE estimator, α̂i, is inconsistent

because its asymptotic variance does not converge to zero as the sample (n)
grows. There is no obvious sense in which the fixed effects estimators are sys-

tematically biased away from the true values. (In the linear model, the fixed

16. Wooldridge (2010, p. 309) makes this argument for the linear model. There is a remaining com-

plication about this strategy for nonlinear models that will be pursued again in Section 6. Broadly, α̂
estimates αi for the subsample for which there is a solution for α̂i. For example, for the Poisson

model, the likelihood equation for αi has no solution if Σtyit ¼ 0. These observations have been

dropped for purposes of estimation. The average of the feasible estimators would estimate E

[αi jΣtyi,t 6¼ 0]. This might represent a nontrivial truncation of the distribution. Whether this differs

from E[αi] remains to be explored.
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effects estimators are actually unbiased.) In many nonlinear settings, however,

the common parameters, γ, are estimated with a systematic bias that does not

diminish as n increases. No internally consistent theory implies this result. It

varies by model. In the linear regression case, there is no systematic bias. In

the binary logit case, the bias in the common parameter vector is proportional

for the entire vector, away from zero. The result appears to be the same for the

probit model, though this remains to be proven analytically. Monte Carlo evi-

dence (Greene, 2005) for the Tobit model suggests, again, that the estimator of

the scale parameter, σε is biased, but the common slope estimators are not. In the

true fixed effects stochastic frontier model, which has common parameters γ
and two variance parameters, σu and σv, the IP problem appears to reside only

in σv, which resembles the Neyman and Scott case.

As suggested by the Neyman and Scott application, it does seem that the

force of the result is actually exerted on some explicit or embedded scaling

parameters in index models. For example, the linear regression, Tobit, stochas-

tic frontier, and even in binary choice models, where the bias appears equally in

the entire vector. The only theoretically verified case is the binary logit model,

for which it has been shown that plim γ̂¼ 2γwhen T¼ 2 (see Abrevaya, 1997).

It also can be shown that plim γ̂¼ γ as (n,T) –>∞. What applies between 2 and

∞, and what occurs in other models has been suggested experimentally (see

e.g., Greene, 2004a). A general result that does seem widespread is suggested

by Abrevaya’s result, that the IP bias is away from zero. But, in fact, this seems

not to be the case, either. In the Tobit case, for example, and in the stochastic

frontier, the effect seems to reside in the variance term estimators. In the trun-

cated regression, it appears that both slopes and standard deviation parameters

are biased downward. Table 1 shows some suggestive Monte Carlo simulations

from Greene (2004a, 2005). All simulations are based on a latent single index

model yi,t* ¼ αi + βxi,t + δdi,t + σεi,t where εi,t is either a standardized logistic

variate or standard normal, β¼ δ¼ 1, xi,t is continuous, di,t is a dummy variable,

and αi is a correlated random effect (i.e., the DGP is actually a true fixed effects

model). Table entries in each case are percentage biases of the unconditional

estimators, computed as 100%[(b – β)/β] where β is the quantity being esti-

mated (1.0) and b is the unconditional FE estimator. The simulation also esti-

mates the scale factor for the partial effects. The broad patterns that emerge are,

first, when there is discrete variation in yi,t, the slopes are biased away from

zero. When there is continuous variation, the bias, if there is any, in the slopes,

is toward zero. The bias in σ̂ε in the censored and truncated regression models is

toward zero. Estimates of partial effects seem to be more accurate than esti-

mates of coefficients. Finally, the IP problem obviously diminishes with

increases in T. Fig. 1 shows the results of a small experimental study for a sto-

chastic frontier model, yi,t ¼ αi + βxi,t + σvvi,t � σu jui,t j where, again, this is a
true fixed effects model, and vi,t and ui,t are both standard normally distributed.

The true values of the parameters β, σu and σv are 0.2, 0.18, and 0.10, respec-

tively. For β and σu, the deviation of the estimator from the true value is
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persistently only 2%–3%. Fig. 1 compares the behavior of a consistent method

of moments estimator of σv to the maximum likelihood estimator. The results

strongly suggest that the bias of the true fixed effects estimator is relatively

small compared to the models in Table 1, and it resides in the estimator of σv.
Proposals to correct the unconditional fixed effects estimator have focused

on the probit model. Several approaches involving operating directly on the

estimates, maximizing a penalized log likelihood, or modifying the likelihood

equations, have been suggested. Hahn and Newey’s (2004) jackknife procedure

provides a starting point. The central result for an unconditional estimator based

on n observations and T periods is

plimn!∞ γ̂¼ γ+
1

T
b1 +

1

T2
b2 +O

1

T3

� �
,

where γ̂ is the unconditional MLE, b1 and b2 are vectors and the final term is

a vector of order (1/T 3).17 For any t, a leave one period out estimator without

that t, has

plimn!∞γ̂ tð Þ ¼ γ+
1

T�1
b1 +

1

T�1ð Þ2b2 +O
1

T3

� �
:

It follows that

plimn!∞ Tγ̂T � T�1ð Þγ̂ tð Þ ¼ γ� 1

T T�1ð Þb2 +O
1

T3

� �
¼ γ+O

1

T2

� �
:

Mean of sigma(v), 10 repetitions
–1047

–0970

–0893 –23%

–0815

–0738

–0660

6 8 10 12 14 16 18 20

FIG. 1 Unconditional fixed effects stochastic frontier estimator.

17. For the probit and logit models, it appears that the relationship could be plimγ̂ ¼ γ g(T) where

g(2)¼ 2, g0(T)< 0 and limT!∞g(T)¼ 1. This simpler alternative approach remains to be explored.
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This reduces the bias to O(1/T 2). In order to take advantage of the full sample,

the jackknife estimator would be

^̂γ¼ Tγ̂T � T�1ð Þγ̂ where γ̂¼ 1

T
ΣT
t¼1γ̂ tð Þ:

Based on these simulation results, one might expect the bias in this estimator

to be trivial if T is in the range of many contemporary panels (about 15). Imbens

and Wooldridge (2012) raise a number of theoretical objections that together

might limit this estimator, including a problem with γ̂ tð Þin dynamic models

and the assumption that b1 and b2 will be the same in all periods. Several

other authors, including Fernandez-Val (2009), Carro (2007), and Carro and

Browning (2014), have provided refinements on this estimator.

4.2 Random Effects Estimation and Correlated Random Effects

The random effects model specifies that ci is independent of the entire sequence
xi,t. Then, f(ci jXi) ¼ f(c). Some progress can be made analyzing functions of

interest, such as E[y jx,c] with reasonably minimal assumptions. For example,

if only the conditional mean, E[c] is assumed known (typically zero), then esti-

mation sometimes can proceed semiparametrically, by relying on the law

of iterated expectations and averaging out the effects of heterogeneity. Thus,

if sufficient detail is known about E[y jx,c], then partial effects such as

APE ¼ Ec [∂E[y jx,c]/∂x] can be studied by averaging away the heterogeneity.

However, most applications are based on parametric specifications of ci.

4.2.1 Parametric Models

With strict exogeneity and conditional independence,

f yi,1,…, yi,Ti jXi, cið Þ¼
YTi

t¼1
f yi, tj xi, t, cið Þ:

The conditional log likelihood for a random effects model is, then,

lnL β, θ, σð Þ¼
Xn

i¼1
ln
YTi

t¼1
f yi, tj β0xi, t + ci : θ, σð Þ

� �
:

It is not possible to maximize the log likelihood with the unobserved ci present.
The unconditional density will be

ð

ci

YTi

t¼1
f yi, tj β0xi, t + ci : θð Þ

� �
f ci : σð Þdci:

The unconditional log likelihood is

ln Lunconditional β, θ, σð Þ¼
Xn

i¼1

ln

ð

ci

YTi

t¼1
f yi, tj β0xi, t + ci : θð Þ

� �
f ci : σð Þdci:
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The maximum likelihood estimator now is computed by maximizing the uncon-

ditional log likelihood. The remaining obstacle is computing the integral. Save

for the two now familiar cases, the linear regression with normally distributed

disturbances and normal heterogeneity and the Poisson regression with log-

gamma distributed heterogeneity, integrals of this type do not have known

closed forms, and must be approximated.18 Two approaches are typically used,

Gauss-Hermite quadrature and Monte Carlo simulation.

If ci normally is distributed with mean zero and variance σ2, the uncondi-

tional log likelihood can be written

lnunconditional L β, θ, σð Þ¼
Xn

i¼1

ln

ð∞

�∞

YTi

t¼1
f yi, tj xi, t, ci : β, θð Þ

h i1
σ
ϕ

ci
σ

� �
dci

With a change of variable and some manipulation, this can be transformed to

ln Lunconditional β, θ, σð Þ¼
Xn

i¼1

ln

ð∞

�∞
g hið Þe�h2i dhi,

which is in the form needed to use Gauss-Hermite quadrature. The approxima-

tion to the unconditional log likelihood is

ln Lquadrature β, θ, σð Þ¼
Xn

i¼1

ln
XH

h¼1

YTi

t¼1
f yi, tj xi, t, ah : β, θð Þ

h i
wh,

where ah andwh are the nodes and weights for the quadrature. Themethod is fast

and remarkably accurate, even with small numbers (H) of quadrature points.

Butler and Moffitt (1982) proposed the approach for the random effects probit

model. It has since been used in many different applications.19

Monte Carlo simulation is an alternative method. The unconditional log

likelihood is,

ln L β, θ, σð Þ¼
Xn

i¼1

ln

ð∞

�∞

YTi

t¼1
f yi, tj xi, t, ci : β, θð Þ

h i1
σ
ϕ

ci
σ

� �
dci

¼
Xn

i¼1

lnEc

YTi

t¼1
f yi, tj xi, t, ci : β, θð Þ

h i
:

By relying on a law of large numbers, it is possible to approximate this expectation

with an average over a random sample of observations on ci. The sample can be

created with a pseudo-random number generator. The simulated log likelihood is

ln Lsimulation β, θ, σð Þ¼
Xn

i¼1

ln
1

R

XR

r¼1

YTi

t¼1
f yi, tj xi, t, eci,r : β, θ, σð Þ

h i

18. See Greene (2018).

19. See, e.g., Stata (2018) and Econometric Software Inc. (2017).
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where eci,r is the rth pseudo random draw.20 Maximum simulated likelihood has

been used in a large and growing number of applications. Two advantages of

the simulation method are, first, if integration must be done over more than

one dimension, the speed advantage of simulation over quadrature becomes

overwhelming and, second, the simulation method is not tied to the normal

distribution—it can be applied with any type of population that can be simulated.

In most applications, the parameters of interest are partial effect of some sort,

or some other derivative function of the model parameters. In random effects

models, these functions likely will involve ci. For example, for the random effects

probitmodel, the central feature is Prob(yi,t¼ 1 jxi,tci)¼Φ(β0xi,t+ σvi) where ci¼
σvi with vi � N[0,1]. As we have seen earlier, the average partial effect is

APE¼Ev βϕ β0x+ σvð Þ½ � ¼ β 1�ρð Þ1=2 ϕ β0x 1�ρð Þ1=2
� �

:

The function also could be approximated using either of the previously noted

methods. In more involved cases that do not have closed forms, it would be

a natural way to proceed.

4.2.2 Correlated Random Effects

The fixed effects approach, with its completely unrestricted specification of

f(c jX) is appealing, but difficult to implement empirically. The random effects

approach, in contrast, imposes a possibly unpalatable restriction. The payoff is

the detail it affords as seen in the previous section. The correlated random

effects approach suggested by Mundlak (1978), Chamberlain (1980), and

Wooldridge (2010) is a useful middle ground. The specification is ci ¼ π +

θ0zi + ui. This augments the random effects model shown earlier.

ln L γ, π, θ, σð Þ¼
Xn

i¼1

ln
YTi

t¼1
f yi, tj π + γ0zi, t + θ0zi + uið Þ

� �

For example, if ui� N[0,σ2], as is common, the log likelihood for the correlated

random effects probit model would be

ln L γ, π, θ, σð Þ¼
Xn

i¼1

ln

ð∞

�∞

YTi

t¼1
Φ 2yi, t�1ð Þ π + γ0zi, t + θ0zi + σvið Þ½ �

� �
ϕ við Þdvi

After estimation, the partial effects for this model would be based on21

PE¼ ∂Φ π + γ0z+ θ0z+ σvð Þ
∂z

¼ γϕ π + γ0z+ θ0z+ σvð Þ¼ δ z, z, vð Þ:

20. See Cameron and Trivedi (2005, p. 394) for some useful results about properties of this estimator.

21. We note, in application, ∂Φ π + γ0z+ θ0z+ σvð Þ/∂z should include a term 1
Ti
θ. For purpose of the

partial effect, the variation of z is not taken to be variation of a component of z.
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Empirically, this can be estimated by simulation or, as before, with

P̂E¼ γ 1�ρð Þ1=2ϕ 1�ρð Þ1=2 π + γ0z+ θ0zð Þ
h i

The CRE model relaxes the restrictive independence assumption of the random

effects specification, while overcoming the complications of the unrestricted

fixed effects approach.

4.2.3 Random Parameters Models

The random effects model can be written f(yi,t jxi,t,ci)¼ f[yi,t jγ0zi,t + (π + ui):θ];
that is, as a nonlinear model with a randomly distributed constant term. We

could extend the idea of heterogeneous parameters to the other parameters.

A random utility based multinomial choice model might naturally accommo-

date heterogeneity in marginal utilities over the attributes of the choices with

a random specification γi ¼ γ + ui where E[ui] ¼ 0, Var[ui] ¼ Σ ¼ ΓΓ0 and
Γ is a lower triangular Cholesky factor for Σ. The log likelihood function for

this random parameters model is

ln L β, θ, Σð Þ¼
Xn

i¼1

ln

ð

vi

YTi

t¼1
f yi, tj β +Γvið Þ0xi, t : θ
� �h i

f við Þdvi:

The integral is over K (or fewer) dimensions, which makes quadrature

unappealing—the amount of computation is O(HK), and the amount of

computation needed to use simulation is roughly linear in K.

4.2.4 A Semiparametric Random Effects Model

The preceding approach is based on a fully parametric specification for the ran-

dom effect. Heckman and Singer (1984) argued (in the context of a duration

model), that the specification was unnecessarily detailed. They proposed a

semiparametric approach using a finite discrete support over ci, cq, q ¼ 1,…,

Q, with associated probabilities, τq. The approach is equivalent to a latent class,
or finite mixture model. The log likelihood, would be

ln L β, θ, c, τð Þ¼
Xn

i¼1

ln
1

Q

XQ

q¼1
τq
YTi

t¼1
f yi, tj xi, t : cq, β, θ
� �h i

,

0< τq < 1, Σqτq ¼ 1:

Willis (2006) applied this approach to the fixed effects binary logit model pro-

posed by Cecchetti (1986). The logic of the discrete random effects variation

could be applied to more than one, or all of the elements of β. The resulting

latent class model has been used in many recent applications.

4.3 Robust Estimation and Inference

In nonlinear (or linear) panel data modeling, robust estimation arises in two

forms. First, the difference between fixed or correlated random effects and pure
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random effects arises from the assumption about restrictions on f(ci jXi). In the

correlated random effects case, f(ci jXi) ¼ f(ci jπ + θ0zi), and in the pure random
effects, case, f(ci jXi) ¼ f(ci). A consistent fixed effects estimator should be

robust to the other two specifications. This proposition underlies much of the

treatment of the linear model. The issue is much less clear for most nonlinear

models because, at least in the small T case, there is no sharply consistent fixed

effects estimator because of the incidental parameters problem. This forces the

analyst to choose between the inconsistent fixed effects estimator and a possibly

nonrobust random effects estimator. In principle, at the cost of a set of probably

mild, reasonable assumptions, the correlated random effects approach offers an

appealing approach.

The second appearance of the idea of robustness in nonlinear panel data

modeling will be the appropriate covariance matrix for the ML estimator.

The panel data setting is the most natural place to think about clustering and

robust covariance matrix estimation (see Abadie et al., 2017; Cameron &

Miller, 2015; Wooldridge, 2003). In the linear case, where the preferred estima-

tor is OLS,

b�β¼ Σn
i¼1 ΣTi

t¼1xi, tx
0
i, t

� �	 
�1 Σn
i¼1 ΣTi

t¼1xi, tεi, t
� �	 


:

The variance estimator would be

Est:Var b jX½ � ¼ Σn
i¼1 ΣTi

t¼1xi, tx
0
i, t

� �	 
�1 Σn
i¼1 ΣTi

t¼1xi, tei, t
� �

ΣTi
t¼1x

0
i, tei, t

� �	 


Σn
i¼1 ΣTi

t¼1xi, tx
0
i, t

� �	 
�1
:

The correlation accommodated by the cluster correction in the linear model

arises through the within group correlation of (xi,tei,t). Abadie et al. (2017)

discuss the issue of when clustering is important. For the linear model with nor-

mally distributed disturbances, the first and second derivatives of the log like-

lihood function are gi,t ¼ xi,tεi,t/σ2 and Hi,t ¼ -xi,txi,t
0/σ2. In this case, whether

clustering is important would turn on whether (–ΣTi
t¼1Ĥi, t) ¼ Xi

0Xi/σ̂2 differs

substantially from

ΣTi
t¼1ĝi, t

� �
ΣTi
t¼1ĝ

0
i, t

� �¼ΣTi
t¼1Σ

Ti
s¼1ei, tei,sxi, tx

0
i,s=σ̂

4 ¼ΣTi
t¼1Σ

Ti
s¼1ĝi, tĝ

0
i, t

(apart from the scaling σ̂2). This, in turn, depends on the within group correla-

tion of (xi,tei,t), not necessarily on that between ei,t or xi,t separately.
For a maximum likelihood estimator, the appropriate estimator is built up

from the Hessian and first derivatives of the log likelihood. By expanding

the likelihood equations for the MLE γ̂ around γ,

γ̂�γ� Σn
i¼1 ΣTi

t¼1Hi, t

� �	 
�1 Σn
i¼1 ΣTi

t¼1gi, t
� �	 


The estimator for the variance of γ̂ is then

Est:Var γ̂½ � ¼ Σn
i¼1 ΣTi

t¼1Ĥi, t

� �	 
�1
Σn
i¼1 ΣTi

t¼1ĝi, t
� �

ΣTi
t¼1ĝ

0
i, t

� �	 

Σn
i¼1 ΣTi

t¼1Ĥi, t

� �	 
�1
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where the terms are evaluated at γ̂. The result for the nonlinear model mimics

that for the linear model. In general, clustering is important with respect to the

within group correlation of the scores of the log likelihood. It might be difficult

to interpret this in natural terms, such as membership in a group. Abadie et al.

also take issue with the idea that clustering is harmless, arguing it should be

substantive. We agree with this, especially given the almost reflexive (even

in cross-section studies) desire to secure credibility by finding something to

cluster on. The necessary and sufficient condition is that some form of unobser-

vable be autocorrelated within the model. For example, the mere existence of

some base similarity within defined groups in a population is not alone suffi-

cient to motivate this correction.

Clustering appears universally to be viewed as conservative. The desire is to

protect against being too optimistic in reporting standard errors that are too

small. It seems less than universally appreciated that the algebra of the cluster

correction (and robust covariance matrix correction more generally) does not

guarantee that the resulting estimated standard errors will be larger than the

uncorrected version.

4.4 Attrition

When the panel data set is unbalanced, the question of ignorability is consid-

ered. The methodological framework for thinking about attrition is similar to

sample selection. If attrition from the panel is related systematically to the unob-

served effects in the model, then the observed sample might be nonrandom. (In

Contoyannis et al.’s (2004) study of self-assessed health, the attrition appeared

to be most pronounced among those whose initial health was rated poor or fair.)

It is unclear what the implications are for data sets affected by nonrandom attri-

tion. Verbeek and Nijman (1992) suggested some variable addition tests for the

presence of attrition bias. The authors examined the issue in a linear regression

setting. The application of Contoyannis et al. (2004) to an ordered probit model

is more relevant here. The Verbeek and Nijman tests add (one at a time) three

variables to the main model: NEXT WAVE is a dummy variable added at

observed wave t that indicates if the individual is observed in the next wave;

ALL WAVES is a dummy variable that indicates whether the individual is pre-

sent for all waves; NUMWAVES is the total number of waves for which indi-

vidual i is present in the sample. (Note that all of these variables are time

invariant, so they cannot appear in a fixed effects model.) The authors note these

tests might have low power against some alternatives and are nonconstructive—

they do not indicate what response should follow a finding of attrition bias. A

Hausman style test might work. The comparison would be between the estima-

tor based only on the full balanced panel and the full, larger, unbalanced panel.

Contoyannis et al. (CRJ) note that this approach likely would not work because

of the internal structure of the ordered probit model. The problem, however, is

worse than that. The more efficient estimator of the pair is only more efficient
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because it uses more observations, not because of some aspect of the model

specification, as is generally required for the Hausman (1978) test. It is not

clear, therefore, how the right asymptotic covariance matrix for the test should

be constructed. This would apply in any modeling framework. The outcome of

the VN test suggests whether the analyst should restrict the sample to the bal-

anced panel that is present for all waves, or they can gain the additional effi-

ciency afforded by the full, larger, unbalanced sample.

Wooldridge (2002) proposed an inverse probability weighting scheme to

account for nonrandom attrition. For each individual in the sample, di,t¼ 1[indi-

vidual i is present in wave t, t¼1,…,T]. A probit model is estimated for each

wave based on characteristics zi,1 that are observed for everyone at wave 1.

For Contoyannis et al. (2004), these included variables such as initial health

status and initial values of several characteristics of health. At each period,

the fitted probability p̂i, t is computed for each individual. The weighted pooled

log likelihood is

ln L¼
Xn

i¼1

XTi

t¼1

di, t=p̂i, t
� �

logLi, t:

CRJ suggested some refinements to allow z to evolve. The application of the set

of procedures suggested the presence of attrition bias for men in the sample, but

not for women. Surprisingly, the difference between the estimates based on the

full sample and the balanced panel were negligible.

4.5 Specification Tests

The random effects and fixed effects models each encompass the pooled model

(linear or not) via some restriction on f(ci jXi). The tests are uncomplicated

for the linear case. For the fixed effects model, the linear restriction, H0:αi ¼
α1, i ¼ 2,…,n can be tested with an F statistic with (n–1) and Ν–n–K degrees

of freedom. Under the normality assumption, a likelihood ratio statistic, –2ln
(eLSDV

0eLSDV/ePOOLED0ePOOLED) would have a limiting chi-squared distribution

with n–1 degrees of freedom under H0. There is no counterpart to the F statistic

for nonlinear models. The likelihood ratio test might seem to be a candidate, but

this strategy requires the unconditional fixed effects estimator to be consistent

under H0. The Poisson model is the only clear candidate. Cecchetti (1986) pro-

posed a Hausman (1978) test for the binary logit model based on a comparison

of the efficient pooled estimator to the inefficient conditional ML estimator.22

This option will not be available for many other models; it requires the condi-

tional estimator or some other consistent (but inefficient under H0) estimator.

The logit and Poisson are the only available candidates. The strategy certainly

22. The validity of Cecchetti’s test depends on using the same sample for both estimators. The obser-

vations with Σt yi,t¼ 0 or Ti should be omitted from the pooled sample even though they are useable.
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is not available for the probit model. A generic likelihood ratio test will not be

available because of the incidental parameters problem, and, for some cases, the

fixed effects estimator must be based on a smaller sample.

A useful middle ground is provided by the correlated random effects (CRE)

strategy. The CRE model restricts the generic fixed effects model by assuming

ci ¼ π0 + θ0z + ui. If we embed this in the generic fixed effects model,

f yi,1,…, yi,TijXi, cið Þ¼Πtf π + γ0zi, t + θ0zi + uið Þ:
This model can be estimated as a random effects model if a distribution (such

as normal) is assumed for ui. The Wald statistic for testing H0:θ ¼ 0 would

have a limiting chi-squared distribution with K degrees of freedom. (The test

should be carried out using a robust covariance matrix because of the loose

definition of ci.
23)

The test for random effects likewise has some subtle complications. For the

linear model, with normally distributed random effects, the standard approach is

Breusch and Pagan’s LM test based on the pooled OLS residuals:

LM¼ Σn
i¼1Ti

� �2

2Σn
i¼1Ti Ti�1ð Þ

Σn
i¼1 Tieið Þ2

Σn
i¼1Σ

Ti
t¼1e

2
i, t

�1

" #2
! χ2 1½ �:

Wooldridge (2010) proposes a method of moments based test statistic that uses

Cov(εi,t,εi,s) ¼ Var(εi,t) ¼ σ2,

Z¼
1

n
Σn
i¼1 ΣTi�1

t¼1 ΣTi
s¼Ti + 1

ei, tei,s

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
Σn
i¼1 ΣTi�1

t¼1 ΣTi
s¼Ti + 1

ei, tei,s

� �2
r !N 0, 1½ �

Some manipulation of this reveals that Z ¼ ffiffiffi
n

p
r=sr where ri ¼ Tieið Þ2� e0iei

h i
.

The difference between the two is that the LM statistic relies on variances (and

underlying normality) while Wooldridge’s relies on the covariance between ei,t
and ei,s and the central limit theorem.

There is no direct counterpart to either of these statistics for nonlinear

models, generally because nonlinear models do not produce residuals to provide

a basis for the test.24 There is a subtle problem with tests ofH0:σc
2¼ 0 based on

the likelihood function. The regularity conditions required to derive the limiting

chi-squared distribution of the statistic require the parameter to be in the interior

23. The same test in the linear regression presents a direct approach.Linear regressionof yi,t on (zi,t,zi)

is algebraically identical to thewithin estimator. AWald test of the hypothesis that the coefficients on

zi equal zero (using a robust covariance matrix) is loosely equivalent to the test described here for

nonlinear models. This is the Wu (1973) test, but the underlying logic parallels the Hausman test.

24. Greene and McKenzie (2015) develop an LM test for H0 for the random effects probit model

using generalized residuals (see Chesher & Irish, 1987). For a single index nonlinear (or linear)

model, the generalized residual is ui,t ¼ ∂ lnf(yi,t jl)/∂(β0x), i.e., the derivative with respect to the

constant term. For the linear model, this is εi,t/σε2.
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of the parameter space, not on its boundary, as it would be here. (Greene and

McKenzie 2015) examine this issue for the random effects probit model.)

Under the fairly strong assumptions that underlie the Butler and Moffitt or

random constants model, a simpler Wald test is available. For example, for the

random effects probit model, maximization of the simulated log likelihood,

lnL β, σð Þ¼
Xn

i¼1

ln
1

R

XR

r¼1

YTi

t¼1
Φ 2yi, t�1ð Þ β0xi, t + σvi,rð Þ½ �

h

produces estimates of β and σ. The latter can form the basis of a Wald or like-

lihood ratio test. The Butler and Moffitt estimator produces an estimate of

ρ ¼ σ2/(1 + σ2) that can be treated similarly.

The random and fixed effects models are not nested without some restric-

tions; H0: f(c jX) ¼ f(c) requires some formal structure to provide a basis for

statistical inference. Once again, the correlated random effects model provides

a convenient approach. The log likelihood function under a suitable definition

of f(c jXi) would be

lnL β, θ, σð Þ¼
Xn

i¼1

ln

ð∞

�∞

YTi

t¼1
f yi, tj π + γ0zi, t + θ0zi + σuið Þð � f uið Þdui

h

A Wald test of H0:θ ¼ 0 tests the difference between fixed and random effects

under this specification.

5 Panel Data

Panel data are found in several forms. Broadly, n observational units each are

observed T times in sequence. One useful distinction can be made by delineating

the sampling frame that generates n and T. In the longitudinal data settings of

interest here, we treat T as fixed, though not necessarily very small. The Panel

Survey of Income Dynamics (PSID) contains more than 50 years of data; the

German Socioeconomic Panel (GSOEP) is near 20 years. The European

Community Household Panel (ECHP) data set was ended after eight waves.

Econometric considerations in such data generally are based on n multivariate

(T-variate) observations. The statistical theory for longitudinal analysis is labeled
fixed T. In particular, although some of these data sets might be long enough to be

considered otherwise, the time series properties of the data (e.g., stationarity) are

not of interest. The Penn World Tables (http://www.rug.nl/ggdc/productivity/

pwt/) consist of T ¼ 65 years of data on n ¼ 182 countries (as of version 9.0

in 2017). In analyzing these aggregate time series data, the time series properties

are of paramount importance. These could be regarded as fixed n, though the

number of countries in any particular analysis is typically not an important feature

of the analysis. Asymptotic properties of estimators in this context, for example,

hinge on T, not n. A style of analysis rather different from longitudinal modeling

is called for in this setting. In contrast, the Center for Research in Security Prices

(CRSP) data (http://www.crsp.com) provide financial analysts with extremely
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wide (large n) data on some very long time series (large T), such as stock and bond
data for corporations. Each of these settings calls for its own classes ofmodels and

methods. In this (now, admittedly parochial) survey, we are interested in longi-

tudinal analysis (small or fixed T and large n). Some examples of these national

(or international) data sets are as follows:

l European Community: SHARE (Survey of Health, Ageing and Retirement

in Europe);

l European Community: ECHP (European Community Household Panel);

l Australia: HILDA (Household Income and Labor Dynamics in Australia);

l UK: BHPS (now, Understanding Society, previously the British Household

Panel Survey);

l Germany: GSOEP (German Socioeconomic Panel);

l Mexico: ENEU (Encuesta Nacional de Empleo Urbano, Urban Employment

Survey)

l China: CFPS (China Family Panel Study);

l Italy: WHIP (Work Histories Italian Panel);

l USA: PSID (Panel Survey of Income Dynamics);

l USA: MEPS (Medical Expenditure Panel Survey);

l USA: NLS (National Longitudinal Survey);

l USA: SIPP (Survey of Income and Program Participation).

We note an immediate complication in the previous description. In practice, most

longitudinal data sets do not actually involve a fixed T observation on n units.

Rather, units come and go from the sample for various reasons. This could be

bydesign. Ina rotatingpanel, suchas theSIPPandENEUdata, units enter thepanel

for a fixed number of waves, and the entry of specific units is staggered. In a par-

ticular wave of the panel, the number of appearances of any unit could be any of

1,…,T. (T varies from two to four years for the SIPP data and is five for the ENEU

data)The reasons for exitandpossible reentrybyanyunit, however,mightbeunex-

plainable in the context of the study.Full generalitywould require us to specify that

the i¼ 1,…,n observations each is observed Ti times. In nearly all received cases,

this sort of variation merely presents a notational inconvenience for the econome-

trician and a practical, accounting complication for the model builder. It is neces-

sary, however, to distinguish randomly missing observations from attrition. For

purpose of the analysis, attritionwill have two features: (1) It is an absorbing state;

the unit that attrites fromthe sampledoesnot return later. (There is churn in someof

the data sets listed above.); (2) In the context of whatever model is under consid-

eration, the unobservable features that explain attrition will be correlated with the

unobservables that enter the model for the interesting variable under analysis.

These two results produce a complication because of nonrandom sampling. For

example, it is not simply association of attrition with the dependent variable that

creates an attrition problem. The association iswith the unobservable effects in the

model. In a model for Income, if attrition is explainable completely in terms of

Income—individuals whose income reaches a certain level are asked to exit the

panel—then the phenomenon can be modeled straightforwardly in terms of
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truncation.But if the attrition is associatedwith thedisturbance in the Incomeequa-
tion, matters become much more complicated. To continue the example, in an

Income model, attrition that is related to Health might well be nonrandom with

respect to Income. We will examine a subsequent application.

A panel data set that consists precisely of T observations on N units is said to

be a balanced panel. In contrast, if the number of observations Ti varies with i,
then the panel is unbalanced. Attrition is a potential problem in unbalanced

panels. Table 2 displays an extract from an unbalanced panel data set. The anal-

ysis in the remainder of this survey is concerned with data such as these. (The

data are extracted from the GSOEP sample that was used in Riphahn et al.

2003.) For our purposes, the interesting variables in this data set are HSAT,
health satisfaction, and DOCVIS, number of doctor visits.

6 Modeling Frameworks and Applications

We illustrate the applications of the panel data methods in several different non-

linear settings.We beginwith the binary choicemodel that dominates the received

literature, and then examine several others. A few relatively uncommon applica-

tions such as duration models (Lee 2008) are left for more extensive treatments.

6.1 Binary Choice

The probit and logit models for binary choice are the standard settings for exam-

ining nonlinear modeling, in general, and panel data modeling, in particular. The

canonical origin of the topic would be Chamberlain’s (1980) development of the

fixed effects model and Butler and Moffitt’s (1982) treatment of the random

effects model.25 The unconditional fixed effects estimators for the panel probit

and logit models (see Greene 2004a, 2004b, 2018) exemplify the incidental

parameters problem and therefore are unappealing approaches. The literature

about extensions and less parameterized alternatives to the two models includes

Hahn and Kuersteiner (2011), Hahn and Newey (2004), Carro (2007), Fernandez-

Val (2009), Honor�e and Lewbel (2002), Honor�e and Kesina (2017), Manski

(1975), Aguirrebiria and Mira (2007), and Lewbel and Dong (2015).

6.1.1 Random and Unconditional Fixed Effects Probit Models

The log likelihood function for a panel probit model26 is

lnL β, σð Þ¼
Xn

i¼1

XTi

t¼1

lnΦ qi, t π + γ0zi, t + cið Þ½ �,qi, t ¼ 2yi, t�1ð Þ:

25. Rasch (1960) is a precursor to the fixed effects logit model.

26. We distinguish this from the panel probit model described in Bertschuk and Lechner (1998),

which was essentially a constrained seemingly unrelated regressions model for a set of T binary

choices;

yi,t ¼ 1[β0xi,t + εi,t > 0] with Cov(εi,t,εj,s) ¼ 1[i ¼ j]ρt,s with ρt,t ¼ 1. Their formulation describes

cross period correlation, not individual heterogeneity.
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TABLE 2 Unbalanced Panel Data

ID Female Year Age Educ Married Docvis Hsat Income Children

1 0 1984 54 15 1 1 8 0.305 0

1 0 1985 55 15 1 0 8 0.451005 0

1 0 1986 56 15 1 0 7 0.35 0

2 1 1984 44 9 1 0 7 0.305 0

2 1 1985 45 9 1 1 8 0.318278 0

2 1 1986 46 9 1 2 7 0.35 0

2 1 1988 48 9 1 1 8 0.35305 0

3 1 1984 58 11 0 0 10 0.1434 0

3 1 1986 60 11 0 0 9 0.3 0

3 1 1987 61 11 0 10 10 0.11 0

3 1 1988 62 11 0 3 10 0.1 0

4 1 1985 29 18 0 4 10 0.13 0

5 0 1987 27 11.8182 0 1 9 0.065 0

5 0 1988 28 11.8182 0 2 10 0.06 0

5 0 1981 31 11.8182 0 0 10 0.155 0

6 0 1985 25 9 0 2 10 0.16 1

6 0 1986 26 9 1 3 9 0.3 1

6 0 1987 27 9 1 0 8 0.3 1

6 0 1988 28 9 1 1 10 0.2 1

6 0 1991 31 9 1 18 2 0.18 1

7 1 1987 26 10 1 0 9 0.3 1

7 1 1988 27 10 1 0 7 0.2 1

7 1 1991 30 10 1 2 9 0.18 1

8 0 1984 64 10.5 0 7 0 0.15 0

9 0 1984 30 13 0 6 9 0.24 0

9 0 1987 33 13 0 7 8 0.265 0

9 0 1988 34 13 1 0 8 0.6 1

9 0 1991 37 18 1 4 7 0.7 1

9 0 1994 40 18 1 0 9 0.75 1

10 1 1988 30 18 0 0 6 0.36 0

10 1 1994 36 18 1 0 6 0.92 1
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The pooled estimator was examined earlier. The random effects estimator

would be based either on simulation or Hermite quadrature. There is no condi-

tional likelihood estimator for the fixed effects form of this model. To illustrate

the model, we will compare the various estimators using the GSOEP health data

described earlier. The data are an unbalanced panel with 7293 groups, 27,326

household/year observations. We have used the 877 households that were

observed in all seven waves (so there are no issues of attrition embedded in

the data). For purposes of computing the dynamic models, the last six years

of data were used in all cases. The outcome variable is Doctori,t ¼ 1[Doc-
Visi,t > 0]. Groups for which Σt Doctori,t equals 0 or 6 were omitted from

the sample, leaving n* ¼ 597 observations.

Estimates for random and unconditional fixed effects for a small specifi-

cation are shown in Table 3. (Standard errors are not shown, because the dis-

cussion of the various models is not concerned with efficiency of different

estimators.) Overall, the pooled and fixed effects (FE) estimators seem dis-

tinctly removed from the random effects (RE) counterparts. The correlated

random effects model seems likewise to have substantial effect on the esti-

mated partial effects. Based on the LM test, the pooled approach is rejected

for any static or dynamic form. The simple RE form also is rejected in favor of

the CRE form for both cases, which would argue in favor of the FE model. A

direct test for the FEM soundly rejects all other forms of the model, static or

dynamic. It is not clear whether this is a valid test, however, because the FE

log likelihood is not based on a consistent estimator of the parameters esti-

mated by any other form. Still using the LR test, the dynamic CRE rejects

the static one, so the preferred model is the dynamic CRE. Comparing to

the static pooled model, the extensions substantially change the partial

effects.

6.1.2 Logit Model and Conditional Fixed Effects Estimation

The binary logit model is the most familiar of the few models that provide a

conditional estimator (see Lancaster, 2000). The probability with fixed effects is

Prob yi, t ¼ 1j xi, t, αið Þ¼Λ αi + γ0zi, tð Þ¼ eαi + γ
0zi, t= 1 + eαi + γ

0zi, t
h i

:

The unconditional logit log likelihood is

ln L γ, αð Þ¼
Xn∗

i¼1

XTi

t¼1

lnΛ qi, t γ0zi, t + αið Þ½ �,qi, t ¼ 2yi, t�1ð Þ:

Groups for which Σt yi,t equals 0 or Ti do not contribute to this log likelihood, so
the sum is over the n* observations for which 0< Σtyi,t< Ti. The unconditional
log likelihood is straightforward to maximize over (γ,α) using the remaining

observations. The conditional log likelihood is the sum of the logs of the

probabilities conditioned on Si ¼
PTi

t¼1yi, t,
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Prob yi,1, yi,2,…, yi,Ti Sijð Þ¼
exp

XTi

t¼1

yi, tγ0zi, t

 !

X
Σtdi, t¼Si

exp
XTi

t¼1

di, tγ0zi, t

 !

¼
exp

XTi

t¼1

yi, tγ0zi, t

 !

X
Ti

Si

 !

different ways

thatΣtdi, tcan equal Si

exp
XTi

t¼1

di, tγ0zi, t

 !
:

TABLE 3 Estimated Probit Models (Estimated Partial Effects in Parentheses)

Static Dynamic

Pooled Pooled RE CRE FE Pooled RE CRE

Constant 1.603 1.612 2.668 0.648 0.880 1.449

Age 0.007 0.015 0.033 0.040 0.005 0.010 0.030

(0.002) (0.004) (0.009) (0.008) (0.002) (0.003) (0.008)

Education –0.042 –0.052 0.178 0.109 –0.026 –0.035 0.165

(–0.014) (–0.014) (0.046) (0.019) (–0.008) (–0.009) (0.044)

Income 0.051 0.046 –0.119 –0.177 0.005 0.054 –0.116

(0.018) (0.012) (–0.031) (–0.315) (0.001) (–0.014) (–0.031)

Health –0.180 –0.197 –0.144 –0.180 –0.141 –0.171 –0.143

(–0.062) (–0.052) (–0.037) (–0.032) (–0.044) (–0.046) (–0.038)

Married 0.119 0.105 –0.007 0.016 0.099 0.099 –0.146

(0.041) (0.028) (–0.019) (0.003) (0.031) (0.027) (–0.004)

Age –0.029 –0.027

Educ –0.221 –0.198

Income 0.220 0.105

Health –0.175 –0.079

Married 0.250 0.220

Doctort�1 0.667 0.230 0.207

Doctor0 0.475 0.799 0.774

ρ 0.436 0.430 0.300 0.305

Ln L –3212.59 –2923.37 –2898.88 –1965.63 –2898.18 –2826.68 –2815.87

LM 215.754 212.28 112.64 121.03
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The denominator is summed over all the different combinations of Ti values of

yi,t that sum to the same total as the observed data. There are
Ti
Si

� �
terms. This

might be large. With T¼ 6 (as in our example), it reaches 30 at S¼ 3. With T¼
50, it reaches 1014 at S ¼ 25.27 The algorithm by Krailo and Pike (1984) makes

the computation extremely fast and simple. The estimators of αi are not individ-
ually consistent, but one might expect (1/n*)Σiα̂i to be a consistent estimator of

E[αi]. A remaining question to be considered is whether E[αi j0 < Si < Ti]
differs from E[αi]. Assuming not, partial effects for the fixed effects logit model

can be estimated with

^APE¼ γ̂
1

n∗
Σn∗
i¼1Σ

Ti
t¼1 Λ α̂ + γ̂0zi, t

� �	 

1�Λ α̂+ γ̂0zi, t

� �	 
� 
:

(The average could be over n* alone using zi.) Table 4 shows the estimates.

They are quite close even though n* is moderate and Ti ¼ 6 for all i, which is

small by modern standards. The unconditional estimates are uniformly slightly

larger. The percentage differences between the two estimates are shown in

parentheses in the table. The results are consistent with the results for T ¼ 8

in Table 1. This does suggest that the effect diminishes from the benchmark

of 100% at T ¼ 2 rather rapidly. We also examined the estimated fixed effects.

The unconditional estimates are estimated with γ. The conditional estimates are

computed by solving the unconditional likelihood equation for αi using the con-
sistent conditional estimator of γ. The means of the conditional and uncondi-

tional estimators are –2.4 for the unconditional and –2.1 for the conditional.

Fig. 2 compares the two sets of estimates.

TABLE 4 Estimated Fixed Effects Logit Models (Percentage Excess in

Parentheses)

Unconditional Conditional

Estimate PEA Estimate PEA

Age 0.065 (14) 0.017 (21) 0.057 0.014

Educ 0.168 (17) 0.041 (14) 0.144 0.036

Income –0.284 (21) –0.070 (21) –0.234 –0.058

Health –0.304 (21) –0.074 (19) –0.251 –0.062

Married 0.041 (24) 0.010 (25) 0.033 0.008

27. Estimation of amodel with n¼ 1000 and T¼ 50 required about 0.5 seconds. Of course, if T¼ 50,

the incidental parameters problem would be a moot point.
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Chamberlain (1980) also proposed a conditional estimator for a multinomial

logit model with fixed effects. The model is defined for a sequence of choices

from J + 1 alternatives by individual i in repetition t, J choices and an opt-out

or none choice that is taken a substantive number of times. The choice proba-

bilities are then

Prob yi, t, j ¼ 1j zi, t, j
� �¼ eαi, j + γ

0zi, t, j

1 +ΣJ
m¼1e

αi,m + γ0zi, t,m
; Prob yi, t,0 ¼ 1j zi, t,0ð Þ

¼ 1

1 +ΣJ
m¼1e

αi,m + γ0zi, t,m
, j¼ 1,…,J,

where the outcome is di,t,j ¼ 1[individual i makes choice j in choice task t] and
zi,t,j ¼ a set of alternative specific attributes of choice j. Individual specific,
choice invariant characteristics, such as age or income, could be introduced into

the model by interacting them with J alternative specific constants. The prob-
ability attached to the sequence of choices is constructed similarly, but the sum-

ming in the denominator of the conditional probability is for the sum of di,t,j over
(J + 1)T terms for individual i. The summing for the conditional probability

itemizes terms for which the denominator Σj,tdi,j,t equals Si, subject to the con-

straint that the terms in each block of (J + 1) sum to 1 (only one choice is made)

and the sum in the T blocks equals the sum for the observed blocks. The coun-

terpart to the uninformative observations in the binomial case are individuals

who make the same choice, j, in every period, t. There is an enormous amount

of computation (see Pforr 2011, 2014), but there is a much simpler way to pro-

ceed. For each of the J alternatives, there is a set of T blocks of two alternatives,

AIC Estimated fixed effects: conditional vs. unconditional
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FIG. 2 Plot of estimates of αi conditional vs. unconditional.
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each consisting of alternative j and the opt-out choice. In each n(2T) set, there is
a binary logit model to be constructed, in which the individual chooses either

alternative j or the opt-out choice. Each of these binary choice models produces

a consistent estimator of γ, say γ̂ jð Þ, j¼1,…,J. Because there are J such

estimators, they can be reconciled with a minimum distance estimator,

γ̂MD ¼ ΣJ
j¼1 Ω̂ jð Þ
n o�1

� ��1

ΣJ
j¼1 Ω̂ jð Þ
n o�1

γ̂ jð Þ
� �

¼ΣJ
j¼1W jð Þγ̂ jð Þ,

W jð Þ¼ ΣJ
j¼1 Ω̂ jð Þ
n o�1

� ��1

Ω̂ jð Þ
n o�1

such thatΣJ
j¼1W jð Þ¼ I,

where Ω̂ jð Þ is the estimated asymptotic covariance matrix for the jth estimator.

The amount of computation involved is a very small fraction of that developed

in Pforr (2011, 2014). The reduction in the amount of computation is enormous

at the possible cost of some efficiency. For Pforr’s example, which involves

26,200 individual/period choices and J + 1 ¼ 2 alternatives, the author reports

the full Chamberlain computation requires 101.58 seconds. Partitioning the

problem and using the minimum distance estimator produces the numerically

identical result in 0.297 seconds.28

6.2 Bivariate and Recursive Binary Choice

The bivariate probit model (there is no logit counterpart), and recursive bivariate

probit (probit model with an endogenous binary variable) has attracted some

recent attention.29 The two-equation model with common effects would be

y1, i, t ¼ 1 β10x1, i, t + γ0zi, t + c1, i + ε1:i, t > 0½ �
y2, i, t ¼ 1 β20x2, i, t + δy1, i, t + c2, i + ε2, i, t > 0½ �:

A full fixed effects treatment would require two sets of fixed effects and would

be affected by the IP problem; no conditional estimator is available. The random

effects model, or the correlated random effects model would be a natural choice.

A dynamic model would proceed along the lines developed earlier for the single

equation case. (Rhine and Greene (2013) treated y1 as the initial value and y2 as
the second value in a two-period RBP.)

28. Pforr’s data for this application are obtained from Stata at http://www.stata-press.com/data/r11/r.

html under the CLOGIT heading. The data are reconfigured for NLOGIT (Econometric Software

Inc., 2017). The data can be downloaded from the author’s website at http://people.stern.nyu.edu/

wgreene/DiscreteChoice/Data/felogit.csv. A second example involving J¼3, T¼8 and n¼400

required 0.229 seconds using the MDE.

29. Wilde (2000), Han and Vytlacil (2017), Mourifie and Meango (2014), Filippini et al. (2018),

Rhine and Greene (2013), Scott et al. (2009), Gregory and Deb (2015).
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6.3 Ordered Choice

Contoyannis et al. (2004) used the dynamic CRE model in their analysis of

health satisfaction in the BHPS. One of the complications in their case is the

treatment of lagged effects for an ordered choice outcome that takes J + 1

values, 0,…,J. The solution is a set of J endogenous lagged dummy variables,

one for each category. A fixed effects treatment of the ordered probit (logit)

model presents the same complications as the binary probit or logit model.

Ferrer-i-Carbonell and Frijters (2004) note that the ordered choice model can

be broken up into a set of binary choice models. If

Prob yi, t ¼ jð Þ¼Λ μj�αi�γ0zi, t
� ��Λ μj�1�αi�γ0zi, t

� �

then

Prob yi, t > jð Þ¼Λ αi + γ
0zi, t�μj

� �
:

The transformed model can be treated with Chamberlain’s conditional fixed

effects approach. The time invariant threshold becomes an outcome-specific

constant and will be lost in the fixed effects. Like the multinomial logit model

considered earlier, this produces multiple estimates of γ, which can be recon-

ciled with a minimum distance estimator. Bias corrections for the fixed effects

ordered probit and logit models are developed by Bester and Hansen (2009),

Carro (2007), Carro and Trafferri (2014), Muris (2017), and others.

6.4 Censored or Truncated Regression

Much less is known (or studied) about the censored (Tobit) and truncated

regression models. Greene’s (2005) results (in Table 1) suggest that the inciden-

tal parameters problem appears, but in a fashion different from discrete choice

models, and the censored and truncated models behave differently from each

other. Honor�e and Kesina (2017) examine a number of issues in this setting

and a semiparametric specification. A serious complication will arise in a

dynamic Tobit models; it is unclear how a lagged effect that is either zero or

continuous should be built into the model.

6.5 Stochastic Frontier: Panel Models

Panel data considerations in the stochastic frontier model focus on both ineffi-

ciency and heterogeneity. The model framework is built from the canonical

model

yi, t ¼ β0xi, t + vi, t � ui, t

where ui,t< 0 and typically vi,t isN[0,σv
2]. Aigner et al.’s (1977) base case spec-

ifies ui,t as N
+(0,σu

2). The early developments for panel data treatments focused

on ui,t, not on heterogeneity. Pitt and Lee (1981) specified ui as a time invariant,
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random one-sided term that represented inefficiency. Schmidt and Sickles

(1984) and Cornwell et al. (1990) developed a fixed effects approach that respe-

cified ui,t as a fixed value, ai or time varying, ai(t). Subsequent developments as

given by Kumbhakar et al. (2014) and Battese and Coelli (1995) and Cuesta

(2000) extended the time variation of ui,t by various specifications of σu(t).
These developments oriented the focus on inefficiency measurement while

leaving unobserved heterogeneity ambiguous or assumed to be time varying

and embedded in vi,t. Greene (2005) proposed the true random effects and true

fixed effects models

yi, t ¼ α +wið Þ+ γ0zi, t + vi, t � ui, t

where ui,t is as originally specified in Aigner et al. and wi is treated as either a

true fixed or random effect. The latter model, with its combination of normal wi

and skew normal (vi,t � ui,t) is estimated by maximum simulated likelihood.

Kumbhakar et al. (2014) completed the development with the generalized true

random effects model,

yi, t ¼ α +wi � fið Þ+ γ0zi, t + vi, t � ui, t

where fi now has a truncated normal distribution like ui,t, and the full model is

based on the sum of two skew normal variables, which has a closed skew normal

distribution. The authors developed a full maximum likelihood estimator.

Greene and Filippini (2015) showed how the estimation could be simplified

by simulation.

6.6 Count Data

With the binary probit and logit models, the Poisson regression model for count

data has been the proving ground for methods of nonlinear panel data modeling.

A comprehensive early reference is Hausman et al. (1984).30 The fixed effects

conditional estimator is identical to the unconditional estimator, so the latter is

consistent. The random effects model (or correlated random effects) is a

straightforward application of Butler and Moffitt’s method. As a nonlinear

regression, the specification provides a convenient framework for modeling

multiple equations. Riphahn et al. (2003) specified a two equation random

effects Poisson model,

yi,t,j � Poisson with λi,t,j ¼ exp(πj + γj0zi,t,j + εi,t,j + ui,j), j ¼ 1,2, i ¼ 1,…,n,
t ¼ 1,…,Ti.

The two equations are correlated through the means, ρ ¼ Cov(εi,t,1,εi,t,2).
(A natural extension would be to allow correlation between the random effects

30. Hausman et al.’s (1984) formulation of the fixed effects NBmodel embedded the fixed effects in

a variance parameter, not as an offset in the conditional mean as is familiar in other models. As a

consequence, their FE model permits time invariant variables in the mean function, a result that

continues to surprise researchers who are not warned about this (see Greene, 2018, p. 901).
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as well, or instead of.) In the univariate, cross-section case, the heterogeneous

Poisson regression is specified with conditional mean λi,t ¼ exp(π + γ0zi,t + ui).
If ui � log-gamma with mean 1, the unconditional distribution after integrating

out ui is the negative binomial (NB). This convenience has motivated use of the

NB form. The usually convenient log-gamma is extremely inconvenient (intrac-

table) in a model such as RWM’s. Recent applications of mixed models have

used the normal distribution, and computed the necessary integrals by Monte

Carlo simulation.

The Poisson and negative binomial models also have been frequently the

setting for latent class models. Jones and Schurer (2011) examined the fre-

quency of doctor visits in a two-class negative binomial latent class model.

Their methodology provides a useful example for using latent class modeling.

Two questions that attend this type of modeling are: Is it possible to characterize

the latent classes (other than by number)? and Is it possible to assign individuals

to their respective classes? Strictly, the answer to both classes is no. Otherwise,

the classes would not be latent. It is possible, however, to do both probabilis-

tically. The latent class Poisson model is

Prob yi, t ¼ jj class¼ q½ � ¼ exp �λi, tj class¼ qð Þ λi, tj class¼ qð Þj
j!

,

λi, tj class¼ qð Þ¼ exp β0qxi, t
� �

lnL

¼
Xn

i¼1
log
XQ

q¼1
τq
YTi

t¼1

exp �λi, tj qð Þ λi, tj qð Þj
j!

¼
Xn

i¼1
ln
XQ

q¼1
τq Hij qð Þ

Maximization of the log likelihood produces estimates of (β1,…,βQ) and

(τ1,…,τq). (A more elaborate specification that bears some similarity to the

correlated random effects model would make τq a function of exogenous fac-

tors, zi and/or the group means of xi,t (see Greene, 2018, Section 18.4). With the

estimates of (βq,τq) in hand, the posterior class probabilities for each individual
can be computed;

τ̂i,q ¼
τ̂q Ĥij q
� �

ΣQ
s¼1τ̂s Ĥij s

� �

Individuals then can be assigned to the class with the highest posterior

probability. Jones and Schurer (2011) then characterized the two classes as

light users and heavy users by the average frequency of doctor visits within

the classes. They also computed characteristics such as average partial

effects by the two groups to characterize the system. Table 5 repeats this exer-

cise with the GSOEP data used earlier. The three classes do appear to be sep-

arating individuals by the intensity of usage. The pattern of the partial effects

suggests
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6.7 A General Nonlinear Regression

Papke and Wooldridge (1996, 2008) proposed a model for aggregates of binary

responses. The resulting outcome is a fractional variable. Minimum chi-squared

methods for fractional variables have long provided a useful consistent

approach. The model developed here builds from a common effects binary

choice model. The resulting treatment is a heteroscedastic nonlinear regression

that lends itself well to the correlated random effects treatment (see, also

Wooldridge (2010), pp. 748–755 and 759–764). No obvious likelihood-based

approach emerges, so the preferred estimator is nonlinear (possibly weighted)

least squares.

6.8 Sample Selection Models

Most treatments of sample selection have layered the fixed and/or random

effects treatments over Heckman’s (1979) sample selection model. Verbeek

(1990) and Verbeek and Nijman (1992) proposed a hybrid fixed and random

effects specification,

di, t ¼ 1 γ0zi, t + ui + ηi, t > 0
	 


random effects probitð Þ
yi, t| di, t ¼ 1ð Þ¼ β0xi, t + αi + εi, t; Fixed effects regressionð Þ

Zabel (1992) argued that the FE model should have appeared in both equations.

He then proposed the CRE form for the usual reasons. The system that results is

TABLE 5 Latent Class Model for Doctor Visits

Class 1 Class 2 Class 3

Parameter APE Parameter APE Parameter APE

Constant 3.253 – 1.524 – 0.116 –

Age 0.015 0.132 0.024 0.102 0.038 0.048

Educ – 0.061 – 0.535 – 0.035 – 0.137 – 0.040 – 0.050

Income – 0.178 –0.156 – 0.274 –0.107 0.301 0.038

HSAT – 0.220 –1.929 – 0.178 –0.696 –0.275 –0.347

Married 0.134 1.175 0.080 0.313 0.005 0.006

DocVis|q̂i
10.423 4.174 1.642

Mean Ê �½ �|q̂i
8.771 3.914 1.262

τ̂q 0.158 0.474 0.368
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two CRE models with correlation of the idiosyncratic disturbances. A natural

extension would be correlation of ui and vi.

di, t ¼ 1 π + γ0zi, t + θ0zi + ui + ηi, t > 0
	 


correlated random effects probitð Þ
yi, t| di, t ¼ 1ð Þ¼ψ + κ0zi, t + λ0zi + vi + εi, t; correlated random effects regressionð Þ

Vella (1998) provides some details about this strand of development.

Fernandez-Val and Vella (2009) continue the analysis with bias corrections

based on the fixed effects specification. Kyriazidou (1997) suggested a semi-

parametric approach based on a fixed effects logit selection and weighted least

squares with kernel estimators for the weights. Refinements are considered by

Vella and Verbeek (1999), Barrachina (1999), Dustman and Rochina-

Barrachina (2007), and Semykina and Wooldridge (2010).

In all of these treatments, the selection process is run at the beginning of each

period—the selection equation is repeated, without autocorrelation, for every t.
Bravo-Ureta et al. (2012) applied the selection model in a setting in which the

selection occurs at the baseline, and is unchanged for all T periods. The selec-

tion effect becomes a correlated random effect. In their application, the main

outcome equation is a stochastic frontier model. Greene (2010a, b) shows

how the model can be estimated either by full information maximum likelihood

or by Monte Carlo simulation.

6.9 Individual Choice and Stated Choice Experiments

The choice probability in the multinomial choice model we examined in

Section 6.1 is

Prob choice¼ jð Þ¼ exp β0xi, j
� �

ΣJ
s¼1 exp β0xi,sð Þ :

More than any other model examined in this survey, the coefficients in this

model are not of direct use. After the parameters have been estimated, the model

will be used to compute probabilities, simulate market shares under policy sce-

narios, estimate willingness to pay and distributions of willingness to pay, and

compute elasticities of probabilities. Because all of these require a full set of

components for the probabilities, the fixed effects model that bypasses compu-

tation of the fixed effects does not seem helpful. A random effects approach is

considered in Hensher et al. (2007)

The counterpart of a panel in recent applications of choice modeling is the

stated choice experiment (see Hensher et al., 2015). The individual being inter-

viewed is offered a choice task involving J alternatives with a variety of attri-

butes, xi,t,j. In the typical experiment, this scenario will be repeated T times with

widely varying attribute sets in order to elicit the characteristics of the respon-

dent’s preferences. The common fixed or random effect that is persistent across

choice settings serves to accommodate the feature that this is the same
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individual with the same latent attributes making the choices with short inter-

vals between tasks. It is unlikely that the random utility formulation of the

model could be so complete that the choice tasks would be independent condi-

tioned on the information that appears in the utility functions. The mixed logit is

the current standard in the modeling of choice experiments. The model is

Prob Choicei, t ¼ jjXið Þ¼ exp Vi, t, j

� �

XJ

s¼1
exp Vi, t,sð Þ

, Vi, t, j ¼ αj + β0ixi, t, j + εi, t, j

βi ¼ β +Δzi +Γui
Revelt and Train (1998) modeled results of a survey of California electric utility

customers. Train (2009) summarizes the theory and relevant practical aspects of

discrete choice modeling with random parameters.

6.10 Multilevel Models Hierarchical (Nonlinear) Models

The general methodology of multilevel modeling (often linear modeling) builds

a random parameters specification that bears some resemblance to the corre-

lated random effects model (see Raudebush and Bryk, 2002). A generic form

would be

f yi, tj xi, t, ui : β, Σð Þ¼ f yi, t, β+Γuið Þ0xi, t : θ
� �¼ f yi, t, βi0xi, t : θð Þ:

A useful extension is βi¼ β +Δzi + Γui, where zi indicates exogenous factors; zi
also could include the correlated random effects treatment with the groupmeans

of xi,t. For a linear model, estimation often is based on manipulation of feasible

generalized least squares. For a nonlinear model, this will require multivariate

integration to deal with the unobserved random effects. This can be done with

Monte Carlo simulation.

6.11 Fixed Effects With Large N and Large T

The gravity model is a standard approach to analyzing trade flows between

countries. A typical application, with fixed effects might begin with

yi, j∗ ¼ αi + γj + β0xi, j + εi, j, i, j¼ 1,…,n:

The model involves two sets of incidental parameters. Charbonneau (2017)

examined the case in which yi,j ¼ 1[yi,j* > 0] indicates whether or not trade

takes place, a binary response. The conditional logit approach will eliminate

either αi or γj, but will retain the other. By applying the conditioning recursively,
the author arrives at the conditional log likelihood,

ln L¼
Xn

i¼1

Xn

j¼1

X

l,k2Zi, j
ln

exp β0 xl, j�xl,k
� �� xi, j�xi,k

� �� �� �

1 + exp β0 xl, j�xl,k
� �� xi, j�xi,k

� �� �� �

 !

where Zi,j is the set of all potential l,k that satisfy yl,j + yl,k¼ 1, yi,j + yi,k ¼ 1 and

yi,j + yl,j ¼ 1 for the pair i,j. As the author notes, because the fixed effects have
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been eliminated, it is not possible to compute partial effects. To explore the

effects of covariates, e.g., the log of distance, on the probability of trade, the

unconditional probabilities are computed at the means of xi,j and with the fixed
effects all set to zero.

The gravity model contains two sets of fixed effects that grow equally with

the sample size. The incidental parameters problem, if there is one, is accom-

modated by using a conditional estimator. Fernandez-Val and Weidner (2016)

consider a similar case with more general data observation mechanism—two

cases considered are a probit binary response model and a Poisson regression.

Both begin with an index function model,

yi, t∗ ¼ αi + γt + β0xi, t, i¼ 1,…,n; t¼ 1,…,T,

where for the probit model, yi,t¼ 1[yi,t* + εi,t> 0] while in the Poisson model, E
[yi,t jxi,t]¼ exp(yi,t*). The model extension allows both i and t to grow, such that
N/T converges to a constant. The authors focus on bias-corrected unconditional

estimators. This enables estimation of partial effects as well as coefficients.

Consistent with Greene’s (2004a, 2005) results, they find that the bias of esti-

mators of APEs is much smaller than that of the coefficients themselves. For

their case, with biases diminishing in both n and T simultaneously, they find

the biases in the partial effects to be negligible.

Interactive effects of the form

yi, t∗ ¼ αiγt + β0xi, t + εi, t
were examined by Bai (2009). Chen et al. (2014) treat this as a fixed effects

model, and derived a two-step maximum likelihood estimator for probit and

Poisson regression models. Boneva and Linton (2017) extend the model to

allow multiple common latent factors.
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1 Introduction

Although panel data models have proven particularly popular among applied

econometricians, the most widely embraced approaches rely on parametric

assumptions. When these assumptions are at odds with the data generating pro-

cess (DGP), the corresponding estimators will be biased and worse, inconsis-

tent. Practitioners who subject their parametric models to a battery of

diagnostic tests often are disappointed to learn that their models are rejected
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by the data. Consequently, they might find themselves in need of more flexible

nonparametric alternatives.

Given the popularity of panel data methods in applied settings, and given

how quickly the field of nonparametric panel methods is developing, this

chapter presents a current survey of available nonparametric methods and out-

lines how practitioners can avail themselves of these recent developments.

The existing literature that surveys semi- and nonparametric panel data

methods includes Li and Racine (2007), Ai and Li (2008), Su and Ullah

(2011), Chen, Li, and Gao (2013), Henderson and Parmeter (2015), Sun,

Zhang, and Li (2015), and Rodriguez-Poo and Soberon (2017), among others.

Our goal here is to unify and extend existing treatments and inject some addi-

tional insight that we hope is useful for practitioners trying to keep abreast of

this rapidly growing field. By way of illustration, Rodriguez-Poo and Soberon

(2017) provide a nice survey of available estimators, however, they do not

address inference, which is a practical necessity. We attempt to provide a

more comprehensive treatment than found elsewhere, keeping the needs of

the practitioner first and foremost.

2 How Unobserved Heterogeneity Complicates Estimation

To begin, we start with the conventional, one-way nonparametric setup for

panel data:

yit ¼m xitð Þ+ αi + εit, i¼ 1,…,n, t¼ 1,…,T, (1)

where xit is a q � 1 vector, m(�) is an unknown smooth function, αi captures
individual specific heterogeneity, and εit is the random error term. The standard

panel framework treats i as indexing the individual and t as indexing time,

though in many applications t might not represent time. For example, in the

metaanalysis field, i represents a given research study and t the individual esti-
mates produced from the study. As in a fully parametric setting, the αis need to
be accounted for because of the incidental parameters problem under the fixed

effects framework. Two common transformations to eliminate αi prior to esti-

mation are linear differencing or time-demeaning.

Consider time-demeaning: In this case we use the standard notation

zi � ¼ T�1
PT

t¼1zit to represent the mean of variable z for individual i. Given that
αi is constant over time, time-demeaning will eliminate αi from Eq. (1):

yit� yi � ¼m xitð Þ�T�1
XT

t¼1

m xitð Þ+ εit� εi � : (2)

Unfortunately, we now have the function m(�) appearing T + 1 times on the

right side. Given that m(�) is unknown, this causes problems with standard esti-

mation because we must ensure that the same m(�) is being used. Moreover,

even if m(�) were known, if it is nonlinear in the parameter space, then the
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resulting nonlinear estimating equation might complicate optimization of the

associated objective function. This is true in other settings as well, for example,

in the estimation of conditional quantiles with panel data. As we will discuss, a

variety of approaches have been proposed for tackling the presence of unob-

served heterogeneity.

In the random effects framework, the incidental parameters problem no lon-

ger exists, however, a complicating factor for estimation is how to effectively

capture the structure of the variance covariance matrix of vit ¼ αi + εit. In this

case it is not clear how best to smooth the data, and a variety of estimators have

been proposed. At issue is the best way to smooth the covariates while simul-

taneously accounting for the covariance structure. As we will discuss, several

early estimators that were proposed were not able to achieve asymptotic gains

because the smoothing procedure advocated did not adequately capture the

covariance structure, asymptotically.

We also could discuss the two-way error component setting, but in this case

if the fixed effects framework is assumed, then it is easier to treat time as a

covariate and smooth it appropriately (using an ordered discrete kernel),

although in the random effects framework it further complicates the variance

matrix of the error term. In light of this, we will focus on the one-way error

component model.

Prior to moving on to the discussion of estimation in either the fixed or ran-

dom effects framework in a one-way error component model, some definitions

are in order. Under the random effects framework, we assume that E[αi jxi1,…,
xiT] ¼ E[αi] ¼ 0, whereas under the fixed effects framework we assume that E
[αi jxi1, …, xiT] ¼ αi. The difference between the two should be clear; under the
random effects framework, αi is assumed to be independent of xit for any t,
whereas under the fixed effects framework αi and xit are allowed to be depen-

dent upon one another. No formal relationship on this dependence is specified

under the fixed effects framework. One could relax this set of all or nothing

assumptions by following the approach of Hausman and Taylor (1981), how-

ever, this is an unexplored area within the field of nonparametric estimation

of panel data models. We now turn to a discussion of nonparametric estimation

under both the fixed and random effects frameworks.

3 Estimation in the Random Effects Framework

3.1 Preliminaries

If we assume that αi is uncorrelated with xit, then its presence in Eq. (1) can be

dealt with in a more traditional manner as it relates to kernel smoothing. To

begin, assume that Var(εit) ¼ σε
2 and Var(αi) ¼ σα

2. Then, for vit ¼ αi + εit we
set vi ¼ [vi1, vi2, …, viT]

0, a T � 1 vector, and Vi � E(viv
0
i) takes the form

Vi ¼ σ2εIT + σ
2
αiT i

0
T , (3)
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where IT is an identity matrix of dimension T and iT is a T � 1 column vector of

ones. Because the observations are independent over i and j, the covariance

matrix for the full nT � 1 disturbance vector u, Ω ¼ E(vv’) is a nT � nT block

diagonal matrix where the blocks are equal to Vi, for i ¼ 1, 2, …, n. Note that
this specification assumes a homoskedastic variance for all i and t.

Note that serial correlation over time is admitted, but only between the dis-

turbances for the same individuals. In other words

Cov vit, vjs
� �¼Cov αi + εit, αj + εjs

� �¼E αiαj
� �

+E εitεjs
� �

,

given the independence assumption between αj and εjs and the independent and
identically distributed (i.i.d.) nature of εit. The covariance between two error

terms equals σα
2 + σε

2 when i ¼ j and t ¼ s, it is equal to σα
2 when i ¼ j and

t 6¼ s, and it is equal to zero when i 6¼ j. This is the common structure in para-

metric panel data models under the random effects framework as well. Estima-

tion can ignore this structure at the expense of a loss in efficiency. For example,

ignoring the correlation architecture in Ω, standard kernel regression methods,

such as local-constant or local-linear least-squares could be deployed.

Parametric estimators under the random effects framework typically require

the use ofΩ�1/2 so that a generalized least squares estimator can be constructed.

Inversion of the nT � nT matrix is computationally expensive but Baltagi

(2013) provides a simple approach to inverting Ω based on the spectral decom-

position. For any integer r,

Ωr ¼ Tσ2α + σ
2
ε

� �r
P+ σ2ε

� �r
Q, (4)

where P¼ In�JT , Q ¼ In � ET, JT is a T � T dimensional matrix where each

element is equal to 1/T and ET ¼ (IT � JT). Ω is infeasible as both σα
2 and σε

2

are unknown; a variety of approaches exists to estimate the two unknown var-

iance parameters, which we will discuss in the sequel. An important feature ofΩ
is that its structure is independent of m(xit). Thus, when we model the unknown

conditional mean as either parametric or nonparametric it does not influence the

manner in which we will account for the variance structure.

3.2 Local-Polynomial Weighted Least-Squares

Lin and Carroll (2000) and Henderson and Ullah (2005) were among the first

attempts to properly capture the architecture of the covariance of the one-way

error component model. To begin, take a pth order Taylor approximation of

Eq. (1) around the point x:

yit ¼m xð Þ+ αi + εit,
where

m xð Þ¼
X

0�|j|<p

βj xit�xð Þj
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where j ¼ (j1,…, jq), | j | ¼ P
i¼1
q ji, xj ¼ Q

i¼1
q xi

ji, j ! ¼ Q
i¼1
q ji ! ¼

j1 ! � ⋯ � jq! and

X

0�|j|<p

¼
Xp

l¼0

Xl

j1¼0

⋯
Xl

jq ¼ 0

j1 +⋯ + jq ¼ l

where we have used the notation of Masry (1996). j!βj(x) corresponds to (D
jm)

(x), the partial derivative of m(x), which is defined as:

Djm
� �

xð Þ� ∂
jm xð Þ

∂ x1ð Þj1⋯∂ xq
� �jq ,

and β vertically concatenates βj (0 �j j j � p) in lexicographical order, with

highest priority to the last position so that (0, …, 0, i) is the first element in

the sequence and (i, 0, …, 0) is the last element.

Thus, the pth-order local-polynomial estimator corresponds to the mini-

mizer of the objection function

min
β

NTð Þ�1
XN

i¼1

XT

t¼1

yit�
X

0�|j|<p

βj xit�xð Þj
0

@

1

A

2

Kitxh, (5)

where Kitxh ¼
Qq

s¼1h
�1
s k xits�xs

hs

� �
is the standard product kernel where k(�) is any

second-order univariate kernel (e.g., Epanechnikov, Gaussian) and hs is the sth
element of the bandwidth vector h and smooths the sth dimension of x. Let

Kx ¼ diag(K11x, K12x, …, K1Tx, K21x,…, KnTx). Finally, collecting yit into the

vector y and denoting the matrix Ditx which vertically concatenates (xit � x)j

for 0 �j j j � p, in lexicographical order, we use the notation Dx ¼ [D11x,
D12x, …, D1Tx, D21x, …, DnTx]

0.
For example, Ditx ¼ 1 for p ¼ 0 (the local-constant setting), and Ditx ¼ [1,

(xit � x)0]0 for p ¼ 1 (the local-linear setting).

It can be shown that the local polynomial estimator for the minimization

problem in Eq. (5) is

β̂ xð Þ¼ D0
xKxDx

� ��1
D0

xKxy: (6)

The local-polynomial estimator in Eq. (6) ignores the covariance structure in

the one-way error component model. Both Lin and Carroll (2000) and

Henderson and Ullah (2005) proposed alternative weighting schemes to capture

this covariance structure. Henderson and Ullah (2005) focused on the specific

setting of p ¼ 1, and thus used what they termed the local-linear weighted least-

squares (LLWLS) estimator. This estimator is identical to that in Eq. (6) except

that the diagonal kernel weighting matrix Kx is replaced with a nondiagonal

weighting matrix, designed to account for within individual correlation. This
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nondiagonal weighting matrix is designated as Wx and can take an array of

shapes.

Ullah and Roy (1998) propose

W1x ¼Ω�1=2KxΩ�1=2

while Lin and Carroll (2000) propose

W2x ¼Ω�1Kx

and

W3x ¼
ffiffiffiffiffiffi
Kx

p
Ω�1

ffiffiffiffiffiffi
Kx

p

resulting in the LPWLS estimator

β̂r xð Þ¼ D0
xWrxDx

� ��1
D0

xWrxy, r¼ 1,2,3: (7)

When Ω is diagonalW1x ¼ W2x ¼ W3x, bothW1x and W3x are symmetric

and amount to local-polynomial estimation of the transformed observationsffiffiffiffiffiffiKx

p
Ω�1=2y on

ffiffiffiffiffiffiKx

p
Ω�1=2x and Ω�1/2Kxy on Ω�1/2Kxx, respectively.

1 Given

that Ω is unknown, because of the presence of σα
2 and σε

2, a feasible matrix must

be constructed. This can be accomplished most easily by deploying the local-

polynomial least-squares estimator in Eq. (6) first, obtaining the residuals, and

then using the best linear unbiased predictors for these variances as provided in

Baltagi (2013):

σ̂21 ¼
T

N

XN

i¼1

v̂
2

i � ,

σ̂2ε ¼
1

NT�N

XN

i¼1

XT

t¼1

v̂it� v̂i �
� �2

,

where v̂i � ¼ T�1
PT

t¼1v̂it is the cross-sectional average of the residuals for cross-
section i and v̂it ¼ yit� m̂ xitð Þ is the LPLS residual based on the first stage esti-

mator of β(x). Here σ1
2 ¼ Tσα

2 + σε
2 in Eq. (4).

Lin and Carroll (2000) derive the bias and variance of β(x) while Henderson
and Ullah (2005) provide the rate of convergence of β(x) for p ¼ 1 under the

assumption of N! ∞.

Most importantly, Lin and Carroll (2000) note that the asymptotic variance

of the LPWLS estimator in Eq. (7) for r ¼ 1, 2, 3, is actually larger than that of
the LPLS estimator in Eq. (6). Although this result seems counterintuitive,

Wang (2003) explains that this is natural when T is finite. By assumption, as

N! ∞, h ! 0, and the kernel matrix, evaluated at the point, xit, for example,

1. The most popular weighting scheme isW3x of Lin and Carroll (2000). See Henderson and Ullah

(2014) for a Monte Carlo comparison of these alternative weighting schemes.
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implies that the other points for individual i, xis, s 6¼ t, will not provide weight
asymptotically. This is true because, as N ! ∞, we obtain information about

more individuals, not more information about a given individual. Under the

common assumption in the random effects framework that we have indepen-

dence across individuals, this suggests that the most efficient estimator occurs

when Wrx ¼ Kx.

A more general approach for local-polynomial estimation in the presence of

specific covariance structure is found in Rucksthul, Welsh, and Carroll (2000)

and Martins-Filho and Yao (2009). While Martins-Filho and Yao (2009) con-

sider a more general structure for Ω, both provide a two-step estimator which

that achieve asymptotic efficiency gains relative to the LPLS estimator. The

proposed estimator can be explained as follows. First, premultiply both sides

of Eq. (1) by Ω�1/2 to obtain

Ω�1=2yit ¼Ω�1=2m xitð Þ+Ω�1=2vit,

and then add and subtract m(xit) from the right side

Ω�1=2yit ¼Ω�1=2m xitð Þ+m xitð Þ�m xitð Þ+Ω�1=2vit:

This results in

Ω�1=2yit�Ω�1=2m xitð Þ�m xitð Þ¼m xitð Þ+Ω�1=2vit
eyit ¼m xitð Þ+Ω�1=2vit

where eyit ¼ Ω�1/2yit � Ω�1/2m(xit) + m(xit) ¼ Ω�1/2yit + (1 � Ω�1/2)m(xit). For
given eyit, m(xit) can be estimated using local-polynomial least-squares. Unfor-

tunately eyit is unknown because of the presence ofΩ andm(xit). Rucksthul et al.
(2000) and Martins-Filho and Yao (2009) propose estimation of Ω in a first

stage that ignores the error structure. The two-step estimator is

1. Estimate m(xit) using local-polynomial least-squares, and obtain the resid-

uals to construct Ω̂.
2. Run the local-polynomial least-squares regression of êyit on xit where

êyit ¼ Ω̂
�1=2

yit + 1� Ω̂
�1=2

� �
m̂ xitð Þ.

Both Su and Ullah (2007) and Martins-Filho and Yao (2009) discuss the large

sample properties of this random effects estimator.

3.3 Spline-Based Estimation

Unlike Ullah and Roy (1998), who consider kernel-based procedures, Ma,

Racine, and Yang (2015) consider a B-spline regression approach toward non-

parametric modeling of a random effects (error component) model. Their focus

is on the estimation of marginal effects in these models, something that perhaps

has not received as much attention as it might otherwise. To describe their
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estimator, first, for the vector of covariates, xit ¼ (xit1, …, xitd)
0 assume for

1 �s � d, each xits is distributed on a compact interval [as, bs], and without

loss of generality, Ma et al. (2015) take all intervals [as, bs] ¼ [0, 1]. Further-
more, they allow εit to follow the random effects specification, where

εi ¼ (εi1, …, εiT)
0 be a T � 1 vector. Then V � E(εiεi

0) takes the form

V¼ σ2vIT + σ
2
α1T1

0
T ,

where IT is an identity matrix of dimension T and 1T is a T � 1 column vector of

ones. The covariance matrix for ε ¼ ε10, … , εn0)0 is

Ω¼E εε0ð Þ ¼ IN�V,Ω�1 ¼ IN�V�1

By simple linear algebra, V�1 ¼ (Vtt0)t, t0¼1
T ¼ V1IT + V21T1

0
T with V1 ¼ σv

�2

and V2 ¼ � (σv
2 + σα

2T)�1σα
2σv

�2.

Ma et al. (2015) use regression B-splines to estimate the mean functionm (�)
and its first derivative. Let N ¼ Nn be the number of interior knots and let q be

the spline order. Divide [0, 1] into (N + 1) subintervals Ij ¼ [rj, rj+1), j ¼ 0, …,

N � 1, IN ¼ [rN, 1], where {rj}j¼1
N is a sequence of interior knots, given as

r� q�1ð Þ ¼⋯¼ r0 ¼ 0< r1 <⋯< rN < 1¼ rN + 1 ¼⋯¼ rN + q:

Define the q-th order B-spline basis as Bs,q ¼ {Bj (xs): 1 �q � j � N}0

(de Boor, 2001, p. 89). Let Gs,q ¼ Gs,q
(q�2) be the space spanned by Bs,q, and

let Gq be the tensor product of G1,q, …, Gd,q, which is the space of functions

spanned by

ℬq xð Þ¼B1,q�⋯�Bd,q

¼
Yd

s¼1

Bjs,q xsð Þ : 1�q� js �N, 1� s� d

( )0" #

Kn�1

¼ ℬj1,…, jd ,q xð Þ : 1�q� js �N, 1� s� d
� �0h i

Kn�1
,

where x ¼ (x1, …, xd)
0 and Kn ¼ (N + q)d. Let Bq ¼ [{ℬq(x11), … ,

ℬq(xnT)}
0]nT�Kn

,where xit ¼ (xit1, …, xitd)
0. Then m (x) can be approximated

byℬq (x)
0 β, where β is aKn � 1 vector. Letting Y ¼ [{(Yit)1�t�T, 1�i�n}

0]nT�1,

they estimate β by minimizing the weighted least squares criterion,

Y�Bqβ
� �0Ω�1 Y�Bqβ

� �
:

Then the estimator of β, β̂, solves the estimating equations Bq
0Ω�1{Y �

Bqβ} ¼ 0, which gives the GLS estimator

β̂¼ B0
qΩ

�1Bq

� ��1

B0
qΩ

�1Y:

The estimator of m (x) is then given by m̂ xð Þ¼ℬq xð Þ0β̂. In de Boor (2001,

page 116), it is shown that the first derivative of a spline function can

be expressed in terms of a spline of one order lower. For any function
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s (x) 2 Gq that can be expressed by s(x) ¼ P
j1, …, jdBi1, q(x1) … Bjd, q(xd), the

first derivative of s (x) with respect to xs is

∂s

∂xs
xð Þ¼

XN

js¼2�q

X
1�q�js0 �N,1�s0 6¼s�d

a
1sð Þ
j1, ::, jd

Bjs,q�1 xsð Þ
Y

s0 6¼s

Bjs0 ,q xs0ð Þ,

In which a(1s)j1 ,…, jd ¼ (q � 1) (aj1,…, js,…, jd � aj1,…, js�1,…, jd)/(tjs+q�1 � tjs),
for 2 – q � js � N and 1 �s0 6¼ s � d, 1 �q � js0 �N. Let Ln ¼ (N + q)d�1 (N
+ q � 1), and

ℬs,q�1 xð Þ¼ Bj1,q x1ð Þ⋯Bjs,q�1 xsð Þ⋯Bjd ,q xdð Þ� �0
1�q�js0�N,s0 6¼s,2�q�js�N

h i

Ln�1
�

For 1 �s � d, ∂m
∂xs

xð Þ, which is the first derivative of m (x) with respect to xs,
the estimate is

∂̂m

∂xs
xð Þ¼ℬs,q�1 xð Þ0Ds B0

qΩ
�1Bq

� ��1

B0
qΩ

�1Y,

in which Kn ¼ {I(N+q)s�1 �M1I(N+q)d�s}Ln�Kn, and

M1¼ q�1ð Þ

�1

t1� t2�q

1

t1� t2�q
0 … 0

0
�1

t2� t3�q

1

t2� t3�q
… 0

⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯

�1

tN + q�1� tN

1

tN + q�1� tN

0

BBBBBBBB@

1

CCCCCCCCA

N + q�1ð Þ� N + qð Þ

Let rm (x) be the gradient vector of m (x). The estimator of rm (x) is

drm xð Þ¼
c∂m
∂x1

xð Þ,…,
c∂m
∂xd

xð Þ
( )0

¼ℬ∗
q�1 xð Þ0 B0

qΩ
�1Bq

� ��1

B0
qΩ

�1Y;

in which ℬq�1
∗ (x) ¼ [{D1, 10ℬq�1, 1(x), … ,D1, d0ℬq�1, d(x)}]Kn�d. For any μ 2

(0, 1], we denote byC0,μ [0, 1]d the space of order μ-H{“o}lder continuous func-
tions on [0, 1]d, i.e.,

C0,μ 0, 1½ �d ¼ ϕ : ϕk k0,μ ¼ sup
x 6¼x0,x,x2 0, 1½ �d

|ϕ xð Þ�ϕ x0ð Þ|
x�x0k kμ2

< +∞

( )

in which kxk2 ¼ (
P

s¼1
d xs

2)1/2 is the Euclidean norm of x, and kϕk0, μ is the

C0,μ-norm of φ.
Givenad-tupleα ¼ (α1,…,αd) ofnonnegative integers, let [α] ¼ α1 +… + αd

and let Dα denote the differential operator defined by Dα ¼ ∂ α½ �
∂x

α1
1
⋯∂x

αd
d

.
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Ma et al. (2015) establish consistency and asymptotic normality for the esti-

mator m̂ xð Þ and rm̂ xð Þ, i.e.,
σ�1
n xð Þ m̂ xð Þ�m xð Þf g!N 0, 1ð Þ

and

Φ�1=2
n xð Þ rm̂ xð Þ�rm xð Þf g!N 0d, Idð Þ,

in which 0d is a d � 1 vector of 0’s, and where σn
2(x) ¼ ℬq(x)

0Σ�1ℬq(x) and

where Φn(x) ¼ {ℬq�1
∗ (x)0Σ�1ℬq�1

∗ (x)}d�d.

Ma et al. (2015) use cross-validation to determine the degree vector for their

B-spline method, and the approach admits discrete covariates. (See Ma et al.

2015 for details.)

Although the previous description might be notationally cumbersome, the

approach is in fact extremely simple and requires only a few lines of code

for its implementation.

3.4 Profile Likelihood Estimation

Profile likelihood methods often are used when traditional maximum likelihood

methods fail. This is common in nonparametric models where the unknown

function is treated as an infinite dimensional parameter. These methods com-

monly require specifying a criterion function based around an assumption of

Gaussianity of the error term.2 In the current setting, we would have, for indi-

vidual i, the criterion function

Li �ð Þ¼L yi,m xið Þð Þ¼�1

2
yi�m xið Þð Þ0V�1

i yi�m xið Þð Þ,

where yi ¼ (yi1, yi2, …, yiT)
0 and m (xi) ¼ (m (xi1), m (xi2), …, m (xiT))

0. Differ-
entiating Li(�) with respect to m(x) yields

Litm ¼ ∂Li

∂m xitð Þ¼ e0tV
�1
i yi�m xið Þð Þ¼

XT

s¼1

σts yis�m xisð Þð Þ (8)

where et is a T dimensional vector whose tth element is unity and all other ele-

ments are zero and where σts is the (t, s) element of Vi
�1.3

Lin and Carroll (2006) show that m (x) can be estimated in a local-linear

fashion by solving the first-order condition

0¼
XN

i¼1

XT

t¼1

KitxhGitxLitm yi, m̌ xið Þð Þ,

where Gitx vertically concatenates (xit � x)j	 hj for 0 �jj j � p in lexicograph-
ical order, m̌ xið Þ¼ m̂ xi1ð Þ,…, m̂ xð Þ+ x̌itβ̂ xð Þ,…, m̂ xiTð Þ� �

, and x̌it ¼ xit ¼ x.

2. Note that the assumption of Gaussianity is required only to construct a criterion function.

3. σtt and σts will differ across cross-sectional units in the presence of an unbalanced panel.
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Note that the argument for Litm is m̂ xitð Þ for s 6¼ t and m̂ xð Þ+ x̌itβ̂ xð Þ for s ¼ t.
Plugging in Eq. (8) and solving yields

Litm yi, m̌ xið Þð Þ¼ σtt yit� m̂ xð Þ� x̌itβ̂ xð Þ� �
+

XT

s¼ 1

s 6¼ t

σts yis� m̂ xisð Þð Þ:

Wang (2003) developed an iterative procedure to estimate m(x). This esti-
mator is shown to produce efficiency gains relative to the local-linear estimator

of Lin and Carroll (2000). The iterative estimator is composed of two parts: one

based off a standard local-linear (or polynomial) least-squares regression

between y and x, and a secondary component that uses the residuals.

The first-stage estimator is constructed using any consistent estimator of the

conditional mean; the pooled LLLS estimator suffices in this setting. To high-

light the fact that we have an iterative estimator, we will refer to our first-stage

estimator as m̂ 1½ � xð Þ (the subscript [1] represents that we are at the l ¼ 1 step);

the residuals from this model are given by v̂ 1½ �it ¼ yit� m̂ 1½ � xitð Þ. At the lth step,

m̂ l½ � xð Þ, and the gradient, β̂ l½ � xð Þ, are shown by Wang (2003) to be

m̂ l½ � xð Þ
β̂ l½ � xð Þ

	 

¼ J�1

1 J2 + J3ð Þ,

where

J1 ¼
XN

i¼1

XT

t¼1

σttKitxhGitxG
0
itx,

J2 ¼
XN

i¼1

XT

t¼1

σttKitxhGitxyit,

J3 ¼
XN

i¼1

XT

t¼1

XT

s¼ 1

s 6¼ t

σstKitxhGitxv̂ ‘�1½ �it:

If one ignores the presence of J3, then the estimator ofWang (2003) is nearly

identical to the pooled LLLS estimator, outside of the presence of σtt (which has
an impact only if there is an unbalanced panel). The contribution of J3 is what
provides asymptotic gains in efficiency. J3 effectively contributes the covariance
among thewithin cluster residuals to the overall smoothing. To seewhy this is the

case, consider the LLWLS estimator in Eq. (7). Even though the within cluster

covariance is included via Wrx, asymptotically this effect does not materialize

since it appears in both the numerator and denominator in an identical fashion.

For the estimator of Wang (2003), this effect materializes given that the within

cluster covariance occurs only in the numerator (i.e., through J3).
TheWang(2003)estimator is iterateduntil convergence is achieved; for exam-

ple a useful convergence criterion is
PN

i¼1

PT
t¼1 m̂ ‘½ � xitð Þ� m̂ ‘�1½ � xitð Þ� �2

=PN
i¼1

PT
t¼1m̂ ‘�1½ � xitð Þ2 <ω, where ω is some small number. Wang (2003)
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demonstrates that the estimator usually converges in only a few iterations and

argues that the once-iterated (‘ ¼ 2) estimator has the same asymptotic behavior

as the fully iterated estimator.

Feasible estimation requires estimates of σts that can be obtained using the

residuals from m̂ 1½ � xð Þ. The (t, s)th element is

σts ¼ σ2ε �σ21
σ21σ

2
εT

,

and the (t, t)th element is

σtt ¼ σ2ε + T�1ð Þσ21
σ21σ

2
εT

:

4 Estimation in the Fixed Effects Framework

4.1 Differencing/Transformation Methods

Consider first differencing Eq. (1), which leads to

yit� yit�1 ¼m xitð Þ�m xit�1ð Þ + εit� εit�1, i¼ 1,…,N, t¼ 2,…,T:

By assuming a fixed number of derivatives of m(x) to exist, Ullah and Roy

(1998) posited that the derivatives of m(x) would be identified and easily esti-

mated using local-linear (polynomial) regression. For example, consider q ¼ 1,

and use the notation △zit ¼ zit �zit �1 resulting in

Δyit ¼m xitð Þ�m xit�1ð Þ +Δεit:
Next, a first-order Taylor expansion ofm(xit) andm(xit �1) around the point x

results in

Δyit ¼m xð Þ+m0 xð Þ xit� xð Þ� m xð Þ+m0 xð Þ xit�1� xð Þð Þ+Δεit
¼m xð Þ�m xð Þ+m0 xð Þ xit� xð Þ� xit�1� xð Þð Þ+Δεit
¼Δxitm0 xð Þ+Δεit

This same argument also could be done using the within transformation. The

local-linear estimator of m0(x) as proposed in Lee and Mukherjee (2014) is

m̂0 xð Þ¼

XN

i¼1

XT

t¼2

KitxhΔxitΔyit

XN

i¼1

XT

t¼2

KitxhΔx2it

: (9)

There are two main problems with this differencing estimator. First, the con-

ditional mean is not identified in this setting. Second, as Lee and Mukherjee

(2014) demonstrate, the local-linear estimator possesses a nonvanishing asymp-

totic bias even as h! 0. Note that in the construction of Eq. (9), the linear expan-

sion is around the point xit (which is acceptable in a cross-sectional setting).
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However, in the panel setting, information from the same individual (i.e., xis, s 6¼ t)
cannot be controlled as h! 0. In particular, we took the Taylor expansion around

both the points xit and xit �1 in our first differencing, however, the kernel weights

account only for the difference between x and xit. This means that the Taylor

approximation error will not decay to zero as the bandwidth decays.

