

ECONOMETRICS I Take Home Final Examination

Fall 2016

Professor William GreenePhone: 212.998.0876Office: KMC 7-90URL: people.stern.nyu.edu/wgreenee-mail: wgreene@stern.nyu.eduURL for course: people.stern.nyu.edu/wgreene/Econometrics/Econometrics.htm

Today is Thursday, December 8, 2016. This exam is due by 3PM, Friday, December 16, 2012. You may submit your answers to me electronically as an attachment to an e-mail if you wish. Please do not include a copy of the exam questions with your submission; submit only your answers to the questions. Your submission for this examination is to be a single authored project. You are assumed to be working alone.

NOTE: In the empirical results below, a number of the form .nnnnnE+aa means multiply the number .nnnnnn by 10 to the aa power. E-aa implies multiply 10 to the minus aa power. Thus, .123456E-04 is 0.0000123456.

- 1. Properties of the least squares estimator
- a. Show (algebraically) how the ordinary least squares coefficient estimator, **b**, and the estimated asymptotic covariance matrix are computed.
- b. What are the *finite sample* properties of this estimator? Make your assumptions explicit.
- c. What are the *asymptotic properties* of the least squares estimator? Again, be explicit about all assumptions, and explain your answer carefully.
- d. How would you compare the properties of the least absolute deviations (LAD) estimator to those of the ordinary least squares (OLS) estimator? Which is a preferable estimator?
- 2. The paper, Farsi, M, M. Filippini, and W. Greene, "Efficiency Measurement in Network Industries, Application the Swiss Railroads," *Journal of Regulatory Economics*, 28, 1, 2005, pp. 69-90 is an analysis of an unbalanced panel of data on 50 railroads for 13 years, 605 observations in total. The variables in the data set are

mail
ration

I propose first to analyze the cost data with a loglinear model. My first model is

$$\begin{split} lnc_{it} &= & \beta_1 + \beta_2 lnq_{it} + \beta_3 lnpe_{it} + \beta_4 lnpl_{it} + \beta_5 lnpk_{it} + & \beta_6 narrow_i + \\ & & \beta_7 tunnel_i + \beta_8 rack_i + \epsilon_{it}, \ \epsilon_{it} \ \sim \ N[0, \, \sigma^2], \end{split}$$

where "i" indicates the railroad and "t" indicates the year. Note that some variables are time invariant. For this application, I intend to ignore any panel data aspects of the data set, and treat the whole thing as a cross section of 605 observations. The ordinary least squares results are shown as Regression 1 on page 4.

- a. Show how each of the values in the box above the coefficient estimates is computed, and interpret the value given.
- b. Using the results given, form a confidence interval for the true value of the coefficient on the RACK dummy variable.
- c. An expanded, now nonlinear model appears as follows:

 $\begin{aligned} \ln c_{it} &= \beta_1 + \beta_2 \ln q_{it} + \beta_3 \ln^2 q_{it} + \beta_4 \ln pe_{it} + \beta_5 \ln pl_{it} + \beta_6 \ln pk_{it} + \beta_7 narrow_i + \\ &\beta_8 tunnel_i + \beta_9 rack_i + \beta_{10} \ln q \times tunnel + \epsilon_{it}, \ \epsilon_{it} \sim N[0, \sigma^2]. \end{aligned}$

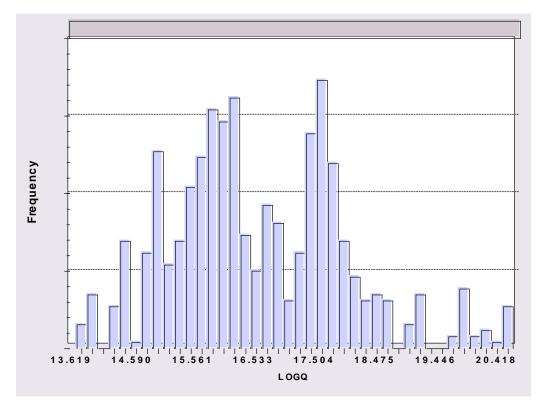
The second set of results given includes the quadratic specification (β_3) and an interaction of log output with tunnel (β_{10}). Test the hypothesis of the linear model as a restriction on the nonlinear model. Do the test in three ways: 1. Use a Wald test to test the hypothesis that the two coefficients in the quadratic terms (β_3 and β_{10})are zero. 2. Use an F test. 3. Use a likelihood ratio test assuming that the disturbances are normally distributed. The estimated least squares regression for this model is shown on page 5 with the estimated asymptotic covariance matrix.

d. I am interested economies of scale for railroads. In the loglinear equation (regression 1), that quantity is

$$\Delta = \partial \ln \frac{d}{\partial \ln q} = \beta_2$$

In the second model (regression 2), the measure is a linear function of lnq and tunnel;

 $\Delta = \beta_2 + 2\beta_3 \ln q + \beta_{10} \text{Tunnel.}$


Estimate this value for the average sized railroad with long tunnels (tunnel = 1). (The average of lnq is shown in the regression results.) Form a confidence interval for

 Δ (given average lnq = 16.4616 and tunnel = 1).

e. The efficient scale for a production model is that point where economies of scale equal 1. Assuming that tunnel = 0, the scale elasticity is

$$\Delta = \beta_2 + 2\beta_3 \ln q.$$

Solving for $\Delta = 1$, I obtain lnq = $(1 - \beta_2)/(2\beta_3)$. Using the results of regression 2 (and the delta method), form a confidence interval for this function of the parameters. The histogram below shows the distribution of lnq in the sample. Locate the point of constant returns to scale in the graph and comment on the efficient size of firm compared to the values found in the sample.