Several approaches have been proposed to overcome the nonvanishing

asymptotic bias. For example, Mundra (2005) considers local-linear estimation

around the pair (xit, xit �1), which produces the estimator (termed the first-

difference local-linear estimator, or FDLL)

m̂0
FDLL xð Þ¼

XN

i¼1

XT

t¼2

KitxhKit�1xhΔxitΔyit

XN

i¼1

XT

t¼2

KitxhKit�1xhΔx2it

:

Even with this simple fix, however, the issue remains that only the derivatives

of the conditional mean are identified. In some settings this is acceptable. For

example, in the hedonic price setting the gradients of the conditional mean are

of interest because they can be used to recover preferences of individuals.

Bishop and Timmins (2018) use this insight and follow the previous logic (albeit

using the within transformation) to recover the gradients of a hedonic price func-

tion to value preferences for clean air in the San Francisco Bay area of California.

As an alternative to the first-difference transformation, the within transfor-

mation also could be applied, as in Eq. (2). Again, as noted in Lee and

Mukherjee (2014), direct local-linear estimation in this framework ignores

the application of the Taylor approximation and results in an asymptotic bias.

To remedy this, Lee and Mukherjee (2014) propose the local within transfor-

mation. To see how this estimator works, consider that the standard within

transformation calculates the individual specific mean of a variable z as

zi � ¼ T�1
PT

t¼1zit. Lee and Mukherjee (2014) replace the uniform 1/Tweighting

with kernel weights, producing the local individual specific means

ezi � ¼

XT

t¼1

Kitzhzit

XT

s¼1

Kiszh

¼
XT

t¼1

witzhzit:

Using the notation z∗it ¼ zit�ezi � , the locally within transformed local-

constant estimator is

m̂0
LWTLC xð Þ¼

XN

i¼1

XT

t¼2

Kitxhx∗ity
∗
it

XN

i¼1

XT

t¼2

Kitxhx∗
2

it

:
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These local differencing and transformation methods are simple to imple-

ment. However, it is not clear if they can be used to recover the conditional

mean, which would be important in applications where forecasting or prediction

is desirable.

4.2 Profile Estimation

The obvious drawback of the differencing/transformation approaches proposed

by Ullah and Roy (1998), Mundra (2005), and Lee andMukherjee (2014) is that

the conditional mean cannot be identified. To remedy this, Henderson, Carroll,

and Li (2008) consider estimation of Eq. (1) under the fixed effects framework

using the first difference transformation based off period 1:

eyit � yit� yi1 ¼m xitð Þ�m xi1ð Þ + εit� εi1: (10)

Although this estimator could be implemented using period t � 1, as is more

common, we follow their approach here. The benefit of this transformation is

that, the fixed effects are removed, and, under exogeneity of the covariates, E

[m(xit)] ¼ E(yit). The problem as it stands with Eq. (10) is the presence of both

m(xit) and m(xi1). The main idea of Henderson et al. (2008) is to exploit the var-

iance structure of εit �εi1 when constructing the estimator, which is similar to

Wang (2003)‘s approach in the random effects setting.

Start by defining eεit ¼ εit� εi1 and eεi ¼ eεi2,…,eεiTð Þ0. The variance-

covariance matrix of eεi,Vi ¼Cov eεij xi1,…, xiTð Þ, is defined as

Vi ¼ σ2ε IT�1 + iT�1i
0
T�1

� �
,

where IT�1 is an identity matrix of dimension T � 1, and iT�1 is a (T � 1) � 1

vector of ones (note that in the random effects case it was of dimension T). Fur-
ther, Vi

�1 ¼ σε
�2(IT�1 � iT�1 iT�1

0/T). Following Wang (2003) and Lin and

Carroll (2006), Henderson et al. (2008) deploy a profile likelihood approach

to estimate m(�). The criterion function for individual i is

Li �ð Þ ¼L yi,m xið Þð Þ
¼�1

2
eyi�m xið Þ+m xi1ð ÞiT�1ð Þ0V�1

i eyi�m xið Þ +m xi1ð ÞiT�1ð Þ, (11)

where eyi ¼ eyi2,…, eyiTð Þ0 and m(xi) ¼ (m(xi2), m(xi3),…, m(xiT))
0.

As in the construction of Wang (2003)’s random effects estimator, define

Litm ¼ ∂Li(�)/∂m(xit). From Eq. (11) we have

Li1m ¼�i0T�1V
�1
i yi�m xið Þ+m xi1ð ÞiT�1ð Þ;

Litm ¼ c0t�1V
�1
i eyi�m xið Þ+m xi1ð ÞiT�1ð Þ for T
 2,

where ct�1 is a vector of dimension (T � 1) � 1 with the (t � 1) element being 1

and all other elements being 0.

110 Panel Data Econometrics



We estimate the unknown function m(x) by solving the first-order condition

0¼
XN

i¼1

XT

t¼1

KitxhGitxLitm yi, m̂ xi1ð Þ,…, m̂ xð Þ+ x̌itβ̂ xð Þ,…, m̂ xiTð Þ� �
,

where the argument of Litm is m̂ xisð Þ for s 6¼ t and m̂ xð Þ+ x̌itβ̂ xð Þ when s ¼ t.
As in Wang (2003), an iterative procedure is required. Denote the estimate

of m(x) at the [‘ � 1]th step as m̂ ‘�1½ � xð Þ. Then the current estimate of m(x), and
its derivative, β(x), are m̂ ‘½ � xð Þ and β̂ ‘½ � xð Þ, which solve:

0¼
XN

i¼1

XT

t¼1

KitxhGitxLitm yi, m̂ ‘�1½ � xi1ð Þ,…, m̂ ‘½ � + x̌itβ̂ ‘½ � xð Þ,…, m̂ ‘�1½ � xiTð Þ
h i

:

Henderson et al. (2008) use the restriction
PN

i¼1

PT
t¼1 yit� m̂ xitð Þð Þ¼ 0 so

that m(�) is uniquely defined because E(yit) ¼ E [m(xit)].
The next step estimator is

m̂ ‘½ �, β̂ ‘½ �
� �0

¼D�1
1 D2 +D3ð Þ,

where

D1 ¼ T�1

Tσ2ε

XN

i¼1

XT

t¼1

KitxhGitxG
0
itx

D2 ¼ T�1

Tσ2ε

XN

i¼1

XT

t¼1

KitxhGitxm̂ ‘�1½ � xitð Þ;

D3 ¼
XN

i¼1

XT

t¼2

KitxhGitxc
0
ti�1�Ki1xhGi1xi

0
T�1

� �
V�1
i Hi, ‘�1½ �,

and

Hi, ‘�1½ � ¼
ε ‘�1½ �
i2

⋮

ε ‘�1½ �
iT

0

BB@

1

CCA� ε ‘�1½ �
i1 iT�1

where ε ‘�1½ �
is ¼ yis� m̂ ‘�1½ � xisð Þ are the differenced residuals. Henderson and

Parmeter (2015) note that the derivative estimator of Henderson et al.

(2008) is incorrect; β̂ ‘½ � defined previously needs to be divided by h to produce
the correct vector of first derivatives of m̂ ‘½ � xð Þ. Regarding the asymptotic

properties of this profile likelihood estimator, Henderson et al. (2008) provide

only a sketch of the form of the asymptotic bias, variance, and asymptotic nor-

mality, whereas Li and Liang (2015), using the theory of Mammen, Støve, and

Tjøstheim (2009), provide a full derivation of asymptotic normality and also

demonstrate the robustness of the estimator to which period is used for

differencing.
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Recall that the estimator proposed byWang (2003) required a consistent ini-

tial estimator of Vi to be operational. There, setting Vi to be an identity matrix

resulted in the pooled local-linear least-squares estimator as an ideal choice.

The same is true here; if we replace Vi by an identity matrix, Eq. (10) is an addi-

tive model with the restriction that the two additive functions have the same

functional form. Either a fourth order-polynomial or a series estimator can

be used in this setting to construct an initial consistent estimator of m(�) and
subsequently, of Vi. The variance parameter σε

2 can be consistently estimated by

σ̂2ε ¼
1

2NT�2Nð Þ
XN

i¼1

XT

t¼2

yit� yi1� m̂ xitð Þ� m̂ xi1ð Þf gð Þ2:

However, note that σ̂2v is necessary only in order to estimate the covariance

matrix of m̂ xð Þ. It is not necessary for the construction of m̂ ‘½ �, β̂ ‘½ �
� �

given that

σ̂2ε simply drops out of Eq. (10).

4.3 Marginal Integration

An alternative to the iterative procedure of Henderson et al. (2008) is to estimate

the model in Eq. (10) using marginal integration. This was proposed by Qian

and Wang (2012). To describe their estimator we first restate the first-

differenced regression model as follows:

Δyit � yit� yit�1 ¼m xitð Þ�m xit�1ð Þ +Δεit: (12)

Qian and Wang (2012) suggest estimating the model in Eq. (12) by

estimating

Δyit ¼m xit, xit�1ð Þ+Δεit
and then integrating out xit�1 to obtain an estimator ofm(xit). The benefit of this
approach is that any standard nonparametric estimator can be used, such as

local-polynomial least-squares. Consider our earlier discussion of local-

polynomial least-squares estimation in which the estimator was defined in

Eq. (6). Now, instead of estimation at the point x, we have estimation at the pair

(x, z), resulting in the estimator

β̂ x, zð Þ¼ D0
xzKxzDxz

� ��1
D0

xzKxzΔy:

Here we have used the notation Kxz ¼KxKz and Dxz is the same vertically

concatenated matrix, but now combined over the points x and z. Regardless of p,
m̂ x, zð Þ¼ e01β̂ x, zð Þ where e1 is a vector with 1 in the first position and zeros

everywhere else. After this estimator has been constructed, we can estimate

m(x) from m̂ x, zð Þ by integrating out z. The easiest way to do this is

m̂ xð Þ¼ NTð Þ�1
XN

i¼1

XT

t¼1

m̂ x, xitð Þ: (13)
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There are two main issues with the marginal integration estimator of Qian

and Wang (2012). First, given the well-known curse of dimensionality, estima-

tion ofm(x, z) is likely to be plagued by bias if q is large and/or N T is relatively

small. Second, the marginal integration estimator in Eq. (13) requires counter-

factual construction, which implies that to evaluate the estimator at a single

point requires N T function evaluations and so (N T)2 evaluations are needed

to estimate the function at all data points. Even for moderately sized N and T
this could prove computationally expensive. In simulations, Gao and Li

(2013) report that the marginal integration estimator takes substantial amounts

of time to compute even for small N and T.
Even given these two drawbacks, the marginal integration estimator of Qian

and Wang (2012) has much to offer. First, given that the only transformation

that is required is first-differencing, this estimator can be implemented easily

in any software that can conduct kernel smoothing and allow the construction

of counterfactuals. Moreover, this estimator does not require iteration or an

arbitrary initial consistent estimator. Both of these advantages might lead to

the increasing adoption of this estimator in the future. Qian and Wang

(2012) prove asymptotic normality of the estimator for the local-linear setting.

They demonstrate that the estimator works well inMonte Carlo simulations, and

they show that the marginal integration estimator outperforms the profile like-

lihood estimator of Henderson et al. (2008).

4.4 Profile Least Squares

Gao and Li (2013), Li, Peng, and Tong (2013), and Lin et al. (2014), following

Su and Ullah (2006) and Sun, Carroll, and Li (2009), propose estimation of the

model in Eq. (1) through profile least squares. Assuming the data are ordered so

that t is the fast index, then the profile least-squares estimator of Li et al. (2013)

and Lin, Li, and Sun (2014) begins by assuming that αi is known. In the local-

linear setting, M(z) ¼ (m(z), h ⊙ _m(z)0)0 (where ⊙ represents Hadamard mul-

tiplication) is estimated from

Mα xð Þ¼ arg min
M2ℝq + 1

Y�Dα�DxMð Þ0Kx Y�Dα�DxMð Þ, (14)

where D ¼ (In� iT) � dn, dn ¼ [�in�1, In�1]
0, and in is a n � 1 vector of ones. D

is introduced in such a way to ensure that N�1
PN

i¼1αi ¼ 0, a necessary identi-

fication condition. Define the smoothing operator

S xð Þ¼ D0
xKxDx

� ��1
D0

xKx,

and the estimator that solves the minimization problem in Eq. (13) is

M̂α xð Þ¼ S xð Þ€ε
where €ε¼ €Y�Dα…M̂α xð Þ contains the estimator of the conditional mean,

m̂α xð Þ as well as the q � 1 vector of first derivatives, scaled by the appropriate
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bandwidth, h⊙ _̂mα xð Þ0. Define s(x)0 ¼ e0 S(x) with e ¼ (1, 0, …, 0)0 the

(q + 1) � 1 vector. Then m̂α xð Þ¼ s xð Þ0€ε.
After the estimator of m(x) is obtained, α is estimated through profile least

squares from

α̂¼ arg min
α

Y�Dα� m̂α xð Þð Þ0Kx Y�Dα� m̂α xð Þð Þ,

with m̂α xð Þ¼ m̂α x11ð Þ, m̂α x12ð Þ,…, m̂α x1Tð Þ, m̂α x21ð Þ,…, m̂α xNTð Þð Þ0. Lin et al.

(2014) show that the parametric estimator that solves the profile least-squares

problem is

α̂¼ eD0 eD
� ��1

eD0 eY,

with eD¼ 1NT �Sð ÞD and eY¼ INT �Sð ÞY. Here S ¼ (s(x11), s(x12),…, s(x1T),
s(x21), …, s(xNT))

0.
Finally, α̂1 ¼�Pn

i¼2α̂i.
The profile least-squares estimator for M (x) is given by

M̂ xð Þ¼ M̂α̂ xð Þ¼ S xð Þ €̂ε (15)

with €̂ε¼ Y�Dα̂.
Su and Ullah (2006) discuss the asymptotic properties of the profile-least

squares estimator in the context of the partially linear model, Sun et al.

(2009) for the smooth coefficient model, and Gao and Li (2013), Li et al.

(2013), and Lin et al. (2014) in the full nonparametric model setting. The ele-

gance of the profile least-squares estimator is that neither marginal integration

techniques nor iteration are required. This represents a computationally simple

alternative to the other estimators previously discussed. To our knowledge only

Qian and Wang (2012) and Gao and Li (2013) have compared the profile least-

squares estimator in a fully nonparametric setting. Gao and Li (2013) run an

extensive set of simulations, comparing the profile least-squares estimator,

the profile likelihood estimator of Henderson et al. (2008), and the marginal

integration estimation of Qian and Wang (2012), finding that the profile least

squares estimator outperforms these other estimators in a majority of the set-

tings considered. Lastly, we know of no application using the profile least-

squares approach to estimate the conditional mean nonparametrically, which

would be a true test of its applied appeal.

The practitioner might find the profile least-squares estimator to be the most

accessible of all of the fixed effects estimators described herein. This is no doubt

in part because iteration is not required, nor is counterfactual analysis necessary

when performing marginal integration. Moreover, in the local-linear setting

described here, both the conditional mean and the corresponding gradients

are easily calculated (unlike the local within transformation). Lastly, the profile
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least-squares estimator can be adapted easily to any order local polynomial and

readily modified to include other panel type settings. For example, both time

and individual specific heterogeneity could be accounted for, or if three-way

panel data were available, as in the gravity model of international trade, a range

of heterogeneity types could be included, such as importer, exporter, and time-

specific heterogeneity. This estimator offers a range of attractive features for the

applied economist, and we anticipate it will become increasingly popular

over time.

4.4.1 Estimation With Unbalanced Panel Data

Given the way in which the data are ordered and how the smoothing is con-

ducted, if unbalanced panel data is present, the only modification to the estima-

tor is the construction of the matrix D. Whereas in the balanced setting where D
is an nT � (n � 1) matrix, D becomes a Ť � (n � 1) matrix where Ť ¼Pn

i¼1Ti
is the total number of observations in the data set and Ti is the number of time

periods that firm i appears in the data.

To understand howD changes when unbalanced panel data is present, define

△1 as the T � (n � 1) matrix consisting of all -1 s and △j, j 2 (2, …, n) as the
T � (n � 1) matrix that has all entries 0 except for the j � 1 column, which con-

tains 1 s. Then in the balanced case

Dbal ¼

Δ1

Δ2

⋮

Δn

2

666664

3

777775
:

In the unbalanced setting let ej be the vector of 1 s and 0 s representing in

which of the T time periods individual j appears. Let Γj be the Tj �Tmatrix that

contains 1 s along the main diagonal and 0 s everywhere else. Finally, Γ1 be the
matrix that vertically concatenates all of the ejs. If we assume that the first indi-

vidual appears T times, then in the unbalanced case we have

Dunbal ¼

Γ1⊙Δ1

Γ2Δ2

⋮

rnΔn

2

666664

3

777775
:

Aside from this specification of D, no other changes are needed to imple-

ment the profile estimator of Li et al. (2013) or Lin et al. (2014) in the presence

of panel data.
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5 Dynamic Panel Estimation

Su and Lu (2013) consider kernel estimation of a dynamic nonparametric panel

data model under the fixed effects framework that can be expressed as

yit ¼m yi, t�1, xitð Þ+ αi + εit:
To construct a kernel estimator for this dynamic model, we first eliminate

the fixed effect, obtaining

Δyit ¼m yi, t�1, xitð Þ�m yi, t�2, xi, t�1ð Þ+Δεit, (16)

where △yit ¼ yit �yi,t�1 and △εit ¼ εit �εi,t�1. The model in Eq. (16) is iden-

tified only up to location, and a further restriction is needed to ensure full iden-

tification. Because E (yit) ¼ E [m(zi,t�1)], recentering is a simple way to achieve

full identification of the unknown conditional mean. This model can be esti-

mated using additive methods, following the marginal integration approach

of Qian and Wang (2012), however, as noted earlier, several complications

arise. First, the fact that the two functions are identical is not used by the mar-

ginal integration estimator, most likely resulting in a loss of efficiency. Second,

the marginal integration estimator requires counterfactual construction, which

can be prohibitive for large N T. Third, the curse of dimensionality is likely to

impede reliable estimation of the first-stage function. Given these hurdles, Su

and Lu (2013)’s proposed estimator is a simplification of the profile likelihood

estimator of Henderson et al. (2008), being computationally easier to

implement.

To describe how Su and Lu (2013) construct a dynamic nonparametric panel

data estimator, define zi,t �1 ¼ (yi,t �1, xit) and assume that E [△εit jzi,t �2] ¼ 0.

Then

E Δyitj zi, t�2ð Þ¼E m zi, t�1ð Þj zi, t�2½ ��m zi, t�2ð Þ:
Setting zi,t �2 ¼ z and rearranging we have

m zð Þ¼�E Δyitj zi, t�2 ¼ zð Þ +E m zi, t�1ð Þj zi, t�2 ¼ z½ �
¼�E Δyitj zi, t�2 ¼ zð Þ +

ð
m vð Þf vj zi, t�2 ¼ zð Þdv: (17)

The last equality is known as a Fredholm integral equation of the second

kind (Kress, 1999). Although a variety of avenues exists to solve integral equa-

tions of the second kind, perhaps the most straightforward is through iteration,

which is the way Su and Lu (2013) constructed their estimator.

To see how an iterative approach works, assume that m(z) is known. In this
case the integral in Eq. (17) could be evaluated by setting v ¼ zi,t �1 and running

local-polynomial least-squares regression with zi,t �2 as the covariates and

m(zi,t �1) as the regressand. Obviously,m(z) is unknown and thus an initial con-
sistent estimator is required. (Su and Lu (2013) propose a two-stage least-
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squares sieve estimator.) The iterations are designed to mitigate the impact that

the initial estimator has on the final estimates.

Su and Lu (2013)’s iterative estimation routine is implemented as follows:

1. For a given bandwidth, perform local-polynomial least-squares estimation

of �△yit on zi,t �2, evaluating this conditional mean at zi,t �1. Call these

estimates r̂.
2. Define m̂ 0½ � ¼ NT2ð Þ�1PN

i¼1

PT
t¼1yit where NTj ¼

PN
i¼1 T� jð Þ. Using the

same band- width as in Step 1, regress m̂ 0½ � on zi,t �2 using local-polynomial

least-squares, evaluating this conditional mean at zi,t �1. Recentering our

estimates of m̂ 0½ � by NT1ð Þ�1PN
i¼1

PT
t¼2 yit� m̂ 0½ � zi, t�1ð Þ� �

, the initial estima-

tor of the unknown conditional mean is

em 0½ � ¼ m̂ 0½ � + NT1ð Þ�1
XN

i¼1

XT

t¼2

yit� m̂ 0½ � zi, t�1ð Þ� �
:

3. Our next step estimator of m(zi,t �1) is

m̂ 1½ � zi, t�1ð Þ¼ em 1½ � zi, t�1ð Þ+ r̂:
Again, for identification purposes, recenter m̂ 1½ � zi, t�1ð Þ by NT1ð Þ�1PN

i¼1PT
t¼2 yit� m̂ 1½ � zi, t�1ð Þ� �

to produce em 1½ � zi, t�1ð Þ..
4. Repeat step 3, which at the ‘th step produces

m̂ ‘½ � zi, t�1ð Þ¼ em ‘�1½ � zi, t�1ð Þ+ r̂
Lastly, recenter m̂ ‘½ � zi, t�1ð Þ to obtain the ‘th step estimator of the unknown

conditional mean, em ‘½ � zi, t�1ð Þ.
The estimator should be iterated as with the estimators of Wang (2003) and

Henderson et al. (2008). Given that the evaluation of the unknown conditional

mean does not change, there is no need to recalculate the kernel weights across

iterations, potentially resulting in dramatic improvements in computational

speed for even moderately sized panels. The previously listed steps are for

the estimation of the conditional mean, through application of local-polynomial

least-squares estimation. If higher order derivatives from the local-polynomial

approach are desired, they can be taken from the corresponding higher order

derivatives of the last stage estimator, along with the appropriate derivatives

from r̂, given that recentering amounts to a location shift. Su and Lu (2013)

demonstrate that the limiting distribution of this estimator is normal.

5.1 The Static Setting

Nothing prevents application of the Su and Lu (2013) estimator in the static set-

ting of Eq. (1). In comparison to Henderson et al. (2008)’s iterative estimator,
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Su and Lu (2013)‘s estimator is less computationally expensive given that it

requires only successive local polynomial estimation of an updated quantity.

This estimator also avoids performing marginal integration as required by

Qian and Wang (2012) for their fixed effects nonparametric panel data

estimator.

In the static setting Su and Lu (2013)‘s iterative estimation routine is imple-

mented as follows:

1. For a given bandwidth, perform local-polynomial least-squares estimation

of -△yit on xi,t �2, evaluating this conditional mean at xi,t �1. Call these esti-

mates r̂.

2. Define m̂ 0½ � ¼ NT2ð Þ�1PN
i¼1

PT
t¼1yit Using the same bandwidth as in Step 1,

regress m̂ 0½ � on xi,t �2 using local-polynomial least-squares, evaluating this

conditional mean at xi,t �1. Recentering our estimates of m̂ 0½ � by NT1ð Þ�1

PN
i¼1

PT
t¼2 yit� m̂ 0½ � xi, t�1ð Þ� �

, the initial estimator of the unknown

conditional mean

em 0½ � ¼ m̂ 0½ � + NT1ð Þ�1
XN

i¼1

XT

t¼2

yit� m̂ 0½ � xi, t�1ð Þ:

3. Our next step estimator of m(xi,t �1) is

m̂ 1½ � xi, t�1ð Þ¼ em 1½ � xi, t�1ð Þ + r̂:
Again, for identification purposes, recenter m̂ 1½ � xi, t�1ð Þ by NT1ð Þ�1PN

i¼1PT
t¼2 yit� m̂ 1½ � xi, t�1ð Þ� �

to produce em 1½ � xi, t�1ð Þ.
4. Repeat step 3, which at the ‘th step produces

m̂ ‘½ � xi, t�1ð Þ¼ em ‘�1½ � xi, t�1ð Þ+ r̂:
Lastly, recenter m̂ ‘½ � xi, t�1ð Þ to construct the ‘th step estimator of the

unknown conditional mean, m̂ ‘½ � xi, t�1ð Þ.
Outside of Qian andWang (2012) and Gao and Li (2013), there are no finite

sample comparisons of the range of nonparametric estimators of the static non-

parametric panel data model under the fixed effects framework. This would be

an interesting avenue to explore for future research to help guide authors toward

the most appropriate estimator for this model.

6 Inference

6.1 Poolability

Having access to panel data affords researchers the ability to examine the pres-

ence (or lack thereof) of heterogeneity in many interesting dimensions that do

not exist when cross-sectional data are present. One of the main tests of homo-

geneity is that of poolability. Baltagi et al. (1996) proposed one of the first non-

parametric tests of poolability. The importance of such a test is that the size and
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power of a parametric test of poolability (such as a Chow test) could be

adversely affected by parametric misspecification of the conditional mean.

Baltagi, Hidalgo, and Li (1996) consider a test of poolability for the model

yit ¼mt xitð Þ+ εit, i¼ 1,…,N, t¼ 1,…,T, (18)

where mt (xit) is the unknown functional form that can vary over time, xit is a

1 �q vector of regressors, and εit is the error term. For the data to be poolable

across time, mt (x) ¼ m (x) 8 t almost everywhere, with m (x) representing the

unknown functional form in the pooled model. More specifically, Baltagi et al.

(1996) test

H0 :mt xð Þ¼m xð Þ8t
almost everywhere versus the alternative that

H1 :mt xð Þ 6¼m xð Þ
for some t with positive probability.

UnderH0, E (εit jxit) ¼ 0 almost everywhere, where εit ¼ yit �m (xit). Under

H1, ε̂it from the pooled model will not converge to εit and hence E (ε jx) 6¼ 0

almost everywhere. Hence, a consistent test for poolability based on E [ε E

(ε jx)] is available.
Baltagi et al. (1996) construct the test statistics as

ĴNT ¼N hj j2 ÎNT
σ̂NT

,

where

ÎNT ¼ 1

NT N�1ð Þ|h|
XN

i¼1

XT

t¼1

XN

j¼ 1

j 6¼ i

Kitxjshε̂itε̂jtf̂ xitð Þf̂ xjt
� �

,

and

σ̂2NT ¼
2

NT N�1ð Þ|h|
XN

i¼1

XT

t¼1

XN

j¼ 1

j 6¼ i

ε̂2itε̂
2
jt f̂ xitð Þ2 f̂ xjt

� �2
K2
itxjsh

with jh j ¼ h1 … hq. Baltagi et al. (1996) prove that ĴNT has a standard normal

distribution underH0. Although the limiting distribution of ĴNT is available, typ-
ically in nonparametric inference it is recommended to use resampling plans

(bootstrapping or subsampling) to construct the finite sample distribution.

The steps used to construct the wild bootstrap test statistic are as follows:

1. For i ¼ 1, 2, … N and t ¼ 1, 2, … T generate the two-point wild bootstrap

error ε∗it ¼
1� ffiffi

5
pð Þ
2

ε̂it� ε̂
� �

with probability p¼ 1 +
ffiffi
5

pð Þ
2
ffiffi
5

p and u∗it ¼
1 +

ffiffi
5

pð Þ
2
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ε̂it� ε̂
� �

with probability 1�p where ε̂it ¼ yit� m̂ xitð Þ is the residual from

the pooled estimator. Here we are using the commonwild bootstrap weights,

but Rademacher weights could also be used.

2. Construct the bootstrap left side variable y∗it ¼ m̂ xitð Þ+ ε∗it for i ¼ 1, 2, …, N
and t ¼ 1, 2, … T. The resulting sample {yit*,xit} is the bootstrap sample.

Note that these data are generated under the null of a pooled sample. Using

the bootstrap sample, estimate m̂* xitð Þ via pooled LCLS where yit is

replaced by yit*.
3. Use the bootstrap residuals ε̂∗it to construct the bootstrap test statistic Ĵ

∗
NT .

4. Repeat steps 1–3 a large number (B) of times and then construct the sam-

pling distribution of the bootstrapped test statistics. The null of poolability

is rejected if ĴNT is greater than the upper α-percentile of the bootstrapped
test statistics.

Lavergne (2001) is critical of this test partially because the smoothing param-

eter used in the pooled model is the same in each period. Further, he disagrees

that the density of the regressors, f̂ xð Þ, should remain fixed across time.

Lavergne (2001) argues that if f̂ xð Þ varies over time it can lead to poor perfor-

mance of Baltagi et al. (1996)’s test of poolability.

An alternative approach to test poolability is that of Jin and Su (2013). They

consider the model

yit ¼mi xitð Þ + εit, i¼ 1,…,N, t¼ 1,…,T,

wheremi(xit) is the unknown functional form that can vary over individuals with

everything else defined as in Eq. (18). For the data to be poolable across indi-

viduals mi (x) ¼ mj (x) 8 i, j almost everywhere, with m(x) representing the

unknown functional form in the pooled model. More specifically, the null

hypothesis is

H0 :mi xð Þ¼mj xð Þ8i, j
almost everywhere versus the alternative that

H1 :mi xð Þ 6¼mj xð Þ
for some i 6¼ j with positive probability.

Jin and Su (2013) do not consider a conditional moment based test for pool-

ability as do Baltagi et al. (1996), but rather a weighted integrated squared error

statistic, defined as

ΓNT ¼
XN�1

i¼1

XN

j¼i+ 1

ð
mi xð Þ�mj xð Þ� �2

w xð Þdx, (19)

where w(x) is a user-specified probability density function. Under H0, ΓNT ¼ 0,

otherwise ΓNT > 0. Jin and Su (2013) point out that ΓNT cannot distinguish all

departures from H0. Rather, Eq. (19) corresponds to testing
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H0 :Δm ¼ 0 versus H1 :Δm > 0

where△m ¼ limN !∞ (N (N � 1))�1 ΓNT. The difference between H0 and H0 is

that H0 allows for some i 6¼ j, mi(x) 6¼ mj (x) with probability greater than zero,

but the count measure of such pair has to be of smaller order than N (N � 1).

That is, it can happen that mi(x) 6¼ mj (x), but these occurrences cannot increase

as N increases. This is intuitive because the test of poolability in this case is

predicated on increasing the number of cross sections, and as more cross-

sections become available, it would seem likely that it will be difficult to rule

out that mi(x) 6¼ mj (x) for every pair (i, j). Jin and Su (2013) show theoretically

that underH1, the poolability test is consistent as long as (N (N � 1))�1 ΓNT does
not shrink too fast to 0.

The statistic in Eq. (19) is calculated under H1 and requires the user to esti-

mate mi(x) across all individuals. For example, using local-polynomial least-

squares, with m̂j xð Þ, the ΓNT is estimated by

Γ̂NT ¼
XN�1

i¼1

XN

j¼i+ 1

ð
m̂i xð Þ� m̂j xð Þ� �2

w xð Þdx:

Jin and Su (2013) show that after appropriate normalization, Γ̂NT is normally

distributed under reasonable assumptions.4 A bootstrap approach similar to that

of Baltagi et al. (1996) can be deployed to construct the finite sample distribu-

tion of the test statistic.

6.1.1 Poolability Through Irrelevant Individual and Time Effects

An informal way to determine whether the data is poolable is to directly smooth

over both individual and time and assess the size of the bandwidths on these two

variables. It is well known that discrete variables whose bandwidths hit their

upper bounds are removed from the smoothing operation. Thus, rather than

splitting the data on time (Baltagi et al., 1996) or individual ( Jin & Su,

2013), individual and time heterogeneity can be included directly in the set

of covariates and the pooled regression model can be estimated. If the band-

widths on either of these variables are at their corresponding upper bounds, then

this would signify the ability to pool in that dimension. This approach was advo-

cated by Racine (2008) and would seem to hold promise, though further devel-

opment of the theoretical properties as they pertain to the data-driven

bandwidths is warranted.

We again note that this is informal, but it will reveal poolability in either the

individual and/or time dimension. Further, there is no need to construct a test

statistic or use resampling plans. The problem facing practitioners will occur

4. Jin and Su (2013)’s theory focuses on the setting wheremi(x) is estimated using sieves, but it can

be adapted to the kernel setting.
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when the estimated bandwidth is close, but not equal, to its upper bound. In that

case, a more formal approach would need to be undertaken.

An alternative to the approach of Racine (2008) would be that of Lu and Su

(2017), who develop a consistent model selection routine for the fixed effects

panel data model. Although their test is developed and studied in a parametric

setting,m(x) ¼ xβ, it can be extended easily to the nonparametric setting that we

have described here. Lu and Su (2017)’s selection device entails choosing the

estimator from the model that has the lowest leave-one-out cross validation

score. For example, if we compare the pooled model against the one-way, indi-

vidual effects model, we estimate both models omitting a single observation,

predict yit for the omitted observation, and repeat this over all nT observations,

to calculate the squared prediction error. The model with the lowest squared

prediction error is then chosen as the best model. Lu and Su (2017) demonstrate

that this approach works remarkably well even in the presence of serial corre-

lation or cross-section dependence and substantially outperformsmore common

model selection approaches such as AIC or BIC.

6.2 Specification Testing

Lin et al. (2014) provide an integrated squared error statistic to test for correct

specification of a panel data model under the fixed effects framework. The null

hypothesis is

H0 : Pr m xð Þ¼ xβ0f g¼ 1,

for some β0 2 ℝq against the alternative hypothesis

H0 : Pr m xð Þ¼ xβ0f g< 1,

for any β0 2 ℝq. Let β̂ denote the parametric estimator of β0 (perhaps using

within estimation) and m̂ xð Þ the profile least-squares estimator. Then a consis-

tent test for H0 is based off
ð

m̂ xð Þ�xβ̂
� �2

dx:

However, as noted in Lin et al. (2014), this test statistic would possess sev-

eral nonzero centering terms that, if not removed, would lead to an asymptotic

bias. To avoid this Lin et al. (2014) use the approach of H€ardle and Mammen

(1993) and smooth xitβ̂. More specifically, estimate m(x) using local-constant

least-squares (our earlier discussion focused on local-linear least-squares) as

m̂ xð Þ¼ i0NTS xð ÞiNT
� ��1

i0NTS xð Þy (20)

where S(x) ¼ Q(x)0KxQ(x) and Q(x) ¼ INT � D (D0KxD)
�1 D0Kx with ıNT an

NT � 1 vector of ones. Note that we smooth over y in Eq. (20) as Q(x)
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D ¼ 0, which will eliminate the presence of the fixed effects as in Eq. (15). The

same smoothing is applied to the parametric estimates to produce

m̂para xð Þ¼ i0NTS xð ÞiNT
� ��1

i0NTS xð Þ xitβ̂
� �

:

Let є̂it ¼ yit�xitβ̂ (the parametric residuals, free of the fixed effects). Then it

holds that m̂ xð Þ� m̂para xð Þ¼ i0NTS xð ÞiNT
� ��1

i0NTS xð Þє̂. Lin et al. (2014) discuss

the fact that the presence of the random denominator in m̂ xð Þ� m̂para xð Þ will
complicate computation of the asymptotic distribution of the integrated squared

error test statistic.

Instead, Lin et al. (2014) propose a simpler leave-one-out test-statistic

(which omits center terms), given by

ÎNT ¼ 1

N2|h|
XN

i¼1

XN

j 6¼i

XT

t¼1

XT

s¼1

êєitêєjsKitjsh, (21)

where êєit ¼ є̂it� є̂i � . An alternative test statistic is proposed by Henderson et al.
(2008), however, this test is less appealing because it involves iteration of the

estimator of the unknown conditional mean. The test statistic of Lin et al. (2014)

requires only kernel weighting of the within residuals from parametric estima-

tion.5 This simplicity allows Lin et al. (2014) to demonstrate that when ÎNT is

appropriately normalized it has an asymptotically normal distribution. They

focus on the asymptotic behavior of ÎNT for N ! ∞, but the theory can be estab-

lished if both N and T are increasing.

Kernel-based nonparametric tests commonly display poor finite sample size

and power. To remedy this Lin et al. (2014) propose a bootstrap procedure to

approximate the distribution of the scaled test statistic ĴNT ¼N
ffiffiffiffiffiffi|h|p

INT=
ffiffiffiffiffi
σ̂20

q

where

σ̂20 ¼
2

N2|h|
XN

i¼1

XN

j 6¼i

XT

t¼1

XT

s¼1

êє
2

itêє
2

jsK
2
itjsh: (22)

Their bootstrap procedure is

1. Estimate the linear panel data model under the fixed effects framework

using the within estimator and obtain the residuals є̂it ¼ yit�xitβ̂.
2. For i ¼ 1, 2, … N and t ¼ 1, 2, …, T generate the two-point wild bootstrap

error є∗it ¼
1� ffiffi

5
pð Þ
2

ε̂it� ε̂
� �

with probability p¼ 1 +
ffiffi
5

pð Þ
2
ffiffi
5

p and u∗it ¼
1 +

ffiffi
5

pð Þ
2

5. This fact can be used to exploit existing software to implement the test. For example, the np pack-

age (Hayfield & Racine, 2008) offers a test of consistent model specification in the cross-sectional

setting. However, the adept user could simply within transform their data and call npcmstest(), mak-

ing implementation straightforward.
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є̂it� є̂
� �

with probability 1 �p. Then construct y∗it ¼ xitβ̂ + ε∗it. Call (yit*,xit)
for i ¼ 1, 2,…, N and t ¼ 1, 2, …, T the bootstrap sample.

3. Use the bootstrap sample to estimate β based on the bootstrap sample using

the within estimator. Calculate the residuals є̂∗it ¼ y∗it�xitβ̂*.
4. Compute JNT* , where JNT* is obtained from JNT using the residuals êє

∗
it.

5. Repeat steps (2)–(4) a large number (B) of times and reject H0 if the esti-

mated test statistic ĴNT is greater than the upper α-percentile of the boot-

strapped test statistics.

Lin et al. (2014) demonstrate that this bootstrap approach provides an asymp-

totically valid approximation of the distribution of JNT. Moreover, in the sim-

ulations that they conduct, the bootstrap test has correct size in both univariate

and bivariate settings and also displays high power.

6.3 A Hausman Test

In addition to testing for poolability of the data, another interesting question that

researchers can ask in the presence of panel data is whether the fixed or random

effects framework is appropriate. As should be obvious from our earlier discus-

sion, the estimators for Eq. (1) under the fixed or random effects framework take

on different forms. Further, if the random effects estimator is applied errone-

ously, then it is inconsistent. The common approach to testing between these

two frameworks is to use the Hausman test (Hausman, 1978). Even with the

range of estimators that we have discussed for the fixed effects framework,

to our knowledge, only Henderson et al. (2008) describe a nonparametric Haus-

man test. One of the benefits of using a random effects estimator (Martins-Filho

& Yao, 2009, for example), when the random effects framework is true, is that

the gains in efficiency relative to a fixed effects estimator, profile least-squares,

say, can be substantial. In general, the larger T is or the larger that σα is relative
to σv, the more efficient the random effects estimator is over the fixed effect

estimator.

Recall that a Hausman test works by examining the difference between esti-

mators in which one estimator is consistent under both the null and alternative

hypotheses, while another estimator is consistent only under the null hypothesis.

Formally, under the random effects framework, the null hypothesis is

H0 :E αij xitð Þ¼ 0

almost everywhere. The alternative hypothesis is

H1 :E αij xitð Þ 6¼ 0

on a set with positive measure. Henderson et al. (2008) test H0 based on the

sample analogue of J ¼ E [vit E(vit jxit)f (xit)]. Note that J ¼ 0 under H0 and

is positive under H1, which makes this a proper statistic for testing H0.
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Let m̂ xð Þ denote a consistent estimator of m(x) under the fixed effects

assumption, profile least-squares for example. Then a consistent estimator of

vit is given by v̂it ¼ yit� m̂ xitð Þ. A feasible test statistic is given by

ĴNT ¼ 1

NT NT�1ð Þ
XN

i¼1

XT

t¼1

XN

j¼1

XT

s¼1

v̂it

j, sf g6¼ i, tf g

v̂jsKitjsh:

It can be shown that ĴNT is a consistent estimator of J. Hence, ĴNT!p 0 under

the null hypothesis, and ĴNT!p C if H0 is false, where C > 0 is a positive con-

stant. This test works by assessing if there is any dependence between the resid-

uals and the covariates. UnderH0, the fixed effects estimator is consistent and so

the residuals, v̂it, should be unrelated to the covariates, xit.

Henderson et al. (2008) suggest a bootstrap procedure to implement this test

to approximate the finite sample null distribution of Ĵ. The steps are as follows:

1. Let evi ¼ evi1,…, eviTð Þ0, where evit ¼ yit� em xitð Þ is the residual from a random

effects model, and em xð Þ is a random effects estimator of m(x). Compute the

two-point wild bootstrap errors by v∗i ¼ 1� ffiffiffi
5

p� �
=2

� �
evi with probability

p¼ 1 +
ffiffiffi
5

p� �
= 2

ffiffiffi
5

p� �
and v∗i ¼ 1 +

ffiffiffi
5

p� �
=2

� �
evi with probability 1 �p. Gen-

erate yit* via y∗it ¼ em xitð Þ+ v∗it. Call {yit*,xit}i¼1, t¼1
N, T the bootstrap sample. Note

here that all residuals for a given individual are scaled by the same point of

the two-point wild bootstrap.

2. Use {yit*,xit}i¼1, t¼1
N, T to estimate m(x) with a fixed effects estimator and

denote the estimate by m̂* xð Þ. Obtain the bootstrap residuals as

v̂∗it ¼ y∗it� m̂* xitð Þ.6
3. The bootstrap test statistic Ĵ

∗
NT is obtained as for ĴNT except that v̂it v̂js

� �
is

replaced by v̂∗it v̂∗js
� �

wherever it occurs.

4. Repeat steps (1)–(3) a large number (B) of times and reject if the estimated

test statistic Ĵ is greater than the upper α-percentile of the bootstrapped test

statistics.

6.4 Simultaneous Confidence Bounds

Li et al. (2013) provide the maximum absolute deviation between m̂ xð Þ and

m(x), allowing for the construction of uniform confidence bounds on the profile

least-squares estimator for Eq. (1) under the fixed effects framework. Their the-

oretical work focuses on the univariate case. Specifically, they establish that

6. Henderson et al. (2008) suggest using a random effects estimator. However, as pointed out in

Amini et al. (2012), asymptotically the performance of the test is independent of the estimator used

within the bootstrap, but in finite samples the use of the fixed effects estimator leads to improved

size.
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P �2 log hð Þ1=2 sup
x2 0, 1½ �

m̂ xð Þ�m xð Þ� dBias m̂ xð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar m̂ xð Þj Xð Þ

q
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(23)

where dn ¼ �2loghð Þ1=2 + 1

�2loghð Þ1=2 log
1

4πv0
R K0ð Þ

� �
, dBias m̂ xð Þð Þ is a consistent

estimator of the bias of the local-linear profile least-squares estimator, defined

as

Bias m̂ xð Þð Þ¼ h2k2m
00 xð Þ=2,

V̂ar m̂ xð Þj Xð Þ is a consistent estimator of the bias of the local-linear profile

least-squares estimator, defined as

Var m̂ xð Þj Xð Þ¼ v0σ
2 xð Þ=f 2 xð Þ

where kj ¼
Ð
uj K(u)du, νj ¼

Ð
uj K2(u)du, X ¼ {xit, 1 �i � N, 1 �t � T},

f xð Þ¼PT
t¼1ft xð Þ where ft(x) denotes the density function of x for each time

period t, σ2 xð Þ¼PT
t¼1σ

2
t xð Þft xð Þ, with σ2t xð Þ¼E eε2itj xit ¼ x

� �
with eεit ¼ εit� εi

and R(K) ¼ Ð
K2(u)du.

From Eq. (23), a (1 �α) � 100% simultaneous confidence bound for m̂ xð Þ is

m̂ xð Þ� dBias m̂ xð Þ�Δ1,α xð Þð Þ
�

where

Δ1,α xð Þ¼ dn + log2� log � log 1�αð Þð Þð Þ �2log hð Þ1=2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V̂ar m̂ xð Þj Xð Þ
q

:

As with inference, it is expected that a bootstrap approach will perform well

in finite samples. To describe the bootstrap proposed by Li et al. (2013) set

T¼ sup
x2 0, 1½ �

m̂ xð Þ�m xð Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar m̂ xð Þ| Xð Þ:ð

q

Denote the upper α-quantile of T as cα. When cα and V̂ar m̂ xð Þj Xð Þ are

known, the simultaneous confidence bound of m̂ xð Þ would be

m̂ xð Þ� cα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar m̂ xð Þj Xð Þ

q
. As these are unknown in practice, they need to be

estimated. The bootstrap algorithm is

1. Obtain the residuals from the fixed effects framework model and denote

them as ε̂it.
2. For each i and t, compute ε∗it ¼ aitε̂it where ai are i.i.d. N (0, 1) across i. Gen-

erate the bootstrap observations as y∗it ¼ m̂ xitð Þ+ ε∗it. Call {yit*,xit}i¼1, t¼1
N, T the

bootstrap sample. Note here that all residuals for a given individual are

scaled by the same factor.
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3. With the bootstrap sample {yit*,xit}i¼1,t¼1
N,T , use local-linear profile least-

squares to obtain the bootstrap estimator of m(x), denoted as m̂* xð Þ.
4. Repeat steps 2 and 3 a large number (B) of times. The estimator

V̂ar* m̂ xð Þj Xð Þ of Var m̂ xð Þj Xð Þ is taken as the sample variance of the B esti-

mates of m̂* xð Þ. Compute

T∗
b ¼ sup

x2 0, 1½ �

m̂* xð Þ� m̂ xð Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar m̂ xð Þ| Xð Þ forb¼ 1,…,B:ð

q

5. Use the upper α-percentile of {Tb*}b¼1,…, B to estimate the upper α-quantile
cα of T, call this ĉα construct the simultaneous confidence bound of m̂ xð Þ as
m̂ xð Þ� ĉα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂ar* m̂ xð Þj Xð Þ

q
.

The simultaneous confidences bounds, in the univariate setting, can be used to

provide a graphical depiction of when to reject a parametric functional form for

m(x), offering an alternative to the functional form test of Lin et al. (2014).

7 Conclusions

This chapter has reviewed the recent literature focusing on estimation and infer-

ence in nonparametric panel data models under both the random and fixed

effects frameworks. A range of estimation techniques were covered. This area

is ripe for application across a range of domains. Nonparametric estimation

under both fixed and random effects allows the practitioner to explore a wide

range of hypotheses of interest, while consistent model specification tests pro-

vide a robustness check on less than fully nonparametric approaches. Band-

width selection remains less studied, but as these methods are more widely

embraced, it is likely that a potentially wider range of data-driven approaches

will become available. We are optimistic that the interested practitioner can

keep abreast of this rapidly expanding field by digesting this chapter and the

references herein.
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1 Introduction

Stochastic frontier literature originated with Aigner, Lovell, and Schmidt (1977)

and Meeusen and van den Broeck (1977). Jondrow, Lovell, Materov, and

Schmidt (1982) provided a way to estimate technical efficiency. These studies

are framed in a cross-sectional framework, however, a panel contains more.

As noted by Kumbhakar and Lovell (2003), an immediate implication is that,

in a panel data model, we can relax some of the distributional assumptions that

we make in cross-sectional models or get efficiency estimates that have more

desirable statistical properties such as consistency of efficiency estimates.

Pitt and Lee (1981) and Schmidt and Sickles (1984) are among the first

studies that applied fixed and random effects models in which the inefficiency

is time-invariant. Panel data models that allow time-varying efficiency, such

as Cornwell, Schmidt, and Sickles (1990), Kumbhakar (1990), Battese and

Coelli (1992), and Lee and Schmidt (1993), followed those early models.

More recently, papers that allow dynamic efficiency have been published, with

authors including Ahn, Good, and Sickles (2000), Desli, Ray, and Kumbhakar

(2003), Tsionas (2006), Huang and Chen (2009), Assaf, Gillen, and Tsionas

(2014), Duygun, Kutlu, and Sickles (2016), and Kutlu (2017). A recent
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development in panel data models is identifying heterogeneity and efficiency

separately (Chen, Schmidt, & Wang, 2014; Greene, 2005a, 2005b; Wang and

Ho, 2010). In sum, myriad studies about the panel data stochastic frontier

concentrate on a variety of aspects of efficiency estimation.

Although the endogeneity issue has been a concern in production models in

which the firms are assumed to be fully efficient, e.g., Olley and Pakes (1996),

Levinsohn and Petrin (2003), Ackerberg, Caves, and Frazer (2015), the endo-

geneity issues have been ignored for long time in the stochastic frontier litera-

ture and haven’t been studied in the papers cited earlier.1 This is surprising,

because it seems that the endogeneity is likely to be a more serious problem

in the stochastic frontier models than in the standard production/cost function

models as the presence of the one-sided (non-negative) inefficiency term intro-

duces additional complications regarding endogeneity. The standard stochastic

frontier models generally assumed this one-sided inefficiency term to be inde-

pendent from the two-sided error term, but this assumption can be violated

easily for a variety of reasons. For example, in the context of health care cost

function estimation, Mutter, Greene, Spector, Rosko, and Mukamel (2013)

argue that if quality is one of the relevant factors that affects costs, then endo-

geneity issues occur when the parameter and efficiency estimates obtained from

a standard stochastic frontier model that ignores endogeneity are inconsistent.

Moreover, omitting the quality variable from the frontier does not solve the

inconsistency problem. Besides quality variables, there might be many other

endogenous variables in a stochastic frontier model, including input prices

and market concentration measures.

The purpose of this chapter is to provide a recent development in panel

stochastic frontier models that allows for heterogeneity, endogeneity, or both.

Specifically, consistent estimation of the models’ parameters as well as

observation-specific technical inefficiency is discussed. Section 2 presents

the panel stochastic frontier models that allow for heterogeneity under the

exogeneity assumptions of regressors. Section 3 discusses the panel stochastic

frontier models that allow for endogeneity of regressors under homogeneity

assumption. Models that allow for both heterogeneity and endogeneity are

presented in Section 4. Section 5 concludes the chapter.

2 Panel Stochastic Frontier Models With Heterogeneity

In this section, we discuss a recent theoretical development of general panel sto-

chastic frontier model that incorporates heterogeneity and time-varying techni-

cal inefficiency.2 Most of the discussion in this section draws heavily on the

1. See Shee and Stefanou (2014) for a stochastic frontier study in the Levinsohn and Petrin (2003)

context.

2. See Kutlu and McCarthy (2016) for an empirical study, in the context of airport cost efficiency,

illustrating consequences of ignoring heterogeneity.
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work of Wang and Ho (2010), Chen et al. (2014), and Kutlu, Tran, and Tsionas

(2019). For exposition simplicity, we focus on production functions. The bench-

mark model for our discussion is given by Wang and Ho (2010):

yit ¼ αi + x1itβ�uit + vit, (1)

uit ¼ hitu∗i , (2)

hit ¼ f x2itφuð Þ, (3)

u∗i �N + μ, σ2u
� �

, (4)

vit �N 0, σ2v
� �

, (5)

where yit is the logarithm of the output of the ith panel unit at time t; αi is a time-

invariant unit specific term that captures the firm heterogeneity; uit �0 is the

one-sided inefficiency term; x1it is a (1 � k1) vector of input variables; x2it is
(1 � k2) vector of environmental variables that effect the inefficiency term;

and vit is the conventional two-sided error. For identification purposes, we

assume that neither x1it nor x2it contains constant terms (intercepts). This model

is fundamentally different from earlier treatments of panel data, such as Pitt and

Lee (1981) and Schmidt and Sickles (1984), in which the only source of

heterogeneity was the normal error vit, and the inefficiency was time invariant.

A simpler and closely related model in which steps 2–5 are replaced by

uit � N+(0,σu
2) has been discussed by Greene (2005a, 2005b), Kumbhakar

and Wang (2005), and Chen et al. (2014). In addition, by setting αi ¼ α in

Eq. (1) and the term uit is modeled as in Eq. (2), this model also nests many

of the earlier stochastic frontier models including Kumbhakar (1990),

Reifschneider and Stevenson (1991), Battese and Coelli (1992), and Caudill

and Ford (1993). The main motivation for the frontier in Eq. (1) is to allow

for time invariant factors that affect the firm’s output but that are beyond the

firm’s control. These factors are captured in the term αi which are allowed to

be freely correlated with x1it and x2it. Let vi ¼ (vi1, … ,viT)
0, x1i and x2i are

defined similarly. The following assumptions regarding the nature of xjit,
j ¼ 1, 2 are essential to guarantee the consistency of the parameters and ineffi-

ciency estimates:

A.1: E(vi jx1i,x2i,αi) ¼ 0 for all i.
A.2: E(ui∗jx1i,x2i,αi) ¼ E(ui∗) for all i.
A.3: E(vi jui∗,αi) ¼ E(vi) for all i.
Assumption A.1 states that both set of regressors x1it and x2it are strictly

exogenous with respect to the two-sided error vit. Assumptions A.2 and A.3

require that ui∗ to be independent of x1it and x2it as well as vi, respectively.
Under A.3, uit still can be correlated with vit if x2it is correlated with vit. Under
the above assumptions,Wang and Ho (2010) proposed two different approaches

that are based on first difference and within transformations. They show that

both approaches yield the same log-likelihood function and, therefore, they
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are numerically identical. To simplify our discussion, we present only the

within transformation approach here. Let wi. ¼ T�1P
t¼1

Twit, wit ¼wit�wi:

and ewi ¼ wi1,…,wiTð Þ0, then the model after transformation is given by:

eyi ¼ ex1iβ + evi� eui, (6)

evi �MN 0, Σð Þ, (7)

eui ¼ ehiu∗i , (8)

u∗i �N + μ, σ2u
� �

, i¼ 1,2,…,n (9)

where Σ¼ σ2v IT � τTτ0T
T

h i
¼ σ2vMT is a (T � T) variance-covariance matrix of evi,

with IT is an identity matrix of dimension T, τT is a (T � 1) vector of 1’s, and the

definition of M is apparent; eui is a (T � 1) stacked vector of uit where

uit ¼ uit�ui: ¼ hitu∗i . From Eqs. (8) and (9), we see that the distribution of

ui∗ is unaffected by the transformation, making the derivation of the likelihood

function possible. Because Σ is an idempotent matrix, it is singular and, there-

fore, it is not invertible. To resolve this problem, Wang and Ho (2010) suggest

using Khatri (1968) singular multivariate normal distribution, which is defined

on a (T � 1)-dimensional subspace. Thus, the density of the vector evi is

f evið Þ¼ 2πð Þ� T�1ð Þ=2σ� T�1ð Þ
v exp �1

2
ev0iΣ

�evi

� �
, (10)

where Σ� denotes the generalized inverse of Σ. Given Eq. (10), the marginal

likelihood function of the ith panel can be derived based on the joint density

of evi and eui, and the marginal likelihood function of the model is given by:

lnL¼�N T�1ð Þ
2

ln 2πð Þ+ ln σ2v
� �� ��1

2

Xn

i¼1

eε0iΣ
�eεi +

1

2

Xn

i¼1

μ2
∗

σ2
∗

�μ2

σ2u

 !

+
Xn

i¼1

ln σ∗Φ μ∗=σ∗

� 	� 	
�
Xn

i¼1

ln σuΦ μ=σuð Þð Þ,
(11)

where Φ(.) is the cumulative density function of standard normal

distribution, and

eεi ¼ evi� eui ¼ eyi�exiβ, (12)

μ∗ ¼ μ=σ2u
� ��eε0iΣ�ehi
� 	

= eh
0
iΣ

�ehi + 1=σ2u
� �� 	

, (13)

σ2
∗
¼ 1= eh

0
iΣ

�ehi + 1=σ2u
� �� 	

: (14)

Maximizing the marginal log-likelihood function in Eq. (11) with respect to

θ ¼ (β0,φ0
u,σv

2,σu
2)0 provides the within MLE (WMLE). Under assumptions

A.1–A.3 and subject to other regularity conditions (which we will not pursue
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here), the WMLE of θ is consistent and asymptotically normal when n ! ∞
with fixed T or T! ∞. The asymptotic variance of the WMLE would be

evaluated at the inverse of the information matrix based on lnL in Eq. (11).

It is important to point out that the WMLE solves the incidental parameter

problem as discussed in Greene (2005a), because αi has been eliminated by the

within transformation.

After the WMLE estimate of θ is obtained, the main objective of estimating

the stochastic frontier model is to compute observational-specific technical

inefficiency, E(uit jεit) evaluated at point estimate εit ¼ ε̂it. There are two ways

to do this. One way is to adopt the conditional estimator proposed by Jondrow

et al. (1982), but this estimator requires the estimation of α̂i which can be

obtained as in Wang and Ho (2010, Eq. (31)). An alternative and simpler

way that does not require the estimation of αi is to compute the conditional

estimator of E uitjeεið Þ evaluated at eεi ¼ êεi ¼ eyi�exiβ̂WMLE. This conditional

estimator is derived in Wang and Ho (2010) and it is given by:

E uitj êεi
� 	

¼ ĥit μ̂∗ +
σ̂∗ϕ μ̂∗=σ̂∗

� 	

Φ μ̂∗=σ̂∗

� 	

2

4

3

5, (15)

where ^denotes the WMLE and ϕ(.) is the probability density function of stan-
dard normal distribution.

Chen et al. (2014) consider a simpler model thanWang and Ho (2010) where

Eqs. (2)–(5) are replaced by uit � N+(0,σu
2), and propose a somewhat different

but related approach to solve the heterogeneity and the incidental parameter

problems. Their approach also is based on within transformation to eliminate

the αi as in Eq. (6), but the derivation of the log-likelihood function is based

on the closed skew normal (CSN) results of Gonzalez-Farlas, Dominguez-

Molina, and Gupta (2004). Specifically, they show that, with slightly abuse

of notations,

eεi ¼ εi1,…, εiT�1ð Þ0 �CSNT�1,T 0T�1, σ
2MT�1, � λ

σ
IT�1

τ0T�1


 �
, 0T , IT + λ

2 τTτ
0
T

T

� �
,

(16)

and

εi: �CSN1,T 0,
σ2

T
, � λ

T
τT , 1 + λ2
� �

IT � λ2
τTτ0T
T

� �
, (17)

where σ2 ¼ σv
2 + σu

2 and λ ¼ σu/σv. Based on Eqs. (16) and (17), Chen et al.

(2014) derived the within and between log-likelihood function, respectively.

In fact, under the specification of uit � N+(0,σu
2), it is straightforward to show

that the derived within log-likelihood function is the same as the within

log-likelihood function of Wang and Ho (2010). The main advantage of
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Chen et al. (2014) approach is that the between log-likelihood function can be

used to obtain the consistent estimation of αi.
Kutlu et al. (2019) generalize the Wang and Ho (2010) model to allow for

time-varying heterogeneity and endogeneity problems (i.e., violation of

assumptions A.1–A.3). In their model, they maintain the same specifications

in Eqs. (2)–(5), but the specification of Eq. (1) is modified as:

yit ¼ x3itαi + x1itβ�uit + vit, (18)

where x3it is a (1 � k3) represents exogenous variables capturing the heteroge-

neity, variables that are allowed to be freely correlated with x1it and x2it; αi is a
productive unit specific coefficient vector, and other variables are defined as

earlier. For identification purposes, it is assumed that x3it and x1it have no ele-

ments in common. For example, x1it contains the usual input variables (in

case of production) such as capital, labor, and materials; while a potential

choice for x3it might be the firms’ research and development expenditures or

x3it ¼ (1, t, t2)0as in Cornwell et al. (1990). Another interesting choice for x3it
would be x3it ¼ (1,dit,dit

2)0 where dit stands for spatial distance for panel unit

i at time t, which might or might not refer to a physical distance. For example,

in differentiated products setting, the distance might be an index representing

the quality differences of a product relative to a benchmark. Therefore, the

heterogeneity can be modeled in a variety of ways.

To solve the heterogeneity and incidental parameter problems, under the

assumptions A.1–A.3, Kutlu et al. (2019) use the orthogonal projection

transformation to eliminate αi. To see this, let yi ¼ (yi1,y2i, … ,yiT)
0 is a

(T � 1) vector, and other variables x1i, x3i, ui and vi are defined similarly.

Also let Mx3i
¼ IT � x3i(x

0
3ix3i)

�1x03i, eyi: ¼Mx3i yi:, ex1i: ¼Mx3i x1i:, evi: ¼Mx3i vi:,

eui: ¼Mx3i ui:, and
ehi: ¼Mx3i hi:. By applying this transformation to Eq. (18), the

transformed model becomes:

eyi ¼ ex1iβ� eui + evi, (19)

then it is clear from Eq. (19) that αi has been eliminated and the derivation of

the marginal likelihood function of the ith panel follows similarly to Wang and

Ho (2010) which is:

lnLi ¼�1

2
T� k3ð Þ ln 2πσ2v

� ��1

2

ee 0ieei
σ2v

+
1

2

eμ2i∗
eσ2i∗

�μ2

σ2u

 !

+ ln

eσi∗Φ
eμi∗
eσi∗

� �

σuΦ
μ

σu

� �

0

BBB@

1

CCCA
,

(20)
where eμi∗ ¼

�σ2uee
0
i
ehi + μσ2v

σ2ueh
0
i
ehi + σ2v

, eσ2i∗ ¼
σ2vσ

2
u

σ2ueh
0
i
ehi + σ2v

, and eei ¼ eyi�ex1iβ. By maximizing the

total log-likelihood function L¼Pn
i¼1 lnLi, they obtain the ML estimates of
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all the parameters of the model. Under the standard regularity conditions, the

ML estimator is consistent for n ! ∞ and Ti is fixed.
Another variation of the stochastic panel frontier model discussed previ-

ously is the four-component stochastic frontier model that was considered by

Colombi, Kumbhakar, Martini, and Vittandini (2014), Kumbhakar, Lien, and

Hardaker (2014), and Lai and Kumbhakar (2017, 2018). It is given by:

yit ¼ x0itβ + αi�νi�uit + vit (21)

where αi is time-invariant heterogeneity, νi is time-invariant firm persistent

inefficiency, uit is time-varying transient inefficiency, and vit is a symmetric

two-sided random error. This is a reasonably general model that nests models

of Schmidt and Sickles (1984), Greene (2005a, 2005b), Wang and Ho (2010),

and Chen et al. (2014) as special cases.

Kumbhakar et al. (2014) use a three-step approach. In the first step, the stan-

dard random effect estimation procedure is used to obtain the estimates of β, and
the estimates of the remaining parameters are obtained in the second and third

steps using standard MLE. Colombi et al. (2014) take a different approach by

applying CSN distributions results similar to Chen et al. (2014) to obtain the

log-likelihood function and then maximize it directly to obtain the parameter

estimates in one step. Lai and Kumbhakar (2017) extend the model in

Eq. (5) to allow for the time-invariant and time-varying determinants of ineffi-

ciency to enter the variances of νi and uit, respectively; while Lai and

Kumbhakar (2018) also allow for xit to be correlated with αi and νi. The estima-

tion procedures for both models use difference and within transformation to first

remove the time-invariant components, and then applying CSN distribution

results to construct the joint density and the log-likelihood function of the result-

ing transformation of the composed-error. Finally, the simulatedMLE is used to

obtain the consistent estimates of all the parameters in the model.

We conclude this section by noting that all the previous discussion assumed

the distribution for either ui∗ or uit is half-normal or truncated normal; however,

other distributions such as exponential (Meeusen & van den Broeck, 1977); the

gamma (Greene, 1980a, 1980b, 2003), and the doubly truncated normal

(Almanidis, Qian, & Sickles, 2014) also can be used. Therefore, it would be

a good idea to test for normal-half-normal distributional assumption of the data

in practice. Chen and Wang (2012) proposed one such test that is based on the

moment generating function of the assumed distribution. It can be written as:

C¼
cos ω1ε∗it
� ��E cos ω1ε∗it

� �� �

⋮
cos ωqε∗it
� ��E cos ωqε∗it

� �� �

2

4

3

5, (22)

where εit∗ ¼ εit � E(εit) is the centered composed error and ωj is a predeter-

mined constant for j ¼ 1, … , q. In practice, setting q ¼ 1 would be sufficient

for most of the application. The test statistics given in Eq. (22) have a limiting

χ2(q) distribution.

Heterogeneity and Endogeneity in Panel Stochastic Frontier Models Chapter 5 137



3 Panel Stochastic Frontier Models With Endogeneity

In this section, we present some developments of standard panel data stochastic

frontier models that allow for the regressors x1it and x2it to be correlated with

either vit or ui∗ or both. Specifically, we focus mainly on the homogenous panel

stochastic frontier models. To this end, the benchmark model is given by:

yit ¼ α+ x1itβ�uit + vit, (23)

xit ¼ Zitγ + εit, (24)

uit ¼ hitu∗i , (25)

hit ¼ f x2itφuð Þ, (26)

u∗i �N + μ, σ2u
� �

, (27)

vit �N 0, σ2v
� �

, (28)

where xit ¼ (x1it,x2it)
0, Zit is a ((k1 + k2) � l) matrix of exogeneous instruments

(l �k1 + k2), εit is a ((k1 + k2) � 1) vector of reduced form errors and all other

variables are defined in Section 2. Assume that E(εit jZit,ui∗) ¼ 0 and, to facil-

itate our discussion, it would useful to distinguish different type of endogeneity

(i.e., violation of assumptions A.1–A.2 given in previous section). To this end,

we provide the following definition.

Definition 1 In the Model (23)–(28), (a) x1it is endogenous of Type I if

E(vit jx1it) 6¼ 0, E(vit jx2it) ¼ 0, and A.2–A.3 hold; (b) x1it is endogenous of Type
II if E(vit jx1it,x2it) 6¼ 0, and A.2–A.3 hold; (c) x1it is endogenous of Type III if
E(vit jx1it,x2it) 6¼ 0, and E(uit jx1it,x2it) 6¼ E(uit).

Given this definition, the most common endogeneities that arise in many

practical applications are Type I and II. Type II endogeneity implies that vit
and uit are correlated, but vit and ui∗ are independent. Type III endogeneity pro-
vides the most general case, in which x1it and x2it are allowed to be correlated

with both vit and uit, and vit and ui∗ are not independent.3

The Type I endogeneity problem, in which there are no environmental

variables, has been analyzed by Kutlu (2010) and Tran and Tsionas (2013).

Kutlu (2010) consider the case with no environmental variables,

hit ¼ exp �γ t�Tð Þð Þ, while Tran and Tsionas (2013) consider a special case

where uit � N+(0,σu
2). Karakaplan and Kutlu (2017a)4 introduce endogenous

environmental variables in the cross-sectional data framework; Karakaplan

and Kutlu (2017b) extend the panel data model of Kutlu (2010) to allow for

the endogenous environmental variables to solve Type II endogeneity problem.

In the earlier model, Type I and II endogeneities are introduced via the

3. In cross-section context, all three types of endogeneity have been analyzed by Tran and Tsionas

(2013) and Amsler, Prokhorov, and Schmidt (2016, 2017).

4. See Karakaplan and Kutlu (2018, 2019) for an application of Karakaplan and Kutlu (2017a).
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correlation between vit and eit. For exposition simplicity, we focus on the Type I

endogeneity problem because Type II endogeneity can be handled in

similar manner.

Kutlu (2010) suggests a one-step control function approach, in which

the estimation is done by the direct maximum likelihood method.5 First, he

assumes that:

ε∗it
vit


 �
¼ Ω�1=2

ε εit
vit


 �
�N

0

0


 �
,

Ip ρσv
ρ0σv σ2v


 �� �
(29)

where Ωε is the variance-covariance matrix of εit, and ρ is the vector represent-
ing the correlation between εit∗ and vit. Next, he applies a Cholesky’s decompo-

sition method to the variance-covariance matrix of (εit∗0,vit)0:

ε∗it
vit


 �
¼ Ip 0

ρ0σv σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ0ρ

p

 �

ε∗it
r∗it


 �
(30)

where rit∗ � N(0,1), rit∗ and εit∗ are independent. Therefore, we have:

yit ¼ α + x1itβ + εitη + eit
εit ¼ xit�Zitδ
eit ¼ rit�uit

(31)

where η¼ σrΩ�1=2
e ρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ0ρ

p
, σr ¼ σv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ0ρ

p
, rit ¼ σv(1 � ρ0ρ)1/2rit∗ and εitη

is the bias correction term. The log-likelihood of this model is:

lnL¼ lnL1 + lnL2, (32)

where

lnL1∝
nT

σ2r
+
Xn

i¼1

XT

t¼1

lnΦ � λ

σr
yit�α� xitβ� εitηð Þ

� �
�

1

2σ2r

Xn

i¼1

XT

t¼1

yit�α� xitβ� εitηð Þ2,
(33)

lnL2∝ �nT

2
ln Ωεj jð Þ�1

2

Xn

i¼1

XT

t¼1

ε0itΩ
�1
ε εit, (34)

where λ ¼ σu/σv(1 � ρ0ρ)1/2 and εit ¼ xit � Zitδ. Under standard conditions,

consistent estimation of all the unknown parameters can be obtained by max-

imizing the log-likelihood function (32). The observation-specific efficiency

E[exp(�uit)jeit,vit] can be calculated using the corresponding conventional

stochastic frontier formula of Jondrow et al. (1982).

5. The one-step or direct method of Kutlu (2010) is similar to the one used in Kutlu and Sickles

(2012) in the Kalman filter setting. These two papers were written concurrently.
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Maximizing Eq. (32) is equivalent to maximizing individual terms (33)

and (34). Moreover, maximizing Eq. (34) is the same as conducting OLS

regression of xit on Zit, so the two-step estimation is also discussed in

Kutlu (2010). The main problems with the two-step approach, however,

are that it is generally inefficient and, more importantly, the second step stan-

dard errors are not correct because the estimation errors from the first-step

are not accounted for in the second-step estimation. Consequently, either

analytical approaches, such as that of Murphy and Topel (1985), or proper

bootstrapping methods need to be used to correct for the standard errors

in the second-step.

Tran and Tsionas (2013) propose an alternative estimation strategy under

the specification of uit � N+(0,σu
2). Their approach is based on GMM estima-

tion using the likelihood scores of Eqs. (33) and (34) to form the moment

conditions. The GMM approach suggested by Tran and Tsionas (2013) is

asymptotically similar to the one-step MLE but computationally simpler, and

the asymptotic efficiency of the estimator can be obtained in just one iteration,

so that the numerical searches can be minimized or avoided.

Karakaplan and Kutlu (2017b) extend the Kutlu (2010) model to also allow

for endogenous environmental variables (i.e., Type II endogeneity). Estimation

approaches can be carried out similarly as previously discussed with some

minor modifications.

In Bayesian inference context, Griffiths and Hajargasht (2016) propose

several different but related panel stochastic frontier models that handled

all three types of endogeneity problems. First, they consider a model with

time-invariant inefficiency, in which the endogeneity is modeled through

the correlations between this time-invariant inefficiency and the regressors,

using the correlated random effects formulation of Mundlak (1978). Next,

they extended the model in two directions. The first extension is along the

lines of Colombi et al. (2014), in which they introduce a time-varying inef-

ficiency error into the original model, and the endogeneity is modeled as

before. The second extension of the model looks similar to Eqs. (23)–
(28), and they consider endogeneity problem of Type III. In all models,

Bayesian inference was used to estimate the unknown parameters and inef-

ficiency distributions. Finally, Kutlu (2018) generalizes the distribution-free

model of Cornwell et al. (1990) to allow endogeneity in both frontier and

environmental variables.

We conclude this section by pointing out that all the approaches discussed

previously have the advantage that the endogeneity problem, regardless

whether it is Type I or II, can be tested easily using standard F or Wald-type

statistics on the joint significance of the coefficient vector η. Other instrumental

variable approaches that do not use reduced form equations are possible but pre-

sumably more complex, and we have not seen any recent work with such

approaches.
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4 Panel Stochastic Frontier Models With Both Heterogeneity
and Endogeneity

Our discussion in the previous two sections has been confined to panel stochas-

tic frontier models that allow either for heterogeneity with exogenous regressors

or endogeneity with homogenous panel. In this section, we consider models that

allow for both heterogeneity and endogenous regressors, because these models

have important implications in empirical applications.

Little work has been done on panel stochastic frontier models that allow for

both heterogeneity and endogenous regressors. Guan, Kumbhakar, Myers, and

Lansink (2009) employ an input requirement stochastic frontier model to mea-

sure excess capacity in agriculture production for the Dutch crop cash farms.

They consider the following model:

kit ¼ f yit, xit, wi; βð Þ+ eit,
eit ¼ αi + vit�uit,

vit �N 0, σ2v ωitð Þ� �
,

uit �N + 0, σ2u zitð Þ� �
,

(35)

where kit is the log of capital input; yit is log of output; xit is a vector of log of

other inputs; f(.) is known input production function; wi is a vector of logarithm

of exogenous variables that are time-invariant; αi, vit and uit are defined as

before; ωit and zit are exogenous factors that affect the variance of vit and uit,
respectively. They also allow for yit and some of the xit to be correlated with

the composite error eit (in essence, they consider the Type I endogeneity prob-

lem). To obtain consistent estimation of the unknown parameters in the model,

Guan et al. (2009) propose a two-stage estimation method that can be described

as follows. In the first stage, frontier parameter vector β is estimated using the

GMM method based on the moment conditions E(MitΔeit) ¼ 0, where Mit is a

vector of exogenous instruments. In the second stage, using the residuals

obtained from the first stage as a dependent variable, ML is used on the follow-

ing auxiliary stochastic frontier equation:

êit ¼wiγ + vit�uit, (36)

to obtain the estimates of the remainder parameter. In a different framework,

Orea and Steinbuks (2018) apply a similar methodology when estimating mar-

ket powers of firms by modeling the distribution of firm conducts by the doubly

truncated normal distribution.6

Kutlu et al. (2019) propose a general model that allows for time-varying

heterogeneity as well as endogeneity of all three types. Their model has been

considered in Section 2, which consists of Eqs. (2)–(5) and (18) under the

6. Other related applications of stochastic frontier models with endogenous variables in the market

power measurement context include Kutlu and Wang (2018) and Karakaplan and Kutlu (2019).
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exogeneity assumptions of all regressors. We revisit their model in this section

to discuss the endogeneity problem. To this end, their model with endogenous

regressors can be written as:

yit ¼ x3itαi + x1itβ�uit + vit,

xit ¼ zitδ+ εit

uit ¼ hitu∗i ,

hit ¼ f x2itφuð Þ,
u∗i �N + μ, σ2u

� �
,

vit �N 0, σ2v
� �

,

(37)

where xit ¼ (x1it,x2it)
0, zit is a matrix of exogenous instruments and εit is a vector

of random errors. Generally speaking, this model can be considered to be an

extension and a generalization of Greene (2005a, 2005b), Guan et al. (2009),

Wang and Ho (2010), and Chen et al. (2014) to allow for various types of

endogeneity.

To obtain consistent estimation of the model’s parameters, using the same

notations as discussed in Section 2, Kutlu et al.(2019) suggest first to eliminate

αi using orthogonal projection transformation matrixMx3i
, and then apply a Cho-

lesky’s decomposition method to the variance-covariance matrix of (εit∗0,vit)0
where εit∗ ¼ Ωε

1/2εit (see Eq. (29)) to obtain the bias correction term and the

log-likelihood function:

lnL¼ lnL1 + lnL2 (38)

where

ln L1¼�n

2
T�k3ð Þ ln 2πσ2r

� ��1

2

Xn

i¼1

ee 0ieei
σ2r
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1

2
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2
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2
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where σr ¼ σv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ0ρ

p
, eμ∗i ¼�σ2uee

0
i
ehi + μσ2r

σ2ueh
0
i
ehi + σ2r

, eσ2i∗ ¼
σ2r σ

2
u

σ2ueh
0
i
ehi + σ2r

, eei ¼ eyi�ex1iβ�eεiη, η¼
σrΩ�1=2

e ρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ0ρ

p
and eεi ¼ exi�eziδ. Estimates of model’s parameters are

obtained by maximizing the total log-likelihood of Eq. (38). Under standard

regularity conditions, the ML estimator is consistent as n ! ∞with either fixed

T or T ! ∞.

Kutlu et al. (2019) also extend the model to allow for Type III endogeneity

by allowing for xit to be correlated with both vit and uit. To the best of our
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knowledge, they are the first to consider both heterogeneity and Type III

endogeneity in panel stochastic frontier framework. Griffiths and Hajargasht

(2016) also consider Type III endogeneity, but they do not allow for heteroge-

neity in their model. The consistent estimation for this case is more complex and

quite involved. It requires a construction of the joint density of (vit,uit,εit
0),

which can be achieved using Copula function approach. Detailed discussion

about how to use Copula function method to obtain consistent estimation for

this case is given in Appendix A of Kutlu et al. (2019). Readers who want to

learn more about the use of Copula function method in stochastic frontier

models in cross-section context are referred to Tran and Tsionas (2015) and

Amsler et al. (2017).

5 Concluding Remarks

This chapter provides discussion about developments of panel stochastic fron-

tier models that allow for heterogeneity, endogeneity, or both. In particular, we

focus on the consistent estimation of the parameters of the models as well as the

estimation of observation-specific technical inefficiency. We hope that this

chapter provides useful guidance for practitioners using panel data to conduct

efficiency analyses.
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1 Introduction

This chapter deals with short panel count data regression models. In other words,

models for which the dependent variable takes nonnegative integer values (e.g.,

the number of doctor visits) and for which the time span is small but the number of

cross-section units (e.g., patients) can be large. Throughout the chapter, we also

assume that the panel data sets are balanced with no missing observations.
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As is the case with many classes of models, the regression analysis of event

counts constitutes a vast field in econometrics. For this reason, it is almost

impossible and also out of the scope of this chapter to cover all the advances

in panel count data models. Excellent textbooks that provide a detailed and thor-

ough (but mainly frequentist) introduction to a variety of panel count data

models are that of Winkelmann (2008) and Cameron and Trivedi (2013). For

a review of such models, refer to Cameron and Trivedi (2014).

In this chapter, we take a Bayesian approach to the analysis of the Poisson

model with exponential conditional mean, a well-known panel count data model.

We consider various specifications of thismodel step by step, by first setting up its

static version, which we then equip progressively with dynamics, latent heteroge-

neity, and serial error correlation. Dynamics are introduced in the Poisson model

through the inclusion of a one-period lagged dependent variable as an additional

explanatory variable in the latent regression. Serial correlation in the idiosyncratic

disturbances is captured by a stationary first-order autoregressive process.

The motivation behind such model specifications is that, in many empirical

applications of panel count data, a persistent behavior of counts across eco-

nomic units (individuals or firms) has been observed. That persistence can

be attributed to the past experience of economic units that induces a dependence

of the current realizations of a count process from past outcomes or to their

unobserved time-invariant heterogeneity. The first case is referred to as true

state dependence and usually is captured through a lagged dependent variable,

whereas the second one is known as spurious state dependence and is often

accounted for by a latent random variable (Heckman, 1981a). A third potential

source of persistence in panel counts can be attributed to the serial correlation in

the idiosyncratic errors.

However, our models suffer from what is known in the panel data economet-

rics literature as the initial conditions problem. This problem states that in

dynamic nonlinear panel data models with latent heterogeneity, the initial

observation of the dependent variable for each cross-sectional unit might be

endogenous and correlated with latent heterogeneity.

Treating the initial observations as exogenous tends to overestimate the

dynamic effects (true state dependence) and leads to biased and inconsistent

estimates (Fotouhi, 2005). Econometrics literature provides two main

approaches for tackling the initial values problem, both of which model the rela-

tionship between unobserved heterogeneity and initial values. The first

approach, proposed by Heckman (1981b), approximates the conditional distri-

bution of the endogenous initial observation given the latent heterogeneity and

the covariates. However, Heckman’s estimation procedure entails a computa-

tion burden for obtaining the parameter estimates and estimates of the average

effects.1 Alternatively, Wooldridge (2005) adopts a computationally simpler

1. Arulampalam and Stewart (2009) have proposed a simplified implementation of Heckman’s

estimator.
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method by focusing on the joint distribution of observations after the initial

period, conditional on initial observations. As such, Wooldridge (2005) speci-

fied the conditional distribution of the unobserved heterogeneity given the ini-

tial values and the within-means (over time) of the time-varying covariates

(Mundlak, 1978). In our analysis, we use the method of Wooldridge (2005)

to address the problem of endogenous initial conditions.

One last issue that remains to be solved is related to the acknowledgement of

Wooldridge (2005) that a misspecified latent heterogeneity distribution gener-

ally results in inconsistent parameter estimates. Therefore, we let this distribu-

tion be unspecified. To this end, we impose a nonparametric structure on it,

which is built upon the concept of Dirichlet Process (DP) prior (Ferguson,

1973). This prior has been widely exploited in Bayesian nonparametric model-

ing and it is a powerful tool for modeling unknown, random distributions. The

attractiveness of the DP prior is attributed to its theoretical properties. In this

chapter, we offer a brief introduction to this prior. A more detailed description

of the Dirichlet process prior is provided, among others, by Navarro, Griffiths,

Steyver, and Lee (2006) and Ghosal (2010).

Semiparametric Bayesian Poisson regression models based on DP priors

have been considered by Jochmann and Len-Gonzlez (2004) and Zheng

(2008). Jochmann and Len-Gonzlez (2004) proposed a Poisson panel data

model with multiple semiparametric random effects and parametric stochastic

disturbances, whereas Zheng (2008) set up a cross-sectional Poissonmodel with

a semiparametric idiosyncratic error term. However, none of these studies has

accounted for the three sources of persistence in panel counts (true state depen-

dence, spurious state dependence, and autocorrelated disturbances) and/or the

initial values problem. This is a gap in the Bayesian literature that we attempt

to fill.

To estimate our semiparametric Poisson panel models, we develop Markov

Chain Monte Carlo (MCMC) algorithms that enable us to sample from the pos-

terior distribution of the parameters of interest. We also show how we can cal-

culate the quantities of average partial effects, because the direct interpretation

of the regression coefficient is not possible because of the nonlinear nature of

panel count data models.We also display two criteria, the Deviance Information

Criterion (DIC) of Spiegelhalter, Best, Carlin, and Van Der Linde (2002) and

cross-validation predictive densities that can be used for model comparison.

Computer codes for implementing the MCMC methodologies of this chapter

also are provided.2

The MCMC sampling schemes that we propose rely heavily on two major

Bayesian tools, the Gibbs sampling tool and the Metropolis-Hastings tool. Both

these MCMC simulation techniques are described briefly in the next section.

For a more detailed exposition of the Markov Chain theory behind these tools,

2. These codes can be downloaded from the author’s website: https://sites.google.com/site/

sdimitrakopoulosweb/publications.

Bayesian Estimation of Panel Count Data Models Chapter 6 149

https://sites.google.com/site/sdimitrakopoulosweb/publications
https://sites.google.com/site/sdimitrakopoulosweb/publications


refer to the papers of Chib and Greenberg (1995) and Chib (2001, 2004), as well

as to the standard Bayesian textbooks of Robert and Casella (2004) and of

Gelman et al. (2013).

The organization of the chapter is as follows. In Section 2 we introduce the

reader to the basic tools, while we also describe the main statistical/theoretical

properties of the Dirichlet process prior. Sections 3 and 4 present several para-

metric and semiparametric extensions of the static panel Poisson model, while

Section 5 exposes the reader to the MCMC algorithms that were used to esti-

mate the parameters of the proposed model specifications, as well as to the cal-

culation of the average partial effects and the model comparison criteria.

Section 6 concludes.

2 Bayesian Preliminaries

2.1 Bayesian Statistics

In order to conduct Bayesian analysis one first has to specify a probability

model for the data to be analyzed. Suppose that the observed data ia y ¼
(y1, …, yn)

0 and that p(y jθ) is the conditional density of y given a k-dimensional

vector of unknown parameters θ ¼ (θ1, …, θk). The density p(y jθ) is known as
the likelihood function. After the data model has been selected, we need to

define a prior distribution for θ. This distribution, denoted by p(θ), reflects
our uncertainty about θ prior to seeing the data y. The goal is to make inference

about θ given the data y (i.e., a posteriori). Therefore, the conditional distribu-
tion p(θ jy), known as the posterior distribution of θ, is of fundamental interest

in Bayesian statistics and is obtained by applying the Baye’s rule

p θj yð Þ¼ p θð Þ�p yj θð Þ
p yð Þ , (1)

where p(y) ¼ R p(θ) �p(y jθ)dθ is the normalizing constant (also known as the

marginal likelihood).

Descriptive measures related to the posterior distribution are the posterior

mean

E θj yð Þ¼
ð +∞

�∞
θp θj yð Þdθ, (2)

and the posterior variance

Var θj yð Þ¼
ð +∞

�∞
θ�E θj yð Þð Þ2p θj yð Þdθ: (3)

2.2 Markov Chain Monte Carlo Simulation Methods

Nowadays, Monte Carlo simulation methods based on Markov chains are very

popular for sampling from high dimensional nonstandard probability
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distributions in statistics and econometrics. This algorithm is called Monte

Carlo Markov Chain (MCMC). We construct a Markov chain, the limiting dis-

tribution of which is the correct posterior distribution from which we want to

sample. We start from some arbitrary (but sensible) initial values for the param-

eters and then the chain proceeds by updating each parameter of the model (or

suitably defined groups of parameters) sequentially. After some initial period,

which is discarded as burn-in and accounts for the time needed to reach the limit

distribution, the samples obtained are taken as samples from the true posterior

distribution of the model parameters.

The next two sections describe two particular Markov chains that can be

constructed by the Gibbs algorithm and the Metropolis-Hastings algorithm.

2.2.1 The Gibbs Sampler

The Gibbs sampling scheme (see, for example, Chib (2001)) is an MCMC

method that allows us to simulate intractable joint posterior distributions by

breaking them down to lower dimensional distributions, which are generally

easy to sample from.

Suppose that p(θ jy) has an unknown distribution or one that is extremely

difficult to sample from. If we can sample from the conditional distribution

of each parameter θp, p ¼ 1, …, k, in θ, given y and all the remaining parameters

of θ, denoted by θ�p ¼ (θ1, …, θp �1, θp+1, …, θk), then we use the Gibbs sam-

pler, In other words, we cannot simulate from the full posterior distribution

p(θ jy), but we can simulate from each of the full conditional distributions

p(θp jθ�p, y). During this procedure, the most updated values for the condition-

ing parameters are used. The Gibbs sampler works as follows:

1. Define an arbitrary starting value θ(0) ¼ (θ1
(0), … ,θk

(0)) and set i ¼ 0.

2. Given θ(0) ¼ (θ1
(0), … ,θk

(0)),
generate θ1

(i+1) from p(θ1 jθ�1
(i) ,y).

generate θ2
(i+1) from p(θ2 jθ�2

(i) ,y).
⋮
generate θk

(i+1) from p(θk jθ� k
(i) ,y).

3. Set i ¼ i + 1 and go to step 2.

We can save these draws from each iteration of the sampler and use them in

order to conduct posterior inference. For example, we might want to calculate

posterior means and variances as defined in Eqs. (2)–(3).

2.2.2 The Metropolis-Hastings Algorithm

In many real-life applications the full conditional distributions in the Gibbs

sampler are nonstandard. As such, one can instead use the Metropolis-Hastings

(M-H) algorithm; see, for example, Chib and Greenberg (1995). It is another

MCMC method, which is designed to sample from conditional posterior distri-

butions that do not have closed forms.
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The logic behind theM-Hmethod is to generate a proposal (candidate) value

from a proposal density (also known as candidate generating density), from

which we can easily sample, and then reject or accept this value according to

a probability of move.

To be more specific, suppose that the posterior p(θ jy) from which we want

to generate a sample, is broken into the Gibbs conditionals p(θp jθ�p, y),
p ¼ 1, …, k, some of which might be unknown distributions. The sampling

scheme of the M-H method (to be more specific, a Metropolis-within-Gibbs

sampler) is summarized as follows:

1. Initialize θ(0) and set i ¼ 0.

2. Given θ(i) ¼ (θ1
(i), … ,θk

(i)) (the current state of the chain), generate a candi-

date value θp∗, based on θp
(i), by using the proposal density q(θp

(i),θp∗).
The value θp∗ is accepted as a current value (θp

(i+1) ¼ θp∗) with probability

α θ ið Þ
p , θ∗p

� �
¼ min

p θ∗pj θ ið Þ
�p, y

� �
�q θ∗p, θ

ið Þ
p

� �

p θ ið Þ
p j θ ið Þ

�p, y
� �

�q θ ið Þ
p , θ∗p

� � , 1

0

@

1

A:

Otherwise, set θp
(i+1) ¼ θp

(i). Repeat for p ¼ 1, …, k.

3. Set i ¼ i + 1 and go to step 2.

It is not necessary to know the normalizing constant of the target density

because this term is canceled from the construction of the acceptance

probability. Furthermore, there are many ways to choose the proposal density

q(θp
(i),θp∗). Generally, it is a good idea to make this proposal distribution as close

to the target distribution (i.e., the full conditional distribution) as possible. For

those parameters that have known full conditional distributions, the proposal

distribution is taken to be the target distribution and the M-H step is basically

a Gibbs step (it is easy to show that the acceptance probability is equal to 1).