- 3. The third set of results (on page 6) is computed using White's heteroscedasticity consistent, robust estimator of the covariance matrix.
- a. How is the White estimator computed?
- b. Looking at these results, would you conclude that there is evidence of heteroscedasticity in these data?
- 4. The fourth regression is reported (on page 6) with a correction of the standard errors to accommodate the "clustering" in the data these data are a panel.
- a. How is the cluster estimator computed?
- b. Why is it computed; what problem is it intended to solve?
- c. Compare the results to regression 2 (which is the same model with conventional standard errors). What do you conclude about the effect of "clustering" in these data?

REGRESSION 1

Ordinary	least squares regres	sio	n		
LHS=LNCT	Mean	=	11.	30622	
	Standard deviation	=	1.	10169	
	Number of observs.	=		605	
Model size	Parameters	=		8	
	Degrees of freedom			597	
Residuals	2				
	Standard error of e				
Fit					
TTC	Adjusted R-squared				
Model test	F[7, 597] (prob)				
	Log likelihood				
DIAGNOSCIC	Restricted (b=0)				
	()				
T	Chi-sq [7] (prob)				
into criter.	Akaike Info. Criter		-2.	49/30	
+				Droh	Mean
LNCT CO	efficient Erro)Ľ	Z	22 2	OI X
Constant	-7.78982*** 1.981	72	-3.93	.0001	
	.77200*** .011				16.4616
					13.2194
			-2.30		-1.85956
			12.08		
	13716*** .026				10.1795 .67603
			-3.00 15.56		.23471
TUNNEL	14985*** .037	90	-3.95	.0001	.18843
+					

REGRESSION 2

Ordinary	least squa	res regression					
LHS=LNCT		=	11.	30622			
		eviation =	1.	10169			
	Number of	observs. =		605			
Model size	Parameters	= freedom = ares =		10			
	Degrees of	freedom =		595			
Residuals	Sum of squ	ares =	38.	53713			
	Standard e	rror of e = =		25450			
Fit	R-squared	rror of e = = -squared =		94743			
Model test	. F[9 , 5	95] (prob) =	1191.5(.	0000)			
Diagnostic	: Log likeli	hood =	-25.	49196			
		(b=0) =					
		9] (prob) =					
Info crite	er. LogAmemiya	Prd. Crt. =	-2.	72055			
	Akaike Inf	o. Criter. = . Criter. =	-2.	72055			
	Bayes Info	. Criter. =	-2.	64773			
+-		Standard		Prob.	Mean		
T.NCT I	Coefficient	Standard Error	7	7> 7	of X		
+-							
Constant	14.1048***	3.08775 .28753 .00890 .15695	4.57	.0000			
LNQ	-1.81538***	.28753	-6.31	.0000	16.4616		
LNQSQ	.07876***	.00890	8.85	.0000	272.853		
LNPL	.14406	.15695	.92	.3587	13.2194		
LNPE	30467*	.16469	-1.85	.0643	-1.85956		
LNPK	.30383***	.15895 .16469 .02608 .02783 .02867 .75377	11.65	.0000	10.1795		
NARROW T	.00122	.02783	.04	.9651	.67603		
RACK	.42526***	.02867	14.83	.0000	.23471		
TUNNEL	2.05124***	.75377	2.72	.0065	.18843		
LNQ'I'UNL	13334***	.04345	-3.07	.0021	3.40727		
+-							
9.53418	0.0826737						
		7.91249e-005					
		-0.000147886		210			
		-0.000112702			0 0071001		
		-2.83063e-005				0 00000000	
		0.000122773					
		-6.61934e-005					
-0.02/04/9	0.00210/55	-0.019340-005	0.0006	000040	0.000603249		0.00082181
1.65435	-0.181774	0.00568441	-0.0178	937 -	-0.0196452 -	- 0.00127023	0.00820813
-0.0952809	0.0105601	-0.000330446	0.0009	68367			
					0.000300395	-0.0327144	0.00188776