In this chapter, we will apply the so-called independence M-H algorithm

(Hastings, 1970) according to which the proposed value θp∗ is independent of
the current value θp

(i), that is, q(θp
(i),θp∗) ¼ q2(θp∗).

2.3 Bayesian Nonparametric Models

The term “Bayesian nonparametric models” might seem to be an oxymoron,

because in a Bayesian setting, one needs to have some parameters in the model.

Perhaps, the most intuitive way to think about these models is as probability

models with infinitely many parameters (Bernardo & Smith, 1994), in which

case they are directly comparable to the classical (nonBayesian) nonparametric

models.

There are a few ways to introduce infinite number of parameters in a model.

Some examples of infinite-dimensional models include species samplingmodels,

introduced by Pitman (1996), Pólya trees, introduced by Ferguson (1974) and

developed by Lavine (1992, 1994), and Bernstein polynomials. For a more
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detailed review of Bayesian nonparametric methods, see M€uller and Quintana

(2004).

The most usual way in the Bayesian semiparametric literature to introduce

an infinite number of parameters is to consider some probability measures,

which also are considered random quantities. This way, if these measures are

defined on an infinite-dimensional probability space (which is the case in most

practical applications in econometrics), we end up with an infinite number of

parameters. Such probability measures are called Random Probability Mea-

sures (RPMs); see, for example, Crauel (2002).

Alternatively, as mentioned by Ferguson (1974), RPMs can be thought of as

random variables whose values are probability measures. Being in a Bayesian

setting, we need to assign a prior distribution to each of these. The far more

widely used prior is the Dirichlet process (DP), introduced by Ferguson

(1973) and is described in the next section. Other choices include the normal-

ized inverse-Gaussian process (N-IGP), which was proposed by Lijoi, Mena,

and Pr€unster (2005), and Pólya trees.

2.3.1 The Dirichlet Process and the Dirichlet Process
Mixture Model

In this section, we present the Dirichlet Process and its statistical properties. We

begin by defining the Dirichlet distribution.

Definition:

Let Z be a n-dimensional continuous random variable Z ¼ (Z1, …, Zn) such
that Z1, Z2,…, Zn > 0 and

P
i¼1
n Zi ¼ 1. The random variable Z will follow the

Dirichlet distribution, denoted by Dir(α1, …, αn), with parameters α1, …,
αn > 0, if its density is

fZ z1, z2,…, znð Þ¼ Γ α1 +… + αnð Þ
Γ α1ð ÞΓ α2ð Þ…Γ αnð Þ

Yn

i¼1

zαi�1
i ,z1,z2,…,zn > 0,

Xn

i¼1

zi ¼ 1,

(4)

where Γ is the gamma function.

The Dirichlet distribution is a useful property for random variables defined

in the unit simplex. It includes the well-known beta distribution as a special

case, for n ¼ 2.

Consider, now a probability space (Ω, F , P) and a finite measurable parti-

tion ofΩ, {B1, …, Bl}, with each Bi 2 F . A random probability distributionG is

said to follow a Dirichlet process with parameters a andG0 if the random vector

(G(B1), …, (G(Bl)) is finite-dimensional Dirichlet distributed for all possible

partitions; that is, if

G B1ð Þ,…,G Blð Þð Þ�Dir aG0 B1ð Þ,…, aG0 Blð Þð Þ, (5)

where G(Bk) and G0(Bk) for k ¼ 1, …, l are the probabilities of the partition Bk

under G and G0, respectively.

Bayesian Estimation of Panel Count Data Models Chapter 6 153



The Dirichlet Process prior is denoted as DP (a, G0) and we write G � DP
(a, G0). The distributionG0,which is usually a parametric distribution, is called

the baseline distribution and it defines the “location” of the DP; it also can be

considered our prior best guess aboutG. The parameter a is called concentration
parameter and it is a positive scalar quantity. It determines the strength of our

prior belief regarding the stochastic deviation of G from G0. This interpretation
can be seen from the following moment results

8B2F ,E G Bð Þð Þ¼G0 Bð Þ,Var G Bð Þð Þ¼G0 Bð Þ 1�G0 Bð Þð Þ
1 + a

: (6)

The reason for the success and popularity of the DP as a prior is its nice the-

oretical and practical properties. The two moments in expression (6) are exam-

ples of the former, whereas a few of the latter will be presented later. These

practical properties allow for relatively easy simulation of models involving

the DP, when combined with MCMC methods.

A property that, in fact, characterizes the DP, is its conjugacy: given a sam-

ple (θ1, θ2, …, θN) from G � DP(a, G0), the posterior distribution of G is also a

DP with parameters a + N and G0 +
P

i¼1
n δθi; namely,

G|θ1,θ2,…,θN �DP a+N,G0 +
XN

i¼1

δθi

 !

, (7)

where δx denotes the Dirac measure giving mass 1 to the value x.
In more practical issues, an important property of the DP is its Pólya-urn

representation. Suppose that the sample (ϑ1, ϑ2, …, ϑN) is simulated from G
with G � DP (a, G0). Blackwell and MacQueen (1973) showed that, by inte-

grating out G, the joint distribution of these draws can be described by the

Pólya-urn process

p ϑ1,…, ϑNð Þ¼
YN

i¼1

p ϑij ϑ1,…, ϑi�1ð Þ¼
ðYN

i¼1

p ϑijϑ1,…, ϑi�1,Gð Þp Gj ϑ1:i�1ð ÞdG

¼G0 ϑ1ð Þ
YN

i¼2

a

a+ i�1
G0 ϑið Þ+ 1

a+ i�1

Xi�1

j¼1

δϑj ϑið Þ
( )

:

(8)

The intuition behind Eq. (8), is rather simple. The first draw ϑ1 is always
sampled from the base measure G0 (the urn is empty). Each next draw ϑi, con-
ditional on the previous values, is either a fresh value from G0 with probability

a/(a + i � 1) or is assigned to an existing value ϑj, j ¼ 1, …, i � 1 with proba-

bility 1/(a + i � 1).

According to Eq. (8), the concentration parameter a determines the number

of clusters in (ϑ1, …, ϑN). For larger values of a, the realizations G are closer to

G0 and the probability that a new ϑi is equal to one of the existing values is smal-

ler. For smaller values of a the probability mass of G is concentrated on a few
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atoms; in this case, we see few unique values in (ϑ1, …, ϑN), and realizations of
G resemble finite mixture models.

By using the distinct values of ϑ’s, denoted by ϑ∗’s, the conditional distri-
bution of ϑi given ϑ1, …, ϑi �1 becomes

ϑi|ϑ1,…,ϑi�1,G0 � a

a+ i�1
G0 ϑið Þ+ 1

a+ i�1

XM ið Þ

m¼1

n ið Þ
m δ

ϑ∗
ið Þ

m
ϑið Þ, (9)

where (ϑ1∗
(i), … ,ϑM(i)∗(i)) are the distinct values in (ϑ1, ϑ2,…, ϑi�1). The term nm

(i)

represents the number of already drawn values ϑl, l < i that are associated with
the cluster ϑm∗

(i), m ¼ 1, … , M(i), where M (i) is the number of clusters in (ϑ1,
ϑ2, …, ϑi�1) and

P
m¼1
M(i)

nm
(i) ¼ i � 1. The probability that ϑi is assigned to one

of the existing clusters ϑm∗
(i) is equal to nm

(i)/(a + i � 1).
Furthermore, expressions (8–9) show the exchangeability of the draws,

which implies that the conditional distribution of ϑi has the same form for

any i. To be more specific, because of the exchangeability of the sample

(ϑ1, …, ϑN), any value ϑi, i ¼ 1, …, N can be treated as the last value ϑN, so that
the prior conditional of ϑi given ϑ�i is given by

ϑi|ϑ�i,G0 � a

a+N�1
G0 ϑið Þ+ 1

a+N�1

XM ið Þ

m¼1

n ið Þ
m δ

ϑ∗
ið Þ

m
ϑ�ið Þ, (10)

where ϑ�i denotes the vector of the random parameters ϑ with ϑi removed, that

is, ϑ�i ¼ (ϑ1, …, ϑi �1, ϑi+1, …, ϑN)0. As a result, one can easily sample from a

DP using the Pólya-urn representation in expression (10), which forms the basis

for the posterior computation of DP models. This general representation also is

used in the posterior analysis of this chapter.

Various techniques have been developed to fit models that include the DP.

One such method is the Pólya-urn Gibbs sampling, which is based on the

updated version of the Pólya-urn scheme of expression (10); see Escobar and

West (1995) and MacEachern and M€uller (1998). These methods are called

marginal methods, because the DP is integrated out. In this way, we do not need

to generate samples directly from the infinite dimensional G.
Another important property of the DP is that it can be represented, using

what it is called the stick-breaking representation (Sethuraman, 1994;

Sethuraman & Tiwari, 1982): If G � DP(a, G0), then

G �ð Þ¼
X∞

h¼1

whδθ∗∗
h

�ð Þ, where θ∗∗h �iidG0, wh

¼Vh

Y

j<h

1�Vj

� �
, where Vh�iidBe 1, að Þ (11)

Expression (11) verifies the infinite dimension of G, because G can be con-

sidered to be an infinite weighted average of point masses δθ∗∗
h
, where the atoms

{ϑh∗∗}h¼1
∞ are drawn from the baseline distribution G0, while the sequence
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{Vh}h¼1
∞ forms a collection of independent and identically distributed (iid) ran-

dom variables that follow the Beta distribution.3

The term “stick-breaking process” arises because of the way the ran-

dom weights {wh}h¼1
∞ are constructed. Imagine that we break a unit length

stick infinitely many times. Let the first broken piece have length V1 and

that it is assigned to the atom ϑ1∗∗. Then, the proportion left to be allocated

to the remaining atoms is 1�V1. A proportion V2 of 1�V1 is broken off and

is hence assigned to ϑ2∗∗, leaving a remainder (1�V1)(1�V2) and so on.
Another implication of expression (11) is that any realization of the DP is,

with probability 1, a discrete distribution. This discreteness creates ties in the

sample (ϑ1, …, ϑN), a result that is verified by expressions (8)–(10), and allows
for clustering the values of a random distribution following a DP. Depending on

the magnitude of a, the population distribution G can either mimic the baseline

distribution or a finite mixture model with few atoms.

It is also important to note that G0 usually is taken to be a continuous

distribution. This is in order to guarantee that all clusters will be different,

and therefore all ties in the sample are caused only by the clustering behavior

of the DP, and not by having matching draws from G0, if it were discrete.

In cases of continuous data, and in order to overcome the discreteness of the

realizations of the DP, the use of mixtures of DPs has been proposed by Lo

(1984). The idea is to assume that some continuous data y1, …, yN follow a dis-

tribution f(yi jθi, λ), where (some of) the parameters (in this case, θi) follow a

distributionG � DP. This popular model is called the Dirichlet process mixture

(DPM) model and its general form is

Yi � f Yi; θi, ζð Þ, i¼ 1,2,…,n

θi�iidG
G�DP M,G0 ψð Þð Þ

M� h1 Mð Þ,ζ � h2 ζð Þ,ψ � h3 ψð Þ (12)

where ζ are any other parameters in the likelihood f not modeled using the DP,ψ
are any parameters in G0, and h1, h2, h3 are suitable prior distributions.

Notice that the distribution of each Yi is given by convolving fwithG � DP:

f Yi; ζð Þ¼
ð
f Yi; θ, ζð ÞdG θið Þ, whereG�DP M,G0 ψð Þð Þ

and this, together with the discrete nature of the realizations of the DP, will lead

to an infinite mixture model for Yi (Antoniak, 1974).

3. Notationally, ϑh∗∗ represents the h-th of the atoms in the stick-breaking representation and ϑm∗∗

represents the m-th of the clusters in the sample of N individuals.
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3 Parametric Panel Count Data Regression Models

3.1 The Static Poisson Model

We start our analysis with the Poisson model that does not control for dynamics,

latent heterogeneity, or autocorrelated errors.

Suppose that yit is a nonnegative integer-valued observed outcome for indi-

vidual i ¼ 1, …, N at time t ¼ 1, …, T, which is Poisson distributed with prob-

ability mass function

f yit; λitð Þ¼ λyitit exp �λitð Þ
yit!

, (13)

where λit is the mean parameter (also known as the intensity or rate parameter).

We denote the Poisson model by Poisson(λit).
For the Poisson distribution it holds E(yit; λit) ¼ V (yit; λit) ¼ λit. In other

words, the conditional mean E(yit; λit) is equal to the conditional variance

E(yit; λit), which are both equal to the mean parameter λit. This property of

the Poisson distribution is known as equidispersion and often is violated in

real-life applications. Alternative count panel data models can be used to over-

come this type of problem (e.g., the negative Binomial model). However,

because the scope of this chapter is the Bayesian estimation of count panel data

regression models, we focus on the Poisson model, which is the simplest of all.

In regression analysis, yit is allowed to be determined by a set of covariates

xit ¼ (x1,it, …, xk,it)0. The Poisson regression model parameterizes the mean

parameter as

λit ¼ exp x0itβ
� �

, (14)

or

λit ¼ exp x0itβ + Eit
� �

, Eit�iidN 0, σ2E
� �

, (15)

where the idiosyncratic error term Eit follows a normal distribution with mean

zero and variance σE
2. Also, Eit is assumed to be uncorrelated with the regressors

such that E(Eit; xi1, …, xiT) ¼ 0, 8 t, t ¼ 1, …, T.
Equations (14)–(15), are called exponential mean functions and guarantee

that λit is strictly positive. Throughout the chapter we consider only models with

exponential conditional mean.

The Poisson model with exponential mean function also is known as the log-

linearmodel because the logarithmof the conditionalmeanE(yit;xit) is linear in the
parameters. For example, using Eq. (14), we have that log log E(yit;xit) ¼ xit

0 β.

3.2 Extension I: The Dynamic Poisson Model

A more realistic approach would allow the current value of the observed out-

come yit to depend on past realizations yi,t � k, k > 0. The literature on count
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panel models has proposed a variety of dynamic specifications (Blundell,

Griffith, & Windmeijer, 2002; Crepon & Duguet, 1997; Zeger & Qaqish,

1988). An extensive review of various dynamic models for count panel

data is given in Chapters 7 and 9 of the textbook by Cameron and Trivedi

(2013).

In this chapter we model dynamics by considering the exponential feedback

model (EFM).

For the case of a single one-period lagged dependent variable (k ¼ 1), the

EFM is defined as

λit ¼ exp x0itβ+ γyit�1

� �
, (16)

or

λit ¼ exp x0itβ+ γyit�1 + Eit
� �

, Eit�iidN 0, σ2E
� �

: (17)

Equations (16)–(17), introduce autoregressive dependence via the exponen-
tial mean function, where the current realization of the count yit depends on its

previous realization yit �1 and the coefficient γ measures the strength of true

state dependence.

Furthermore, these equations, as they stand, suffer from a serious problem. It

is easy to see that, for example, the conditional mean in Eq. (16) becomes explo-

sive if γ > 0 because yit�1 � 0. This problem is rectified by replacing yit �1

by the logarithm of yit�1, ln yit�1. In this case, Eq. (16) for example, becomes

exp(xit
0 β)yit�1

γ , which entails that λit ¼ 0 for yit�1 ¼ 0. As such, we adopt a

strictly positive transformation when yit�1 ¼ 0. In particular, the zero values

of yit �1 are rescaled to a constant c according to the rule yit�1
∗ ¼ max (yit�1,

c), c 2 (0,1). Often the constant c is set to be equal to 0.5. See, also, Zeger

and Qaqish (1988). Similar analysis holds for Eq. (17).

Taking into account these considerations, Eqs. (16)–(17), obtain the follow-
ing form

λit ¼ exp x0itβ+ γ lny∗it�1

� �
, (18)

or

λit ¼ exp x0itβ+ γ lny∗it�1 + Eit
� �

, Eit�iidN 0, σ2E
� �

, (19)

respectively.

3.3 Extension II: The Dynamic Poisson Model With Latent
Heterogeneity

The Poisson models of previous sections partially account for unobserved

heterogeneity, because the Poisson mean varies across i (and t). Yet, there
might still be latent heterogeneity, which cannot be explained by the previous
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models. This unexplained heterogeneity can be captured, though, by adding the

random effect term φi in the conditional mean function as follows

λit ¼ exp x0itβ + γ lny
∗
it�1 +φi

� �
, (20)

or

λit ¼ exp x0itβ+ γ lny
∗
it�1 +φi + Eit

� �
, Eit�iidN 0, σ2E

� �
, (21)

with φi being normally distributed, φi�iid N μφ, σ
2
φ

� �
. The nonzero mean μϕ

excludes the presence of a constant term from the covariate vector xit for iden-

tification reasons. The random effect component φi captures spurious state

dependence.

The Poissonmodel with exponential conditional mean given by Eq. (20), but

without the lagged component (dynamics), has been considered, in a Bayesian

framework, by Chib, Greenberg, and Winkelmann (1998), Jochmann and

Len-Gonzlez (2004), Zheng (2008), and Mukherji, Roychoudhury, Ghosh,

and Brown (2016).

The Poisson distribution in Eq. (13), and the exponential mean function in

Eq. (20), can be regarded as a Poisson-lognormal model as the heterogeneity

term zi ¼ exp(φi) is lognormal with mean one.

To tackle the initial values problem that we mentioned in the Introduction

we need to make some additional assumptions about the relationship between

the initial conditions and the random effects. We follow the approach of

Wooldridge (2005) and model ϕi in Eqs. (20)–(21), as follows:

φi ¼ hi1 lny∗i0 + x
0
ihi2 + ui, i¼ 1,…, N: (22)

As before, if the first available count in the sample for individual i, yi0, is
zero, it is rescaled to a constant c, that is, yi0∗ ¼ max (yi0,c), c 2 (0,1). Also,

xi is the time average of xit and ui is a stochastic disturbance, which is assumed

to be uncorrelated with yi0 and xi. For identification reasons, time-constant

regressors that might be included in xit should be excluded from xi. The slope
parameters hi1 and hi2 in Eq. (22), are heterogeneous because they are allowed

to change across i. This is a better way to capture cross-sectional heterogeneity.
It is usually assumed that the error term ui of the auxiliary regression is nor-

mal, that is,

ui|μu,σ2u�iidN μu, σ
2
u

� �
, (23)

where μu and σu
2 are the mean and variance of ui, respectively.

3.4 Extension III: The Dynamic Poisson Model With Latent
Heterogeneity and Serial Error Correlation

So far, the idiosyncratic error terms Eit were iid distributed. One can relax this

assumption and assume that the error terms are independently distributed over i
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but are serially correlated, having a first-order stationary autoregressive

structure

Eit ¼ ρEit�1 + vit, �1< ρ< 1,vit�iidN 0, σ2v
� �

: (24)

The random variables vit are independently and identically normally distrib-

uted across all i and twith mean zero and variance σv
2. We assume that vit and ϕi

are mutually independent.

4 Semiparametric Panel Count Data Regression Models

As we mentioned, the error terms ui usually belongs to some parametric family

of distributions; see, for example, expression (23). However, to ensure that our

conclusions about persistence are robust to various forms of unobserved hetero-

geneity, the unconditional distribution of ui is modeled nonparametrically. In

particular, we assume that ui follows the Dirichlet process mixture (DPM)

model, which is defined as

ui|μi,σ2i �
iid
N μi, σ

2
i

� �
,

μi
σ2i

� �
|G�iidG, G|a,

G0�iidDP a,G0ð Þ,

G0 μi, σ
2
i

� ��N μi; μ0, τ0σ
2
i

� �
IG σ2i ;

e0
2
,
f0

2

� �
,

a�iidG c, d
� �

: (25)

Conditional on the mean μi and variance σi
2, the ui are independent and nor-

mally distributed. The parameters μi and σi
2 are generated from an unknown dis-

tribution G on which the Dirichlet process (DP) prior is imposed. The DP prior

is defined by the prior baseline distribution G0, which is a conjugate normal-

inverse gamma distribution, and a nonnegative concentration parameter a that

follows a gamma prior. Using the stick breaking representation of Sethuraman

and Tiwari (1982) and Sethuraman (1994)—see also Eq. (11)—it follows that

the DPM model is equivalent to an infinite mixture model; namely,

ui|fN �
X∞

h¼1

whfN � j μ∗h, σ2∗h
� �

, (26)

where fN(�jμh∗,σh2∗) is the Gaussian density with mean μh∗ and variance σh
2∗. The

mixture parameters (atoms), (μh∗,σh
2∗), have the same normal-inverse gamma

prior as the parameters (μi,σi
2). The random weights wh are constructed by

the process wh ¼Vh

Qh�1
k¼1 1�Vkð Þ, where the sequence {Vh}h¼1

∞ is a collection

of beta distributed random variables, that is, Vh�iidBeta 1, að Þ, where a is the con-
centration parameter.
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An implication of expression (26) is the discreteness of the realizations from

the DP. Therefore, there will be ties in the parameters μi and σi
2. Because of the

discreteness of the DP, the countably infinite mixture of normal densities

reduces to a finite mixture distribution with an unknown (random) number of

components.

A nonparametric structure in the form of a DPMmodel can also be assigned

to the error term Eit in Eq. (21), or to the error term vit in Eq. (24). In addition, the
DPM model can be imposed on the composite error term eit ¼ ui + Eit that fol-
lows from Eqs. (21)–(22) or on the composite error term rit ¼ ui + vit that fol-
lows from Eqs. (22) and (24). In any case, these semiparametric versions of the

Poisson model are possible as long as there is some reasonable economic jus-

tification. In this chapter we consider exclusively the case where the DPM

model is used for the construction of the semiparametric structure of the random

effect φi.

5 Prior-Posterior Analysis

5.1 The Models of Interest

Based on the various extensions of the static Poisson model that were presented

in the two previous sections, we estimate the following three specifications.

Model 1

yit|λit �Poisson λitð Þ,
λit ¼ exp x0itβ+ γ lny

∗
it�1 +φi + Eit

� �
,

Eit ¼ ρEit�1 + vit, �1< ρ< 1, vit�iid N 0, σ2v
� �

,

φi ¼ hi1 lny∗i0 + x
0
ihi2 + ui,

(27)

where ui follows the DPM model of expression (25).

Model 2

yit|λit �Poisson λitð Þ,
λit ¼ exp x0itβ+ γ lny

∗
it�1 +φi + Eit

� �
, Eit�iid N 0, σ2E

� �
,

φi ¼ hi1 lny∗i0 + x
0
ihi2 + ui,

(28)

where again ui follows the DPM model of expression (25).

Model 3

yit|λit �Poisson λitð Þ,
λit ¼ exp x0itβ + γ lny

∗
it�1 +φi

� �
,

φi ¼ hi1 lny∗i0 + x
0
ihi2 + ui,

(29)

where ui follows the DPM model of expression (25).
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5.2 Prior Specification

The Bayesian analysis of the models in question requires priors over the param-

eters (δ,hi,σv
2,σE

2,ρ), where δ 5 (β0, γ)0 and hi ¼ (hi1, hi2)
0. Therefore, we

assume the following priors

p δð Þ∝1,hi �Nk + 1
~h, ~H
� �

,~h�N ~h0, Σ
� �

, ~H� IW δ,Δ�1
� �

,

σ�2
v �G e1

2
,
f1
2

� �
,σ�2

E �G e2
2
,
f2
2

� �
,ρ�N ρ0, σ

2
ρ

� �
I �1, 1ð Þ ρð Þ:

(30)

In particular, the prior distribution for δ is flat, p(δ) ∝ 1. A joint normal

prior is imposed on the heterogeneous slope parameters, hi �Nk + 1
~h, ~H
� �

,

where ~h follows a multivariate normal N ~h0, Σ
� �

and ~H follows an Inverse

Wishart distribution IW(δ, Δ�1). Because the autoregressive parameter is

restrictive to the stationary region, we propose a truncated normal for ρ,
N(ρ0,σρ

2)I(�1,1)(ρ), where I(�1.1)(ρ) is an indicator function that equals one if

ρ 2 (�1, 1) and zero otherwise. For the inverse error variance σv
�2 a gamma

prior is used, σ�2
v �G e1

2
, f1
2

� �
. A similar prior is used for the error variance

σE
�2, that is, G e2

2
, f2
2

� �
.

5.3 Posterior Sampling

In this section we present the MCMC schemes, which are used to estimate the

parameters for each model.

5.3.1 MCMC for Model 1

Following Tanner andWong (1987), we augment the parameter space to include

the latent variables {λit∗}i�1, t�1,where λit∗ ¼ wit
0 δ + φi + Eit andwit

0 ¼ (xit
0 , lnyit�1

∗ ).

The estimation procedure for model 1 consists of two parts.

In part I, we update at each iteration the parameters λ∗it
� 	

i�1, t�1
, δ, φif g

�
,

hif g, ~h, ~H, σ2v , ρ
�
and recover the errors {ui} deterministically, using the aux-

iliary regression of Wooldridge (2005). In part II, we update the Dirichlet pro-

cess parameters ϑi ¼ (μi,σi
2), i ¼ 1, … , N, and a.

If we stack the latent equation λit∗ ¼ wit
0 δ + φi + Eit over t we get

λ∗i ¼Wiδ+ iTφi + Ei, (31)

where Wi ¼ (wi1, …, wiT)
0, iT is a T � 1 vector of ones and ei ¼ (Ei1, …, EiT)0

follows a multivariate normal with mean 0 and covariance matrix σv
2Ωi, which

is symmetric and positive definite with

162 Panel Data Econometrics



Ωi ¼ 1

1�ρ2

1 ρ ρ2 ⋯ ρT�1

ρ 1 ρ ⋯ ρT�2

ρ2 ρ 1 ⋯ ρT�3

⋮ ⋮ ⋮ ⋱ ⋮

ρT�1 ρT�2 ρT�3 ⋯ 1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

Part I

l We sample σv
�2, δ | {λi∗}, {Ωi}, {φi}, e1, f1 in one block by sampling.

(a) σ�2
v | λ∗i
� 	

, Ωif g, φif g,e1, f1 �G e1
2
, f1
2

� �
, where e1 ¼ e1 +NT� k�1, f1 ¼

f1 + λ∗�Wδ̂
� �0

Ω�1 λ∗�Wδ̂
� �

, λ∗ contains the elements ~λit∗ ¼ λ∗it�φi,

i¼ 1,…N, t¼ 1,…,N that have been stacked over i and t, W ¼ (W1
0 , … ,

WN
0 )0, δ̂ is the OLS estimator of δ given by δ̂¼ W0Ω�1W

� ��1
W0Ω�1~λ∗

and Ω is a block diagonal matrix

Ω¼

Ω1

Ω2

⋱

ΩN

0

BBBBB@

1

CCCCCA
:

(b) δ| λ∗i
� 	

,σ2v , Ωif g, φif g�N δ̂,
1

σ2v
W0Ω�1W

� ��1
 !

.

l We sample φi | λi∗, hi, δ, Ωi, σv
2, ϑi�N(d0,D0), i ¼ 1, … , N, where

D0 ¼ 1

σ2i
+ σ�2

v i0TΩ
�1
i iT

� ��1

and d0 ¼D0
ki0hi + μi

σ2i
+ σ�2

v i0TΩ
�1
i λ∗i �Wiδ
� �� �

with

k0i ¼ lny∗i0, x
0
i

� �
.

l We sample hi|φi,~h, ~H,ϑi �N dhi ,Dhið Þ, i¼ 1,…,N, where

dhi ¼Dhi
~H
�1~h+

ki φi�μið Þ
σ2i

� �
and Dhi ¼ ~H

�1
+
kik

0
i

σ2i

� ��1

.

l We sample ~h| hif g, ~H,Σ,~h0 �N d1,D1ð Þ, where d1 ¼D1 Σ�1~h0 + ~H
�1

�

PN
i¼1hiÞ and D1 ¼ Σ�1 +N ~H

�1
� ��1

.

l We sample ~H| hif g,~h,Δ�1,δ� IW N + δ,
PN

i¼1 hi� ~h
� �

hi� ~h
� �0

+Δ�1
� �

.

l We sample λi∗, i ¼ 1, … ,N from λi∗ | δ, σv2,Ωi, φi, yi, which is proportional to
N(λi∗jWiδ + iTφi,σv

2Ωi) Poisson (yi jexp(λi∗)), where yi ¼ {yit}t�1. This density
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does not have closed form. Therefore, we use an independence Metropolis-

Hastings algorithm to update each λi∗. In this chapter, we orthogonalize the cor-
related errors so that the elements within each λi∗ can be sampled independently

of one another (Chib & Greenberg, 1995).

In particular, we decompose the covariance matrix Ωi as Ωi ¼ ξIT + ~Ri,

where IT is the T � T identity matrix, ξ is an arbitrary constant that satisfies

the constraint ξ> ξ> 0, where ξ is the minimum eigenvalue of Ωi and ~Ri is a

symmetric positive definite matrix. The algorithm becomes stable by setting

ξ¼ ξ=2 (Chib & Greenberg, 1995). ~Ri can be further decomposed into
~Ri ¼C0

iCi (Cholesky decomposition). Therefore, Ωi ¼ Ci
0Ci + ξIT..

Using this decomposition, the latent regression for λi∗, i ¼ 1, … , N can be

written as

λ∗i ¼Wiδ+ iTφi +C
0
iηi + ei, (32)

where ηi�N(0,σv
2IT) and ei�N(0,ξσv

2IT). Using Eq. (32), the (intractable) full

conditional distribution of each λit∗, i ¼ 1, … , N, t ¼ 1, … , T is given by

p λ∗itj δ, σ2v , ρ, φi, yit
� �

∝ exp �exp λ∗it
� �

+ λ∗ityit� exp
1

2ξσ2v
λ∗it�w0

itδ�φi�qit
� �2

� �� �
,

(33)

where qit is the t � th element of qi ¼ Ci
0ηi. Let St λ∗itj λ̂∗it, c1Vλ∗it

, v1

� �
denote a

Student-t distribution, where λ̂∗it denotes the modal value of the logp
(λit∗jδ,σv2,ρ,φi,yit) with respect to λit∗, Vλ∗it

¼ (�Hλ∗it
)�1 is defined as the inverse

of the negative second-order derivative of the logp(λit∗jδ,σv2,ρ,φi,yit) evaluated
at λ̂∗it, v1 is the degrees of freedom and c1 is a positive-valued scale parameter.

Both v1 and c1 are essentially tuning parameters, which are determined by the

user prior to the main MCMC loop.

To obtain the modal value we use a fewNewton-Raphson rounds implemen-

ted in the first-order derivative

λ̂∗it ¼�exp λ∗it
� �

+ yit� 1

ξσ2v
λ∗it�w0

itδ�φi�qit
� �

,

and the second-order derivative

Hλ∗it
¼�exp λ∗it

� �� 1

ξσ2v
:

of logp(λit∗jδ,σv2,ρ,φi,yit),
Then, sample a proposal value λit∗(p) from the density St λ∗itj λ̂∗it, c1Vλ∗

it
, v1

� �

and move to λit∗(p) given the current point λit∗(c) with probability of move

min
p λ∗ pð Þ

it j δ, σ2v , ρ, φi, yit

� �
St λ∗itj λ̂∗

cð Þ
it , c1Vλ∗

it
, v1

� �

p λ∗ cð Þ
it j δ, σ2v , ρ, φi, yit

� �
St λ∗ pð Þ

it j λ̂∗it, c1Vλ∗
it
, v1

� � , 1

0

@

1

A:
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l To update qi ¼ Ci
0ηi, i ¼ 1,… , N in each iteration we sample ηi from ηi | λi∗, δ,

φi, σv
2�N(p1,P1), where p1 ¼P1

ci y∗
i
�Wiδ�iTφið Þ
ξσ2v

� �
and P1 ¼ IT

σ2v
+
CiC

0
i

ξσ2v

� ��1

.

l We sample ρ | e, σv
2, ρ0, σρ

2 ∝ Ψ(ρ) � N(d2,D2)I(�1,1)(ρ), where

e ¼ (e1
0 , … ,eN

0 )0, Eit ¼ λit∗ � wit
0 δ � φi, Ψ ρð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2ð ÞN

q
� exp � 1�ρ2ð Þ

2σ2v

PN
i¼1E

2
i1

� �
,

d2 ¼D2
ρ0
σ2ρ
+ σ�2

v

PN
i¼1

PT
t¼2EitEit�1

� �
and D2 ¼ 1

σ2ρ
+ σ�2

v

XN

i¼1

XT

t¼2
E2it�1

 !�1

.

We use an independence Metropolis-Hastings algorithm in order to simulate

ρ. A candidate value ρ0 is generated from the density N (d2, D2)I(�1.1)(ρ)
and is accepted as the next value in the chain with probability min(Ψ(ρ0)/
Ψ(ρ), 1); otherwise, the current value ρ is taken to be the next value in the

sample.

l We obtain deterministically the errors ui from ui ¼φi�hi1 lnyi0�x01hi2,
i¼ 1,…,N.

Part II

l To improve efficiency of sampling from θ j{ui}, μ0, τ0, e0, f0, we sample

from the equivalent distribution θ∗, ψ j{ui}, μ0, τ0, e0, f0, where

θ ¼ (ϑ1, …, ϑN)0, θ∗ ¼ (ϑ1∗, … ,ϑM∗ )0, M � N contains the set of unique values

from the θ with ϑm∗ , m ¼ 1, …, M representing a cluster location and ψ ¼
(ψ1, …, ψN)

0 is the vector of the latent indicator variables such that ψ i ¼ m
iff ϑi ¼ ϑm∗ . Together θ∗ and ψ completely define θ (MacEachern, 1994).

Let also θ∗(i) ¼(ϑ1∗
(i), … ,ϑM(i)∗(i))0 denote the distinct values in θ(i), which is

the θ with the element ϑi deleted. Also, the number of clusters in θ∗(i) is
indexed from m ¼ 1 to M(i). Furthermore, we define nm

(i) ¼Pj1(ψ j ¼ m,
j 6¼ i), m ¼ 1, …, M(i) to be the number of elements in θ(i) that take the distinct
element ϑm∗

(i).

We follow a two-step process in order to draw from θ∗, ψ j{ui}, μ0, τ0, e0, f0.
In the first step, we sample ψ and M by drawing ϑi, i ¼ 1, …, N from

ϑi|θ ið Þ,ui,G0 � c
a

a+N�1
qi0p ϑij ui, μ0, τ0, e0, f0ð Þ+

XM ið Þ

m¼1

c

a+N�1
n ið Þ
m qimδϑ∗ ið Þ

m
ϑið Þ,

setting ψ i ¼ M (i) + 1 and ϑi ¼ ϑM(i)+1
∗ when ϑM(i)+1

∗ is sampled from p(ϑi jui, μ0, τ0,
e0, f0) or ψ i ¼ m, when ϑi ¼ ϑm∗

(i), m ¼ 1, …, M (i). c is the normalizing constant

and δϑj
(θi) represents a unit point mass at ϑi ¼ ϑj. The new cluster value ϑM(i)+1

∗ is

sampled from p(ϑi jui, μ0, τ0, e0, f0), which is the posterior density of ϑi under the
prior G0. By conjugacy we have

ϑi ¼ μi, σ
2
i

� �|ui,μ0,τ0,e0, f0 �N μij μ0 , τ0σ2i
� �

IG σ2i j
e0
2
,
f0
2

� �
,
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where

μ0 ¼
μ0 + τ0ui
1 + τ0

, τ0 ¼ τ0
1 + τ0

, e0 ¼ e0 + 1, f0 ¼ f0 +
ui�μ0ð Þ2
τ0 + 1

:

The probability of assigning ψ i to a new cluster is proportional to the mar-

ginal density of ui, ~qi0 ¼
R
f (ui jϑi)dG0(ϑi) ¼ qt (ui jμ0, (1 + τ0)f0/e0, e0), where

qt is the Student-t distribution, μ0 is the mean, e0 is the degrees of freedom, and

(1 + τ0)f0/e0 is the scale factor. The probability of ψ i equaling an existing cluster

m ¼ 1, …, M (i) is proportional to nm
(i)qim, where ~qim is the normal distribution of

ui evaluated at ϑm∗
(i); hence, ~qim ¼ n ið Þ

m exp �1
2

ui�μ∗
ið Þ

m

� �2
=σ∗

2 ið Þ
m

� �
.

In the second step, given M and ψ, we draw each ϑm∗ , m ¼ 1, …, M from

ϑ∗m ¼ μ∗m, σ∗
2

m

� �| uif gi2Fm
,μ0,τ0,e0, f0 �N μ∗mj μm , τmσ∗2m

� �
IG σ∗2m j em

2
,
fm
2

� �
,

where

μm ¼
μ0 + τ0

X

i2Fm

ui

1 + τ0nm
, τm ¼ τ0

1 + τ0nm
,

em ¼ e0 + nm, fm ¼ f0 +

nm
1

nm

X

i2Fm

ui�μ0

 !2

1 + τ0nm
+
X

i2Fm

ui� 1

nm

X

i2Fm

ui

 !2

,

and Fm ¼ {i : ϑi ¼ ϑm∗ } is the set of individuals that share the same

parameter ϑm∗ .
l To sample the precision parameter a, we first sample ~η from

~η|a,N�Beta a + 1, Nð Þ, where ~η is a latent variable and then sample a from a

mixture of two gammas, a|~η,c,d,M� π~ηG c +M, d� ln ~ηð Þð Þ + 1�π~η
� �

G c +M�1, d� ln ~ηð Þð Þ with the mixture weight π~η satisfying π~η= 1�π~η
� �¼

c+M�1ð Þ=N d� ln ~ηð Þð Þ. For details, see Escobar and West (1995).

Average Marginal Effects for Model 1

Because of the nonlinear nature of the Poisson panel models, the direct inter-

pretation of the coefficients can be misleading. To overcome this problem,

we calculate the marginal effects. For model 1, the marginal effect for the itth
component with respect to the k-th continuous regressor is

MEkit ¼ ∂E yitjwit, δ, φi, qitð Þ
∂xk, it

¼ βk exp w0
itδ+φi + qit

� �
:
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By integrating out all the unknown parameters (including the random

effects), the posterior distribution of M Ekit is

π MEkitj datað Þ¼
ð
π MEkitj δ, φi, qit, datað Þdπ δ, φi, qitj datað Þ:

Using the composition method, we can produce a sample of M Ekit values,

using the posterior draws of δ, ϕi, qit. Chib and Hamilton (2002) also used this

method to calculate average treatment effects. Given a posterior sample of M
Ekit values obtained from π(MEkit jdata), which we denote by {MEkit

(l)}, the aver-

age marginal effect (AM E) can be defined as

AMEk ¼
XL

l¼1

XN

i¼1

XT

t¼1
ME

lð Þ
kit

L�N�T
,

where MEkit
(l) ¼ βk

(l) exp (wit
0 δ(l) + φi

(l) + qit
(l)) and L is the total number of itera-

tions after the burn-in period.

If xk,it is binary, the partial effect is

Δj xk, itð Þ¼ exp w0
itδ� xk, itβk

� �
+ βk +φi + qit

� �

� exp w0
itδ� xk, itβk

� �
+φi + qit

� �
:

5.3.2 MCMC for Model 2

The updating of {hi}, ~h, ~H, {ui}, {ϑi} and a is the same as in model 1. In addi-

tion, one has to update the latent variables {φi} and {λit∗} as well as the param-

eters δ and σE
2. In this case, we use the equation

λ∗it ¼w0
itδ+φi + Eit, (34)

where now Eit is iid distributed.

l We sample the random effects, φi, i ¼ 1, …, N, from N (d0, D0), where

D0 ¼ 1

σ2i
+
T

σ2E

� ��1

and d0 ¼
PT

t¼1
λ∗it�w0

itδð Þ
σ2E

+
k0ihi + μi

σ2
i

.

l We sample δ and σE
2 in one block again:

(a) First, sample σE
2 marginalized over δ from

σ�2
E | λ∗i
� 	

, Wif g, φif g,e2, f2 �G e2
2
,
f2
2

� �
,

where e2 ¼ e2 +NT� k�1, f2 ¼ f2 +
PN

i¼1

PT
t¼1 λ∗it�w0

itδ̂�φi

� �2
,

and δ̂¼ PN
i¼1

PT
t¼1witw

0
it

� ��1

� PN
i¼1

PT
t¼1wit λ∗it�φi

� �h i
:
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(b) Second, sample δ from its full posterior distribution:

δ|σ2E , λ∗i
� 	

, Wif g, Wif g, φif g�N δ̂,
1

σ2E

XN

i¼1

XT

t¼1

witw
0
it

 !�1
0

@

1

A:

l As in model 1, the posterior distribution of λit∗ for i ¼ 1, …, N and t ¼ 1, …, T
is intractable and is given by

p λ∗itj δ, σ2E , φi, yit
� �

∝ exp �exp λ∗it
� �

+ λ∗ityit� exp
1

2σ2E
λ∗it�w0

itδ�φi

� �2
� �� �

,

(35)

which is a modified version of Eq. (33). Again, we use a Metropolis-Hastings

step similar to that of model 1.

Average Marginal Effects for Model 2

For model 2, the marginal effect for the it-th component with respect to the k-th
continuous regressor is

MEkit ¼ ∂E yitjwit, δ, φið Þ
∂xk, it

¼ βk exp w0
itδ +φi + Eit

� �
,

and the calculation of the average partial effects is similar to that of model 1.

5.3.3 MCMC for Model 3

The conditional distributions for hi, ~h and ~H are the same as those in model 1.

The same holds for the update of the DP parameters and the deterministic

update of ui.
The posterior densities of φi and δ 5 (β0, γ)0 in model 3 are intractable and

therefore we use the independence Metropolis-Hastings algorithm to make

draws from their posteriors.

In particular, the posterior distribution of φi, i ¼ 1, …, N is given by

p φij yitf gt�1, hi, δ, μi, σ
2
i

� �
∝ exp � 1

2σ2i
φi�k0ihi�μi
� �2

� �

�
YT

t¼1

exp �exp w0
itδ+φi

� �� �
exp w0

itδ+φi

� �� �yit

yit!
:

A proposed draw φi
(p) is generated from the Student-t distribution

St φ pð Þ
i j φ̂i, c2Vφi

, v2

� �
, where φ̂i ¼ aφi

rgmaxlogp φij yitf gt�1, hi, δ, μi, σ
2
i

� �
is the

modal value of the logarithm of the posterior distribution of φi, Vφi ¼ (�Hφi)
�1
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is the inverse of the negative Hessian of logp(φi j{yit}t�1,hi,δ,μi,σi
2) evaluated at

φ̂i, v2 is the degrees of freedomand c2 > 0 is a constant. To obtain themodal value

we use the Newton-Raphson method that requires the calculation of the gradient

gφi
¼� φi�k0ihi�μi

� �
=σ2i +

XT

t¼1

yit� exp w0
itδ+φi

� �� �
,

where k0i ¼ lny∗i0, x
0
i

� �
and the Hessian

Hφi
¼�σ�2

i �
XT

t¼1

exp w0
itδ+φi

� �

Given the current value φi
(c), we move to the proposed point φi

(p) with

probability

ap φ cð Þ
i , φ pð Þ

i

� �
¼ min

p φ pð Þ
i j yitf gt�1, hi, δ, μi, σ

2
i

� �
St φ cð Þ

i j φ̂i, c2Vφi
, v2

� �

p φ cð Þ
i j yitf gt�1, hi, δ, μi, σ

2
i

� �
St φ pð Þ

i j φ̂i, c2Vφi
, v2

� � , 1

0

@

1

A:

The target density of δ is also intractable,

p δj yitf gi�1, t�1, φif g� �
∝
XN

i¼1

XT

t¼1

exp
�exp w0

itδ +φi

� �
exp w0

itδ+φi

� �� �yit

yit!
:

"

To generate δ from its full conditional we use a multivariate Student-t dis-

tribution MVt δj δ̂, c3Σ̂δ, v3

� �
, where δ̂¼ arδgmaxlogp δj yitf gi�1, t�1 φif g� �

is the mode of the logarithm of the right side of the earlier conditional

distribution and Σ̂δ ¼ �Hδ½ 	�1
is the negative inverse of the Hessian matrix

of p(δ j{yit}i �1,t �1, {ϕi}) at the mode δ̂. The degrees of freedom v3 and the

scaling factor c3 are, as before, adjustable parameters. The maximizer

Newton-Raphson procedure with gradient vector δ̂ is obtained by using the

gδ ¼
XN

i¼1

XT

t¼1

yit� exp w0
itδ +φi

� �� �
wit,

and Hessian matrix

Hδ ¼�
XN

i¼1

XT

t¼1

exp w0
itδ+φi

� �� �
witw

0
it:
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The algorithm to generate δ works as follows:

(1) Let δ(c) be the current value.

(2) Generate a proposed value δ(p) from MVt δj δ̂, c3Σ̂δ, v3

� �
.

(3) A move from δ(c) to δ(p) is made with probability

min
p δ pð Þj yitf gi�1, t�1, φif g
� �

MVt δ cð Þj δ̂, c3Σ̂δ, v3

� �

p δ cð Þj yitf gi�1, t�1, φif g
� �

MVt δ pð Þj δ̂, c3Σ̂δ, v3

� � , 1

0

@

1

A:

Average Marginal Effects for Model 3

For model 3, the marginal effect for the itth component with respect to the k-th
continuous regressor is

MEkit ¼ ∂E yitjwit, δ, φið Þ
∂xk, it

¼ βk exp w0
itδ+φi

� �
,

and the calculation of the average partial effects is similar to that of model 1.

5.4 Model Comparison

In this section we explain how we can conduct model comparison, using the

Deviance Information Criterion (DIC), proposed by Spiegelhalter et al.

(2002) and cross-validation predictive densities.

The Deviance Information Criterion (DIC) can be calculated easily because

it uses the conditional likelihood of the model. For model 1, where the idiosyn-

cratic errors are serially correlated, the DIC also can be computed because of the

orthogonalization of the error terms.

The DIC is based on the devianceD(Θ) ¼ �2 ln f (y jΘ), where y is the vec-

tor of observations, ln f (y jΘ) is the log-likelihood function and Θ is the vector

of all model parameters. The DIC is defined as DIC¼D Θð Þ + pD, where

D Θð Þ ¼�2EΘ log f yjΘð Þj y½ 	 is the posterior mean deviance that measures

how well the model fits the data. The term pD measures model complexity

and is defined as pD ¼D Θð Þ �D Θ
� �

, where D Θ
� �¼�2log f yjΘ� �

and

log f yjΘ� �
is the log-likelihood evaluated at Θ, the posterior mean of Θ.

The DIC is, therefore, defined as DIC¼D Θð Þ + pD ¼ 2D Θð Þ �D Θ
� �

. The

model with the smallest DIC has the best model fit. The DIC can be computed

using MCMC samples of the parameters, {Θ(l)}, where Θ(l) is the value of Θ at

iteration l ¼ 1, …, L. Lower DIC values indicate better model fit.

An alternative model comparison criterion is based on cross-validation

predictive densities. In particular, we apply the leave-one-out cross validation
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(CV) method that requires the calculation of the conditional predictive ordi-

nate (CPO),

CPOit ¼ f yitj y�itð Þ¼
ð
f yitjΘð Þf Θj y�itð Þ¼EΘ|y�it f yitjΘð Þ½ 	, i¼ 1,…,N, t

¼ 1,…,T,

where y�it ¼ y \ {yit}. Gelfand and Dey (1994) and Gelfand (1996) proposed a

Monte Carlo integration of CPO. More specifically,

CP̂Oit ¼ f̂ yitj y�itð Þ¼ 1

L

XL

l¼1

f yitj y�it,Θ lð Þ
� �� ��1

 !�1

,

where L is the number of iterations after the burn-in period. Then, for each

model we calculate the average of the estimated CPO values,
1
NT

PN
i¼1

PT
t¼1 f̂ yitj y�itð Þ. Higher values of this average imply better “goodness

of fit” of a model.

6 Conclusions

In this chapter we presented various Markov Chain Monte Carlo algorithms for

estimating various versions of the panel Poisson model. These versions con-

trolled for dynamic, random effects, and serial error correlation. Furthermore,

we assigned a nonparametric structure to the distribution of the random effects,

using the Dirichlet process prior. We also tackled the initial conditions problem

from which models of this type suffer. As a byproduct of the posterior algo-

rithms, we showed how the average partial effects can be calculated, while

we used two Bayesian criteria for model comparison, the Deviance Information

Criterion (DIC) and cross-validation predictive densities.
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1 Introduction

Panel data has the advantage of controlling unobserved heterogeneity by includ-

ing individual effects and time effects. The random effects approach assumes

the unobserved effects are random and their distributions conditioning on the

regressors satisfy some special conditions. These conditions are crucial for

identification but cannot be verified easily. The fixed effects approach treats

the unobserved effects as parameters to be estimated, therefore allowing

arbitrary correlation between the unobserved effects and the regressors.

Estimation of the unobserved effects, however, brings in the incidental param-

eter problem.

Under the fixed T framework, some smart methods, such as differencing or

conditioning on sufficient statistics, are developed to get consistent estimator

of the regressor coefficients, e.g., Manski (1987), Honore (1992) and many

others. In general, however, the fixedT frameworkhas limitations in dealingwith

the incidental parameter problem.With the increased availability of large panels,

the literature gradually switched to the large T framework. Under this new
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asymptotic scheme, the estimated regression coefficients are shown to be asymp-

totically normal with biased mean, and various bias correction methods are

developed to provide valid confidence intervals. For example, see Hahn and

Newey (2004), Fernandez-Val and Weidner (2016), and Dhaene and

Jochmans (2015).

In this chapter, we focus only on the techniques used to derive the limit dis-

tribution of the estimated regression coefficients. Bias correction methods will

not be discussed here, nor panel with interactive effects and other extensions.

For a comprehensive survey, see Arellano and Hahn (2007) and Fernandez-Val

andWeidner (2017). These surveys mainly focus on the results, and only briefly

discuss the intuition for deriving these results. Understanding the joint limits1

asymptotic theory for the estimated parameters is still difficult and time-

consuming. Different papers use different notations and different techniques,

some are similar in nature, while others are totally different. This chapter seeks

to provide a unified framework to introduce and explain the main techniques

used in the literature.

When the number of parameters is fixed, consistency and limit distribution

of maximum likelihood estimator are well-established (see Newey &

McFadden, 1994). These classical results are not directly applicable for fixed

effects panel data models, because the number of parameters K + N + T goes

to infinity jointly with the sample size. The fixed effects panel models, however,

have certain sparsity structure, i.e.,

∂λi ljt �ð Þ ¼ 0 if i 6¼ j,

∂ft lis �ð Þ ¼ 0 if s 6¼ t,

∂λiλj lit �ð Þ ¼ 0 if i 6¼ j,

∂ftfs lit �ð Þ ¼ 0 if s 6¼ t,

∂λi ft ljs �ð Þ ¼ 0 if i 6¼ j or s 6¼ t,

∂βλj lit �ð Þ ¼ 0 if i 6¼ j,

∂βfs lit �ð Þ ¼ 0 if s 6¼ t,

∂βλiλj lit �ð Þ ¼ 0 if i 6¼ j,

……

where lit(�) is the likelihood function of the ith individual at time t. The fixed

effects panel literature uses this structure in extending the classical theory of

MLE to reestablish the consistency and limit distribution of β̂. For linear

dynamic panel with individual effects, see Hahn and Kuersteiner (2002). For

linear dynamic panel with individual effects and time effects, see Hahn and

Moon (2006). For nonlinear static panel with individual effects, see Hahn

and Newey (2004). For nonlinear dynamic panel with individual effects, see

1. N and T tend to infinity jointly.
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Hahn and Kuersteiner (2011). For nonlinear dynamic panel with individual

effects and time effects, see Fernandez-Val and Weidner (2016). Among these

papers, Hahn and Newey (2004) and Fernandez-Val and Weidner (2016) are

most representative for the techniques used to handle the incidental parameters

problem. Understanding these two papers is almost halfway to understanding all

of the bias correction literature. We provide detailed discussion about their

working mechanism.

Throughout the paper, (N, T)! ∞ denotes N and T going to infinity jointly.

!d denotes convergence in distribution. For matrix A, let ρmin(A) denote its

smallest eigenvalue, kAk and kAkmax denote its spectral norm and max norm

respectively. For vector a, let kak and kak4 denote its Euclidean norm and 4-

norm. Note that when a is high dimensional, different norms are not equivalent.

The rest of the chapter is organized as follows: Section 2 introduces notations

and preliminaries. Section 3, Section 4, and Section 5 provide asymptotic theory

for the fixed dimensional case, for panel with only individual effects and for

panel with both individual and time effects, respectively. Section 6 offers

conclusions.

2 Notations and Preliminaries

For panel models with both individual effects and time effects, the log-

likelihood function is

L β, λ, fð Þ¼
XN

i¼1

XR

t¼1
lit x

0
itβ + λi + ft

� �
, (1)

where lit(πit) ¼ log git(yit jπit) and πit ¼ xit
0 β + ft + λi� yit is the dependent

variable. xit is aK dimensional vector of regressors. Lagged dependent variables

are allowed for. The functional form of git(�j�) is allowed to vary across i and t.
Let λ ¼ (λ1, …, λN)0, f ¼ (f1, …, fT)

0, ϕ ¼ (λ0, f 0)0 and θ ¼ (β0, λ0, f 0)0. When

letters have superscript 0, they denote the true parameters. For example,

πit
0 ¼ xit

0 β0 + f t
0 + λi

0, λ0 ¼ (λ1
0, … ,λN

0 )0 and f 0 ¼ (f 1
0, … , f T

0)0. Also, let ∂π

lit(πit), ∂π2 lit(πit), ∂π3 lit(πit) and ∂π4 lit(πit) denote the first, second, third and fourth
order derivatives of lit(�) evaluated at πit, respectively.

Both individual effects and time effects are treated as parameters to be esti-

mated through maximum likelihood. For any λi, ft and constant b, λi + b and ft - b
has the same likelihood as λi and ft. Thus

PN
i¼1λi

0 and
PT

t¼1 f t
0 are not identified.

We simply assume
PN

i¼1λi
0 ¼PT

t¼1 f t
0, and add the penalty

P λ, fð Þ¼�b

2

XN

i¼1
λi�

XT

t¼1
ft

� �2
(2)

to the log-likelihood to get unique solution, where b is an arbitrary positive

constant.

Therefore, the criterion function is

Q β, λ, fð Þ¼ L β, λ, fð Þ +P λ, fð Þ, (3)
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and the fixed effects estimator is

θ̂¼ β̂
0
, λ̂

0
, f̂

0� �0
¼ arg maxQ β, λ, fð Þ: (4)

Also, let ϕ̂¼ λ̂
0
, f̂

0� �0
and π̂it ¼ x0itβ̂ + λ̂i + f̂ t. For the first-order derivatives,

let

Sβ θð Þ¼ ∂βQ θð Þ,
Sλ θð Þ¼ ∂λQ θð Þ,
Sf θð Þ¼ ∂f Q θð Þ,
Sϕ θð Þ¼ ∂ϕQ θð Þ,
S θð Þ¼ ∂θQ θð Þ:

It follows that Sϕ(θ) ¼ (S0λ(θ),S0f(θ))0 and S(θ) ¼ (S0β(θ),S0ϕ(θ))0. For the

second-order derivatives, let

H θð Þ¼ ∂θθ0Q θð Þ
be the Hessian matrix. When the argument of a function is suppressed, the true

values of the parameters are plugged in. For example, S¼ S(θ0) and H¼ H(θ0).
Because

PN
i¼1λi

0 ¼PT
t¼1 ft

0, we have ∂λP ¼ ∂f P ¼ 0. Therefore,

Sβ θð Þ¼
XN

i¼1

XT

t¼1
∂πlitxit, (5)

Sλ θð Þ¼
XT

t¼1
∂πl1t,…,

XT

t¼1
∂πlNt, (6)

Sf θð Þ¼
XN

i¼1
∂πli1,…,

XN

i¼1
∂πliT : (7)

The Hessian matrix can be written as:

H θð Þ¼ Hββ0 θð Þ Hβϕ0 θð Þ
Hϕβ0 θð Þ Hϕϕ0 θð Þ
� �

:

Let HLϕϕ0 (ϕ) ¼ ∂ϕϕ0 L(ϕ) and HP ϕϕ0 (ϕ) ¼ ∂ϕϕ0 P (ϕ). We have

Hββ0 θð Þ¼
XN

i¼1

XT

t¼1
∂π2 lit πitð Þxitx0it, (8)

Hβϕ0 θð Þ¼ ð
XT

t¼1
∂π2 l1t π1tð Þx1t,…,

XT

t¼1
∂π2 lNt πNtð ÞxNt,

XN

i¼1
∂π2 li1 πi1ð Þxi1,…,

XN

i¼1
∂π2 liT πiTð ÞxiTÞ,

(9)

Hϕϕ0 θð Þ¼HLϕϕ0 θð Þ+HPϕϕ0 ϕð Þ: (10)

HLϕϕ0 (θ) can be further decomposed as

HLϕϕ0 θð Þ¼ HLλλ0 θð Þ HLλf 0 θð Þ
HLf λ0 θð Þ HLf f 0 θð Þ
� �

: (11)
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HLλλ0 (θ) is an N � N diagonal matrix and the ith diagonal element isP
t¼1
T

∂π2 lit(πit). HLff0 (θ) is a T � T diagonal matrix and the tth diagonal element

is
P

t¼1
T

∂π2 lit(πit). HLλf0 (θ) is an N � T matrix and the (i, t)th element is

∂π2 lit(πit). HLfλ0 (θ) is the transpose of HLλf 0 (θ). Let 1N and 1T be vectors of ones

with dimension N and T, respectively, and let v¼ð10N , �10TÞ0. We have

HPϕϕ0 ϕð Þ¼�bvv0: (12)

Finally, let ∂θθ0θQ(θ) be the tensor cubeof third-order partial derivatives eval-
uated at θ. Each cross section of ∂θθ0θ Q(θ) is a matrix of dimension dim(θ) �
dim(θ), and the ith cross section is ∂θθ0θiQ(θ). Thus ∂θθ0θQ(θ) contains ∂ββ0βQ(θ),

∂ϕϕ0β Q(θ), etc. as subcubes. Also, let ∂θθ0θQ sð Þ¼ ∂θθ0θQ θ0 + s θ̂�θ0
� �� �

and

define ∂ββ0β Q(s), ∂ϕϕ0βQ (s), etc. similarly.

The procedure for deriving the limit distribution of β̂ has three steps: con-

sistency, asymptotic expansion, and bias calculation.We start from the classical

fixed dimension case discussed in Newey and McFadden (1994).

3 Fixed Dimensional Case

Following the notation of Section 2, let θ, θ̂, lt(θ), Q(θ), S(θ),H(θ), and T denote

the parameter, the estimator, the likelihood function, the criterion function, the

score, the Hessian, and the sample size, respectively. Also, let d denote the

dimension of the parameter space.

3.1 Consistency

Let Θ denote the parameter space of θ and �Q θð Þ¼Q θð Þ. Consistency follows
from the following conditions:

1. θ̂¼ arg max
θ2Θ

Q θð Þ and is unique.

2. θ0 ¼ arg max
θ2Θ

�Q θð Þ and is unique.

3. Q(θ) converges uniformly in probability to �Q θð Þ, i.e., sup
θ2Θ

Q θð Þ� �Q θð Þ�� ��
¼ op 1ð Þ.

4. �Q θð Þ is continuous.
5. Θ is compact.

Conditions (1), (2), (4), and (5) can be considered as regularity conditions. Con-

dition (3) is crucial. Details about how to establish condition (3) for econometric

models can be found in Newey and McFadden (1994).

Conditions (1)–(3) together implies that, for any E > 0,

�Q θ0
� �

> �Q θ̂
� �

>Q θ̂
� �� ε>Q θ0

� �� ε> �Q θ0
� ��2ε, (13)

with probability approaching 1 (w.p.a.1). The four inequalities follow from con-

ditions (2), (3), (1), and (3) respectively. For any small c > 0, Θ \ kθ � θ0k �c
is a closed subset of a compact set, and therefore is also compact. This together

Fixed Effects Likelihood Approach for Large Panels Chapter 7 179



with condition (4) implies that θ∗ ¼ arg max
θ2Θ: θ�θ0k k�c

�Q θð Þ exists. Condition (2)

implies �Q θ0
� �

> �Q θ∗ð Þ. Now choose E such that 2ε< �Q θ0
� �� �Q θ∗ð Þ, then we

have �Q θ̂
� �

> �Q θ∗ð Þ w.p.a.1, which implies θ̂�θ0
		 		< c w.p.a.1.

3.2 Asymptotic Expansion

The first-order conditions are ∂θQ θ̂
� �¼ 0. Expand these conditions to the third

order,2 we have

0¼ ∂θQ θ̂
� �¼ S+H� θ̂�θ0

� �
+R, (14)

where R ¼ (R1, …, Rd)
0, Ri ¼ θ̂�θ0

� �0 Ð 1
0

Ð s1
0
∂θθ0θiQ s2ð Þds2ds1

h i
θ̂�θ0
� �

and

Q(s) ¼ Q(θ0 + s(θ̂ �θ0)). It follows that

θ̂�θ0 ¼�H�1S�H�1R: (15)

Because the dimension d is fixed, it is not difficult to show that

H�1
		 		¼Op T�1

� �
, (16)

Rk k¼Op 1ð Þ: (17)

LetH θð Þ¼H θð Þ denote the expected Hessian. lim
T!∞

T�1H is assumed to be

positive definite. First, after weak dependence conditions are imposed, each ele-

ment of T�1H converges in probability to its corresponding element of T�1H.

Because the dimension is fixed, this implies T�1H�T�1H
		 		 is op(1). This

implies that ρmin(T
�1H) converges in probability to ρmin T�1H

� �
since

ρmin T�1Hð Þ�ρmin T�1H
� ��� ��� T�1H�T�1H

		 		. ρmin T�1H
� �

is bounded away

from zero, thus k(T�1H)�1k is Op(1). This proves equation Eq. (16).

Now considerR. Given consistency of θ̂, it can be easily shown that for each i,

each element of the K � K matrix
Ð 1
0

Ð s1
0
∂θθ0θiQ s2ð Þds2ds1 is Op(T). Because the

dimension d is fixed, this implies that kÐ 1
0

Ð s1
0
∂θθ0θiQ s2ð Þds2ds1k is also Op (T),

and thus Rij j ¼Op T θ̂�θ0
		 		2

� �
. Again, because the dimension is fixed, we have

Rk k¼Op T θ̂�θ0
		 		2

� �
. This, together with Eqs. (15) and (16), shows that

θ̂�θ0 ¼�H�1S+Op θ̂�θ0
		 		2
� �

¼�H�1S+ op kθ̂�θ0k� �
: (18)

It is easy to see that kSk is Op T
1
2


 �
after weak dependence condition is

imposed. Therefore, θ̂�θ0
		 		 is Op T�1

2


 �
, which further implies that

2. Note that mean value theorem for vector-valued functions does not exist. We use the integral

form of the mean value theorem for vector-valued functions.
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θ̂�θ0 ¼�H�1S+Op T�1
� �

: (19)

3.3 Bias Calculation

When dimension is fixed, we have T�1
2S !d N 0,H

� �
. We have shown that

T�1H�T�1H
		 		 is op(1). Therefore, we have T

1
2 θ̂�θ0
� �!d N 0,H

�1
� �

, that

is, the asymptotic bias is zero.

4 Panel With Individual Effects

In extending the fixed dimensional MLE previously discussed to panel models

with individual effects, we face two difficulties: consistency and asymptotic

expansion. For consistency, the main difficulty is that we need to show uniform

convergence in probability of Q(θ) to �Q θð Þ when the dimension of the param-

eter space tends to infinity jointly with the sample size. For asymptotic expan-

sion, the difficulty is that the dimensions ofH,
Ð 1
0

Ð s1
0
∂θθ0θiQ s2ð Þds2ds1, and R all

tend to infinity jointly with the sample size. The key step of asymptotic expan-

sion is to evaluate the magnitude of kH�1k and kRk. The increasing dimension

makes this step much harder, if not impossible. Now we introduce how Hahn

and Newey (2004) overcome these two difficulties.

Following the notation of Section 2, for panel models with only individual

effects, the log-likelihood function is L(β,λ) ¼Pi¼1
N P

t¼1
T lit(xit

0 β + λi), where
lit(πit) ¼ log git(yit jπit) and πit ¼ xit

0 β + λi is the dependent variable. xit is a K
dimensional vector of regressors. Lagged dependent variables are allowed

for. The functional form of git(�j�) is allowed to vary across i and t. Since λi
0

is uniquely identified when there are no time effects, we have Q(β, λ) ¼ L(β,
λ). Let λ ¼ (λ1,…, λN)0 and θ ¼ (β0, λ0)0. Let λ0 and θ0 denote the true parameters

and θ̂¼ β̂
0
, λ̂

0� �0
¼ arg max Q(β, λ) denote the estimator. Also,

θ̂�θ0 ¼ β̂�β0
� �0

, λ̂� λ0
� �0� �0

, R ¼ (Rβ
0 ,Rλ

0 )0 and the Hessian matrix is

H¼ Hββ0 Hβλ0

Hλβ0 Hλλ0

� �
:

Hλλ0 is diagonal and the ith diagonal element is
P

t¼1
T

∂π2 lit.

4.1 Consistency

In general, we do not have uniform convergence in probability of Q(θ) to �Q θð Þ
when the dimension of θ tends to infinity. Hahn and Newey (2004) and Hahn

and Kuersteiner (2011) overcome this issue by using the individual effects

model specification. More specifically, given the model setup, we have

Q(θ) ¼Pi¼1
N Qi(β,λi) and Qi(β,λi) ¼

P
t¼1
T lit(xit

0 β + λi). Therefore, N
�1T�1Q(θ)
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is the average of T�1Qi(β, λi). Similarly, N�1T�1 �Q θð Þ is the average of

T�1 �Qi β, λið Þ, where �Qi β, λið Þ¼Qi β, λið Þ. For each i, it would not be difficult

to show uniform convergence in probability of T�1Qi(β, λi) to T�1 �Qi β, λið Þ
because (β, λi) is fixed dimensional. After we have uniform convergence for

each i, it suffices to show this uniform convergence is uniform over i, i.e.,

max
1�i�N

sup
β,λi

|T�1 Qi β, λið Þ� �Qi β, λið Þ� �|¼ op 1ð Þ, (20)

because supθ |N�1T�1 Q θð Þ� �Q θð Þ� �|� max
1�i�N

sup
β,λi

|T�1 Qi β, λið Þ� �Qi

�
β, λið ÞÞ|.

To show Eq. (20), Hahn and Newey (2004) and Hahn and Kuersteiner (2011)

show that

P sup
β,λi

j T�1 Qi β, λið Þ� �Qi β, λið Þ� �j � η

 !

¼ o T�2
� �

: (21)

This is becauseN ¼ O(T) andP



max
1�i�N

sup
β,λi

jT�1 Qi β, λið Þ� �Qi

�
β, λið ÞÞj� η

�

is not larger than
PN

i¼1P



sup
β,λi

T�1 Qi β, λið Þ� �Qi β, λið Þ� � � η

�
.

4.2 Asymptotic Expansion

The first-order conditions (14) is still valid and can be written as

0¼ Sβ +Hββ0 β̂�β0
� �

+Hβλ0 λ̂� λ0
� �

+Rβ, (22)

0¼ Sλ +Hλβ0 β̂�β0
� �

+Hλλ0 λ̂� λ0
� �

+Rλ, (23)

and Rβ and Rλ have the following expression:

Rβ ¼Rβββ +Rβλβ +Rλλβ,

Rβββ ¼ β̂�β0
� �0

ð1

0

ðs1

0

∂ββ0βQ s2ð Þds2ds1

 �

β̂�β0
� �

,

Rβλβ ¼ 2 β̂�β0
� �0

ð1

0

ðs1

0

∂βλ0βQ s2ð Þds2ds1

 �

λ̂� λ0
� �

,

Rλλβ ¼ λ̂� λ0
� �0

ð1

0

ðs1

0

∂λλ0βQ s2ð Þds2ds1

 �

λ̂� λ0
� �

,

Rλ ¼Rββλ +Rβλλ +Rλλλ,

Rββλ ¼ β̂�β0
� �0

ð1

0

ðs1

0

∂ββ0λQ s2ð Þds2ds1

 �

β̂�β0
� �

,

Rβλλ ¼ 2 β̂�β0
� �0

ð1

0

ðs1

0

∂βλ0λQ s2ð Þds2ds1

 �

λ̂� λ0
� �

,

Rλλλ ¼ λ̂� λ0
� �0

ð1

0

ðs1

0

∂λλ0λQ s2ð Þds2ds1

 �

λ̂� λ0
� �

:

(24)

Eq. (22) subtracts Eq. (23) left multiplied by Hβλ0Hλλ0
�1, we have
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β̂�β0 ¼� Hββ0 �Hβλ0H
�1
λλ0 Hλβ0

� ��1
Sβ�Hβλ0H

�1
λλ0 Sλ

� �

� Hββ0 �Hβλ0H
�1
λλ0 Hλβ0

� ��1
Rβ�Hβλ0H

�1
λλ0 Rλ

� �
:

(25)

First, consider the matrix Hββ0 � Hβλ0Hλλ0
�1Hλβ0. This expression does not rely

on any econometric model structure, because expression Eq. (25) is always true.

What’s special is thatHββ0 is sum ofNT terms, whileHβλ0 is a vector of dimension

N and each element is sumofT terms, andHλλ0 is adiagonalmatrix of dimensionN
and each diagonal element is sum of T terms. This specialty comes from the indi-

vidual effects model specification. Because of this specialty, we are able to show

k Hββ0 �Hβλ0H
�1
λλ ,Hλβ0

� ��1k¼Op N�1T�1
� �

, (26)

which is not true in general. To show Eq. (25), let Hββ0 ¼Hββ0 , Hβλ0 ¼Hβλ0

and Hλλ0 ¼Hλλ0 . After relevant regularity conditions are imposed, it’s easy

to show that Hββ0 �Hββ0
		 		 is op (NT) Hβλ0 �Hβλ0

		 		 is op N
1
2T


 �
and

H�1
λλ0 �H

�1

λλ0

			
			 is op(T

�1). These together imply that Hββ0 �Hβλ0H
�1
λλ0 Hλβ0

� �		

� Hββ0 �Hβλ0H
�1

λλ0Hλβ0
� �

k is op(NT). Because lim
N, Tð Þ!∞

N�1T�1 Hββ0 �Hβλ0
�

H�1
λλ0 Hλβ0 Þ is assumed to be positive definite,3 this proves Eq. (25).

Next consider Sβ � Hβλ0Hλλ0
�1Sλ. This term can be written as

Sβ�Hβλ0H
�1
λλ0 Sλ ¼ Sβ�Hβλ0H

�1
λλ ,Sλ� Hβλ0 �Hβλ0

� �
H�1
λλ0 Sλ�

Hβλ0 H�1
λλ0 �H

�1
λλ0

� �
Sλ� Hβλ0 �Hβλ0

� �
H�1
λλ0 �H

�1
λλ0

� �
Sλ:

(27)

Given relevant regularity conditions and noting that both Hλλ0 and Hλλ0 are

diagonal, it would not be difficult to show that

Sβ�Hβλ0H
�1
λλ , Sλ

		 		¼Op N
1
2T

1
2


 �
,

Hβλ0 �Hβλ0
		 		¼Op N

1
2T

1
2


 �
,

Hβλ0
		 		¼Op N

1
2T


 �
,

Sλk k¼Op N
1
2T

1
2


 �
,

H
�1

λλ0

			
			¼Op T�1

� �
,

Hλλ0 �Hλλ0
		 		¼Op T

1
2


 �

H�1
λλ0

		 		¼Op T�1
� �

,

H�1
λλ0 �H

�1

λλ0

			
			¼Op T�3

2


 �
: (28)

3. This is the standard identification condition that appears in almost all nonlinear panel literature.
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Therefore, the four terms on the right side of Eq. (27) areOp N
1
2T

1
2


 �
,Op(N),

Op(N), and Op NT�1
2


 �
, respectively. Thus

Hβλ0 �Hβλ0
� �

H�1
λλ0 �H

�1

λλ0

� �
Sλ

			
			¼Op NT�1

2


 �
, (29)

Sβ�Hβλ0H
�1
λλ0 Sλ

		 		¼Op N
1
2T

1
2


 �
+Op Nð Þ: (30)

Now consider Rβ � Hβλ0Hλλ0
�1Rλ. Assume4 that there exists c > 0 such that

third-order derivatives of lit(β, λi) with respect to β and λi are
5 uniformly

bounded in absolute value byM (xit, yit) within the neighborhood kβ � β0k � c
and kλi � λi

0k � c, and  M xit, yitð Þð Þ4 is uniformly bounded over i and t. Based
on this assumption, using consistency of β̂ and λ̂i, and using Eq. (24), direct cal-
culation shows that6

Rβββ

		 		¼Op NT β̂�β0
		 		2

� �
,

Rβλβ

		 		¼Op N
1
2T β̂�β0
		 		 λ̂� λ0

		 		

 �

,

Rλλβ

		 		¼Op T λ̂� λ0
		 		2

� �
,

Rββλ

		 		¼Op N
1
2T β̂�β0
		 		2


 �
,

Rβλλ

		 		¼Op T β̂�β0
		 		 λ̂� λ0

		 		� �
,

Rλλλk k¼Op T λ̂� λ0
		 		2

4

� �
:

(31)

To evaluate the six expressions in Eq. (31), consistency of β̂�β0 and λ̂i� λ0i
alone is not enough; we need their convergence rates. An important intuition

shared by the nonlinear panel literature is that λ̂� λ0 �H�1
λλ0 Sλ. For the moment,

let’s just suppose λ̂� λ0 ¼H�1
λλ0 Sλ and β̂�β0

		 		¼Op N�1
2T�1

2


 �
to evaluate

Eq. (31) first. The third and fifth equations of Eq. (28) imply λ̂� λ0
		 		

4. This assumption is quite common for nonlinear panel models.

5. For example, ∂βkβkβk lit(β,λi), ∂βkβkλi lit(β,λi),… , ∂λiλiλi lit(β,λi).

6. For example, consider Rββλ. It is easy to see that
Ð 1
0

Ð s1
0
∂ββ0λiQ s2ð Þds2ds1

			
			� 1

2
sup

0�s�1

∂ββ0λiQ sð Þ		 		

and sup
0�s�1

∂ββ0λi Q sð Þ		 		�K
XT

t¼1
M xit, yitð Þ w.p.a.1. Thus kRββλk is bounded by

1
2
K β̂�β0
		 		2 T

PN
i¼1

PT
t¼1 M xit, yitð Þð Þ2

h i1
2, which is Op N

1
2T β̂�β0
		 		2


 �
.
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¼Op N
1
2T�1

2


 �
. It is not difficult to show that λ̂� λ0

		 		
4
¼Op N

1
2T�1

2


 �
,

because (
P

t¼1
T

∂π2 lit)
�1(
P

t¼1
T

∂πlit) is Op T�1
2


 �
. It follows that

Rβββ

		 		¼Op 1ð Þ,

Rβλβ

		 		¼Op N
1
2


 �
,

Rλλβ

		 		¼Op Nð Þ,
Hβλ0H

�1
λλ0 Rββλ

		 		¼Op 1ð Þ,

Hβλ0H
�1
λλ0 Rβλλ

		 		¼Op N
1
2


 �
,

Hβλ0H
�1
λλ0 Rλλλ

		 		¼Op Nð Þ:

(32)

Therefore, given N/T! κ, Rβββ, Rβλβ, Hβλ0Hλλ0
�1Rββλ, and Hβλ0Hλλ0

�1Rβλλ are

asymptotically negligible compared to Sβ � Hβλ0Hλλ0
�1Sλ. Rλλβ and Hβλ0Hλλ0

�1Rλλλ

are not negligible and will contribute to asymptotic bias. First, given consis-

tency of β̂�β0 and λ̂i� λ0i , we have

ð1

0

ðs1

0

∂λλ0βQ s2ð Þds2ds1 � 1

2
∂λλ0βQ,

Hβλ0H
�1
λλ0

ð1

0

ðs1

0

∂λλ0λQ s2ð Þds2ds1

 �

� 1

2
Hβλ0H

�1

λλ0∂λλ0λQ:

This together with λ̂� λ0 �H
�1

λλ0 Sλ and the fourth and eighth equations of

Eq. (24) implies that

Rλλβ � 1

2
S0λH

�1

λλ0 ∂λλ0βQ
� �

H
�1

λλ0 Sλ,

Rλλλ � 1

2
S0λH

�1

λλ0 Hβλ0H
�1

λλ0∂λλ0λQ
� �

H
�1

λλ0 Sλ:

(33)

Taking the previous analyses together, we have

β̂�β0 ¼� Hββ0 �Hβλ0H
�1

λλ0Hλβ0
� ��1

Sβ�Hβλ0H
�1

λλ0 Sλ

� �

+ Hββ0 �Hβλ0H
�1

λλ0Hλβ0
� ��1

½ Hβλ0 �Hβλ0
� �

H
�1

λλ0 Sλ +Hβλ0 H�1
λλ0 �H

�1

λλ0

� �
Sλ�

1

2
S0λH

�1

λλ0 ∂λλ0βQ�Hβλ0H
�1

λλ0∂λλ0λQ
� �

H
�1

λλ0 Sλ�

+Op T�3
2


 �
+ op N�1

2T�1
2


 �
:

(34)

Eq. (34) can be used to calculate the asymptotic variance and bias, which

will be shown later. The first term on the right side will have normal distribution
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with zero mean in the limit. The second term will contribute to the asymptotic

bias. The third and fourth terms are asymptotically negligible if N/T ! κ.
Therefore, the equation clearly shows the relationship between the asymptotic

variance and bias of β̂�β0 and the score, the Hessian, and third-order

derivatives.

In deriving Eq. (34), we already have used λ̂� λ0 �H�1
λλ0 Sλ and β̂�β0

		 		¼
Op N�1

2T�1
2


 �
, which has not been proved yet. So far, we have only consistency

for each i, which is not enough to derive Eq. (34). Therefore, the remaining issue

is how to prove λ̂� λ0 �H�1
λλ0 Sλ and β̂�β0

		 		¼Op N�1
2T�1

2


 �
based on consis-

tency of β̂�β0 and λ̂i� λ0i
		 		. This is exactly where the difficulty occurs when

using first-order conditions Eqs. (22) and (23) to derive the limit distribution. So

far, it is unknown how to tackle this difficulty directly.7

Now we introduce how Hahn and Newey (2004) and Hahn and Kuersteiner

(2011) solve this difficulty. First, β, λ, and (xit, yit) correspond to θ, γ and xit,
respectively in these two papers. These two papers use empirical likelihood

method to transform the first-order derivatives from function of β and λ to func-

tion of β and E, where E is defined as: F Eð Þ¼ ET
1
2 F̂�F
� �

for E2 0, T�1
2

� �
, F ¼

(F1, …, FN) and Fi is the (marginal) distribution function of (xit, yit),

F̂¼ F̂1,…, F̂N

� �
and F̂i is the empirical distribution function of subject i. By

Eqs. (22) and (23), β̂�β0 is an implicit function of λ̂� λ0. After the transfor-

mation, β̂�β0 becomes a function of E, so that we do not need to deal with λ̂�
λ0 directly. This is crucial for asymptotic expansion because E is a number and

we know its magnitude Ej j � T�1
2


 �
, while λ̂� λ0 is a high dimensional vector

and we do not know how to prove its magnitude.

More details about the transformation follows. Let λ̂i βð Þ¼
arg max

λi

XT

t¼1
lit β, λið Þ and β̂¼ arg max

β

XN

i¼1
lit β, λ̂i βð Þ� �

. The first-order

conditions are

XT

t¼1
∂λi lit β, λ̂i βð Þ� �¼ 0, (35)

XN

i¼1

XT

t¼1
∂βlit β̂, λ̂i β̂

� �� �¼ 0: (36)

7. Because the dimension of λ̂�λ0 tends to infinity jointly as sample size, λ̂i�λ0i
		 		¼ op 1ð Þ for

each i even does not necessarily imply λ̂i�λ0i
		 		¼ op N

1
2


 �
.
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Let ρi0 ¼
 ∂βλi litð Þ
 ∂λiλi litð Þ and Ui(xit, yit; β, λi) ¼ ∂β lit(β, λi) �ρi0∂λi lit(β, λi). Then

Eqs. (35) and (36) imply that

XN

i¼1

XT

t¼1
Ui xit, yit; β̂, λ̂i β̂

� �� �¼ 0: (37)

Now for each given E, let λi(β, E) be the solution of
ð
∂λi lit xit, yit; β, λi β, Eð Þð ÞdFi Eð Þ¼ 0, (38)

and let β̂ εð Þ be the solution of

XN

i¼1

ð
Ui xit, yit; β̂ Eð Þ, λi β̂ Eð Þ, E� �� �

dFi Eð Þ¼ 0: (39)

By Eqs. (38) and (39), β̂ Eð Þ is an implicit function of E, and it’s not difficult to

see that β̂¼ β̂ T�1
2


 �
and β0 ¼ β̂ 0ð Þ. Apply Taylor expansion to β̂ Eð Þ, we have

β̂�β0 ¼ T�1
2βE 0ð Þ+ 1

2
T�1βEE 0ð Þ+ 1

6
T�3

2βEEE eEð Þ, (40)

where βE Eð Þ¼ dβ̂ Eð Þ=dE, βEE Eð Þ¼ d2β̂ Eð Þ=dE2, βEEE Eð Þ¼ d3β̂ Eð Þ=dE3, and eE2
0, T�1

2

� �
.

Eqs. (38) and (39) can be used to calculate βE(E), βEE(E) and βEEE(E). Let
hi xit, yit; Eð Þ¼Ui xit, yit; β̂ Eð Þ, λi β̂ Eð Þ, E� �� �

. Eq. (39) can be written as

N�1P
i¼1
N
Ð
hi(xit,yit; E)dFi(E) ¼ 0. (41)

Differentiating repeatedly with respect to E, we have

N�1
XN

i¼1

ð
dhi xit, yit; Eð Þ

dE
dFi Eð Þ+N�1

XN

i¼1

ð
hi xit, yit; Eð ÞdΔiT ¼ 0, (42)

N�1
XN

i¼1

ð
d2hi xit, yit; Eð Þ

dE2
dFi Eð Þ+ 2N�1

XN

i¼1

ð
dhi xit, yit; Eð Þ

dE
dΔiT ¼ 0, (43)

N�1
XN

i¼1

ð
d3hi xit, yit; Eð Þ

dE3
dFi Eð Þ+ 3N�1

XN

i¼1

ð
d2hi xit, yit; Eð Þ

dE2
dΔiT ¼ 0,

(44)

where ΔiT ¼ T
1
2 F̂i�Fi

� �
. Using these three equations together and Eq. (38), we

can get expressions of βE(0) and βEE(0), and show that T�3
2βEEE eEð Þ is

op N�1
2T�1

2


 �
. This step is tedious but not difficult. For detailed calculation

procedure, see the Appendices of Hahn and Newey (2004) and Hahn and

Kuersteiner (2011). It can be verified that βE(0) and βEE(0) corresponds to the

first and the second term on the right side of Eq. (34), respectively.
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4.3 Bias Calculation

Now we use Eq. (34) to calculate the limit distribution. Assume

W¼� lim
N, Tð Þ!∞

N�1T�1 Hββ0 �Hβλ0H
�1

λλ0Hλβ0
� �

exists. W also is assumed to be

positive definite. It can be verified that W corresponds to I in Hahn and

Newey (2004) and Hahn and Kuersteiner (2011). The calculation contains

the following four steps.

(1) N�1
2T�1

2 Sβ�Hβλ0H
�1

λλ0 Sλ

� �
!d N 0,Wð Þ:

In the literature, the DGP of (xit, yit) is assumed such that ∂π lit and ∂π litxit are
independent across i and  ∂πlit∂πlisð Þ¼ 0 and E(∂πlit∂πlisxitxis

0 ) ¼ 0 for s 6¼ t.

Then it is easy to see thatN�1
2T�1

2Sβ !d N 0,�Hββ0
� �

,N�1
2T�1

2Hβλ0H
�1

λλ0 Sλ!d
N 0,�Hβλ0H

�1

λλ0Hλβ0
� �

and  S0βHβλ0H
�1

λλ0 Sλ

� �
¼�Hβλ0H

�1

λλ0Hλβ0 .

(2) N�1
2T�1

2 Hβλ0 �Hβλ0
� �

H
�1

λλ0 Sλ ¼
ffiffiffi
κ

p
N�1

PN
i¼1

PT

t¼1

Pt

s¼1
 ∂π lis∂π2 litxitð ÞPT

t¼1
 ∂π2 litð Þ + op 1ð Þ:

This is straightforward.

(3) N�1
2T�1

2Hβλ0 H�1
λλ0 �H

�1

λλ0

� �
Sλ

¼� ffiffiffi
κ

p
N�1

PN
i¼1

PT
t¼1

Pt
s¼1 ∂πlis∂π2 litð Þ

PT
t¼1 ∂π2 litð Þ

PT
t¼1 ∂π2 litxitð Þ
PT

t¼1 ∂π2 litð Þ + op 1ð Þ:

This is because H�1
λλ0 �H

�1

λλ0 ¼�H
�1

λλ0 Hλλ0 �Hλλ0
� �

H�1
λλ0 and

H�1
λλ0 �H

�1

λλ0

� �
Sλ ¼ op N

1
2T�1


 �
.

(4) �1

2
N�1

2T�1
2S0λH

�1

λλ0 ∂λλ0βQ�Hβλ0H
�1

λλ0∂λλ0λQ
� �

H
�1

λλ0 Sλ

¼ 1

2

ffiffiffi
κ

p
N�1

XN

i¼1

PT
t¼1 ∂π3 litxitð Þ
PT

t¼1 ∂π2 litð Þ �
PT

t¼1 ∂π3 litð Þ
PT

t¼1 ∂π2 litð Þ

PT
t¼1 ∂π2 litxitð Þ
PT

t¼1 ∂π2 litð Þ

 !

+ op 1ð Þ:

This is because ∂λλ0βQ is diagonal and the ith diagonal element is
PT

t¼1 ∂π3 litxitð Þ,  SλS
0
λ

� �¼�Hλλ0 , and Hβλ0H
�1

λλ0∂λλ0λQ is also diagonal and

the ith diagonal element is
ΣT
t¼1 ∂π2 litxitð ÞΣT

t¼1 ∂π3 litð Þ
ΣT
t¼1 ∂π2 litð Þ .

5 Panel With Individual Effects and Time Effects

There are some difficulties in extending Hahn and Newey (2004) and Hahn and

Kuersteiner (2011) to panels with both individual and time effects. First, the

proof of consistency cannot be extended to allow both individual and time

effects because, when time effects are present, the criterion function cannot

be written as the average of a sequence of functions, with each function
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depending on only a finite number of parameters. Second, it would be very

tedious, if not infeasible, to extend Hahn and Newey (2004)’s empirical likeli-

hood method for asymptotic expansion to allow both individual and time

effects. Now, we introduce Fernandez-Val and Weidner (2016)’s method.

5.1 Consistency

Let ℬ(rβ,β
0) be a shrinking neighborhood of β0 and rβ ¼ o NTð Þ�

1
2q�ε


 �
for

0< E< 1
8
� 1

2q and q > 4. Fernandez-Val andWeidner (2016)’s argument of con-

sistency can be summarized as follows. First, ∂βQ β, ϕ̂ βð Þ� �
has a zero point

within ℬ(rβ,β
0). Second, ∂βQ β, ϕ̂ βð Þ� �

has unique zero point because

Q β, ϕ̂ βð Þ� �
is globally concave. These two together implies that the zero point

of ∂βQ β, ϕ̂ βð Þ� �
must lie in ℬ(rβ,β

0). More specifically, from Eqs. (55) and

(58)–(62), we have

∂βQ β, ϕ̂ βð Þ� �¼ Hββ0 �Hβϕ0H�1
ϕϕ0Hϕβ0

� �
β�β0
� �

+U + op N
1
2T

1
2


 �

+ op NT β�β0
		 		� �

, (45)

uniformly within ℬ(rβ,β
0), where

U¼ Sβ�Hβϕ0H�1
ϕϕ0Sϕ

� �
+
1

2
S0ϕH

�1
ϕϕ0 ∂ϕϕ0βQ�Hβϕ0H�1

ϕϕ0∂ϕϕ0ϕQ
� �

H�1
ϕϕ0Sϕ:

It is not difficult to show that Hββ0 � Hβϕ0Hϕϕ0
�1Hϕβ0 is Op(NT) and U is

Op N
1
2T

1
2


 �
. Let η ¼ � 2(Hββ0 � Hβϕ0Hϕϕ

�1Hϕβ0)
�1 jU j, then η is

Op N�1
2T�1

2


 �
. Thus β0 + η and β0 �η are both in ℬ(rβ,β

0) w.p.a.1. From

Eq. (45), it is not difficult to see that

∂βQ β0 + η, ϕ̂ β0 + η
� �� �� 0� ∂βQ β0�η, ϕ̂ β0�η

� �� �
:

Because ∂βQ β̂, ϕ̂ β̂
� �� �¼ 0 and ∂βQ β, ϕ̂ βð Þ� �

is strictly decreasing in β

(becauseQ β, ϕ̂ βð Þ� �
is strictly concave in β), we have β0�η� β̂� β0 + η. There-

fore, β̂�β0
�� ��� η¼Op N�1

2T�1
2


 �
. This proves for the case dim(β) ¼ 1. The

previous argument can be generalized to case with dim(β) > 1, see Fernandez-

Val and Weidner (2016) for details.