REGRESSION 3

						-
Ordinary	least squares	regressio	on			
LHS=LNCT	Mean	=	11.	30622		
	Standard devi	ation =	1.	10169		
	Number of obs	ervs. =		605		
Model size	Parameters	=		10		
	Degrees of fr	eedom =		595		
Residuals	Sum of square	s =	38.	53713		
	Standard erro	r of e =		25450		
Fit	R-squared	=		94743		
	Adjusted R-sq	uared =		94664		
Model test	F[9, 595]	(prob) =	1191.5(.	0000)		
White hetero	scedasticity r	obust cova	riance ma	trix.		
Br./Pagan LM	1 Chi-sq [9]	(prob) =	58.95 (.	0000)		
+						-
		Standard		Prob.	Mean	-
+ LNCT Cc	efficient					-
+		Error	Z	z> Z		-
Constant	14.1048***	Error	Z	z> Z		-
+ Constant LNQ	14.1048*** -1.81538***	Error 2.94550 .24881	z 4.79 -7.30	z> Z .0000 .0000	of X 16.4616	-
Constant LNQ LNQSQ	14.1048*** -1.81538*** .07876***	Error 2.94550 .24881 .00775	z 4.79 -7.30 10.16	z> Z .0000 .0000 .0000	of X 16.4616 272.853	-
Constant LNQ LNQSQ	14.1048*** -1.81538***	Error 2.94550 .24881 .00775	z 4.79 -7.30 10.16	z> Z .0000 .0000 .0000	of X 16.4616	_
Constant LNQ LNQSQ LNPL	14.1048*** -1.81538*** .07876***	Error 2.94550 .24881 .00775	z 4.79 -7.30 10.16 .84	z> Z .0000 .0000 .0000	of X 16.4616 272.853 13.2194	_
Constant LNQ LNQSQ LNPL LNPE LNPK	14.1048*** -1.81538*** .07876*** .14406 30467* .30383***	Error 2.94550 .24881 .00775 .17091	z -7.30 10.16 .84 -1.65	z> Z .0000 .0000 .0000 .3993 .0990	of X 16.4616 272.853 13.2194	-
Constant LNQ LNQSQ LNPL LNPE LNPK NARROW_T	14.1048*** -1.81538*** .07876*** .14406 30467* .30383*** .00122	Error 2.94550 .24881 .00775 .17091 .18467	z -7.30 10.16 .84 -1.65 12.10	z> Z .0000 .0000 .0000 .3993 .0990 .0000	of X 16.4616 272.853 13.2194 -1.85956	_
Constant LNQ LNQSQ LNPL LNPE LNPK NARROW_T	14.1048*** -1.81538*** .07876*** .14406 30467* .30383***	Error 2.94550 .24881 .00775 .17091 .18467 .02510	z -7.30 10.16 .84 -1.65 12.10 .04	z> Z .0000 .0000 .0000 .3993 .0990 .0000	of X 16.4616 272.853 13.2194 -1.85956 10.1795 .67603	_
Constant LNQ LNQSQ LNPL LNPE LNPK NARROW_T RACK	14.1048*** -1.81538*** .07876*** .14406 30467* .30383*** .00122	Error 2.94550 .24881 .00775 .17091 .18467 .02510 .02850 .02564	z -7.30 10.16 .84 -1.65 12.10 .04	z> z .0000 .0000 .3993 .0990 .0000 .9659 .0000	of X 16.4616 272.853 13.2194 -1.85956 10.1795 .67603	_
Constant LNQ LNQSQ LNPL LNPE LNPK NARROW_T RACK TUNNEL	14.1048*** -1.81538*** .07876*** .14406 30467* .30383*** .00122 .42526***	Error 2.94550 .24881 .00775 .17091 .18467 .02510 .02850 .02850 .02564 .57610	z 4.79 -7.30 10.16 .84 -1.65 12.10 .04 16.59 3.56	z> z .0000 .0000 .3993 .0990 .0000 .9659 .0000 .0004	of X 16.4616 272.853 13.2194 -1.85956 10.1795 .67603 .23471	-

REGRESSION 4

Sample of	e matrix for th 605 observa D which	tions contai	ned	50 clus	sters defined by
-	least squares	-			
LHS=LNCT		=		30622	
Model size	Parameters	=		10	
		Standard		Prob.	Mean
LNCT Co	oefficient	Error	Z	z> Z	of X
Constant	14.1048*	7.65472	1.84	.0654	
	-1.81538**				16.4616
~ .	.07876***	.02490			272.853
	.14406				13.2194
	30467	.45559			-1.85956
	.30383***	.07350			10.1795
NARROW T	.00122	.09298	.01		.67603
	.42526***				.23471
TUNNEL	2.05124	1.78394	1.15	.2502	.18843
	13334				

5. Munnell, A., "Why has Productivity Declined? Productivity and Public Investment," New England Economic Review, 1990, pp. 3-22, examined the productivity of public capital in a panel of data using the lower 48 states and 17 years. These data are examined at length in Chapter 10 of the 7th edition of your text. In this exercise, we will use a very simple version of her model,

 $logGSP_{it} = \beta_1 \beta_2 logPublicK_{it} + \beta_3 logPrivateK_{it} + \beta_4 logLabor_{it} + \varepsilon_{it}$

where GSP is gross state product. Ordinary least squares regression results appear below. KP is public capital; PC is private capital.

- a. Test the hypothesis that the marginal products of (coefficients on) private and public capital are the same.
- b. Test the hypothesis of constant returns to scale (that is, the hypothesis that the three coefficients sum to 1.0)
- c. Test the two hypotheses simultaneously.

1				+	
Ordinary	least squares regress	ion		1	
LHS=LOGGSP	Mean	= 10.	50885	Ì	
Ì	Standard deviation	= 1.0	21132	Ì	
WTS=none	Number of observs.	=	816	í	
Model size		-	4	í	
	Degrees of freedom	=	812	i	
Residuals	2			Ì	
	Standard error of e			Ì	
Fit	R-squared			1	
1	Adjusted R-squared			1	
Model test	F[3, 812] (prob)			1	
Diagnostic				1	
Diagnobere	Restricted (b=0)			1	
	Chi-sq [3] (prob)			1	
1	SHI DQ [D] (PIOD)	0000.0	,(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				+	
++				+	+
	efficient Standard				
Variable Cc +	efficient Standard	Error b	/St.Er. P[+	Z >z]	Mean of X
Variable Cc + Constant	efficient Standard 	Error b. +- 33603	/St.Er. P[+ 28.265	Z >z] +-	Mean of X +
Variable Cc + Constant	efficient Standard 	Error b +- 33603 35707	/St.Er. P[+ 28.265 8.687	Z >z] +-	Mean of X +
Variable Cc + Constant	efficient Standard 	Error b. +- 33603	/St.Er. P[+ 28.265 8.687	Z >z] +-	Mean of X + 9.67920583
Variable Cc + Constant LOGKP	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010	Error b +- 33603 35707 37855	/St.Er. P[28.265 8.687 29.439	Z >z] .0000 .0000 .0000	Mean of X + 9.67920583
Variable Cc ++ Constant LOGKP LOGPC	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010	Error b +- 33603 35707 37855	/St.Er. P[28.265 8.687 29.439	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co Constant LOGKP LOGPC LOGEMP	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010	Error b. +- 33603 35707 37855 90006	/St.Er. P[28.265 8.687 29.439	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co Constant LOGKP LOGPC LOGEMP	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010 .59815198 .013	Error b +- 33603 35707 37855	/St.Er. P[28.265 8.687 29.439	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co Constant LOGKP LOGPC LOGEMP Asymptotic Co	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010 .59815198 .013 variance Matrix	Error b. +- 33603 35707 37855 90006	/St.Er. P[28.265 8.687 29.439 43.032	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co ++ Constant LOGKP LOGPC LOGEMP Asymptotic Co 1	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010 .59815198 .013 variance Matrix 1 2	Error b. +- 33603 35707 37855 90006	/St.Er. P[28.265 8.687 29.439 43.032	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co Constant Co LOGKP LOGPC LOGEMP Asymptotic Co 1 2	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010 .59815198 .013 variance Matrix 1 2 .00340	Error b 33603 35707 37855 90006	/St.Er. P[28.265 8.687 29.439 43.032	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618
Variable Co Constant Co LOGKP LOGPC LOGEMP Asymptotic Co 1 2 3	efficient Standard 1.64886431 .058 .15078348 .017 .30553817 .010 .59815198 .013 variance Matrix 1 2 .00340 00059 .00030	Error b 33603 35707 37855 90006 3 .00011	/St.Er. P[28.265 8.687 29.439 43.032 4	Z >z] .0000 .0000 .0000	Mean of X 9.67920583 10.5594618

- 6. The three sets of results below show the least squares estimates for two of the states, then the results for these two states combined. (Presumably, these two are representative of the 48 in the data set.)
- a. Theory 1 states that the coefficient vectors are the same for the two states. Is there an optimal way that I could combine these two estimators to form a single efficient estimator of the model parameters? How should I do that? Describe the computations in detail.
- b. Use a Chow test to test the hypothesis that the two coefficient vectors are the same. Explain the computations in full detail so that I know exactly how you obtained your result.
- c. Use a Wald test to test the hypothesis that the coefficients are the same. Again, document your computations.

 WTS=none Model size Residuals Fit Model test ++	Number of Parameters Sum of squ Standard e R-squared Adjusted R F[3, +	ares error of e -squared 13] (prob)	= .1 = .2 = .2 = .2 = .2 = .2 = .2 = .2	2640388E-0 9774269 9722177 .64 (.0000)1)) +	
Variable Coef						
LOGKP -1 LOGPC LOGEMP 1	1	.6921	4743	1.899 -1.611 1.926 4.572 3	.1311	9.79136043 10.8133466 7.13004557
1 10. 2 -2.	66338 24221	-2.24221 .47907 14467 12400	1		.54315 12400 .00145 .09190	
LHS=LOGGSP Residuals Fit Model test ++	Sum of squ Standard e R-squared Adjusted R	ares error of e -squared	= .2 = .1 = .9 = .9	9972928 9966681)2)1 	++
Variable Coef	ficient	Standard E	Srror	t-ratio	P[T >t]	Mean of X
Constant 1 LOGKP LOGPC - LOGEMP		1.0054	10552 75566	1.801 1.694	.0949 .1140	10.5943058 11.3937222 8.07221529
2 3 .	01084 28472 12393 07353	28472 .08223 03730 02000	(12393)3730)1934)0631	.07353 02000 .00631 .00824	
Residuals Fit Model test	Number of Sum of squ Standard e R-squared Adjusted R F[3,	observs. ares error of e -squared 30] (prob)	= = .3 = .9 = .9 = .9	9966796 9963475 .65 (.0000	01 01))	
++ Variable Coef	ficient	Standard E	2rror	t-ratio	P[T >t]	Mean of X
Constant 2 LOGKP - LOGPC LOGEMP 1	+ .63395245 .02655970 .05983913 .05451622 1	.8237 .1935	24079 57706 4774	3.198 137 1.243 6.192 3		++ 10.1928331 11.1035344 7.60113043
2 3	67855 14905 01781 13662	14905 .03747 .00111 03227	.()1781)0111)0232)0254	.13662 03227 00254 .02901	