5.2 Asymptotic Expansion

With λ replaced by ϕ, Eqs. (22)–(25) and Eq. (27) still hold. Therefore, we have
the following equations:

0¼ Sβ +Hββ0 β̂�β0
� �

+Hβϕ0 ϕ̂�ϕ0
� �

+Rβ, (46)
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0¼ Sϕ +Hϕβ0 β̂�β0
� �

+Hϕϕ0 ϕ̂�ϕ0
� �

+Rϕ, (47)

β̂�β0 ¼� Hββ0 �Hβϕ0H�1
ϕϕ0Hϕβ0

� ��1

Sβ�Hβϕ0H�1
ϕϕ0Sϕ

� �

� Hββ0 �Hβϕ0H�1
ϕϕ0Hϕβ0

� ��1

Rβ�Hβϕ0H�1
ϕϕ0Rϕ

� �
,

(48)

Sβ�Hβϕ0H�1
ϕϕ0Sϕ ¼Sβ�Hβϕ0H

�1

ϕϕ0Sϕ� Hβϕ0 �Hβϕ0
� �

H
�1

ϕϕ0Sϕ�
Hβϕ0 H�1

ϕϕ0 �H
�1

ϕϕ0

� �
Sϕ� Hβϕ0 �Hβϕ0

� �
H�1

ϕϕ0 �H
�1

ϕϕ0

� �
Sϕ,

(49)

Rβ ¼Rβββ +Rβϕβ +Rϕϕβ,

Rβββ ¼ β̂�β0
� �0

ð1

0

ðs1

0

∂ββ0βQ s2ð Þds2ds1

 �

β̂�β0
� �

,

Rβϕβ ¼ 2 β̂�β0
� �0

ð1

0

ðs1

0

∂βϕ0βQ s2ð Þds2ds1

 �

ϕ̂�ϕ0
� �

,

Rϕϕβ ¼ ϕ̂�ϕ0
� �0

ð1

0

ðs1

0

∂ϕϕ0βQ s2ð Þds2ds1

 �

ϕ̂�ϕ0
� �

,

Rϕ ¼Rββϕ +Rβϕϕ +Rϕϕϕ,

Rββϕ ¼ β̂�β0
� �0

ð1

0

ðs1

0

∂ββ0ϕQ s2ð Þds2ds1

 �

β̂�β0
� �

,

Rβϕϕ ¼ 2 β̂�β0
� �0

ð1

0

ðs1

0

∂βϕ0ϕQ s2ð Þds2ds1

 �

ϕ̂�ϕ0
� �

,

Rϕϕϕ ¼ ϕ̂�ϕ0
� �0

ð1

0

ðs1

0

∂ϕϕ0ϕQ s2ð Þds2ds1

 �

ϕ̂�ϕ0
� �

:

(50)

We want to show that with λ replaced by ϕ, Eq. (34) still holds, i.e.,

β̂�β0 ¼� Hββ0 �Hβϕ0H
�1

ϕϕ0Hϕβ0
� ��1

Sβ�Hβϕ0H
�1

ϕϕ0Sϕ

� �

+ Hββ0 �Hβϕ0H
�1

ϕϕ0Hϕβ0
� ��1

½

Hβϕ0 �Hβϕ0
� �

H
�1

ϕϕ0Sϕ +Hβϕ0 H�1
ϕϕ0 �H

�1

ϕϕ0

� �
Sϕ�

1

2
S0ϕH

�1

ϕϕ0 ∂ϕϕ0βQ�Hβϕ0H
�1

ϕϕ0∂ϕϕ0ϕQ
� �

H
�1

ϕϕ0Sϕ�

+ op N�1
2T�1

2


 �
:

(51)

In last section, when we show Eq. (34), we first show Eqs. (26), (29), (30),

(32), and (33). Given relevant regularity conditions, Eq. (26) relies on the last

equation of Eq. (28), Eqs. (29) and (30) rely on Eq. (28), and Eqs. (32) and (33)

rely on Eq. (31), kβ̂�β0k¼Op N�1
2T�1

2


 �
, kλ̂� λ0k¼Op N

1
2T�1

2


 �
,
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λ̂� λ0
		 		

4
¼Op N

1
4T�1

2


 �
and λ̂� λ0 �H�1

λλ0 Sλ. Therefore, to show equation

(51), with N/T ! κ, it suffices to show

1. kβ̂�β0k¼Op N�1
2T�1

2


 �
,kϕ̂�ϕ0k¼Op 1ð Þ, ϕ̂�ϕ0

		 		
4
¼Op T�1

4


 �
and

ϕ̂�ϕ0 �H�1
ϕϕ0Sϕ.

2. Eqs. (28) and (31), with λ replaced by ϕ.

These two are the difficulties using first-order conditions (46) and (47) to derive

the limit distribution. We have encountered the first in panels with only indi-

vidual effects. For the second, the difficulty is that the proof of Eq. (28) needs

to use diagonality of Hλλ0, but Hϕϕ0 is not diagonal.8 For example, the seventh

equation of Eq. (28) is kHλλ0
�1k ¼ Op(T

�1). Although Hλλ0 is high dimensional,

this is not difficult to show since Hλλ0 is diagonal and each diagonal element is

sum of T terms. Since Hϕϕ0 is nondiagonal, to show kHϕϕ0
�1k ¼ Op(T

�1) is much

more difficult. The second is the extra difficulty of models with both individual

and time effects, compared to models with only individual effects. In the fol-

lowing, we introduce how Fernandez-Val and Weidner (2016)’s method solves

these difficulties.

Note that λ, f, Q(β, ϕ), Hϕϕ0 and Sϕ here corresponds to α, γ, N
1
2T

1
2L β, ϕð Þ,

�N
1
2T

1
2H and N

1
2T

1
2S of Fernandez-Val and Weidner (2016), respectively.

For the second difficulty, Fernandez-Val and Weidner (2016)’s idea is to

show that Hϕϕ0 can be approximated by a diagonal matrix. Lemma D.1 of

Fernandez-Val and Weidner (2016) shows that9

H
�1

ϕϕ0 � diag H
�1

Lλλ0 ,H
�1

Lf f 0

� �			
			
max

¼Op N�1T�1
� �

, (52)

where diag H
�1

Lλλ0 ,H
�1

Lf f 0

� �
is a diagonal matrix with left-upper block H

�1

Lλλ0 and

lower-right block H
�1

Lf f 0 . Lemma S.1(ii) in the supplementary appendix of

Fernandez-Val and Weidner (2016) shows that

H�1
ϕϕ0 �H

�1

ϕϕ0

			
			¼ op T�5

4


 �
: (53)

These two solve the main difficulty in proving Eqs. (31) (with λ replaced

by ϕ).
Now consider the first difficulty. By Eqs. (22) and (23), β̂�β0 is an implicit

function of λ̂� λ0. Hahn and Newey (2004) and Hahn and Kuersteiner (2011)

use empirical likelihood method to transform the first-order derivatives so that

8. Eq. (31) (with λ replaced by ϕ) can be proved by direct calculation.

9. Note that the likelihood function in Fernandez-Val and Weidner (2016) equals the likelihood

function here divided by N
1
2T

1
2.
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β̂�β0 becomes a function of E. Fernandez-Val and Weidner (2016) use Legen-

dre transformation to transform the criterion functionQ(β, ϕ) from function of β
and ϕ to function of β and s, Q∗(β, s). Here, s denotes score and its true value is
Sϕ. They correspond to S and S in Fernandez-Val and Weidner (2016) respec-

tively. This transformation is crucial for asymptotic expansion because (1) after

the transformation, the third-order terms in the asymptotic expansion would be

functions of Sϕ, (2) Sϕ has explicit analytical expression so that we can calculate
the magnitude of kSϕkq for q ¼ 1, 2, …, which can be used to truncate the

remainder terms in the Taylor expansion. More details about the Legendre

transformation method follows.

Consider the shrinking neighborhood ℬ(rβ,β
0) � ℬq(rϕ,ϕ

0) of the true

parameters (β0, ϕ0). Within this neighborhood, define

Q∗ β, sð Þ¼ max
ϕ2ℬq rϕ, ϕ0ð Þ

Q β, ϕð Þ�ϕ0s½ �,

Φ β, sð Þ¼ arg max
ϕ2ℬq rϕ, ϕ0ð Þ

Q β, ϕð Þ�ϕ0s½ �:

Given β, Q∗(β, s) as function of s is called Legendre transformation of

Q(β, ϕ) as function of ϕ. Since Q(β, ϕ) is strictly concave w.p.a.1 within

ℬ(rβ,β
0) � ℬq(rϕ,ϕ

0), Q∗(β, s) is well-defined w.p.a.1. Define the correspond-
ing shrinking neighborhood of (β0, Sϕ),

Sℬr β0, ϕ0
� �¼ β, sð Þ 2Rdimβ + dimϕ : β,Φ β, sð Þð Þ 2ℬ rβ, β

0
� ��ℬq rϕ, ϕ

0
� � �

:

Fernandez-Val and Weidner (2016) prove within Sℬr β0, ϕ0
� �

, Q∗(β, s) is
four times continuously differentiable. Thus Q∗(β, s) is well-behaved and Tay-
lor expansion can be used. In the following, for Q∗(β, s), we also suppress the

argument when its true value (β0, Sϕ) is plugged in.

It is not difficult to see that Φ β, 0ð Þ¼ ϕ̂ βð Þ and Q∗ β, 0ð Þ¼Q β, ϕ̂ βð Þ� �
.

Therefore, we have ∂βQ∗ β, 0ð Þ¼ ∂βQ β, ϕ̂ βð Þ� �
. It follows that the first-order

conditions for β̂ is.

∂βQ∗ β̂, 0
� �¼ ∂βQ β̂, ϕ̂ β̂

� �� �¼ 0: (54)

Using the integral formofmean value theorem to expand ∂βQ∗(β, 0) at (β0, Sϕ),

∂βQ∗ β, 0ð Þ¼ ∂βQ∗ + ∂ββ0Q∗
� �

β�β0
� �� ∂βs0Q∗

� �
Sϕ +R∗ βð Þ, (55)

R∗ βð Þ¼1

2
β�β0
� �0

ð1

0

ða1

0

∂ββ0βQ∗ a2ð Þda2da1

 �

β�β0
� �

+
1

2
β�β0
� �0

ð1

0

ða1

0

∂βs0βQ∗ a2ð Þda2da1
0

@

1

ASϕ

+
1

2
S0ϕ

ð1

0

ða1

0

∂ss0βQ∗ a2ð Þda2da1
0

@

1

ASϕ,

(56)
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where Q∗(a) ¼ Q(β0 + a(β � β0), Sϕ + a(�Sϕ)). It follows that

β̂�β0 ¼� ∂ββ0Q∗
� ��1

∂βQ∗� ∂βs0Q∗
� �

Sϕ
� �� ∂ββ0Q∗

� ��1
R∗ β̂
� �

: (57)

By definition of Legendre transformation, the derivatives of Q∗(β, s) have a
special relationship with derivatives ofQ(β, ϕ). For example, Sϕ(β,Φ(β, s)) ¼ s,
and after taking derivative with respect to s, we have

∂ϕ0Sϕ β,Φ β, sð Þð Þ∂s0Φ β, sð Þ¼ IN + T :

By definition, we have Φ(β, s) ¼ �∂sQ∗(β, s). Thus �∂ss0 Q∗(β, s) ¼ [∂ϕ0

Sϕ(β, Φ(β, s))]�1 ¼ [H(β, Φ(β, s))]�1. Using this kind of special relationship,

part (ii) of Lemma S.2 proves that

∂ββ0Q∗ ¼Hββ0 �Hβϕ0H�1
ϕϕHϕβ0 , (58)

∂βQ∗ ¼ Sβ, (59)

∂βs0Q∗ ¼Hβϕ0H�1
ϕϕ , (60)

∂ss0βQ∗ ¼H�1
ϕϕ0∂ϕϕ0βQH

�1
ϕϕ0 �H�1

ϕϕ0 Hβϕ0H�1
ϕϕ0∂ϕϕ0ϕQ

� �
H�1

ϕϕ : (61)

Because R∗(β) is function of Sϕ, Fernandez-Val andWeidner (2016) are able

to show that

R1 βð Þ¼R∗ βð Þ�1

2
S0ϕ ∂ss0βQ∗
� �

Sϕ ¼ op N
1
2T

1
2


 �
+ op NT β�β0

		 		� �
, (62)

uniformly over β 2 ℬ(rβ,β
0). See part (2) of Fernandez-Val and Weidner

(2016)’s Theorem B.1 for detailed proof. This is why the Legendre transforma-

tion works. Eqs. (57)–(62) together show that

β̂�β0 ¼� Hββ0 �Hβϕ0H�1
ϕϕ0Hϕβ0

� ��1

Sβ�Hβϕ0H�1
ϕϕ0Sϕ

� �

� Hββ0 �Hβϕ0H�1
ϕϕ0Hϕβ0

� ��1

½1
2
S0ϕH

�1
ϕϕ0 ∂ϕϕ0βQ�Hβϕ0H�1

ϕϕ0∂ϕϕ0ϕQ
� �

H�1
ϕϕ0Sϕ

+ op N
1
2T

1
2


 �
+ op NT β̂�β0

		 		� ��:
(63)

After we have Eq. (63), proof of Eq. (51) is straightforward.

5.3 Bias Calculation

Now we use Eq. (51) to calculate the asymptotic variance and bias. The proce-

dure is similar to the case with only individual effects.
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1ð Þ N�1
2T�1

2 Sβ�Hβϕ0H
�1

ϕϕ0Sϕ

� �
!dN 0,Wð Þ,

whereW¼� lim
N, Tð Þ!∞

N�1T�1 Hββ0 �Hβϕ0H
�1

ϕϕ0Hϕβ0
� �

is assumed to be positive

definite.10 W also has the following interpretation:

W¼ lim
N, Tð Þ!∞

XN

i¼1

XT

t¼1
 �∂π2 litzitz

0
it

� �
, (64)

where zit ¼ xit �ηi �ht and ηi and ht are solutions of the following weighted

least squares problem:

min
XN

i¼1

XT

t¼1
 �∂π2 litð Þ  ∂π2 litxitð Þ

 ∂π2 litð Þ �ηi�ht

				

				

2

: (65)

To see this, write out the first-order conditions of (65),

XT

t¼1
 ∂π2 litð Þ  ∂π2 litxitð Þ

 ∂π2 litð Þ �ηi�ht


 �
¼ 0 for i¼ 1,…,N, (66)

XN

i¼1
 ∂π2 litð Þ  ∂π2 litxitð Þ

 ∂π2 litð Þ �ηi�ht


 �
¼ 0 for t¼ 1,…,T: (67)

Let η ¼ (η1,…, ηN)0 and h ¼ (h1,…, hT)
0, then Eqs. (66) and (67) imply that

η0, h0ð Þ ¼Hβϕ0H
�1

Lϕϕ0 and
PN

i¼1

PT
t¼1 ∂π2 litð Þ  ∂π2 litxitð Þ

 ∂π2 litð Þ �ηi�ht


 �
ηi + htð Þ0 ¼ 0.

It follows that

XN

i¼1

XT

t¼1
 ∂π2 litð Þ ηi + htð Þ ηi + htð Þ0

¼
XN

i¼1

XT

t¼1
 ∂π2 litxitð Þ ηi + htð Þ0 ¼Hβϕ0H

�1

Lϕϕ0Hϕβ0 ¼Hβϕ0H
�1

ϕϕ0Hϕβ0 :

This proves Eq. (64).

2ð ÞN�1
2T�1

2 Hβϕ0 �Hβϕ0
� �

H
�1

ϕϕ0Sϕ

¼N�1
2T�1

2 Hβϕ0 �Hβϕ0
� �

H
�1

Lλλ0Sλ

� �0
, H

�1

Lf f 0Sf

� �0� �0
+ op 1ð Þ

¼ ffiffiffi
κ

p
N�1

XN

i¼1

XT

t¼1

Xt

s¼1
 ∂πlis∂π2 litxitð Þ

XT

t¼1
 ∂π2 litð Þ

+
1
ffiffiffi
κ

p T�1
XT

t¼1

XN

i¼1
 ∂πlit∂π2 litxitð Þ

XN

i¼1
 ∂π2 litð Þ

+ op 1ð Þ:

The first equality uses Eq. (52).

10. Note that  S0βHβϕ0H
�1

ϕϕ0Sϕ

� �
¼�Hβϕ0H

�1

ϕϕ0Hϕβ0 and  SϕS
0
ϕ

� �
¼HLϕϕ0 6¼Hϕϕ0 , but Hβϕ0H

�1

ϕϕ0

HLϕϕ0H
�1

ϕϕ0Hϕβ0 ¼Hβϕ0H
�1

ϕϕ0Hϕβ0 . This is because Hϕϕ0 ¼HLϕϕ0 �bvv0, HLϕϕ0v¼ 0 and Hβϕ0v¼ 0.
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3ð Þ N�1
2T�1

2Hβϕ0 H�1
ϕϕ0 �H

�1

ϕϕ0

� �
Sϕ

¼�N�1
2T�1

2Hβϕ0H
�1

ϕϕ0 Hϕϕ0 �Hϕϕ0
� �

H
�1

Lλλ0Sλ

� �0
, H

�1

Lf f 0Sf

� �0� �0
+ op 1ð Þ:

¼� ffiffiffi
κ

p
N�1

XN

i¼1

XT

t¼1

Xt

s¼1
 ηi + htð Þ∂πlis∂π2 litð Þ

XT

t¼1
 ∂π2 litð Þ

¼� 1
ffiffiffi
κ

p T�1
XT

t¼1

XN

t¼1
 ηi + htð Þ∂πlit∂π2 litð Þ
XN

i¼1
 ∂π2 litð Þ

+ op 1ð Þ:

4ð Þ�1

2
N�1

2T�1
2S0ϕH

�1

ϕϕ0 ∂ϕϕ0βQ�Hβϕ0H
�1

ϕϕ0∂ϕϕ0ϕQ
� �

H
�1

ϕϕ0Sϕ

¼ 1

2

ffiffiffi
κ

p
N�1

XN

i¼1

XT

t¼1
 ∂π3 litzitð Þ

XT

t¼1
 ∂π2 litð Þ

+
1

2

1
ffiffiffi
κ

p T�1
XT

t¼1

XN

i¼1
 ∂π3 litzitð Þ

XN

i¼1
 ∂π2 litð Þ

+ op 1ð Þ:

Take (2)–(4) together, the asymptotic bias is W�1b, and

b¼� ffiffiffi
κ

p
N�1

XN

i¼1

XT

t¼1

Xt

s¼1
 ∂πlis∂π2 litzitð Þ+

XT

t¼1


1

2
∂π3 litzit


 �

XT

t¼1
 ∂π2 litð Þ

� 1
ffiffiffi
κ

p T�1
XN

i¼1

XN

i¼1
 ∂πlit∂π2 litzitð Þ+

XN

i¼1


1

2
∂π3 litzit


 �

XN

i¼1
 ∂π2 litð Þ

:

6 Conclusions

This chapter provides detailed discussion for the working mechanism of the

techniques used in Hahn and Newey (2004) and Fernandez-Val and Weidner

(2016) to deal with high dimensional MLE, and their relationship with the clas-

sical fixed dimensional MLE. It can be considered as a translation and reorga-

nization of the main techniques of fixed effects panel models. Therefore, it

could be a starting point for researchers who have interests in the theoretical

derivation. This chapter also provides a map for asymptotic analysis of more

general models. For example, the discussion in Section 5 clearly shows where

the difficulty is in extending to panels with interactive effects. Knowing where

the difficulty is also could help us understand how general the specification of

the unobserved effects could be.
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1 Introduction

Discrete choice models play an important role in theoretical and applied econo-

metric research. Static and dynamic models have been used to explain decisions

such as labor force participation, brand choice, whether to invest, go to college,

and predict a recession. Inference methods have been developed for cross-section

data in univariate parametric (Berkson, 1944; Bliss, 1934), semiparametric

(Cosslett, 1983; Ichimura, 1993; Klein & Spady, 1993; Manski, 1975, 1985),

and nonparametric settings (Matzkin, 1992), among others.

Multivariate parametric discrete choice models for cross-sectional data have

been considered in the literature for the logistic case in Theil (1969) and

Nerlove and Press (1973a, 1973b). Schmidt and Strauss (1975) considered a

simultaneous logit model. Substantive literature also is found in statistics, such

as Carey, Zeger, and Diggle (1993) and Glonek and McCullagh (1995), who

proposed generalizations of the binary logistic model. Ashford and Sowden

(1970) and Amemiya (1974) focused on generalizing the binary probit model
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to a multivariate setting in a static framework. The main difficulty in probit

models lies in evaluating the likelihood function. Chib and Greenberg (1998)

developed a simulation-based Bayesian and non-Bayesian approach; Song

and Lee (2005) relied on the expectation maximization algorithm to evaluate

the likelihood function for a multivariate probit model. Huguenin, Pelgrin,

and Holly (2009) have shown that a multivariate probit model cannot be esti-

mated accurately using simulationmethods, as generally is done in the literature.

Its estimation instead requires the derivation of the exact maximum-likelihood

function. All these papers are in a static framework with strictly exogenous

explanatory variables and assume a large n.
Dynamic discrete choice models for univariate time series data case have

been considered among others by Eichengreen, Watson, and Grossman (1985),

Dueker (1997, 2005), Chauvet and Potter (2005), and Kauppi and Saikkonen

(2008).1 The last develop a unified model framework that accommodates most

previously analyzed dynamic binary time series models as special cases.

Chauvet and Potter (2005) apply a Bayesian approach to a dynamic probit

model. Candelon, Dumitrescu, Hurlin, and Palm (2013) generalize Kauppi

and Saikkonen (2008) to a multivariate setting. Multivariate dynamic discrete

choice models also are considered by Eichler, Manner, and T€urk (2015),

Nyberg (2014), andWinkelmann (2012). All these papers take a fully paramet-

ric approach, and they require a large T.
The literature about univariate and multivariate discrete choice models for

panel data is much more limited, because these models are difficult to estimate,

especially in short panels with individual specific heterogeneity if one is unwill-

ing to make assumptions about how the latter is related to the observable exog-

enous covariates and initial conditions. See Chamberlain (1985) for static as well

as pure (i.e., without exogenous covariates) dynamic fixed effects logit models

andMagnac (2000) for multinomial dynamic panel logit models; Manski (1987)

for the semiparametric static case; and Honor�e and Kyriazidou (2000) for

dynamic logit and semiparametric models with exogenous covariates. Most of

the research, however has focused on univariate models. Static bivariate panel

logit models with random effects (i.e., with parameterized heterogeneity) have

been considered by Ten Have and Morabia (1999) and dynamic random effects

models by Bartolucci and Farcomeni (2009). Narendranathan, Nickell, and

Metcalf (1985) consider a simple case of the type of models analyzed in this

chapter.

We consider inference in dynamic multivariate discrete choice panel data

models with fixed effects, in the sense that we avoid making assumptions about

the nature of the individual effects and their relationship with the initial condi-

tions and/or the exogenous covariates. We show that in the logit pure VAR(1)

case (i.e., without exogenous covariates), the parameters are identified with four

1. Validity of dynamic probit ML estimation has been proven by DeJong and Woutersen (2011).
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waves of observations and therefore can be estimated consistently at rate
ffiffiffi
n

p
with an asymptotic normal distribution.2 We show that the identification strat-

egy of Honor�e and Kyriazidou (2000) carries over in the multivariate case when

strictly exogenous covariates are included in the model. We also present an

extension of the bivariate simultaneous logit model of Schmidt and Strauss

(1975) to the panel case, allowing for contemporaneous cross-equation depen-

dence both in a static framework and a dynamic framework. The results of this

chapter are of particular interest for short panels, that is, for small T.
The chapter is organized as follows: Section 2 discusses univariate static and

dynamic panel logitmodels. Section 3 introduces the bivariate pure VAR(1) logit

model and discusses identification with four periods of data. Section 4 introduces

strictly exogenous covariates in the bivariate logit model of Section 3. Section 5

provides the identification condition for the general M-variate general T case.

Section 6 presents extensions of the simultaneous logit model of Schmidt and

Strauss (1975) to the panel case. Finally, Section 7 contains some simple Monte

Carlo simulations for the model of Section 3 for different sample sizes (n ¼ 100,

400, 1600) and different panel lengths (T ¼ 4, 6, 8). Section 8 offers conclusions

and discusses directions of future research.

2 The Univariate Logit Model

2.1 Static Case

We first review the static panel data logit model with strictly exogenous explan-

atory variables. Recall the cross-sectional logit model:

yi ¼ 1 x0iβ + εi � 0
� �

:

If we assume that εi is logistically distributed conditional on the explanatory
variable, xi, that is,

Pr εi � zj xið Þ¼ exp zð Þ
1 + exp zð Þ¼Λ zð Þ

then

Pr yi ¼ 1j xið Þ¼ exp xiβð Þ
1 + exp xiβð Þ¼Λ x0iβ

� �
:

Estimation of β can be done by maximizing the log-likelihood function

L bð Þ¼
Xn

i¼1

yi logΛ x0ib
� �

+ 1� yið Þ log 1�Λ x0ib
� �� �¼

Xn

i¼1

log
exp x0ib
� �

yi

1 + exp x0ib
� �

 !

:

2. Fernández-Val andWeidner (2016) show how to estimate parameters and obtain partial effects in

a variety of nonlinear panel models with fixed effects, including the ones we consider here, assum-

ing, however, large T.

Panel Vector Autoregressions With Binary Data Chapter 8 199



We now turn to the panel data version of the simple logit model. The setup

considered throughout this chapter is one in which the econometrician has

access to a data set on a large number of observations, n, each observed across

a relatively small number of time periods. The static panel data binary choice

model with individual effects is

yit ¼ 1 x0itβ + αi + εit � 0
� �

t¼ 1,…,T

where we assume that εit is distributed logistically conditional on xi ¼ (xi1,
xi2, …, xiT)

0 and αi and independent over time. The assumption that εit is inde-
pendent over time assumption implies that the yit’s are independent over time

conditional on xi and αi. As above, we have that

Pr yit ¼ 1j xi, αið Þ¼ Pr εit ��x0itβ�αij xi, αi
� �

¼ Pr εit � x0itβ + αij xi, αi
� �

¼ exp x0itβ + αi
� �

1 + exp x0itβ + αi
� �

¼Λ x0itβ + αi
� �

:

In this model, αi plays the same role as a so-called fixed effect in a linear

panel data model, and the challenge is to estimate β without making assump-

tions about the relationship between xi ¼ (xi1, xi2, …, xiT) and αi. In a linear

model, this can be accomplished by differencing. Such differencing does not

work in nonlinear models.

One generic approach that sometimes can be used to estimate β is to con-

dition on a sufficient statistic for αi. Specifically, assume that for each iwe can
find a function of the data, Si, such that the distribution of yi ¼ (yi1, yi2, …, yiT)
conditional on (Si, xi, αi) does not depend on αi, and that the distribution of yi
conditional on (Si, xi, αi) depends on the parameter of interest (here, β). Then
we can estimate the parameter of interest by maximum likelihood using the

conditional distribution of the data given (Si, xi). This is referred to as

the conditional maximum likelihood estimator. See Andersen (1970). The

main limitation of this approach is that it often is impossible to find such a

sufficient statistic Si.
In the logit model, it turns out that Σt yit is a sufficient statistic for αi. See

Rasch (1960). To see why, consider, for example, the case where T ¼ 2.

In this case

Pr yit ¼ 1j yi1 + yi2 ¼ 0, xi, αið Þ¼ 0

Pr yit ¼ 1j yi1 + yi2 ¼ 2, xi, αið Þ¼ 1

i.e., individuals who do not switch states (i.e., who are 0 or 1 in both periods)

do not offer any information about β. Consider the events in which the individ-
ual switches states, A01 ¼ {yi1 ¼ 0, yi2 ¼ 1} and A10 ¼ {yi1 ¼ 1, yi2 ¼ 0}.
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Here A01[A10 is the event yi1 + yi2 ¼ 1. It then is easy to see that because of

independence over time

Pr A01j xi, αið Þ¼ Pr yi1 ¼ 0, yi2 ¼ 1j xi, αið Þ
¼ Pr yi1 ¼ 0j xi, αið Þ � Pr yi2 ¼ 1j xi, αið Þ

¼ 1

1 + exp x0i1β + αi
� � :

exp x0i2β + αi
� �

1 + exp x0i2β + αi
� �

and

Pr A10j xi, αið Þ¼ exp x0i1β + αi
� �

1 + exp x0i1β + αi
� � 1

1 + exp x0i2β + αi
� � :

Therefore,

Pr A01j A01[A10, xi, αið Þ¼ Pr A01\ A01[A10ð Þj xi, αið Þ
Pr A01[A10j xi, αið Þ

¼ Pr A01j xi, αið Þ
Pr A01j xi, αið Þ + Pr A10j xi, αið Þ

¼ 1

1 +
Pr A10j xi, αið Þ
Pr A01j xi, αið Þ

¼ 1

1 + exp xi1� xi2ð Þ0β� �

¼ 1�Λ xi1� xi2ð Þ0β� �

and

Pr A10j A01[A10, xi, αið Þ¼ 1� Pr A01j A01[A10, xi, αið Þ¼Λ xi1� xi2ð Þ0β� �
:

In other words, conditional on the individual switching states (from 0 to 1 or

from 1 to 0) so that yi1 + yi2 ¼ 1, the probability of observing {0, 1} or {1, 0}

depends on β (i.e., contains information about β) but is independent of αi. For
T ¼ 2, estimation of β can be based onmaximizing the conditional log-likelihood

LC bð Þ¼
XN

i¼1

1 yi1 + yi2 ¼ 1f g yi1 log Λ xi1� xi2ð Þ0b� �� ��

+ 1� yi1ð Þ log 1�Λ xi1� xi2ð Þ0b� �� ��

¼
XN

i¼1

1 yi1 + yi2 ¼ 1f g log exp xi1� xi2ð Þ0b� �
yi1

1 + exp xi1� xi2ð Þ0b� �

 !

(1)

which is nothing but logit estimation with first-differenced regressors per-

formed on the individuals who switch states in the two periods.

Panel Vector Autoregressions With Binary Data Chapter 8 201



For general T, the conditional log-likelihood can be shown to be

LC bð Þ¼
XN

i¼1

log
exp

X
t
yitx

0
itb

� 	

X
d1,…, dTð Þ2B exp

X
t
dtx0itb

� 	

0

B@

1

CA

where

B¼ d1,…, dTð Þ such that dt ¼ 0 or 1 and
X

t

dt ¼
X

t

yit

( )

:

For T ¼ 2, this gives

LC bð Þ¼
XN

i¼1

1 yi1 + yi2¼ 0f g log exp 0ð Þ
exp 0ð Þ


 �

+
XN

i¼1

1 yi1 + yi2¼ 2f g log exp x0i1β + x
0
i2β

� �

exp x0i1β + x
0
i2β

� �

 !

+
XN

i¼1

1 yi1 + yi2¼ 1f g log exp yi1x
0
i1b+ yi2x

0
i2b

� �

exp 1 � x0i1b+ 0 � x0i2b
� �

+ exp 0 � x0i1b+ 1 � xi2b0
� �

 !

:

Obviously, those i that have yi1 ¼ yi2 ¼ 1 have no contribution to the log-

likelihood (we obtain log
exp x0i1β + x

0
i2βð Þ

exp x0
i1
β + x0

i2
βð Þ


 �
¼ log 1ð Þ¼ 0, and similarly for those

with yi1 ¼ yi2 ¼ 0 since log
exp 0ð Þ
exp 0ð Þ
� 	

¼ log 1ð Þ¼ 0. Therefore, we can write

LC bð Þ¼
XN

i¼1

1 yi1 + yi2 ¼ 1f g log exp yi1x
0
i1b+ yi2xi2b

0� �

exp x0i1b
� �

+ exp x0i2b
� �

 !

¼
XN

i¼1

1 yi1 + yi2 ¼ 1f g log exp yi1x
0
i1b+ 1� yi1ð Þx0i2b

� �

exp x0i1b
� �

+ exp x0i2b
� �

 !

¼
XN

i¼1

1 yi1 + yi2 ¼ 1f g log exp yi1 xi1� xi2ð Þ0b� �

1 + exp xi1� xi2ð Þ0b


 �

which agrees with the expression we obtained previously.

2.2 Dynamic Case (Pure AR(1))

The conditional maximum likelihood approach also can be used to estimate

panel data logit models with individual effects and lags of the dependent var-

iable, provided that there are no other explanatory variables and that there are at

least four observations per individual (see Cox (1958), Chamberlain (1985), and

Magnac (2000)). The panel AR (1) logit model is
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Pr yi1 ¼ 1j αið Þ¼ p1 αið Þ (2)

Pr yit ¼ 1j αi, yi1,…, yit�1ð Þ¼ Pr yit ¼ 1j αi, yit�1ð Þ¼ exp γyit�1 + αið Þ
1 + exp γyit�1 + αið Þ

t¼ 2,…,T;T� 4

where yi1 is observed, although the model need not be specified in the initial

period. The underlying errors are assumed here independent of initial conditions

and identically distributed with logistic distribution. Eq. (2) does not make any

assumptions about the distribution of the initial y and how it depends on αi.
To gain intuition, consider the case with four observations per individual

(T ¼ 4). Inference on γ then is based on individuals switching states in the

two middle periods, 2 and 3. Consider the events:

A01 ¼ yi1, yi2 ¼ 0, yi3 ¼ 1, yi4f g
A10 ¼ yi1, yi2 ¼ 1, yi3 ¼ 0, yi4f g:

By sequential decomposition of the joint probability and by the first-order

Markovian property of y, the probabilities of eventsA01 andA10 can be written

as follows

Pr A01j αið Þ¼ Pr yi1j αið Þ � Pr yi2 ¼ 0j αi, yi1ð Þ:
Pr yi3 ¼ 1j αi, yi2 ¼ 0ð Þ � Pr yi4j αi, yi3 ¼ 1ð Þ

¼ p1 αið Þyi1 1�p1 αið Þð Þ1�yi1 1

1 + exp γyi1 + αið Þ :

exp αið Þ
1 + exp αið Þ :

exp yi4γ + yi4αið Þ
1 + exp γ + αið Þ

and

Pr A10j αið Þ¼ Pr yi1j αið Þ � Pr yi2 ¼ 1j αi, yi1ð Þ:
Pr yi3 ¼ 0j αi, yi2 ¼ 1ð Þ � Pr yi4j αi, yi3 ¼ 0ð Þ

¼ p1 αið Þyi1 1�p1 αið Þð Þ1�yi1 � exp γyi1 + αið Þ
1 + exp γyi1 + αið Þ �

1

1 + exp γ + αið Þ �
exp yi4αið Þ
1 + exp αið Þ :

Therefore,

Pr A01j A01[A10, αið Þ¼ 1

1 +
Pr A10j αið Þ
Pr A01j αið Þ

¼ 1

1 + exp γ yi1� yi4ð Þð Þ

Pr A10j A01[A10, αið Þ¼ 1� Pr A01j A01[A10, αið Þ¼ exp γ yi1� yi4ð Þð Þ
1 + exp γ yi1� yi4ð Þð Þ
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which do not depend on the individual effects. The conditional log-likelihood of

the model for T ¼ 4 periods is:

LC gð Þ¼
Xn

i¼1

1 yi2 + yi3 ¼ 1f g log exp g yi1� yi4ð Þð Þyi2
1 + exp g yi1� yi4ð Þð Þ

 �

: (3)

The conditional log-likelihood is similar in the static Eq. (1) and dynamic

case Eq. (3). For general T, the conditional log-likelihood is based on the

fact that

Pr yi1, yi1,…;yiT j yi1, yiT ,
XT

t¼2

yit, αi

 !

¼
exp γ

XT

t¼2
yityit�1

� 	

X
d0,…, dTð Þ2B exp γ

XT

t¼2
dtdt�1

� 	

where

ℬ¼ d0,…, dTð Þ such that dt 2f0, 1g and
XT

t¼1

dt ¼
XT

t¼1

yit

( )

:

See Cox (1958) and Magnac (2000) for higher order AR models.

2.3 Dynamic Case With Exogenous Covariates

Honor�e and Kyriazidou (2000) propose conditional maximum likelihood type

estimators for an extension of the AR(1) panel data logit model that also allows

for strictly exogenous regressors.3 They consider models of the form

Pr yi1 ¼ 1j xi, αið Þ¼ p1 xi, αið Þ
Pr yit ¼ 1j xi, αi, yi1, yit�1ð Þ¼ Pr yit ¼ 1j xi, αi, yit�1ð Þ¼ exp x0itβ + γyit�1 + αi

� �

1 + exp x0itβ + γyit�1 + αi
� �

where xi ¼ (xi1, xi2, x3, xi4). The model is unspecified for the initial period. The

x’s need not be observed in that period though, that is, xi1 need not be observed.
Similar to the previous AR(1) logit, Honor�e and Kyriazidou consider the events:

A01 ¼ yi1, yi2 ¼ 0, yi3 ¼ 1, yi4f g
A10 ¼ yi1, yi2 ¼ 1, yi3 ¼ 0, yi4f g:

By sequential decomposition of the joint probability, the probabilities of

events A01 and A10 can be written as follows

3. D’Addio and Honor�e (2010) generalized the approach in Honor�e and Kyriazidou (2000) to a

model with two lags.
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Pr A01j αi, xið Þ¼ Pr yi1j αi, xið Þ � Pr yi2 ¼ 0j αi, yi1, xið Þ �
Pr yi3 ¼ 1j αi, yi2 ¼ 0, xið Þ � Pr yi4j αi, yi3 ¼ 1, xið Þ

¼ p1 αi, xið Þyi1 1�p1 αi, xið Þð Þ1�yi1 � 1

1 + exp x0i2β + γyi1 + αi
� � �

exp x0i3β + αi
� �

1 + exp x0i3β + αi
� � � exp yi4x

0
i4β + yi4γ + yi4αi

� �

1 + exp x0i4β + γ + αi
� �

and

Pr A10j αi, xið Þ¼ Pr yi1j αi, xið Þ � Pr yi2 ¼ 1j αi, yi1, xið Þ �
Pr yi3 ¼ 0j αi, yi2 ¼ 1, xið Þ � Pr yi4j αi, yi3 ¼ 0, xið Þ

¼ p1 αi, xið Þyi1 1�p1 αi, xið Þð Þ1�yi1 � exp x0i2β + γyi1 + αi
� �

1 + exp x0i2β + γyi1 + αi
� � �

1

1 + exp x0i3β + γ + αi
� � � exp yi4x

0
i4β + yi4αi

� �

1 + exp x0i4β + αi
� � �

Identification of β and γ in thismodel is based on the fact that if xi2 ¼ xi3, then

Pr A01j A01[A10, αi, xi, xi3 ¼ xi4ð Þ¼ 1

1 + exp xi2� xi3ð Þ0β + γ yi1� yi4ð Þð Þ

Pr A10j A01[A10, αi, xi, xi3 ¼ xi4ð Þ¼ exp xi2� xi3ð Þ0β + γ yi1� yi4ð Þð Þ
1 + exp xi2� xi3ð Þ0β + γ yi1� yi4ð Þð Þ

that is, they are independent of αi. We can estimate β and γ by maximizing the

weighted log-likelihood function where (discrete) explanatory variables, xit,
satisfy the condition Pr(xi2 ¼ xi3) > 0:

Xn

i¼1

1 yi2 + yi3 ¼ 1f g1 xi3� xi4 ¼ 0f g log exp xi2� xi3ð Þ0b + g yi1� yi4ð Þ� �yi2

1 + exp xi2� xi3ð Þ0b+ g yi1� yi4ð Þ� �

 !

,

(4)

leading to root-n asymptotically normal and consistent estimators of β and γ.
The objective function Eq. (4) is similar to the log-likelihood in the static

Eq. (1) and pure AR(1) dynamic case Eq. (3).

Although inference based only on observations for which xi3 ¼ xi4 might be

reasonable in some cases (in particular, experimental cases where the distribution

of xi is in the control of the researcher), it is not useful in many economic appli-

cations. The idea then is to replace the indicator functions 1 {xi3 �xi4 ¼ 0} in the

previous objective function with weights that depend inversely on the magnitude

of the difference xi3 �xi4, giving more weight to observations for which xi3 is
close to xi4. Specifically, they propose estimating β0 and γ0 by maximizing
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Xn

i¼1

1 yi2 + yi3 ¼ 1f gK xi3� xi4
hn


 �
log

exp xi2� xi3ð Þ0b+ g yi1� yi4ð Þ� �yi2

1 + exp xi2� xi3ð Þ0b + g yi1� yi4ð Þ� �

 !

(5)

with respect to b and g over some compact set. Here K(�) is a kernel density

function that gives appropriate weight to observation i, and hn is a bandwidth

that shrinks to 0 as n increases. The asymptotic theory will require that K(�)
be chosen so that a number of regularity conditions, such as K(ν) ! 0 as

jν j ! ∞, are satisfied. The estimators are shown to be consistent and asymp-

totically normal although the rate of convergence in distribution is slower than

the usual
ffiffiffi
n

p
. The proposed estimators are extremum or M-estimators. The key

idea behind the estimation is that the limit of the previous objective function, is

uniquely maximized at the true parameter values, under appropriate assump-

tions. It is clear that identification of the model will require that xi3 �xi4 be

continuously distributed with support in a neighborhood of 0, and that xi2 �xi3
have sufficient variation conditional on the event that xi3 �xi4 ¼ 0.

3 The Bivariate Pure VAR(1) Logit Case

Narendranthan et al. (1985) considered a bivariate extension of the univariate

dynamic logit model:

y1, it ¼ 1 y1, it�1γ11 + y2, it�1γ12 + α1, i + ε1, it � 0f g
y2, it ¼ 1 y1, it�1γ21 + y2, it�1γ22 + α2, i + ε2, it � 0f g

where {ε1, it}t¼1
T and {ε2, it}t¼1

T are independent i.i.d. sequences of logistic errors,

independent of the individual effects α1,i and α2,i. The model holds (at least) for

periods t ¼ 2, …, T while it is not parametrically specified for the first (initial)

period, that is, P
y1, i1
y2, i1


 �����α1, i, α2, i


 �
is not parameterized. α1,i and α2,i are fixed

effects in the sense that they can be correlated arbitrarily while their relationship

with the initial conditions is not specified. In the sequel, we suppress the i sub-
script for notational simplicity. Under these assumptions

P
y1t

y2t


 �����
y1s

y2s


 � �

s<t

,
α1

α2


 � !

¼P
y1t

y2t


 �����
y1t�1

y2t�1


 �
,

α1

α2


 �
 �

¼P y1tj
y1t�1

y2t�1


 �
, α1


 �
�P y2tj

y1t�1

y2t�1


 �
, α2


 �

¼ exp α1 + y1t�1γ11 + y2t�1γ12ð Þy1tð Þ
1 + exp α1 + y1t�1γ11 + y2t�1γ12ð Þð Þ �

exp α2 + y2, t�1γ21 + yt�1γ22ð Þy2tð Þ
1 + exp α2 + y1t�1γ21 + y2t�1γ22ð Þð Þ :
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We will first discuss identification in the T ¼ 4 case. Using the same key

insight as in the univariate 4-period case, namely that conditioning on the indi-

vidual switching states in the middle two periods, that is, for t ¼ 2, 3, eliminates

the individual effect, we consider first the case that both y’s switch states from 0

to 1. We have that

P
y11

y21

 !

,
y12

y22

 !

¼ 0

0

 !

,
y13

y23

 !

¼ 1

1

 !

,
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� 1

1 + exp α1 + y11γ11 + y21γ12ð Þ
1

1 + exp α2 + y11γ21 + y21γ22ð Þ

� exp α1ð Þ
1 + exp α1ð Þ

exp α2ð Þ
1 + exp α2ð Þ �

exp α1 + γ11 + γ12ð Þy14ð Þ
1 + exp α1 + γ11 + γ12ð Þ

exp α2 + γ21 + γ22ð Þy24ð Þ
1 + exp α2 + γ21 + γ22ð Þ

and

P
y11

y21

 !

,
y12

y22

 !

¼ 1

1

 !

,
y13

y23

 !

¼ 0

0

 !

,
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� exp α1 + y11γ11 + y21γ12ð Þ
1 + exp α1 + y11γ11 + y21γ12ð Þ

exp α2 + y11γ21 + y21γ22ð Þ
1 + exp α2 + y11γ21 + y21γ22ð Þ

� 1

1 + exp α1 + γ11 + γ12ð Þ
1

1 + exp α2 + γ21 + γ22ð Þ �
exp α1y14ð Þ
1 + exp α1ð Þ

exp α2y24ð Þ
1 + exp α2ð Þ :

Define

Ajk, lm ¼ y11
y21


 �
,

y12
y22


 �
¼ j

k


 �
,

y13
y23


 �
¼ l

m


 �
,

y14
y24


 � �

for j, k, l, m 2 {0, 1}.

It is not difficult to see that

P A11,00j y11, y21, y14, y24, α1, α2ð Þ
P A00,11j y11, y21, y14, y24, α1, α2ð Þ

¼ exp γ11 y11� y14ð Þ+ γ12 y21� y14ð Þ+ γ21 y11� y24ð Þ+ γ22 y21� y24ð Þð Þ

and therefore

P A00,11j y11, y21, y14, y24, α1, α2,A00,11[A11,00ð Þ

¼ P A00,11j y11, y21, y14, y24, α1, α2ð Þ
P A00,11j y11, y21, y14, y24, α1, α2ð Þ+P A11,00j y11, y21, y14, y24, α1, α2ð Þ

¼ 1

1 +
P A11,00j y11, y21, y14, y24, α1, α2ð Þ
P A00,11j y11, y21, y14, y24, α1, α2ð Þ

1

1 + exp γ11 y11� y14ð Þ+ γ12 y21� y14ð Þ+ γ21 y11� y24ð Þ + γ22 y21� y24ð Þð Þ :
(6)
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We observe that Eq. (6) does not depend on the fixed effects, while it iden-

tifies the dependence parameters, the γ’s, from the variation of responses

between the first and the fourth periods.

Similarly, for individuals whose y1 switches from 0 to 1 and y2 switches

from 1 to 0 in the middle two periods (t ¼ 2, 3) we have that

P
y11

y21

 !

,
y12

y2

 !

¼
0

1

 !

,
y13

y3

 !

¼
1

0

 !

,
y14

y24

 !

¼
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� 1

1 + exp α1 + y11γ11 + y21γ12ð Þ
exp α2 + y11γ21 + y21γ22ð Þ

1 + exp α2 + y11γ21 + y21γ22ð Þ

� exp α1 + γ12ð Þ
1 + exp α1 + γ12ð Þ

1

1 + exp α2 + γ22ð Þ �
exp α1 + γ11ð Þy14ð Þ
1 + exp α1 + γ11ð Þ

exp α2 + γ21ð Þy24ð Þ
1 + exp α2 + γ21ð Þ

and

P
y11

y21

 !

,
y12

y22

 !

¼
1

0

 !

,
y13

y23

 !

¼
0

1

 !

,
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� exp α1 + y11γ11 + y21γ12ð Þ
1 + exp α1 + y11γ11 + y21γ12ð Þ

1

1 + exp α2 + y11γ21 + y21γ22ð Þ

� 1

1 + exp α1 + γ11ð Þ
exp α2 + γ21ð Þ

1 + exp α2 + γ21ð Þ �
exp α1 + γ12ð Þy14ð Þ
1 + exp α1 + γ12ð Þ

exp α2 + γ22ð Þy24ð Þ
1 + exp α2 + γ22ð Þ

and therefore

P A01,10j y11, y21, y14, y24, α1, α2,A10,01[A01,10ð Þ
¼ 1

1 + exp γ11 y11� y14ð Þ + γ12 y14 + y21�1ð Þ + γ21 1� y11� y24ð Þ + γ22 y24� y21ð Þð Þ :

All sequences where at least one switch occurs contain information about

at least some of the unknown parameters. For example, consider the case

where y1 changes from 0 to 1 between periods 2 and 3, while y2 is 0 in both

periods:

P
y11

y21

 !

,
y12

y22

 !

¼
0

0

 !

,
y13

y23

 !

¼
1

0

 !

,
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� 1

1 + exp α1 + y11γ11 + y21γ12ð Þ
1

1 + exp α2 + y11γ21 + y21γ22ð Þ

� exp α1ð Þ
1 + exp α1ð Þ

1

1 + exp α2ð Þ �
exp α1 + γ11ð Þy14ð Þ
1 + exp α1 + γ11ð Þ

exp α2 + γ21ð Þy24ð Þ
1 + exp α2 + γ21ð Þ
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and

P
y11

y21

 !

,
y12

y22

 !

¼ 1

0

 !

,
y13

y23

 !

¼ 0

0

 !

,
y14

y24

 !�����
α1, α2

 !

¼P
y11

y21

 !�����
α1, α2

 !

� exp α1 + y11γ11 + y21γ12ð Þ
1 + exp α1 + y11γ11 + y21γ12ð Þ

1

1 + exp α2 + y11γ21 + y21γ22ð Þ

� 1

1 + exp α1 + γ11ð Þ
1

1 + exp α2 + γ21ð Þ �
exp α1y14ð Þ
1 + exp α1ð Þ

exp α2y24ð Þ
1 + exp α2ð Þ :

Therefore

P A10,00j y11, y21, y14, y24, α1, α2ð Þ
P A00,10j y11, y21, y14, y24, α2, α2ð Þ¼ exp γ11 y11� y14ð Þ+ γ12y21� γ21y24ð Þ

and

P A00,10j y11, y21, y14, y24, α1, α2,A10,00[A00,10ð Þ
¼ 1

1 + exp γ11 y11� y14ð Þ+ γ12y21� γ21y24ð Þ :

In this case, the parameter of the own lag (γ22) of the process with no

switches in the two middle periods (y2) is not identified.

4 The Bivariate Logit Model With Exogenous Covariates

We now add exogenous variables to the model and demonstrate how the ideas of

Honor�e and Kyriazidou (2000) can be applied to obtain identification and con-

struct estimators. The model takes the form

y1, it ¼ 1 y1, it�1γ11 + y2, it�1γ12 + x
0
1, itβ1 + α1, i + ε1, it � 0

� �

y2, it ¼ 1 y1, it�1γ21 + y2, it�1γ22 + x
0
2, itβ2 + α2, i + ε2, it � 0

� �

where {ε1, it}t¼1
T and {ε2, it}t¼1

T are independent i.i.d. sequences of logistic errors.

α1,i and α2,I are fixed effects, and xit ¼ (x1,it [ x2,it) is a set of strictly exogenous

variables. Again, the initial conditions P
y1, i1
y2, i1


 �����α1, i, α2, i, xi1, xi2, xi3, xi4


 �
are

left unspecified. The model for periods t ¼ 2,…, T is (dropping the i subscripts)

P
y1t

y2t

 !�����
y1s

y2s

 !( )

s<t

,
α1

α2

 !

, x

 !

¼
exp α1 + y1t�1γ11 + y2t�1γ12 + x

0
1tβ1

� 	
y1t

� 	

1 + exp α1 + y1t�1γ11 + y2t�1γ12 + x
0
1tβ1

� 	� 	
exp α2 + y2, t�1γ21 + yt�1γ22 + x

0
2tβ2

� 	
y2t

� 	

1 + exp α2 + y1t�1γ21 + y2t�1γ22 + x
0
2tβ2

� 	� 	

where x ¼ (x1, x2, x3, x4). As in the univariate case, we need not observe x1.
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Concentrating again on sequences where there is at least one switch of state

in the middle two periods in a 4-period panel, we have that

P
y11

y21


 �
,

y12

y22


 �
¼ 0

0


 �
,

y13

y23


 �
¼ 1

1


 �
,

y14

y24


 �����α1, α2, x

 �

¼P
y11

y21


 �����α1, α2, x

 �

�
1

1 + exp α1 + y11γ11 + y21γ12 + x
0
12β1

� � 1

1 + exp α2 + y11γ21 + y21γ22 + x
0
22β2

� � �

exp α1 + x013β1
� �

1 + exp α1 + x013β1
� �

exp α2 + x023β2
� �

1 + exp α2 + x023β2
� �

exp α1 + γ11 + γ12 + x
0
14β1

� �
y14

� �

1 + exp α1 + γ11 + γ12 + x
0
14β1

� �
exp α2 + γ21 + γ22 + x

0
24β2

� �
y24

� �

1 + exp α2 + γ21 + γ22 + x
0
24β2

� �

and

P
y11

y21


 �
,

y12

y22


 �
¼ 1

1


 �
,

y13

y23


 �
¼ 0

0


 �
,

y14

y24


 �����α1, α2, x

 �

¼P
y11

y21


 �����α1, α2, x

 �

�

exp α1 + y11γ11 + y21γ12 + x
0
12β1

� �

1 + exp α1 + y11γ11 + y21γ12 + x
0
12β1

� �
exp α2 + y11γ21 + y21γ22 + x

0
22β2

� �

1 + exp α2 + y11γ21 + y21γ22 + x
0
22β2

� � �
1

1 + exp α1 + γ11 + γ12 + x
0
13β1

� � 1

1 + exp α2 + γ21 + γ22 + x
0
23β2

� � �

exp α1 + x014β1
� �

y14
� �

1 + exp α1 + x014β1
� �

exp α2 + x024β2
� �

y24
� �

1 + exp α2 + x024β2
� � :

Therefore, similarly to Honor�e and Kyriazidou (2000), if the exogenous var-
iables do not change in the last two periods that is, if x3 ¼ x4 then

P A00,11j y11, y21, y14, y24, α1, α2,A00,11[A11,00, x3 ¼ x4ð Þ
¼ 1=ð1 + expðγ11 y11� y14ð Þ+γ12 y21� y14ð Þ+ x13� x12ð Þ0β1

+ γ21 y11� y24ð Þ+ γ22 y21� y24ð Þ+ x22� x23ð Þ0β2ÞÞ
does not depend on the fixed effects.

Similarly, we can show that

P A01,10j y11, y21, y14, y24, α1, α2,A01,10, x3 ¼ x4ð Þ
¼ 1=ð1 + expðγ11 y11� y14ð Þ+γ12 y14 + y21�1ð Þ + x12� x13ð Þ0β1

+ γ21 1� y11� y24ð Þ+ γ22 y24� y21ð Þ + x23� x22ð Þ0β2ÞÞ:
Because the right side does not depend on α1 or α2, the same result holds

without conditioning on those,
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P A01,10j y11, y21, y14, y24,A01,10[A10,01, x3¼ x4
� �

¼ 1=ð1 + expðγ11 y11�y14ð Þ + γ12 y14 + y21�1ð Þ+ x12�x13ð Þ0β1 + γ21 1� y11�y24ð Þ
+ γ22 y24�y21ð Þ + x23�x22ð Þ0β2ÞÞ:
This expression can be used to construct a conditional “likelihood” function

that can be used to estimate γ11, γ12, γ21, γ22, β1 and β2 without making any

assumptions about α1 or α2 or about the distribution of the initial y’s.
The coefficients on the exogenous variables, the β’s, are identified from the

variation of the x’s between periods 2 and 3. Furthermore, both of the β’s are
identified under the same conditioning event, namely x3 ¼ x4, even if only one

of the y’s switches states in the middle two periods while the other remains con-

stant in both periods (a case in which, as we saw in the previous section, only the

parameters of the switching process are identified when there are no exogenous

variables). Indeed, consider the case in which y1 changes from 0 to 1 between

periods 2 and 3, while y2 is 0 on both periods:

P
y11

y21

 !

,
y12

y22

 !

¼
0

0

 !

,
y13

y23

 !

¼
1

0

 !

,
y14

y24

 !�����
α1, α2, x

 !

¼P
y11

y21

 !�����
α1, α2, x

 !

� 1

1 + exp α1 + y11γ11 + y21γ12 + x
0
12β1

� 	

1

1 + exp α2 + y11γ21 + y21γ22 + x
0
22β2

� 	 � exp α1 + x
0
13β1

� �
:

1 + exp α1 + x013β1
� 	 � 1

1 + exp α2 + x023β2
� 	

:
exp α1 + γ11 + x

0
14β1

� �
y14

� �

1 + exp α1 + γ11 + x
0
14β1

� 	 � exp α2 + γ21 + x
0
24β2

� �
y24

� �

1 + exp α2 + γ21 + x
0
24β2

� 	

and

P
y11

y21

 !

,
y12

y22

 !

¼
1

0

 !

,
y13

y23

 !

¼
0

0

 !

,
y14

y24

 ! !

¼P
y11

y21

 !�����α1, α2, x

 !

�
exp α1 + y11γ11 + y21γ12 + x

0
12
β1

� 	

1 + exp α1 + y11γ11 + y21γ12 + x
0
12
β1

� 	

� 1

1 + exp α2 + y11γ21 + y21γ22 + x
0
22
β2

� 	 � 1

1 + exp α1 + γ11 + x
0
13
β1

� 	 � 1

1 + exp α2 + γ21 + x
0
23
β2

� 	

�
exp α1 + x

0
14
β1

� 	
y14

� 	

1 + exp α1 + x
0
14
β1

� 	 �
exp α+ x0

24
β2

� 	
y24

� 	

1 + exp α2 + x
0
24
β2

� 	 :

Conditioning in x3 ¼ x4 we obtain

P A10,00j y11, y21, y14, y24, α1, α2, x3 ¼ x4ð Þ
P A00,10j y11, y21, y14, y24, α2, α2, x3 ¼ x4ð Þ

¼ exp γ11 y11� y14ð Þ + γ12y21 + x012�x013� x014y14
� �

β1� γ21y24� x024y24β2
� �
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Therefore

P A00,10j y11, y21, y14, y24, α1, α2, x3¼ x4,A00,10 [A00,10

� �

¼ 1

1 + exp γ11 y11�y14ð Þ + γ12y21� γ21y24 + x12� x13ð Þ0β1�x0
14
y14β1� x0

24
y24β2

� 	 :

5 The General M-Variate, General T VAR(1) Case

Let yit denote the vector of M choices of individual i at time t, (y1,it, y2,it, …,

yM,it). Also let γm ¼ (γm1, γm2, …, γmM)0 be the dependence parameters of the

m’th choice. The multivariate VAR(1) logit model with fixed effects is

P yit ¼ yt, j yi1 ¼ y1,…, yit�1 ¼ yt�1, α1, i,…, αM, ið Þ

¼
YM

m¼1

exp ym, ity
0
it�1γm + ym, itαm, i

� �

1 + exp y0it�1γm + αm, i
� � :

Note that yt can take 2M distinct values. Denote each one by B‘ for

‘ ¼ 1, …, 2M. For ‘ ¼ 1, …, 2M, let Ny ‘ð Þ¼PT�1
t¼1 1 yt ¼B‘f g be the total

number of incidences of the particular set of choices B‘ between periods 1

and T � 1. Let Sy mð Þ¼PT
t¼2ym, t be the total number that the mth choice was

made between periods 2 and T. Note that Sy (m) is known if Ny (‘) and yT is

given. Then

P yi2 ¼ y2,…, yiT ¼ yT j yi1 ¼ y1, α1, i,…, αM, ið Þ

¼
YM

m¼1

YT

t¼2

exp ym, ity
0
it�1γm + ym, itαm, i

� �

1 + exp y0it�1γm + αm, i
� �

¼
exp

XM

m¼1

XT

t¼2
ym, ity

0
it�1γm + Sy mð Þαm, i

� 	

YM

m¼1

Y2M

‘¼1

1 + exp B0
‘γm + αm, i

� �� �� �Ny ‘ð Þ
:

Now consider the ratio of the probabilities for two sequences (y1, y2, …, yT)

and (z1, z2, …, zT) with y1 ¼ z1, yT ¼ zT andNy (‘) ¼ Nz (‘), ‘ ¼ 1, …, 2M. This

last condition implies that Sy (m) ¼ Sz (m) for m ¼ 1, …, M. We then have

P yi2 ¼ y2, :: � , yiT ¼ yT j yi1 ¼ y1, αi1, :: � : � , αiMð Þ
P yi2 ¼ z2, ::, yiT ¼ zT j yi1 ¼ y1, αi1, :, αiMð Þ

¼
exp

XM

m¼1

XT

t¼2
ym, ity

0
it�1γm

� 	

exp
XM

m¼1

XT

t¼2
zm, itz0it�1γm

� 	
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and therefore

P yi2 ¼ y2,…, yiT ¼ yT j yi1 ¼ y1, yiT ¼ yT , Ny �ð Þ, α1, i,…, αM, i

� �

¼
exp

XM

m¼1

XT

t¼2
ym, ity

0
it�1γm

� 	

X
ℬ
exp

XM

m¼1

XT

t¼2
zm, itz0it�1γm

� 	
(7)

where

ℬ¼ z : y1 ¼ z1, yT ¼ zT andNy ‘ð Þ¼Nz ‘ð Þ for ‘¼ 1, 2M
� �

:

In other words, y1, yT ¼ zT and Ny (R) for R ¼ 1, …, 2M are sufficient sta-

tistics for {α1,i,…, αM,i}. It is clear that the ML estimator of γ based on Eq. (7)
will be consistent and

ffiffiffi
n

p
asymptotically normal.

6 Contemporaneous Cross-Equation Dependence

The setup considered so far assumes that the errors are independent across equa-

tions in a given time period. At some level, this is not a strong assumption

because the individual-specific fixed effects can be correlated arbitrarily across

equations. The individual-specific fixed effects, however, also help govern the

dependence in the observed data over time, so the setup implicitly links the

dependence over time and the dependence across equations. It is of interest,

therefore, to also study a generalization of the model in which the cross-

equation dependence is driven by a separate parameter. To do this, we adapt

the simultaneous logit model considered by Schmidt and Strauss (1975) to

our panel data setting, both in a static and a dynamic context, allowing for

cross-equation dependence. To simplify the exposition, we will restrict atten-

tion to the case in which there are two outcomes.

6.1 Static Case

Schmidt and Strauss (1975) proposed a cross-section simultaneous equations

logit model in which two binary variables are each distributed according to a

logit model conditional on the other and on a set of explanatory variables

P y1, i ¼ 1j y2, i, x1, i, x2, ið Þ¼Λ x01, iβ1 + ρy2, i
� �

and

P y2, i ¼ 1j y1, i, x1, i, x2, ið Þ¼Λ x02, iβ1 + ρy1, i
� �

,

where Λ (�) is the logistic cumulative distribution function.

In this section, we adapt this model to a static panel data setting in which

each outcome can also depend on an individual-specific fixed effect. Specifi-

cally, assume that
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P y1, it ¼ 1j y2, it, y1, is, y2, isf gs<t, x1, itf gTt¼1, x2, itf gTt¼1, α1, i, α2, i
� �

¼Λ α1, i + x01, itβ1 + ρy2, it
� � (8)

and

P y2, it ¼ 1j y1, it, y1, is, y2, isf gs<t, x1, itf gTt¼1, x2, itf gTt¼1, α1, i, α2, i
� �

¼Λ α2, i + x02, itβ2 + ρy1, it
� �

,
(9)

In this model, α1,i and α2,i are the fixed effects, x1,it and x2,it are strictly exog-
enous explanatory variables, and ρ is the cross-equation dependence parameter,

which, as Schmidt and Strauss (1975) show, needs to be the same in the two

equations given the structure in Eqs. (8) and (9).

Following Schmidt and Strauss (1975), it can be shown that

P y1, it¼ c1, y2, it¼ c2j y1, is, y2, isf gs<t, x1, itf gTt¼1, x2, itf gTt¼1, α1, i, α2, i
� �

¼
exp c1 α1, i + x

0
1, itβ1

� 	
+ c2 α2, i + x

0
2, itβ2

� 	
+ c1c2ρ

� 	

1 + exp α1, i + x01, itβ1
� 	

+ exp α2, i + x02, itβ2
� 	

+ exp α1, i + x01, itβ1 + α2, i + x
0
2, itβ2 + ρ

� 	

for c1, c2 2 {0, 1}.

We now show that all parameters of the model are identified with two time

periods (T ¼ 2). Using the notation adopted in the rest of the chapter, and drop-

ping the i subscripts for simplicity, define the event

Ajk, lm ¼ y11
y21


 �
¼ j

k


 �
y12
y22


 �
¼ l

m


 � �

for j, k, l, m 2 {0, 1}.

Observe that

P A10,00j x, α1, α2
� 	

¼
exp α1 + x

0
11
β1

� 	

1 + exp α1 + x
0
11
β1

� 	
+ exp α2 + x

0
21
β2

� 	
+ exp α1 + x

0
11
β1 + α2 + x

0
21
β2 + ρ

� 	 �

1

1 + exp α1 + x
0
12
β1

� 	
+ exp α2 + x

0
22
β2

� 	
+ exp α1 + x

0
12
β1 + α2 + x

0
22
β2 + ρ

� 	

and

P A00,10j α1, α2
� 	

¼ 1

1 + exp α1 + x
0
11
β1

� 	
+ exp α2 + x

0
21
β2

� 	
+ exp α1 + x

0
11
β1 + α2 + x

0
21
β2 + ρ

� 	 �

exp α1 + x
0
12
β1

� 	

1 + exp α1 + x
0
12
β1

� 	
+ exp α2 + x

0
22
β2

� 	
+ exp α1 + x

0
12
β1 + α2 + x

0
22
β2 + ρ

� 	 :

which implies that

P A10,00j x, α1, α2ð Þ
P A00,10j x, α1, α2ð Þ¼

exp α1 + x011β1
� �

exp α1 + x012β1
� �¼ exp x11� x12ð Þ0β1

� �
:
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Therefore, β1 is identified from

P A00,10j A00,10[A10,00, x, α1, α2ð Þ¼ 1

1 +P A10,00j x, α1, α2ð Þ=P A00,10j x, α1, α2ð Þ
¼ 1

1 + exp x11� x12ð Þ0β1
� � :

This line of argument uses that fact that conditional on (y2,i1, y2,i2) ¼ (0, 0),

y1,it follows the simple static logit panel data model discussed in Section 2.1.We

present the explicit derivation to set the stage for the dynamic version of the

model in the next section.

The parameter β2 is identified by the same reasoning.

It is clear from the previous calculations that the cross-equation parameter,

ρ, can be made time-specific. We next show explicitly how ρt can be identified.
Consider

P A11,00j x, α1, α2
� 	

¼
exp α1 + x

0
11

β1 + α2 + x
0
21

β2 + ρ1

� 	

1 + exp α1 + x
0
11

β1

� 	
+ exp α2 + x

0
21

β2

� 	
+ exp α1 + x

0
11

β1 + α2 + x
0
21

β2 + ρ1

� 	 �

1

1 + exp α1 + x
0
12

β1

� 	
+ exp α2 + x

0
22

β2

� 	
+ exp α1 + x

0
12

β1 + α2 + x
0
22

β2 + ρ2

� 	

P A00,11j x, α1, α2
� 	

¼ 1

1 + exp α1 + x
0
11

β1

� 	
+ exp α2 + x

0
21

β2

� 	
+ exp α1 + x

0
11

β1 + α2 + x
0
21

β2 + ρ1

� 	 �

exp α1 + x
0
12

β1 + α2 + x
0
22

β2 + ρ2

� 	

1 + exp α1 + x
0
12

β1

� 	
+ exp α2 + x

0
22

β2

� 	
+ exp α1 + x

0
12

β1 + α2 + x
0
22

β2 + ρ2

� 	

and

P A01,10j x, α1, α2
� 	

¼
exp α2 + x

0
21

β2

� 	

1 + exp α1 + x
0
11

β1

� 	
+ exp α2 + x

0
21

β2

� 	
+ exp α1 + x

0
11

β1 + α2 + x
0
21

β2 + ρ1

� 	 �

exp α1 + x
0
12

β1

� 	

1 + exp α1 + x
0
12

β1

� 	
+ exp α2 + x

0
22

β2

� 	
+ exp α1 + x

0
12

β1 + α2 + x
0
22

β2 + ρ2

� 	 :

Because the denominators are the same,

P A11,00j x, α1, α2ð Þ
P A01,10j x, α1, α2ð Þ¼

exp α1 + x011β1 + ρ1
� �

exp α1 + x012β1
� � ¼ exp x11� x12ð Þ0β1 + ρ1

� �

and

P A00,11j x, α1, α2ð Þ
P A01,10j x, α1, α2ð Þ¼

exp α2 + x021β2 + ρ2
� �

exp α2 + x022β2
� � ¼ exp x22� x21ð Þ0β2 + ρ2

� �
:
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Therefore (ρ1, ρ2) are identified from

P A01,10j A01,10[A11,00, x, α1, α2ð Þ¼ 1

1 +P A11,00j x, α1, α2ð Þ=P A01,10j x, α1, α2ð Þ
¼ 1

1 + exp x11� x12ð Þ0β1 + ρ1
� �

and

P A01,10j A01,10[A00,11, x, α1, α2ð Þ¼ 1

1 +P A00,11j x, α1, α2ð Þ=P A01,10j x, α1, α2ð Þ
¼ 1

1 + exp x22� x21ð Þ0β2 + ρ2
� � :

Again, this is not surprising, because y1,it follows the simple static logit

panel data model discussed in Section 2.1 conditional on (y2,i1, y2,i2) and on

the explanatory variables. We present the previous explicit derivation to set

the stage for the dynamic version of the following model.

6.2 Dynamic Case

We next consider a dynamic version of the previous model that combines the

insights from Schmidt and Strauss (1975) with those in Narendranthan et al.

(1985). Assume that

P y1, it ¼ 1j y2, it, y1, is, y2, isf gs<t, α1, i, α2, i
� �

¼Λ α1, i + y1, it�1γ11 + y2, it�1γ12 + ρy2, itð Þ (10)

and

P y2, it ¼ 1j y1, it, y1, is, y2, isf gs<t, α1, i, α2, i
� �

¼Λ α2, i + y1, it�1γ21 + y2, it�1γ22 + ρy1, itð Þ: (11)

Similarly to the static case, ρ is the same in the two equations. For our fol-

lowing calculations, however, we need ρ to be constant over time. When ρ ¼ 0,

Eqs. (10) and (11) are the same as the model considered in Section 3.

Similarly to Schmidt and Strauss (1975), it can be shown that

P y1, it ¼ c1, y2, it ¼ c2j y1, is, y2, isf gs<t, α1, i, α2, i
� �

¼ exp c1 α1, i + y1, it�1γ11 + y2, it�1γ12ð Þ+ c2 α2, i + y1, it�1γ21 + y2, it�1γ22ð Þ + c1c2ρð Þ
Δit

:

where

Δit ¼ 1 + exp α1, i + y1, it�1γ11 + y2, it�1γ12ð Þ+ exp α2, i + y1, it�1γ21 + y2, it�1γ22ð Þ
+ exp α1, i + y1, it�1γ11 + y2, it�1γ12 + α2, i + y1, it�1γ21 + y2, it�1γ22 + ρð Þ:
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We now will study identification in this model. As discussed in the previous

section, we can think of the identification result for the static version of the

model as an application of the results in Section 2.1. This is not the case there.

Conditional on (y2,i1, y2,i2) ¼ (0, 0), y1,it does follow the simple AR(1) logit

panel data model discussed in Section 2.2. This implies that γ11 is identified.
The parameter, γ22, is identified for the same reason. It does not seem that

we can recover the remaining parameters, γ12, γ21 and ρ, by a similar argument,

and we therefore mimic the calculations in Section 3. The outcomes of these

calculations will cast light on the identification in this model. Define

A00,11 ¼ y11
y21


 �
¼ d1

d2


 �
,

y12
y22


 �
¼ 0

0


 �
,

y13
y23


 �
¼ 1

1


 �
,

y14
y24


 �
¼ f1

f2


 � �

and

A11,00 ¼ y11
y21


 �
¼ d1

d2


 �
,

y12
y22


 �
¼ 1

1


 �
,

y13
y23


 �
¼ 0

0


 �
,

y14
y24


 �
¼ f1

f2


 � �

Then

P A00,11α1α2
� 	

¼P

y11

y21

0

B@

1

CA¼
d1

d2

0

B@

1

CA

�������
α1, α2

0

B@

1

CA �

1

1 + exp α1 + γ11d1 + γ12d2

� 	
+ exp α2 + γ21d1 + γ22d2

� 	
+ exp α1 + γ11d1 + γ12d2 + α2 + γ21d1 + γ22d2 + ρ

� 	 �

exp α1 + α2 + ρ
� 	

1 + exp α1

� 	
+ exp α2

� 	
+ exp α1 + α2 + ρ

� 	 �

exp f1 α1 + γ11 + γ12

� 	
+ f2 α2 + γ21 + γ22

� 	
+ f1f2ρ

� 	

1 + exp α1 + γ11 + γ12

� 	
+ exp α2 + γ21 + γ22

� 	
+ exp α1 + γ11 + γ12 + α2 + γ21 + γ22 + ρ

� 	 :

ð12Þ
and

P A11,00j α1, α2
� 	

¼P

y11

y21

0

B@

1

CA¼
d1

d2

0

B@

1

CA

�������
α1, α2

0

B@

1

CA �

exp α1 + γ11d1 + γ12d2 + α2 + γ21d1 + γ22d2 + ρ
� 	

1 + exp α1 + γ11d1 + γ12d2

� 	
+ exp α2 + γ21d1 + γ22d2

� 	
+ exp α1 + γ11d1 + γ12d2 + α2 + γ21d1 + γ22d2 + ρ

� 	 �

1

1 + exp α1 + γ11 + γ12

� 	
+ exp α2 + γ21 + γ22

� 	
+ exp α1 + γ11 + γ12 + α2 + γ21 + γ22 + ρ

� 	 �

exp f1α1 + f2α2 + f1f2ρ
� 	

1 + exp α1

� 	
+ exp α2

� 	
+ exp α1 + α2 + ρ

� 	

ð13Þ
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The denominators in Eqs. (12) and (13) are the same (note that it is crucial

here that ρ be time-invariant), so the ratio of the two is

P A00,11j α1, α2ð Þ
P A11,00j α1, α2ð Þ¼

exp f1 γ11 + γ12ð Þ+ f2 γ21 + γ22ð Þð Þ
exp γ11d1 + γ12d2 + γ21d1 + γ22d2ð Þ

and therefore

P A11,00j A00,11[A11,00, α1, α2ð Þ
¼ P A11,00j α1, α2ð Þ
P A00,11j α1, α2ð Þ+P A11,00j α1, α2ð Þ

¼ 1

1 +P A00,11j α1, α2ð Þ=P A11,00j α1, α2ð Þ
¼ exp d1 γ11 + γ21ð Þ+ d2 γ12 + γ22ð Þð Þ

exp f1 γ11 + γ12ð Þ+ f2 γ21 + γ22ð Þð Þ + exp d1 γ11 + γ21ð Þ+ d2 γ12 + γ22ð Þð Þ
does not depend on (α1, α2). Setting (d1, d2, f1, f2) to (0, 0, 1, 0), (0, 0, 0, 1), (0, 1,
1, 1) and (1, 0, 1, 1) identifies γ11 + γ12, γ21 + γ22, γ11 + γ21, and γ12 + γ22,
respectively. Unfortunately, these alone are not sufficient to identify (γ11,
γ12, γ21, γ22).

Next define

A10,01 ¼ y11
y21


 �
¼ d1

d2


 �
,

y12
y22


 �
¼ 1

0


 �
,

y13
y23


 �
¼ 0

1


 �
,

y14
y24


 �
¼ f1

f2


 � �
:

and

A01,10 ¼ y11
y21


 �
¼ d1

d2


 �
,

y12
y22


 �
¼ 0

1


 �
,

y13
y23


 �
¼ 1

0


 �
,

y14
y24


 �
¼ f1

f2


 � �
:

We have that

P A10,01j α1, α2
� 	

¼P

y11

y21

0

B@

1

CA¼
d1

d2

0

B@

1

CA

�������
α1, α2

0

B@

1

CA �

exp α1 + γ11d1 + γ12d2

� 	

1 + exp α1 + γ11d1 + γ12d2

� 	
+ exp α2 + γ21d1 + γ22d2

� 	
+ exp α1 + γ11d1 + γ12d2 + α2 + γ21d1 + γ22d2 + ρ

� 	 �

exp α2 + γ21

� 	

1 + exp α1 + γ11

� 	
+ exp α2 + γ21

� 	
+ exp α1 + γ11 + α2 + γ21 + ρ

� 	 �

exp f1 α1 + γ12

� 	
+ f2 α2 + γ22

� 	
+ f1f2ρ

� 	

1 + exp α1 + γ12

� 	
+ exp α2 + γ22

� 	
+ exp α1 + γ12 + α2 + γ22 + ρ

� 	

and
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P A01,10α1α2

� 	
¼P

y11

y21

0

@

1

A¼
d1

d2

0

@

1

A

�������
α1, α2

0

B@

1

CA �

exp α2 + γ21d1 + γ22d2

� 	

1 + exp α1 + γ11d1 + γ12d2

� 	
+ exp α2 + γ21d1 + γ22d2

� 	
+ exp α1 + γ11d1 + γ12d2 + α2 + γ21d1 + γ22d2 + ρ

� 	 �

exp α1 + γ12

� 	

1 + exp α1 + γ12

� 	
+ exp α2 + γ22

� 	
+ exp α1 + γ12 + α2 + γ22 + ρ

� 	 �

exp f1 α1 + γ11

� 	
+ f2 α2 + γ21

� 	
+ f1f2ρ

� 	

1 + exp α1 + γ11

� 	
+ exp α2 + γ21

� 	
+ exp α1 + γ11 + α2 + γ21 + ρ

� 	

which implies that

P A10,01j α1, α2ð Þ
P A01,10j α1, α2ð Þ¼

exp γ11d1 + γ12d2ð Þexp γ21ð Þexp f1γ12 + f2γ22ð Þ
exp γ21d1 + γ22d2ð Þexp γ12ð Þexp f1γ11 + f2γ21ð Þ

and therefore

P A01,10j A10,01 [A01,10, α1, α2

� 	

¼
P A01,10j α1, α2
� 	

P A10,01j α1, α2
� 	

+P A01,10j α1, α2
� 	

¼ 1

1 +P A10,01j α1, α2
� 	

=P A01,10j α1, α2
� 	

¼
exp γ21d1 + γ22d2

� 	
exp γ12

� 	
exp f1γ11 + f2γ21

� 	

exp γ21d1 + γ22d2

� 	
exp γ12

� 	
exp f1γ11 + f2γ21

� 	
+ exp γ11d1 + γ12d2

� 	
exp γ21

� 	
exp f1γ12 + f2γ22

� 	 :

Setting (d1, d2, f1, f2) to (1, 0, 0, 0) and (0, 1, 0, 0) identifies γ11 �γ12 and
γ21 �γ22. Because γ11 + γ12 and γ21 + γ22 already were identified from P
(A00,11 jA00,11[A11,00), this identifies (γ11, γ12, γ21, γ22). Note that ρ is not iden-
tified by this argument.

It is not difficult to show that strictly exogenous covariates can be incorpo-

rated in the model similar to Section 4.

7 Monte Carlo Experiments

In this section, we report results from a small Monte Carlo experiment. We gen-

erate data according to the bivariate pure panel VAR(1) logit model of Section 3

with γ11 ¼ 0.1, γ12 ¼ 0.2, γ21 ¼ 0.3, γ22 ¼ 0.4. Mean bias and root mean

squared error (RMSE) across 1000 replications are reported for N ¼ 100,

400, 1600 in Tables 1–3 for T ¼ 4, 6, 8, respectively. Biases in this correctly

specified model are small, not larger than approximately 20%, even with the

smallest samples (N ¼ 100, T ¼ 4). As expected, RMSE is approximately

halved as sample size (N) quadruples and is smaller for bigger T.
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8 Conclusions

The chapter discusses an identification strategy for multivariate dynamic logit

models in short panels and how it relates to the conditional maximum likelihood

approach for univariate panel data logit models. Furthermore, it provides an

extension of the simultaneous logit model of Schmidt and Strauss (1975) to

TABLE 1 T 5 4

N 5 100 N 5 400 N 5 1600

Bias RMSE Bias RMSE Bias RMSE

γ11 0.01727 0.58733 0.00595 0.24058 0.00031 0.12155

γ12 �0.00592 0.53998 �0.0002 0.24146 0.00546 0.11358

γ21 0.03683 0.53702 0.01512 0.23583 �0.00032 0.11447

γ22 0.06807 0.62488 0.00975 0.26795 �0.00047 0.13008

TABLE 2 T 5 6

N 5 100 N 5 400 N 5 1600

Bias RMSE Bias RMSE Bias RMSE

γ11 �0.00151 0.27358 0.00562 0.1326 �0.00116 0.07211

γ12 0.00174 0.26474 0.00604 0.13038 0.00446 0.06732

γ21 0.00004 0.28008 0.00478 0.13485 0.00129 0.06806

γ22 �0.00141 0.29543 �0.00973 0.1451 �0.00224 0.07129

TABLE 3 T 5 8

N 5 100 N 5 400 N 5 1600

Bias RMSE Bias RMSE Bias RMSE

γ11 0.00269 0.20842 0.00164 0.11059 �0.00414 0.05461

γ12 �0.00924 0.20885 �0.00045 0.10485 �0.00028 0.05342

γ21 0.00054 0.21731 0.00049 0.10801 �0.00076 0.05397

γ22 0.00889 0.21606 �0.00080 0.10674 0.00333 0.05337
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a panel context. Although the fixed effects approach adopted is robust to the

presence of unobserved individual heterogeneity of the usual (additive) form

that can be correlated arbitrarily with initial conditions, it suffers from the usual

critique, namely, it cannot identify coefficients of time-invariant variables, nor

can it provide predictions. Furthermore, the estimators in certain dynamic

models with exogenous covariates typically will not have the parametric
ffiffiffi
n

p
rate of convergence. Although the logistic assumption adopted throughout this

chapter can be restrictive, we conjecture that this assumption can be relaxed

similarly to Honor�e and Kyriazidou (2000). It might also be of interest to con-

sider identification in models with more than one lag.
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1 Introduction

The use of panel data in models examining efficiency and productivity are ubiq-

uitous. The prevalence of panel data appears at the academic level and by reg-

ulators and policymakers. This is no coincidence. The academic interest in

stochastic frontier analysis with panel data stems from the ability to decompose

various forms of heterogeneity into noise and inefficiency and to examine the

behavior of technology over time. For policymakers and regulators, how firms

respond to regulation and benchmarks warrants use of panel data almost by

definition, and the increase in observations has the potential to improve estima-

tion efficiency and add power to any inference that is conducted. Thus, panel

data stochastic frontier models are legion and of broad appeal.

More recently, a sea change has arisen in how one views panel data stochas-

tic frontier models. As the literature has evolved, so too have the views of these

models and what they are capable of explaining. For example, until recently it
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was a commonly held belief that firm heterogeneity, firm-specific inefficiency,

and time-varying inefficiency could not all be modeled. This turned out to be

false and what has arisen is the four-component stochastic frontier model, or the

generalized panel data stochastic frontier model. Given the nascency of these

models, coupled with the lack of in-depth treatment of these models (though

there is some coverage in the recent reviews of Kumbhakar, Parmeter, &

Zelenyuk, 2018; Parmeter & Kumbhakar, 2014), this chapter seeks to provide

a rigorous overview of the various approaches to estimation and inference

specific for the four-component stochastic frontier model.

The discussion is important beyond academic interest. As noted by

Kumbhakar and Lien (2018, pg. 35), “Given that the efficiency estimates vary

widely depending on whether one models transient inefficiency, persistent

inefficiency, or both, the regulator ought to take extra care in using the appro-

priate model and the correct efficiency measures in practice, especially when

the efficiency measures are used to reward/punish companies as an incentive

for better performance.” Proper understanding of the most recent panel data sto-

chastic frontier models is important for practitioners so that they have the best

information to put forth when constructing benchmarks and recommending

policy.

2 Earlier Models and Shortcomings

Awide variety of panel data stochastic frontier models have been proposed, dat-

ing to the earliest work of Pitt and Lee (1981). A variety of texts have discussed

these models (Greene, 2008; Kumbhakar & Lovell, 2000; Parmeter &

Kumbhakar, 2014). We will highlight several of the more recently developed

models and discuss why they are still insufficient with respect to the generalized

panel data stochastic frontier model.

The time-invariant stochastic frontier model of Pitt and Lee (1981) can be

viewed as a standard panel data model in which αi is the unobservable individ-
ual effect and standard panel data fixed- and random-effects (REs) estimators

are applied to estimate the model parameters including αi. The estimated value

of αi then is transformed to obtain estimates of ui.
A notable drawback of this approach is that individual heterogeneity cannot

be distinguished from inefficiency: All time-invariant heterogeneity is con-

founded with inefficiency, and therefore ûi will capture heterogeneity in addi-

tion to, or even instead of, inefficiency. Another potential issue of the model is

the time-invariant assumption of inefficiency. If T is large, it seems implausible

that the level of inefficiency of a firm will stay constant for an extended period

of time or that a firm that was persistently inefficient would survive in a

competitive market.

The question is: Should one view the time-invariant component as persistent

inefficiency or as individual heterogeneity that captures the effects of (unob-

served) time-invariant covariates and has nothing to do with inefficiency?
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If the latter setting holds, then the results from the time-invariant inefficiency

models are incorrect. A less rigid perspective is that the truth lies somewhere in

the middle; inefficiency might be decomposed into a component that is persis-

tent over time and a component that varies over time. Unless persistent ineffi-

ciency is separated from the time-invariant individual effects, one has to choose

either the model in which αi represents persistent inefficiency or the model in

which αi represents an individual-specific effect (heterogeneity).

First, we consider models in which inefficiency is time-varying, and the

time-invariant component is firm heterogeneity. Therefore, the models we

focus on is

yit ¼ αi + x
0
itβ + vit�uit, (1)

where yit is the (natural) logarithm of output for firm i in period t, xit is a vector
of the logarithm of inputs, vit is stochastic noise, and uit is time-varying ineffi-

ciency. Compared to a standard panel data model, we have the additional time-

varying inefficiency term, uit, in Eq. (1).

If one treats αi, i ¼ 1, ⋯, N as a random variable that is correlated with xit
but does not capture inefficiency, then the model presented earlier becomes

what has been termed the true fixed-effects (TFE) panel stochastic frontier

model (Greene, 2005b). The model is labeled as the true random-effects

(TRE) stochastic frontier model when αi is treated as uncorrelated with xit.
Estimation of the model in Eq. (1) is not straightforward.When αi, i ¼ 1, ⋯,

N, are embedded in the fixed-effects (FE) framework, the model encounters the

incidental parameters problem. The incidental parameters problem arises when

the number of parameters to be estimated increases with the number of cross-

sectional units in the data, which is the case with the αi in Eq. (1). In this sit-

uation, consistency of the parameter estimates is not guaranteed even if

N ! ∞ because the number of αi increases with N.
For a standard linear panel data model, one that does not have �uit, the lit-

erature has developed estimation methods to deal with this problem. The

methods involve transforming the model so that αi is removed before estima-

tion. One can use the within-transformation or the first-difference transforma-

tion model to remove αi. Without αi in the transformed model, the incidental

parameters problem no longer exists and the number of parameters to be esti-

mated is not large. Greene (2005b) ignored the incidental parameter problem

and proposed estimating all the β and αi parameters using the MLmethod. More

specifically, he assumes uit follows a simple i.i.d. half-normal distribution and

includes N dummy variables directly into the model for αi, i ¼ 1, ⋯, N and then

estimates the model by MLE without any transformation. Greene’s (2005b)

results show that the incidental parameters problem does not cause significant

bias to the model parameters (β) when T is large.

The problem using the transformed model was the derivation of the likeli-

hood function based on the within (or first-difference) transformation. Chen,

Schmidt, and Wang (2014) solved the problem by using the result that the error
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term in the transformed model has a closed skew normal (CSN) distribution.

Thus the log-likelihood function has a closed form expression and ML estima-

tion of the parameter is possible. One also can use the approach of Jondrow,

Lovell, Materov, and Schmidt (1982) to estimate uit.
Wang and Ho (2010) solve the TFE problem in Greene (2005b) by propos-

ing a class of stochastic frontier models in which either the within or first-

difference transformation on the model can be carried out while also providing

a closed form likelihood function. The main advantage of such a model is that

because the αis are removed from the model, the incidental parameters problem

is avoided entirely. As such, consistency of the estimates is obtained for either

N ! ∞ or T ! ∞, which is invaluable for applied settings. A further compu-

tational benefit is that the elimination of αis reduces the number of parameters to

be estimated by N. The model, however, is quite complicated to estimate, com-

monly encountering convergence issues, using the ML method.

Formally, the Wang and Ho (2010) model is:

yit ¼ αi + x
0
itβ+ εit, (2)

withvit � N (0,σv
2),uit ¼ gitui∗andui∗�N+(μ,σu

2), thenow-familiar scalingproperty

model with a truncated normal distribution for the basic distribution of ineffi-

ciency. For the scaling function, Wang and Ho (2010) set git ¼ exp (zu, it
0δu).

The key feature that allows the model transformation to be applied is the scaling

property. Because ui∗ does not changewith time, thewithin and the first-difference

transformations remove αi leaving the stochastic ui∗ intact, which helps in the der-
ivation of the likelihood function. The transformed model becomes

Δyit ¼Δx0itβ+Δεit, (3)

using the notation Δwit ¼ wit �wit �1 for variable wit. The error terms

Δεit ¼ Δvit � [git(.) �git �1(.)]ui∗, the pdf of which can be easily derived fol-

lowing the distributional assumptions on vit and ui∗.
Let the stacked vector of Δwit, for a given i and t ¼ 2, …, T, be defined as

Δewi ¼ Δwi2,Δwi3,…,ΔwiTð Þ0 the log-likelihood function for the ith cross-

sectional unit is (Wang & Ho, 2010, p. 288)

lnLD
i ¼�1

2
T�1ð Þ ln 2πð Þ�1

2
ln Tð Þ�1

2
T�1ð Þ ln σ2v

� �

�1

2
Δeε0iΣ

�1Δeεi +
1

2

μ2
∗

σ2
∗

�μ2

σ2u

 !

+ ln σ∗Φ
μ∗
σ∗

� �� �
� ln σuΦ

μ

σu

� �� �
,

(4)

where

μ∗i ¼
μ=σ2u�Δeε0iΣ

�1Δehi
Δeh

0
iΣ

�1Δehi + 1=σ2u
; σ2

∗i
¼ 1

Δeh0 iΣ�1Δehi + 1=σ2u
,

and Δeεi ¼Δeyi�Δexiβ:
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The (T � 1) � (T � 1) variance-covariance matrix Σ of Δevi is

Σ¼

2σ2v �σ2v 0 ⋯ 0

�σ2v 2σ2v �σ2v ⋯ 0

0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ �σ2v
0 0 ⋯ �σ2v 2σ2v

2

6666664

3

7777775

(5)

The matrix has 2σv
2 on the diagonal and �σv

2 on the off-diagonals. The final

log-likelihood function is

lnL¼
XN

i¼1

lnLD
i :

After the model parameters have been estimated, the observation-specific

inefficiency index is computed from

E uitjΔeεið Þ¼ hit μ∗i + σ∗i
ϕ μ∗i=σ∗i
� �

Φ μ∗i=σ∗i
� �

8
<

:

9
=

;

2

4

3

5, (6)

evaluated at Δeεi ¼Δêεi. The model of Wang and Ho (2010) represents another

demonstration of the usefulness of the scaling property in applied settings. A

limitation of their model is that it does not completely separate persistent

and time-varying inefficiency. Moreover, both the mean and the variance of

uit are functions of the scaling function that can complicate interpretation.