- 7. We now return to the panel data set examined in question 2. The results below show OLS, fixed effects and random effects estimates.
- a. Test the hypothesis of 'no effects' vs. 'some effects' using the results given below.
- b. Explain in precise detail the difference between the fixed and random effects model.
- d. In the context of the fixed effects model, test the hypothesis that there are no effects -i.e., that all individuals have the same constant term. (The statistics you need to carry out the test aregiven in the results.)
- e. The variables narrow_t, rack and tunnel are time invariant. Explain why it is necessary to omit these variables from the equation to compute the fixed effects regression..
- f. Since there are time invariant variables in the model, the Hausman statistic cannot be computed. What I did instead was compute the group means of the time varying variables (logq, lnpe, lnpl, lnpk) and add them to the model. I then used this regression to compute the Wu statistic to test the hypothesis of fixed versus random effects. The value of the statistic is 106.6.
 - (1) How is the statistic computed?
 - (2) What should I conclude on the basis of the test?

OLS Without	Group Dummy Var	lables				
Ordinary	least squares a	regressio	n			
LHS=LNCT	Mean	=	11.	30622		
	Standard deviat	cion =	1.	10169		
	Number of obser	rvs. =		605		
Model size	Parameters	=		8		
	Degrees of free	edom =		597		
Residuals	Sum of squares	=	48.	49299		
	Standard error	of e =		28500		
Fit	R-squared	=		93385		
	Adjusted R-squa	ared =		93308		
Model test	F[7, 597]	(prob) =	1204.0(.	0000)		
Diagnostic	Log likelihood	=	-95.	00555		
	Restricted(b=0)	=	-916.	54939		
	Chi-sq [7]	(prob) =	1643.1(.	0000)		
Info criter.	LogAmemiya Prd.	. Crt. =	-2.	49736		
	Akaike Info. Cr	riter. =	-2.	49736		
	Bayes Info. Cr	lter. =	-2.	43911		
+						
		Standard		Prob.		
LNCT CO	efficient	Error	Z	z> Z	of X	
T'OCO I	.77200***	.01125	68.64	.0000	16.4616	
	.15615	.17391			13.2194	
	41790**	.18157			-1.85956	
	.34916***	.02891			10.1795	
	13716***				.67603	
	.48192***	.03098		.0000		
	14985***		-3.95			
	-7.78982***	1.98172		.0001		
+						

Least Squa	res with Group	Dummy Varia	bles			
Ordinary	least square	es regression	n			
LHS=LNCT	Mean	=	11.	30622		
	Standard dev			10169		
	Number of ok			605		
Model size				57		
10401 5120	Degrees of f			548		
	Degrees of i					
Residuals				35773		
	Standard er	cor of e =	•	07828		
Fit	R-squared Adjusted R-s	=	•	99542		
	Adjusted R-s	squared =	•	99495		
Model test	F[56, 548	3] (prob) =	2126.7(.	0000)		
Diagnostic	F[⁵ 56, 548 Log likeliho Restricted(k	ood =	712.	71615		
	Restricted(k	= (0=0)	-916.	54939		
	Chi-sa [56]	(prob) =	3258.5(.)	0000)		
Info crite	r. LogAmemiya H Akaike Info.	Prd. Crt. =	-5.	00497		
	Akaike Info	Criter =	-5	00553		
	Baves Info	Criter =	-4	59050		
Retd Nuto	Bayes Info. correlation of			82787		
Jonal - Come	COLLEIACIUN OL	$(\pm_i \cup) =$. 0.	52/0/ E0		
anel:Grou	ps Empty (Smallest 1	vaild	uala	50		
	Smallest]	L, Large	st	13		
	Average grou	up size in pa	anel	12.10		
These 3 v	ariables have r	no within gro	oup varia	tion.		
	ACK TUNNEL					
F.E. estim	ates are based	on a general	lized inv	erse.		
+-						
		Standard		Prob.	Mea	an
LNCT I	Coefficient	Error	7.	7>171	of	х
+-	Coefficient					
		00040	10 05	0000	16 461	16
	31912***					
LOGQ T NIDT	.31912***	.02940	10.85	.0000	13 210	24
LOGQ LNPL	.31912***	.02940	6.85	.0000	13.219	94
LOGQ LNPL LNPE	.31912*** .45701*** 30126***	.02940 .06676 .08677	-3.47	.0000	13.219	94 56
LOGQ LNPL LNPE LNPK	.31912*** .45701*** 30126*** .30843***	.02940 .06676 .08677 .01886	-3.47 16.35	.0000	13.219 -1.8595 10.179	94 56 95
NARROW_T	.31912*** .45701*** 30126*** .30843*** .000	.02940 .06676 .08677 .01886	6.85 -3.47 16.35 Parameter	.0000 .0005 .0000	13.219 -1.8595 10.179 .6760	94 56 95)3
NARROW_T RACK	.000 .	(Fixed)	Parameter Parameter)	.6760)3 71
NARROW_T RACK	.000 .	(Fixed) (Fixed)	Parameter Parameter)	.6760)3 71
NARROW_T RACK TUNNEL	.000 . .000 . .000 .	(Fixed) (Fixed) (Fixed)	Parameter Parameter Parameter))) 	.6760 .2347 .1884)3 71
NARROW_T RACK TUNNEL	.000 . .000 . .000 .	(Fixed) (Fixed) (Fixed)	Parameter Parameter Parameter))) 	.6760 .2347 .1884)3 71
JARROW_T RACK TUNNEL +- Jote: ***,	.000 .000 .000 **, * ==> Sig	(Fixed) (Fixed) (Fixed) gnificance a	Parameter Parameter Parameter t 1%, 5%,))) 10% le	.6760 .2347 .1884)3 71
JARROW_T RACK TUNNEL Jote: ***, Fixed para	.000 .000 .000 **, * ==> Sig meter is co	(Fixed) (Fixed) (Fixed) gnificance a onstrained to	Parameter Parameter Parameter 1%, 5%, o equal ti)))) 10% le he valu	.6760 .2347 .1884 vel. e or)3 71
JARROW_T RACK TUNNEL Jote: ***, Fixed para ad a nonp	.000 .000 .000 **, * ==> Sig	gnificance a onstrained to pribecause of	Parameter Parameter t 1%, 5%, o equal t f an earl.)))) 10% le he valu ier pro	.6760 .2347 .1884 vel. e or blem.)3 71 43
JARROW_T RACK TUNNEL Jote: ***, Fixed para ad a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro	gnificance a onstrained to pribecause of	Parameter Parameter t 1%, 5%, o equal t f an earl.)))) 10% le he valu ier pro	.6760 .2347 .1884 vel. e or blem.)3 71 43
JARROW_T RACK TUNNEL Jote: ***, Fixed para had a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro	(Fixed (Fixed (Fixed pnificance a onstrained to or because o	Parameter Parameter))) 10% le he valu ier pro	.6760 .2347 .1884 vel. e or blem.	03 71 43
JARROW_T RACK TUNNEL Jote: ***, Fixed para ad a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro	(Fixed (Fixed gnificance a onstrained to be because of	Parameter Parameter t 1%, 5%, o equal th f an earl))) 10% le he valu ier pro	.6760 .2347 .1884 vel. e or blem.	03 71 43
JARROW_T RACK TUNNEL Jote: ***, Fixed para had a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis	(Fixed 1 (Fixed 1 (Fixed 1 onstrained to or because o	Parameter Parameter Parameter t 1%, 5%, o equal t1 f an earl constant e Classica))) 10% le he valu ier pro al Mode	.676(.234 ⁷ .1884 vel. e or blem.)3 71 13
NARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis	(Fixed) (Fixed) (Fixed) gnificance a onstrained to or because o stics for the	Parameter Parameter L 1%, 5%, o equal t f an earl e Classic))) 10% le he valu ier pro 	.676(.234 ⁷ .1884 vel. e or blem.)3 71 43
JARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro 	(Fixed (Fixed gnificance a onstrained to or because o stics for the Log-Likelih	Parameter Parameter))) 10% le he valu ier pro al Mode	.676(.2347 .1884 vel. e or blem.)3 71 13
JARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp	.000 .000 **, * ==> Sig meter is co ositive st.erro 	(Fixed (Fixed gnificance a onstrained to or because o stics for the Log-Likelih	Parameter Parameter))) 10% le he valu ier pro al Mode	.676(.2347 .1884 vel. e or blem.)3 71 13
VARROW_T RACK TUNNEL +- Note: ***, Fixed para had a nonp 	.000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis del tant term only p effects only	(Fixed (Fixed gnificance a onstrained to br because o distics for the Log-Likelihh -916.54 306.82	Parameter Parameter)) 10% le he valu ier pro al Mode n of Sq 733. 12.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248
JARROW_T RACK TUNNEL Jote: ***, Fixed para had a nonp 	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis Test Statis del tant term only p effects only variables only	(Fixed (Fixed pnificance a onstrained to or because o stics for the Log-Likeline -916.54 306.82 -95.00	Parameter Parameter))) 10% le he valu ier pro al Mode m of Sq 733. 12. 48.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248
JARROW_T RACK TUNNEL Jote: ***, Fixed para ad a nonp 	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis Test Statis del tant term only p effects only variables only d group effects	(Fixed (Fixed pnificance a onstrained to or because o stics for the Log-Likeline -916.54 306.82 -95.00	Parameter Parameter))) 10% le he valu ier pro al Mode m of Sq 733. 12. 48.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385
JARROW_T RACK TUNNEL Jote: ***, Fixed para had a nonp di a nonp (1) Cons (2) Grou (3) X - (4) X an	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis Test Statis del tant term only p effects only variables only	(Fixed (Fixed pnificance a onstrained to or because o stics for the Log-Likeline -916.54 306.82 -95.00	Parameter Parameter))) 10% le he valu ier pro al Mode m of Sq 733. 12. 48.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385
NARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp 	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis Test Statis del tant term only p effects only variables only d group effects	(Fixed (Fixed pnificance a onstrained to or because o stics for the Log-Likeline -916.54 306.82 -95.00	Parameter Parameter))) 10% le he valu ier pro al Mode m of Sq 733. 12. 48.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385
VARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp 	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis Test Statis del tant term only p effects only variables only d group effects	(Fixed (Fixed gnificance a onstrained to br because of stics for the Log-Likeline -916.54 306.82 -95.000 s 712.71	Parameter Parameter))) 10% le he valu ier pro al Mode m of Sq 733. 12. 48.	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385
VARROW_T RACK TUNNEL Vote: ***, Fixed para had a nonp dad a nonp (1) Cons (2) Grou (3) X - (4) X an	.000 .000 .000 **, * ==> Sic meter is co ositive st.erro Test Statis del tant term only p effects only variables only d group effects Likelihood Rati	(Fixed 1 (Fixed 1 	Parameter Parameter Parameter t 1%, 5%, o equal th f an earl e Classica ood Sun 938 066 554 616)) 10% le he valu ier pro- al Mode n of Sq 733. 12. 48. 3. ests	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385 .99542
VARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp 	.000 .000 .000 **, * ==> Sic meter is co ositive st.erro Test Statis del tant term only p effects only variables only d group effects Likelihood Rati Chi-squared	(Fixed (Fixed gnificance a onstrained to or because o stics for the Log-Likelihh -916.54 306.82 -95.00 s 712.71 Hypothesis for to Test d.f. Prob	Parameter Parameter)) 10% le he valu ier pro al Mode m of Sq 733. 12. 48. 3. ests num	.6766 .2347 .1884 e or blem. 	03 71 43 -squarec .00000 .98248 .93385 .99542 P value
VARROW_T RACK TUNNEL Note: ***, Fixed para had a nonp 	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis del tant term only p effects only variables only d group effects 	(Fixed (Fixed gnificance a onstrained to or because o stics for the Log-Likelihh -916.54 306.82 -95.00 s 712.71 Hypothesis for to Test d.f. Prob	Parameter Parameter)) 10% le he valu ier pro al Mode m of Sq 733. 12. 48. 3. ests num	.676(.2347 .1884 vel. e or blem. 	03 71 43 -squared .00000 .98248 .93385 .99542 .99542 P value .00000
<pre>VARROW_T RACK TUNNEL +- Note: ***, Fixed para had a nonp </pre>	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro 	(Fixed (Fixed (Fixed (Fixed (Fixed 	Parameter Parameter Parameter))) 10% le he valu ier pro al Mode 733. 12. 48. 3. 22. 48. 3. 23. 48. 3. 7	.6766 .2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385 .99542 P value .00000 .00000
<pre>VARROW_T RACK TUNNEL +- Note: ***, Fixed para had a nonp </pre>	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro 	(Fixed (Fixed (Fixed (Fixed ficance a ponstrained to pr because o stics for the Log-Likeline Log-Likeline Log-Likeline Log-Likeline 	Parameter Parameter Parameter)))) 10% le he valu ier proj al Mode m of Sq 733. 12. 48. 3. ests num 49 7 56	.676(.2347 .1884 vel. e or blem. 	D3 71 43 -squarec .00000 .98248 .9385 .99542 .99542 .00000 .00000
<pre>VARROW_T RACK TUNNEL Vote: ***, Fixed para had a nonp </pre>	.000 .000 .000 **, * ==> Sig meter is co ositive st.erro Test Statis del tant term only p effects only variables only d group effects Likelihood Rati Chi-squared co) 2446.74) 1643.09) 3258.53) 811.79	(Fixed (Fixed (Fixed (Fixed ficance a ponstrained to pr because of the second bor because of 	Parameter Parameter Parameter)))) 10% le he valu ier proj al Mode 733. 12. 48. 3. ests num 49 7 56 7	.676(.2347 .1884 vel. e or blem. 	03 71 43 -squarec .00000 .98248 .93385 .99542 P value .00000 .00000 .00000 .00000