Although several models that can separate firm-heterogeneity from time-

varying inefficiency exist, none of these models considers persistent technical

inefficiency. Identifying the magnitude of persistent inefficiency is important,

especially in short panels, because it reflects the effects of inputs such as man-

agement and unobserved inputs that vary across firms but not over time. Unless

there is a change in something that affects the management practices at the firm

level (such as changes in ownership or new government regulations), it is

unlikely that persistent inefficiency will change. Alternatively, time-varying

efficiency can change over time without operational changes in the firm. This

distinction between the time-varying and persistent components is important

from a policy perspective because each yields different implications.

To help formalize this issue more clearly consider the model

yit ¼ β0 + x
0
itβ + εit ¼ β0 + x

0
itβ+ vit� ηi + τitð Þ: (7)

The error term, εit, is decomposed as εit ¼ vit �uitwhere uit is technical inef-
ficiency and vit is statistical noise. The technical inefficiency part is further

decomposed as uit ¼ ηi + τit where ηi is the persistent component (for example,

time-invariant ownership) and τit is the residual (time-varying) component of

technical inefficiency, both of which are nonnegative. The former is only
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firm-specific, while the latter is both firm- and time-specific. These models

were introduced by Kumbhakar (1991), Kumbhakar and Heshmati (1995),

Kumbhakar and Hjalmarsson (1993), and Kumbhakar and Hjalmarsson (1998).

In this model, the size of overall inefficiency, as well as the components, are

important to know because they convey different types of information. For

example, if the residual inefficiency component for a firm is relatively large

in a particular year, then it might be argued that inefficiency is caused by some-

thing that is unlikely to be repeated in the next year. If the persistent inefficiency

component is large for a firm, however, then it is expected to operate with a

relatively high level of inefficiency over time, unless some changes in policy

and/or management take place. Thus, a high value of ηi is of more concern from

a long-term point of view because of its persistent nature than a high value of τit.
The advantage of the current specification is that one can test the presence of

the persistent nature of technical inefficiency without imposing any parametric

form of time-dependence. Further, by including time in the xit vector, we sep-
arate exogenous technical change from technical inefficiency.

The model can be estimated using a single-step ML method (as a special

case of the four-component model to be discussed later) using say half-normal

distributions on ηi and τit along with the normality assumption on vit. It also can
be estimated using a multistep procedure. Again, see the work of Kumbhakar

(1991), Kumbhakar and Heshmati (1995), and Kumbhakar and Hjalmarsson

(1993), and Kumbhakar and Hjalmarsson (1998).

3 The Generalized Panel Data Stochastic Frontier Model

To begin, consider the benchmark parametric panel data regression model:

yit ¼m xit; βð Þ+ ci + vit: (8)

Until assumptions are made regarding the structure of ci and vit, this model is

nothing more than the classical panel data model that is common across applied

econometrics when m(xit; β) is linear in β. This model is adapted to the stochas-

tic frontier setting by including inefficiency. Two specific forms of inefficiency

are included. First, there is persistent inefficiency, which varies across firms,

but not time. Second, there is transient inefficiency, which varies across both

firms and time. When both of these terms are included, it is the generalized

panel data stochastic frontier model (GPDSFM) or more colloquially as the

four-component stochastic frontier model.

The linear GPDSFM is

yit ¼m xit; βð Þ+ ci�ηi + vit�uit ¼ x0itβ+ αi + εit, (9)

where αi ¼ ci �ηi with ci capturing time-invariant heterogeneity and ηi encap-
sulating time-invariant (persistent) inefficiency, while εit ¼ vit � uit with uit
representing time-varying (transient) inefficiency. The panel data SFM is iden-

tical to the panel data regression model in Eq. (8), except that, because pf
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uit > 0, εit no longer has mean zero, and αi no longer solely captures individual
specific heterogeneity.

Rote application of the linear panel data regression model faces a common

dilemma regarding the relationship between ci and xit. The most common

assumptions for modeling this relationship are the fixed-effects framework

and the random-effects (RE) framework. The benefit of the FE framework is

that no specific relationship need be specified between xit and ci; the parameters

of the frontier, β, can be estimated consistently using the within or first-

difference transformation (Baltagi, 2013). Operating in the RE framework,

xit and ci are required to be uncorrelated, leading to OLS being a consistent,

but ultimately inefficient, estimator. A feasible generalized least squares

approach is available to obtain asymptotically efficient estimators of the param-

eters of the regression model in this case. Alternative approaches, such as a

Hausman and Taylor (1981) or correlated random-effects (CRE) approach also

could be deployed.We do not cover those cases because, to our knowledge, they

have not been applied to estimate a stochastic frontier model. An approach akin

to the work of Mundlak (1978) does exist; and we will have some brief remarks

about this later.

Until recently, econometricians and applied researchers estimated variants

of the four-component model in (2) because it was unclear how specifically to

estimate all of the parameters of the model in a consistent fashion. This changed

with the proposals of Colombi, Kumbhakar, Martini, and Vittadini (2014),

Kumbhakar, Lien, and Hardaker (2014), and Tsionas and Kumbhakar (2014),

all of which use the one-sided structure of the two inefficiency terms to develop

estimators for the model.

In the GPDSFM, each of the four components takes into account different

factors affecting output, given inputs. As in Greene (2005b, 2005a), ci captures
heterogeneity that varies across firms but is time constant. Because this is not

inefficiency, it needs to be accounted for separately beyond persistent ineffi-

ciency. Failure to do so will result in an overstatement of time-constant ineffi-

ciency. Persistent inefficiency, ηi, collects features that serve to lower firm

output but do not change over time. This component first was included in panel

data stochastic frontier models by Kumbhakar and Hjalmarsson (1993),

Kumbhakar and Heshmati (1995), and Kumbhakar and Hjalmarsson (1998).

The noise component, vit captures stochastic shocks beyond control of the firm
(which has always appeared in any panel data stochastic frontier model). Lastly,

transient or time-varying inefficiency, uit, represents inefficiency levels that, in
some sense, can be corrected by the firm. This component is similar to many of

the earliest panel data stochastic frontier models, including Kumbhakar (1990)

and Battese and Coelli (1992).

There are many reasons why practitioners should embrace estimation of the

GPDSFM. First, while earlier models that include time-varying inefficiency can

accommodate firm heterogeneity, these models fail to acknowledge the pres-

ence of persistent inefficiency. Next, those panel data stochastic frontier models
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that allow time-varying inefficiency commonly assume that the inefficiency

level of the firm at time t is independent of its previous level of inefficiency; it
is more reasonable to assume that a firm can eliminate some of its ineffi-

ciency by mitigating short-run rigidities, yet other sources of inefficiency might

remain over time. It is these rigidities that are captured by the time-varying

component, but the sources that remain are more aptly characterized through

ηi. Lastly, although several earlier panel data stochastic frontier models have

considered time-invariant inefficiency, they have not simultaneously accounted

for the presence of unobserved firm heterogeneity. In doing so, these models

confound time-invariant inefficiency with firm effects (heterogeneity). Regula-

tors and policymakers should jump at the opportunity to separately capture firm

specific heterogeneity, persistent, and transient inefficiency. The ability to char-

acterize each of these aspects of variation in firm output should aid in bench-

marking, yardstick competition, carrot-and-stick policies, and more.

Given what we hope is an earnest motivation of the GPDSFM, we now turn

to estimation. A variety of proposals have been made recently, and, given the

nascency of this model in applied milieus, we believe it prudent to detail each of

these strategies. All of the approaches we will discuss center on maximum like-

lihood estimation based on assumptions of half-normality imposed on each of

the inefficiency components and normality imposed on firm-specific heteroge-

neity and idiosyncratic noise.

3.1 Plug-in Estimation

We begin discussion of estimation of the GPDSFM in Eq. (9) through a simple,

multistep procedure originally proposed in (Kumbhakar et al., 2014). This

approach is what is known as pseudo- or plug-in likelihood estimation (see

Andor & Parmeter, 2017).

First, rewrite the model in Eq. (9) as

yit ¼ β∗0 + x
0
itβ+ α

∗
i + ε

∗
it, (10)

where β0∗ ¼ β0 � E[ηi] � E[uit]; αi∗ ¼ ci � ηi + E[ηi]; and εit∗ ¼ vit � uit + E[uit].
With this specification, both αi∗ and εit∗ are zero mean and constant variance

random variables. Additionally, we will assume that vit is i.i.d. N(0,σu
2) and

uit is i.i.d. N+(0,ση
2) while ci is i.i.d. N(0,σu

2), ηi is i.i.d. N+(0,ση
2). The parameters

of the model are estimated in three steps. We discuss estimation of this model

under the RE framework.

Step 1: Use any of the standard random effect panel data estimators

(Amemiya, 1971; Nerlove, 1971; Swamy & Arora, 1972) to estimate

β. Use β̂ to generate predicted values of αi∗ and εit∗, denoted by α̂∗i and
ε̂∗it. This step does not require any distributional assumptions.

Step 2: Time-varying technical inefficiency, uit, is estimated using the infor-

mation contained in ε̂∗it from Step 3.1. We have ε∗it ¼ vit�uit +
ffiffiffiffiffiffiffiffi
2=π

p
σu

under the assumption of half-normality. The parameters for the
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distributions of v and u can be estimated using maximum likelihood.

Doing so produces predictions of the time-varying technical ineffi-

ciency component uit, E[e
�uit][εit∗], which Kumbhakar et al. (2018)

term relenting technical efficiency (RTE).

Step 3: Estimate ηi following a similar strategy as in Step 3.1. For this, we use

α̂∗i from Step 3.1. Again, based on the common distributional assump-

tions, α∗i ¼ ci�ηi +
ffiffiffiffiffiffiffiffi
2=π

p
ση can be estimated using maximum likeli-

hood. Estimates of the persistent technical inefficiency (PTE)

component, can be obtained from E [e�ηi jαi∗]. Overall technical effi-
ciency (OTE) is constructed as the product of PTE and RTE,

OTE ¼ PTE � RTE.

One must be careful in the implementation of maximum likelihood to recognize

that the likelihood functions for εit (αi) differ from that of εit∗(αi∗). This stems

from the fact that εit∗(αi∗) is centered at zero, which requires subtraction of E
[uit] (E[ηi]), which in turn depends on σu (ση). If one were to erroneously pass

the time-varying (time-constant) residuals from a panel data routine calculated

in the first stage to a standard stochastic frontier estimation algorithm, it will

produce biased estimates of all the parameters in Step 2 or 3. The reason is

the failure to recognize the centering. This requires a slight modification of

the likelihood function (see Andor & Parmeter, 2017; Fan, Li, & Weersink,

1996). It is possible to extend the model just described (in Steps 3.1 and 3.1)

to include PTE and RTE that is distributed as truncated-normal or exponential

as opposed to half-normal.

The three-step approach of Kumbhakar et al. (2014) inefficiency to full

maximum likelihood, yet is straightforward to implement. Previous work has

shown that various stepwise approaches tend to perform nearly equally as well

as maximum likelihood in small sample settings. Olson, Schmidt, andWaldman

(1980) and Coelli (1995) both find that the corrected ordinary least squares esti-

mator (COLS) has similar performance to application of the normal-half normal

stochastic frontier model. Andor and Parmeter (2017) document that pseudo

likelihood has nearly identical performance to maximum likelihood as well.

These results suggest that concerns about loss of efficiency in applying stepwise

or corrected procedures might be overstated. No comparative study, however,

has been undertaken to determine if migrating from the cross-sectional setting

to the panel affects these conclusions in any way. This is an interesting inves-

tigation for future study.

An alternative multistep approach based on COLS follows fromKumbhakar

and Lien (2018). Rather than performing maximum likelihood estimation in

steps 2 and 3, method of moments are deployed to recover estimates of the

unknown distributional parameters. A benefit of this approach is that a modified

likelihood function is not needed, and these estimators can be constructed with a

few lines of code in any matrix-oriented statistical software. To see this, under

the assumption of normal-half normal for either αi or εit, the variance parame-

ters can be constructed using the second and third moments of these terms. That

is, for the second and third moments of, say, ζ̂it:
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m̂2 ζ̂
� �¼ nTð Þ�1

Xn

i¼1

XT

t¼1

ζ̂
2

it (11)

and

m̂3 ζ̂
� �¼ nTð Þ�1

Xn

i¼1

XT

t¼1

ζ̂
3

it, (12)

the variance components can be estimated via:

σ̂2u ¼ max 0,

ffiffiffi
π

2

r
π

π�4

� �
m̂3 ε̂∗ð Þ

	 
2=3( )

(13)

σ̂2v ¼ m̂2 ε̂∗ð Þ� π�2

π

� �
σ̂2u: (14)

For the estimation of the variance components of the time-constant compo-

nents, we have.

σ̂2η ¼ max 0,

ffiffiffi
π

2

r
π

π�4

� �
m̂3 α̂∗ð Þ

	 
2=3( )

(15)

σ̂2μ ¼ m̂2 α̂∗ð Þ� π�2

π

� �
σ̂2η: (16)

As in standard cross-sectional settings, if either α̂∗i or ε̂∗it have the wrong

skew, then the variance estimate of the corresponding inefficiency term will

be zero (Olson, Schmidt, & Waldman, 1980). It is also possible to obtain neg-

ative variance estimates (what Olson et al. (1980) term a type 2 error) for the

normally distributed components, ci and vit, but this is rare empirically.

In either of these stepwise procedures, if inference is to be done on the

distributional parameters, then specific variance estimates are needed. The

first stage standard errors for the estimates of β can be used directly, but

the approach detailed in Olson et al. (1980) is necessary for standard errors

for the parameters of the one-sided distributions. As pointed out by Olson

et al. (1980), the first six moments of the composed error term are needed

to correctly calculate standard errors (see also Coelli, 1995). In Olson et al.

(1980), the cross-sectional case is dealt with, but their application can be

extended easily to the GPDSFM just described. One application of this

method would apply to the random effects, and another application of this

method to the time-varying model errors. The variance of the intercept would

change because it is now dependent upon both the mean of time-varying and

persistent inefficiency, whereas in Olson et al. (1980) the intercept depends

only on the mean of the cross-sectional inefficiency. Alternatively, a bootstrap

approach could be deployed, though we have not seen this issue discussed in

the literature deploying COLS.

234 Panel Data Econometrics



3.1.1 Estimation in the Fixed-Effects Framework

So far, the discussion has centered on estimation in the RE framework, but one

can just as easily operate in the FE framework. In step 1 of Section 3.1, rather

than estimate β using GLS, either first differencing or the within transformation

could be deployed. Here the first-differencing approach introduced by Chen

et al. (2014) delivers.

Δyit ¼Δx0itβ+Δεit: (17)

The intercept and firm-specific heterogeneity terms are removed with the

differencing, and the first differenced residual does not contain the mean shift

because the differencing makes this obsolete. All of the pertinent information

can be derived from Eq. (31). A two-step procedure is detailed:

Step 1: Estimate (31) using OLS to obtain consistent estimates of β. Use these
estimates to construct Δ̂εit ¼Δyit�Δx0itβ̂. No distributional assump-

tions are made here.

Step 2: Time-varying technical inefficiency, uit, is estimated using the infor-

mation contained in Δ̂εit from Step 3.1. The parameters for the distri-

butions of v and u can be estimated using maximum likelihood. Doing

so produces predictions of the time-varying technical inefficiency

component uit, E[e�uit jεit∗], termed relenting technical efficiency

(RTE), as in the RE setting.

A COLS procedure could be used alternatively if maximum likelihood is not

invoked. The caveats we detailed earlier hold here in the FE framework as well.

What is interesting about the FE framework is that PTE can be present, and is

allowed to be correlated with the covariates, but we cannot separately identify it

from individual heterogeneity. The reason is that it is no longer clear how ηi is
distributed if it is allowed to be correlated with x. This approach is simpler to

implement than the one found in Chen et al. (2014) because they also invoke

distributional assumptions on vit and uit but propose estimation of the full like-

lihood function. Moreover, they treat all time-constant variation as unobserved

heterogeneity, but this is not required for the implementation we describe.

3.1.2 The FE Versus the RE Framework

In the FE framework, we have just outlined why it is not possible to identify

both persistent inefficiency and individual heterogeneity. Unfortunately, under

the RE framework, there is always the concern that omitted variable bias might

lead to inconsistent parameter estimates (therefore, the appeal of operating in

the FE framework). An alternative approach follows from the seminal work

of Mundlak (1978). In this case, unobserved heterogeneity is modeled as.

ci ¼ x0i �ϕ +ωi, (18)

where the jth element of xi is equal to xji � ¼ T�1
PT

t¼1xjit andωi is assumed to be

uncorrelated with x. In this case, after xi has been controlled, there no longer
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exists correlation between the covariates and the unobserved heterogeneity, so

we migrate from the FE framework to the RE framework.

If this approach is followed, the GPDSFM takes the form.

yit ¼ β∗0 + x
0
itβ+ x

0
i �ϕ + α∗i + ε

∗
it, (19)

where αi∗ ¼ ωi � ηiE[ηi] and εit∗ and β0∗ are as before. This model can be esti-

mated following the three-step approach listed for the RE framework. Both

Filippini and Greene (2016) and Filippini and Zhang (2016) use this approach

in their applications.

We note that the modeling of unobserved heterogeneity in this framework

ignores any dependence on time-persistent inefficiency. This is intended. If ηi
depends in a meaningful way on some set of time-constant covariates, then this

should be modeled through the distributional assumptions, a point we will

return later when we discuss the approach of Badunenko and Kumbhakar

(2017).

3.2 Full Maximum Likelihood

Although the approaches we have just detailed are insightful and shed light onto

practical approaches to estimate the GPDSFM, there is always the desire to

implement a full-fledged maximum likelihood analysis that, under correct dis-

tributional assumptions, will produce estimates that are, theoretically, superior

to the stepwise approaches. To obtain a tractable likelihood function, Colombi

et al. (2014) invoked normal-half-normal assumptions about each distributional

pair of errors, noting that adding a normal random variable and a half-normal

random variable produces a random variable that has a skew normal distribu-

tion. The elegance of this is that the skew normal distribution is a more general

distribution than the normal distribution, allowing for asymmetry (Azzalini,

1985) and is closed under various operations (such as subtraction), making

attainment of the likelihood function a less treacherous undertaking.

Colombi et al. (2014) provide the likelihood function using the following

matrix representation of model (8). Let 1T be a vector of ones, 0T a vector

of zeros; and IT the identity matrix of dimension T. Moreover, yi is a

vector of the T observations on the ith unit; Xi is the T � p matrix with rows

xit
0
, ui is the (T + 1) vector with components ηi, ui1, ui2,…, uiT; and vi is the vec-

tor of the idiosyncratic random components of the ith unit. From Eq. (8), it

follows that:

yi ¼ 1T β0 + cið Þ +Xiβ+Aui + vi, (20)

where A ¼ �[1T IT]. A assigns the inefficiency terms, both persistent and time-

varying, to output. This setup also can be modified easily to handle unbalanced

panel data.

Let φq (x, μ, Ω) be the density function of a q-dimensional normal random

variable with expected value μ and varianceΩ, whileΦq μ,Ωð Þ is the probability
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that a q-variate normal random variable of expected value μ and variance matrix

Ω belongs to the positive orthant.1

A random vector z, �∞ < z <∞, has an (o, q) closed-skew normal distri-

bution with parameters μ, Γ, D, ν, Δ if its probability density function is

(Arellano-Valle & Azzalini, 2006; González-Farı́as et al., 2004):

f z, μ, Γ,D, ν,Δ, o, qð Þ¼ϕo z, μ, Γð ÞΦq D z�μð Þ�ν,Δð Þ
Φq �ν,Δ+DΓD0ð Þ : (21)

The dimensions of the matrices Γ, D, Δ and of the vectors μ, ν are deter-

mined by the dimensionality o of the o-dimensional normal probability density

function and by the dimensionality q of the q-dimensional normal distribution

function. Aside from the boldface and matrix notation, this is nothing more than

the multivariate generalization of the univariate skew normal distribution that

arises from the baseline cross-sectional stochastic frontier model. The

Φq �ν,Δ +DΓD0ð Þ term appearing in the denominator of Eq. (21) is to ensure

integration to 1 so that a theoretically consistent probability density function

arises. For clarity, consider the cross-sectional setup in which we would

have a (1, 1) probability density. Letting μ ¼ 0, Γ ¼ σ2 ¼ σu
2 + σv

2, ν ¼ 0,

D ¼ �λ ¼ σu/σv and Δ ¼ σ2 would produce f εð Þ¼ 2
σϕ ε=σð ÞΦ �λε=σð Þ. When

D ¼ 0 the o-dimensional normal results. Thus, D controls the skewness, which

is akin to how we view λ in the stochastic frontier setting. When Δ + DΓD
0
is a

diagonal matrix, then Φq 0,Δ +DΓD0ð Þ ¼ 2q.

To minimize the notational burden introduce the following matrices:

V¼ σ2η 00T
0T σ2uIT

" #

,Σ¼ σ2vIT + σ
2
c1T1

0
T

Λ¼V�VA0 Σ +AVA0ð Þ�1
AV¼ V�1 +A0Σ�1A

� ��1
,

R¼VA0 Σ +AVA0ð Þ�1 ¼ΛA0Σ�1:

Colombi et al. (2014) show, conditional on Xi, that the random vector yi has
a (T, T + 1) closed-skew normal distribution with the parameters: ν ¼ 0, μ ¼ 1T
β0 + Xiβ, Γ ¼ Σ + AV A0, D ¼ R; and Δ ¼ Λ. From this, conditional on Xi, the

density of yi is.

f yið Þ¼ϕT yi, 1Tβ0 +Xiβ, Σ+AVA0ð ÞΦT + 1 R yi�Xiβ�1Tβ0ð Þ,Λð Þ
2� T + 1ð Þ (22)

1. The multiple random-component SF model is related to the SF model introduced by

Domı́nguez-Molina, González-Farı́as, and Ramos-Quiroga (2003) and to the linear mixed models

proposed by Lin and Lee (2008) and Arellano-Valle, Bolfarine, and Lachos (2005). Domı́nguez-

Molina et al. (2003) were the first to recognize the relevance of the closed-skew normal distribution

in SF analysis, but they did not examine multiple-random-component SF models. Lin and Lee

(2008) and Arellano-Valle et al. (2005) used the closed-skew normal distribution to relax the nor-

mality assumption in the mixed-regression models.
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It can be checked easily that it is not necessary to include both time invariant

and time-varying inefficiency to obtain a closed-skew normal distribution of the

error components. For example, a (T, T) closed-skew normal results in the

Kumbhakar (1987), Battese and Coelli (1988), and Greene (2005a, 2005b)

models.When time-varying inefficiency is omitted, a (T, 1) closed-skew normal

density arises, and, when the random firm-effects are omitted, the joint distri-

bution is given by the previous results with σc
2 ¼ 0.

The log-likelihood for the nT observations from Eq. (22) is:

lnL¼
Xn

i¼1

lnϕT yi�Xiβ, 1Tβ0, Σ +AVA0ð Þ+ lnΦT + 1 R yi�Xiβ�1Tβ0ð Þ,Λð Þ� �

(23)

the sum of the log-likelihood for each of the n independent closed-skew normal

random variables yi � Xiβ. For T > 2 the computational complexity involved

to maximize the log-likelihood function is high. This stems from the T integrals

in ΦT + 1 R yi�Xiβ�1Tβ0ð Þ,Λð Þ. Adroit users can avail themselves of the R

packages csn (Pavlyuk & Girtcius, 2015) and sn (Azzalini, 2018) to access a

range of commands that allow for command line calculation of closed-skew

normal densities, distribution, and random number generation. This allows

greater ease of implementation rather than hard coding everything by oneself.

3.2.1 Prediction of the Random Components

Aside from estimating β and the parameters of the distributions of the random

components, predictors of both technical inefficiency and firm effects still are

needed. To do this, some additional notation is useful:

eσ2μ ¼ σ2μ�σ4μ1
0
TΔ1T , Ω¼ Σ+AVA0ð Þ�1

, eΛ¼Λ�R1T1T0R0 σ
4
μ

eσ2μ
:

Denote the errors as ri ¼ yi � Xiβ � 1T β0. With this, Colombi et al. (2014)

list the distributions of μi and ui conditional on yi as.

f μij yið Þ¼ϕ μi, σ
2
μ1

0Ωri, eσ2μ
� �ΦT + 1 Rri�R1Tσ2μeσ

�2
μ μi�σ2μ1T0Ωri
� �

, eΛ
� �

ΦT + 1 Rri,Λð Þ ; (24)

f uij yið Þ¼ϕT + 1 ui,Rri,Λð Þ
ΦT + 1 Rri,Λð Þ ,ui � 0: (25)

These distributions can be used to derive the conditional moments of

both the unobserved firm effects and time-varying and time invariant technical

inefficiency. This is done using the moment generating function of the (o, q)
closed-skew normal distribution:

E exp t0zf gð Þ¼Φq DΓt�ν,Δ +DΓD0ð Þ
Φq �ν,Δ+DΓD0ð Þ exp t0μ +

1

2
t0Γt

 �
: (26)
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Using the moment generating function, Colombi et al. (2014) provide the

conditional means of the random effects as (in their model y is in logarithmic

form):

E eμi j yið Þ¼
ΦT + 1 Rri�R1Tσ2μ,Λ

� �

ΦT + 1 Rri,Λð Þ eσ
2
μ1

0
TΔri +

1
2
eσ2μ ; (27)

E et
0ui j yi

� �
¼ΦT + 1 Rri +Λt,Λð Þ

ΦT + 1 Rri,Λð Þ et
0Rri +

1
2
t0Λt: (28)

The first element of Eq. (28) is the conditional expected value of time-

invariant inefficiency for firm i. Conditional on ri, the firm effect μi, does
not have a normal distribution as is the case in the standard random effects panel

model (Baltagi, 2013).

3.3 Maximum Simulated Likelihood

Although the log-likelihood of the generalized panel data stochastic frontier

model appears daunting to implement, Filippini and Greene (2016) recently

proposed a simulation-based optimization routine that circumvents many of

the challenges that can arise from brute force optimization in this setting.

Using the insights of Butler and Moffitt (1982), Filippini and Greene

(2016) note that the density in Eq. (22) can be simplified greatly by condition-

ing on μi and ηi. In this case, the conditional density is the product over time of

T univariate closed-skew normal densities. Thus, only a single integral, as

opposed to T +1 integrals needs to be calculated.

The conditional density, following Butler and Moffitt (1982), is.

f yið Þ¼
ð∞

�∞

YT

t¼1

2

σ
ϕ εit=θð ÞΦ �λεit=σð Þ

	 

2

θ
ϕ δi=θð ÞΦ �γδi=θð Þdδi, (29)

where Eit ¼ yit �α � xit
0 β � δi and δi ¼ μi �ηi. We use the common λ ¼ σu/σv

and σ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2v + σ

2
u

p
notation for the time-varying skew normal density and

θ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2μ + σ

2
η

q
and γ ¼ ση/σμ for the time constant skew normal density. Pro-

vided we can generate random draws for δi, we can replace the one dimension

integral in Eq. (29) with a simple average.

Our simulated log-likelihood function is.

lnLs ¼
XN

i¼1

ln R�1
XR

r¼1

YT

t¼1

2

σ
ϕ eεit=θð ÞΦ �λeεit=σð �

	 �
,

 

(30)

where eεit ¼ yit�β0�x0itβ�eδir and eδir ¼ στWir�ση|Hir| and Wir and Hir are

independent draws from a standard normal distribution. Maximization of this
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simulated log-likelihood is not more complicated from the cross-sectional case,

aside from the additional parameters. With the milestone work of Colombi et al.

(2014) and Filippini and Greene (2016), estimation of the generalized panel

data stochastic frontier model is accessible to applied researchers.

3.3.1 Rudiments of Maximum Simulated Likelihood
Implementation

Simulated maximum likelihood has a rich history in applied econometrics

(Train, 2009). Two key implementation issues that the practitioner faces are

the generation of the draws to build the simulated maximum likelihood function

and the production of the primitive draws across the simulation. For most sta-

tistical software, it is quite easy to generate random draws from a standard nor-

mal distribution forWir andHir. It is imperative, however, for the user to ensure

that the same draws ofWir and Hir are used at each iteration of the optimization

routine. Failure to fix the draws across iterations will produce discontinuities in

the function being optimized.

Although the cost of generating random standard normal variates is inexpen-

sive, it is well known (Bhat, 2001; Train, 2009) that the use of nonrandom

sequences can produce sharply improved results over quasi-random generation.

This stems from the fact that nonrandom sequences can better cover the area

over which the draws are to be produced, say from [0, 1]. This will lead to better
approximation of the integral, which is what is desired. A popular, and common,

nonrandom technique to take draws is through a Halton sequence. In the case of

generating normal draws, the researcher could first construct a Halton sequence,

which lies between 0 and 1, and then use the quantile function of the standard

normal to produce the random draws from the normal distribution.

What is left to determine is the number of draws to take. Although there is no

optimal selection, Greene (2003, pg. 186) mentions that use of Halton draws can

cut down the required number of draws by a factor of 10.

4 Including Determinants of Inefficiency

Perhaps one of the most popular implementations undertaken by applied effi-

ciency and productivity researchers has been to model the parameters of the

inefficiency distributions with a set of covariates, the determinants of ineffi-

ciency (Parmeter & Kumbhakar, 2014). It is standard to model the variance

parameters, in this case ση
2 and σu

2, as exponential functions. Because uit and
ηi vary across different aspects of the model, they naturally would be modeled

with different sets of variables. The most common approach is to use exponen-

tial functions to ensure positivity.

More specifically, for the distributional assumptions, ηi�N + (0,ση, i
2 ),

uit�N+(0,σu, it
2 ), ci�N(0,σc, i

2 ), and vit�N(0,σv, it
2 ). These distributional

assumptions are imposed so that the sum of the time invariant composed errors
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(ci �ηi) and the sum of the time-varying composed errors (vit �uit) each follow
the skew normal distribution. Each of the variance parameters of the four com-

ponents is dependent upon a set of covariates and specified as an exponential

function: ση, i
2 ¼ ση

2ezη, i0 δη, σc, i
2 ¼ σc

2ezc, i0 δc, σu, it
2 ¼ σu

2ezu, it0 δu, and σv, it
2 ¼ σv

2ezv, it0 δv.

The time-constant and time-varying z vectors can overlap because the assumed

distributional assumptions, that is, zc,i can share elements with zη,i and zu,it can
share elements with zv,it. Therefore, we could have ση ¼ cηe

δηz
i and σu ¼ cue

δuz
it

where cη and cu are scaling constants on the exponential functions and zi and zit
are the vectors of determinants to model the persistent and time-varying ineffi-

ciency components, respectively.

Including any of zη,i, zc,i, zu,it, and zv,it is straightforward. The researcher can
simply replace ση, σc, σu and/or σv in Eq. (23) directly and optimize over the

relevant parameter space. Alternatively, this approach also can be undertaken

in the maximum simulated likelihood context, which was proposed by

Badunenko and Kumbhakar (2017) following the logic of Filippini and

Greene (2016).2

As before, the benefit of this approach is that, rather than having T integrals

to evaluate, by conditioning on ci �ηi, the likelihood function can be written as
the product of T univariate integrals. Simulation methods are required to con-

struct draws of ci �ηi inside the convolution density. The final log-likelihood

function is.

L¼
Xn

i¼1

log R�1
XR

r¼1

YT

t¼1

2

σit
ϕ

εitr
σit

� �
Φ

εitrλit
σit

� �" # !

, (31)

where σit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ez

0
u, itδu + ez

0
v, itδv

p
, λit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ez

0
u, itδu�z0

v, itδv
p

, εitr ¼ εit�
ffiffiffiffiffiffiffiffiffiffi
ez

0
c, iδc

p
Vir�

�

ffiffiffiffiffiffiffiffi
ez

0
ηδη

p
Uirj jÞ and Eit ¼ yit �m(xit; β). R is the number of draws over which to

numerically evaluate the integral. Lastly, both Vir and Uir are random draws

from a standard normal distribution. Implementation of this routine is straight-

forward if one has access to a standard normal random number generator (typ-

ically available in any general statistical software). After draws for Vir and Uir

have been constructed, the likelihood is evaluated for the current set of param-

eters (β, δu, δv, δη, δC). This process then is iterated over different sets of param-

eter values. Naturally, one can impose constancy at various parts of the error

components by restricting δ‘ ¼ 0 for ‘ 2 {u, v, c, η}.
An even simpler approach is available to the researcher without requiring

maximum likelihood methods (simulated or direct). Assume for simplicity that

σc,i
2 ¼ σi

2 and σv,it
2 ¼ σv

2. In this setup, we have that E ηi½ � ¼
ffiffi
2
π

q
ση, i ¼

ffiffi
2
π

q
σηe

z0η, iδη=2

and E uit½ � ¼
ffiffi
2
π

q
σu, it ¼ σue

z0u, itδu=2. If we first difference the model in Eq. (10),

we have.

2. See also Lai and Kumbhakar (2018).
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Δyit ¼Δx0itβ�
ffiffiffi
2

π

r

ez
0
u, itδu=2� ez

0
u, it�1

δu=2
� �

+Δεit, (31)

where Δεit ¼ Δvit � (Δuit �E [Δuit]). Thus, E [Δεit] ¼ 0.

Estimation of this model using nonlinear least squares will provide β̂ and δ̂u.
δ̂u then can be used to estimate E[uit]. δη can be estimated by noting that

yit�x0itβ+ uit ¼ β0 + ci�ηi + vit � γit,

which can be rewritten as

γit ¼ β0�
ffiffiffi
2

π

r

σηe
z0η, iδη=2 + ci� ηi�E ηi½ �ð Þ+ vit

� β0�
ffiffiffi
2

π

r

σηe
z0η, iδη=2 + ξit,

where E[ξit] ¼ 0 (though it does not have constant variance). We can replace γit
with yit�x0itβ̂+ ^E uit½ � and then use nonlinear least squares a second time to

recover δη. E[ηi] then can be estimated using δ̂η.
This simple approach offers two advantages to the researcher. First, ci and vit

are not required to follow normal distributions, only that their means are zero.

Second, we do not need ηi or uit to have a particular distribution. Although we

have written the previous text in the context of both terms having distinct half-

normal distributions, one can simply assume the scaling property (Alvarez,

Amsler, Orea, & Schmidt, 2006) and follow the same logic. A potential third

benefit is that this approach lets the researcher estimate E[uit] and E[ηi] without
resorting to the conditional mean approach of Jondrow et al. (1982), which

would require distributional assumptions on both ci and vit, as well as ηi and uit.

4.1 Semiparametric Approaches

An even more recent approach to estimating the GPDSFM in the presence of

determinants of inefficiency stems from the work of Lien, Kumbhakar, and

Alem (2018). This paper uses the insights of Tran and Tsionas (2009) and

Parmeter, Wang, and Kumbhakar (2017) to model the production frontier in

a parametric fashion, and the conditional mean of inefficiency in a fully non-

parametric fashion, what is known as a semiparametric model. The approach

taken by Lien et al. (2018) is to assume that firm heterogeneity falls under

the random effects framework and that only time-varying inefficiency depends

on determinants. In this setup, the model of interest is.

yit ¼ x0itβ + ci�ηi + vit�u zitð Þ: (32)

This model is identical to the standard model discussed in Eq. (9) except that

time-varying inefficiency now depends on zit. Tominimize reliance on paramet-

ric assumptions the distribution of u is left unspecified. Recentering the model

so that the error terms have zero mean, and letting g(zit) ¼ E[u(zit)], we have.
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yit ¼ g∗ zitð Þ+ x0itβ+ α∗i + ε∗it, (33)

where g∗(zit) ¼ � (E[ηi] + g(zit)). As before, both αi∗ and εit∗ are mean zero. The

frontier and the conditional mean of time-varying inefficiency can be estimated

following Tran and Tsionas (2009) and Parmeter, Wang, and Kumbhakar

(2017), who in turn use the partly linear estimator proposed by Robinson

(1988). This estimator works in three steps.

To begin, take the conditional on zit expectation of both sides of Eq. (33).

This produces.

E yitj zit½ � ¼ g∗ zitð Þ+E xitj zit½ �0β, (34)

where E[αi∗j zit] ¼ 0 and E[εit∗j zit] ¼ 0 by assumption. This is then subtracted

from Eq. (35), producing.

yit � E[yit j zit] ¼ (xit � E[xit j zit])0β + αi∗ + εit∗, (35) which, upon estimation

of E[yit jzit] and E[xit jzit], is nothing more than traditional random effects esti-

mation and does not require distributional assumptions about the error compo-

nents. What complicates this approach is that the conditional means of yit and xit
are unknown. Robinson’s (1988) insight was to estimate these conditional

means nonparametrically.

After β̂ has been recovered, the random effects, αi∗ can be predicted and the

variance components, ση and σc can be recovered using either method of

moments or maximum likelihood as detailed earlier. Lastly, the unknown,

shifted, conditional mean of uit is estimated by using the shifted residuals.

eε∗it ¼ yit�x0itβ̂� α̂∗i (36)

and running a nonparametric regression of eε∗it on zit. Lien et al. (2018) pro-

posed a parametric structure for g(zit) in their three-step procedure, which

limits some of the appeal of the modeling aspect for practical purposes. This

parametric structure, which also requires distributional assumptions, is really

necessary only if one wishes to correct the shift in the inefficiency function for

the unknown mean of the persistent inefficiency component. Additionally, for

identification purposes, the production frontier itself cannot have an intercept

because it is not identified. Therefore, without further assumptions, only

g∗(zit) can be identified. This is not viewed as a real problem for empirical

researchers because one still can rank firms by looking at differences across

the various estimates, and the impact of zit on inefficiency can be determined

directly by looking at the derivatives of the estimated function (Parmeter et al.,

2017). For more details relating to the estimation of the partly linear model,

we refer to Li and Racine (2007) and Henderson and Parmeter (2015).

This model also could be estimated under the fixed-effects framework. In

this case, a slightly different estimation approach, known as profile least

squares, is required (Su & Ullah, 2006). We refer to the reader to Chapter 4

of Parmeter and Racine (2019) in this volume for a robust discussion about pro-

file least squares estimation and the work of Zhou, Parmeter, and Kumbhakar

(2018) for more details about implementation of the GPDSFM under the FE
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framework. As we mentioned above, under the FE framework, we cannot sep-

arate persistent inefficiency from time heterogeneity in this approach.

5 Recent Applications of the Generalized Panel Data Stochastic
Frontier Model

In applications, the ability to parse persistent from time-varying inefficiency is

important for practitioners. Moreover, also being able to control for unobserved

heterogeneity lends considerable insight into any policy recommendations that

might stem from such an analysis. As Filippini and Zhang (2016, pg. 1319) note

“… [the practitioner needs to] use an econometric specification that takes into

account of the presence of time-invariant unobserved heterogeneity variables,

time-invariant or persistent inefficiency, and transient inefficiency.” With

advances in the estimation of the generalized panel data stochastic frontier

model, it is no wonder that a range of applications have appeared that have

deployed this model to determine the structure of inefficiency and the presence

(or lack thereof) of inefficiency.

Filippini and Zhang (2016) study energy demand, which they use to assess

energy efficiency across 29 Chinese provinces in the early 2000s.3 They esti-

mate four different variants of panel data stochastic frontier models, but none

is the generalized panel data stochastic frontier model. Although they note the

complexity in estimating this model, this offers little comfort with respect to

their findings. The models that include only persistent inefficiency suggest

strong levels of persistent inefficiency, and the models that allow only time-

varying inefficiency find strong levels of inefficiency (albeit with much less

variation). In this case, one might expect that a model that allows both (the

GPDSFM) to outperform any of these models, and yet the authors passed on

using such a model. The different models also suggest that the estimates of per-

sistent and transient energy efficiency are not highly correlated. Interestingly,

Beijing is classified as inefficient with regards to time-varying energy ineffi-

ciency and efficient with regards to persistent energy inefficiency. Although

this might make sense if these two terms were included together, the fact that

they stem from different, nonnested models makes direct interpretation diffi-

cult. The rank correlations between the panel data stochastic frontier models,

which include either persistent or time-varying inefficiency, is also quite

low. This is indicative that using the GPDSFM is apt to provide insights in prac-

tice that one would miss when using a more restrictive/limited model.

Ajayi, Weyman-Jones, and Glass (2017) study cost efficiency of the power

generation sector between OECD nations across 30 years. They consider models

that allow foronly time-invariant inefficiencyoronly time-varying inefficiency, as

well as implementing the four-component model in the manner suggested by

3. See Marin and Palma (2017) for a similar study, with similar methods, for energy demand in the

United States.
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Kumbhakar et al. (2014). In their application, it is determined that little persistent

inefficiency exists, and only time-varying inefficiency is indicative of the power

generation sector. What is most interesting from this perspective is that a model

that includes only persistent inefficiency finds high levels of it. It appears in this

instance that what is being picked up is not really persistent inefficiency, but

time-varying inefficiency that is masquerading as persistent inefficiency. Their

preferred model is the true fixed-effects model of Greene (2005b).

Blasch, Boogen, Filippini, and Kumar (2017) use the GPDSFM to estimate

efficiency of electricity use in Swiss households following the maximum sim-

ulated likelihood approach of Filippini and Greene (2016). The GPDSFM is

well suited to their setup, as they note that “… residential consumers are typ-

ically very heterogeneous.” They find high levels of both persistent and tran-

sient inefficiency with an unbalanced sample across 1994 households.

Further, the level of persistent efficiency is much higher when the energy

demand function does not account for energy services provided. Transient

scores are lower without accounting for energy services. Lastly, Blasch et al.

(2017) note that investment literacy plays an important role in the overall level

of both persistent and transient inefficiency. The difference between households

deemed literate can be >10 percentage points on the efficiency scores, which

has important implications for policy analysis.

Kumbhakar and Lien (2018) deploy the GPDSFM, estimated using the

COLS approach described earlier, to study efficiency of Norwegian electricity

distribution from 2000 to 2013. Their approach is based on a translog input dis-

tance function for total expenditures. Kumbhakar and Lien (2018) estimate

models that consider only both persistent and time-varying inefficiency (but

no unobserved heterogeneity) along with a panel data stochastic frontier model

that accounts only for time-varying inefficiency as well to provide a base for

comparison with the GPDSFM estimates. The model that omits unobserved het-

erogeneity finds low levels of persistent efficiency and high levels of time-

varying efficiency (0.532 and 0.962, respectively, on average).4 These contrast

with the estimates from the GPDSFM, which also allows for unobserved het-

erogeneity, where much higher levels of persistent efficiency are found

(0.935 on average) and the degree of time-varying efficiency is still high,

although lower than the more restrictive model (0.885 on average).5

The key from Kumbhakar and Lien’s (2018) work is that overall technical

efficiency is substantially different (both on average and in distribution)

between these two models. The fact that unobserved heterogeneity is ignored

4. Here and in the remainder of the paragraph, we are reporting Kumbhakar and Lien’s (2018) esti-

mates of efficiency, so inefficiency would be 1 minus the level of reported efficiency.

5. Not only does the average level change, but the variance also is greatly affected. Kumbhakar and

Lien (2018) surmise that this is because the firm effects can be positive for some electric generation

plants and negative for others. Therefore, it is likely see a larger dispersion of the persistent effi-

ciency estimates.
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implies that persistent inefficiency is, in this setting, higher than when this het-

erogeneity is acknowledged and properly modeled. Moreover, the large differ-

ences in these efficiency estimates are important to acknowledge because they

are used by the Norwegian regulator to construct the revenue-cap allocation for

firms, and allocations based on incorrect/inaccurate estimates of inefficiency

likely would send poor signals to the firms. Interestingly, all three models have

similar average estimates of returns to scale and technical change, which is sug-

gestive that the first-stage estimation of β is consistent regardless of how the

time constant term is treated.

6 Conclusion

This chapter has detailed theworkings and intuition of the generalized panel data

stochastic frontier model. This model marks the culmination of >30 years of

research in properlymodeling both heterogeneity and inefficiency in a panel data

framework. Thismodel is flexible and fully identified, making it an exemplar for

the foreseeable future. Various alternative modeling and estimation strategies

still exist, but the basic structure and intuition of the model have been refined

and applied in just the past several years. We also mention that, although users

might find these newmethods daunting to apply, theCOLSmethods described in

Section 3.1 are quite easy to implement in anymatrix-oriented programming lan-

guage while NLOGIT/LIMDEP offers maximum simulated likelihood estima-

tion. Recently, R code, also offering maximum simulated likelihood, has

appeared in the psfm call (see www.davidharrybernstein.com/software).

Overall, the GPDSFM is an excellent addition to the armamentarium of the

applied researcher and offers many areas for continued expansion. An interest-

ing investigation would be a comparison of the various estimation methods for

the GPDSFM. Currently, no such study exists, and we have no indication which

of these approaches is likely to dominate. For an unlimited sample size, full

maximum likelihood is theoretically optimal, but the work of both Olson

et al. (1980) and Andor and Parmeter (2017) have revealed that COLS and

pseudo-likelihood methods perform nearly as well as maximum likelihood in

the cross-sectional setting. The transferrence of these insights to the panel set-

ting would be well worth the effort.
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1 Introduction

In this chapter, I discuss the development and status of panel cointegration tech-

niques and some of the open challenges that remain. During the past quarter-

century, the investigation of panel cointegration methods has involved many

dozens of econometric papers that have studied and developed methodology

and many hundreds of economic papers that have employed the techniques.

This chapter is not intended to be a survey of the vast literature about the topic.

Rather, it is written as a guide to some of the key aspects of the concepts and

implementation of panel cointegration analysis in a manner that is intended to

be intuitive and accessible to applied researchers. It also is written from the per-

spective of a personal assessment of the status of panel cointegration techniques

and the open challenges that remain.
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Notwithstanding the overall approach of the chapter, some occasional over-

view is instructive to understanding some of the key motivations that have

helped to shape the literature and the associated challenges. One of the earliest

motivations for panel cointegration methods in my Ph.D. dissertation, Pedroni

(1993), was the desire to import some of the remarkable features of the time

series properties of cointegration into a panel data framework where they could

be exploited in the context of data series that often are far too short for reliable

cointegration analysis in a conventional time series context. In particular, what

was at the time a relatively young field of cointegration analysis for pure time

series provided considerable promise in its potential to circumvent traditional

concerns regarding endogeneity of regressors because of certain forms of

reverse causality, simultaneity, omitted variables, measurement errors, and

so forth. The potential robustness with respect to these features stems funda-

mentally from the superconsistency properties under cointegration, which are

described in the next section.

Bringing superconsistency associated with cointegration to panel analysis,

however, naturally brought to the front numerous challenges for panel data

analysis that became more apparent in the treatment of the type of aggregate

level data that is typically used in cointegration analysis. In particular, although

cointegration analysis in panels reduces the need for series to be as long as one

would require for cointegration analysis in a pure time series context, it does

require the panels to have moderately long length, longer than we typically

would require for more conventional panel data techniques that are oriented

toward microeconomic data analysis. This leads many of the panels that are

used for cointegration analysis to be composed of aggregate level data, which

are more often observed over longer periods of time and therein fall into the

realm of what has come to be known as time series panels.

Typical data include formats such as multicountry panels of national level

data, multiregional panels, or panels composed of relatively aggregated indus-

try level data. With these data formats, the need to address cross-sectional het-

erogeneity becomes apparent, not just in the form of fixed effects, as was typical

in earlier panel data methods that were oriented toward microeconomic data,

but more importantly heterogeneity in both short-run and long-run dynamics.

Another challenge that becomes more readily apparent from these types of data

structures is that the nature of cross-sectional dependency is likely to be more

complex than was typical in the treatment of earlier micro-oriented panel

methods, particularly in the sense that the cross-sectional dependency is likely

to be intertwined with temporal dependencies. In short, both the cross-sectional

heterogeneity and the cross-sectional dependency interact with an essential fea-

ture of time series panels, namely temporal dependence.

The panel cointegration techniques discussed in this chapter can be applied

equally well to microeconomic data panels given sufficient length of the panels.

But by addressing the challenges that arise from the typical applications to

aggregate-level macro panels, they have helped to highlight some of the
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attractive features of panel time series techniques in general, which has helped

to fuel the growth of the literature. One way to better appreciate this is to com-

pare these methods in broad terms to alternative strategies for empirical analysis

of aggregate-level data. For example, at one end of the spectrum, we can con-

sider simply using cross-sectional methods to study aggregate country level

data. Although this has the attraction of providing ample variation in macroeco-

nomic conditions along the cross-sectional dimension, it runs into the usual

challenges in treating endogeneity and searching for underlying structural cau-

sation. Furthermore, when the cross sections represent point in time observa-

tions, the estimation can reflect the arbitrariness of the time period, and

similarly, when the cross sections represent averages over time, the estimation

can reflect a relationship that exists among the unconditional time averages

rather than for a well-defined sense of a long-run steady state relationship.

Another strategy might be to use more conventional static micro panel

methods for aggregate data. In fact, static micro panel methods can be viewed

as essentially repeated cross sections, observed in multiple time periods. But

aside from offering controls for unobserved fixed effects or random effects,

in the absence of cointegration, the challenges in treating endogeneity and

the issues associated with the temporal interpretation still pertain for these

methods. Although dynamic panel methods such as those of Holz-Eakin,

Newey, and Rosen (1988), and Arellano and Bond (1991), among others, exist

for micro data that can help give more precise meaning to temporal interpreta-

tions, the difficulty with these approaches is that they require the dynamics to be

strictly homogeneous among the individual members of the panel. When this

assumption is violated, as would be typical for most aggregate data, then, as

noted in Pesaran and Smith (1995) and discussed in detail in Section 3 of this

chapter, it leads to inconsistent estimation, even for the average dynamic rela-

tionships, which makes these dynamic panel methods unattractive for the anal-

ysis of dynamics in aggregate level macro type data.

At the other end of the spectrum of alternatives, it is worth considering what

we learn from time series estimation applied to the series of an individual coun-

try. In this context, plenty of methods exist for treating endogeneity without the

need for external instruments, and providing specific temporal interpretations

often is central to these methods. By using the data from an individual country,

however, the sample variation that pertains to a particular question of interest

can be limited. For example, learning about the economic consequences of

changing from one type of monetary policy regime to another type is difficult

when the time series data from a country spans only one regime. For this, cross-

sectional variation that spans both regimes in the form of multicountry time

series data becomes important and useful.

Viewed from this perspective, panel time series methods, which includes

panel cointegration techniques, provide an opportunity to blend the attractive

features of time series with potential aggregate level cross-sectional variation

in data settings where the time series length are moderate. Furthermore, as
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we will see, when the challenges posed by the interaction of temporal depen-

dencies with cross-sectional heterogeneity and cross-sectional dependence

are addressed properly, the techniques offer a further opportunity to study

the underlying determinants of the cross-sectional variation.

The remainder of this chapter is structured as follows. In the next section, I

use a simple bivariate example to review the concepts behind the superconsis-

tency result that is key to understanding the robustness properties that cointe-

gration brings to panel data analysis. In Sections 3–7, I describe how the

challenge of addressing cross-sectional heterogeneity in the dynamics has

shaped testing, estimation, and inference in cointegrated panels, including test-

ing for directions of long-run causality in panels. In Sections 8 and 9, I discuss

how addressing the interaction of both cross-sectional heterogeneity and cross-

sectional dependencies continue to drive some of the open challenges in panel

cointegration analysis, and in Section 10, I conclude with a discussion about

some open challenges being explored currently that are associated with gener-

alizing panel cointegration analysis to allow for time varying heterogeneity and

nonlinearities in the long-run relationships. Again, this chapter is not intended

as a comprehensive or even partial survey, because the panel cointegration lit-

erature on the whole is vast, and there are by necessity topics that are not

touched upon in detail here, including, for example, nonclassical, Bayesian

approaches, because they are reserved for another chapter.

2 Cointegration and the Motivation for Panels

In this section, I discuss the property of superconsistency and the motivation

that this gives to bringing cointegration to a panel setting in order to allow

for estimation that is robust to myriad issues typically associated with endog-

enous regressors. In particular, to gain some intuition, I illustrate these concepts

using a simple bivariate OLS regression framework.

Consider the following simple and standard example taken from a classical

time series perspective. Let

yt ¼ α+ βxt + μt (1)

for t ¼ 1, …, T be the data generating process that describes the true unknown

relationship between yt and xt for some unknown error process μt. For simplicity

of notation, we will work with the time demeaned versions of the variables, so

that yt* ¼ yt � T�1P
t¼1
T yt and similarly xt* ¼ xt � T�1P

t¼1
T xt. Then we know

that the OLS estimator for β can be written as

β̂OLS ¼
1

T

XT

t¼1
x∗i βx∗i + μt
� �

1

T

XT

i¼1
x∗2t

¼ β +RT (2)
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where RT ¼R1T

R2T
, R1T ¼ 1

T

XT

t¼1

x∗i μt, R2T ¼ 1

T

XT

t¼1

x∗2i (3)

Thus, OLS is a consistent estimator of the true value β only when the

remainder term, RT, is eliminated, and much of the use and adaptation of

OLS for empirical work revolves around the conditions under which this occurs.

When xt and μt are both covariance stationary, and in the simplest special

case are i.i.d. serially uncorrelated over time, then as we envision the sample

growing large and consider T ! ∞, the probability limit of both the numerator

and denominator go to constants, such that R1,T ! ET[xt*μt] ¼ σx,μ and

R2,T ! ET[xt*
2] ¼ σx

2. Thus, OLS becomes consistent such that β̂OLS ! β only

when xt and μt are orthogonal, such that ET[xt*μt] ¼ σx,μ ¼ 0. When the condi-

tion is violated, one classic solution is to look for an external instrumental var-

iable, zt, such that ET[zt*μt] ¼ 0 and ET[zt*xt*] 6¼ 0, which often can be difficult

to justify in practice, particularly for aggregate time series data.

In a different scenario, however, wherein xt and μt are not both covariance

stationary, but rather xt is unit root nonstationary, denoted xt � I(1), while μt is
covariance stationary, denoted μt � I(0), then yt and xt are said to be cointe-

grated, in which case the large sample OLS properties become very different.

Specifically, in this case, OLS becomes consistent in the sense that β̂OLS ! β
regardless of whether the regressor is orthogonal to the residual μt, and regard-

less of any serial correlation dynamics that endogenously relate the changes in

xt to μt. In a nutshell, this occurs because when xt is nonstationary, its variance
is no longer finite but rather grows indefinitely with respect to the sample size,

while by contrast, under cointegration, because of the stationarity of μt, the
covariance between xt and μt does not similarly diverge.

To see this more precisely, it is worth introducing a few concepts that typ-

ically are used in the analysis of nonstationary time series, which also will be

useful in other sections of this chapter. For example, to allow for fairly general

vector stationary processes with jointly determined serial correlation dynamics,

we typically assume that the conditions are present for a multivariate functional

central limit theorem, which essentially generalizes more standard central

limit theorems to allow for time-dependent processes. Specifically, if we let

ξt ¼ (μt, ηt)
0 where Δx ¼ ηt is the stochastic process that describes how xt

changes, then we can replace the standard central limit theorem for i.i.d. pro-

cesses with one that allows for endogenous, jointly determined dependent pro-

cess by writing

1
ffiffiffi
T

p
XTr½ �

t¼1

ξt )Br Ωð Þ as T!∞ for r2 0, 1½ �, (4)

where Br(Ω) is a vector of demeaned Brownian motion with long-run covari-

ance Ω. This functional central limit theorem applies for a broad class of pro-

cesses for ξt, including for example linear time series representations such

as VARs.
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If we define the vector Zt ¼ Zt �1 + ξt, it is fairly straightforward to show

based on Eq. (4) and what is known as the continuous mapping theorem, that

1

T

XT

t¼1

Ztξ
0
t )

ð1

r¼0

Br Ωð ÞdBr Ωð Þ+Λ +Ω0 as T!∞ (5)

1

T2

XT

t¼1

ZtZ
0
t )

ð1

r¼0

Br Ωð ÞBr Ωð Þ0dr as T!∞: (6)

These expressions simply indicate that the sample statistics on the left of the

thick arrows converge in distribution to the expressions on the right of the thick

arrow, which are multivariate stable distributions expressed in terms of Brow-

nian motion, known as Brownian motion functionals. In the case of Eq. (5), the

distribution is further uncentered by constants, which come from the decompo-

sition of the long-run covariance matrix into its forward spectrum, Λ, and stan-
dard covariance, Ω0, components such that Ω ¼ Λ + Λ0 + Ω0. But for our

current purposes, the more important detail to notice is that the OLS remainder

terms from Eq. (3) are closely related to the sample statistics on the left sides of

Eqs. (5) and (6), such that the numerator and denominator terms correspond to

off-diagonal and lower diagonal elements of these matrix expressions, so that

R1T ¼ 1

T

XT

t¼1
Ztξ

0
t

� �

21

and R2T ¼ 1

T

XT

t¼1
ZtZ

0
t

� �

22

. Therefore, according to

Eq. (5), R1T converges to a stable distribution as the sample grows large. By con-

trast, according to Eq. (6), R2T is off by a factor of T. In order to converge to a

stable distribution, one would need to divide R2T by an additional factor of T. By
not doing so in the construction of the OLS estimator, the implication is that R2T

diverges to infinity at rate T so that the remainder term RT ¼ R2T
�1R1T collapses to

zero as the sample size grows large. Therefore, under cointegration we have

R1T )
ð1

r¼0

Br Ωð ÞdBr Ωð Þ
� �

21

+Λ21 +Ω0,21 as T!∞ (7)

R2T !∞, RT ! 0, β̂OLS ! β, as T!∞: (8)

Notice that under cointegration, this occurs regardless of the covariance

structure between xt and μt in the DGP. Furthermore, because under Eq. (4)

the vector process for μt and Δxt ¼ ηt is permitted to have very general forms

of dynamic dependence, the parameter β can be interpreted as the relationship

between xt and yt that is invariant to any stationary and therefore transitional

dynamics associated with either changes in xt or changes in yt conditional on
xt. In this way, the parameter β also can be interpreted as reflecting the stable

steady state relationship that exists between xt* and yt*, which under cointegra-

tion can be estimated consistently even when the transition dynamics are

unknown and omitted from the estimation.
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For these reasons, the presence of cointegration brings with it a form of

robustness to many of the classic empirical problems that lead to the so-called

violation of exogeneity condition for the regressors. Obvious examples include

omitted variables, measurement error, simultaneity, reverse causality, or any-

thing that leads the data generating process, for Δxt ¼ ηt to be jointly deter-

mined with the data generating process, hereafter referred to as the DGP, for

μt. To be clear, one must make sure that the reasons for the violation are not

so extreme as to essentially break the cointegration and thereby induce μt to
become unit root nonstationary. For example, measurement error that is station-

ary but unknown will not affect consistency of the OLS estimator, nor will

omission of a stationary variable, nor will omission of stationary transition

dynamics, and so forth. But if the measurement error is itself unit root nonsta-

tionary, or the omitted variable is unit root nonstationary and belongs in the

cointegrating relationship such that without it μt is nonstationary, then robust-

ness is lost. This is just another way to state the fact that yt and xt are not coin-
tegrated, in which case there is no claim to the robustness. In practice, one can

either assert on an a priori basis that the cointegration is likely to hold based on

economic reasoning, or more commonly, one can test whether the cointegrating

relationship appears to hold empirically, as I discuss in the next section.

Of course, these arguments are based on asymptotics, and the practical ques-

tion is how closely these properties hold as approximations in small samples. If

the empirical interest were limited only to the actual estimation of the steady

state relationship by OLS under cointegration, then one could say that estima-

tion performs reasonably well in small samples, though precisely how well it

performs depends on amyriad of details about what the regression omits relative

to the DGP.

The bigger practical issue, however, pertains to the performance of the var-

ious tests typically associated with cointegration analysis. For example, one

often is interested in confirming by empirical test whether a relationship is coin-

tegrated, so that one has greater confidence that the robustness properties asso-

ciated with cointegration are in play. Similarly, beyond robustly estimating the

coefficients associated with the long-run steady-state relationship, we are inter-

ested in conducting inferential tests regarding the estimated coefficients or sim-

ply reporting standard errors or confidence bands. In contrast to what is required

in order to consistently and robustly estimate the steady-state relationship, each

of these inferential aspects of cointegration analysis require us to account for the

stationary transitional dynamics, most commonly through estimation either

parametrically or nonparametrically. The classic methods for these also are

based on asymptotic arguments, and it is these methods for treating the dynam-

ics that often require distressingly long time series in order to perform well. It is

in this context that panels can help to substantially reduce the length of the series

required in order for the tests to performwell and for the inference to be reliable.

By using cross-sectional variation to substitute for temporal variation in the

estimation of the transitional dynamics, however, this is the context in which the

Panel Cointegration Techniques and Open Challenges Chapter 10 257



challenges posed by the interaction of temporal dependencies with cross-

sectional heterogeneity and cross-sectional dependence arise. This is an impor-

tant theme for the next section, in which I discuss how these challenges help to

shape the strategies for testing cointegration in time series panels and construct-

ing consistent and robust methods of inference in cointegrated panels.

3 Strategies for Treating Cross-Sectional Heterogeneity in
Cointegration Testing and Inference

In the next several sections, I discuss some the key aspects of using panels to test

for the presence of cointegration and to test hypotheses about cointegrating rela-

tionships in panels. As discussed in the previous section, classic approaches to

this in time series contexts invariably require the estimation of dynamics. An

important challenge for panels occurs when these dynamics are cross-

sectionally heterogeneous, as one would expect for virtually all aggregate level

data, and I detail the challenge that this creates. Specifically, cross-sectional

heterogeneity in the dynamics rules out standard approaches to pooling data

cross sectionally as is done in tradition micro panel methods. This is because

if one pools the data when the true dynamics are heterogeneous, it leads to

inconsistent estimation of all coefficients of the regression. More precisely,

as pointed out in Pesaran and Smith (1995), in the presence of heterogeneity,

the pooled coefficients on lagged dependent variables do not converge to he

average of the underlying heterogeneous parameters.

To see this point more clearly, consider a simple illustration for a dynamic

process characterized by a first-order autoregressive process. For example, ima-

gine that for a panel yitwith i ¼ 1,…,N cross-sectional units, which I call mem-

bers of the panel, and t ¼ 1, …, T time periods, the data generating process for

the dynamics in stationary form can be represented as

Δyit ¼ αi +ϕiΔyit�1 + μit, (9)

ϕi ¼ϕ+ ηi, ηi � iid 0, σ2η

� �
, σ2η <∞, |ϕj|< 18i, (10)

so that the coefficient reflecting the stationary transition dynamics,ϕi, is heteroge-

neous among the members of the panel, i. But imagine that, in the process of esti-

mation, the dynamic coefficient is pooled across i, so that estimation takes the form

Δyit ¼ αi +ϕΔyit�1 + vit, (11)

so that we have imposed the homogeneity restriction ϕi ¼ ϕ 8 i, when in truth

ϕi ¼ ϕ + ηi. This would not be a problem if the pooled estimation for ϕ̂ consis-

tently estimated the average or some other notion of the typical value of ϕi

among the members of the panel. But as noted by Pesaran and Smith (1995),

this is not what happens. To see this, notice that for the estimated residuals

in Eq. (11) we have
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vit ¼ μit + ηiΔyit�1, (12)

which now consists of both the original stochastic term μit from the DGP plus a

contamination term ηiΔyit�1. Consequently, E Δyit�1�Δyit�1ð Þvit½ � 6¼ 0 and the

usual condition for consistency is violated so that the pooled OLS estimator no

longer estimates the average value for ϕi in the sense that . Most

importantly, there is no easy solution to this problem when the heterogeneous

coefficients are pooled, because the same value Δyit�1 appears in both the

regressor and the residuals, so that instrumentation is not possible. This is a sim-

ple illustrative example, but the principle generalizes to higher order dynamics

and multivariate dynamics. Indeed, this issue is pervasive in any panel time

series methods that estimate dynamics, and because both testing for the pres-

ence of cointegration and constructing consistent tests for hypotheses about

cointegrating relationships typically require estimation of dynamics, this issue

must be addressed in most panel cointegration techniques.

4 Treating Heterogeneity in Residual Based Tests
for Cointegration

In this section, I focus on the challenges that cross-sectional heterogeneity in the

dynamics creates for testing for the presence of cointegration in panels, with an

initial focus on residual based tests. Furthermore, it is important to understand

that in addition to the issue of heterogeneity in the stationary transition dynam-

ics as discussed in the previous section, the specifics of testing for the presence

of cointegration introduces another important heterogeneity issue, which is pos-

sible heterogeneity of long-run steady-state dynamics. This was an important

theme regarding cointegration testing in Pedroni (1993), as presented at the

1994 Econometric Society meetings, then circulated as Pedroni (1995), and

then published as part of Pedroni (1999, 2004). To understand this issue, which

is fairly unique specifically to testing for the presence of cointegration, consider

a panel version of the DGP described in Eq. (1) so that we have

yit ¼ αi + βixit + eit: (13)

Imagine, analogous to the discussion surrounding heterogeneity of station-

ary transition dynamics, that the cointegration slope of steady-state dynamics

also are heterogeneous, so that by analogy

βi ¼ β + ηi, ηi � iid 0, σ2η

� �
, σ2η <∞: (14)

Again, imagine that in the process of estimation, the cointegration slope

coefficient is pooled across i, so that estimation takes the form

yit ¼ αi + βxit + vit: (15)
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so that the homogeneity restriction βi ¼ β 8 i has been imposed when in truth

βi ¼ β + ηi. Now, similar to when we were studying the consequences of ignor-

ing heterogeneity in stationary dynamics, the regression error term in Eq. (15)

becomes

vit ¼ eit + ηixit, (16)

which consists of both the original stochastic term eit from the DGP plus a con-

tamination term ηixit.
In this case, the consequences we wish to consider are specifically for testing

whether yit and xit are cointegrated. If the linear combination is stationary, so that

eit is stationary, denoted eit � I(0), then yit and xit are cointegrated, whereas if the
linear combination is unit root nonstationary, so that eit follows a nonstationary
unit root process, denoted eit � I(1), then yit and xit are not cointegrated. Based on
Eq. (16), vit � I(1) follows a unit root process because the contamination term

ηixit inherits a unit root from xit � I(1). This implies that vit � I(1) regardless
ofwhether yit and xit are cointegrated. Consequently, if the true cointegrating rela-
tionships are heterogeneous across i in the sense that βi 6¼ β 8 i, then tests con-

structed from pooled regressions that treat βi ¼ β 8 i will produce inconsistent

tests, in that they cannot distinguish between the presence or absence of cointe-

gration regardless of the sample size. Even when the degree of heterogeneity is

small in the sense that ηi is small, because it multiplies a unit root variable xit,
substantial contamination of the stationary component of vit occurs even for very
small deviations from a false homogeneity assumption. Therefore, the relatively

small possible gain in the degrees of freedom obtained from pooling is rarely

worth the risk of misspecification, particularly because panel cointegration

methods typically already have very high power under standard conditions.

For these reasons, although there are later exceptions such as Kao (1999) that

pools both the long-run steady-state dynamics and the stationary transition

dynamics, most other methods for testing for the presence of cointegration allow

for heterogeneity of both the short-run transition dynamics and the long-run

steady state dynamics, as reflected in the heterogeneity of the cointegration slope.

By now, many different approaches proposed for constructing tests for the

presence of cointegration take into account heterogeneity in both the transition

dynamics and the steady-state cointegrating relationship. Rather than surveying

all of the various approaches, I will focus on conveying the central idea of treat-

ing the cross-sectional heterogeneity in both the short-run and long-run dynam-

ics. I will use examples based on residual-based tests in this section, as well as

ECM-based tests in the next section. The first two examples are taken from

Pedroni (1999, 2004). Somewhat ironically, because of the lengthy and uneven

publication process, the 2004 paper is actually the original paper, with the 1999

one being the follow-up paper, which reported numerical adjustment values that

applied to the case in which larger numbers of variables were used in the coin-

tegrating regressions. Both papers studied seven different statistics spanning

various parametric and semiparametric approaches, but I will focus on only
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the parametric ADF-based test statistics to illustrate two different general

methods for treating heterogeneous stationary transition dynamics.

The first method uses a technique that conditions out the heterogeneity in the

pooled dynamics; the second uses a simple group mean technique for accom-

modating heterogeneous dynamics. I will use a bivariate regression example,

although all of the techniques generalize to multivariate regressions.

Because all of these methods account for potential heterogeneity, in long-

run steady-state dynamics, the first-stage regression of the residual-based

methods always takes the form

yit ¼ αi + βixit + eit: (17)

for the bivariate case. The only difference in the various methods of testing lies

in how the estimated residuals êit from this regression are treated, either semi-

parametrically using long-run variance estimators or parameterically using

ADF principles, as I discuss here.

The first, taken from Pedroni (1999, 2004), is based on constructing a pooled

ADF regression on the estimated residuals êit by conditioning out the heterog-

enous dynamics. Toward that end, rather than estimating the full ADF regres-

sion with lagged differences, we estimate a simple DF type of regression, but

with the dynamics conditioned out individually for each member of the panel,

for both the regressor and regressand. Specifically, the regression takes the form

v̂it ¼ ρη̂i, t�1 + uit (18)

where v̂it and η̂i, t�1 are obtained as the estimated residuals from the regressions

Δêi, t ¼
XK1i

k¼1

γ̂1i,kΔêi, t�k + vit (19)

êi, t�1 ¼
XK2i

k¼1

γ̂2i,kΔêi, t�k + ηi, t�1 (20)

applied to each of the members of the panel individually. Notice that Eqs. (19)

and (20) condition out the member-specific dynamics for the significance of ρ in
the pooled DF style regression Eq. (18).

This method for conditioning out the heterogeneous dynamics is analogous to

the approach taken in Levin, Lin, and Chu’s (2002) panel unit root test. A further

refinement, consistent with LLC’s approach, can be made for the cross-sectional

heteroscedasticity of the long-run variances, in which case it is known as the

weighted pooled ADF-based test. As shown in Pedroni (2004), however, this

refinement is not necessary for the consistency of the test, even when the dynam-

ics and, therefore, the long-run variances are heterogeneous across i, provided
that the dynamics are conditioned out via regressions Eqs. (19) and (20). The

unweighted pooled version computes the t-statistic associated with the pooled

estimator for ρ in Eq. (18), which we will denote here as tPOLS.
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The final step is to adjust the statistic in a manner that will allow it to con-

verge in distribution as the sample size grows large. The adjustment takes the

form

ZPADF ¼
tPOLS,ρ�μPADF,ρ

ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vPADF,ρ

p : (21)

The adjustment terms μPADF,ρ and νPADF,ρ are numerical values that are

either computed analytically or simulated based on the properties of the distri-

bution of tPOLS,ρ, and depend on the moments of the underlying Wiener func-

tionals that describe the distributions. The numerical values that result from

these computations or simulations differ depending on details of the hypothe-

sized cointegrating relationship Eq. (17), such as whether intercepts or trends

are included, and on the number of regressors that are included, and are reported

accordingly in Pedroni (2004) for the case of a single regressor, and in Pedroni

(1999) for the case of multiple regressors. The adjusted statistic is distributed as

standard normal under the null hypothesis of no cointegration and diverges to

the left under the alternative of cointegration, so that for example �1.28

and �1.64 are the 10% and 5% critical values required to reject the null in favor

of cointegration.

As noted previously, conditioning out the member specific dynamics prior

to pooling is just one strategy for dealing with heterogeneous transition dynam-

ics. Another, more common technique is to use group mean methods rather than

the combination of pooling with heterogenous dynamic conditioned out of the

regression. Group mean methods have become more popular in large part

because they are relatively easier to implement and interpret. To illustrate this,

I use a second example taken from Pedroni (1999, 2004), namely the group

mean ADF residual-based test. To implement this test, we begin by estimating

the individual ADF regressions using the estimated residuals from the hypoth-

esized cointegrating regression Eq. (17), so that we estimate

Δêi, t ¼ ρjêi, t�1 +
XKi

k¼1

γi,kΔêi, t�k + ui, t (22)

by OLS individually for each member i of the panel. The group mean

ADF t-statistic for the null of cointegration then is computed as

tGOLS,ρ ¼ N�1P
i¼1
N ti,ADF, where ti,ADF is the standard ADF t-statistic for sig-

nificance of ρi for member i. The statistic is adjusted to ensure it converges in
distribution as the sample grows large, so that

ZGADF ¼
tGOLS,ρ

ffiffiffiffi
N

p �μGADF,ρ
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vGADF,ρ

p : (23)

where μGADF,ρ and νGADF,ρ are numerical values that are either computed ana-

lytically or simulated based on the properties of the distribution of tGOLS,ρ, and
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depend on the moments of the underlying Wiener functionals that describe the

distributions. Although these values differ from those of μPADFρ and νPADFρ,
they also depend on the details of the hypothesized cointegrating relationship

Eq. (17), such as whether intercepts or trends are included, and also on the num-

ber of regressors that are included and are reported accordingly in Pedroni

(2004) for the case of a single regressor, and in Pedroni (1999) for the case

of multiple regressors. The statistic is distributed as standard normal under

the null hypothesis of no cointegration and diverges to the left under the alter-

native of cointegration, so that for example �1.28 and �1.64 are the 10% and

5% critical values required to reject the null in favor of cointegration.

Monte Carlo simulation studies reported in Pedroni (2004) show that for all

of the residual-based test statistics studied in the paper, including the two ADF-

based tests described previously, size distortions are low and power is extremely

high even in modestly dimensioned panels. For example, even when the time

series length, T, is too short for reliable inferences in a conventional time series

context, in the panel framework, panels with similarly short lengths for T and

modest N dimensions can in many cases deliver close to 100% power with rel-

atively small degrees of size distortion.

5 Comparison of Residual Based and Error Correction
Based Testing

Although residual-based methods are the most common approach, there are also

other methods for testing for cointegration in time series, which have been

extended to heterogeneous panel frameworks. One such example involves error

correction methods, and it is worth comparing these to residual methods in order

to understand the trade-offs. For example, Westerlund (2007) studied the use of

single-equation ECMs in panels with heterogeneous dynamics, including a

group mean version. In contrast to residual-based methods, single-equation

ECM approaches require the assumption of weak exogeneity. The basic idea

is to exploit this assumption in order to estimate the error correction loading

parameter from a single equation and use it to test for the null of no

cointegration.

The first step is to estimate by OLS what is known as an augmented form of

the ECM equation as

Δyit ¼ ci + λ1, i yi, t�1 + γixi, t�1 +
XKi

j¼1

Ri, j,11Δyi, t�j +
XKi

j¼�Ki

Ri, j,12Δxi, t�j + ε1, it,

(24)

where γi ¼ �λ1,i βi. The equation has been augmented relative to the standard

ECM equation by the inclusion of lead terms of the differences in Δxit, rather
than just the usual lagged terms of Δxit. This allows us to loosen the exogeneity
requirements on xit to one of weak exogeneity, rather than stronger forms of
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exogeneity. As discussed later, imposing weak exogeneity in this context can be

interpreted as imposing the a priori restriction that causality runs in only one

direction in the long-run cointegrating relationship, from innovations in xit to
yit. Imposing such an exogeneity restriction is contrary to the full endogeneity

that typically is permitted for most panel cointegration methods, and the impli-

cations are discussed in the following.

Under the maintained assumption of weak exogeneity in the relationship

between yit and xit, the null of no cointegration between yit and xit can be deter-

mined by testing whether ti,λ ¼ 0, and the group mean test is constructed by

computing the average value of the t-statistics associated with these such that

tGOLS,λ ¼ N�1P
i¼1
N ti,λ, where ti,λ are the individual t-statistics for significance

of λ1i for each member i. Analogous to the other tests, this statistic can be stan-
dardized as

ZGλ ¼
tGOLS,λ

ffiffiffiffi
N

p �μGOLS,λ
ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νGOLS,λ

p : (25)

where μGOLS,λ and νGOLS,λ are the numerical adjustment values based on the

properties of the distribution of tGOLS,λ, so that ZGλ is similarly distributed as

standard normal under the null hypothesis of no cointegration and diverges

to the left under the alternative of cointegration.

To better understand the motivation for the ECM-based approach in relation

to residual based approaches and to see the consequences of violating the spe-

cialized weak exogeneity condition, it is worth comparing the details of the

ECM estimation equation to the residual-based estimation equation. In partic-

ular, consider rearranging the various terms in Eq. (24) as

Δyit�βiΔxit ¼ λ1, i yit�1�βixit�1ð Þ+
XKi

j¼1

Rij,11Δyit�j +
XKi

j¼1

Rij,11βiΔxit�j

+
XKi

j¼0

Rij,12Δxit�j�
XKi

j¼0

Rij,11βiΔxit�j + ε1, it

(26)

where, for ease of notation, I have dropped the deterministics, ci, and the leads

of Δxit from the equation because they are not central to the issues I discuss

next. Specifically, the previous form is convenient because it allows us to sub-

stitute eit for yit �βixit and similarly for Δeit ¼ Δyit �βiΔxit where they appear
in the first line of Eq. (26). This gives us the form

Δeit ¼ λ1, ieit�1 +
XKi

j¼1

Rij,11Δeit�j +
XKi

j¼0

Rij,12Δxit�j�
XKi

j¼0

Rij,11βiΔxit�j + ε1, it,

(27)

which allows us to easily compare what the ECM equation is estimating relative

to what the residual-based methods are estimating. In particular, for a given finite
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lag truncationKi, we can see fromEq. (27) that estimating the ADF regression for

the residuals eit is equivalent to setting
P

j¼0
Ki Rij,12Δxit�j ¼

P
j¼0
Ki Rij,11βiΔxit�j.

This is the so-called common factor restriction. One of the motivations for

ECM-based approaches is that residual-based tests ignore that these two factors

need not be the same, and ignoring this can add variance to the small sample dis-

tribution of the λ1,i estimator. This, however, is not a form ofmisspecification that

leads to inconsistency. The key is that the lag truncation is not treated as given in

residual-based methods and can increase to absorb any additional serial correla-

tion because of these terms. Therefore, the gain from using the ECM form for the

estimation is a potential increase in small sample power, although it is not guar-

anteed to increase power, because this depends on the tradeoff between the num-

ber of lag coefficients estimated by the ADF regression versus the number of

coefficients estimated by the ECM.

The tradeoff for this potential increase in small sample power, however, is the

specialized assumption of weak exogeneity. In light of this, it is worth consider-

ing what the consequences can be when this assumption does not hold, yet the

single-equation ECM test is used. In general, for the case in which yit and xit
are cointegrated, the VECM representation provides for a two-equation system

with the error correction coefficient taking the form λiβi0 where λi is a loading

vector with two elements such that λi ¼ (λ1i, λ2i)0. Cointegration between yit
and xit requires that at least one of the values for λi is nonzero. In this context,

the weak exogeneity assumption can be interpreted as an a priori assumption that

λ2i ¼ 0. Therefore, because λ2i is zero by assumption, then in order for yit and xit
to be cointegrated, λ1i must be nonzero, and therefore the test for the null of no

cointegration proceeds by testing whether λ1i ¼ 0 via Eq. (24). The risk with this

strategy, however, is that if the a priori maintained assumption that λ2i ¼ 0 cor-

responding to weak exogeneity turns out not to be true, then the test risks becom-

ing inconsistent because it cannot distinguish the null of no cointegration from the

alternative of cointegration no matter how large the sample size.

To see this, consider what the first equation of the VECM form looks like

when the weak exogeneity assumption is not true, so that potentially both ele-

ments of λi appear in front of the error correction term, which can be written as

Δyit ¼ λ1, i�Ri0,12λ2, ið Þ yit�1�βixit�1ð Þ +
XKi

j¼1

Rij,11Δyi, t�j +
XKi

j¼1

Rij,12Δxi, t�j + ε1, it:

(28)

In this context, the single-equation ECM-based approach can be interpreted

as testing whether λ1,i �Ri0,12λ2,i ¼ 0 under the null of no cointegration. In

general, however, thevalue forRi0,12λ2,i is unrestrictedunder cointegration.There-
fore, ifwe consider the scenarios inwhichRi0,12λ2,i < 0 and λ1,i < 0, but jRi0,12λ2,i
j > jλ1,i j, then (λ1,i �Ri0,12λ2,i) > 0, and the test will fail to reject the null of

cointegration with certainty as the sample size grows, despite the fact that the

null is false. In contrast to residual-based tests, the test becomes inconsistent
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because it will be unable to reject a false null even for large samples if the main-

tained assumption of weak exogeneity is not true. The tradeoff between residual-

based tests, therefore, amounts to a tradeoff between a potential gain in small

sample power at the expense of robustness in the sense that the test risks become

meaningless if the weak exogeneity condition is violated. Because small sample

power already is fairly large in almost all tests for the null of no cointegration

in panels, in most applications the potential gain is unlikely to be worth the risk

if one is not absolutely a priori certain of the weak exogeneity assumption.

So far, I have discussed panel cointegration tests that are designed to test the

classic null of no cointegration against the alternative of cointegration. For

some applications, wemight be interested in reversing the null hypothesis, how-

ever, so that the null becomes cointegration against the alternative of no coin-

tegration. It can be useful to consider both types of tests, in particular when the

empirical application is likely to be such that results might be mixed—some

members of the panel are best described as cointegrated but others might not

be cointegrated. Although a test for the null of cointegration does not resolve

the issue of mixed panel applications, which we will discuss later, the combi-

nation of both types of tests sometimes can narrow the fraction of individual

members that are consistent with either alternative as discussed and illustrated

in Pedroni (2007). There are many proposed tests in the literature for the null of

cointegration in panels, starting withMcCoskey and Kao (1998), which develop

a pooled panel version of the Shin (1994) time series test for the null of coin-

tegration. The difficulty with virtually all of the tests that have been proposed in

the literature, however, is that, similar to the corresponding time series based

tests, they inherit the property of high size distortion and low power in finite

samples, and they are unable to mitigate this problem even for fairly large

panels. Hlouskova and Wagner (2006) document these difficulties through a

series of large-scale Monte Carlo simulations for tests for the null of stationarity

that also apply to tests for the null of cointegration. A generalized solution to

this problem and the related problem associated with inference for mixed panel

applications remains an open challenge, which I will discuss later.

6 Estimation and Testing of Cointegrating Relationships
in Heterogeneous Panels

For panels in which cointegration has been established or is expected to hold,

the typical next step is to estimate the cointegrating relationships and construct

consistent tests of hypotheses pertaining to the cointegrating relationships. Dis-

cussion follows about some simple methods that account for heterogeneous

dynamics. As discussed previously, static OLS provides an immediate solution

for obtaining superconsistent estimates because it is robust to any features that

lead to endogeneity of the regressors, including the omitted dynamics. The

problem that presents itself with OLS, however, is that the associated standard

errors are not consistently estimated when the regressors are endogenous, even

when cointegration is present. The methods discussed here are designed to
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correct for this, such that both the estimates of the cointegrating relationship and

the associated standard errors are consistently estimated so that standard test

statistics that rely on standard error estimates, such as t-statistics or F-statistics,
can be used.

Many ways of constructing cointegration estimators also produce consistent

standard error estimates for the purposes of testing hypotheses about cointegrat-

ing relationships. Two relatively easy-to-understand approaches are based on

the time series principles of fully modified OLS estimation and dynamic

OLS estimation. In both cases, the primary strategy is to adjust for a second-

order bias that arises from the dynamic feedback because of the endogeneity

of the regressors by using dynamics of the regressors as an internal instrument.

Fully modified OLS makes these adjustments via nonparametric estimates of

the autocovariances, while dynamic OLS makes these adjustments by paramet-

ric estimates using the leads and lags of the differenced regressors. Because

dynamics are estimated in both of these cases, an important issue for panels

is to accommodate any heterogeneity in the dynamics that is likely to be present

among the members of the panel. Analogous to previous discussions, we can

use either a pooled approach that conditions out the member-specific heteroge-

neous dynamics or a group mean approach.

Group mean approaches are popular in that they are easy to implement,

and the group mean estimates can be interpreted as the average cointegrating

relationship among the members of the panel. Another attractive advantage

for group mean approaches is that they produce a sample distribution of esti-

mated cointegration relationships for the individual members of the panel,

which can be further exploited in order to study what characteristics of

the members are associated with different values for the cointegrating rela-

tionships as illustrated in Pedroni (2007). Following are the details of the

group mean fully modified OLS (FMOLS) approach developed in Pedroni

(2000, 2001) and the group mean dynamic OLS (DOLS) approach intro-

duced in Pedroni (2001).

The group mean FMOLS approach simply makes the FMOLS adjustments

to each member of the panel individually, and then computes the average of the

corresponding cointegration estimators. For example, continuing with the

bivariate example of this chapter, the first step is to obtain the estimated resid-

uals êit from the OLS regression for the cointegrating relationship, as described

in Eq. (17). These residuals are paired with the differences in the regressors to

create the panel vector series ξ̂it ¼ êit,Δxitð Þ0. From this, the vector of

autocovariances Ψ̂ij ¼ T�1
PT

t¼j + 1ξ̂itξ̂
0
it�j are estimated and then weighted using

the Bartlett kernel as per the Newey-West estimator to estimate the various ele-

ments of the long-run covariance matrix

Ω̂i ¼ Σ̂i + Γ̂i + Γ̂
0
i, where Γ̂i ¼

XKi

j¼1

1� j

Ki + 1

� �
Ψ̂ij, Σ̂i ¼ Ψ̂i0 (29)
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for each member i for some bandwidth Ki, typically set according to the sample

length as Ki ¼ 4
Ti
100

� �
2
9, rounded down to nearest integer. These are used to

create the modification to the usual OLS estimator such that the FMOLS esti-

mator for each member i becomes

β̂FMOLS, i ¼
XT

t¼1
x∗itey

∗
it�Tγ̂i

XT

t¼1
x∗2it

, (30)

where analogous to earlier in the chapter, yit* ¼ yit � T�1P
t¼1
T yit and

xit* ¼ xit � T�1P
t¼1
T xit are the time demeaned versions of the variables, and

the FMOLS corrections are now such that

ey∗it ¼ y∗it�
Ω̂21, i

Ω̂22, i

Δxit, γ̂i ¼ Γ̂21, i + Σ̂21, i� Ω̂21, i

Ω̂22, i

Γ̂22, i + Σ̂22, i

� �
(31)

To understand the role of these adjustment terms, it is worth pointing out that,

according to Eq. (7), the numerator of the OLS estimator converges to a distri-

bution with a stochastic nonzero mean because of the feedback effect that arises

from the endogeneity of the regressors. After the adjustment terms Eq. (31) are

made, the distribution for the FMOLS estimator becomes centered around zero,

so that when the FMOLS t-statistic is computed based on the variance of the dis-

tribution, the t-statistic becomes asymptotically standard normal. In the special

case in which the regressors are exogenous, the off-diagonal elements of the auto-

covariances betweenΔxit and eit go to zero, so that ey
∗
it! y∗it and γ̂i ! 0, and there-

fore the β̂FMOLS, i estimator becomes identical to the β̂OLS, i estimator.

After the βFMOLS,i estimator is computed, the associated FMOLS t-statistic
is constructed on the basis of Eq. (30) in a manner analogous to conventional

t-statistics, except that in place of the usual standard deviation the standard devi-
ation of the long-run variance Ω̂11, i is used as estimated by Eq. (29), so that the

FMOLS t-statistic becomes

tFMOLS, i ¼
β̂
∗
FMOLS, i�βo, iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̂

�1

11, i

XT

t¼1
x∗2it

q : (32)

The group mean FMOLS estimator and group mean t-statistic are

computed as

β̂GFMOLS ¼N�1
XN

i¼1

β̂FMOLS, i, tGFMOLS ¼N�1=2
XN

i¼1

tFMOLS, i (33)

where β̂FMOLS, i and tFMOLS,i are the individual member FMOLS estimator and

t-statistic from Eq. (30) and Eq. (32), respectively. Because the individual

t-statistics have an asymptotic distribution that is standard normal, there is

no need to use the usual μ, v adjustment terms to render the group mean
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asymptotically normal, and under the null tGFMOLS ) N(0, 1) and under the

alternative tGFMOLS ! �∞ as a two-tailed test, the critical values are the famil-

iar �1.96 for the 5% p-value, and so forth.

In pure time series applications, FMOLS is suffers from small sample size

distortion, which is inherited to some degree by pooled FMOLS as documented

in Pedroni (1996). As documented in Pedroni (2000), however, group mean

FMOLS has remarkably high power and very little size distortion in small sam-

ples. Intuitively, this appears to be because although the individual FMOLS t-
statistic distributions have fairly fat tails that lead to size distortion in short sam-

ples, they are nevertheless fairly symmetric so that, as the cross sectional dimen-

sion N increases, the group mean t-statistic converges quickly and is well

approximated by a standard normal even in short panels.

DOLS also appears to behave similarly, with the pooled version inheriting

the poor small sample properties, while the grouped version appears to do well.

As noted previously, DOLS also makes the adjustments to OLS that are neces-

sary in order to obtain consistent standard errors and thus produce standard tests

such as t-statistics that are consistent and nuisance parameter free under the null.

In contrast to FMOLS that uses estimated autocovariances to make the adjust-

ments, however, DOLS accomplished the adjustments via a parametric strategy

that uses leads and lags of Δxit directly in the regression. In order to construct

the group mean DOLS estimator as described in Pedroni (2001), we first esti-

mate the individual DOLS regression for each member of the panel as

yit ¼ αi + βixit +
XKi

j¼�Ki

ϕi, jΔxit�j + eit: (34)

The inclusion of the leads and lags of Δxit serve to center the distribution of
the numerator of the estimator for βi here, which we refer to as β̂DOLS, i, much in

the same way that the adjustment with the autocovariances in FMOLS served to

center the distribution. Again, analogous to the t-statistic for FMOLS, the

DOLS t-statistic then is constructed on the basis of Eq. (34) in a manner anal-

ogous to conventional t-statistics, except that in place of the usual standard devi-
ation, the standard deviation of the long-run variance Ω̂11, i is used, which can be

estimated by Eq. (29). The corresponding group mean DOLS estimators and

t-statistics then become

β̂DOLS ¼N�1
XN

i¼1

β̂DOLS, i, tDOLS ¼N�1=2
XN

i¼1

tDOLS, i (35)

and again there is no need to use μ, v adjustment terms to render the group mean

asymptotically normal, and under the null tDOLS ) N(0, 1) and under the alter-
native tDOLS ! �∞ as a two-tailed test, so that the critical values here are also

the familiar �1.96 for the 5% p-value, and so forth.
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Pooled approaches are also possible, as for example, the pooled FMOLS

approaches studied in Pedroni (1996) and Phillips and Moon (1999) and the

pooled DOLS studied in Kao and Chiang (2000). In the DOLS approach the

dynamics are pooled, which can be problematic for reasons discussed previ-

ously, but one can easily imagine conditioning out the heterogeneous dynamics

in a pooled DOLS approach. Another approach that is used sometimes is the

panel autoregressive distributed lag approach of Pesaran, Shin, and Smith

(1999). Although autoregressive distributed lag approaches are, in general, built

around the assumption that the regressors are fully exogenous, the approach in

Pesaran et al. (1999) is able to relax the restriction to one of weak exogeneity,

analogous to the assumption discussed previously for the Westerlund (2007)

ECM-based approach. By contrast, FMOLS and DOLS approaches allow for

full endogeneity of the regressors as is typical in the panel cointegration liter-

ature. Finally, rank-based tests using VECM approaches also are possible, but

we defer this to a more general discussion of rank-based tests later in this chap-

ter, and instead turn to the use of the panel VECM framework for the purposes

of causality testing in cointegrated panels.

7 Testing Directions of Long-Run Causality in Heterogeneous
Cointegrated Panels

Although cointegration analysis in panels is in general robust to the presence of

full endogeneity of the regressors, as with any econometric method, consistent

estimation in the presence of endogeneity is not synonymous with establishing a

direction of causality. In order to establish causality, we need to impose further

restrictions that relate the structure of the estimated relationship to exogenous

processes, which, in general, requires additional a priori assumptions when the

observed processes are endogenous, and, therefore, is not synonymous with

consistency of estimation under endogeneity. In this regard, cointegration anal-

ysis is on par with any other econometric method that treats endogeneity to

establish consistency of estimation. Additional structure is needed to establish

the nature of the causal relationships.

In this context, cointegration can be interpreted as a type of identification

that already implicitly imposes some structure on dynamic systems, so that

the additional a priori structure that is needed to establish causal relationships

can be relatively easy to come by. As discussed previously, the presence of coin-

tegration in dynamic systems can be interpreted to imply the existence of a long-

run steady-state relationship among the variables. Continuing with the bivariate

example of this chapter, the implication is that if yit and xit are cointegrated, then
a long-run causal effect must exist that links the two variables in their steady

state. The long run causal effect, however, can run in either direction. It can

originate in something that induces an innovation in x that causes y to move

in the long run, or it can originate in something that induces an innovation in

y that causes x to move in the long run, or it can be both. In the following,
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I describe the panel VECM long-run causality tests introduced in Canning and

Pedroni (1997) and published in Canning and Pedroni (2008).

The technique relies on the panel VECM form to estimate the vector load-

ings, which provide the basis to construct panel tests. Both the direction of cau-

sality and the sign of the causal effect can be tested in this way. It is worth

considering how some of the implications of cointegration lead to a natural test

for these. I will use a simple bivariate example to illustrate, but to economize on

notation, I will use polynomial operator notation. Cointegration has three

important implications that can be used to understand the nature of the tests.

First, cointegration between yit and xit implies that their relationship can be

represented in VECM form as

Ri Lð ÞΔZit ¼ ci + λiβ
0
iZit�1 + μit, Ri Lð Þ¼ I�

XPi

j¼1

Ri, jL
j (36)

where Zit ¼ (yit, xit)
0 is the vector of variables, Ri (L) contains the coefficients for

the lagged differences that reflect the heterogenous dynamics specific to member

i, μit are the i.i.d. white noise innovations, and βi0Zit�1 is the error correction term.

Because βi typically is unknown, when Eq. (36) is estimated for the purposes of

constructing long-run causality tests, this error correction termmust be estimated

individually for each member, and it is important that it be estimated in a manner

that has no asymptotic second-order bias, such that the associated standard errors

are estimated consistently. Therefore, the Johansen procedure can be used to esti-

mate the VECM, or alternatively we can use estimated residuals, computed on the

basis of the FMOLS or DOLS estimator, so that for example

êFMOLS, it ¼ y∗it� β̂i,FMOLSx
∗
it (37)

is used in place of βi
0
Zit�1 in (36). When êFMOLS, it is used in place of βi0Zit�1, then

each of the equations of Eq. (36) can be estimated individually by OLS for each

member i to obtain consistent estimates of the loadings λi, and the associated t-
statistics will be asymptotically standard normal.

The second, fairly trivial implication is that a stationary vector moving aver-

age representation exists for the differenced data, ΔZit, which we write as

ΔZit ¼ ci +Fi Lð Þμit, Fi Lð Þ¼
XQi

j¼0

Fi, jL
j, Fi,0 ¼ I: (38)

When we evaluate the polynomial Fi (L) at L ¼ 1, it gives us the total sum

F(1) ¼ P
j¼0
Qi Fi, j, which can be interpreted as the total accumulated response of

ΔZit to the innovations μit, which is equivalent to the long run steady state

response of the levels Zit to the innovations. Therefore, the off-diagonal

elements of Fi(1) can be interpreted as the long-run responses of the variables

to each other’s innovations, so that, for example, Fi(1)21 represents the long-run
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response of xit to a μit,1 unanticipated innovation in yit and therefore can be inter-
preted as a measure of the causal effect from y to x.

The third and, in this context, most substantial implication of cointegration,

is known as the Granger representation theorem, which ties together the first

two implications. It tells us that the relationship between the loadings on the

error correction terms and the long-run steady-state responses of the levels is

restricted via a singularity such that

Fi 1ð Þλi ¼ 0: (39)

If, for example, we are interested to test hypotheses regarding the long-run

causal effect represented by Fi (1)21, then we can use one of the characteristic

equations of Eq. (39) to see the implications in terms of the loadings, λi. Spe-
cifically, Eq. (39) implies that

Fi 1ð Þ21λi,1 +Fi 1ð Þ22λi,2 ¼ 0: (40)

Under cointegration, both elements of λi cannot be zero, because in this case
the error correction termwould drop out of Eq. (36). If wemake the fairly innoc-

uous assumption that x causes itself to move in the long run, so that F(1)i,22 6¼ 0,

then Eq. (40) implies that Fi (1)21 ¼ 0 if and only if λi,2 ¼ 0. This implies that

the construction of a test for the null hypothesis that λi,2 ¼ 0 becomes a test

for the null of no long-run causality running from y to x. A grouped panel ver-

sion of the t-statistic for this test can be constructed as

ZGLRC ¼N�1=2
XN

i¼1

ti,λ2 (41)

where ti,λ2 is the individual t-statistic for the significance of λi,2 for unit i. Under
the null hypothesis of no long-run causality running from y to x, the grouped test
is asymptotically standard normal, while, under the alternative, the test diverges

to positive or negative infinity. By substituting ti,λ1 in place of ti,λ2 in Eq. (41) we
can test for the null hypothesis of no long-run causality running from x to y.

Because these are two-tailed tests, it is possible that positive and negative

values for the loadings average out over the i dimension, so that the test effec-

tively asks whether there is no long-run causality on average. To address the

extent to which this might occur, we can use the same individual ti,λ2 values
to compute the corresponding Fischer style statistic, which is constructed as

Pλ ¼�2
XN

i¼1

ln pi, (42)

where ln pi is the natural log of the p-value associated with either ti,λ1 or ti,λ2
depending on which causal direction one wishes to test. Under the null
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hypothesis of no causality, the Pλ statistic is distributed as χ2N
2 , that is, a chi-

square with 2N degrees of freedom. Because this is a one-tailed test with only

positive values, there is no canceling out of positive and negative values, and the

test can be interpreted as a test of how pervasive noncausality is in the long run

from y to x or x to y, depending on which element of λi is used.
Another advantage of this general framework is that we can use the impli-

cations of Eq. (40) to test the sign of the long-run causal effect. For example,

imagine we have rejected the null of no long-run causality running from y to x so
that λi,2 6¼ 0 and therefore Fi(1)21 6¼ 0. If we are willing to make a sign normal-

ization such that we call an innovation to x positive if it increases x in the long

run and negative if it decreases x in the long run, so that Fi(1)22 > 0, then

Eq. (40) implies that the sign of Fi(1)21 is the opposite of the sign of the ratio

of the two elements of the loading vector. If causality runs both directions in the

long run, so that neither λi,2 nor λi,1 are zero, then

sign Fi 1ð Þ21
	 
¼ sign �λi,2

λi,1

� �
: (43)

so that this ratio can be used to test the sign of the long-run causal effect. If

λi,1 ¼ 0, there is no need to compute such a ratio, because in that case causality

runs in only one direction and the sign of the OLS or FMOLS estimator reflects

the sign of the remaining long-run causal effect. Constructing the panel version

of a test based on the ratio is not as straightforward as some of the other tests

discussed in this chapter. This is because the ratio in Eq. (43) is distributed as a

Cauchy, which does not have a defined mean and variance. Instead the median,

which is defined for the Cauchy, is used to recenter the distribution, and the

panel distribution then is simulated by bootstrap from the estimated version

of Eq. (36).

In contrast to the other techniques discussed in this chapter, for which the

bivariate examples were illustrations of techniques that work for any number

of variables, the panel long-run causality tests are best suited for simple bivar-

iate investigations. In this regard, they can be interpreted easily as total deriv-

ative causal effects rather than partial derivative causal effects. If we are

interested in investigating multivariate channels, it is possible to generalize

to larger systems of variables. The generalizations are not trivial, however,

because they require additional restrictions beyond the normalization assump-

tions made for the bivariate case. If they are to be justified on the basis of eco-

nomic restrictions, then the approach begins to look like the heterogeneous

panel SVAR approach developed in Pedroni (2013), which also can be used

to test for long-run directions of causality whether or not cointegration is pre-

sent. Embedding an error correction term in the panel structural VAR approach

of Pedroni (2013) is conceptually straightforward, although the properties of the

approach specifically when the ECM term is embedded is a topic that will ben-

efit from further study.
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8 Strategies for Treating Cross-Sectional Dependence
in Heterogeneous Panels

The emphasis so far in this chapter has been on the treatment of heterogeneity in

the dynamics. As discussed in Section 1, however, it is also imperative to con-

sider how the heterogeneity of the temporal dependencies interacts with the

cross-sectional, or spatial, dependencies in such panels. In this section, I discuss

a number of approaches, each of which can be applied to the techniques dis-

cussed so far in this chapter.

One the earliest and simplest ways that was used to treat cross-sectional

dependencies was to use time effects, much in the way fixed effects were used

regularly. For this, we simply compute the time effects as

yt ¼N�1ΣN
i¼1yit, xt ¼N�1ΣN

i¼1xit, which can be used to purge the raw data so

that eyit ¼ yit� yt, exit ¼ xit� xt. Keeping with our bivariate example, we can pro-

ceed to use the purged data in place of the raw data for any of the techniques

discussed in this chapter. Mechanically, this treatment is symmetric with the

treatment of fixed effects discussed earlier, such that they were computed as

the means over time for each member and subtracted from the raw data. Keep-

ing with our bivariate example, if we account for both time effects and fixed

effects, then we can represent the prototypical cointegrating regression as

ey∗it ¼ βiex
∗
it + eit (44)

where the * denotes that fixed effects also have been extracted, so that for exam-

ple ey∗it ¼ eyit�T�1
PT

t¼1eyit where eyit is as defined, and similarly for ex∗it. The
advantage of this approach is that it is easy to implement, and it can be applied

to the raw data as a standalone solution, which then can be fed into any one of

the techniques discussed in this chapter, as was typically done in empirical

applications. Furthermore, the asymptotic properties of estimators and tests

are unaffected.

Economically, the solution can be justified when most of the cross-sectional

dependency in the data derives from sources that commonly affect all members

of the panel. This is a typical assumption in microeconomic applications where

the members of the panel are small, and it can be a reasonable first approxima-

tion in macroeconomic applications when, for example, the panel consists of a

large number of small open economies that are responding to the global econ-

omy, but do not have much effect individually on the global economy. Similar

justifications can be used for regions of a large country or disaggregated indus-

tries of a large economy.

In many applications, however, time effects might not be sufficient to

accommodate all of the cross-sectional dependency. This can occur most obvi-

ously when the individuals that constitute the members of the panel are large

enough to affect one another rather than merely being affected by a common-

ality. More importantly, the cross-sectional dependencies can be intertwined

with the temporal dependencies so that one member affects another member
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over time. In other words, conceptually, one can think of autocovariances that

run across both time and space for the cross-sectional dimension, so that there is

an N � N long-run covariance matrix. A GLS approach for cointegration and

unit root testing in panels based on such a long-run covariancematrix estimation

was explored in a conference paper by Pedroni (1997).

Although the approach studied in Pedroni (1997) allows for a generalization

of the dependency structure relative to time effects, it suffers from two impor-

tant shortcomings. The first is that it requires the time series dimension to be

substantially longer than what one requires for time effects. The second is that

it falls apart when the cross-sectional dependencies that run across the members

of the panel are not temporally transitory, but are permanent. In other words, it is

possible that series are cointegrated not simply across variables for a given

member of the panel, but also for variables from different members of the panel,

sometime referred to as cross-member or cross-unit cointegration, so that for

example yit might be cointegrated with yjt for i 6¼ j regardless of whether yit
is cointegrated with xit. In this case, the long-run covariance becomes singular,

and the estimators used for GLS might not be good approximations of the true

dependency.

A more elegant solution is a generalization that is more closely related to the

time effects solution, which is to model the commonalities in terms of a

dynamic factor model. One can think of time effects as a special case in which

a single common factor drives the dependency structure in the panel. The factor

model approach generalizes this in two regards. First, it allows for multiple fac-

tors and allows the individual members of the panel to respond in a heteroge-

neous manner by allowing member-specific loadings for the common factors.

Secondly, the factors themselves can be thought of as dynamic so that there is

temporal dependence in the evolution of the vector of common factors. This is

the approach taken for example in Bai and Ng (2004), among others.

Bai and Ng (2004) suggest estimating the common factors by principle com-

ponents and conducting the subsequent analysis on the defactored data. Bai and

Ng originally proposed the approach in the context of panel unit root testing and

showed that treating the cross-sectional dependency in this manner did not

affect the asymptotic properties of the subsequent panel unit root tests. Similar

to time effects, we can think of this as a standalone treatment that can be per-

formed prior to using the data for any of the techniques discussed in this chapter.

The technique works well for a small known number of factors. When the num-

ber of factors is unknown and must itself be estimated, the technique can be

sensitive to misspecification of the number of factors. The practical conse-

quence is that, when the number of factors is unknown, inference regarding unit

roots and cointegration can be sensitive to the number of chosen factors.

Another related approach advocated by Pesaran in numerous papers, includ-

ing Pesaran (2007), is to use the cross-sectional averages directly in the panel

regressions, in what is known as cross-sectional augmentation. This is equiva-

lent to estimating the time effects from the data as previously described, but
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rather than extracting them, we include them in the regressions. This has the

consequence of allowing the individual members of the panel to respond in a

heterogeneous manner to the time effects similar to the common factor

approach but without the need to estimate principle components. Pesaran

(2007) also proposed the method in the context of panel unit root testing, but

the approach also can be used in the context of any type of panel cointegration

technique. One important implication, in contrast to other approaches, however,

is that using the time effects in this way does affect the asymptotic distributions

of subsequent tests. This stems from the fact that member-specific coefficients

on the cross-sectional averages must be estimated jointly within the same equa-

tion as we estimate for the panel analysis. In contrast to the principle compo-

nents based factor model approach, the cross-sectional augmentation

technique should not be thought of as a standalone treatment for the data prior

to analysis, but rather as a method for adapting existing techniques. Westerlund

and Urbain (2015) compare the cross-sectional based approach versus the

principle-component based approach analytically and in Monte Carlo simula-

tions to draw out comparisons of the relative merits of the two approaches.

Although simple time effects extraction, common factor extraction, and con-

ditioning regressions on cross-sectional averages have econometric appeal, an

important practical concern stems from the idea that their implementation has

the potential to alter the economic interpretation of the results, depending onwhat

has been extracted. For cointegration analysis, this is particularly relevant when

the commonality that has been extracted or conditioned out potentially follows a

unit root process. To give a simple empirical example, imagine that we are testing

whether long-run purchasing power parity holds for a panel of real exchange

rates. Imagine, furthermore, that the truth is that the parity condition fails because

of a unit root process in the common total factor productivity frontier shared by

countries, which causes differential terms of trade effects in different economies

in the spirit of the Balassa-Samuelson hypothesis. The researcher, however, is

unaware of this truth and simply wants to control for possible cross-sectional

dependency by extracting a common factor by principle components or condi-

tioning out the effect of the common factor bymeans of a cross-sectional average.

In this case, we expect the raw data to reject PPP as the individual real exchange

rates will follow a unit root process because of the common TFP unit root, while

the data that has been treated for cross-sectional dependency in either of these

ways will fail to reject PPP. It would be a mistake, however, to conclude that

PPP holds in the data. In the name of controlling for cross-sectional dependency,

we would have unwittingly eliminated the very factor that is responsible for fail-

ure of PPP. This manner of controlling for cross-sectional dependency is not

innocuous, in that it has the potential to have a substantial impact on the economic

interpretation of the results in unknown ways if we do not know what the com-

monality is that has been eliminated. Rather than working with defactored data, it

would be preferable to work with the raw data in a way that accounted for the

dependency without potentially changing the interpretation of the results.
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There are several avenues for alternative approaches to controlling for cross-

sectional dependency that can work in modestly dimensioned panels without

the need to eliminate the source that creates the dependency. One such approach

is to account for the dependencies via bootstrap methods. Estimating and rep-

licating by bootstrap general forms of dynamic cross-sectional dependency

parametrically is not feasible in moderately dimensioned panels, so that sieve

bootstrap methods are likely to be a nonstarter if the hope is generality in the

dependence structure. By contrast, block bootstrap methods have the potential

to accommodate fairly general processes, as for example the approach devel-

oped in Palm, Smeekes, and Urbain (2011). The basic idea is to sample blocks

of random temporal length, Tn < T for each draw n that span the entire cross-

sectional dimension with width N for each draw. In this way, whatever form of

cross-sectional dependency is present in the data will be captured and replicated

within the block with each draw. Performance of the bootstrap is sensitive to

some of the details, such as choices by which randomization of the block length

occurs, and at this point the Palm, Urbain, and Smeekes approach is designed

specifically for panel unit root testing rather than for cointegration applications.

This remains a promising area of current and future research.

In the next two sections, I discuss some other lines of research, which,

although not exclusively focused on the treatment of cross-sectional depen-

dency, nevertheless offer broad alternative solutions to accounting for general

unknown forms of cross-sectional and temporal dependencies in a manner that

does not alter the economic interpretation of the results, as potentially occurs

when commonalities are extracted.

9 A Nonparametric Rank Based Approach to Some Open
Challenges

In this section, I discuss a method for testing cointegration rank in panels using

robust methods and its relationship to some of the challenges in the literature. In

particular, the approach addresses four important challenges, some of which

have been touched upon in earlier sections of this chapter. One key challenge

is the ability to address the interaction of temporal dependencies with both

cross-sectional heterogeneities and dependencies in a general manner that does

not require the extraction of commonalities, as discussed in the previous sec-

tion. A second, related challenge is to do so in a way that creates sensitivity

to ad hoc choices. Examples of potentially ad hoc choices include not only

choices related to numbers of common factors when treating the cross-sectional

dependence, but also choices with respect to choosing lag length or the number

of autocovariances for the bandwidth when treating the cross-sectionally het-

erogeneous temporal dependence. A third challenge discussed previously in this

chapter is the problem of mixed panels, whereby different members of the panel

can exhibit different properties with regard to cointegration and unit roots.

Finally, a challenge for many of the techniques is that they tend not to perform
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well when incidental member-specific deterministic trends are present and esti-

mated in the regressions. For all of these challenges, it would be good to have

techniques that perform well without the need for exceedingly large panels.

As it turns out, these challenges are interrelated and can be viewed as stem-

ming fundamentally from the overriding challenge presented by the classic

curse of dimensionality problem. To see the connection, imagine treating a

panel of time series as if it were a large vector of time series to be investigated,

a large dimensional unrestricted VECM, with each member of the panel con-

tributing variables and equations to the VECM. For example, imagine a panel

withNmembers, each one of which includesM ¼ 2 variables, yit, xit. This could
be loaded into anMN � 1 dimensional vector to produce a VECM of dimension

MN �MN. This is appropriate conceptually, because without restrictions, the

VECM would allow for both full heterogeneity of the dynamics among the

members as well as full unrestricted dynamic cross-sectional dependencies

among the members. The dependencies could include nontransitory, permanent

dependencies across the variables analogous to cross-member cointegration,

which would be reflected in a reduction in the rank of the VECM.

The question of rank is also of interest here because it relates to the issue of

mixed panels discussed earlier in this chapter. It is common to think of the prob-

lem of mixed panels in terms of questions about howmany members of the panel

are consistent with the alternative when we reject the null. For example, if we

reject the null of a unit root or the null of no cointegration, if the empirical appli-

cation allows for the possibility that the answer differs across members of the

panel, then how many of the members are consistent with the alternative? There

is a conceptual problem in thinking about the question in this way, however, when

one recognizes that the members of the panel might be linked through cross-

member cointegration. For example, imagine a panel consisting of a hypothetical

state GDP price deflator series for the 50 states of the United States. Imagine that

each of the series follows a unit root process, but that the unit root in each of these

series is because of their common link to the US dollar, which creates a unit root

for the US national GDP deflator. In other words, the panel has a cointegration

rank of 1 rather than 50. In this case, depending on our perspective, we could

argue either that 50 of the state deflators have unit roots, or, after accounting

for the cross-sectional dependence structure, we could argue that, in effect, there

is really only one unit root shared among all 50. More generally, in applications

with unknown forms of cross-sectional dependency and unknown degrees of

cross-member cointegration dependencies, the answer can lie anywhere in

between. I believe that in this case, conceptually the more salient question is

not how many members have unit roots but rather what is the rank of the panel.

In effect, we would like to know how many unit roots are responsible for deter-

mining the properties of the panel and whether the rank is large and close to full

rank, or whether the rank is low and close to zero. The same applies if we are

asking about the number of members for which two variables within the same

member appear to cointegrate.
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Although the VECM approach helps us to sort through these various issues

conceptually, it is not feasible to apply the VECM form directly because the num-

ber of parameters that would need to be estimated is far too large. Consider the

example described previously, where we haveN ¼ 30members withM ¼ 2 vari-

ables, and, say,K ¼ 8 lags. Estimating the VECMwould require the estimation of

N2M2(K + 1) + NM parameters, which comes to 32,460 parameters. If we require

at least 10 data points per parameter in order to allow enough degrees of freedom,

which is likely an understatement, then we should look for panels of length

T ¼ 10x (32,460/30), hence panels of length T ¼ 10,820. This makes the

approach infeasible and contrary to the spirit of the panel cointegration literature,

which attempts to find techniques that work well in panels of moderate length.

One way to think about this is that the vast majority of the parameters that

would need to be estimated for such a VECM approach are parameters that are

associated with nuisance features of the data, which are not necessarily central

to the questions of interest. A different strategy is to look for approaches that do

not require that the nuisance features be controlled for by estimation of the asso-

ciated parameters. This is central to the approach discussed in this section, as

well the very different approach discussed in the next section. In this section,

I discuss the approach taken in Pedroni, Vogelsang, Wagner, and Westerlund

(2015) to test for the cointegration rank in panels in a way that is robust to

the interaction of cross-sectional dynamic heterogeneity and cross-sectional

dynamic dependence of unknown form. The approach is based on using untrun-

cated kernel estimation. An added advantage to the untruncated kernel estima-

tion is that it does not require the choice of any tuning parameters, such as

numbers of lags or autocovariances or common factors to be estimated, and,

therefore, eliminates the sensitivity to them. Because the dependence structure

is not explicitly modeled or estimated, the method can be implemented with

much shorter panels, provided that the time series dimension, T, is greater than
the cross-sectional dimension, N. Finally, freeing up degrees of freedom in this

way leaves enough room for the tests to perform almost as well with the inclu-

sion of member-specific deterministic trends as without.

To gain some understanding about the technique, imagine that we are inter-

ested whether a single series or potentially cointegrated linear combination of

series follows a unit root or is stationary. We will take the series to be μt to
denote the idea that any deterministics, such as intercepts or trends, are

accounted for by regressing the individual member series against an intercept

and possibly also a trend. Then consider estimating the untruncated kernel

for μt. This is equivalent to estimating Eq. (29) for a single series for a single

member, but with the bandwidth Ki set to the maximum possible for the sample,

so that Ki ¼ T. Ordinarily, this would not be done if we are interested in esti-

mating the long-run covariance, because it will lead to an inconsistent estima-

tion of the long-run variance. In this context, however, the nature of the

inconsistent estimation turns out to be useful. Specifically, Kiefer and

Vogelsang (2002) show that when μt follows a unit root process
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T�2ω̂2 ) 2σ2D1 as T!∞, (45)

where ω̂2 is the untruncated Bartlett kernel estimate of μt, σ
2 is the true long-run

variance, and D1 is a known nuisance parameter-free distribution based on a

Brownian bridge. If one computes the standard variance for a process that fol-

lows a unit root, then

T�1ŝ2 ) 2σ2D2 as T!∞, (46)

where ŝ2 is the standard variance estimate of μt, σ
2 is the true long-run variance,

and D2 is a different but known nuisance parameter-free distribution based on a

Wiener functional. The implication of Eqs. (45) and (46) is that for their ratio we

have

T�1 ω̂
2

ŝ2
) 2

D1

D2

as T!∞, (47)

so that the ratio converges to a known nuisance parameter-free distribution

when μt follows a unit root. By contrast, if μt is stationary, then ŝ2 ! s2 con-
verges to a constant given by the true standard variance, while T�1ω̂2 ! 0,

so that the ratio in Eq. (47) collapses to zero as T! ∞. In this way, the ratio

in Eq. (47) can be used to test consistently whether μt follows a unit root process
against the alternative that it is stationary without the need to consistently esti-

mate and control for the unknown dynamics associated with σ2.
Consider now the case of a panel imagined as a large vector of variables.

This can be for a univariate case, or for the case in which the variable represents

a linear combination of unit root variables that are hypothesized to be cointe-

grated for each member i of the panel. In this case, μt becomes an N � 1 vector

of variables. If we use these to compute the untruncated Bartlett kernel, we

obtain the analogous symmetric matrix estimate such that

T�2Ω̂) 2Ω1=2D1,RΩ01=2 as T!∞, (48)

where Ω̂ is the untruncated kernel estimate, Ω is the true unknown long-run

covariance structure, andD1,R is a known nuisance parameter-free vector Brow-

nian bridge of dimension R, which will be explained shortly. For the standard

covariance matrix estimator, we obtain

T�1Σ̂)Ω1=2D2,RΩ01=2 as T!∞, (49)

where Σ̂ is the standard covariance estimate, Ω is the same true unknown long-

run covariance structure, and D2,R is a different but known nuisance parameter-

free vector Wiener functional, also of dimension R. The long-run covariance

matrix Ω summarizes all possible heterogeneous temporal and cross-sectional

dependencies and is unknown. Unfortunately, it is no longer the case that these

simply cancel out if we form the ratio Ω̂Σ̂�1. Fortunately, however, if we per-

form the trace operation over the ratio, then the Ω terms do cancel out, so that
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T�1Ω̂Σ̂�1 )D1,RD
�1
2,R as T!∞: (50)

Notice what this has accomplished. Because the Ω terms that contain all the

information about the heterogeneous temporal and cross-sectional dynamic

dependencies has dropped out, there is no need to estimate any of them, and

we are left with a pure nuisance parameter-free known distribution, which

can be used for testing in a manner that is robust to the temporal and cross-

sectional dependencies. The dimensionality R of the vector distributions and,

therefore, the tail values of the distributions, depend on the rank of the vector

μt, so that we can use them to test the rank of the panel. In this light, conven-

tional panel unit root tests can be viewed as testing hypotheses that are special

cases. In the simplest interpretation of conventional panel unit root tests such

that they are used in applications in which the individual members either all

follow a unit root or are all stationary, conventional panel unit root tests can

be interpreted as special cases of the rank test of this section whereby the null

of full rank R ¼ N is tested against the alternative of zero rank R ¼ 0. In more

nuancedmixed panel applications of conventional panel unit root tests, in which

individual members are free to follow either a unit root process or a stationary

process, a conventional test can be interpreted as a special case of the rank test

whereby we test the null of full rank R ¼ N against the alternative of any

reduced rank R < N. By contrast, here we have a continuum of possibilities

to test for the null as well as the alternative, ranging anywhere between full rank

to zero rank. Pedroni et al. (2015) describe a sequential step-down procedure to

determine the rank.

Although the test has high power even in the presence of deterministic trends

to distinguish full rank from zero rank, or in general high rank from low rank,

the test does not have sufficient power to reliably distinguish the exact numer-

ical ranks in moderately dimensioned panels. The precise numerical rank, how-

ever, is not likely to be of interest in most economic applications. For example,

it is hard to foresee many economic hypotheses that revolve around whether a

panel of dimension N ¼ 30 has a rank of say 17 or 18. Instead, I believe that

what is typically of interest is whether the rank of the panel is relatively high

or relatively low so that we know whether there are many or only a few unit

roots that drive the properties of the panel. This also can be useful as a type

of empirical cross-check for more conventional panel unit root and panel coin-

tegration tests. Imagine, for example, that we have confirmed through panel

cointegration testing that the null of no cointegration has been rejected. In

mixed applications, if we would like confirmation that the fraction of members

consistent with this rejection is high, then we can use this type of rank test to

check the rank of the residuals. If the rank is low, then the fraction of the mem-

bers consistent with the rejection is high. Because we estimate N � N untrun-

cated kernels, we require T > N to implement the rank test. In cases where

T < N, however, it is always possible to break the panel into smaller subsets

of members for the purposes of rank testing.
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In unpublished versions of the study, tests for the null of stationarity also

were explored initially, but were dropped in order to focus on the pure rank tests,

and that the general approach of using untruncated kernels also holds promise

for constructing tests for the null of stationarity or the null of cointegration that

have good small sample properties. In general, the testing framework of this

section is one in which we obtain robustness to unknown forms of temporal

and cross-sectional dependencies in panels of moderate sample length because

we do not need to estimate the associated parameters. In the next section, I con-

tinue this discussion with some more recent techniques that do so in a

completely different manner while attempting to address further open

challenges.

10 New Directions and Challenges for Nonlinear and Time
Varying Long-Run Relationships

In this section, I discuss some new directions and their relationships to the open

challenges of treating nonlinearities and time varying relationships in heteroge-

neous cross-sectionally dependent panels. In particular, I discuss some of the

details of an approach introduced by application in Al Masri and Pedroni

(2016) and studied econometrically in terms of its asymptotic and small sample

properties in Pedroni and Smeekes (2018).

The basic idea is to exploit some the desired robustness properties discussed

in this chapter and to estimate long-run nonlinear relationships and, potentially,

time varying long-run relationships by using the form

yit ¼ f Xit0 ,Zið Þ (51)

for some vector of unit root variables Xit, possibly conditional on the value of

some vector of cross-sectional observations Zi. This is a challenging goal

because cointegration was developed in the time series literature as a fundamen-

tally linear concept, and, although nonlinearities have been explored in the

recent time series literature, it often is hard to retain the superconsistency

robustness properties that come from cointegration after nonlinearities are

introduced. To gain some understanding for this, imagine a nonlinear relation-

ship among unit root variables naively estimated by grouped OLS in the follow-

ing form

yit ¼ γ0 + γ1xit + γ2x
2
it + eit: (52)

The problem with this format relates to the way in which unit root variables

contribute to the regression properties when they appear in nonlinear form. For

example, imagine that yit and xit follow unit roots and are cointegrated. If we

then square the xit variable, the stochastic properties are altered and it becomes

difficult to think about yit being cointegrated with both xit and xit
2 in a way that

preserves the conventional superconsistency. Conversely, if we start by
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thinking about yit being cointegrated with xit
2, it is difficult to imagine that it also

is cointegrated with the square root of this variable in a way that preserves the

superconsistency associated with cointegration in a conventional sense.

Therefore, the approach we take is not to estimate anything like the format in

Eq. (52), but is entirely unrelated to existing approaches to treating nonlinearities in

nonstationary time series. Rather, we take an approach that is uniquely possible

only in a heterogeneous panel context. The result allows us to estimate a general

class of functions of unknown form in a way that is robust to any of the forms of

temporal and cross-sectional dependency discussed in this chapter, including

dependencies in the form of cross-member cointegration, which we will not need

to extract or identify in order to estimate the function. The approach works by esti-

mating what can be interpreted as the Taylor polynomial approximation to Eq. (51)

in a way that envisions different members i of the panel as being realizations along
different portions of the domain of the function Eq. (51). A cross-sectional sam-

pling of a linear approximation of the polynomial is taken across these different

portions of the domain that correspond to the different units of the panel. This

is then interacted with fixed point in time observations, s, of the regressors Xi

(s) via a second-stage regression in order to approximate the Taylor polynomial.

If we continue with the bivariate example used throughout this chapter, we

can describe the technique as composed of two key steps. The first step is to

estimate a static time series regression for each unit of the panel in the form

yit ¼ αi + βixit + μit: (53)

The second stage is to take the heterogeneous estimated slope values, β̂i
from Eq. (53), and use them in a second-stage cross-sectional regression as

β̂i ¼
XP

j¼0

cj, sx
j
i sð Þ+ vi (54)

where theorderof thepolynomialP inEq. (54) is chosenbydatadependentmethods,

and xi (s) is a point in time observation of xit at any fixed point in time s from the

observed sample. In practice, Eq. (54) can repeated for any and all available values

of s. Furthermore, if the data generating process is understood to be time invariant,

then the group mean values can be used to obtain the time invariant estimates

ĉj ¼ S�1ΣS
s¼1ĉj,s for any value j. If instead the data generating process is understood

to be time varying, subject to smoothness constraints, then one can use individual or

rolling window averages of the ĉj,s to trace their evolution over time.

To gain some further understanding about the technique, consider a simple

case in which the polynomial being estimated is relatively low order. For exam-

ple, imagine that the chosen value for P in Eq. (54) is P ¼ 1. If we take the fitted

values from Eq. (54) and imagine plugging them into the fitted values of

Eq. (53), for the case of P ¼ 1, we obtain

yit ¼ αi + c0xit + c1xi sð Þxit, (55)
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so that by setting P ¼ 1 in Eq. (54) we obtain a quadratic relationship in x for
Eq. (55). The quadratic term in Eq. (55), however, is specialized in that it is not

xit
2, but rather xi(s)xit. It is this detail that allows us to use variation in the domain

realizations of xi(s) over the cross-sectional dimension i to trace out the poly-

nomial. Specifically, if we picture the polynomial as having the curvature of a

quadratic, take a fixed point xi(s), and then vary xit over t around this point, we

obtain a line representing the tangency of the curve at that location. If we do this

at various points along the x axis corresponding to the different i realizations for
xi(s), with enough variation over i, we begin to trace out the entire polynomial.

In this way, we exploit the heterogeneity among the i realizations to map out the

details of the polynomial. The same principle applies when we take higher order

values for P, so that we are, in effect, taking a higher order expansion around the
linear relationship between yit and xit corresponding to unit i.

Although the regressions Eq. (53) and Eq. (54) are both static and linearly

additive, the data generating process yit and xit is permitted to be dynamic,

cross-sectionally dependent and potentially nonlinear, with the idea being that

these regressions are able to consistently estimate the underlying nonlinear

long-run relationship between y and x in a way that is robust to these features,

without the need to specify and estimate the dynamics and cross-sectional depen-

dencies. The robustness properties owe much to the fact that the nonlinear panel

form has been decomposed into two simple sets of regressions, the first a static

time series regression for each member i and the second an additively linear

cross-sectional regression for each fixed time point s. In particular, the first-stage
regressions Eq. (53) needs to estimate a linear approximation that is appropriate

for the range over which the data is realized for each member i. Because these are
unit-root variable, stationary transition dynamics play only a second-order role in

this estimation and vanishes asymptotically as the number of observations for the

range associated with a given i increases.
In the second-stage regressions Eq. (54), the cross-sectional distribution of

these estimates is related to the corresponding cross-sectional distributions of

observations taken at a given point in time s. Because this step is done as a

cross-sectional regression for a given period s, dynamic cross-sectional depen-

dencies do not play a role in the consistency of the estimation viewed from the

perspective of the cross-sectional estimation as the number of members grows

large. More broadly, the fact that the interaction of the linear approximation

based on the relationship between yit and xit and the cross-sectional point in time

observations on xi(s) are used to obtain the robustness properties can be inter-

preted as exploiting the fact that the specific historical realizations xi(s) matter

in the way they interact in the incremental relationship between xit and yit to
create the nonlinearities that we observe.

Another interesting aspect of the approach is that, because for the first-stage

regressions Eq. (53) we do not require the variables to be cointegrated in the

conventional sense of a linear combination of variables that are stationary,

the technique also is robust to the omission of unit-root common factors that

284 Panel Data Econometrics



would, in a more conventional setting, break the cointegrating relationship

between yit and xit. In this regard, the technique also offers the possibility of

a type of robustness for mixed panel applications, because we do not require

each member to be individually cointegrated in the conventional sense. Monte

Carlo simulations for both the Al Masri and Pedroni (2016) and Pedroni and

Smeekes (2018) studies show that the technique works well even when the

length of the panel is relatively short, even in the presence of omitted dynamics

and common factors. Pedroni and Smeekes (2018) study the conditions under

which the distributions are asymptotically normal, and under which standard

t-statistics have good size and strong power even in relatively short samples.

I have described a simple bivariate example, but as shown in both studies,

and as applied in Al Masri and Pedroni (2016), the technique also can be used in

the general case when Xit is anM � 1 vector, and the correspondingmultivariate

polynomials also can be conditioned on cross-sectional variables. Because the

generalization is less obvious than for some of the other techniques discussed in

this chapter, it is worth elaborating briefly on how this is done. When Eq. (53) is

replaced with a multivariate regression of the form

yit ¼ αi + β
0
iXit + μit (56)

where Xit is an M � 1 vector, the second-stage regressions now take the form

β̂i ¼
XP

j¼0

Cj,sX
j
i sð Þ+ vi, (57)

which represents a system of equations, one for each estimate of theM � 1 vec-

tor β̂i from Eq. (56), where Xi(s) is an M � 1 vector realization of Xit for some

fixed time period s and the Cj are theM � M estimated matrices, which is diag-

onal for j ¼ 0, symmetric for j ¼ 1 and unrestricted for j > 1. In this way, the

form of the approximating polynomial is interacted among the various elements

of the vector version of Eq. (51). For example, in Al Masri and Pedroni (2016)

arguments, X1,it and X2,it reflecting measures of development of financial insti-

tutions and measures of development of financial markets, respectively, are

allowed to interact with one another in their relationship to per capita income.

By taking time derivatives of the estimated relationships, we can infer the impli-

cations of different relative rates of development in financial institutions versus

financial markets for various types of countries.

Furthermore, it is also possible to condition these polynomial relationships

on any vector of cross-sectional observables, Zi. In such cases, Eq. (58) can be

extended to take the form

β̂i ¼
XP

j¼0

Cj,sX
j
i sð Þ+

XK

k¼1

XP

j¼0

Dk, jX
j
i sð ÞZk, i + vi (58)

Zi is K � 1 vector of unit specific variables and Dk,j are conformably dimen-

sioned M � M matrices. In practice, Zi can take the form of static cross-
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sectional variables, or either point in time realizations or time averaged reali-

zations of stationary time series variables. In this way, cross-sectional and sta-

tionary variables also can have a role in shaping the form of the polynomials.

For example, Al Masri and Pedroni (2016) show how the relationships between

the different types of financial development and long-run economic growth

depend in part on the degree of financial openness, which is incorporated as

a static conditioning variable, Zi, that reflects the financial openness of the

member. Furthermore, by estimating the relationship over a rolling window

for s, we can see the evolution of the polynomials over time.

Although this general line of research about nonlinear and time varying

long-run relationships is in its early stages, it should be clear that the promise

is fairly high for addressing some of the open challenges about panel cointegra-

tion that remain and for having broad empirical applicability. In that spirit, far

from being an exhaustive survey of the literature on panel cointegration

methods, this chapter has instead selectively touched on a simple manner about

what I believe to be some of the key challenges that have helped to shape the

literature, as well as some the key challenges that I expect are likely to be a part

of what continues to motivate the literature, both in its theoretical development

and its broad empirical applicability.
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1 Introduction

Econometricians have traditionally used one of three types of data sets for esti-

mation: single cross-section, single time series, and panel data. Data on a number

of units for a single time period with one observation per unit constitute a single

cross-section. A time series is a realization of a stochastic process, being a

sequence of observations on a single unit, usually ordered in time. Panel data refer

to time-series of cross-sectional data obtained by assembling cross-sections over

several periods, with the same cross-section units appearing in all periods. Cross-

section units can be households, firms, or any microeconomic unit. Sometimes

countries, states, or regions are used as cross-section units. The periods for which

time-series data are available can be years, quarters, months, hours, or intervals

shorter than anhour, such as observations received fromsatellites.Market interest

rates, such as the federal funds rate, change every minute. In this chapter, we are

concerned exclusively with panel data. We do not consider data with missing

values and combined single time series and single cross-section data.

Depending on the type of data, various complications in estimation can

occur. In cross-sectional data, we might need to account for interindividual het-

erogeneity. This heterogeneity varies depending on whether cross-section units

are micro units or aggregates. For example, if the cross-section units are coun-

tries rather than firms, then economy-wide production functions do not exist

even though firm-level production functions exist, as aggregation theories show

(see Felipe & Fisher, 2003). Thus, in the study of any economic relationship,

one must consider issues of existence first. Another complication, arising in

capital theory and first identified by Sraffa (1960) and Robinson (1953–54),
concerns the phenomenon of re-switching, which denies any unique relation-

ship between capital intensity and the rate of profits. To analyze yet another

complication, consider Shephard’s duality theorem which, as restated by

Diewert (1971, p. 482), asserts that “technology may be equivalently repre-

sented by a production function, satisfying certain regularity conditions, or a

cost function, satisfying certain regularity conditions,” which he enumerated.

Later, Swamy, Tavlas, and Hall (2015) defined uniqueness of the coefficients

and error term of any model and proved that production and cost functions hav-

ing unique coefficients and error terms and satisfying Diewert’s regularity con-

ditions are difficult to find. For example, to handle the typically unknown

correct functional form of a production or cost function, Swamy, Tavlas, and

Hall (2015) employed a rich class of functional forms that can cover the

unknown correct functional form as a special case. With this approach, how-

ever, there remains an issue of deciding whether the correct but unknown func-

tional form, covered as a special case of a class of functional forms, satisfies the
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regularity conditions because it is difficult to apply Shephard’s duality theorem

under these circumstances. If we relinquish uniqueness, however, the results

will be incorrect, as we will show. For this reason, we study cost and production

functions with unique coefficients and error terms, without applying Shephard’s

duality theorem. Keeping this in mind, we assert that intercountry heterogeneity

in the case of economywide production functions is a nonexistent problem,

because such functions do not exist, whereas interfirm heterogeneity in the case

of firm-level production functions with unique coefficients and error terms and

intercountry heterogeneity in the case of aggregate consumption functions and

other functions with unique coefficients and error terms do constitute real and

solvable problems.

In time series, successive observations might be dependent, and such depen-

dence, if present, should be taken into account. In the time-series literature, a

distinction is made between stationary and nonstationary processes.1 Time-

varying coefficients models define nonstationary processes for their dependent

variables.2 In panel-data analyses, both interindividual heterogeneity and tem-

poral dependence of observations, and nonstationary processes generating

observations on dependent variables should be analyzed carefully. This chapter

shows how this could be done. Another point to note is that researchers have

been able to use panel data to examine issues that could not be studied in either

cross-sectional or time-series data alone, such as the separate estimation of

economies of scale and technological change, as exemplified by Greene

(2012, p. 345), who believed that data about output and factors of production

for a number of firms, each observed over several years, can provide estimates

of both the rate of technological change over time and economies of scale for

different firms at each point in time. We will point out several difficulties raised

by this procedure.

Swamy, Mehta, and Chang (2017) (hereafter SMC) showed that when the

error term of an econometric model is made up of omitted relevant regressors,

its coefficients and error term are nonunique. Such nonuniqueness is far more

prevalent in econometric practice than nonuniqueness of the relationship

between capital intensity and the rate of profits noted by Sraffa and Robinson.

Again, when the error term of a model is made up of omitted relevant regressors,

the assumption that the included regressors are independent of the error term is

the same as the assumption that the included regressors are independent of the

omitted regressors. Pratt and Schlaifer (1988) (hereafter PS) pointed out that

1. The statistical properties of stationary processes do not change over time. All processes that do

not possess this property are called nonstationary (see Priestley, 1981, p. 14).

2. In the time domain, a model with time-varying coefficients is used to define a class of functional

forms to cover the unknown true functional form of the model as a special case, as will be made clear

later. By contrast, in the case of general types of nonstationary processes, it is not possible to esti-

mate the spectrum at a particular instant of time, but if the spectrum changes only smoothly over

time, then using estimates that involve only local functions of the data, an attempt can be made

to estimate some form of average spectrum of the process in the neighborhood of any particular time

instant (see Priestley, 1981, p. 818).
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this is a meaningless assumption. SMC (2017) further showed that nonunique-

ness of the coefficients and error term of a model implies that none of the

included regressors can be exogenous, and therefore nonunique coefficients

are not identifiable. Unfortunately, unidentifiable coefficients are not consis-

tently estimable. Therefore, there is a problem, one that we intend to solve in

this chapter by extending techniques applied to our previous models having

unique coefficients and error terms to a case involving panel data. The essence

of the problem to be solved is to find a way to estimate separately an omitted-

regressor bias component and a bias-free component that are inherent in the

unique coefficients of the proposed model. As we will show, using appropriate

coefficient drivers, to be defined later, we can solve this problem.

The remainder of this chapter is divided into five sections. Section 2 gives

the reasons why models with nonunique coefficients and error terms produce

incorrect inferences. To do away with these models, Section 3 develops models

with unique coefficients and error terms for panel data. The section shows how

such a model, in conjunction with time-series data on each individual in a panel

data set, can be used to estimate the causal effects of the included nonconstant

regressors on the dependent variable. The difficult part of this estimation is

separating the estimates of causal effects from those of omitted-regressor and

measurement-error biases. For this separation, certain coefficient drivers are

needed. The section shows the impediments to estimating the causal effects

using the entire panel data. Under a reasonable assumption about interindividual

heterogeneity, only mean effects can be estimated using non-Bayesian methods

and the entire available panel data set. We provide two examples to highlight a

number of problems with existing methods of handling spatial autocorrelation

and cross-section dependence in the econometrics literature. Section 4 discusses

the difficulties in using Bayesian methods to estimate mean effects and pro-

poses a method for improving the precision of the estimators of causal effects

based on time series data for each individual. This section also proposes a cor-

rection to the existing method of simulation-based estimation and inference.

Section 5 presents empirical estimates of the causal effects of wives’ education

on their earnings. Section 6 provides our conclusions.

2 Models With Nonunique Coefficients and Error Terms
for Panel Data

In this section, we provide a definition of uniqueness of the coefficients and error

termof anymodel for panel data and discuss problems that arisewhen this unique-

ness condition is not satisfied. Typically, panel data contain a large number of

cross-section units and only a few periods. For such data, time-series methods

requiring long timeseries canbeproblematic, but useful techniquescanbe focused

on cross-sectional variation, or, equivalently, on interindividual heterogeneity.

To achieve greater flexibility in modeling differences in behavior across

individuals than a cross-section allows, econometricians have been studying

panel data sets. A model setup considered in the econometric literature for

the analysis of such a data set is
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yit ¼ x0itβ + ς
0
iα + τ

0
tξ+ εit: (1)

where i (¼ 1, …, n) indexes individuals, t (¼ 1, …, T) in Eq. (1) indexes time,

and y is a dependent variable. There are K regressors in xit (including a constant
term), called the included regressors. The scalars ςi0α and τ

0
t ξ can be represented

by μi and φt, respectively. The term ςi0α represents interindividual heterogene-

ity, with ςi being a vector of time-invariant and individual-specific variables,

such as race, sex, location, individual skill, ability, and preferences, some of

which can be observed. Note that ςi does not contain a constant term.3 The term

τt0ξ is the time effect, with τt being a vector of individual-invariant and time-

varying variables, not all of which may be unobserved. The vector τt also does

not contain a constant term. Model (1), which Swamy (1971) and Swamy and

Arora (1972) estimated under certain assumptions, and Mehta, Narasimham,

and Swamy (1978) used to estimate a dynamic demand function for gasoline,

is called the random effects model if ςi0α and τt0ξ are treated as random vari-

ables. One of these assumptions is that every element of β has the interpretation
of a partial derivative.

Assumption A1:

β¼ ∂E yitj xitð Þ=∂xit: (2)

When xit is random, the conditional expectation, E(yit jxit), exists if the con-
ditions of Lemma 1 stated next are satisfied.

Lemma 1 If, for all i and t, ςi0α and τt0ξ are such that g(xit) is a Borel function of
xit, and E jyit j < ∞, E jyitg(xit)j < ∞, then E(yit jxit) in E[g(xit)(yit jxit)] ¼ g(xit)
E(yit jxit) exists such that E{g(xit)[yit – E(yit jxit)]} ¼ 0.

Proof
See Rao (1973, p. 97).

Under the conditions of Lemma 1, Assumption A1 follows from Eq. (1),

provided E(yit jxit) is a continuous function of xit. We will describe some situ-

ations in which the conditions of Lemma 1 are not satisfied. In these situations,

the interpretation that εit containing μi and φt is the deviation of yit from the con-

ditional mean, E(yit jxit), might not hold.

The main objective of the analysis is to obtain a consistent and efficient esti-

mator of β. The question of whether this objective can be achieved cannot be

answered without first providing a real-world interpretation of εit, as Pratt

and Schlaifer (1984, p. 11) pointed out.

Interpretation I of εit : εit ¼w0
itω (3)

where wit ¼ (w1it,…, wLit)
0 is a vector of omitted relevant regressors other than

ςi and τt, L is the unknown number of such regressors, and ω ¼ (ω1, …, ωL)
0 is

the vector of the coefficients of omitted relevant regressors. In words, the error

term εit of Eq. (1) is made up of all relevant regressors wit omitted from Eq. (1).

3. A better method of modeling interindividual heterogeneity is presented in Section 3 below.
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These are called omitted regressors. None of these regressors is time-invariant

or individual-invariant because such variables are already removed fromwit and

are put in either ςi or τt in Eq. (1).

Substituting wit
0ω for εit in Eq. (1) gives

yit ¼ x0itβ + ς
0
iα+ τ

0
tξ+w

0
itω (4)

Treating this as a linear deterministic equation, Pratt and Schlaifer (1988,

p. 13) showed that the omitted regressors wit, and the coefficients β and ω
are not unique. By the same logic, the vectors ςi, τt and the coefficient vectors

α and ξ also are not unique if ςi and τt are not observed. We adopt the following

definition of uniqueness:

Definition (Uniqueness): The coefficients and the error term of any econo-

metric equation are unique if they are invariant under the addition and subtrac-

tion of the product of the coefficient of any omitted relevant regressor and any

included regressor on the right-hand side of the equation.

Axiom by Pratt and Schlaifer (1988, p. 34): The condition that the included
regressors be independent of “the” omitted regressors themselves is meaning-

less unless the definite article is deleted and then can be satisfied only for certain

sufficient sets of omitted regressors, some if not all of which must be defined in

a way that makes them unobservable as well as unobserved.

These considerations, which will become clear as we proceed further in this

chapter, have been useful in our earlier research.

Theorem 1 Under interpretation I of εit in Eq. (3), the coefficient vectors, β and
ω, and omitted regressors (wit) in Eq. (4) are not unique; the included regressors

xit cannot be uncorrelated with every omitted regressor in wit; and the econome-

trician’s reduced-form equations and instrumental variables do not exist.

Proof
Using interpretation I of εit in Eq. (3), rewrite Eq. (4) as

yit ¼ β0 +
XK�1

j¼1

xjitβj + ς
0
iα + τ

0
tξ +

XL

‘¼1

w‘itω‘ (5)

where this equation is the same as Eq. (4). Let j0 be one of the values the sub-
script j takes and ‘0 be one of the values the subscript ‘ takes. Following the

definition of uniqueness, add and subtract the product xj0itω‘0 on the right-hand

side of Eq. (5). Doing so gives

yit ¼ β0 +
XK�1

j¼ 1

j 6¼ j0

xjitβj + xj0it βj0 +ω‘0
� �

+ ς0iα + τ
0
tξ+

XL

‘¼ 1

‘ 6¼ ‘0

w‘itω‘ + w‘0it� xj0it
� �

ω‘0

(6)

Eq. (6) is the same as (5), but going from Eq. (5) to Eq. (6) changes the coef-

ficient of xj0it from βj0 to (βj0 + ω‘0) and further changes an omitted regressor from

w‘0it to (w‘0it � xj0it). These changes would be inadmissible if the coefficients and
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the error term of Eq. (5) were known, but they are not. Because the subscripts j0

and ‘0 are arbitrary, we conclude from Eqs. (5), (6) that the coefficients and the

error term of Eq. (5) are nonunique for all i and t, thus confirming the Pratt and

Schlaifer (1984, p. 13) result.

Not knowing anything about the omitted regressor w‘0it in Eq. (5), we cannot

say whether it is uncorrelated with the included regressor xj0it. But in Eq. (6), the
included regressor xj0it is definitely correlated with the omitted regressor

(w‘0it � xj0it) because xj0it is common to both xj0it(βj0 + ω‘0) and (w‘0it � xj0it)ω‘0.

Therefore, an assertion that xj0it and w‘0it are correlated can be made to be uncer-

tain and certain at the whim of an arbitrary choice between the two equivalent

Eqs. (5) and (6). This proves that the lack of correlation between xj0it and w‘0it is

not based on reality. Here we should take guidance from Pratt and Schlaifer

(1984, p. 14), who proved that xit in Eq. (4) cannot be uncorrelated with every

omitted relevant regressor in Eq. (5). Given that the subscripts j0 and ‘0 are arbi-
trary, we conclude from Eq. (5) and Eq. (6) that under interpretation I of εit in
Eq. (3), xit cannot be uncorrelated with every element of the vectorwit and there-

fore cannot be exogenous. Pratt and Schlaifer (1988, p. 34) even proved the

stronger result that the condition that the included regressor xj0it be independent
of “the” omitted regressor w‘0it itself is meaningless. In this case, it is usual to

assume that there exists a set of m (m � K) instrumental variables, denoted by

zit*, such that zit* is correlated with xit, but not with εit. Themethod of instrumental

variables uses such a vector zit* to construct an estimator of β. However, the
proof of the consistency of this estimator given in the econometric literature

is unsatisfactory because it does not take into account the nonuniqueness of

β and wit in the case where interpretation I of εit in Eq. (3) holds. In the presence
of this nonuniqueness, any method of finding instrumental variables should take

both w‘0it and (w‘0it � xj0it) as the plausible values of the ‘
0th omitted regressor.

Therefore, we see that any attempt to find an instrumental variable that is

correlated with xj0it and uncorrelated with both w‘0it and (w‘0it � xj0it) will fail.
This argument shows that we should accept the conclusion that instrumental

variables do not exist when interpretation I of εit in Eq. (3) holds.

If the included regressors in Eq. (5) cannot be uncorrelated with the error

term
PL

‘¼1w‘itω‘, then Eq. (5) cannot be a reduced-form equation. Because

Eq. (5) is an arbitrary equation, we can conclude from the previous argument

that any equation with nonunique coefficients and error term cannot be a

reduced-form equation.

Lemma 2 If, for all i and t, f(xit, t ¼ 1,…) is a Borel function of the vectors xit,
t ¼ 1, …, E jμi j < ∞, E jμif(xit, t ¼ 1, …)j < ∞, then E(μi jxit, t ¼ 1, …) in E
[f(xit, t ¼ 1, …)(μi jxit)] ¼ f(xit, t ¼ 1, …)E(μi jxit) exists.
Proof
See Rao (1973, p. 97).

In the econometric literature, Eq. (1) is estimated under different assump-

tions about E(μi jxit, t ¼ 1,…). When xit, t ¼ 1,… are all endogenous, the con-

ditions of Lemma 2 are not satisfied, and these estimations lead to inconsistent

estimators.
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To show some problems that Theorem 1 leads to, we consider the following

assumption:

Assumption A2: For all i and t, E(εit jxt1, xt2, …) ¼ E(εit) ¼ 0.

Assumption A2 is stronger than the assumption that the xit, t ¼ 1, 2,…, are

uncorrelated with εit for all i and t.4 Some econometricians take this stronger

assumption to mean that the xit, t ¼ 1, 2, …, are exogenous for all i and t
(see Greene, 2012, p. 52). Under interpretation I of εit in (3), Assumption A2

is false, as Theorem 1 shows. In the context of endogenous regressors, it is use-

ful to recall Greene’s (2012, p. 320) demonstration that the ratio of the first dif-

ferences in two endogenous variables is meaningless without first determining

what caused the change in the denominator variable. But nowhere in the econo-

metric literature do we find the partial derivative of an endogenous variable

with respect to another endogenous variable. Therefore, the partial derivatives

in Assumption A1 should be questioned, because xit is endogenous under inter-
pretation I of εit in Eq. (3).

The econometric literature features four tests: the tests of hypotheses on β in
Eq. (1); the Lagrange multiplier test of the null hypothesis that the variance of

the random effects ςi0α is zero; the specification test for a random effects model;

and the test for fixed versus random effects. All these tests are based on

Assumption A2. It follows from Theorem 1 that under interpretation I of εit
in Eq. (3), Assumption A2 is false, the conditions of Lemma 1 are not satisfied,

and all these tests are invalid.

3 Models With Unique Coefficients and Error Terms
for Panel Data

Section 2 teaches us that when omitted regressors constitute the error term εit of
Eq. (1), its coefficient vector β and its error term wit

0ω are not unique. The sec-

tion also shows us the undesirable consequences of this nonuniqueness. To

develop a model with unique coefficients and error term, we proceed as follows:

3.1 Linear-in-Variables and Nonlinear-in-Coefficients Functional
Form for Economic Relationships

y∗it ¼ α∗0it +
XK�1

j¼1

x∗jitα
∗
jit +

XLit

‘¼1

w∗
‘itω

∗
‘it (7)

where yit* is the dependent variable, the xjit* ’s are K – 1 determinants of yit*, the
w‘it
* ’s are the remaining determinants of yit*, and the values with asterisks are the

unobserved true values. The w‘it
* ’s include time-invariant, individual-specific

4. For a proof of this statement, see Swamy and von zur Muehlen (1988, p. 110).
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(ςi) and individual-invariant, period-specific (τt) determinants of yit*, and all rel-
evant pre-existing conditions. In Eq. (4), we provide a reason why the coeffi-

cients on nonconstant regressors cannot be treated as partial derivatives. For

the same reason, in Eq. (7) for j > 0 and ‘ > 0, we do not treat αjit* as the partial

derivative of yit* with respect to xjit* and ω‘it
* as the partial derivative of yit*

with respect to w‘it
* . The total number of w‘it

* may depend on both i and t and
is denoted by Lit. By assuming that Lit is unknown, we avoid missing any

relevant w‘it
* .

3.2 A Deterministic Law

Eq. (7) contains the full set of the determinants of its dependent variable. We

will show that the functional form of the unknown true (or real-world) relation-

ship between yit* and its determinants is not misspecified in Eq. (7). Therefore, it

satisfies Pratt and Schlaifer’s (1984) definition of a deterministic law. It is the

first deterministic law for panel data, in the sense that it is proposed here for the

first time for such data.

Definitions of measurement errors: Let yit ¼ yit* + ν0it* and let xjit ¼ xjit* + νjit* ,
j ¼ 1,…, K � 1 where ν0it* is the measurement error in yit and for j ¼ 1,…, K –
1, νjit* is the measurement error in xjit.

The asterisks mean that the indicated variables are not observed. The vari-

ables without asterisks are observed.We do not assume that measurement errors

are random variables. This assumption is weaker than the assumption that they

are distributed with mean zero. In what follows, we call the xjit “the included

regressors” and the w‘it
* “omitted regressors.”

Spurious and True Correlations: We define the w‘it
* ’s as including all rele-

vant pre-existing conditions. If Eq. (7) involves some spurious correlations,

then they disappear when we control for all relevant pre-existing conditions,

as Skyrms (1988, p. 59) pointed out. He further observed that “statistical cau-

sation is positive statistical relevance which does not disappear when we control

for all relevant pre-existing conditions.” We will show how we control for all

such conditions.

Interindividual Heterogeneity: Allowing all the coefficients of Eq. (7) to

differ among individuals both at a point in time and through time is a sure

way of capturing interindividual heterogeneity. This much generality in the type

of variation in the coefficients of Eq. (7) is convenient in the absence of knowl-

edge about the type of variation needed to capture interindividual heterogeneity

in our cross-sectional data. The constant coefficient vector β in Eq. (1), even

with the inclusion of terms ςi
0α and τt0ξ, cannot represent interindividual hetero-

geneity. Another justification for the specification in Eq. (7) is given in the next

paragraph.

A rich class of functional forms: We assume that the functional form of the

true (real-world) relationship between yit* and its determinants is not known. In

this case, any particular functional form we specify may actually be incorrect.
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Choosing a sufficiently rich class of functional forms, however, allows us to

cover the true functional form as a special case. We believe that the functional

form of Eq. (7) represents such a class in that variations in its coefficients gen-

erate a rich class of nonlinear functional forms that can cover the true functional

form as a special case and, as a bonus, turns out to be one that is easy to work

with. We refer to the functional form of Eq. (7) as “linear in variables and non-

linear in coefficients.”

Real-world relations: We say that any mis-specifications-free equation is a

real-world relationship. Accordingly, Eq. (7) with the correct functional form,

being free of misspecifications, represents a real-world relationship. This claim

would have been false had we used a stationarity inducing transformation of

observable yit or logyit as the dependent variable of Eq. (7) (see Basmann,

1988, p. 98). In that event, Eq. (7) would not have been free of the most serious

objection, that is, nonuniqueness. According to Basmann (1988), there is noth-

ing wrong with using the word “causality” to designate a property of the real

world.5

True functional forms: Intrinsic functional forms of real-world relationships

are, by definition, true. Conversely, any relationship expressed with an incorrect

functional form cannot be a mis-specifications-free relationship.

Potential-outcome notation: Rubin (1978) showed that Eq. (7) cannot be a

causal law unless it is stated in terms of Neyman’s potential-outcome notation.

Such outcomes are denoted by Yxit* , which is the value that outcome Y* would
take for individual i at time t, had the value of the regressor vector xit* been at

level x (see PS 1988). This is how we interpret the outcome variable yit* in

Eq. (7), although, for notational simplicity, we suppress the subscript x.
Sufficient sets of omitted regressors: If we treat the last term

PLit
‘¼1w

∗
‘itω

∗
‘it on

the right-hand side of Eq. (7) as its error term, then it must be considered as

beingmade up of omitted regressors. But then we are back to the case of a model

with nonunique coefficients and nonunique error term. To avoid this situation,

we adopt the previously stated axiom by PS (1988, p. 34) introducing sufficient

sets. The question then arises: How do we find these sufficient sets? We will

answer this question presently.

3.3 Derivation of the Unique Error Term From theDeterministic Law

Stochastic law: For ‘ ¼ 1, …, Lit, let

w∗
‘it ¼ λ∗‘0it +

XK�1

j¼1

x∗jitλ
∗
‘jit ‘¼ 1,…, Litð Þ (8)

5. Basmann (1988) used the term “real-world relations.”We also use it after giving it a definition of

our own choice. Some econometricians prefer the term “data-generating process” to the term “real-

world relation.” We do not believe that the former term is appropriate to our model containing omit-

ted regressors because any notion of data generating process says nothing about omitted regressors.
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where each omitted regressor of Eq. (7) is related to the included regressors. Not

all of these Lit relationships can be absent because Pratt and Schlaifer (1984,

p. 14) proved that the included regressors on the right-hand side of Eq. (8) can-

not be uncorrelated with every omitted regressor on its left-hand side. As in

Eq. (7), the functional form of Eq. (8) is linear in variables and nonlinear in

coefficients. For this functional form, the equality sign in Eq. (8) is easily sat-

isfied because the λ’s are allowed to vary freely. The intercept λ‘0it* of Eq. (8) is

the remainder of the omitted regressor w‘it
* after the effect

PK�1
j¼1 x

∗
jitλ

∗
‘jit of the

xjit* ’s on w‘it
* has been removed from it. Pratt and Schlaifer (1984, p. 14) proved

the important result that although the xjit* ’s cannot be independent of every omit-

ted regressor w‘it
* that affects yit*, they can be independent of the remainder of

every such regressor. While Pratt and Schlaifer (1984, p. 13) treated the λ‘0it* ,

‘ ¼ 1, …, L, as L-dimensional, independently and identically distributed (i.i.

d.) random vectors with mean vector zero, we treat λ‘0it* as a random variable.

Eq. (8) satisfies Pratt and Schlaifer’s (1984, p. 13) definition of a stochastic law

and therefore constitutes the first set of stochastic laws for panel data.

Because some of the w‘it
* ’s are relevant pre-existing conditions, Eq. (8) per-

mits us to control for these conditions by controlling the included regressors.

These controls serve the important purpose of removing any spurious correla-

tions implied by Eq. (7) (see Skyrms, 1988, p. 59). The point of Eq. (8) is that it

takes into account Theorem 1, which invalidates a condition of exogeneity on

any of the included regressors in Eq. (7), a condition, moreover, that has been

widely, albeit erroneously, used in studies about small and large-sample prop-

erties of the estimators of the coefficients of econometric models.

3.4 Stochastic Law With Unique Coefficients and Error Term

Substituting the right-hand side of Eq. (8) for w‘it
* in Eq. (7) gives

y∗it ¼ α∗0it +
XLit

‘¼1

λ∗‘0itω
∗
‘it +

XK�1

j¼1

x∗jit α∗jit +
XLit

‘¼1

λ∗‘jitω
∗
‘it

 !

(9)

where the remainders λ‘0it* , ‘ ¼ 1, …, Lit, of omitted regressors in conjunction

with the included regressors xjit* , j ¼ 0, 1, …, K – 1, are at least sufficient to

determine the value of yit* exactly. This is the reason why PS (1988, p. 50) called

the λ‘0it* , ‘ ¼ 1,…, Lit, “sufficient sets of omitted regressors, w‘it
* , ‘ ¼ 1,…, Lit,

respectively.” Following Pratt and Schlaifer (1984, p. 13), we treat Eq. (9) as a

stochastic law, which is derived from the deterministic and stochastic laws in

Eq. (7) and Eq. (8), respectively.6 Eq. (9) is the first stochastic law for panel

data.7

6. Many economists believe that there are no well-established laws in economics and Zellner (1988,

p. 12) was one of them. Eq. (9) will enable us to establish economic laws.

7. Model (9) was extended to autoregressive models in Swamy, Chang, Mehta, and Tavlas (2003).
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Interpretation II of the Error Term
PLit

‘¼1λ
∗
‘0itω

∗
‘it of Eq. (9): This error term is

made up of certain sufficient sets of all omitted relevant regressors contained in

the vector, wit.

Eq. (9) has the following properties:

1. The second term
PLit

‘¼1λ
∗
‘0itω

∗
‘it on the right-hand side of Eq. (9) is its error

term (see Pratt & Schlaifer, 1984, p. 12). This error term is not the same as

the deviation of yit* from its conditional expectation E(yit*jxjit* , j ¼ 1, …,

K – 1), even when it exists. We will clarify that we do not assign a mean

zero to the error term
PLit

‘¼1λ
∗
‘0itω

∗
‘it.

2. This error term enters additively into Eq. (9).

3. The included regressors (xjit* , j ¼ 1, …, K – 1) can be independent of the

sufficient sets (λ‘0it* , ‘ ¼ 1, …, Lit) of omitted regressors (w‘it
* , ‘ ¼ 1, …,

Lit). This statement is based on PS’ (Pratt & Schlaifer, 1984, p. 14; Pratt

& Schlaifer, 1988, p. 34) assertion that, although the included regressors

(xjit* , j ¼ 1, …, K – 1) cannot be uncorrelated with every omitted regressor

(i.e., with every w‘it
* , ‘¼ 1,…, Lit) that affects yit*, they can be independent

of the remainder (λ‘0it* ) of every such variable. For this reason, the included

regressors (xjit* , j ¼ 1, …, K – 1) can be considered as exogenous without

the need to find instrumental variables that are highly correlated with the

included regressors and uncorrelated with the sufficient sets of omitted

regressors. The included regressors (xjit* , j ¼ 1, …, K – 1) are endogenous

under interpretation I in Eq. (3) of the error term of Eq. (4), as shown by

Theorem 1, and are exogenous under Interpretation II of the error term of

(9), as shown by PS (Pratt & Schlaifer, 1984; Pratt & Schlaifer, 1988).

4. The coefficients and the error term of Eq. (9) are unique―a consequence of

Eq. (8). This uniqueness supports our treatment of Eq. (9) as a causal rela-

tionship because causal relations are unique in the real world, as Basmann

(1988, p. 73) pointed out. For the convenience of the reader, we reproduce

Swamy, Mehta, Tavlas, and Hall’s (2014) proof of this uniqueness in

Appendix A.

5. The bias-free component of the coefficient on xjit* is αjit* . Another name for

this component is the direct effect of xjit* on yit*. In another article dealing

with empirical measurement of treatment effects, Swamy, Hall, Tavlas,

Chang, Gibson, Greene, Mehta (2016, p. 8) expressed the effect of the

treatment xjit* on the ith treated individual by xjit* αjit* . The direct effect is

not unique because the coefficients of Eq. (7) are not unique.

6. The omitted-regressor bias of the coefficient on xjit* in Eq. (9) isPLit
‘¼1λ

∗
‘jitω

∗
‘it, which can also be called an indirect effect of xjit* on yit*.

The sum of products, λ‘jit* ω‘it
* , is the indirect effect because of the effect

of xjit* on each omitted relevant regressor, which appears in Eq. (8), and

the effects of omitted relevant regressors on yit* that appear in Eq. (7).

The indirect effect of each xjit* is nonunique because the coefficients of

Eq. (7) and Eq. (8) are nonunique. The sum of direct and indirect effects
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of xjit* is its total effect, which appears in Eq. (9). Importantly, the total

effects of included regressors are unique because the coefficients of

Eq. (9) are unique. Another property of the total effect of each xjit* is that

although its components, that is, its separate direct and indirect effects

depend on the omitted relevant regressors chosen to define them, the total

effect does not. As a consequence, when omitted relevant regressors are not

identified, total effects can be estimated meaningfully, even though no

meaningful distinction exists between direct and indirect effects. We note

that PS (Pratt & Schlaifer, 1984, 1988) proved all the results stated in this

paragraph.

7. Simpson’s paradox: This paradox refers to a phenomenon whereby the

association between a pair of variables X and Y reverses sign upon condi-

tioning of a third variable Z, regardless of the value taken by Z. Resolution:
Eq. (9) has K – 1 nonconstant regressors. In this equation, either the con-

version of any one of its omitted relevant regressors into an included

regressor or the deletion of any one of its included regressors changes only

the omitted-regressor bias components but not the bias-free components of

the coefficients on its included regressors. It is only the bias-free compo-

nent of the coefficient on an included regressor that measures the causal

relationship between the regressor and the dependent variable. This proves

that Simpson’s paradox cannot arise if the coefficients and error term of a

relationship are unique, as in Eq. (9) (see Swamy, Mehta, Tavlas, &

Hall, 2015).

8. For all j, the bias-free and omitted-regressor-bias components of the coef-

ficient on xjit* appear additively in Eq. (9).

9. Manifestations of defects such as the wrong sign or a wrong magnitude of

an estimate of a coefficient in a fixed-coefficient econometric model of a

conventional type can be explained as arising from: (a) nonuniqueness of

the coefficient lacking a distinction between its bias-free and omitted-

regressor bias components, (b) nonuniqueness of the model’s error term,

(c) the incorrect restriction of exogeneity on some or all of the model’s

regressors, (d) the use of an incorrect functional form, and (e) measurement

errors that have been ignored. Given this list, chances are high that any

model with nonunique coefficients and error term leads to incorrect

inferences.

10. The advantage of the linear-in-variables and nonlinear-in-coefficients

functional-form of Eq. (7) is that it has all the good properties of PS’

(Pratt & Schlaifer, 1984, p. 13) linear stochastic law, without its

limitations.

Production functions and Diewert’s (1971) regularity conditions: Suppose that
Eq. (9) is a microproduction function with yit* denoting the output produced by

the ith firm at time t, and the xjit* denoting a set of inputs used in the production of

yit*. The functional form of Eq. (9) is not misspecified because it is derived from

the class of functional forms in Eqs. (7), (8) that covers the unknown true
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functional form of the production function as a special case. Therefore, the pro-

duction function in Eq. (9) is mis-specifications free and therefore can be treated

as a real-world relationship. According to Basmann (1988), causality designates

a property of the real world. It cannot be shown, however, that the true func-

tional form of Eqs. (9) covered as a special case of the class of the functional

forms in Eqs. (7), (8) satisfies the regularity conditions of Diewert (1971,

pp. 484–485). Therefore, Shephard’s duality theorem may not apply to

Eq. (9). This is the consequence of working with a class of functional forms.

If we do not work with a class of functional forms, however, then any specific

functional form that satisfies the regularity conditions can be misspecified.

But causal effects can be measured only using appropriate real-world

relationships; and unfortunately, production functions with misspecified func-

tional forms are not real-world relationships. Let us compare Eq. (9) with the

following Diewert production function satisfying regularity conditions: y ¼
h
PK

j¼1

PK
‘¼1aj‘x

1=2
j x

1=2
‘

� �
where aj‘ ¼ a‘j � 0, and h is a continuous, monoton-

ically increasing function that tends to plus infinity and has h(0) ¼ 0. This

specification has three problems: its functional form may be misspecified, its

coefficients are not unique, and it has no error term. Note that merely adding

a nonunique error term to y¼ h
PK

j¼1

PK
‘¼1aj‘x

1=2
j x

1=2
‘

� �
before estimation leads

to inconsistent estimators of the aj‘’s because (i) the included xj’s cannot be
independent of every omitted relevant regressor constituting the added nonuni-

que error term, (ii) omitted-regressor biases are completely ignored, and (iii) a

possibly wrong functional form is applied to data.8 In this chapter, the frame-

work encompassing the class of functional forms giving rise to models with

unique coefficients and error terms would be more attractive if, within it, Die-

wert’s regularity conditions were to be satisfied. Unfortunately, the dual goal of

achieving uniqueness and meeting the regularity conditions is not attainable in

the current context.

3.5 Stochastic Law in Terms of Observable Variables

Using previously given symbols for measurement errors, Eq. (9) can be

written as

yit ¼ γ0it +
XK�1

j¼1

xjitγjit (10)

where

8. Here we hasten to point out that we are only expressing our difficulties without criticizing Die-

wert, who is doubtless a brilliant mathematical economist and whose work we admire. Had we not

understood his work, we would have misapplied Shephard’s duality theorem to our production or

cost function with unique coefficients and error term.We are grateful for his role in our avoiding this

mistake.
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γ0it ¼ ν∗0it + α
∗
0it +

XLit

‘¼1

λ∗‘0itω
∗
‘it (11)

and

γjit ¼ 1� ν∗jit
xjit

� �
α∗jit +

XLit

‘¼1

λ∗‘jitω
∗
‘it

 !

(12)

Note that the choice of xjit’s to be included in Eq. (10) is entirely dictated by
the causal effects one wants to learn.

Measurement-Error Bias Components of the Coefficients of the Stochastic
Law in (10): For j ¼ 1, …, K – 1, they are

�ν∗jit
xjit

� �
α∗jit +

XLit

‘¼1

λ∗‘jitω
∗
‘it

 !

(13)

For all j ¼ 1, …, K – 1, measurement-error bias of the coefficient of xjit
enters multiplicatively into Eq. (10).

Latent stochastic law: Suppose that the dependent variable in Eq. (10) is not
observable and that only the outcome of a binary choice depending on the sign

of the regression on the right-hand side of (10) is observable. Then model (10)

can be called “a latent regression model” that algebraically resembles Greene’s

(2012, p. 686) latent regression model. This resemblance suggests that the coef-

ficients and the error term of the latter latent regression model can be made

unique by deriving it from Eq. (9). The maximum likelihood method of estimat-

ing such a model is considered in Swamy et al. (2016).

Special features of the stochastic law in (9) and (10): (i) The coefficients and
error term of (9) are unique, (ii) the observable dependent variable (yit) and regres-
sors (xjit’s) satisfy a general equation in (10), with coefficients that differ among

individuals both at a point in time and through time.Eachof these coefficients con-

tains three components, and (iii) given that (9) is a real-world relationship with

unique coefficients and error term, the bias-free component of the coefficient on

each of its nonconstant regressor is used to measure the (direct) causal effect of

the regressor on the dependent variable, as shown by property (5) of (9).

Main objective of the analysis and nature of the approach to be followed:
The objective is to accurately estimate causal effects, with accuracy referring

to the size of deviations from the true causal effects. The suggested approach

contrasts with past econometric practice in studies of small and large sample

properties of econometric estimators of what turn out to be nonunique coeffi-

cients in econometric models containing some exogenous regressors and non-

unique error terms without an understanding that the regressors considered as

exogenous are not really exogenous, as shown by Theorem 1. Moreover,

because such nonunique coefficients do not implicitly contain omitted-

regressor and measurement-error biases, there has been no perceived need to

deal with the problem of separating the estimators of bias-free components from
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those of omitted-regressor and measurement-error bias components of hope-

fully unique model coefficients. The purpose of this chapter, then, is to confront

this problem head-on by answering the question: How does one formulate unbi-

ased or consistent estimators of the bias-free components of the coefficients

of (10)?

3.6 Simultaneous Estimation of the Bias-Free and Omitted-Regressor
Bias Components of the Coefficient on Each Nonconstant Regressor
of a Stochastic Law

An inherent message in Eq. (10) is that the estimates of its coefficients cannot be

obtained sensibly by a mere regression of panel data yit on panel data xit but that,
instead, we need to estimate this equation subject to the restriction that its coef-

ficients satisfy Eqs. (11) and (12). For this purpose, we parameterize (10) using

the following coefficient equations: for j ¼ 0, 1 …, K – 1, define

γjit ¼ πj0i +
Xp�1

h¼1

πjhizhit + ujit (14)

where the zhit’s are observed and are called “the coefficient drivers” with the

restriction that they have the same range as γjit, the π’s do not depend on t,
and the u’s are random error terms.9 The restrictions that the π’s do not vary

over time are needed to estimate them using the time-series data set of every

individual in the given panel data set. Because the π’s in Eq. (14) cannot be

shown to be unique, we make sure that they have strong connections with

the unique coefficients of (9).

We have designed theK equations in (14) so that not all coefficient drivers in

(14) appear in all those equations. Therefore, some of the π’s in each equation in
(14) will be zero. An example of such exclusion restrictions is given in Swamy,

Mehta, Tavlas, and Hall (2014, p. 213).

It is important to note that Eqs. (7)–(10) and (14) provide a method of elim-

inating models with nonunique coefficients and error terms from the economet-

ric literature because such models are shown to be misspecified in Section 2.

Inserting the right-hand side of Eq. (14) for γjit in (10) gives

yit ¼ π00i +
Xp�1

h¼1

π0hizhit + u0it +
XK�1

j¼1

xjit πj0i +
Xp�1

h¼1

πjhizhit + ujit

 !

(15)

which is a fixed-coefficient model for a given i. In this model, the coefficient

drivers, the xjit, and the interactions of each xjit with the coefficient drivers

9. Models appear with different labels, such as “hierarchical models,” “mixed models,” “random

parameters models,” or “random effects models,” in different fields (see Greene, 2012,

pp. 639–641). These models, which algebraically resemble the model in (10) and (14), have non-

unique coefficients and error terms and therefore have all the problems the models in Section 2 have.
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appear as regressors, and the error term u0it +
PK�1

j¼1 xjitujit is heteroscedastic. We

call the π’s of Eq. (15) “time invariant and individual-specific coefficients of the

stochastic law.” Another way of looking at the dependent variable of (15) is that

for each i, {yit} is a nonstationary process.

Sources of the error terms of Eq. (15): These are the sufficient sets of omit-

ted regressors in (9) and the coefficients of (10). These two sources of the error

terms justify our treatment of the coefficients of (10) as stochastic. Our assump-

tions about the u’s in (14) follow. Complete explanations of the components of

the dependent variable of (14) might require some additional coefficient drivers

to those included in (14). These omitted drivers justify our inclusion of the error

terms in (14), which, in turn, justify our treatment of the coefficients of (10) as

stochastic.10 It follows from Eq. (14) that the error term of (9) has a nonzero

mean if some of the π0hi’s in (14) are nonzero.

Conditions for the appropriateness and adequacy of coefficient drivers:We

assert that the coefficient drivers included in (14) are appropriate and adequate,

and our guesses about νjit* , j ¼ 1,…,K – 1, are appropriate if, for j ¼ 1,…,K – 1,

1� ν∗jit
xjit

� �
α∗jit +

PLit
‘¼1λ

∗
‘jitω

∗
‘it

� �
¼ πj0i +

Pp�1
h¼1πjhizhit + ujit such that the following

decomposition of γjit holds:

ið Þα∗jit ¼ 1�ν*jit
xjit

 !�1

πj0i and iið Þ
XLit

‘¼1

λ∗‘jitω
∗
‘it ¼ 1�ν*jit

xjit

 !�1 Xp�1

h¼1

πjhizhit + ujit

 !

(16)

for all i and t. It is this mapping of the terms on the right-hand side of (14) on to

the terms on the right-hand side of (12) that determines the decomposition of γjit
into its components. The equations in (16) establish strong connections between

the π’s and the unique coefficients of (9). All variables except πj0i in Eqs. (16)(i)
and all variables except the πjhi’s in Eqs. (16)(ii) are allowed to vary over time.

Given that we cannot allow the π’s to vary over time to help estimation of (15)

by using the time-series data on each individual of the given panel data set, it is

desirable to allow the other variables in (16)(i) and (16)(ii) to vary over time.

This requirement motivates the conditions that in (16)(i), time variation in αjit*

should match that in 1�ν*jit
xjit

 !�1

, and in (16)(ii), time variation in
PLit

‘¼1λ
∗
‘jitω

∗
‘it

should match that in 1� ν*jit
xjit

 !�1

(
Pp�1

h¼1πjhizhit + ujit). If these conditions hold,

then we can say that the coefficient drivers included in (14) are appropriate and

adequate. The time-invariance restrictions on π’s in (16)(i) are the restrictions

10. Not all econometricians accept the notion that coefficients of econometric models can be

random.
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on the estimators of the bias-free components of the coefficients of (9), and the

time-invariance restrictions on the π’s in (16)(ii) are the restrictions on the esti-

mators of the omitted-regressor biases of the coefficients of (9).

Conditions (i) and (ii) in (16) mean that for j ¼ 1, …, K – 1, the bias-free

component αjit* of the coefficient γjit on xjit in (10) should be made to depend

on the coefficient πj0i on xjit in (15) but not on the coefficients on the interactions
of xjit with the coefficient drivers in (15), and the omitted-regressor bias com-

ponent of the coefficient γjit on xjit in (10) should be made to depend on the coef-

ficients on the interactions of xjit with the coefficient drivers in (15) but not on

the coefficient on xjit in (15).

Later, we develop the estimator of πj0i in 1�ν*jit
xjit

 !�1

πj0i

2

4

3

5, the

estimators of πjhi’s, and the predictor of ujit in 1�ν*jit
xjit

 !�1

(
Pp�1

h¼1πjhizhit +

ujit), j ¼ 1 … K – 1.

Properties of estimators (16)(i) and (16)(ii): The coefficient drivers in (14)

are chosen to achieve the following results: (i) The smaller the magnitude of ujit,

the closer the sum πj0i +
Pp�1

h¼1πjhizhit to the sum 1� ν∗jit
xjit

� �
α∗jit +

PLit
‘¼1λ

∗
‘jitω

∗
‘it

� �
.

(ii) The sign of αjit* is the correct sign of 1�ν*jit
xjit

 !�1

πj0i in (16)(i), which can be

known a priori from economic theory. (iii) The magnitude of αjit* is the correct

magnitude of 1�ν*jit
xjit

 !�1

πj0i, which is not usually known a priori. (iv) Data

about 1�ν*jit
xjit

 !�1

, j ¼ 1, …, K – 1, are rarely, if ever, available, so we need

to make some plausible assumptions about them. (v) For j ¼ 1, …, K – 1,

the z-variables that rightly belong in the omitted-regressor bias component

(16)(ii) of the jth coefficient of (10) should be included as the coefficient drivers
on the right-hand side of (14). Such coefficient drivers are related to the

omitted-regressor bias component of the jth coefficient of (10). How one deals

with issues (i)-(v) in estimating the causal effects of wives’ education on their

earnings is discussed in Section 5. To the extent the available data permit, it is

always a good practice to experiment with different sets of relevant coefficient

drivers and different plausible assumptions about the factors 1� ν*jit
xjit

 !�1

and

compare the results.

Given that all models with nonunique coefficients and error terms should be

rejected in favor of models of the type (9), the question that naturally arises is:

Where and how do we find valid coefficient drivers? The choice of regressors

to be included in (10) is dictated entirely by the causal effects one wants to learn.
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A good estimate of the bias-free component of the coefficient on an included

regressor, such as xjit, is needed to estimate the causal effect of xjit on the depen-
dent variable yit. Eq. (16)(i) is formed to obtain the estimate of this bias-free com-

ponent. This estimate will be accurate if the coefficient drivers included on the

right-hand side of (14) satisfy the equality sign in (16)(ii).11 It is easy to see from

(16)(ii) that such coefficient drivers are those variables that completely absorb

the omitted-regressor bias component of the coefficient γjit on xjit. The

omitted-regressor bias component of γjit is given by
PLit

‘¼1λ
∗
‘jitω

∗
‘it in (16)(ii).

The ω‘it
* ’s are the coefficients on omitted regressors in (7), and the λ‘jit* ’s are

the coefficients on the included regressors in (8). Obviously, variables that per-

formwell in explainingmost of the variation in
PLit

‘¼1λ
∗
‘jitω

∗
‘it are valid coefficient

drivers. The metric for judging performance is: When the coefficient γjit is
equated to a function of these coefficient drivers with nonzero intercept plus

an error, as in (14), the coefficient drivers should have the same range as the coef-

ficient, γjit. We follow this same procedure to find the coefficient drivers that

absorb the omitted-regressor bias components in the other coefficients of (10).

Desirable Properties of the Model in (10) and (14) not shared by Model (4):
(i) Model (10) is not based on the assumption that the included regressors are

independent of the relevant omitted regressors. That such an assumption would

be meaningless was first pointed out by PS (1988, p. 34). (ii) The coefficients of

(10) are derived from the unique coefficients of (9) with unique error term with-

out ignoring omitted-regressor biases. (iii) The coefficients of (10) account for

any measurement errors present in the available data on the dependent variable

and on the included regressors of (10) for i ¼ 1,…, n and t ¼ 1,…, T. (iv) Spu-
rious correlations are made to disappear from (10) by controlling for all relevant

pre-existing conditions via (8). (v) No incorrect exogeneity restrictions are

imposed on the regressors of (10).

Difficulties in Separating Economies of Scale and Technological Change:
Suppose that (15) is a production function, with yit representing output, xit,
and the w‘it

* ’s, not including all relevant pre-existing conditions, representing

the vector of inputs used in the production of yit, i indexing firms, and t indexing
time. As we pointed out earlier, the production function in (15) is not without

virtues. Those who have followed the Cambridge-Cambridge capital contro-

versy are aware of the problems of measuring capital services used in the pro-

duction of yit, but there are other problems. “Returns to scale” describes the

output response to a proportionate increase of all inputs. To determine that

response, we should introduce a proportionate increase of all inputs in (7)

and then work out its effect on the dependent variable of (10). After doing

so, we should search for coefficient drivers that should be included in (14)

and (16)(ii). After these coefficient drivers are found, the formulas to measure

the bias-free and omitted-regressor bias components of the coefficients on

inputs are given in (16). The next step is to use Chang, Hallahan, and

11. Accuracy refers to the size of deviations from the true bias-free component.
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Swamy’s (1992) and Chang, Swamy, Hallahan, and Tavlas’ (2000) method of

iteratively rescaled generalized least squares (IRSGLS) to estimate the coeffi-

cients πj0i on xjit, j ¼ 1, …, K – 1, in (15). From these estimates, it may not be

easy to obtain estimates of bias-free economies of scale and bias-free techno-

logical change for the ith firm as time progresses.

Matrix Formulations of (10), (14), and (15): Let i ¼ 1, …, n and let t ¼ 1,

…, T where T is large.12 Then (10) in vector form is

yit ¼ 1 x1it,…, xK�1, itð Þ
γ0it
γ1it
⋮
γK�1, it

0

BB@

1

CCA

yit ¼ x0itγit (17)

In matrix form model (14) is

γit ¼Πizit + uit (18)

where Πi is a K � p matrix having (πj0i,πj1i, … ,πj, p�1, i) as its jth row, zit ¼
(1, z1it, … , zp�1, it)

0 is p-vector of coefficient drivers, and uit ¼ (u0it, u1it, … ,

uK�1, it)
0 is a K-vector of random variables. The following condition should be

imposed on xit for our method of estimating the equations in (17) and (18) to

be valid.