Estimates Lagrange (1 degre (High val Fixed vs. (7 degre	ffects Model: v(i s: Var[e] Var[u] Corr[v(i,t),v Multiplier Test ees of freedom, p ues of LM favor Random Effects ees of freedom, p ow) values of H f Sum of Square R-squared	= (i,s)] = vs. Model (3) rob. value = FEM/REM over (Hausman) rob. value = avor F.E.(R.)	.0061 .0751 .9245) =2638. .00000 CR mode = . 1.00000	27 01 67 43 0) 1) 00 0) 1) 21	
 LNCT	Coefficient	Standard Error	Z	Prob. z> Z	Mean of X
LOGQ LNPL LNPE LNPK NARROW_T RACK TUNNEL Constant	.33111*** 38440*** .29346*** 08171 .30482*** .36262***	.02267 .06530 .08547 .01849 .08643 .09890 .11075 .72709	5.07 -4.50 15.87 95 3.08	.0000 .0000 .3444	16.4616 13.2194 -1.85956 10.1795 .67603 .23471 .18843
Estimates Lagrange (1 degre (High val	ffects Model: v(i s: Var[e] Var[u] Corr[v(i,t),v Multiplier Test ees of freedom, p ues of LM favor i form of LM Sta Sum of Square R-squared	= (i,s)] = vs. Model (3) rob. value = FEM/REM over tistic = s	.0061 .0728 .9218) =2838. .00000 CR mode	72 25 67 51 0) 1) 15 49	
 LNCT	Coefficient	Standard Error	Z	Prob. z> Z	Mean of X
LOGQ LNPL LNPE LNPK NARROW_T RACK TUNNEL LOGQB LNPLB LNPEB LNPEB Constant	.45701*** -30126*** .30843*** -16251* .50776*** -20105 .45832*** 16415 .32844 .05097	.02951 .06700 .08709 .01893 .08937 .10847 .12896 .04880 .95577 .87197 .11268 11.06214	10.81 6.82 -3.46 16.29 -1.82 4.68 -1.56 9.39 .17 .38 .45 -1.20	.0000	16.4616 13.2194 -1.85956 10.1795 .67603 .23471 .18843 16.4616 13.2194 -1.85956 10.1795

8. You may use any data set you wish for this exercise. You are going to fit a binary choice model, so choose one that contains an interesting binary variable that you will explain with your binary choice model. The data set may be one of the ones that we used during the semester, or one of the data sets on the data page for your text, or any other data set that you find interesting.

You will need a statistical package to do this part of the exam. You may use NLOGIT, Stata, R, MatLab, Gauss, or any other package you are familiar with.

- Your assignment is to estimate a binary choice model using your data. Your report should document the data set, lay out the model you are estimating, and present the results in a professional looking format in a table of results. The entire writeup need not be more than a page or two, but it should document your empirical work as if you were submitting for review by a referee or a colleague in your department.
- Your may fit a logit or probit model. (We are not interested in the 'linear probability model.') In addition to the main assignment above, also do the following:
- a. In a 'technical appendix,' write down the log likelihood for your model. Derive the likelihood equations (first order conditions) for estimation of the model parameters. Derive an asymptotic covariance matrix for your estimator.
- b. Using an alternative specification for your equation, carry out a hypothesis test using a likelihood ratio test.
- c. Report and interpret the partial effects for your model. Indicate whether you have used the partial effects at the means of the data or the average partial effects.
- 9. The probit model below examines the probability that an individual reports Health Satisfaction greater than 6 in the 0 10 scale for HSAT in the GSOEP. Age10 = AGE/10. RICH is a dummy variable that equals one if the individual's income is in the top 20% of the incomes in the sample. The results agree with my expectations (with one exception; I would not expect HEALTHY to increase with age, as it . However, I am concerned that RICH may be endogenous in this model the unobservables that influence health are likely to influence the ability to obtain a high income as well. How can I consistently estimate the model in this case of an endogenous variable in a binary choice model? Once I do, how do I estimate the interesting impact of income on health (i.e., the"treatment effect")?

Binomial	Probit Model					
Dependent	variable	HEALT	НҮ			
Log likel	ihood function	-17476.182	55			
Restricte	d log likelihood	-18279.949	94			
Chi squar	ed [5] (P= .000) 1607.534	78			
Significa	nce level	.000	00			
	Pseudo R-squared					
	on based on $N = 3$					
Inf.Cr.AI	C = 34964.4 AI	C/N = 1.2	80			
+						
1		Standard		Prob.	95% Cor	nfidence
	Coefficient				Inte	erval
	Index function f					
		or probabili	су			
Constant	1.73753***	-	-			
		.12904	13.46	.0000	1.48461	1.99044
RICH	1.73753***	.12904 .02357	13.46 9.24	.0000 .0000	1.48461 .17156	1.99044 .26395
RICH FEMALE	1.73753*** .21776***	.12904 .02357 .01572	13.46 9.24 -9.16	.0000 .0000 .0000	1.48461 .17156 17479	1.99044 .26395 11319
RICH FEMALE MARRIED	1.73753*** .21776*** 14399***	.12904 .02357 .01572 .01923	13.46 9.24 -9.16 2.20	.0000 .0000 .0000 .0282	1.48461 .17156 17479 .00452	1.99044 .26395 11319 .07989
RICH FEMALE MARRIED AGE10	1.73753*** .21776*** 14399*** .04220**	.12904 .02357 .01572 .01923 .06182	13.46 9.24 -9.16 2.20 -6.58	.0000 .0000 .0000 .0282 .0000	1.48461 .17156 17479 .00452 52824	1.99044 .26395 11319 .07989 28591