Admissibility condition: The vector Zit ¼ (1, Z1it, … , Zp�1, it)
0 in Eq. (18) is

an admissible vector of coefficient drivers if, given Zit, the value that the coef-
ficient vector (γit) of Eq. (17) takes for individual i at time t is independent of Xit

¼ (1, X1it,…, XK�1, it)
0 for all i and t whenever Xit ¼ (1, X1it,…, XK�1, it)

0 takes
the value xit ¼ (1, x1it, …, xK�1, it)

0.
By definition, in any panel data set, one time-series data set is associated

with each individual i ¼ 1,…, n. The next section turns to the assumptions that

one needs to make about time series properties for each individual. Following a

note about prediction in Section 3.7.1, Section 3.8 discusses parallel assump-

tions about cross-section properties at each period of time.

3.7 Assumptions Appropriate to Time-Series Data Sets Within
a Given Panel Data Set

Assumption A3: For each i ¼ 1, …, n, the errors uit (t ¼ 1, …, T) are the

realizations of a stationary stochastic process following the first-order vector

autoregressive equation.

12. Greene (2012, p. 378) pointed out that for the typical panel data set “it does not make sense to

assume that T increases without bound or, in some cases, at all.” In these cases, we have to be careful

not to let T increase without bound.
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uit ¼Φiui, t�1 + ait (19)

where Φi is a K � K matrix and {ait}, (t ¼ 1, …, T), is a sequence of uncorre-
lated K-vector variables with

E aitj zit, xitð Þ¼ 0,E aita
0
i0t0 j zit, xit

� �¼fσ2aiΔai if i¼i0 and t¼t0

0 if i 6¼i0 and t 6¼t0 (20)

where Δai is a K � K nonnegative definite matrix.

We set Φi ¼ 0 if T is small and set Φi 6¼ 0 and do the following otherwise.

Swamy and Tinsley (1980) assumed that {uit} can be represented by a vector

autoregressive and moving average processes of finite orders, for which

Chang et al. (1992), and Chang et al. (2000) developed IRSGLS. The latter

two studies together answer our question: How general can the process {uit}
become before an IRSGLS method of estimating the Swamy and Tinsley model

stops stabilizing? The answer is that the process {uit} cannot be more general

than (19), whereΦi is diagonal, its diagonal elements lie between�1 and 1, and

Δai is nondiagonal.

The issue of parsimony: Parsimony, a relative and possibly subjective term,

is highly prized in econometrics, so the seemingly complex causal model in

Eqs. (17)–(20) might strike some readers as unparsimonious. This impression,

however, would rely on what we believe to be a superficial interpretation of

parsimony. Our preferred definition is: of two models, both of which perform

equally well in prediction and explanation, the one with fewer unknown param-

eters is more parsimonious.

Thus, parsimony is a relative term. Without the qualification, “perform

equally well in prediction and explanation,” the above definition of parsimony

is meaningless.

Inserting Eq. (18) into Eq. (17) gives, for the ith individual,

yit ¼ z0it�x0it
� �

vec Πið Þ + x0ituit t¼ 1,…, Tð Þ (21)

where� denotes the Kronecker product, and where the Kp� 1 vector vec(Πi) is

a column stack of the K � p matrix Πi.

Non-existence of instrumental variables: From Eq. (21) we see that instru-

mental variables that are highly correlated with xit but not with xit
0uit do

not exist.

This conclusion follows directly, because all the coefficients, that is, the ele-

ments of the vector γit on xit, including the intercept in (17), are equal to Πizit +
uit on the right-hand side of (18). The forms of Eqs. (17) and (18) are the weakest

of all possible forms, and therefore specification errors can arise if they are writ-

ten in any other form.
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From Eqs. (19) and (20) it follows that for t ¼ 1, … , T, E(uit jzit,xit) ¼ 0, and

the TK � TK conditional covariance matrix of the TK � 1 vector ui ¼ (ui1
0 , …,

uiT
0 )0 given zit and xit, is

E uiu
0
ij zit, xit

� �¼ σ2aiΩui ¼ σ2ai

Γ0i Γ0iΦ0
i Γ0iΦ02

i ⋯ Γ0iΦ0T�1
i

ΦiΓ0i Γ0i Γ0iΦ0
i ⋯ Γ0iΦ0T�2

i

⋮ ⋮ ⋮ ⋮
ΦT�1

i Γ0i ΦT�2
i Γ0i ΦT�3

i Γ0i ⋯ Γ0i

2

664

3

775 (22)

where E(uituit
0 | zit,xit) ¼ σai

2 Γ0i ¼ Φiσai
2 Γ0iΦi

0 + σai
2Δai is a K � K matrix (see

Chang et al., 1992, p. 45).

Let yi ¼ (yi1 … yiT)
0 be the T � 1 vector. Then the conditional covariance

matrix of yi, given zit and xit, is

σ2aiΣyi ¼Dxiσ
2
aiΩuiD

0
xi (23)

where Dxi ¼ diag[xi1
0
… xiT

0 ] is a T � TK block diagonal matrix, and where the

covariance matrices Ωui, Γ0i, and Σyi are nonnegative definite.

Because the covariance matrices, Δai, Γ0i, Ωui, and Σyi are symmetric non-

negative definite matrices, they have the factorizations

Δai ¼WaiW
0
ai,Γ0i ¼W0iW

0
0i,Ωui ¼WuiW

0
ui andΣyi ¼DxiWuiW

0
uiD

0
xi (24)

such that Wai, W0i, and Wui are lower triangular matrices, where Wui can be

explicitly written in terms of Φi, Wai, and W0i, as Chang, Hallahan, and

Swamy (1992, p. 45) have done.

Theunknownparameters ofmodel (21) consist of the unknown elements ofΠi,

the diagonal elements ofΦi, σai
2 , and the diagonal and above-diagonal elements of

Δai. If the ratio ofT to the number of these unknown parameters is not large, then it

may not be possible to obtain precise and unique estimates of all the unknown

parameters. The T equations of model (21) can be written compactly as

yi ¼Xziπi +Dxiui i¼ 1,…, nð Þ (25)

where Xzi is T�Kp having (zit
0 � xit

0 ) as its tth row, πi¼ vec(Πi) isKp� 1, and ui
is TK � 1.

Generalized least squares estimation of πi and ui: The generalized least

squares (GLS) estimator of πi is

π̂i ¼ X0
ziΣ

�1
yi Xzi

� ��1

X0
ziΣ

�1
yi yi (26)

where the regular inverses of Σyi and Xzi
0Σyi

�1Xzi can be changed to the appro-

priate generalized inverses whenever the former inverses do not exist (see

Chang et al., 1992).

Under the assumption that E(Dxiui jxi, zi) ¼ 0, π̂i is the minimum variance

linear unbiased estimator of πi. The covariance matrix of π̂i is

σ2ai X’

ziΣ
�1
yi Xzi

� ��1

(27)
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Swamy andMehta (1975b, p. 595) showed that the minimum variance linear

unbiased predictor of ui is

ûi ¼ΩuiD
0
xiΣ

�1
yi yi�Xziπ̂ið Þ (28)

where the regular inverse of Σyi can be changed to an appropriate generalized

inverse whenever the former inverse does not exist.13

Feasible generalized least squares estimation of πi and ui: The IRSGLS

method of estimating πi, based on the residual-based estimates of Φi, σai
2 , and

Δai, i ¼ 1, …, n, proceeds as follows: for each i, starting with the initial values

Φi ¼ 0 and Δai ¼ I, iteratively solve Eqs. (26) and (28) to find the estimates, π̂i
and (Φ̂i,Δ̂ai,σ̂

2
ai), until they are stabilized. In their studies, Chang et al. (1992),

and Chang et al. (2000) accepted estimates of πi,Φi, σai
2 , andΔai obtained in the

last iteration of this method, and so named it “an iteratively rescaled generalized

least squares (IRSGLS) method.” The purpose of iterating is to (i) eliminate the

effects of the arbitrary initial values on the estimates of the unknown parame-

ters, Πi, Φi, σai
2 , and Δai, obtained in the last iteration, and (ii) make consistent

the estimators of all these parameters used in the last iteration. After estimating

all these unknown parameters, the degrees of freedom that remain unused are

positive if T > Kp + K + 1 + K(K + 1)/2.

Let the IRSGLS estimator of πi be denoted as

^̂πi ¼ X0
ziΣ̂

�1

yi Xzi

� ��1

X0
ziΣ̂

�1

yi yi i¼ 1,…, nð Þ (29)

where Σ̂yi is obtained by using the IRSGLS estimates ofΦi, σai
2 , andΔai in place

of their true values used in Σyi.

The approximate covariance matrix of ^̂πi is

σ̂2ai X0
ziΣ̂

�1

yi Xzi

� ��1

(30)

Sampling properties of estimator (29): Under our admissibility condition for

the coefficient drivers shown previously, xit and uit are conditionally indepen-

dent, given zit for all i and t. Independence permits us to make use of Cavanagh

and Rothenberg’s (1995) derivation with some modifications. These authors

considered a linear regression model with nonunique coefficients and error term

not dependent on Dxi in Eq. (25) and constructed for its coefficient vector the

standardized arbitrary linear combinations of the elements of the vector of gen-

eralized and feasible generalized least squares estimators. To avoid all the

problems that arise with nonuniqueness of the coefficients and error

term in Cavanagh and Rothenberg’s (1995) model, we replace their model

by (25) and their standardized arbitrary linear combinations of the

elements of vector generalized and feasible generalized least squares estimators

13. Rao (2003, p. 96) attributed predictor (28) to Henderson (1950).
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with A ¼ c0 π̂i�πið Þ= c0σ2ai X0
ziΣ

�1
yi Xzi

� ��1

c

� 	1=2
and Â¼ c0 ^̂πi�πi

� �
=

c0σ2ai X0
ziΣ

�1
yi Xzi

� ��1

c

� 	1=2
, where c is a Kp � 1 vector of arbitrary constants,

respectively. Their method gives us the o(T�1) approximation to the difference

between the distributions of Â and A. Earlier, Swamy, Tavlas, Hall, and

Hondroyiannis (2010, pp. 18–20) extended Cavanagh and Rothenberg’s

method to model (25) for a single individual i by setting the νjit* , j ¼ 1, …,

K � 1, equal to zero and examining the o(T�1) approximation to the difference

between the distributions of Â and A. This study gives conditions under which Â
and A have the same mean, skewness, and kurtosis. To present these conditions,

we introduce the following notation.

Let θi be a vector containing the unknown distinct elements of (Φi,Δai, σai
2 )

(for the ith individual), and let θ̂i be a vector containing the distinct, nonzero

elements of (Φ̂i,Δ̂ai,σ̂
2
ai). The elements of θ̂i are written in the same order as

those of θi. Because these elements are obtained from the residuals Dxi
^̂ui ¼

yi – Xzi
^̂πi, following Cavanagh and Rothenberg (1995), we call θ̂i “the

residual-based estimator” of θi. Suppose that θ̂i is a consistent estimator of θi
satisfying the conditions under which d ¼ ffiffiffi

T
p

θ̂i�θi
� �

converges in law to a

normal distribution uniformly on compact intervals of θi.
14 We assume that

the vector b ¼ ∂Â=∂θ̂i
��
θ̂i¼θi

and the matrix C ¼ 1

2
∂
2Â=∂θ̂i∂θ̂

0
i

����
θ̂i¼θi

are stochas-

tically bounded as T !∞. Cavanagh and Rothenberg (1995, p. 279) use the

matrix symbol Σbd and the vector symbol σAd to denote the asymptotic covari-

ance matrix for the vectors b and d and the asymptotic covariance between A
and d, respectively.

Our conjecture is that the following propositions follow from Cavanagh and

Rothenberg’s (1995) results:

(i) The variable A is asymptotically independent of b and C.
(ii) Based on moments of the o(T�1) Edgeworth approximation to the distri-

butions, (a) the skewness of Â is always the same as that of A; (b) if Σbd ¼
0, then the mean of Â is the same as that of A; (c) if σAd¼ 0, then the kur-

tosis of Â is the same as that of A.
(iii) To a second order of approximation, the difference in location and shape

between the π̂i and ^̂πi distributions depends only on the asymptotic covari-

ances σAd and Σbd.

(iv) If d is asymptotically independent of A and b, then π̂i and ^̂πi have approx-
imate distributions differing only in covariance matrix.

14. The definition of uniform convergence is given in Lehmann (1999, pp. 93-97).
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For j ¼ 1, …, K – 1, an estimate of the intercept (πj0i) of (14) is needed to esti-

mate the bias-free component of the coefficient on the jth nonconstant regressor
of (10) which, in turn, is needed to measure the causal effect of the regressor on

yit. Therefore, the sampling properties of the estimators in (29) of these inter-

cepts are of interest. However, the sampling properties of the estimators in (29)

of the coefficients πjhi, j ¼ 1,…, K – 1 and h ¼ 1,…, p – 1 of (14) may not be of

interest, since these coefficients appear in the estimators of omitted-regressor

bias components ((16)(ii)) of the coefficients of (10). For j ¼ 1,…, K – 1, when
the regular inverses in (29) exist, the estimators in (29) of the intercepts of (14)

are unbiased if E(ui jXzi, zit) ¼ 0, and the ui’s are normally distributed (see

Swamy et al., 2014, pp. 219–223).
An estimator of E{(^̂πi�πi)(^̂πi�πiÞ0jxit, zit} to the desired order of approx-

imation when ui is normal and Φi ¼ 0, is given in Swamy et al. (2014,

pp. 223–225). In Appendix B, we provide the conditions under which estimator

(29) is consistent.

The estimators of the components of the coefficients of (10) for the ith indi-
vidual provided by estimator (29) are:

Estimator of the bias-free component of the coefficient γjit of (10):

1� ν̂*jit
xjit

 !�1

^̂πj0i j¼ 1,…, K�1ð Þ (31)

Estimator of the omitted-regressor bias component of the coefficient γjit of
(10):

1� ν̂*jit
xjit

 !�1 Xp�1

h¼1

^̂πjhizhit + ^̂ujit

 !

j¼ 1,…, K�1ð Þ (32)

In formulas (31) and (32), the ^̂π’s are the IRSGLS estimates given by (29),
^̂ujit is the feasible best linear unbiased predictor of ujit involving the IRSGLS

estimates ofΦi, σai
2 , and Δai, and ν̂

∗
jit, which is our guess about νjit* . The IRSGLS

estimators are consistent under general conditions. The accuracy of the esti-

mates given by (31) depends on the appropriateness and adequacy of the coef-

ficient drivers included in (14) and on the accuracy of our guesses ν̂∗jit of the
νjit* .

15 We can establish the relevance of the coefficient drivers in (14) using eco-

nomic theories. Thus, selected coefficient drivers and guessed ν̂∗jit used to obtain
the estimates in (31) of bias-free components are inappropriate and ill-chosen if

the signs and magnitudes of the estimates are implausible. A further guide is the

prior based on theory. Another is comparison of the estimates in (31) with the

estimates of these bias-free components obtained in other studies.

The vector ^̂π0i¼ ^̂π10i,…, ^̂πK�1,0i

� �0
is a subvector of the vector ^̂πi in (29).

The ο(T�1) approximate distribution of ^̂π0i, its approximate covariance matrix,

15. Accuracy refers to the size of deviations from the true value, νjit* .
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and the approximate distribution of the ratio of an element of ^̂π0i to its standard
error can be found following the method of Cavanagh and Rothenberg (1995) in

work that needs yet to be done. The matrix σ̂2ai X0
ziΣ̂

�1

yi Xzi

� ��1

can give a very

crude approximation to the ο(T�1) approximation to the exact covariancematrix

of ^̂πi. According to Cavanagh and Rothenberg (1995), the distribution of ^̂π0i is
not normal unless the distribution of ui is normal.

t-Ratios: A rule followed by econometricians is to accept (or reject) the null

hypothesis that a single slope coefficient in a regression model is equal to zero,

if the t-ratio, defined as the ratio of the least squares estimate of the coefficient

to its standard error, is less (or greater) than 2 in absolute value.16 Theorem 1

proves that under Interpretation I of the error term in (3), this rule is incorrect.

To remedy this situation, we use the model in (10) and (14), where extra infor-

mation in the form of coefficient drivers is used and (K – 1)(p – 1) degrees of

freedom are spent in estimating omitted-regressor biases (see (32)). The ratio of

the IRSGLS estimator of πj0i, with 0 < j < K, to its standard error given by the
square root of the corresponding diagonal element of the matrix in (30) can be

called a t-ratio.17 To distinguish this t from its conventional counterpart, let our

t-ratios be denoted by Newtj, j ¼ 1, …, K � 1. Under certain conditions,

Cavanagh and Rothenberg’s (1995, p. 287) method can be used to derive the

ο(T�1) approximate distribution of (Newtj). They also provided the conditions

under which Newtj is approximately distributed as Student’s t with T – Kp
degrees of freedom. Under these conditions, if j(Newtj)j > t(1-α/2), [T-Kp], where
t(1-α/2), [T-Kp] is the 100(1 – α/2) percent critical value from the t distribution
with (T – Kp) degrees of freedom, then the null hypothesis that πj0i is zero is

rejected and the estimated πj0i is said to be statistically significant (see

Greene, 2012, p. 116).

If all the (p� 1) coefficient drivers are dropped from (21), then the estimate

of the bias-free component of the coefficient on any included nonconstant

regressor of (10) cannot be separated from that of the omitted-regressor bias

component of the coefficient. Certain sentences in PS (Pratt & Schlaifer,

1984, p. 14) can be interpreted as implying that exclusion of a coefficient driver

because its estimated coefficient is not statistically significant can make sense

when one wants to predict yit, given a naturally occurring xit, but not when one

wants to know how xit affects yit.
We say that model (15) performs well in explanation if, for j ¼ 1,…, K� 1,

(31) is an accurate estimate of the bias-free component of the coefficient on

each of the included nonconstant regressors.

16. The definition of “t-ratio” is given in Greene (2012, p. 116).

17. We like to replace this definition with Cavanagh and Rothenberg (1995) definition of the t-ratio.
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3.7.1 Prediction

Suppose that all the distinct nonzero elements of πi, Φi, σai
2 , and Δai are known.

Then the problem of predicting a single drawing of the dependent variable yit,
given the vectors xit and zit for the prediction period, can be solved. The actual

drawing for each i ¼ 1, …, n and for the post-sample period T + s will be

yi,T + s ¼ z0i,T + s�x0i,T + s

� �
πi + x

0
i,T + sui,T + s (33)

The criterion of minimum mean square error linear predictor is explained in

Swamy and Tinsley (1980, p. 111). Using their derivation, we have

ûi,T + s ¼Φs
iΩ

0
TuiD

0
xiΣ

�1
yi yi�Xziπið Þ (34)

where ûi,T + s is the K � 1 vector of the predictions of the errors in the coeffi-

cients of (17), Φi is the K � K diagonal matrix appearing in the autoregressive

process of order 1 in (19), ΩTui is the TK � K matrix formed by the last K col-

umns ofΩui in Eq. (22), Σyi is defined in Eq. (23), and yi, Xzi and πi are defined in
Eq. (25).

The feasible error vector, denoted by ^̂ui,T + s, is obtained by using the sample

estimates of πi, Φi, σai
2 , and Δai in place of their true values used in ûi,T + s. Sim-

ilarly, the feasible minimum mean square error linear predictor, denoted by
^̂yi,T + s, also is obtained by using ^̂πi and ^̂ui,T + s in place of πi and ui,T+s used in

Eq. (33), respectively. An estimator of E [(^̂yi,T + s – yi,T+s )
2 jxit, zit] to the desired

degree of approximation when ui is normal is given in Swamy, Yaghi, Mehta,

and Chang (2007, pp. 3388 and 3389).

Our practical experience with ^̂yi,T + s has taught us that the magnitude of the

absolute relative forecast error j(^̂yi,T + s – yi,T+s)/yi,T+s j will be smaller if Φi 6¼ 0

than ifΦi¼ 0. In somemodels, removing the coefficient drivers can decrease the

absolute relative forecast error. This can happen if the chosen coefficient drivers

are inappropriate, thus providing a further clue to the validity of their selection.

Omitted-regressor biases are rarely, if ever, constant. For this reason, con-

stant coefficient models without coefficient drivers cannot perform as well in

prediction as model (21) with appropriate coefficient drivers.Working with real

data, Swamy et al. (2007) observed this result. The time-varying coefficient

model in (10) without the equations in (14) for its coefficients can

predict the out-of-sample values of its dependent variable better than model

(21) in those cases where appropriate coefficient drivers are difficult to find.

Making the coefficients of Eq. (14) also time-varying Yokum, Wildt, and

Swamy (1998) conducted very informative simulation experiments and noted

the following:

This paper addresses the problem of forecasting economic data generated by causal

models exhibiting structural change. The structural change is represented by

unexpected systematic coefficient shifts superimposed on random variation and is

denoted as disjoint data structures. An extensive simulation compares four
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app-roximate coefficient structures, including constant and stochastic, on their abil-

ity to discount six different structural shocks to the true coefficients and still maintain

adequate forecast accuracy overmultiple forecast horizons. The results indicate that

stochastic first-order autoregressive coefficient structures, especially those repre-

sented by the Swamy-Tinsley estimation procedure, yield more accurate forecasts.

Yokum, Wildt, and Swamy (1998, p. 1)

The preceding conclusions extend to full panel data, because in any given panel

data, one cross-sectional data set will be in each time period t ¼ 1, …, T.

3.8 Assumptions Appropriate to Cross-Sectional Data Sets Within
a Given Panel Data Set

Reconsider (25): yi¼ Xziπi +Dxiui for individual i. Recall Assumption A3 about

ui. In Section 3.7, each individual is considered separately. We will change this

treatment in this section. Suppose that i indexes micro units. Then the following

assumption may be appropriate.

Assumption A4: For i ¼ 1,…, n, πi¼ π + ηi, where the vectors ηi for different i
are independently distributed with mean vector 0 and covariance matrix Δ.

This assumption, first proposed by Zellner (1969) and later adopted by

Swamy (1970, 1971, 1974), Feige and Swamy (1974), Swamy and Mehta

(1975b), and Swamy et al. (2007), states that the coefficient vectors πi,
i ¼ 1, …, n, for different individuals are independent drawings from the same

multivariate distribution.18 As Zellner (see Swamy, 1971, p. 18) pointed out,

Assumption A4 stands between the limiting assumptions that the πi’s are fixed
and the same, and that the πi’s are fixed and different. Given that micro units are

possibly different in their behavior, the former assumption is often found to be

restrictive, although the latter assumption requires the use of many parameters

and therefore is not always satisfactory or even feasible in the analysis of panel

data pertaining to many individuals.

Assumption A4 permits us to write Eq. (25) as

yi ¼Xziπ +Xziηi +Dxiui i¼ 1,…, nð Þ (35)

Stacking these equations gives

y¼Xzπ +DXzη +DDxu (36)

where y¼ (y1
0 ,…, yn

0 )0 is nT� 1, yi, i ¼ 1,…, n, are as defined in Eq. (25), Xz¼
(Xz1

0 ,…, Xzn
0 )0 is nT�Kp, Xzi, i ¼ 1,…, n, are as defined in Eq. (25), π isKp� 1,

DXz¼ diag(Xz1,…, Xzn) is nT � nKp, Xzi, i ¼ 1,…, n, are as defined in Eq. (25),
η ¼ (η10 , …, ηn0 )0 is nKp � 1, ηi is Kp � 1, it is as defined in Eq. (35), DDx ¼
diag(Dx1, …, Dxn)

0 is nT � nTK, Dxi, i ¼ 1, …, n, are as defined in (25), u ¼
(u1

0, …, un
0)0 is nTK � 1, and ui, i ¼ 1, …, n are as defined in Eq. (25).19

18. Hildreth and Houck (1968) did not consider panel data (see Swamy, 1971, pp. 10–11).
19. Model (36) removes all the defects of Swamy’s (1970, 1971, 1974) model for panel data. The

defects of this model arise as a direct consequence of the nonuniqueness of its coefficients and error

term.
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Assumption A5: (i) The vector ηi is independent of ui for all i. (ii) The ui, i ¼ 1,

…, n, are independently distributed with the same mean vector 0, and the

covariance matrix of ui is given in Eq. (22).

Comparison of Model (35) with Lehmann and Casella’s (1998, p. 253)Hier-
archical Bayesmodel: In specifying the hierarchical Bayesmodel, Lehmann and

Casella (1998, p. 253) (LC hereafter) were not at all concerned with omitted-

regressor and measurement-error biases. Model (35), involving such biases, is

derived from Eqs. (7)–(16). Of these, Eq. (9), derived from Eqs. (7) and (8),

has unique coefficients and error term, so LC (1998, p. 176) are not able to

achieve uniqueness of coefficients and the error term in their normal linear

model. Eq. (10) expresses Eq. (9) in terms of observed variables. The equations

in (14) decompose the coefficients on the nonconstant regressors of (10) into

their respective components, as in (16). Although (16) distinguishes between

the bias-free component and the omitted-regressor and measurement-error bias

components of the coefficient on each non-constant regressor of (10), LC’s nor-

mal linearmodel does not. Tomake themean of the error termof (9) nonzero, this

error term is made to be related to the coefficient drivers in (14). LC’s normal

linearmodel has an error termwithmean zero, but like allmodelswith nonunique

coefficients and error terms described in Section 2, LC’s hierarchical Bayes

model is bound to provide incorrect inferences.

Under Assumptions A3–A5, E[(DXzη + DDxu)jXz] ¼ 0 and the covariance

matrix of the error term of Eq. (36) is

Σy ¼E DXzη +DDxuð Þ DXzη +DDxuð Þ0j Xz

� 

¼DXz In�Δð ÞD0
Xz +DDxΩD0

Dx (37)

where Ω ¼ diag[σa1
2 Ωu1, …, σan

2 Ωun] and σai
2Ωui is as shown in Eq. (22).

Generalized least squares estimation of π, η, and u: The generalized least

squares estimator of π is

π̂¼ X0
zΣ

�1
y Xz

� ��1

X0
zΣ

�1
y y (38)

and its covariance matrix is

X0
zΣ

�1
y Xz

� ��1

(39)

Following derivations in Swamy (1974, pp. 163) and Swamy and Tinsley

(1980), the minimum variance linear unbiased predictors of η and u are20

η̂
û

� �
¼ In�Δð Þ 0

0 Ω

� 	
D0

Xz

D0
Dx

� �
Σ�1
y y�Xzπ̂
� �

(40)

20. The formula in (40) corrects an error in a formula given in Swamy & Mehta (1975b, p. 600,

(3.7)).
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Estimation of Δ: In Section 3.7, we discussed estimation of all the unknown

parameters involved in Ω. The only matrix that remains is Δ, the estimator of

which we now present. That estimator (38) can be written as

π̂¼
Xn

i¼1

X0
zi XziΔX0

zi +Dxiσ
2
aiΩuiD

0
xi

� ��1
Xzi

" #�1

�
Xn

i¼1

X0
zi XziΔX0

zi +Dxiσ
2
aiΩuiD

0
xi

� ��1
yi

" #

(41)

which can be given another more convenient form via a matrix identity in Rao

(1973, p. 33, Problem 29). Application of this identity to

(XziΔXzi
0 + Dxiσai

2ΩuiDxi
0)�1 gives

σ2aiDxiΩuiD
0
xi +XziΔX

0
zi

� ��1
¼ σ2aiDxiΩuiD

0
xi

� ��1
�

σ2aiDxiΩuiD
0
xi

� ��1
Xzi X0zi σ2aiDxiΩuiD

0
xi

� ��1
Xzi

� 	�1

X0zi σ2aiDxiΩuiD
0
xi

� ��1
+

σ2aiDxiΩuiD
0
xi

� ��1
Xzi X0zi σ2aiDxiΩuiD

0
xi

� ��1
Xzi

� 	�1

X0zi σ2aiDxiΩuiD
0
xi

� ��1
Xzi

� 	�1

+Δ

( )�1

�

X0zi σ2aiDxiΩuiD
0
xi

� ��1
Xzi

� 	�1

X0zi σ2aiDxiΩuiD
0
xi

� ��1

(42)

Inserting the right-hand side of Eq. (42) for its left-hand side in Eq. (41)

gives

π̂ ¼
Xn

i¼1

X0zi σ2aiDxiΩuiD
0
xi

� ��1
Xzi

� 	�1

+Δ

( )�1
0

@

1

A
�1
Xn

i¼1

X0zi σ2aiDxiΩuiD
0
xi

� ��1
Xzi

� 	�1

+Δ

( )�1

� X0zi DxiΩuiD
0
xi

� ��1
Xzi

� 	�1

X0zi DxiΩuiD
0
xi

� ��1
yi

(43)

This estimator π̂ is a matrix-weighted average of the estimators, π̂i ¼
[Xzi

0 (DxiΩuiDxi
0 )�1Xzi]

�1Xzi
0 (DxiΩuiDxi

0 )�1yi, i ¼ 1, …, n, the weight of π̂i
being equal to

Xn

i¼1

X0
zi σ2aiDxiΩuiD

0
xi

� ��1
Xzi

h i�1
+Δ

� ��1
 !�1

X0
zi σ2aiDxiΩuiD

0
xi

� ��1
Xzi

h i�1
+Δ

� ��1

(44)

The estimator π̂i here is the same as (26), with prediction error

π̂i�πi ¼ X0
ziΣ

�1
yi Xzi

� ��1

X0
ziΣ

�1
yi Dxiui (45)

This error is a linear function of ui involving the unknown covariance

matrix, σai
2Ωui. Now define
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Sπ̂ ¼
Xn

i¼1

π̂iπ̂
0
i�

1

n

Xn

i¼1

π̂i
Xn

i¼1

π̂0i (46)

where Sπ̂
n�1

is the sample covariance matrix of the π̂i. We justify this label by

treating, π̂i, i ¼ 1 … n, as a random sample of size n, π̂i being the ith draw.
The matrix Sπ̂ is nonsingular if n > Kp.

Taking expectations on both sides of Eq. (46) gives

ESπ̂ ¼ n Δ + ππ0ð Þ+
Xn

i¼1

σ2ai X0
ziΣ

�1
yi Xzi

� ��1

� Δ + ππ0ð Þ� n�1ð Þππ0

�1

n

Xn

i¼1

σ2ai X0
ziΣ

�1
yi Xzi

� ��1

¼ n�1ð ÞΔ +
n�1ð Þ
n

Xn

i¼1

σ2ai X0
ziΣ

�1
yi Xzi

� ��1

Δ̂¼ Sπ̂

n�1
�1

n

Xn

i¼1

σ2ai X0
ziΣ

�1
yi Xzi

� ��1

(47)

An operational version of this estimator is

^̂Δ¼ Ŝπ̂

n�1
�1

n

Xn

i¼1

σ̂2ai X0
ziΣ̂

�1

yi Xzi

� ��1

(48)

where Ŝπ̂ ¼Pn
i¼1

^̂πi ^̂π
0
i� 1

n

Pn
i¼1

^̂πi
Pn

i¼1
^̂π0 i.

Here ^̂πi is defined in Eq. (29), and the estimators Σ̂yi and σ̂
2
ai are defined using

the methods of Chang et al. (1992).

The estimator (48), however, can create a problem in that, in small samples,

some or all of the diagonal elements of
^̂Δ can turn out to be negative, even though

n > Kp and the estimandΔ is known to be nonnegative definite. Therefore,
^̂Δ is

an inadmissible estimator ofΔ against any loss function for which the risk func-

tion exists (see Lehmann &Casella, 1998, p. 323). The difficulty can be avoided

by replacing
^̂Δ by a nonnegative definitematrix, denoted byB, that is closest to

^̂Δ

in the sense that the Euclidean norm of
^̂Δ – B is smallest, i.e., infBk ^̂Δ�Bk (see

Rao, 1973, p. 63, 1f.2 (v)). Let λ1 �⋯ �λKp be the eigenvalues of
^̂Δ, and let P1,

… ,PKpbe thecorrespondingeigenvectors. Suppose thatm (<Kp) eigenvalues of
^̂Δ are nonnegative and the remaining are negative. Then the nonnegative definite

matrix B ¼ λ1P1P1
0 +⋯+ λmPmP

0
m provides the closest fit to

^̂Δ.

IRSGLS nonnegative definite estimator of Δ :B (49)

The efficiency of B exceeds that of
^̂Δ because the former estimator is

obtained by putting the correct constraint of nonnegative definiteness on the lat-

ter estimator. A proof of the consistency of
^̂Δ can be constructed, as in Swamy

(1971, p. 117).
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Under conditions set out by Swamy (1971, p. 117), the problem of negative

diagonal elements of
^̂Δ disappears for large T because the second term on the

right-hand side of Eq. (48) converges in probability to the null matrix as T!∞.

If for a small T, all the diagonal elements of
^̂Δ are negative, then

^̂Δ without its

second term on the right-hand side of Eq. (48) can be used. Under this modifi-

cation,
^̂Δ is still consistent.

Feasible Generalized Least Squares Estimation of π: Turning to π, its
IRSGLS estimator is

^̂π¼ X0
zΣ̂

�1

y Xz

� ��1

X0
zΣ̂

�1

y y (50)

where the IRSGLS estimates of Δ, Φi, and σai
2 Δai, i ¼ 1, …, n, replace their

respective true values used in Σy ¼ DXz(In � Δ)DXz
0 + DDxΩDDx

0 (see

Eq. (37)).21

We note the following properties of the estimator ^̂π: (1) It gives the estimates

of the means of the coefficients of all equations in (14). (2) A subvector of ^̂π that

is of interest is ^̂π0 ¼ ^̂π10,⋯, ^̂πK�1,0

� �0
. This subvector gives the estimates of the

means of the intercepts of all equations in (14). (3) The distribution of ^̂π to order
ο((nT)�1) and its approximate covariance matrix can be found by extending the

method of Cavanagh and Rothenberg (1995, p. 279). (4) The matrix

(Xz
0Σy

�1Xz)
�1 with Σy replaced by its sample estimate Σ̂�1

y , developed earlier,

can give a crude approximation to the ο((nT)�1) approximation to the exact

covariance matrix of ^̂π. (5) Based on results in Cavanagh and Rothenberg

(1995), one may guess that the distribution of ^̂π is not normal, unless the dis-

tributions of η and u are normal. Their derivation can be extended to find all

the properties of ^̂π implied by its first four moments.

From the estimator ^̂π we obtain the following estimators:

Average value of the bias-free component of the coefficient γjit with j > 0 of
model (10):

1

nT

Xn

i¼1

XT

t¼1

1� ν̂*jit
xjit

" #�1

^̂πj0 j¼ 1,…, K�1ð Þ (51)

where ^̂πj0 is the (j, 0) element of (50).

Average value of the omitted-regressor bias component of γjit with j > 0 in
model (10):

21. Conditions for the consistency of ^̂π are given in Appendix B.
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1

nT

Xn

i¼1

XT

t¼1

1� ν̂*jit
xjit

" #�1 Xp�1

h¼1

^̂πjhzhit + ^̂ujit

 !

j¼ 1,…, K�1ð Þ (52)

where ^̂πjh is the (j,h) element of (50), and ^̂ujit is the jth element of ^̂uit which is a

subvector of the feasible version of û in Eq. (40).

We assert that model (10) performs well in explanation if, for j ¼ 1,…, K – 1,
(51) is an accurate estimate of the average bias-free component of model (10)’s

jth coefficient.22

Two examples of cases when Assumptions A4 and A5(ii) are not satisfied: If i
indexes countries, states, or regions, then Assumptions A4 and A5(ii) are not

satisfied in the presence of spatial or cross-section dependence. To explore this

contingency, we analyze model (25) under either kind of dependence using two

models for panel data, where either spatial autocorrelation or a kind of cross-

section dependence is present.

Example 1 (Model of Spatial Autocorrelation): Let i index regions or countries.
Then effects of neighboring locations could spill over into each other resulting

in clustering effects, as described in Greene (2012, pp. 352–354 and 390–391).
To capture such effects, Greene worked with the following model:

yit ¼ x0itβ + εit + μi (53)

where the common μi is the unit (e.g., country) effect. The correlation across

space is implied by the spatial autocorrelation model

εit ¼φ
Xn

j¼1

Wijεjt + τt (54)

where the scalar φ is the spatial autoregressive coefficient, the Wij’s are conti-

guity weights that are assumed known, and τt is random time effect. It is further

assumed that μi and τt have zero means, variances σμ
2 and στ

2, and are indepen-

dent across countries and of each other.

Greene (2012, p. 391) pointed out that φ has no natural residual-based esti-

mator. Rao (2003, p. 86) pointed out that if i indexes neighborhoods, then a

drawback of the model in (53) and (54) is that it depends on how neighborhoods

are defined. Upon addition of a normality assumption, the unknown parameters

of Eqs. (53) and (54) are estimated using the method of maximum likelihood.

Because of its heavy computational burden for large n, a generalized method of

moments estimation was developed for the model in (53) and (54).

However, there remains a basic nonuniqueness of the coefficient vector β
and the error components εit and μi resulting from the discrepancies xit

0 β 6¼
(α0it* +

PK�1
j¼1 xjitγjit) and (εit + μi) 6¼ (ν0it* +

PLit
‘¼1λ

∗
‘0itω

∗
‘it), between model

(10) and the model in (53) with all the undesirable implications discussed in

22. Accuracy refers to the size of deviations from the true average bias-free component.
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Section 2. The complexity of model in (53) and (54) becomes unmanageable if

μi is dropped, and the restrictive assumption that β is fixed and does not vary

across individuals is changed to the assumption that βi varies randomly across

individuals. Thus, the interindividual heterogeneity reflected in random βi’s and
spatial autocorrelation in (54) cannot be handled simultaneously. Further, the

functional form of (53) may also be incorrect.

To remove nonuniqueness of the coefficients and error components of (53),

we resort to the methodology advanced in this chapter by introducing cross-

section dependence into model (21): yit ¼ (zit
0 � xit

0 )vec(Πi) + xit
0 uit because

of its superior properties. This model has K error terms, whereas (53) has only

one nonunique error term and one nonunique common unit effect, μi. We next

use uit to develop a vector spatial autocorrelation structure. Let (21) be

written as

yt ¼Xztπ +Dxtut (55)

where yt¼ (y1t, … ,ynt)
0 is n� 1, Xzt is an n� Kpmatrix having (zit

0 � xit
0 ) as its

ith row, π is vec(Πi) which is restricted not to vary across individuals and is Kp
� 1, Dxt ¼ diag(x1t

0 , … ,xnt
0 ) is n � nK, ut ¼ (u1t

0 , … ,unt
0 )0 is nK � 1, and uit ¼

(u0it, u1it, … , uK�1, it)
0 is K � 1.

For j ¼ 0, 1, …, K – 1, let the jth element of uit, denoted by ujit, be equal to

ujit ¼ ρj
Xn

i0¼1

Wii0uji0t + vjt (56)

where ρj is the spatial autoregression coefficient and the elementsWii0 are spatial

(or contiguity) weights that are assumed known. Eq. (56) can be written as

ujt ¼ ρjWujt + vjtι (57)

where ujt ¼ (uj1t, … ,ujnt)
0 is n �1, W is an n � n known spatial weight matrix

that is symmetric, has zero diagonal elements, and is usually row-normalized,

vjt is a remainder effect that is assumed to be i.i.d. (0, σjj), and ι is an n�1 vector

of 1’s.

There are two methods of assigning values to the elements of W. In one

method, the element Wii0 will equal one for (i, i0) pairs that are neighbors,

and zero otherwise. In another method, Wii0 can reflect distances across space,

so thatWii0 decreases with increases in j i – i0j. When jρj j < 1 and the elements of

W are such that (I – ρjW) is nonsingular, we can write ujt ¼ (I � ρjW)�1vjtι. For
i ¼ 1,…, n and t ¼ 1,…, T, the conditional covariancematrix of ujt given zit and
xit, is

I�ρjW
� ��1

σjjιι
0� 

I�ρjW
� ��1

(58)

The conditional covariance matrix between ujt and uj0t, given zit and xit, is

I�ρjW
� ��1

σjj0 ιι
0� 

I�ρj0W
� ��1

(59)
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Let ut¼ (u0t
0 ,u1t0 , … ,uK�1, t

0 )0 where ujt, j ¼ 0, 1,…,K – 1, are given in (57).
LetΩut denote the covariance matrix of ut. The jth diagonal block ofΩut is given

in (58) and (j, j0) above the diagonal block ofΩut is given in (59). The dimension

of Ωut is nK � nK.
In (55) and (56), we have a model with spatially correlated disturbances,

derived from model (9), which has unique coefficients and error term. The task

before us is to determine the best feasible method of estimating the parameters

of the model in (55), (58), and (59). A disconcerting result is that when

Assumption A5(ii) is not satisfied, model (56) cannot be estimated without

restricting the coefficient vector π of model (55) to be individual-invariant, a

restriction not imposed on the coefficient vectors of models (25) and (36). In

the model in (55) and (56), interindividual heterogeneity is assumed away.

Example 2 (Pesaran’s (2007) Simple dynamic panel with cross-section depen-
dence): Let

yit ¼ 1�ϕið Þμi +ϕiyi, t�1 + uit (60)

where Pesaran assumed that the initial value yi0 has a given density function

with a finite mean and variance, and the error term uit has the single-factor

structure

uit ¼ γift + εit (61)

where the symbol ft is the unobserved common effect, and εit is the individual-
specific (idiosyncratic) error. It is the common factor ft that produces cross-
section dependence. Using the model in (60) and (61), Pesaran (2007) con-

ducted the unit-root test of the hypothesis ϕi ¼ 1. Again, the differences (1 �
ϕi)μi + ϕiyi, t�1 6¼ (α0it* +

PK�1
j¼1 xjitγjit) and uit 6¼ (ν0it* +

PLit
‘¼1λ

∗
‘0itω

∗
‘it) between

the model in (60) and (61) and model (10) imply nonuniqueness of the coeffi-

cients and error term of the former model. As in the preceding example, we con-

jecture that this nonuniqueness can seriously affect the consistency properties of

Pesaran’s unit-root test.

4 Bayesian Analysis of Panel Data

Recall that the covariance matrix Σy in (37) depends on (i) the unknown ele-

ments of the K � K diagonal matrices Φi, i ¼ 1, …, n, (ii) the unknown scalar

variances σai
2 , i ¼ 1,…, n, (iii) the unknown distinct elements of the K� K non-

negative definite matrices Δai, i ¼ 1, …, n, and (iv) the unknown distinct ele-

ments of the Kp � Kp nonnegative definite matrix Δ. Thus, the number of

unknown parameters on which Σy depends is n[K + 1 + K(K + 1)/2] +

Kp(Kp + 1)/2. Even though this number depends on n, no incidental parameter

problem arises if Assumptions A4 and A5 hold, as shown by Swamy (1971). To

ease the computational burden, we can set K ¼ 2, that is, model Eq. (10) as con-

taining one intercept and a single included regressor. To begin, write all the

unknown parameters on which Σy depends in the form of a vector, θ. Let the
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means of the intercepts of (14) needed to measure the causal effects of the non-

constant regressors of (10) on its dependent variable be included in the vector π0
¼ π10⋯πK�1,0ð Þ0 and the remaining elements of π be included in the vector, π1,
so that π ¼ (π00,π

0
1Þ0.

The elements of the vector (π00,π
0
1,θ

0)0 are fixed but unknown. It is knowledge
about these unknowns that Bayesians model as random, using a method that, after

careful reflection, considers all the possible alternatives in order to distribute

among them in a way that will appear most appropriate, one’s own expectations

and perceptions of probability (see Swamy & Mehta, 1983). Such a method pro-

vides the prior probability density function (pdf) for (π00,π
0
1,θ

0)0. The prior distri-
bution is improper if it has infinite mass. Use of Bayes’ theorem shows that the

posterior pdf for (π00,π
0
1,θ

0)0 is proportional to the product of the likelihood function
of (π00,π

0
1,θ

0)0 and the prior pdf for (π00,π
0
1,θ

0)0. Therefore, we can write

p π00, π
0
1, θ

0� �0j y, Xz

� �
∝p π00, π

0
1, θ

0� �0� �
L π00, π

0
1, θ

0� �0j y, Xz

� �
(62)

where p( π00, π
0
1, θ

0� �0|y,XzÞ is the posterior pdf for (π00,π01,θ0)0, p( π00, π
0
1, θ

0� �0Þ is
the prior pdf for (π00,π

0
1,θ

0)0, and L( π00, π
0
1, θ

0� �0|y,XzÞ is the likelihood function,

which is defined as the sample density p(y|Xz, π00, π
0
1, θ

0� �0Þ considered as a func-
tion of (π00,π

0
1,θ

0)0for fixed y and Xz.

Theelementsof thevectorπ0 are theparametersof interest. If the joint posterior

density for (π00,π
0
1,θ

0)0 in (62) is proper, then the marginal posterior density for π0
can be obtained by integrating out π01

�
,θ0)0. In (62), the posterior density is proper if

thepriordensity is proper. Insomecases, theposteriordensity for an improperprior

density is proper, but improper posterior densities aremeaningless. Aword of cau-

tion: In applyingBayesian analysis to (36), a case ofmisapplication of Bayes’ the-

orem occurs when the likelihood function of a parameter vector, such as β, is
multipliedby theunmatchedprior pdf forRβ,whereR 6¼ I. This insight comes from

Kashyap, Swamy,Mehta, and Porter (1988), who studied a case inwhich attempts

to avoid thismisapplication resulted in prior and posterior distributions ofβ that do
not possess density functions.

Bayesians emphasize the importance of carefully assessing both the likeli-

hood function and the prior pdf before inserting them into Bayes’ formula (62).

As statisticians are aware, however, likelihood functions adopted for such pur-

poses are typically model based, which raises a concern because, generally,

models cannot be completely trusted, especially if, as we proved, their coeffi-

cients and error terms are not unique. This would certainly be true if L

( π00, π
0
1, θ

0� �0|y,XzÞwere based on a model with nonunique coefficients and error

term.23 However, as we have indicated, L( π00, π
0
1, θ

0� �0|y,XzÞ is based on models

23. Such a model can be written as yit ¼ xit
0 βi + εit where βi ¼ β + Πzi + ui and εit ¼ wit

0 ωit and is

called “a hierarchical linear model” in the econometrics literature (see Greene, 2012, p. 639). In

Section 2, we showed that this model has nonunique coefficients and error term. Nevertheless, it

is used in some estimation methods, including simulation-based estimation and inference (see

Greene, 2012, p. 639–641).

324 Panel Data Econometrics



(25) and (36), which are constructed carefully to be unique and therefore trust-

worthy. We note further that the function L( π00, π
0
1, θ

0� �0|y,XzÞ is the result of

simultaneous rather than two-step estimation in (16), (51), and (52), a choice

made necessary because the coefficients on the nonconstant regressors of

(10) contain more than one component. This choice is fortuitous because simul-

taneous estimation is, in principle, superior to two-step estimation.

Statisticians also like to assert that likelihood functions become less satis-

factory as the number of parameters involved is raised and apply this criticism

to the model in Eqs. (10) and (14). This would be mistaken, however, because

after following all the steps in Eqs. (7)–(10), (14), (19), and (20), and applying

Assumptions A4 and A5, it becomes evident that reducing the n[K + 1

+ K(K + 1)/2] + Kp + Kp(Kp + 1)/2 unknown parameters of the model in

(36) to a smaller number would lead to serious specification errors and other-

wise gain nothing.

If a proper prior pdf for (π00,π
0
1,θ

0)0 is available, then it should be used in

place of p( π00, π
0
1, θ

0� �0Þ in Eq. (62). If such a prior pdf is not available, then

we should use only those improper prior pdf’s for (π00,π
0
1,θ

0)0 that, when used

in place of p( π00, π
0
1, θ

0� �0Þ in Eq. (62), give the proper joint posterior distribu-

tions and consistent generalized Bayes estimators of (π00,π
0
1,θ

0)0.24 Any gener-

alized Bayes estimator is not a proper Bayes estimator, because it is obtained by

using an improper prior distribution. It can be conditionally admissible, even

though its average risk (Bayes risk) is infinite.25 In general, the Bayes estimator

of π0 under squared error loss is given by the mean of the marginal posterior

distribution of π0. To avoid unacceptable posterior distributions, Swamy and

Mehta (1973) used improper prior pdf’s recommended by Stone and

Springer (1965) in a Bayesian analysis of the random effects model in (1). In

a pair of other studies in models with missing observations, Mehta and

Swamy (1973) and Swamy and Mehta (1975a) used certain improper priors

to get proper posterior pdf’s.

Lindley (1971, p. 8) pointed out that within the framework of coherence,

statements, such as “a prior distribution does not exist in this problem,” is

“demonstrably” not true. DeGroot (1970) pursued this framework and presented

an axiomatic system for subjective probabilities originally due to Savage,

including a proposal for a method of specifying a unique prior pdf using a uni-

form distribution. The importance of uniqueness was emphasized by Lehmann

and Casella (1998. p. 323), who gave a proof of the admissibility of any unique

Bayes estimator. Brown (1990) showed earlier that conditionally admissible

estimators might be unconditionally inadmissible, meaning that they must be

rejected in favor of estimators that are admissible both conditionally and uncon-

ditionally, provided the latter estimators are available. Finally, we stress PS’

(Pratt & Schlaifer, 1988, p. 49) admonition regarding Bayesian analysis of a

24. The definitions of Bayes and generalized Bayes estimators are given in Lehmann and Casella

(1998, pp. 228 and 239). The latter Bayes estimator is based on an improper prior pdf.

25. The definition of admissible estimators is given in Lehmann and Casella (1998, p. 48).
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stochastic law: “… a Bayesian will domuch better to search like a non-Bayesian

for concomitants that absorb … [’proxy effects’ for excluded variables].” This

is the intent behind Eq. (16)(ii), where the coefficient drivers included in (14)

estimate omitted-regressor bias components of the coefficients of (10). With

the exception of Pratt and Schlaifer (1984, 1988), statisticians have so far

not managed to develop models with unique coefficients and error terms.

Lehmann and Casella (1998) pointed out that “it is not the case that all gen-

eralized Bayes estimators are admissible.” (p. 383), so we should not use an

improper prior pdf if it leads to an inadmissible generalized Bayes estimator

of (π00,π
0
1,θ

0)0.26 Consistency being a desirable property of estimators, Brown

(1990) pointed out that “Ordinary notions of consistency demand use of proce-

dures… [that] are valid and admissible both conditionally and unconditionally”

(p. 491).27 He further pointed out that “estimators which are formally Bayes with

respect to prior measures having infinite mass [otherwise known as improper

prior distributions] may easily be conditionally admissible and yet uncondition-

ally inadmissible” (p. 491). Lehmann and Casella (1998, p. 239) note that

From a Bayesian view, estimators that are limits of Bayes estimators are somewhat

more desirable than generalizedBayes estimators. This is because, by construction,

a limit of Bayes estimators must be close to a proper Bayes estimator. In contrast, a

generalized Bayes estimator may not be close to any proper Bayes estimator.28

Assumption A6: The conditional distribution of the dependent variable y in

Eq. (36) is multivariate normal, given Xz, with mean Xzπ and covariance matrix

Σy defined in Eq. (37).

Under this assumption, the noninformative prior postulates are that π,Δ, and
Ω are independent with improper densities, p(πÞ∝ const, p(Δ) ∝ jΔ j�1/2 and

the MDIP pdf for Ω, respectively. In this case, the posterior distribution of

π00, π
0
1, θ

0� �0
in Eq. (62) is improper, so that the calculation of a posterior expec-

tation is meaningless. Instead, let us consider the noninformative prior postu-

lates that π and Σy are independent with improper densities p(πÞ∝ const and

p(Σy)∝ jΣy j�1/2, respectively. The posterior distribution of π, Σy

� �
is then

proper. This posterior, however, is also not acceptable because the noninforma-

tive prior p(Σy) ∝ jΣy j�1/2 depends on the likelihood function, an outcome not

generally acceptable to Bayesians.

26. Arnold Zellner, whose work included specifying carefully and appropriately selected improper

prior distributions, is widely acknowledged as the father of Bayesian econometrics. In his early

work, Zellner used Jeffreys’ ideas to select improper prior pdf’s, and in his later work, he created

what are known as maximal data information prior (MDIP) pdf’s (see Zellner, 1971, 1977), which,

we emphasize, are also improper prior pdf’s.

27. Note that this shows the connection between consistency and admissibility.

28. The definition of a limit of Bayes estimators is given in Lehmann and Casella (1998, p. 239).
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4.1 Improvements in the Precisions of the Estimators of
Time-Invariant and Individual-Specific Coefficients
of the Stochastic Law

Our interest centers on the estimators in Eq. (31) because they are needed to

estimate the causal effects of the nonconstant regressors of Eq. (10) on this

equation’s dependent variable. Since we assume that these effects are different

for different individuals because of interindividual heterogeneity, the estimators

in Eq. (51) provide only average causal effects for all n individuals. But there

may not be much interest in these average effects. Therefore, we investigate

whether there is any way the mean-square errors of the estimators in

Eq. (29) can be reduced.

For i ¼ 1, …, n, an estimator of πi is

π̂iμ ¼
X0
ziΣ

�1
yi Xzi

σ2ai
+ μΔ�1

 !�1
X0
ziΣ

�1
yi yi

σ2ai
+ μΔ�1π

 !

(63)

This estimator is obtained by minimizing the Lagrangean yi�Xziπið Þ0 Σ
�1
yi

σ2ai
yi�Xziπið Þ + μ πi�πð Þ0Δ�1 πi�πð Þ� r2

� 
(see Swamy & Mehta, 1976) and

Chang, Swamy, Hallahan, and Tavlas (2000, pp. 125 and 126)). Chang et al.

(2000, p. 125) pointed out that estimator (63) can be used to estimate πi, subject
to certain equality and inequality restrictions. Estimator (63) is a biased estima-

tor of πi, and when μ ¼ 1, it is the minimum mean square error linear estimator

of πi, as shown by Chipman (1964, pp. 1104-1107), who attributed the estimator

with μ ¼ 1 to Foster (1961).

Lehmann and Casella (1998) proved the admissibility of several estimators

under a sum-of-squared-errors loss. This loss function is inappropriate for our

purposes because an error of fixed size is much more serious for values of the

sub-vector π0 of π than for values of its other sub-vector π1. Therefore, we pro-
ceed as follows: Swamy and Mehta (1977) proved that a necessary and suffi-

cient condition for the second-order moment matrix E π̂i�πið Þ π̂i�πið Þ0 of

estimator (26) around the true value of πi to exceed the second-order moment

matrix E π̂iμ�πi
� �

π̂iμ�πi
� �0

of estimator (63) around the same true value by a

positive semidefinite matrix is

πi�πð Þ0 2

μ

� �
Δ + σ2ai X0

ziΣ
�1
yi Xzi

� ��1
� ��1

πi�πð Þ� 1 (64)

The importance of this result is that it gives a necessary and sufficient con-

dition under which the superiority of the biased linear estimator in (63) over the

minimum variance linear unbiased estimator in (26) will be reflected in any pos-

itive semidefinite weighted sum of mean square and mean product errors and

also in the generalized mean square error, i.e.,

E π̂iμ�πi
� �0Ψ π̂iμ�πi

� ��E π̂i�πið Þ0Ψ π̂i�πið Þ for all positive semidefiniteΨ
(65)
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and

|E π̂iμ�πi
� �

π̂iμ�πi
� �0|� |E π̂i�πið Þ π̂i�πið Þ0| (66)

where π̂i is defined in (26).

If Δ is singular, then condition (64) can be satisfied, but (63) does not exist.

In this case, using a formula in Swamy and Mehta (1976, p. 811), estimator (63)

can be rewritten as

π̂iμ ¼ΔX0
zi XziΔX0

zi + σ
2
aiΣyi

� ��1
yi + I�ΔX0

zi XziΔX0
zi + σ

2
aiΣyi

� ��1
Xzi

h i
π (67)

which exists when Δ is singular.

The availability of the minimum mean square error estimator of πi in (67) is
important because its feasible form can provide more efficient estimators of the

causal effects of the nonconstant regressors of (10) on its dependent variable

than (31).

Computation of estimator (63) merely requires a priori values of (π, Δ). In
terms of prior information, estimator (63) is less demanding than Bayes’ for-

mula in (62) because, by examining the sample estimates given by (49) and

(50) based on a previous sample, we can more easily formulate our prior beliefs

about (π, Δ) than about the prior pdf p((π00,π
0
1,θ

0Þ0Þ. Swamy and Mehta (1979)

considered the case where σai
2 and μ are sample estimates. For this case, they

proposed a new estimator by introducing suitable constants at the appropriate

places in estimator (63) and derived a necessary and sufficient condition for

E π̂i�πið Þ π̂i�πið Þ0 of a much simpler version of (26) to exceed the second-

order moment matrix about πi of the new estimator by a positive semidefinite

matrix. Swamy, Mehta, and Rappoport’s (1978) methods of evaluating a ridge

regression estimator can be extended to find methods of evaluating (63) using

the available data.

4.1.1 A Complete Inference System

The preceding establishes that a complete system of inferences is composed

of the following elements:

I. A model: Eqs. (10), (14).

IIA. Estimators of the bias-free components of the coefficients of the model:

Eq. (31).

IIB. Improved estimators of the bias-free components of the coefficients of

the model based on the estimators in (63).

IIC. Kernel density estimates using the point estimates and the improved

point estimates of the bias-free components of the coefficients of the model.

III. Predictions of the out-of-sample values of the dependent variable of the

model: Eqs. (33), (34).
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4.2 Simulation-Based Estimation and Inference

In Section 2, we have demonstrated that models with nonunique coefficients

and error terms, in other words, models that have typically been employed in

the past for simulation-based estimation and inference, yield incorrect infer-

ences. For his simulation-based estimation and inference, Greene (2012,

p. 643) considered a sampling density based on a hierarchical model with non-

unique coefficients and error term.29 We modify this model to make its coeffi-

cients and error term unique, because models with nonunique coefficients and

error terms yield incorrect results, as we have already shown.

From (21) and Assumption A3, it follows that conditional on (xit, zit, πi), yit
has sampling density.

p yitj xit, zit, πi,Φi, σ
2
aiΔai

� �
(68)

and conditional on π and Δ, πi has prior density p(πi jπ,Δ) for all i. This is a
single prior Bayes model for each i. From this model, we calculate the posterior

distribution, p(πi|yi,Xzi,Φi,σ2aiΔai,π,ΔÞ for individual i. The virtue of the pdf in
(68) comes from model (21) because the latter is derived from model (9) having

unique coefficients and error term.

The joint pdf of yi and πi is

p yi, πij Xzi,Φi,Δai, σ
2
ai, π,Δ

� �¼ p yij Xzi, πi,Φi,Δai, σ
2
ai

� �
p πij π,Δð Þ (69)

Suppose that Φi, Δai, σai
2 , π, and Δ are known. Then using Bayes’ theorem

gives

p πij yi, Xzi,Φi, σ
2
aiΔai, π,Δ

� �¼ p yij Xzi, πi,Φi, σ2aiΔai

� �
p πij π,Δð Þ

p yij Xzi,Φi, σ2aiΔai, π,Δ
� �

¼ p yij Xzi, πi,Φi, σ2aiΔai

� �
p πij π,Δð Þ

ð

πi

p yi, πij Xzi,Φi, σ
2
aiΔai, π,Δ

� �
dπi

¼ p yij Xzi, πi,Φi, σ2aiΔai

� �
p πij π,Δð Þ

ð

πi

p yij Xzi, πi,Φi, σ
2
aiΔai

� �
p πij π,Δð Þdπi

(70)

where the pdf for πi is used as the prior density. This is in contrast to (62), in

which the distribution of πi is used as part of the likelihood function. The advan-
tage of Bayes’ formula in (62) is that the sample data in (25) can be used to

estimate π and Δ, as in (49) and (50).

29. See also Train (2003).

Alternative Approaches to the Econometrics of Panel Data Chapter 11 329



The Bayes estimator under squared error loss is given by

E πij yi, Xzi,Φi, σ
2
aiΔai, π,Δ

� �¼

ð

πi

πip yij Xzi, πi,Φi, σ
2
aiΔai

� �
p πij π,Δð Þdπi

ð

πi

p yij Xzi, πi,Φi, σ
2
aiΔai

� �
p πij π,Δð Þdπi

(71)

Unfortunately, Greene’s (2012, p. 644, (15–39)) equation cannot be used to
compute the integral in Eq. (71), because the error term of Eq. (21) is both het-

eroscedastic and serially correlated. We need reasonably straightforward and

general methods of evaluating the integral in Eq. (71) and, to this end, we con-

sider using a theory based on Markov chain limiting behavior defined in

Lehmann and Casella (1998, pp. 306–307). If this theory can be extended to

make it applicable to the model with heteroscedastic serially correlated distur-

bances in Eq. (21), then we may use the extended theory to evaluate the integral

in Eq. (71). If it cannot be extended, then we can use only the non-Bayesian

estimators in Eqs. (29) and (31).

The estimators (29) and (71) are of the same πi but are obtained using two

different methods. The question then becomes:Which of the two do we choose?

To decide this, consider the following: An inference based on Eq. (29) proceeds

conditionally on Xzi, where potential difficulties in choosing a prior density in

Eq. (69) are no serious impediment. By contrast, an inference based on the pos-

terior pdf in Eq. (70) is more complex in that (i) it is appropriate only if the dis-

tribution of πi is used as the prior, and proceeds conditionally (ii) on the T
observations in (yi and Xzi) available for the ith individual and (iii) on the values
of the parameters (Φi,σ2aiΔai,π,Δ) which are assumed to be known. Because the

parameters (Φi,σ2aiΔai,π,Δ) are not known, any inference based on Eq. (70) is

heavily dependent on the accuracy of their non-Bayesian estimates. For estima-

tor (29), the ease or difficulty of managing the unknown parameters (Φi, σai
2Δai)

is intrinsic to the probabilistic structure of the particular problem with which we

are dealing. Thus, although estimator (71) appears to cope easily with the

unknown parameters that estimator (29) finds difficult, this benefit is earned

at the expense of assuming away this obstacle in the form of a convenient inte-

gral in Eq. (71). Therefore, there is really not much advantage of Eq. (71) over

Eq. (29). We now turn to an example.

5 Empirical Evidence of the Causal Effects of Wives’ Education
on Their Earnings

To illustrate the methods discussed in Sections 2 and 3, we use the following

example of Eq. (10):

earningsi ¼ γ0i + γ1ieducationi (72)
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where i indexes individuals, earningsi ¼ the ith wife’s earnings measured as

hourly wage times hours worked, and educationi ¼ the ith wife’s education

measured in years of schooling. Because time-series data about these variables

are not available for any i, Eq. (72) can be considered a special case of (10),

where subscript t is suppressed, the dependent variable is replaced by the var-

iable “earnings,” K is set equal to 2, x1i is replaced by the variable “education,”
and corresponding changes are made in (7)–(9) above. It then follows from

(11) that γ0i ¼ [(measurement error in earningsi) + (the intercept of

(7)) +(the error term of (9))]. It further follows from (12) that γ1i ¼ [(Bias-Free

Component (BFC) + omitted-regressor bias component)(1 – the proportion of

measurement error in educationi)]. The BFC of γ1i is needed to measure the

causal effect of the ith wife’s education on her earnings, as shown in (9)

(see Property (5) of (9)). We assume that both earningsi and educationi in

(72) are measured with error. The variable educationi is the sole regressor

in (72) because we are interested in learning only the causal effect of educa-

tioni on earningsi. In the following, we provide an example of (14) to complete

the specification of (72).

To estimate the BF and omitted-regressor bias components of γ1i separately,
we need to make γ0i and γ1i functions of appropriate coefficient drivers, as in

(14). Before we do so, we examine three previous studies on the earnings-

education relationship to determine if they contain any useful ideas about the

coefficient drivers that we will need for our estimation. Also, we will attempt

to find out to what extent the specification of model (72) can remedy apparent

defects in extant models for earnings attainment and elite college attendance.

Model (72) is most conveniently described in the context of earlier work, of

which we give three examples.

Krueger and Dale’s model:

log earningsð Þ¼ x0β + δT + ε (73)

where individual earnings are for a given time period, x is education in number

of years, and T equals 1 for those who attended an elite college and is zero

otherwise.

Mincer’s Model:

log earningsð Þ¼ a+ bS+ cx + dx2 + ε (74)

where S denotes years of completed education, and x denotes the number

of years an individual of age A could have worked, assuming he or she

started school at age 6, finished schooling in exactly S years and began

working immediately thereafter: x ¼ A – S – 6, and ε is an added random

error term.

The sources of models (73) and (74) are Greene (2012, p. 251) and Card

(1999), respectively. Card’s paper surveyed a number of studies about the
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earnings and education relationship done before 1999. Finally, Greene offers

three approaches of his own to modeling the effects of education on earnings:

Greene’s Models:
(i) Semi-log equation.

log earningsð Þ¼ β1 + β2age + β3age
2 + β4education + β5kids + ε (75)

where hourly wage times hours worked are used to measure “earnings,” “edu-

cation” is measured in years of schooling, and “kids” is a binary variable that

equals one if there are children under 18 in the household.

(ii) Exponential equation.

Income¼ exp β1 + β2Age + β3Age
2 + β4Education + β5Female + β6Female�Education +

�

β7Age�EducationÞ+ ε (76)

where two interaction terms are included as regressors.

(iii) Discrete choice.

Prob LFPi ¼ 1ð Þ¼Φ β1 + β2Agei + β3Age
2
i + β4Educationi + β5Kidsi + γHHrsi

� �

(77)

where LFPi denotes the ith wife’s labor force participation, and HHrsi denotes
the husband’s hours defined as

HHrsi ¼ α1 + α2HAgei + α3HEducationi + α4Family Incomei + ui (78)

Greene (2012, pp. 14–15, 195 and 708) explains the selection of regressors

in models (75)–(77) as follows: (i) Most people have higher incomes when they

are older than when they are young, regardless of their education. This justifies

the inclusion of age as a regressor in models (75)–(77). (ii) Income tends to rise

less rapidly in the later earning years than in the early ones. This justifies the

inclusion of age2 as a regressor in (75)–(77). (iii) Labor force participation is

the outcome of a market process whereby the demanders of labor services

are willing to offer a wage based on expected marginal product, and individuals

themselves make a decision whether to accept the offer, depending on whether

it exceeded their own reservation wage. Employers’ expected marginal product

depends on education, among other things, and female employees’ reservation

wage depends on such variables as age, the presence of children in the house-

hold, other sources of income (husband’s), and marginal tax rates on labor

income. These arguments justify the inclusion of some or all of the variables

(kids, family income, and HHrs) as regressors in (75)–(77).
To study models (72)–(77), consider first their functional forms. In light of

this chapter’s main theme, estimation of the causal effects of education on earn-

ings requires an underlying real-world relationship between earnings and edu-

cation (EE).When the true functional form of such a relationship is unknown, as

it usually is, the specific semi-log form of (73)–(77) can be false. A commitment

to such a specific form then might yield incorrect inferences. For this reason, we

332 Panel Data Econometrics



posit the far more general alternative equation in (72), which is derived from a

model that is linear in all relevant observed and unobserved regressors but non-

linear in all coefficients that are cross-sectionally varying. Because of its gen-

erality, this functional form can cover the true (but unknown) functional form of

the real-world relationship between EE as a special case. Applying Basmann’s

(1988, p. 98) argument to (73)–(77) means that these equations are not free of

the most serious of defects: non-uniqueness. Lack of uniqueness arises from two

sources: functional form, because the log of earnings instead of earnings them-

selves is used as the dependent variable, and nonuniqueness of the coefficients

and error terms. Such models cannot represent a real-world relationship and

therefore cannot be causal. It follows that the coefficient of T in Eq. (73), the

coefficient of S in Eq. (74), and the coefficients of education in Eqs. (75)–
(77) cannot describe causal effects. Needless to say, these comments also apply

to other models covered by Card (1999).

As specified, the error terms in Eqs. (73)–(78), as well as those in the models

examined by Card (1999), comprise omitted relevant regressors, as in Eq. (4) of

Section 2. Consequently, the assumption that the regressors included in these

models are independent of the error term consisting of “the” omitted regressors

is meaningless for all the reasons outlined earlier. Therefore, the least square

estimators of the coefficients of Eqs. (73)–(76) and the maximum likelihood

estimators of the coefficients of Eqs. (77) and (78) are inconsistent, as are

the instrumental variable estimators of the coefficients of models tabulated

by Card (1999), as Theorem 1 proves.

Another problem with Eq. (73), pointed out by Greene (2012, p. 220), is that

some unobserved determinants of lifetime earnings, such as ambition, inherent

abilities, and persistence, can also determine whether the individual had an

opportunity to attend an elite college in the first place. The least squares esti-

mator of δ then will inappropriately attribute the effect to the treatment rather

than to these underlying factors. This incorrect attribution produces correlation

between T and ε, which results in inconsistency of the least squares estimator

of δ.
In Eq. (72), a correlation between education and the component of γ0i, called

“the error term of (9)”, cannot arise because, in the formulation of Eq. (72),

every omitted regressor is first split into two pieces: a “sufficient” piece, and

a piece consisting of the effect of the included regressor, education, on each

omitted regressor, using a functional form that is linear in the included regressor

and nonlinear in its coefficients (see Eq. 8). The proposed protocol is then (i) to

define sufficient pieces—certain “sufficient” sets of omitted regressors—as the

arguments of a function called the unique error term, and (ii) to use the effect of

the included regressor on each omitted regressor piece as an argument of the

function called omitted-regressor biases of the coefficient on the included

regressor (education). It can be shown that this regressor is uncorrelated with

the unique error term, which is a function of sufficient sets of omitted regres-

sors. Omitted-regressor bias components, which in our proposed model (72)
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constitute a formal accounting of such biases, are missing from the coefficients

of Eqs. (73)–(78). Their absence renders all coefficients and error terms in these

models nonunique, so that they cannot be estimated consistently.

By construction, Eq. (72) is without specification errors, meaning that it can

be a real-world relationship. The explanation that follows Eq. (72) clarifies that

the components of its coefficients are exactly of the type that the coefficients of

an equation must have if it is derived from a real-world relationship, with alge-

braic expressions for their components being given in (10)–(12). Property (5) of
(9) further implies that the causal effect of the ith wife’s education on her earn-
ings is exactly the bias-free component of γ1i � the true value of educationi.

To estimate this causal effect, we need to estimate the components of γ1i
separately. For this purpose, we seek coefficient drivers strongly related to

the omitted-regressor bias component of γ1i and select them accordingly on

the basis of arguments that follow Eq. (78) and originally provided by

Greene (2012, pp. 14 and 15, 683 and 684, 699–701, 708–711, 888). The
selected coefficient drivers are: z1i ¼ Wife’s Agei, z2i ¼ Wife’s Agei

2, z3i ¼
Kidsi, z4i ¼ Husband’s Agei, z5i ¼ Husband’s educationi, z6i ¼ Family incomei.

The difference between Greene’s approach (2012, pp. 116 and 117) and ours is

that we employ as coefficient drivers of (72) the same variables he used directly

as regressors in a fixed-coefficient latent regression of earnings in (77). Accord-

ingly, for j ¼ 0, 1, the jth coefficient in (72) becomes an equation like (14).

γji ¼ πj0 + πj1z1i +…+ πj6z6i + uji (79)

Substituting (79) for both j ¼ 0 and j ¼ 1 in (72) gives a fixed-coefficients

model where not only education and the coefficient drivers but also the inter-

actions of education with each of the coefficient drivers appear as regressors.

Indeed, one of these interaction terms also appeared in Greene’s (2012,

pp. 699–701) model not shown here. Of course, we can put different exclusion

restrictions on the coefficients of γ0i and γ1i. Eq. (79) is an example of (14).30

Greene’s (2012, p. 116) Appendix Table F5.1 contains 753 observations

used in Mroz’s study of the labor supply behavior of married women. Of the

753 individuals in the sample, 428 were participants in the formal labor market.

For these 428 individuals, we fit the fixed coefficients model implied by (72)

and (79) under the assumptions that for i, i0 ¼ 1, …, 428: ui ¼ (u0i,u1i)
0,

30. We note as an aside that the present discussion is related to the debate about discrimination in

the work place, which prominently relied on a so-called reverse linear regression, reproduced in

Greene (2012, pp. 176–178). But here, as proved in Theorem 1, we emphasize that least squares

estimators of the coefficients from such a regression are inconsistent if the error term is made up

of relevant regressors omitted from the regression, so that the conclusion regarding the presence

or absence of work place discrimination based on that work needs to be viewed with skepticism.
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E uij z1i,…, z6i, educationið Þ¼ 0,E uiu
0
ij z1i,…, z6i, educationi

� �

¼ σu
2Δu,andE uiu

0
i0 j z1i,…, z6i, educationi

� �

¼ 0 if i 6¼ i0 (80)

Because Mroz’s data provide a single crosss-section data set only, we must

assume that the coefficients of (79) do not vary across individuals. Still, this

assumption is not as strong as the assumption that γ0i and γ1i are constant. This
is because under our assumption that, although the coefficients of (79) do not

vary across i, γ0i and γ1i still vary with the z’s. For estimation, we choose

IRSGLS to fit the data. We also will seek empirical best linear unbiased pre-

dictors of u0i and u1i, denoted by û0i and û1i. Using the IRSGLS estimates of

π’s in (79) we get

γ̂0i
t� ratioð Þ

¼ �1573:3
�0:051158ð Þ

+ 351:72z1i
0:2262ð Þ

� 1:3316z2i
�0:07653ð Þ

+ 3304:6
1:3315ð Þ

z3i

� 298:11
�1:0455ð Þ

z4i� 21:843z5i
�0:070343ð Þ

+ 0:063717
0:78745ð Þ

z6i (81)

γ̂1i
t�ratioð Þ

¼ 505:17
0:1964ð Þ

�18:922
�0:14541ð Þ

z1i + 0:0042111
0:0028917ð Þ

z2i

� 390:58
�1:9074ð Þ

z3i + 20:847
0:88043ð Þ

z4i� 17:520
�0:67717ð Þ

z5i + 0:0070177
1:0908ð Þ

z6i

(82)

where the errors in (79) are set at their zero-mean values and the figures in

parentheses below the estimates of π’s are the t-ratios.
The estimate of the BFC of γ1i in Eq. (72) given by Eq. (82) is:

505:17
0:1964ð Þ

(83)

This is the first estimate on the right-hand side of Eq. (82) and is the same as

one we would have obtained had we used the formula in (31) after equating ^̂πj0i
with the IRSGLS estimate of πj0 with j ¼ 1 in (79), setting ν̂∗jit equal to zero,

because no data about measurement errors are available, and setting K to 2.

Suppose that the correct functional form of the BFC of the coefficient, γ1i, on
educationi in (72) is a constant and does not vary across individuals. In this case,

the estimate of BFC is the same as that of the intercept of Eq. (79), which is

505:17 0:1964ð Þ. Because it has the correct positive sign for all i, the causal effect
of the ith married woman’s education on her earnings is unambiguously

505:17 0:1964ð Þ �educationi). Constancy of the BFC of γ1i does not mean that

γ1i is a constant because its omitted-regressor bias component varies as a func-

tion of the coefficient drivers, as in (32).

Because the estimates of individual causal effects are too numerous to dis-

play in tabular form, we show them in Fig. 1 as a histogram and its implied ker-

nel density of the causal effect (505:17 0:1964ð Þ � educationi) of the ith wife’s

education on her earnings, the total number of married women being 428.
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The formula ^̂π10� educationi

� �
is the estimate of the causal effect of the ith

married woman’s education on her earnings, shown in dollars on the horizontal

axis in Fig. 1, with frequencies indicated on the vertical axis. Note the bimodal

nature of the implied distribution.

Calculations (not reported here) show that if the causal effect of a married

woman’s education on her earnings is her actual earnings, given by the dependent

variable of (72), then the estimate 0:0070177 1:0908ð Þ�Family incomei� educationi
generally is closer to the actual earningsi than the estimate

505:17 0:1964ð Þ�educationi, meaning that it is more accurate.31 The intercept

(π10) of γ1i in (79), however, is actually the coefficient on educationi in the fixed

coefficient model implied by Eqs. (72) and (79). So it is proper to interpret an esti-

mate of the coefficient (π10) times educationi as an estimate of the causal effect of
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FIG. 1 Histogram and kernel density estimate for the causal effects of different married woman’s

education on their earnings when the BFC of γ1i is a constant.

31. Here, accuracy refers to the size of deviations from the true causal effect, whereas precision,

widely used in statistical work, refers to the size of deviations from the expectation of an estimator of

a causal effect.
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educationion the dependent variable ofEq. (72).Agreat advantage of this approach

is that this fixed coefficient model eliminates all specification errors in

Eqs. (73)–(77).32

One can object that our estimates of causal effects in (79), displayed in

Fig. 1, are obtained with a statistically insignificant estimated intercept of

(79) for j ¼ 1. What these estimates then tell us is that we may have used

too many coefficient drivers in (79) with j ¼ 0 and 1, or perhaps not even a rel-

evant set thereof. If by including any combination of six coefficient drivers in

Eq. (79) for γ0i and γ1i, we cannot increase the t-ratio of the estimated intercept

with j ¼ 1 to above 2 in absolute value, then we must conclude that none of the

coefficient drivers in (79) having ranges different from that of γ0i (or γ1i) is
appropriate for γ0i (or γ1i), requiring a renewed search for a new set. This even-

tuality, however, is not grounds for rejecting the methodology that led to esti-

mator (31), for which we have given principled reasons based on uniqueness

and consistency. We emphasize that the method proposed here may not guar-

antee the discovery of truth for a single set of coefficient drivers; it merely pre-

vents our committing to a path that prevents discovery for sure. It is to clarify

our position that a failure to find “statistically significant” estimate for the inter-

cept of Eq. (79) with j ¼ 1 is not grounds for reverting to conventional models

with nonunique coefficients and error terms that we provide a numerical exam-

ple, based on the same data.

Before we do, it is important to emphasize that, when testing between the

hypotheses, H0: π10 ¼ 0 and H1: π10 6¼0, the mere specification of a 5% type

I probability of error for the t-test used, and of the decision, accept H0, reached,

often is viewed as an unsatisfactory form of the conclusion to our problem. This

uneasiness was well articulated by Kiefer (1977) and was shared by all the dis-

cussants of his paper. The example given in Kiefer (1977) might clarify this

apprehension further.

Example 3 Suppose we observe a normally distributed random variable X with

mean θ and unit variance, and must decide between the two simple hypotheses,

H0: θ ¼ �1 and H1: θ ¼ 1. The symmetric Neyman-Pearson test rejects H0 if X
� 0 and has (type I and II probabilities of errors) ¼ (0.16, 0.16). Thus we make

the same decision d1 in favor ofH1 whether X ¼ 0.5 or X ¼ 5, but the statement

of error probabilities and decision reached, “(the type I and II probabilities of

errors, decision) ¼ (0.16, 0.16, d1)” that we make for either of these sample

32. In practical terms, this chapter is able to determine how much, say, $1000 spent on education

will increase a woman’s earnings. Suppose that in Eq. (7) of Section 3.1, yit* represents earnings, x*1it
represents education, and all other relevant regressors are omitted regressors. Then α1it* (x1it

00 � x1it
0 ) is

the amount by which yit* will necessarily be greater if on any one observation x1it* is deliberately set

equal to x1it
00

rather than x1it
0 where α1it* is the bias-free component of the coefficient on education in

(72) and (x1it
00 � x1it

0 ) is the difference between two different values of x1it* . It also should be noted that

(x1it
00 � x1it

0) is measured in years and yit* is measured in dollars.

Alternative Approaches to the Econometrics of Panel Data Chapter 11 337



values does not exhibit any detailed data-dependent measure of conclusiveness

that conveys our stronger feeling in favor ofH1 when X ¼ 5, than when X ¼ 0.5.

From this Kiefer’s (1977, p. 789) example, it follows that in (82), our spec-

ification of 0.05 type I probability of error, our lack of knowledge of the cor-

responding type II probability of error for a t-test of the null hypothesis, H0:

π10 ¼ 0 against the alternative hypothesis H1: π10 6¼ 0, and our decision to

accept H0: π10 ¼ 0, do not exhibit any detailed data-dependent measure of

conclusiveness that conveys our stronger feeling in favor of H1 when the esti-

mate of π10 is 505.17. In his article, Kiefer (1977) gave an exposition and

discussion of a systematic approach to stating statistical conclusions with

the suggestion that incorporating a measure of conclusiveness that depends

on the sample may assuage the uneasiness he and the discussants of his paper

expressed. It is difficult, however, to apply Kiefer’s procedures to the model in

Eqs. (7)–(20).

5.1 Illuminating the Contrast Between (72) and (79) and
an Estimated Earnings and Education Relationship Based
on an Incorrectly Specified Error Term in (4)

A direct comparison between our estimate 505:17 0:1964ð Þ for the intercept of (79)
with j ¼ 1 and any of the estimates of the coefficient on education in Greene

(2012) and Card (1999) is not strictly possible, because, although our model

is in level form, their models use the logarithm of earnings as the dependent

variable. To allow comparison, however, consider

earningsi ¼ β0 + β1z1i + β2z2i + β3z3i + β4educationi + ui (84)

where all the coefficients are unknown but misspecified to be constants. Unlike

the error term of (72), the error term ui of (84) is equal to the sum of the products,

ω‘wi‘, ‘¼ 1,…, L, where thewi‘’s are relevant regressors omitted from Eq. (84),

ω‘ is the unknown constant coefficient of wi‘, and L is the unknown number of

relevant regressors omitted from (84).

Because the error term of (84) is composed of omitted relevant regressors,

the following propositions, echoing earlier assertions in this chapter, must hold:

(i) The condition that the regressors included in (84) be independent of “the”

regressors omitted from (84) is meaningless, and (ii) the error term and the coef-

ficients of (84) are not unique. (iii) From statement (i) it follows that E(ui jz1i,z2i,
z3i,educationi) 6¼ 0 or, equivalently, all the included regressors in (84) are endog-

enous. As noted at the beginning, a proof of statement (i) is given in PS (1988,

p. 34), and the proofs of propositions (ii) and (iii) appear in Section 2. These

observations apply this chapter’s central theme to arrive at the conclusion that

least squares estimators of the coefficients of (84) are inconsistent whenever its

error term is made up of omitted relevant regressors.

Least squares applied to (84) leads to
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earningsi ¼�9656:827
�1:595ð Þ

+ 436:735
1:520ð Þ

z1i� 5:103
�1:509ð Þ

z2i

� 1609:335
�3:184ð Þ

z3i + 545:890
6:311ð Þ

educationi + ûi (85)

where the figures in parentheses beneath the coefficient estimates are the

t-ratios. Because these estimates are based on inconsistent least squares estima-

tors, all the given “t-ratios” in parentheses are invalid, and therefore uninterpre-
table. It is clear then that a mere failure to obtain a statistically significant

intercept for (79) with j ¼ 1 does not justify resorting to models with nonunique

coefficients and error terms, even though the estimated coefficient on education

in Eq. (85) is numerically not too far from the estimate of the intercept in (79)

with j ¼ 1 in (83).

Therefore, we return to our model in (72) and (79). Suppose that with exten-

sive experimentation, we could find the appropriate and adequate number of

coefficient drivers and included them in (79) with j ¼ 0, 1. Now assume the

model in (72) and (79) is true. From this, we can generate the misspecified

model in (84) by setting π04¼ π05¼π06¼π11¼π12¼π13¼π14¼π15¼π16¼ 0

in (79) and assuming that the distribution of u1i in (79) with j ¼ 1 is degenerate

at zero. This being the case, the estimates in (85) are then, from everything that

has been said so far, subject to omitted-regressor biases as well as biases

because of the misspecification of the distribution of u1i. The two conditions

that (i) “causality” is a property of the real world and (ii) a real-world relation-

ship must be mis-specifications-free imply that the BFC of the coefficient on

education in the mis-specifications-free model in (72) is needed to estimate

the causal effect of education on earnings. In light of this demonstration, it is

now obvious that the coefficient on education in the misspecified model in

(85) cannot be the causal effect of education on earnings.

6 Conclusions

This chapter has sought to bring together strands from time-series modeling and

cross-section analysis by proposing a coherent approach to modeling panel data

combining features from both disciplines, based on concepts developed in pre-

vious work about time series and cross sections. We take seriously admonitions

by PS (1984, 1988) and Basmann (1988) that models purporting to represent

causal relationships must be unique in the sense that their error terms and coef-

ficients be unique. Our proof that nonunique models yield inconsistent estima-

tors and inferences―that is, statistically uninterpretable results―leads us

directly to the approach advocated in Section 3 of this chapter, which we then

apply in Section 5. Having developed a methodology that unambiguously pro-

duces models for panel data with unique coefficients and error terms, we are

confronted with the task of estimating simultaneously a “bias-free component,”

an “omitted-regressor bias component,” and a “measurement-error bias compo-

nent.” We estimate these components simultaneously, because, in principle,

Alternative Approaches to the Econometrics of Panel Data Chapter 11 339



simultaneous estimation is superior to any two-step estimation. Accordingly,

the coefficient on each included regressor of a model is regressed on a set of

coefficient drivers with nonzero intercept and nonzero error term, and this inter-

cept times a factor is then identified as the bias-free component of that coeffi-

cient. The sum of the products of coefficient drivers and their respective

coefficients plus the error term, after this whole quantity is multiplied by a fac-

tor, becomes the omitted-regressor bias component of the coefficient in ques-

tion. Estimates of these separate elements are necessary because it is the bias-

free component of the coefficient on a nonconstant regressor that is needed to

measure the causal effect of the regressor on the model’s dependent variable. As

we indicate, the most challenging aspect of the theory and the proposed tech-

nique outlined here is the search for necessary coefficient drivers able to provide

both an accurate estimate of the omitted-regressor bias component and a statis-

tically significant estimate of the bias-free component of the coefficient on each

nonconstant regressor in a model. It is here where intuition, theory, and prior

experience play important roles.

Appendix A Proof of the Uniqueness of the Coefficients and Error
term of a Stochastic Law

Without loss of generality, we present this proof for the simple case of one

included regressor and one omitted regressor. For such a case, Eq. (7) becomes

y∗it ¼ α∗0it + x
∗
1itα

∗
1it +w

∗
1itω

∗
1it (A.1)

where x1it* is the included regressor, w1it
* is an omitted regressor, and w1it

* ω1it
* is

the error term made up of this omitted regressor. Eq. (A.1) is treated as

deterministic.

We add and subtract the product ω1it
* x1it* on the right-hand side of Eq. (A.1)

without changing it. Doing so gives

y∗it ¼ α∗0it + x
∗
1it α

∗
1it +ω

∗
1it

� �
+ w∗

1it� x∗1it
� �

ω∗
1it (A.2)

This equation shows that the coefficients and error term of (A.1) are not

unique. To make them unique, we introduce the version of Eq. (8) that is appro-

priate to Eq. (A.1):

w∗
1it ¼ λ∗10it + x

∗
1itλ

∗
11it (A.3)

where λ10it* is the random error term.

Substituting the right-hand side of Eq. (A.3) for w1it
* in (A.1) gives

y∗it ¼ α∗0it + λ
∗
10itω

∗
1it + x

∗
1it α

∗
1it + λ

∗
11itω

∗
1it

� �
(A.4)

In (A.2), (w1it
* � x1it* ) is the omitted regressor. For this omitted regressor

(A.3) becomes

w∗
1it� x∗1it ¼ λ∗10it + x

∗
1it λ

∗
11it�1

� �
(A.5)
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Substituting the right-hand side of this equation for (w1it
* � x1it* ) in (A.2)

gives

y∗it ¼ α∗0it + x
∗
1it α

∗
1it +ω

∗
1it

� �
+ λ∗10it + x

∗
1it λ

∗
11it�1

� �� 
ω∗
1it (A.6)

This equation is the same as Eq. (A.4). The equality between Eqs. (A.4) and

(A.6) proves that in the presence of (A.3), the coefficients and error term of

(A.4) are unique. This proof can be generalized easily to prove that the coeffi-

cients and the error term of (9) are unique in the presence of (8). The above

proof is from Swamy et al. (2014).

Appendix B Conditions for the Consistency of Certain Estimators
of the Coefficients of a Stochastic Law

Conditions under which ^̂πi in Eq. (29) is asymptotically equivalent to π̂i in
Eq. (26) are

plim
1

T
X0
ziΣ̂

�1

yi Xzi

� �
� 1

T
X0
ziΣ

�1
yi Xzi

� �� 	
¼ 0 (B.1)

and

plim
1
ffiffiffi
T

p X0
ziΣ̂

�1

yi Dxiui

� �
� 1

ffiffiffi
T

p X0
ziΣ

�1
yi Dxiui

� �� 	
¼ 0 (B.2)

Conditions for ^̂π in Eq. (50) to be asymptotically equivalent to π̂ in

Eq. (38) are

plim
1

nT
X0
zΣ̂

�1

y Xz

� �
� 1

nT
X0
zΣ

�1
y Xz

� �� 	
¼ 0 (B.3)

and

plim
1
ffiffiffiffiffiffi
nT

p X0
zΣ̂

�1

y DXzη +DDxuð Þ
� �

� 1
ffiffiffiffiffiffi
nT

p X0
zΣ

�1
y DXzη +DDxuð Þ

� �� 	
¼ 0

(B.4)

All four conditions in (B.1)–(B.4) can be verified using the methods of

Cavanagh and Rothenberg (1995).
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1 Introduction

Imagine we want to estimate a model for the demand for natural gas in both

residential and industrial buildings. We have aggregated data for only 36 states

of the United States, however, so that a cross-sectional analysis with several

explanatory variables and only 36 observations might suffer from a small num-

ber of degrees of freedom.We are lucky, however, that our data set contains the

state-level aggregated demand for 13 years (1950–1962). This is the setting that
Balestra and Nerlove (1966) faced when they kick-started the application of

panel data models in economics with their study. Balestra and Nerlove

(1966) first used ordinary least-squares (OLS) to estimate a dynamic demand

model based on the pooled data set. This estimation returned implausible

results, e.g., for the depreciation rate of gas-related appliances. These results

put them on track: Could it be that unobserved state effects messed up their

results? After they started to control for these effects, their results started to

make sense. Balestra and Nerlove (1966) did not develop any of the modern

panel data estimators that we use today, but they made the scientific community

aware of problems when applying pooled OLS to panel data.

Initially, the uptake of panel data analysis was slow, with only sporadic pub-

lications in the 1960s and 1970s. During the 1990s, however, panel data econo-

metrics experienced a quantum leap, and today, it has become standard material

in econometrics textbooks.

At the same time, panel data sets have become increasingly available for

researchers and analysts. In fact, we are in the middle of a new development

in panel data econometrics, as the number of panel data sets that include both

a large number of individuals (n) and a large number of time periods (T) is
increasing rapidly. Panel data sets that include a large number of time periods

(T) create new challenges because the statistical inference of commonly used

panel data estimators is based on the assumption that the data sets have a large

n and a small T, which used to be the case for most panel data sets. Later in this
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chapter, we will discuss how a large T dimension affects the suitability of

dynamic panel data models.

According to Hsiao (2007), the usage of panel data has the following advan-

tages compared to cross-sectional data (T ¼ 1) or time series data (n ¼ 1):

l more accurate inference of model parameters because of more degrees of

freedom,

l greater capacity to capture complicated behavioral processes because of:

� greater capacity to construct and test complex behavioral assumptions

(e.g., when testing effects of policies),

� the possibility to control for the impact of omitted variables,

� greater capacity to uncover dynamic relationships,

� more accurate predictions for individual outcomes than predictions

based on a time series for a single individual, and

� the ability to provide a micro-foundation for aggregate data analysis, and

l surprisingly, often simpler computation and statistical inference.1

In short, in comparison to cross-sectional or time series data, panel data contain

more information, and therefore, allow for more elaborate analyses.

In this chapter, we demonstrate how the statistical software R (R Core Team,

2018) can be used to analyze panel data.

2 Loading Data

R can import data sets in many different formats. Several different

procedures to import (and export) data in different formats are described in

the (official) R manual “R Data Import/Export” (https://cran.r-project.
org/doc/manuals/r-release/R-data.html). For example, the add-on package

foreign can be used to import data files in formats used by other (statistical)

software packages such as SPSS, STATA, or SAS. The add-on package

readstata13 can be used to read data files from all STATA versions (including

versions 13 and 14), while the “standard” function for reading STATA data

files (read.dta() in package foreign) can read data files only for STATA

versions 5–12.
The R software and many add-on packages include data sets that can be

loaded with the data() command. In this chapter, we will use two data sets that

are included in the plm package:

l The data set EmplUK was used by Arellano and Bond (1991) and is an unbal-
anced firm-level panel data set that focuses on employment. It contains

observations of 140 firms from 1976 to 1984 with 1031 observations in total.

l The data set Grunfeld was used initially by Grunfeld (1958) and was used

later in many other publications and textbooks (see, e.g., Kleiber & Zeileis,

1. See Hsiao (2007) for more details on theses points.
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2010). This is a balanced firm-level panel data set that focuses on invest-

ments and contains observations of 10 firms from 1935 to 1954, i.e., it

has 10 � 20 ¼ 200 observations in total.

The following commands load these two data sets:

data( "EmplUK", package="plm" )
data( "Grunfeld", package="plm" )

More detailed information about these data sets, e.g., a description of the vari-

ables that are included in these data sets, can be obtained from their help pages:

help( "EmplUK", package="plm" )
help( "Grunfeld", package="plm" )

3 Exploring the Data Sets

Panel data sets by definition contain a cross-sectional dimension (i ¼ 1, …, n)
and a time dimension (t ¼ 1, …, T). Panel data sets, however, can have more

complicated structures and hierarchies, e.g., observations from firm i in city j
in country k at time t. Furthermore, panel data sets can be balanced or unbal-

anced. A balanced panel data set includes observations from all possible com-

binations of the cross-sectional dimension (i ¼ 1, …, n) and the time dimension

(t ¼ 1, …, T) so that its total number of observations is N ¼ n � T. In contrast,
in an unbalanced panel data set, observations are missing for some combina-

tions of the cross-sectional dimension (i ¼ 1, …, n) and the time dimension

(t ¼ 1, …, T) so that its total number of observations is N < n � T and individ-

ual time series can differ in length. Unbalanced panel data sets can sometimes

cause problems with certain tests, and not all estimators in the plm package can

handle these panel data sets. Therefore, in order to know what we are dealing

with, it is wise to first explore the data set at hand.

In this section, we explore the employment data set (EmplUK). The invest-

ment data set (Grunfeld) can be explored in the same way. Exploring the invest-

ment data set is even simpler than exploring the employment data set because

the investment data set is a balanced panel data set, while the employment data

set is an unbalanced panel data set.

What are the names of the variables in the data set?

names( EmplUK )

Display the first six observations:

head( EmplUK )

What is the number of observations?

nrow( EmplUK )
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What are the identifiers of the firms in the data set?

unique( EmplUK$firm )

What is the number of firms in the data set?

length( unique( EmplUK$firm ) )

Which years are included in the data set?

unique( EmplUK$year )

What is the number of years that are included in the data set?

length( unique( EmplUK$year ) )

How many duplicate firm-year combinations are in the data set?

sum( duplicated( EmplUK[, c("firm", "year")]))

There are no duplicate firm-year combinations. Therefore, the number of

unique firm-year combinations is equal to the number of observations (1031):

nrow( unique( EmplUK[ , c( "firm", "year" ) ] ) )

How many observations are included in each of the 9 years?

table( EmplUK$year )

Illustrate this graphically:

barplot( table( EmplUK$year ) )

How many firms are how many times (years) included in the data set?

table( table( EmplUK$firm ) )

Only 14 out of the 140 firms are in the data set for all 9 years, while most of the

firms (103) are in the data set for 7 years.

How did the wage rate (unweighted average wage rate of the firms included

in the data set) change over time?

aggregate( wage � year, EmplUK, mean )

How did the distribution of the wage rates change over time?

boxplot( wage � year, data = EmplUK )
lines( aggregate( wage � year, EmplUK, mean )$wage,

col="blue", lwd=2 )

How did the distribution of employment change over time? As the distribution

of the employment is highly right-skewed (i.e., many firms have a relatively

small number of employees and a few firms have a large number of employees),

we display the employment in log-scale:

boxplot( log( emp ) � year, data=EmplUK )
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4 OLS Regression

4.1 Pooled OLS Regression

We use the investment data set (Grunfeld) to estimate a (static) investment

equation:

invit ¼ β0 + β1valueit + β2capitalit + uit, (1)

where invit indicates the firm’s gross investment, valueit indicates the firm’s

value, capitalit indicates the firm’s capital stock, uit is an unobserved error term,

subscript i ¼ 1, …, n indicates the firm, subscript t ¼ 1, …, T indicates the

year, and β0, β1, and β2 are coefficients to be estimated. In case of the investment

data set (Grunfeld), the number of firms is n ¼ 10 and the number of time

periods is T ¼ 20. The following command estimates this model by OLS

and, thus, ignores the panel structure of the data set, any dynamic (nonstatic)

processes, and any potential endogeneities of the explanatory variables:

invOLS <– lm( inv � value + capital, data=Grunfeld )

The problem with this approach—as demonstrated in Balestra and Nerlove

(1966)—is that a panel data set usually does not fulfill the assumptions of a sim-

ple linear regression model such as OLS. A standard linear regression model

assumes that the observations (yit, xit) are i.i.d. random draws from a target pop-

ulation with fixed distributional parameters. The model further assumes that the

outcome of the dependent variable yit is conditioned on a (column) vector of

covariates xit (potentially including a constant):

E yitj xitð Þ¼ x0itβ 8i, t (2)

Var yitj xitð Þ¼ σ2 8i, t, (3)

where β is a (column) vector of unknown coefficients with the same length as xit
and σ2 indicates the variance of the conditional distribution of yit. In case of

panel data, we often do not have a common conditional probability density

function of yit conditional on xit for all cross-sectional units i at all times t,
i.e., the conditional probability density function of yit conditional on xit differs

between cross-sectional units i and/or between time periods t. Often there are

time-invariant individual effects and/or individual-invariant time effects

(observed or unobserved) that affect individual outcomes. The OLS estimator

usually will produce smaller standard errors and, therefore, have higher signif-

icance levels than estimates of panel data estimators, such as the fixed- or

random-effects estimators, that properly take said effects into account. Ignoring
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invariant effects, however, leads to inefficient estimators (in every case) and

biased ones if the individual effects are correlated with some covariates. There-

fore, OLS in a panel data context is likely to produce biased and, thus, poten-

tially misleading estimates.

4.2 Least-Squares Dummy Variables Estimation

If the conditional density of y given x varies between individuals (i) or between
time periods (t), fundamental theorems for statistical inference, such as the law

of large numbers and the central limit theorem, are difficult to implement. One

way to restore homogeneity across individuals (i) and/or over time periods (t) is
to add further explanatory variables, say zit, so that the conditional expectation

becomes:

E yitj xit, zitð Þ: (4)

In order to take into account (at least to some extent) the panel structure of

the data set in our example of the investment model, we can add firm-specific

(αj) and/or time-specific (γj) effects:

invit ¼ β0 + β1valueit + β2capitalit +
Xn

j¼2

αjI i¼ jð Þ +
XT

j¼2

γjI t¼ jð Þ+ uit, (5)

where I(.) is an indicator function that is one if the condition is fulfilled and zero
otherwise, αj ; j ¼ 2, …, n and γj; j ¼ 2, …, T are additional coefficients to be

estimated, and all other symbols are defined as before.

This model still can be estimated by OLS. If one specifies categorical vari-

ables (called factor variables in R) as explanatory variables, R automatically

generates dummy variables for all but the first levels of these categorical vari-

ables. The following commands estimate model (5) with: firm-specific effects

only, time-specific effects only, and both firm-specific and time-specific effects:

invLSDVi <– lm( inv � value + capital + factor( firm ),
data=Grunfeld )

invLSDVt <– lm( inv � value + capital + factor( year ),
data=Grunfeld )

invLSDV2<– lm( inv � value + capital + factor( firm ) +
factor( year ), data=Grunfeld )

Using the investment equation with only one explanatory variable (capital) as
(simplified) example, the following code creates a figure that demonstrates the

effect of taking into account individual time-invariant effects in comparison to a

simple pooled OLS regression (thick black line):

invLSDVi1<– lm( inv � capital + factor( firm ),
data=Grunfeld )
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invHat <– fitted( invLSDVi1 )
library( "car" )
scatterplot( invHat � capital j firm, data=Grunfeld,

legend=list( coords="bottomright" ) )
abline( lm( inv � capital, data=Grunfeld ), lwd=3,

col="black" )
legend( "topleft", "Pooled OLS regression line",

col="black", lwd=3 )

The resulting Fig. 1 indicates that the intercepts (and, but to a lesser extent, also

the slope parameter) notably differ between the 10 firms and the pooled OLS

estimates, which demonstrates the bias that results from the pooled estimation.

The reasoning is as follows (Balestra & Nerlove, 1966): Let’s assume a panel

data set with time-invariant individual effects. We then can write the error

term as:

uit ¼ αi + Eit: (6)

We assume that E(αiєit) ¼ 0 and that E(αi) ¼ E(єit) ¼ 0. Furthermore, we

assume that:

E αiαj
� �¼ σ2α if i¼ j

0 if i 6¼ j

�
(7)

and that:

E EitEjs
� �¼ σ2E if i¼ j, t¼ s

0 otherwise

�
(8)
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FIG. 1 Pooled regression vs. regression with firm-fixed effects.
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For one individual in the panel data set, the covariance matrix of the error

term ui ¼ (ui1, …, uiT)
0 is:

E uiu
0
i

� �¼
σ2E + σ

2
α σ2α ⋯ σ2α

σ2α σ2E + σ
2
α ⋯ σ2α

⋮ ⋮ ⋱ ⋮
σ2α σ2α ⋯ σ2E + σ

2
α

0

BB@

1

CCA8i: (9)

Please note that—by assumption—E(u1u
0
1) ¼ E(u2u

0
2) ¼ … ¼ E(unu

0
n).

If we assume no cross-sectional dependence or any other disturbances, the

covariance matrix of the entire error term u ¼ (u01,u02, … ,u0n)0 is:

E uu0ð Þ ¼
E u1u

0
1

� �
0 ⋯ 0

0 E u2u
0
2

� �
⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ E unu

0
n

� �

0

BB@

1

CCA: (10)

We can clearly see that the off-diagonal elements of the individual blocks,

E(uiu
0
i), are nonzero unless the variance of the time-invariant individual effects

also is zero, which would remove all individual effects (i.e., αi ¼ 0 8 i ¼ 1,…,
n) and, therefore, result in the pooled model. If there are individual effects and

we conduct a pooled OLS estimation without taking into account the previously

discussed error structure, the OLS estimator still will be consistent as long as the

composite error uit and, in particular, its component αi, is independent from the

regressors. The OLS estimator, however, will be inefficient, and the OLS esti-

mate of the parameters’ covariance matrix and, therefore, the standard errors,

will be biased. If, on the contrary, any part of the composite error, and in par-

ticular the individual effect, is correlated with the regressors then the OLS

estimates for the parameters will be biased and inconsistent as well.

Model specifications as in Eq. (5) that take into account individual or time

effects by including dummy variables as additional explanatory variables are

safe in this respect, their consistency relying only on the usual exogeneity con-

dition (E(E jX) ¼ E(E)). They are called “least-squares dummy variables”

(LSDV) estimators. However, if a panel data set contains observations from

many different individuals or many different time periods, the estimation

includes a large number of coefficients of the individual and/or time dummy

variables (n + T � 2 in case of both individual-specific and time-specific

effects), which could result in numerical problems and/or could require com-

puters with large amounts of memory (RAM). A further problem is that the

inclusion of such dummy variables can confuse the relationship between yit
and xit, which is often the researcher’s main interest, because of a considerable

loss in degrees of freedom and/or multicollinearity. These are some of the rea-

sons for using specific panel-data specifications for econometric estimations

with panel data, for example, those that we will later discuss in this chapter.
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5 Organization, Management, and Preparation of Panel Data

5.1 Re-Ordering of Observations

In the investment data set (Grunfeld), the observations are ordered primarily

according to the firm and secondarily according to the year:

Grunfeld[ c( 1:3, 198:200 ), 1:2 ]
## firm year
## 1 1 1935
## 2 1 1936
## 3 1 1937
## 198 10 1952
## 199 10 1953
## 200 10 1954

The following command reorders the observations so that they are ordered

primarily according to the year and secondarily according to the firm:

GrunfeldSortYear <– Grunfeld[
order(Grunfeld$year, Grunfeld$firm ), ]

GrunfeldSortYear[ c( 1:3, 198:200 ), 1:2 ]
## firm year
## 1 1 1935
## 21 2 1935
## 41 3 1935
## 160 8 1954
## 180 9 1954
## 200 10 1954

5.2 Conversion between “Long Format” and “Wide Format”

Both the employment data set (EmplUK) and the investment data set (Grunfeld)
are in “long format,” that is, each row of the data set corresponds to a specific

individual-time (in our examples: firm-year) combination. In this section, we

use the investment data set (Grunfeld) as an example. The following command

converts this data set to “wide format” so that each row of the data set corre-

sponds to one specific firm2:

GrunfeldFirms <– reshape(Grunfeld, idvar="firm",
timevar="year", direction="wide")

dim(GrunfeldFirms)
## [1] 10 61

2. Package tidyr provides the functions gather() and spread() that can be used instead of

reshape() to convert data sets between “long format” and “wide format.”
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When reshape() converts a data set from “long format” to “wide format”, it

adds an attribute "reshapeWide" that provides information about the data struc-

ture.When converting a data set that has an attribute "reshapeWide" from “wide

format” back to “long format,” the user does not need to provide additional

information on the data structure because this information is available in the

attribute "reshapeWide":

Grunfeld2 <– reshape(GrunfeldFirms, direction="long")

The following command confirms that the resulting data set is identical to the

original data set (except for some of the variable names and the ordering of the

observations):

all.equal(Grunfeld2, GrunfeldSortYear,
check.attributes = FALSE)

## [1] TRUE

The following code removes the attribute "reshapeWide" so that we can dem-

onstrate how one can convert a data set from “wide format” to “long format”

that has not been converted from a data set in “long format” by using

reshape() and, thus, does not have an attribute "reshapeWide":

attr(GrunfeldFirms, "reshapeWide") <– NULL
Grunfeld2b <– reshape( GrunfeldFirms, idvar="firm",

timevar="year",
varying=lapply( c( "inv.", "value.", "capital." ),

function(x) paste0( x, 1935:1954 ) ),
times=1935:1954, direction="long" )

all.equal( Grunfeld2, Grunfeld2b, check.attributes = FALSE )
## [1] TRUE

Sometimes, we want to obtain a data set in “wide format,” where each row of the

data set corresponds to one specific time period (e.g., year) rather than to one

specific individual (e.g., firm). The following command converts the invest-

ment data set (Grunfeld) to “wide format” so that each row corresponds to

one specific year:

GrunfeldYears <– reshape( Grunfeld, idvar="year",
timevar="firm", direction="wide" )

dim( GrunfeldYears )
## [1] 20 31

As before, reshape() added an attribute "reshapeWide" that provides informa-

tion about the data structure.

Because the data set GrunfeldYears has an attribute "reshapeWide",
reshape() does not require additional information about the data structure

for converting the data set from “wide format” back to “long format”:

Grunfeld3 <– reshape( GrunfeldYears, direction="long" )
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The following command confirms that the resulting data set is identical to the

original data set (except for some of the variable names and the ordering of the

variables):

all.equal( Grunfeld3[ , c( 2, 1, 3:5 ) ], Grunfeld,
check.attributes=FALSE )

## [1] TRUE

As before, we remove the attribute "reshapeWide" so that we can demonstrate

how one can convert a data set from “wide format” to “long format” that has not

been converted from “long format” by using reshape() and, thus, does not have
an attribute "reshapeWide":

attr( GrunfeldYears, "reshapeWide" ) <– NULL
Grunfeld3b <– reshape( GrunfeldYears, idvar=year,

timevar="firm",
varying=lapply( c( "inv.", "value.", "capital." ),

function(x) paste0( x, 1:10 ) ), direction="long" )
all.equal( Grunfeld3, Grunfeld3b, check.attributes = FALSE )
## [1] TRUE

5.3 Creating a Balanced Panel Data Set from an Unbalanced
Panel Data Set

Because the investment data set (Grunfeld) already is balanced, we use the

employment data set (EmplUK) in this section as an example.

The following command identifies the firms that are in the data set in all of

the 9 years that are covered in this data set:

firmsAllYears <– names( table(EmplUK$firm) ) [
table(EmplUK$firm) == 9 ]

Now, we can extract the observations of the firms that are in all 9 years of the

data set:

EmplUKBal <– subset( EmplUK, firm %in% firmsAllYears )
dim( EmplUKBal )
## [1] 126 7
length( unique( EmplUKBal$firm ) )
## [1] 14
length( unique( EmplUKBal$year ) )
## [1] 9

The balanced data set has observations from 14 firms and 9 years and, thus, in

total 14 � 9 ¼ 126 observations.

Alternatively, we can create a balanced panel data set that includes all time

periods, for which observations from all individuals are available. The
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following command identifies the years for which data from all 140 firms are

available:

yearsAllFirms <– names( table(EmplUK$year) ) [
table(EmplUK$year) == 140 ]

Now, we can extract the observations of the years for which data from all 140

firms are available:

EmplUKBalYears <– subset( EmplUK, year %in% yearsAllFirms )
dim( EmplUKBalYears )
## [1] 700 7
length( unique( EmplUKBalYears$year ) )
## [1] 5
length( unique( EmplUKBalYears$firm ) )
## [1] 140

This balanced data set has observations from 140 firms and 5 years and, thus, in

total 140 � 5 ¼ 700 observations.

5.4 Aggregating Panel Data Sets

The following command creates a data set, in which each observation corre-

sponds to one firm and the values of the variables indicate the sums over all

of the firm’s observations in all available time periods:

GrunfeldFirmSum <– aggregate( Grunfeld,
by=list( Grunfeld$firm ), FUN=sum )

The following command creates a data set, where each observation corresponds

to one firm and the values of the variables indicate the mean values over all of

the firm’s observations in all available time periods:

GrunfeldFirmMean <– aggregate( Grunfeld,
by=list( Grunfeld$firm ), FUN=mean )

5.5 Preparing the Data Set for Estimations with the plm Package

In this chapter, we will use the plm package (Croissant & Millo, 2008) to esti-

mate various specifications and to conduct various specification tests of panel

data models. The following command loads the plm package:

library( "plm" )

The estimation of panel data models with the plm package requires that the data

sets are in “long format.” If a data set is in “wide format,” it can be converted to

“long format” using the reshape() command as briefly illustrated in

Section 5.2. Because the two data sets that we use in our analysis, i.e., the
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investment data set (Grunfeld) and the employment data set (EmplUK), are
already in “long format,” we do not need to convert them.

The pdata.frame() function is used in the plm package to add information

about the panel data structure to the data set, implicitly or explicitly. The fol-

lowing command explicitly adds this information to the investment data set

(Grunfeld):

GrunfeldPdata <– pdata.frame( Grunfeld,
index=c( "firm", "year" ) )

The function pdata.frame() modifies the data set in the following ways:

l It sets the class to "pdata.frame" (inheriting from class "data.frame"):

class( GrunfeldPdata )
## [1] "pdata.frame" "data.frame"

l It adds an attribute "index" to the data set and to each variable in the data
set, which is a data.frame with two variables, namely the individual

identifier and the time identifier:

attr(GrunfeldPdata, "index")[c(1:3, 198:200),]
## firm year
## 1 1 1935
## 2 1 1936
## 3 1 1937
## 198 10 1952
## 199 10 1953
## 200 10 1954
all.equal( attr( GrunfeldPdata, "index" ),

attr( GrunfeldPdata$inv, "index" ) )
## [1] TRUE

l It sets the class of each individual variable to "pseries", inheriting from
the original class of the variable, e.g.:

class( GrunfeldPdata$inv )
## [1] "pseries" "numeric"

l It modifies the row names of the data set so that they indicate the indi-

vidual identifier and the time identifier:

rownames( GrunfeldPdata ) [ c( 1:3, 198:200 ) ]
## [1] "1–1935" "1–1936" "1–1937" "10–1952" "10–1953" "10–1954"

l It converts the variables that identify the individuals and the time periods

to categorical (factor) variables:

class( GrunfeldPdata$firm )
## [1] "pseries" "factor"
class( GrunfeldPdata$year )
## [1] "pseries" "factor"
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The explicit conversion of the data set with pdata.frame() is not necessary if

the first variable of the data set is the individual identifier and the second var-

iable is the time identifier. In this case, the data set can be used as is; the con-

version will be done internally by the software, transparently to the user.

Because in both of the data sets that we use in our chapter, i.e., the invest-

ment data set (Grunfeld) and the employment data set (EmplUK), the first var-
iable is the individual identifier and the second variable is the time identifier, we

do not need to use pdata.frame() to prepare our data sets. For example, the

function pdim() can identify the panel structure of these two data sets even with-
out having applied pdata.frame() to these data sets:

pdim( Grunfeld )
## Balanced Panel: n = 10, T = 20, N = 200
pdim( EmplUK )
## Unbalanced Panel: n=140, T=7–9, N=1031

5.6 Lagged Variables and First Differences

If functions lag() and diff() that create lagged variables and first differences

of variables, respectively, are applied to variables inside regular data.frames,
they do not take into account the panel structure and assume that the values from

the previous rows are the values from the previous time periods. If the data set

has been transformed into a pdata.frame, then the variables inside will be of

class pseries; therefore, the functions lag() and diff()will correctly take into
account the panel data structure:

cbind(
firm = Grunfeld$firm,
year = Grunfeld$year,
inv = Grunfeld$inv,
invLag = c( NA, lag( Grunfeld$inv )[ –200 ] ),
invDiff = c( NA, diff( Grunfeld$inv )[ –200 ] ),
invLagPanel = lag( GrunfeldPdata$inv ),
invDiffPanel = diff( GrunfeldPdata$inv ) )[

c( 1:3, 19:23 ), ]
## firm year inv invLag invDiff invLagPanel
## 1–1935 1 1935 317.6 NA NA NA
## 1–1936 1 1936 391.8 317.6 74.2 317.6
## 1–1937 1 1937 410.6 391.8 18.8 391.8
## 1–1953 1 1953 1304.4 891.2 413.2 891.2
## 1–1954 1 1954 1486.7 1304.4 182.3 1304.4
## 2–1935 2 1935 209.9 1486.7 –1276.8 NA
## 2–1936 2 1936 355.3 209.9 145.4 209.9
## 2–1937 2 1937 469.9 355.3 114.6 355.3
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## invDiffPanel
## 1–1935 NA
## 1–1936 74.2
## 1–1937 18.8
## 1–1953 413.2
## 1–1954 182.3
## 2–1935 NA
## 2–1936 145.4
## 2–1937 114.6

If functions lag() and diff() are used directly to specify themodel for panel

data estimations (in argument formula), these functions take into account the

panel data structure even if one has not applied pdata.frame() to the data set.

6 Estimation of OLS-Based Linear Panel Data Models

Tocapture theheterogeneity in the data that is not capturedbyxit, we could assume

that the parameter vector θit ¼ (βit,σit
2) varies with time and over all individuals:

E yitj xitð Þ¼ xitβit (11)

Such amodel is not estimable. Therefore, the idea of panel data estimators is to

impose a structure on θit that levels a compromise between estimability and het-

erogeneity. This is mainly done by decomposing θit into θit ¼ (β, λit, σ
2) where β

and σ2 are fixed structural parameters, which are the same over all i and all t, and λit
are incidental parameters, which vary across i and/or t, and, thus, can capture time-

invariant individual effects (αi), individual-invariant time effects (γt), or both.
The assumption that all slope parameters β are structural parameters, how-

ever, should not be taken lightly. Especially for panel data sets with large T, there
is clearly a trade-off between the advantages of a panel data model, as discussed

in the introduction, and loss of fit by assuming fixed slope parameters across the

individuals. In any case, the poolability of the individual models should be tested.

In this section, we use the investment data set (Grunfeld) and various OLS-

based panel data specifications to estimate the (static) investment equation (Eq. 1).

6.1 Variable Coefficients Model

The variable coefficients model for panel data allows the coefficients to vary

either between individuals or between time periods. Therefore, the (static)

investment equation (Eq. 1) would become either:

invit ¼ β0i + β1ivalueit + β2icapitalit + Eit (12)

or:

invit ¼ β0t + β1tvalueit + β2tcapitalit + Eit, (13)
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respectively, where βji; j ¼ 0, …, 2; i ¼ 1, …, n and βjt; j ¼ 0,…, 2; t ¼ 1,…,
T are the coefficients to be estimated and all other symbols are defined as before.

These two models can be estimated by the following commands:

invVCMi <– pvcm( inv � value + capital, data = Grunfeld )

invVCMt <– pvcm( inv � value + capital, effect = "time",
data = Grunfeld )

The variable coefficients model with individual-specific coefficients (Eq. 12)

might be inefficient or even infeasible if the number of time periods (T) is small

compared to the number of explanatory variables (k, including a constant)

because it requires the estimation of n � k coefficients with n � T observations

in balanced panel data sets and fewer observations in unbalanced panel data sets.

Likewise, thevariable coefficientsmodelwith time-specific coefficients (Eq. 13)

might be inefficient or even infeasible if the number of individuals (n) is small

compared to the number of explanatory variables (k, including a constant)

because it requires the estimation of T � k coefficients with T � n observations
in balanced panel data sets and fewer observations in unbalanced panel data sets.

6.2 Fixed-Effects Estimator Based on “Within” Transformation

The most commonly used estimators for linear panel data models are fixed-

effects estimators based on the “within” transformation. We demonstrate the

“within” transformation with a model that includes individual effects (αi)
but—for simplicity—no time effects (γt):

yit ¼ x0itβ + αi + Eit (14)

We define the following variables:

yi � T�1
XT

t¼1

yit (15)

xi � T�1
XT

t¼1

xit (16)

Ei�T�1
XT

t¼1

Eit (17)

eyit � yit� yi (18)

exit � xit�xi (19)

E
�
it�Eit� Ei (20)

Now we can conduct the “within” transformation:

eyi ¼ yit� yi (21)
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eyi ¼ x0itβ + αi + Eit�T�1
XT

t¼1

yit (22)

eyi ¼ x0itβ + αi + Eit�T�1
XT

t¼1

x0itβ + αi + Eit
� �

(23)

eyi ¼ x0itβ + αi + Eit�T�1
XT

t¼1

x0itβ�T�1
XT

t¼1

αi�T�1
XT

t¼1

Eit (24)

eyi ¼ x0itβ + αi + Eit� T�1
XT

t¼1

xit

 !0
β�αiT

�1
XT

t¼1

1� Ei (25)

eyi ¼ xitβ + αi + Eit�x0iβ�αi� Ei (26)

eyi ¼ xit�xið Þ0β + Eit� Ei (27)

eyi ¼ex0itβ +eEit (28)

The fixed-effects “within” estimator can be obtained by applying the OLS

method to the model with “within” transformed variables (Eq. 28). If the model

contains time effects (instead of or in addition to individual effects), the time

effects can be removed in a similar way as the individual effects were removed

earlier.

In case of the investment equation (Eq. 1), the fixed-effects model is spec-

ified as:

invit ¼ β0 + β1valueit + β2capitalit + uit (29)

uit ¼ αi + γt + Eit, (30)

where the overall error term uit can be divided into three components, of which

αi; i ¼ 1, …, n picks up firm-specific effects, γt; t ¼ 1, …, T picks up time-

specific effects, and Eit picks up the remaining (idiosyncratic) component of

the overall error term uit. The model specified in Eqs. (29) and (30) is the

so-called two-ways fixed-effects model because it takes into account both

firm-specific effects and time-specific effects. When setting all time-specific

effects to zero (γt ¼ 0 8 t ¼ 1,…, T), the model specified in Eqs. (29) and

(30) becomes a one-way individual-fixed-effects model. Similarly, when set-

ting all individual-specific effects to zero (αi ¼ 0 8 i ¼ 1,…, n), the model

specified in Eqs. (29) and (30) becomes a one-way time fixed-effects model.

The fixed-effects model allows individual- and/or time-specific effects to

be correlated with the covariates xit, which is an advantage over the random-

effects estimator, as such correlations are more the rule than the exception.

The fixed-effects estimator, however, loses degrees of freedom as n or T
increase and the fixed-effects estimator rules out the inclusion of time invari-

ant variables, because their effects are absorbed by the fixed-effects

coefficient.
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The “within” transformation subtracts the group-specific mean values from

the dependent variable and the explanatory variables, which removes the firm-

specific effects (αi ¼ 0 8 i ¼ 1, …, n) or the time-specific effects (γt ¼ 0 8
t ¼ 1,…, T) so that the model can be estimated by applying the OLS method

on the “within”-transformed variables.

The following commands use the “within” estimator to estimate the fixed-

effects model specified in Eqs. (29) and (30) with: firm-specific effects only,

time-specific effects only, and both firm-specific and time-specific effects:

invFEi <– plm( inv � value + capital, data=Grunfeld )

invFEt <– plm( inv � value + capital, effect = "time",
data = Grunfeld )

invFE2 <– plm( inv � value + capital, effect="twoways",
data = Grunfeld )

The slope coefficients estimated by the “within” estimators are equal to the

slope coefficients estimated by the corresponding LSDV estimators3:

all.equal( coef( invFEi ), coef( invLSDVi ) [
c( "value", "capital" ) ] )

## [1] TRUE
all.equal( coef( invFEt ), coef( invLSDVt ) [

c( "value", "capital" ) ] )
## [1] TRUE
all.equal( coef( invFE2 ), coef( invLSDV2 ) [

c( "value", "capital" ) ] )
## [1] TRUE

Asbriefly discussed in Section 4.2, the LSDVhas several disadvantages compared

to the fixed-effects estimator based on the “within” transformation, e.g., larger

memory requirements of the computer and lower numerical accuracy. Therefore,

we recommend applying “within” estimators instead of LSDV estimators.

6.3 Pooled Estimation

The pooled model (Eq. 1) that ignores the panel data structure not only can be

estimated by the lm() function but also by the plm() function with argument

model set to "pooling":

invPool <– plm( inv � value + capital, model = "pooling",
data = Grunfeld )

3. It can be proven mathematically that the least-squares dummy variables (LSDV) estimator and

the fixed-effects “within” estimator are identical. Because this proof is lengthy and not essential for

understanding panel data econometrics, we do not show it here.

Analysis of Panel Data Using R Chapter 12 363



The estimated coefficients and standard errors are identical to those obtained in

Section 4.1.

all.equal( coef( summary( invPool ) ),
coef( summary( invOLS ) ), check.attributes = FALSE )

## [1] TRUE

6.4 Testing Poolability

The relationships between the previously estimated panel data models are illus-

trated in Fig. 2. If two models are connected by an arrow, the lower model is

nested in the upper model, whereas the implied parameter restrictions are indi-

cated beside the arrow. In the following, the parameter restrictions of all nested

relationships between the previously estimated models are tested.

The following two commands conduct the sameWald test (F-test) for testing

the null hypothesis that the slope coefficients are equal across all individuals

(H0: βi ¼ β; i ¼ 1, …, n):

pooltest( invFEi, invVCMi )
##
## F statistic
##
## data: inv � value + capital
## F = 5.7805, df1 = 18, df2 = 170, p-value = 1.219e-10
## alternative hypothesis: unstability
pooltest( inv � value + capital, data = Grunfeld )
##
## F statistic
##
## data: inv � value + capital
## F = 5.7805, df1 = 18, df2 = 170, p-value = 1.219e-10
## alternative hypothesis: unstability

The test results indicate that the slope coefficients differ significantly between

individuals.

FIG. 2 Relationships between the previously estimated panel data models.
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The following two commands conduct the sameWald test (F-test) for testing

the null hypothesis that all coefficients (slope coefficients and intercepts/indi-

vidual effects) are equal across all individuals (H0: βi ¼ β; i ¼ 1,…, n and

αi ¼ 0; i ¼ 1, …, n):

pooltest( invPool, invVCMi )
##
## F statistic
##
## data: inv � value + capital
## F = 27.749, df1 = 27, df2 = 170, p-value < 2.2e-16
## alternative hypothesis: unstability
pooltest( inv � value + capital, data=Grunfeld,

model="pooling" )
##
## F statistic
##
## data: inv � value + capital
## F = 27.749, df1 = 27, df2 = 170, p-value < 2.2e-16
## alternative hypothesis: unstability

The test results indicate that the slope coefficients and/or the intercepts differ

significantly between individuals.

The following two commands conduct the sameWald test (F-test) for testing

the null hypothesis that the slope coefficients are equal across all time periods

(H0: βt ¼ β; t ¼ 1, …, T):

pooltest( invFEt, invVCMt )
##
## F statistic
##
## data: inv � value + capital
## F = 1.5495, df1 = 38, df2 = 140, p-value = 0.03553
## alternative hypothesis: unstability
pooltest( inv � value + capital, data=Grunfeld,

effect="time" )
##
## F statistic
##
## data: inv � value + capital
## F = 1.5495, df1 = 38, df2 = 140, p-value = 0.03553
## alternative hypothesis: unstability

The test results indicate that the slope coefficients differ significantly between

time periods at 5% significance level.

Thefollowing twocommandsconduct thesameWald test (F-test) for testing the

null hypothesis that all coefficients (slope coefficients and intercepts/time effects)

are equal across all time periods (H0: βt ¼ β; t ¼ 1,…, T and γt ¼ 0; t ¼ 1,…, T):

Analysis of Panel Data Using R Chapter 12 365



pooltest( invPool, invVCMt )
##
## F statistic
##
## data: inv � value + capital
## F = 1.1204, df1 = 57, df2 = 140, p-value = 0.2928
## alternative hypothesis: unstability
pooltest( inv � value + capital, data=Grunfeld,

effect = "time", model = "pooling" )
##
## F statistic
##
## data: inv � value + capital
## F = 1.1204, df1 = 57, df2 = 140, p-value = 0.2928
## alternative hypothesis: unstability

The test results do not reject the null hypothesis that all coefficients (slope coef-

ficients and intercepts/time effects) are equal across all time periods.

The following commands test the (joint) null hypothesis that there are no

individual effects and no time effects (H0: αi ¼ 0; i ¼ 1, …, n and γt ¼ 0;

t ¼ 1, …, T):

pooltest( invPool, invFE2 )
##
## F statistic
##
## data: inv � value + capital
## F = 17.403, df1 = 28, df2 = 169, p-value < 2.2e-16
## alternative hypothesis: unstability
pFtest( invFE2, invPool )
##
## F test for twoways effects
##
## data: inv � value + capital
## F = 17.403, df1 = 28, df2 = 169, p-value < 2.2e-16
## alternative hypothesis: significant effects
pFtest( inv � value + capital, effect="twoways",

data=Grunfeld )
##
## F test for twoways effects
##
## data: inv � value + capital
## F = 17.403, df1 = 28, df2 = 169, p-value < 2.2e-16
## alternative hypothesis: significant effects
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These three commands conduct the same F-test that tests the pooled model

against the two-ways fixed-effects model. Therefore, these three commands

return exactly the same results.

If the random-effects hypothesis holds, i.e., if correlation between the indi-

vidual effects (if any) and the regressors is excluded, but one still wants to test

whether individual effects are present at all (typically, for deciding whether to

use OLS or a random-effects estimator), one can use a Lagrange Multiplier test:

plmtest( invPool, effect = "twoways" )
##
## Lagrange Multiplier Test - two-ways effects (Honda) for
## balanced panels
##
## data: inv � value + capital
## normal = 18.181, p-value < 2.2e-16
## alternative hypothesis: significant effects

This command tests the same null hypothesis as the previous three commands,

but it conducts the Lagrange multiplier test instead of the F-test. The LM test is

appropriate only under the random-effects hypothesis and will be inconsistent if

the individual effects are of the correlated (fixed) type. All test results indicate

that there are significant individual effects and/or time effects.

The following commands test the null hypothesis that there are no individual

effects (H0: αi ¼ 0; i ¼ 1, …, n):

library( "lmtest" )
pooltest( invFEt, invFE2 )

##
## F statistic
##
## data: inv � value + capital
## F = 52.362, df1 = 9, df2 = 169, p-value < 2.2e-16
## alternative hypothesis: unstability

waldtest( plm( inv � value + capital + factor(firm),
effect = "time", data = Grunfeld ), 3, test = "F" )

## Wald test
##
## Model 1: inv � value + capital + factor(firm)
## Model 2: inv � value + capital
## Res.Df Df F Pr(>F)
## 1 169
## 2 178 –9 52.362 <2.2e-16 ***
## ---
## Signif. codes:

0 ’***'0.001 ’**'0.01 ’*'0.05 ’.'0.1 ’ ’ 1
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pFtest( invFEi, invPool )

##
## F test for individual effects
##
## data: inv � value + capital
## F = 49.177, df1 = 9, df2 = 188, p-value < 2.2e-16
## alternative hypothesis: significant effects

pFtest( inv � value + capital, effect="individual",
data=Grunfeld )

##
## F test for individual effects
##
## data: inv � value + capital
## F = 49.177, df1 = 9, df2 = 188, p-value < 2.2e-16
## alternative hypothesis: significant effects

The first command loads package lmtest that provides the function waldtest().
The following two commands conduct two identical F-tests for individual

effects by testing the time-fixed-effects model against the two-ways fixed-

effects model (i.e., in the presence of time-fixed effects). The fourth and fifths

commands also conduct identical F-tests for individual effects, but these com-

mands test the pooled model against the individual-fixed-effects model (i.e., in

the absence of time-fixed effects). All test results indicate that there are signif-

icant individual effects.

The following commands test the null hypothesis that there are no time

effects (H0: γt ¼ 0; t ¼ 1, …, T):

pooltest( invFEi, invFE2 )

##
## F statistic
##
## data: inv � value + capital
## F = 1.4032, df1 = 19, df2 = 169, p-value = 0.1309
## alternative hypothesis: unstability

waldtest( plm( inv � value + capital + factor(year),
data=Grunfeld ), 3, test="F" )

## Wald test
##
## Model 1: inv � value + capital + factor(year)
## Model 2: inv � value + capital
## Res.Df Df F Pr(>F)
## 1 169
## 2 188 –19 1.4032 0.1309
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pFtest( invFEt, invPool )

##
## F test for time effects
##
## data: inv � value + capital
## F = 0.23451, df1 = 19, df2 = 178, p-value = 0.9997
## alternative hypothesis: significant effects

pFtest( inv � value + capital, effect="time",
data=Grunfeld )

##
## F test for time effects
##
## data: inv � value + capital
## F = 0.23451, df1 = 19, df2 = 178, p-value = 0.9997
## alternative hypothesis: significant effects

plmtest( invPool, effect="time" )

##
## Lagrange Multiplier Test - time effects (Honda) for

balanced panels
##
## data: inv � value + capital
## normal=–2.5404, p-value=0.9945
## alternative hypothesis: significant effects

The first two commands conduct identical F-tests for time effects by testing the

individual-fixed-effects model against the two-ways fixed-effects model (i.e.,

in the presence of individual-fixed effects). The third and fourth commands also

conduct identical F-tests for time effects, but these commands test the pooled

model against the time-fixed-effects model (i.e., in the absence of individual-

fixed effects). The fifth command tests the same null hypothesis as the third

and fourth commands, but it conducts the Lagrange multiplier test instead of

the F-test, testing the absence of individual effects against the alternative of

individual effects of the random type. Neither the F-tests tests nor the Lagrange

multiplier test rejects the null hypothesis that there are no time effects. There-

fore, we can conclude that the time effects are statistically insignificant.

6.5 Obtaining Estimates of the Fixed Effects

In a “within” model with individual fixed effects (αi), the estimates of the fixed

effects can be obtained by taking the average values of both sides of Eq. (14)

over all time periods t for each individual i:

T�1
XT

i¼1

yit ¼ T�1
XT

i¼1

x0itβ + αi + Eit
� �8i (31)
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yi ¼ T�1
XT

i¼1

xitβ + T
�1
XT

i¼1

αi + T
�1
XT

i¼1

Eit8i (32)

yi ¼ xiβ + αi + Ei8i (33)

αi ¼ yi�x0iβ� Ei8i (34)

Replacing β by its estimator β̂ and replacing Ei by its expectation (0), we can
obtain estimates of the individual effects:

α̂i ¼ yi�x0iβ̂ (35)

These estimates of the fixed effects can be obtained by function fixef()4:

fixef( invFEi )

These estimates are individual-specific intercepts that are identical to the inter-

cept of the corresponding least-squares dummy variables (LSDV) model plus

the coefficients of the firm-level dummy variables:

all.equal( c( fixef( invFEi ) ),
coef( invLSDVi )[ "(Intercept)" ]+
c(0, coef( invLSDVi )[

grep( "firm", names( coef( invLSDVi ) ) ) ] ),
check.attributes=FALSE )

## [1] TRUE

Argument type of fixef() can be used to specify a different normalization of

the estimates of the fixed effects. If this argument is set to "dfirst", differences
to the fixed effect of the first individual are returned, which are identical to the

coefficients of the firm-level dummy variables in the corresponding least-

squares dummy variables (LSDV) model:

fixef( invFEi, type="dfirst" )

all.equal( c( fixef( invFEi, type="dfirst" ) ),
coef( invLSDVi )[

grep( "firm", names( coef( invLSDVi ) ) ) ],
check.attributes = FALSE )

## [1] TRUE

If argument type is set to "dmean", fixef() normalizes the fixed effects so that

their mean value is zero:

fixef( invFEi, type="dmean" )

4. Fixed effects have been used frequently in Fixed Effects Vector Decomposition (FEVD) estima-

tions, i.e., in two-stage analyses, where time-invariant explanatory variables are regressed on the

fixed effects in a second stage (Pl€umper & Troeger, 2011). However, Breusch, Ward, Nguyen,

and Kompas (2011a, 2011b) and Greene (2011) have shown that the FEVD is an instrumental var-

iable (IV) estimator that has several problematic properties.

370 Panel Data Econometrics



all.equal( mean( fixef( invFEi, type="dmean" ) ), 0 )
## [1] TRUE

One can test whether the fixed effects differ from zero, from the first

fixed effect, or from their mean (depending on argument type) by applying

the summary() method to fixed effects obtained by fixef():

summary(fixef(invFEi, type = "dmean"))
## Estimate Std. Error t-value Pr(>jtj)
## 1 –11.5528 49.7080 –0.2324 0.8164700
## 2 160.6498 24.9383 6.4419 9.627e-10***
## 3 –176.8279 24.4316 –7.2377 1.130e-11***
## 4 30.9346 14.0778 2.1974 0.0292129*
## 5 –55.8729 14.1654 –3.9443 0.0001129***
## 6 35.5826 12.6687 2.8087 0.0054998**
## 7 –7.8095 12.8430 –0.6081 0.5438694
## 8 1.1983 13.9931 0.0856 0.9318489
## 9 –28.4783 12.8919 –2.2090 0.0283821*
## 10 52.1761 11.8269 4.4116 1.725e-05***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If fixef() is applied to a time fixed-effects model, it returns time effects that

can be obtained in a similar way as the individual effects:

fixef( invFEt )

In the case of a two-ways fixed-effectsmodel,we can set argument effect to either
"individual" or "time" in order to obtain either individual effects or time effects:

fixef( invFE2, effect="individual" )
fixef( invFE2, effect="time" )

6.6 First-Difference Estimator

The first-difference estimator takes the first differences of both the dependent

variable and the explanatory variables in order to remove individual effects in

panel data models:

yit� yit�1 ¼ x0itβ + αi + Eit�x0it�1β�αi� Eit�1 (36)

yit� yit�1 ¼ xit�xit�1ð Þ0β + Eit� Eit�1 (37)

Δyit ¼Δxitβ +ΔEit (38)

The first-difference estimator is more appealing than the “within” estimator

if the errors of the originalmodel are assumed to be nonstationary, as in this case,

taking first differences is likely to reduce them to stationarity. If the untrans-

formed model errors are stationary to begin with, however, first-differencing

will introduce error correlation and, therefore, make the estimator inefficient.
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The first-difference estimator also could be used to remove time effects, but

this is generally not done in practice, because there is no natural ordering of the

individuals (e.g., firms) so that the first-differencing would depend on the arbi-

trarily chosen order of the firms in the data set.

Lastly, one should be aware of that using a first-difference model reduces

the time dimension by one time period.

Function plm() estimates a first-difference model if its argument model is

set to "fd":

invFDi <– plm( inv � value + capital, model="fd",
data=Grunfeld )

The same estimates can be obtained manually by:

invFDim <– lm( diff( GrunfeldPdata$inv ) �
diff( GrunfeldPdata$value ) +
diff( GrunfeldPdata$capital ) )

all.equal( coef( invFDi ), coef( invFDim ),
check.attributes=FALSE )

## [1] TRUE

According to our derivation in Eq. (38), the first-difference model should not

have an intercept. However, plm(..., model="fd") estimates the first-

difference model with an intercept, because this can improve the statistical

properties of the estimation (e.g., this guarantees that the residuals sum to zero).

The estimated intercept in the first-difference model corresponds to the coeffi-

cient of a linear time trend in the original model because a linear time trend as

explanatory variable in the original model (xkit ¼ t) corresponds to a constant

explanatory variable in the first-difference model (△xkit ¼ xkit � xkit�1 ¼ t �
(t � 1) ¼ 1). The intercept in the first-difference model can be suppressed by

adding “–1” to the model formula:

invFDii <– plm( inv � value + capital - 1, model="fd",
data=Grunfeld )

invFDiim <– lm( diff( GrunfeldPdata$inv ) �
diff( GrunfeldPdata$value ) +
diff( GrunfeldPdata$capital ) – 1 )

all.equal( coef( invFDii ), coef( invFDiim ),
check.attributes=FALSE )

## [1] TRUE

In panel data sets with only two time periods, the first-difference estimator gives

exactly the same estimates as the corresponding “within” estimator:

invFD2y<– plm( inv � value + capital - 1, model="fd",
data=Grunfeld[ Grunfeld$year <= 1936, ] )
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invFE2y<– plm( inv � value + capital - 1,
data=Grunfeld[ Grunfeld$year <= 1936, ] )

all.equal( coef( invFD2y ), coef( invFE2y ) )
## [1] TRUE

In panel data sets with more than two time periods, the FD estimator is prone

to (negative) serial correlation, because E[ΔEit ΔEi,t�1] ¼ E[(Eit � Ei,t�1)(Ei,t�1

�Ei,t�2)] ¼ E[EitEi,t�1 � EitEi,t�2 � Ei,t�1
2 + Ei,t�1 Ei,t�2] is likely negative unless

there is strong positive serial correlation in the original disturbance terms,

i.e., E[EitEi,t�1] ¼ E[Ei,t�1 Ei,t�2] ≫ 0. Therefore, one should test for serial cor-

relation. If the errors of a FD model are significantly serially correlated, it is

advisable to estimate the model by the “within” estimator or, alternatively, to

calculate robust standard errors.

7 “Between” Estimator for Panel Data

7.1 Specification of the “Between” Estimator

The “between” estimator takes only the variance in the cross-sectional dimen-

sion into account, averaging over the time dimension. As such, it ignores the

information contained in the time dimension. The “between” estimator is basi-

cally an OLS estimator applied to a time-averaged equation:

yi ¼ xiβ + αi + ui (39)

where yi ¼ T�1
PT

t¼1yit and xii ¼ T�1
PT

t¼1xit. This estimator is not much used in

practice, because it is consistent only if the (unobserved) individual effects (αi)
are uncorrelated with the explanatory variables and in this case, the individual

random-effects estimator is more efficient than the “between” estimator

(Wooldridge, 2010).

7.2 Estimation of the “Between” Estimator

The “between” estimator can be estimated by using plm()with argument model
set to "between":

invB <– plm( inv � value + capital, data=Grunfeld,
effect="individual", model="between" )

The “between” estimator also can be obtained manually by applying the OLS

method to the data set in which each observation corresponds to one firm and

the values of the variables indicate the mean values over all of the firm’s obser-

vations in all available time periods (as created in Section 5.4):

invB2<– lm( inv � value + capital, data=GrunfeldFirmMean )
all.equal( coef( invB ), coef( invB2 ) )
## [1] TRUE
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8 Linear Random-Effects Panel Data Models

The random-effects estimator belongs to the group of feasible generalized least-

squares (FGLS) estimators. This estimator requires that the individual and/or

time effects are uncorrelated with the covariates, while the fixed-effects estima-

tor does not require this assumption. If this assumption is fulfilled, the random-

effects estimator is more efficient than the fixed-effects estimator and, there-

fore, is the preferred estimator. Importantly, however, the random-effects esti-

mator will be inconsistent if it is not.

8.1 Specification of the Random-Effects Model

We can avoid the loss of degrees of freedom resulting from the model specifi-

cation of the “within” estimator if we assume that the invariant effects λit are
random. In the following discussion, we focus on time-invariant individual

effects, αi, but the discussion also applies for individual-invariant time effects,

γt. Two-ways effects are more complicated and are therefore omitted.

In this case αi� IID(0,σα
2) and Eit� IID(0,σE

2). Also, E(αiEit) ¼ 0 and—most

important—E(αixit) ¼ 0 and E(Eitxit) ¼ 0 for all i and t, which means that we

assume strict exogeneity between the covariates and the error terms. The

random-effects estimator is an appropriate specification if we draw a random

sample of N observations from a large population, e.g., a household panel

(Baltagi, 2008).

Random-effects models are estimated by means of Feasible GLS estimators,

which means that one somehow needs to identify the variance-covariance

matrix of the combined error termsΩ ¼ E(uu0). This block-diagonal covariance
matrix displays serial correlation over time only between the observations of the

same individual or cross-sectional correlation over individuals only between the

observations of the same time period. In the case of two-ways effects, however,

the covariance matrix becomes more complicated.

Different methods have been proposed to obtain Ω, they can be accessed

through option random.method in the plm() function:

l "walhus": Wallace and Hussain (1969) propose to substitute u by the OLS

estimates ûOLS, as under the random-effects model assumptions OLS esti-

mates are inefficient but still unbiased and consistent.

l "amemiya": Amemiya (1971) suggests using the LSDV residuals instead of

the OLS residuals.

l "swar": Swamy and Arora (1972) suggest running a “within” regression and

a between regression in order to get estimates for the variance components,

σα
2 and σE

2, from the corresponding mean square errors of the two regressions.

It can be shown that β̂GLS is the weighted average of the β̂within and β̂between
estimators.

l "nerlove": Nerlove (1971) suggests estimating σα
2 as

Pn
i¼1 α̂i� α̂
� �2

= n�1ð Þ,
where α̂i are the dummy coefficients estimated by LSDV. The σ2 are

estimated from the “within” residual sum of squares divided by N.
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8.2 Estimation of the Random-Effects Model

To estimate a random-effects model, we can use the plm() function with

argument model set to "random". As with the fixed-effects estimator,

argument effect can be used to specify whether the estimation should include

individual, time, or two-ways (random) effects. The following command uses

the investment data (Grunfeld) to estimate the investment equation with the

two-ways random-effects estimator:

invRE2 <– plm( inv � value + capital, data=Grunfeld,
effect="twoways", model="random" )

Bydefault,plm() estimates random-effectsmodelsbyapplying theprocedure sug-

gested by Swamy andArora (1972). This procedure, however, can give a negative

value for the estimateof thevarianceof the timeeffect. If this is the case, plm() sets
the variance of the time effect to zero (as in the previous estimation).

We can use argument random.method to choose a different procedure for

estimating the random-effects model, e.g., the procedure of Amemiya (1971):

invRE2a <– plm( inv � value + capital, data=Grunfeld,
effect="twoways", model="random",
random.method="amemiya" ).

Although earlier versions of the plm package were not able to estimate two-

ways random-effects models with unbalanced panel data sets, it is now possible

with the latest version of this package (1.6–6):

emplRE2 <– plm( emp � wage + capital, data=EmplUK,
effect="twoways", model="random" ).

8.3 Estimates of the Variance of the Error Components

To get the variance of the error components of a random-effects model, we can

use function ercomp():

ercomp( invRE2a)
## var std.dev share
## idiosyncratic 2644.13 51.42 0.256
## individual 7452.02 86.33 0.721
## time 243.78 15.61 0.024
## theta: 0.868 (id) 0.2787 (time) 0.2776 (Total)

8.4 Testing the Assumptions of the Random-Effects Model

The assumption of the random-effects estimator is that the invariant effects are

uncorrelated with the covariates. If this condition is fulfilled, the random-effects

estimator is preferred because the estimates are more efficient. The Durbin-Wu-

Hausman test examines the difference between estimates from a fixed-effects

Analysis of Panel Data Using R Chapter 12 375



model and a random-effects model. Because the FE estimators are consistent if

the invariant effects are correlated with the covariates, but the random-effects

estimators are not, a statistically significant difference is interpreted as a rejec-

tion of the random-effects estimator.

phtest( invFE2, invRE2a )
##
## Hausman Test
##
## data: inv � value + capital
## chisq = 8.9626, df = 2, p-value = 0.01132
## alternative hypothesis: one model is inconsistent

The same test can be conducted by the command:

phtest( inv � value + capital, effect="twoway",
random.method="amemiya", data=Grunfeld )

##
## Hausman Test
##
## data: inv � value + capital
## chisq = 8.9626, df = 2, p-value = 0.01132
## alternative hypothesis: one model is inconsistent

The following command uses the auxiliary-regression based version of this test

that was suggested by Wooldridge (2010, Sec. 10.7.3.):

phtest( inv � value + capital, effect="twoway",
data=Grunfeld, method="aux" )

##
## Regression-based Hausman test
##
## data: inv � value + capital
## chisq = 13.117, df = 2, p-value = 0.001418
## alternative hypothesis: one model is inconsistent

This test can be conducted with robust standard errors:

phtest( inv � value + capital, effect="twoway",
data=Grunfeld, method="aux",
vcov=function(x) vcovHC( x, method="white2",

type="HC3" ) )
##
## Regression-based Hausman test, vcov: function(x)
## vcovHC(x, method = "white2", type = "HC3")
##
## data: inv � value + capital
## chisq = 11.164, df = 2, p-value = 0.003765
## alternative hypothesis: one model is inconsistent
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9 Tests for the Error Structure in Panel Data Models

As we have seen before, serial and/or cross-sectional correlation affecting the

error terms of the same individual and/or time period are inherent to panel data

sets. The idiosyncratic error term, however, also can be affected by serial or

cross-sectional correlation, in which case the random- or fixed-effects estima-

tors won’t help.

This section presents some of the most important tests of the error structure

that should be run on every panel data estimation model in order to find irreg-

ularities from the standard matrix (Eq. 10). The difficulty in detecting serial

correlation in the idiosyncratic error term is to separate the serial correlation in

the invariant effects from the serial correlation in the idiosyncratic error term.

Simple marginal tests for one direction of departure from the hypothesis of

spherical errors often are substantially biased; joint tests have power against

both directions, but do not return any information about which error term

causes the problem; conditional tests that actually return this information have

power only against the alternative of interest. Although they are the most pow-

erful tests, they depend strongly on the normality and homoscedasticity of the

error terms (see Croissant & Millo, 2015, for further discussions on this

subject).

9.1 Tests for Serial Correlation

9.1.1 Unobserved-Effects Test

The unobserved-effects test is a semiparametric test for the H0: σα
2 ¼ 0. It is

robust toward nonnormality and heteroscedasticity. The test does not differen-

tiate between time-invariant unobserved effects and serial correlation in the idi-

osyncratic error term. Therefore, rejection of the H0 does not necessarily imply

that time-invariant effects are present.

pwtest(inv � value + capital, data = Grunfeld)
##
## Wooldridge’s test for unobserved individual effects
##
## data: formula
## z = 1.4922, p-value = 0.1356
## alternative hypothesis: unobserved effect

9.1.2 Locally Robust Tests for Serial Correlation and Random
Effects

Function pbsytest() conducts a joint LM test that simultaneously tests

random effects and serial correlation in the idiosyncratic error term. It

assumes normality and homoscedasticity of the idiosyncratic error. Rejection

of the H0, however, does not give any information about the direction of the

deviation.
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pbsytest( inv � value + capital, data=Grunfeld,
test="j" )

##
## Baltagi and Li AR-RE joint test - balanced panel
##
## data: formula
## chisq = 808.47, df = 2, p-value < 2.2e-16
## alternative hypothesis: AR(1) errors or random effects

In another specification, function pbsytest() can test either for random effects:

pbsytest( inv � value + capital, data = Grunfeld,
test = "re" )

##
## Bera, Sosa-Escudero and Yoon locally robust test
## (one-sided) - balanced panel
##
## data: formula
## z = 25.787, p-value < 2.2e-16
## alternative hypothesis: random effects sub AR(1) errors

or AR(1) serial correlation in the idiosyncratic error term:

pbsytest(inv � value + capital, data=Grunfeld,
test="ar" )

##
## Bera, Sosa-Escudero and Yoon locally robust test -
## balanced panel
##
## data: formula
## chisq = 10.31, df = 1, p-value = 0.001323
## alternative hypothesis: AR(1) errors sub random effects

Either test for one effect (random effects or serial correlation) is robust against

local (i.e., moderate) departures from zero of the other effect (serial correlation

or, respectively, random effects). Both tests are inferior to more specific tests

for random effects or serial correlation (e.g., Baltagi-Li test), but can indicate

the right direction of departure from the H0 of no serial correlation and no ran-

dom effects.

9.1.3 Conditional Tests for AR(1) and MA(1) Errors Under
Random Effects

Baltagi and Li (1995)’s LM test for the detection of serial correlation under ran-

dom effects has the null hypothesis that there is no serial correlation of the idi-

osyncratic error term. The test can be one-sided (only positive correlation) or

two-sided (default):
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pbltest( inv � value + capital, data = Grunfeld )
##
## Baltagi and Li two-sided LM test
##
## data: inv � value + capital
## chisq = 69.532, df = 1, p-value < 2.2e-16
## alternative hypothesis: AR(1)/MA(1) errors in RE panel
## model

9.1.4 General Serial Correlation Tests

The Breusch-Godfrey test and Durbin-Watson test for panel data uses the resid-

uals of a demeaned (fixed-effects) or quasidemeaned (random-effects) model,

under the H0 assumption that, under these conditions, the remaining idiosyn-

cratic errors are serially uncorrelated. Unlike most other serial correlation tests

for panel data, the Breusch-Godfrey test allows to test for higher-order serial

correlation.

pbgtest( invFE2, order = 2 )
##
## Breusch-Godfrey/Wooldridge test for serial
## correlation in panel models
##
## data: inv � value + capital
## chisq = 53.093, df = 2, p-value = 2.959e-12
## alternative hypothesis: serial correlation in
## idiosyncratic errors
pbgtest( invRE2a, order = 2 )
##
## Breusch-Godfrey/Wooldridge test for serial
## correlation in panel models
##
## data: inv � value + capital
## chisq = 53.909, df = 2, p-value = 1.967e-12
## alternative hypothesis: serial correlation in
## idiosyncratic errors

Likewise, one can apply the Durbin-Watson test on the demeaned data.

pdwtest( invFE2 )
##
## Durbin-Watson test for serial correlation in panel
## models
##
## data: inv � value + capital
## DW = 0.96869, p-value = 1.209e-13
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## alternative hypothesis: serial correlation in
## idiosyncratic errors
pdwtest( invRE2a )
##
## Durbin-Watson test for serial correlation in panel
## models
##
## data: inv � value + capital
## DW = 0.96267, p-value = 4.631e-14
## alternative hypothesis: serial correlation in
## idiosyncratic errors

The Breusch-Godfrey test does not perform well on fixed-effects models with

short T. In fact, for finite T, if the errors of the original model were spherical,

those of the demeaned model are serially correlated with a coefficient inversely

proportional to T:�1/(T � 1). This issue becomes negligible in long panels, but

in short ones the test is severely biased toward rejection. Wooldridge (2010),

therefore, suggests a test for fixed-effects models with short T that is implemen-

ted in function pwartest() and that does not rely on large T asymptotics and,

therefore, has good properties in short panels.

pwartest(log(emp) � log(wage) + log(capital), data = EmplUK)
##
## Wooldridge's test for serial correlation in FE
## panels
##
## data: plm.model
## F = 312.3, df1 = 1, df2 = 889, p-value < 2.2e-16
## alternative hypothesis: serial correlation

9.1.5 First-Difference Based Tests

The pwfdtest() is a serial correlation test that also works as a specification test
to choose the most efficient estimator between the “within” estimator and the

first-difference estimator. The starting point is the assumption that if the errors

in the model in levels are not serially correlated, then the errors of the first-

difference estimator will be serially correlated with �0.5, while any invariant

effect is wiped out in the differencing. So basically, for a given model:

ûit ¼ δûit�1 + vit (40)

the test examines whether δ ¼ �0.5, corresponding to the H0 of no serial corre-

lation in the first-difference estimation. If the differenced errors ûit� ûit�1 turn out

to be serially uncorrelated, however, then it follows that uit is a random walk. In

this case, the first-difference estimator is the most efficient one, otherwise the

fixed-effects estimator is preferred.

380 Panel Data Econometrics



We can use the pwfdtest() command to test for serial correlation in the

first-difference estimator:

pwfdtest( log( emp ) � log( wage ) +log( capital ),
data=EmplUK )

##
## Wooldridge's first-difference test for serial
## correlation in panels
##
## data: plm.model
## F = 1.5251, df1 = 1, df2 = 749, p-value = 0.2172
## alternative hypothesis: serial correlation in differenced
## errors

The following command conducts a test for serial correlation in the idiosyn-

cratic errors of the fixed-effects model:

pwfdtest( log( emp ) � log( wage ) +log( capital ),
data=EmplUK, h0="fe" )

##
## Wooldridge’s first-difference test for serial
## correlation in panels
##
## data: plm.model
## F = 131.55, df1 = 1, df2 = 749, p-value < 2.2e-16
## alternative hypothesis: serial correlation in original
## errors

9.2 Tests for Cross-Sectional Dependence

The problem of cross-sectional dependence arises if the n individuals in our

sample are no longer independently drawn observations but affect each other’s

outcomes. For example, this can result from the fact that we look at a set of

neighboring countries, which are usually highly interconnected.

To test for cross-sectional dependence in the model residuals, we can use the

Pesaran CD test, which is based on a scaled average of the pairwise correlation

coefficients between the residuals of each individual unit:

pcdtest( invFEi, test="cd" )
##
## Pesaran CD test for cross-sectional dependence in
## panels
##
## data: inv � value + capital
## z = 4.6612, p-value = 3.144e-06
## alternative hypothesis: cross-sectional dependence

Rejection means that the residuals are cross-sectionally dependent.
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10 How to Handle Serial Correlation

After we’ve established that we have serial correlation or cross-sectional depen-

dence in the idiosyncratic error term, we need to handle this problem somehow.

There are basically two approaches: We can use parameter tests with robust

covariance matrices for panel data models or we can exploit the characteristics

of the feasible GLS estimator.

10.1 Parameter Tests with Robust Covariance Matrices

Error correlation per se does not cause inconsistency of the OLS estimators for

the parameters, but of the classical OLS standard errors. By using robust covari-

ance matrices in the parameter tests, we can overcome serial correlation, cross-

sectional dependence, and heteroscedasticity across groups or time, a third

problem we haven’t touched yet.

There are three generic functions which can be used to derive robust tests on

panel data with serial correlation or cross-sectional dependence:

l coeftest(): Can be used to conduct z-tests and (quasi)t-tests on esti-

mated coefficients. coeftest() works in particular for objects that were
created by lm() and glm() but it also can be applied easily to objects that
were created by plm().

l waldtest(): A generic function for the comparison of models using a

Wald test.

l linearHypothesis(): Another generic function for testing linear

hypotheses with a flexible interface for specifying the linear hypotheses.

In all three functions, one can replace the nonrobust covariance matrix from the

model by a robust covariance matrix using the argument vcov.
The most common function for robust covariance matrices is vcovHC() from

the sandwich package. The plm package includes a specialized panel data

method for the vcovHC() generic function, which can apply three different

methods to calculate White’s heteroscedasticity-consistent covariance matrix.

All three methods, however, are not robust toward cross-sectional dependence.

Although all three methods are robust against group-wise heteroscedasticity,

only method "arellano" is fully robust against serial correlation.

coeftest( invFEi, vcovHC( invFEi, method="arellano",
type="HC3" ) )

##
## t-test of coefficients:
##
## Estimate Std. Error t value Pr(>jtj)
## value 0.110124 0.016312 6.7509 1.774e-10 ***
## capital 0.310065 0.062248 4.9811 1.427e-06 ***
## — — —

## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''1
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Other robust covariance estimators for panel data models are:

l vcovBK(): An unconditional estimator for robust covariance matrices

developed by Beck and Katz (1995). If observations are clustered by

“group”, the estimator will account for time-wise heteroscedasticity

and serial correlation. If observations are clustered by “time”, the esti-

mator will account for group-wise heteroscedasticity and cross-sectional

dependence.

l vcovDC(): An estimator for robust covariance matrices for error struc-

tures that cluster along both dimensions, in other words, for models with

two-ways effects.

l vcovNW(): A nonparametric estimator for robust covariance matrices for

panel data models with serial correlation, which is a special case

of vcovSCC() assuming no cross-sectional correlation.

l vcovSCC(): A nonparametric estimator for robust covariance matrices

for panel data models with serial correlation and cross-sectional

dependence.

Function linearHypothesis() that is provided by the R package car can be
used to performWald tests of linear parameter restrictions—both with and with-

out using a robust covariance matrix. As an example, we will test the (null)

hypothesis β1 + β2 ¼ 0.4:

linearHypothesis( invFE2, "value + capital = 0.4" )
## Linear hypothesis test
##
## Hypothesis:
## value + capital = 0.4
##
## Model 1: restricted model
## Model 2: inv � value + capital
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 170
## 2 169 1 10.881 0.0009715 ***
## — — —

## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The following command repeats this test with robust standard errors:

linearHypothesis( invFE2, "value + capital=0.4",
vcov. = vcovHC )

## Linear hypothesis test
##
## Hypothesis:
## value+capital=0.4
##
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## Model 1: restricted model
## Model 2: inv � value + capital
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 170
## 2 169 1 2.3586 0.1246

linearHypothesis( invFE2, "value + capital=0.4",
vcov. = vcovHC( invFE2, method = "arellano",

type = "HC3" ) )
## Linear hypothesis test
##
## Hypothesis:
## value + capital = 0.4
##
## Model 1: restricted model
## Model 2: inv � value + capital
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df Chisq Pr(>Chisq)
## 1 170
## 2 169 1 1.2124 0.2709

Argument vcov. can be either a function that returns the (robust) covariance

matrix or the covariance matrix itself.

10.2 FGLS Estimator

The FGLS estimator is based on a two-step procedure. First, an OLS (pooling),

fixed-effects (“within”), or first-difference model is estimated, and then the

residuals, ûit are used to estimate the covariance matrix of the error term:

Ω̂¼
Xn

i¼1

ûitû
0
it

n
(41)

which is the used as a correcting factor in the second step GLS estimator:

β̂FGLS ¼ x0itΩ
�1xit

� �
x0itΩ

�1yit (42)

By using the covariance matrix of the error term as weighting factor, the

covariance structure within a group (for effect "individual") or time period

(for effect "time") becomes fully unrestricted and, therefore, will be robust

against group-wise serial correlation and heteroscedasticity. It is important to
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note, however, that this correction of the covariance matrix is identical across

groups, which makes the FGLS estimator inefficient in cases of group-wise het-

eroscedasticity. Also, the FGLS estimator with individual effects cannot handle

cross-sectional dependence. If looking at time effects, however, the FGLS can

handle cross-sectional dependence, under the condition that the effect is con-

stant across all time periods.

The FGLS estimator can be estimated using function pggls() with either

pooled ("pooling"), fixed-effects ("within"), random-effects ("random"), or
first-difference ("fd") and with individual or time effects, e.g.:

emplFGLSr <– pggls( log( emp ) � log( wage ) +log( capital ),
data = EmplUK, model = "pooling" )

emplFGLSf <– pggls( log( emp ) � log( wage ) +log( capital ),
data = EmplUK, model = "within" )

11 Simple Instrumental Variable Estimators

In the following section, we will estimate the (static) investment equation by

instrumental-variable estimators for panel data. In these estimations, we instru-

ment the firms’ current value by its lagged value in order to take into account

that the firm’s current value might be influenced by the same unobserved vari-

ables as its current investments.

11.1 Fixed-Effects Estimation

Because the use of a lagged variable implies that observations from the first year

in the data set cannot be used in the estimation, we start by estimating a standard

fixed-effects model without observations from the first year in the data set so

that it uses the same observations as the instrumental-variable fixed-effects

estimation:

invFEt1<– plm( inv � value + capital,
data=Grunfeld[ Grunfeld$year !=1935, ] )

invFEIV <– plm(inv � value + capital j
lag(value)+capital, data=Grunfeld)

In this instrumental-variable estimation, a complete list of all instruments is

specified as the second part of a two-part formula. Alternatively, the instrumen-

tal variables can be specified as a modification of the list of explanatory

variables:

invFEIV2<– plm( inv � value + capital j
. – value + lag( value ), data=Grunfeld )

all.equal( coef( invFEIV2 ), coef( invFEIV ) )
## [1] TRUE
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By default, plm() estimates instrumental-variable models by the procedure sugges-

ted by Balestra and Varadharajan-Krishnakumar (1987). Argument inst.method
can be used to select the procedure suggested by Baltagi (1981). When using

fixed-effect estimators, both procedures give the same estimates:

invFEIVB <– plm( inv � value + capital j
lag( value )+capital,

inst.method="baltagi", data=Grunfeld )
all.equal( coef( invFEIVB ), coef( invFEIV ) )
## [1] TRUE

11.2 Random-Effects Estimation

When estimating random-effects instrumental-variable models, the procedures

suggested by Balestra and Varadharajan-Krishnakumar (1987) and Baltagi

(1981) give different estimates:

invREt1<– plm( inv � value + capital, model="random",
data=Grunfeld[ Grunfeld$year !=1935, ] )

invREIV <– plm( inv � value + capital j
lag( value )+capital, model="random",

data=Grunfeld )

invREIVB <– plm( inv � value + capital j
lag( value )+capital, model="random",

inst.method="baltagi", data=Grunfeld )

11.3 Hausman Test

The following command conducts a Hausman test of the null hypothesis that the

OLS estimates of the fixed-effects model are consistent against the alternative

hypothesis that these estimates are inconsistent, while the instrumental variable

estimates of the same model are still consistent:

phtest( invFEt1, invFEIV )
##
## Hausman Test
##
## data: inv � value + capital
## chisq = 4.8306, df = 2, p-value = 0.08934
## alternative hypothesis: one model is inconsistent

The null hypotheses cannot be rejected at 5% significance level, which could be

used to justify estimation of the fixed-effects model by OLS, because if the OLS

estimates are consistent, they are more efficient than the instrumental-variables

estimates.
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The following commands apply the same Hausman test to the random-

effects models:

phtest( invREt1, invREIV )
##
## Hausman Test
##
## data: inv � value + capital
## chisq = 5.5093, df = 2, p-value = 0.06363
## alternative hypothesis: one model is inconsistent
phtest( invREt1, invREIVB )
##
## Hausman Test
##
## data: inv � value + capital
## chisq = 0.90909, df = 2, p-value = 0.6347
## alternative hypothesis: one model is inconsistent

12 Panel Time Series Models

In the context of long panels, also called “panel time series,” in which the time

dimension is sufficient for estimating separate regressions for each individual,

Pesaran and Smith (1995) popularized a heterogeneous estimator called “mean

groups” (MG) based on averaging the individual coefficients. Notably, the

individual OLS regressions will provide consistent estimates also for

dynamic models, a property that carries on to the averaged coefficients.

Function pmg() in the plm package can estimate such models:

invMG <– pmg( inv � value + capital, data=Grunfeld )

Panel data can be subject to pervasive cross-sectional dependence, whereby all

units in the same cross-section are correlated. This is usually attributed to the

effect of some unobserved common factors, common to all units and affecting

each of them, although possibly in different ways. Examples are technological

evolution, world prices, such as oil prices, or risk-free interest rates. If the com-

mon factors, which are omitted from the model, are correlated with the regres-

sors, which is usually the case, both the standard homogeneous estimators for

panel data (FE, RE, or FD) and the heterogeneous MG estimator are inconsis-

tent. In this case, Pesaran (2006) suggested to approximate the unobserved com-

mon factors by cross-sectional averages of the regressand and regressors,

augmenting the model with the latter to obtain unbiased estimates. This kind

of augmentation, known as “common correlated effects” (CCE), is implemen-

ted in the pmg() function by setting the model argument to "cmg":

invCMG <– pmg( inv � value + capital, data=Grunfeld, model="cmg" )

Standard errors for these estimators are computed based on the sample variance

of the individual coefficients.
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13 Unit Root Tests for Panel Data

Apopular procedure for testing panel time series for unit roots, suggested by Im,

Pesaran, and Shin (2003), is to extend the well-known ADF test to the panel

context, averaging the results of the relevant t-tests.
These tests (known as first-generation unit root tests), however, do not take

into account cross-sectional dependence, which can occur in panel data (see,

e.g., Section 9.2). Pesaran (2007) suggested to employ a CCE procedure to

robustify the panel ADF procedure against unobserved common factors. This

last goes under the name of CIPS test, for cross-sectionally augmented IPS.

To apply the unit-root tests that are provided by the plm package, one must

use a panel data set that has been returned by pdata.frame(). Therefore, we use
the data set GrunfeldPdata in this section.

The following code tests the (null) hypothesis of a unit root in the investment

variable (inv) by applying the procedure suggested by Im et al. (2003):

cipstest( GrunfeldPdata$inv, type = "trend", lags = 4,
model = "mg" )

## Warning in cipstest( GrunfeldPdata$inv, type = "trend",
## lags = 4, model = "mg" ): p-value greater than printed
## p-value
##
## Pesaran’s CIPS test for unit roots
##
## data: GrunfeldPdata$inv
## CIPS test = –1.2031, lag order = 4, p-value = 0.1
## alternative hypothesis: Stationarity

This test does not reject the null hypothesis that the investment variable (inv)
has a unit root.

The following code conducts the CCE-augmented variant of the test by

Pesaran (2007) and is robust against cross-sectional dependence:

cipstest( GrunfeldPdata$inv )
## Warning in cipstest(GrunfeldPdata$inv): p-value greater
## than printed p-value
##
## Pesaran’s CIPS test for unit roots
##
## data: GrunfeldPdata$inv
## CIPS test = –1.397, lag order = 2, p-value = 0.1
## alternative hypothesis: Stationarity

The model argument is left at the default value of "cmg". According to this test,
we still cannot reject the null hypothesis (at the 10% or at an even greater sig-

nificance level, see the warning) that the investment variable (inv) has a

unit root.
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14 Dynamic Panel Data Models

In cases in which wewant to estimate dynamic models with panel data, the usual

approaches such as fixed-effects or random-effects models won’t work. For the

random-effects estimator, it can be shown that a dynamic panel data model does

not fulfill the exogeneity condition E(αixit)¼ 0. Therefore, by default, this rules

out the usage of the RE estimator. The “within” transformation can be applied in

principle, however, one can show that the resulting estimates will be severely

biased for the autoregressive parameter ρ > 0. The closer ρ gets to zero and the
larger T is, however, the smaller also the bias; a larger n, on the other hand, has
no effect.

Instead, we can use the IV estimator by Andersson and Hsiao or the Arellano

Bond GMM estimator. Both estimators use the first-difference transformation

to get rid of the time invariant effects. This comes at a price, however, that

we generate a correlation between the differenced lagged dependent variable,

Δyi,t–1 ¼ yi,t–1 – yi,t–2, and the differenced error term, Δit ¼ εit – εi,t–1, because
yi,t–1 is correlated with єi,t�1. Therefore, Andersson and Hsiao propose to use the

second lag as an IV for the first lagged variable. Likewise, Arellano and Bond

(AB) propose to use all available IVs, defined by the dimensionality of T. Both
estimators return consistent results, but only the ABGMM estimator exploits all

available orthogonality conditions.

The underlying assumptions of both estimators are stationarity of the time-

series (ρ < 1) and an i.i.d. distribution of the original (nondifferenced) idiosyn-

cratic error term, i.e., no serial correlation in the original errors.

We should be aware that, because of the lag structure, gaps in unbalanced

panels will widen, because a missing link in the time series will lead to two

missing differences, and so on. Also, for panels with large T, the number of

IVs in the GMM estimator might become too large because the number of

moment conditions grows exponentially with T. For example, for T ¼ 4 we

get 6 valid moment conditions, however, for T ¼ 9 the number of moment

conditions becomes 36. Therefore, for a long panel, especially if n is compar-

atively small, an unrestricted inclusion of lagged IVs risks reducing the effi-

ciency of the GMM estimates. In fact, Monte Carlo studies show that for

panels with large T (> 30) and small n, the asymptotic properties of the

GMM estimator no longer hold. Results still are inconclusive to some degree,

but it seems that as long as T=N! 0, the GMM estimator is consistent even for

large T. It is advisable, however, to reduce the number of lags to around 2–5.
One should bear in mind that because of the autoregressive structure of the

model, the first-differencing to get rid of the time invariant effects, and the

lag structure of the IV, the AB GMM estimator reduces T by at least 2 time

periods (Table 1).

For an example of T ¼ 4 and a simple autoregressive model:

yit ¼ ρ yit�1 + αi + Eit (43)
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we get the following IVs and moment conditions:

t¼ 2 :E ΔEi2 yi0½ � ¼ 0

t¼ 3 :E ΔEi3 yi0½ � ¼ 0

E ΔEi3 yi1½ � ¼ 0

t¼ 4 :E ΔEi4 yi0½ � ¼ 0

E ΔEi4 yi1½ � ¼ 0

E ΔEi4 yi2½ � ¼ 0

where the instrumental variables are yi0, yi1, and yi2.
So far, two types of panel GMM estimators are implemented in plm:

l Difference GMM, which is the classical Arellano-Bond estimator that uses

only differenced variables as IVs. For the previous example, instead of using

yi0, yi1, and yi2, the estimator usesΔyi1 andΔyi2 as IVs, which unfortunately
means that we lose yet another time period, i.e., we start at t ¼ 3.

l System GMM (Blundel-Bond), which additionally adds the corresponding

levels as IVs. Simulations show that theSystemGMMestimator often ismore

efficient and, in some cases, evenmore consistent than theDifferenceGMM.

Especially if the instruments of the Difference GMM are weak, applying the

System GMM often leads to dramatic improvements of the GMM estimator.

In the R function pgmm(), the Difference GMM estimator is the default

estimator. If we wish to apply the System GMM estimator, we need to set

option transformation="ld".
When using the R function pgmm(), we also have the possibility to use a

one-step or two-step approach to compute the weighting matrix of the moments.

In the one-step approach, the weighting matrix is calculated based on the covar-

iate matrix and a known weighting matrix (see Croissant & Millo, 2015, for

details). The two-step approach uses the residuals of the one-step model to cal-

culate the weighting matrix. The two-step approach usually results in more

asymptotically efficient estimates, because the two-step approach uses the con-

sistent covariance matrix from one-step GMM and it is more robust toward het-

eroscedasticity and other disturbances. In older textbooks or articles, the two-

TABLE 1 Losses in T by Using the A-B GMM Estimator

t yit yit 2 1 Δyit Δyit – 1

0 Yes No No No

1 Yes Yes Yes No

2 Yes Yes Yes Yes
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step approach often is described as suboptimal because it produces biased esti-

mates. This point no longer applies, because modern applications use theWind-

mejer correction procedure, which alleviates this problem.

In function pgmm(), we set option model="twosteps" if we want to overrule
the default one-step setting. Furthermore, we can choose option effect ¼
“individual” if we want to estimate the classical AB GMM estimator

where we get rid of the time invariant effects through first-differencing or

option effect = "twoways" (the default) if we want to additionally capture time

effects by adding time dummies.

We use the employment data set (EmplUK) to estimate specification (b) of the

employment equation of Arellano and Bond (1991):

log empitð Þ¼ρ1 log empi t�1ð Þ
� �

+ ρ2 log empi t�2ð Þ
� �

+ β1 log wageitð Þ + β2 log wagei t�1ð Þ
� �

+ β3 log capitalitð Þ

+ β4 log outputitð Þ+ β5 log outputi t�1ð Þ
� �

+ αi + γt + uit

: (44)

The following code5 reproduces the results of model (b) in Table 4 of

Arellano and Bond (1991):

emplGMM <– pgmm( log(emp) � lag(log(emp), 1:2)+
lag(log(wage), 0:1)+log(capital)+
lag(log(output), 0:1) j lag(log(emp), 2:99),

data=EmplUK, effect="twoways", model="twosteps" )
summary( emplGMM, robust = FALSE )

The part of the formula behind the vertical line (j) specifies that all available
lags beyond lag 1 of the dependent variable, i.e., log(empi(t�j)); j �2, should be

used as GMM instruments; all other explanatory variables, i.e., log(wageit),
log(wagei(t�1)), log(capitalit), log(outputit), and log(outputi(t�1)), are used

as normal instruments. If we choose to use lagged variables of the other cov-

ariates as instrument variables, the number of instrument variables increases

accordingly:

emplGMM2<– pgmm( log(emp) � lag(log(emp), 1)+
lag(log(wage), 0:1)+lag(log(capital), 0:1) j
lag(log(emp), 2:99)+lag(log(wage), 2:99)+
lag(log(capital), 2:99), data=EmplUK,

effect="twoways", model="onestep",
transformation="ld" )

5. This code was taken from or inspired by Croissant and Millo (2008, p. 18), Kleiber and Zeileis

(2008, p. 87–89), Croissant and Millo (2015, p. 23–24), and Kleiber and Zeileis (2015, p. 3).
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14.1 Tests for Panel GMM

Given that we use lagged variables as IVs in the panel data GMM estimator,

we need to be extra careful about AR(t) processes in the idiosyncratic error

term. Because the basic assumption of GMM are i.i.d. idiosyncratic errors,

theoretically, we shouldn’t worry about much more than the usual AR(1)

process generated through the first-difference transformation. This is not nec-

essarily fulfilled in reality, however, so we also should check higher order

processes in the error term. By default the summary() command tests AR(1)

and AR(2) processes, however, we can use the Arellano-Bond test for serial

correlation, mtest(), to test higher order processes:

mtest( emplGMM, order=3 ).
##
## Autocorrelation test of degree 3
##
## data: log(emp) � lag(log(emp), 1:2)+
## lag(log(wage), 0:1)+log(capital)+...
## normal=0.18874, p-value=0.8503

Also, by default summary() returns the results from the Hansen-Sargan test on

the overidentifying restrictions. The hypothesis being tested with the Hansen-

Sargan test is that the instrumental variables are uncorrelated to some set of

residuals, and therefore they are acceptable, healthy instruments. If the null

hypothesis is confirmed statistically (that is, not rejected), the instruments pass

the test; they are valid by this criterion.

The test can be accessed through

sargan( emplGMM, weights="twosteps" )
##
## Sargan test
##
## data: log(emp) � lag(log(emp), 1:2) +
## lag(log(wage), 0:1)+log(capital)+...
## chisq = 30.112, df = 25, p-value = 0.2201

15 Systems of Linear Equations

In this section, we use the systemfit package (Henningsen & Hamann, 2007)

and the investment data set (Grunfeld) to estimate the investment model as

system of equations. In contrast to recent versions of the plm package, the cur-

rent version of the systemfit package does not recognize the panel data struc-

ture unless the data set has been created by pdata.frame(). Therefore, we will
use the data set GrunfeldPdata, which we created with pdata.frame() in

Section 5.5.
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The specification of a panel data model as a system of equations is basi-

cally the same as the specification of the variable coefficients model with

individual-specific coefficients (Eq. 12). The only difference is that the

variable coefficients model ignores contemporaneous correlation of the

error term, while the estimation as system of equations can account for

contemporaneous correlation of the error term, i.e., E[EitEjs] ¼ 0 8 t 6¼ s and
E[EitEjt] ¼ σij.

The estimation of a system of equations by the OLS method ignores

contemporaneous correlation of the error term and, therefore, gives the

same estimates as the variable coefficients model with individual-specific

coefficients:

library( "systemfit" )
invSysOLS <– systemfit( inv � value + capital,

method="OLS", data=GrunfeldPdata )
all.equal( coef( invSysOLS )[c(1:3,7:30,4:6)],

c( t( coef( invVCMi ) ) ), check.attributes=FALSE )
## [1] TRUE

In contrast, the estimation of a system of equations by the seemingly unrelated

regression (SUR) method (a FGLS method) takes contemporaneous correlation

of the error term into account6:

invSysSUR <– systemfit( inv � value + capital,
method="SUR", data=GrunfeldPdata )

We can use a likelihood-ratio test to compare the fit of the OLS model with the

fit of the SUR model and, therefore, test whether the off-diagonal elements of

the residual covariance are jointly zero, i.e., σij ¼ 0 8 i 6¼ j, and the diagonal

elements of the residual covariance are all equal, i.e., σii ¼ σ 8 i:

lrtest( invSysOLS, invSysSUR )
## Likelihood ratio test
##
## Model 1: invSysOLS
## Model 2: invSysSUR
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 31 –738.54
## 2 85 –728.60 54 19.877 1

This test indicates that there is no significant contemporaneous correlation of

the error term in this model so we can estimate the model by OLS, making it

unnecessary to use the SUR method.

6. The SUR/FGLS estimator also can be iterated, but the iterated SUR estimation of this model does

not converge.
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Argument pooled of systemfit() can be used to restrict the coefficients to

be equal across all firms. If this model is estimated by the OLS method, which

ignores contemporaneous correlation of the error term, the estimated coeffi-

cients are equal to those of the pooled model that we estimated in Sections

4.1 and 6.3:

invSysPoolOLS <– systemfit( inv � value + capital,
method="OLS", pooled=TRUE, data=GrunfeldPdata )

all.equal( coef( invSysPoolOLS )[1:3], coef( invPool ),
check.attributes=FALSE )

## [1] TRUE

In the following, we estimate the system of equations by the seemingly unre-

lated regression (SUR) method that considers contemporaneous correlation

of the error term:

invSysPoolSUR <– systemfit( inv � value + capital,
method="SUR", pooled=TRUE, data=GrunfeldPdata )

In case of the pooled estimation, the test also indicates that there is no signif-

icant contemporaneous correlation of the error term so we can estimate the

model by OLS, making it unnecessary to use the SUR method:

lrtest( invSysPoolOLS, invSysPoolSUR )

## Likelihood ratio test
##
## Model 1: invSysPoolOLS
## Model 2: invSysPoolSUR
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 4 –881.1
## 2 58 –877.7 54 6.7985 1

Further likelihood-ratio tests confirm our results from Section 6.4 and clearly

indicate that the coefficients significantly differ across firms:

lrtest( invSysPoolOLS, invSysOLS )

## Likelihood ratio test
##
## Model 1: invSysPoolOLS
## Model 2: invSysOLS
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 4 –881.10
## 2 31 –738.54 27 285.11 <2.2e-16 ***
## — — —

## Signif. codes: 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ' ' 1
lrtest( invSysPoolSUR, invSysSUR )
## Likelihood ratio test
##
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## Model 1: invSysPoolSUR
## Model 2: invSysSUR
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 58 –877.7
## 2 85 –728.6 27 298.19 <2.2e-16 ***
## ---
## Signif. codes:
## 0 '***'0.001 '**'0.01 '*'0.05 '.'0.1 ''1

16 Conclusion

This chapter has demonstrated the use of the statistical software R (R Core

Team, 2018) to explore and prepare panel data, to analyze these data with sev-

eral frequently used panel data estimators, and to conduct various statistical

tests for panel data and panel data estimators. Further and more detailed infor-

mation can be found in various sources, e.g., Henningsen and Hamann (2007),

Croissant and Millo (2008), or Croissant and Millo (2018).
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