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End-User License Agreement 
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Copyright, Trademark, and Intellectual Property 

 
This software product is copyrighted by, and all rights are reserved by Econometric 
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or portable secondary computer for his or her exclusive use. However, the software may not be used 
on the primary computer by another person while the secondary computer is in use. For a multi-user 
site license, the specific terms of the site license agreement apply for scope of use and installation. 
 
Limited Warranty 
 
 Econometric Software warrants that the software product will perform substantially in 
accordance with the documentation for a period of ninety (90) days from the date of the original 
purchase. To make a warranty claim, you must notify Econometric Software in writing within ninety 
(90) days from the date of the original purchase and return the defective software to Econometric 
Software. If the software does not perform substantially in accordance with the documentation, the 
entire liability and your exclusive remedy shall be limited to, at Econometric Software’s option, the 
replacement of the software product or refund of the license fee paid to Econometric Software for the 
software product. Proof of purchase from an authorized source is required. This limited warranty is 
void if failure of the software product has resulted from accident, abuse, or misapplication. Some 
states and jurisdictions do not allow limitations on the duration of an implied warranty, so the above 
limitation may not apply to you. To the extent permissible, any implied warranties on the software 
product are limited to ninety (90) days. 
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the software product. To the maximum extent permitted by applicable law, Econometric Software 
disclaims all other warranties and conditions, either express or implied, including, but not limited to, 
implied warranties of merchantability, fitness for a particular purpose, title, and non-infringement 
with respect to the software product. This limited warranty gives you specific legal rights. You may 
have others, which vary from state to state and jurisdiction to jurisdiction. 
 
Limitation of Liability 

 
Under no circumstances will Econometric Software be liable to you or any other person for 

any indirect, special, incidental, or consequential damages whatsoever (including, without limitation, 
damages for loss of business profits, business interruption, computer failure or malfunction, loss of 
business information, or any other pecuniary loss) arising out of the use or inability to use the 
software product, even if Econometric Software has been advised of the possibility of such damages. 
In any case, Econometric Software’s entire liability under any provision of this agreement shall not 
exceed the amount paid to Econometric Software for the software product. Some states or 
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Preface 
 
 LIMDEP is a general, integrated computer package for estimating the sorts of econometric 
models that are most frequently analyzed with cross section and panel data. Its range of capabilities 
include basic linear regression and descriptive statistics, the full set of techniques normally taught in 
the first year of an econometrics sequence, and a tremendous variety of advanced techniques such as 
nested logit models, parametric duration models, Poisson regressions with right censoring and 
nonlinear regressions estimated by instrumental variables and the generalized method of moments 
(GMM).  LIMDEP’s menu of options is as wide as that of any other general purpose program 
available, though, as might be expected, longer in some dimensions and shorter in others.  Among the 
signature features of LIMDEP is that you will find here many models and techniques that are not 
available in any other computer package.  In addition to the estimation programs you need for your 
model building efforts, you will also find in LIMDEP all the analytical tools you need, including matrix 
algebra, a scientific calculator, data transformation features and programming language elements, to 
extend your estimators and create new ones. 
 This program has developed over many years (since 1980), initially to provide an easy to use 
tobit estimator – hence the name, ‘LIMited DEPendent variable models.’  It has spun off a major 
suite of programs for the estimation of discrete choice models.  This program, NLOGIT, builds on 
the Nested LOGIT model.  NLOGIT has now grown to a self standing superset of LIMDEP. 
 Version 9.0 continues our periodic cycle of collecting, then incorporating the many 
suggestions we receive from our users.  We also update LIMDEP every few years to incorporate new 
developments in econometrics and to meet the changing demands of our users.  As you will see 
when you read our description of what’s new in this version, a major theme of this revision is panel 
data.  Panel data sets and techniques are becoming ever more popular.  We are confident that with 
this revision of LIMDEP, you will now have in hand a collection of techniques and procedures for 
analyzing panel data that is without parallel in any other computer program available anywhere. 
 To the best of our knowledge, the code of this program is correct as described.  However, no 
warranty is expressed or implied.  Users assume responsibility for the selection of this program to 
achieve their desired results and for the results obtained. 
 
William H. Greene 
Econometric Software, Inc. 
15 Gloria Place 
Plainview, NY  11803 
January 2007 
 
 



  

Preface to the LIMDEP 9.0 Student User’s 
Guide 

 
 This user’s guide is constructed specifically for the student who is using LIMDEP for the first 
time and is, most likely.  It incorporates the LIMDEP Reference Guide and the LIMDEP Econometric 
Modeling Guide.  The LIMDEP Reference Guide chapters (1-11) discuss operation of the software.  
There will be several examples drawn largely from econometrics to illustrate the operation of the 
program.  However, the purpose of these chapters are to show you how to use the software, rather than 
to show you specifically how to estimate and analyze econometric models with the program.  In these 
chapters, I, we are concerned with features such as how to read a data set, how to transform data, and 
what you need to know about missing data.  

The LIMDEP Econometric Modeling Guide chapters (12-16) discuss econometrics.  These 
chapters follow essentially the sequence of topics that one might encounter in an econometrics course.  
Thus, they will describe your data, then describe how to use the linear regression model.  This topic 
usually takes most of the first semester, and it occupies a large section of this part of the manual.  We 
then proceed to some of the more advanced topics that would logically appear later in the course, such 
as two stage least squares (instrumental variable estimation) and basic discrete (binary) choice models.  
The last chapter offers a brief survey of the many somewhat and extremely advanced features that are 
also available in LIMDEP, but not covered in a conventional econometrics course (or in this manual).   
 Having introduced the manual as above, we do emphasize, this user’s guide is not an 
econometrics or statistics text, and does not strive to be one.  The material below will present only the 
essential background needed to illustrate the use of the program.  In order to accommodate as many 
readers as possible, we have attempted to develop the material so that it is accessible to both 
undergraduates and graduate students.  (For the latter, a text that would be useful to accompany this 
guide is Econometric Analysis, 7th Edition (William Greene, Prentice Hall, 2011), which was written by 
the author of both LIMDEP and this manual.) 
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Chapter 1: Introduction to LIMDEP 
 
1.1  The LIMDEP Program 
 

 LIMDEP is an integrated package for estimating and analyzing econometric models.  It is 
primarily oriented toward cross section and panel data.  But, many standard problems in time series 
analysis can be handled as well.  LIMDEP’s basic procedures for data analysis include: 

 

• descriptive statistics (means, standard deviations, minima, etc.), with stratification, 
• multiple linear regression and stepwise regression, 
• time series identification, autocorrelations and partial autocorrelations, 
• cross tabulations, histograms, and scatter plots of several types. 
 

You can also model many extensions of the linear regression model such as: 
 

• heteroscedasticity with robust standard errors, 
• autocorrelation with robust standard errors, 
• multiplicative heteroscedasticity, 
• groupwise heteroscedasticity and cross sectional correlation, 
• the Box-Cox regression model, 
• one and two way random and fixed effects models for balanced or unbalanced panel data 
• distributed lag models, ARIMA, and ARMAX models, 
• time series models with GARCH effects, 
• dynamic linear models for panel data, 
• nonlinear single and multiple equation regression models, 
• seemingly unrelated linear and nonlinear regression models, 
• simultaneous equations models. 

 
 LIMDEP is best known for its extensive menu of programs for estimating the parameters of 
nonlinear models for qualitative and limited dependent variables.  (We take our name from LIMited 
DEPendent variables.)  No other package supports a greater variety of nonlinear econometric models.  
Among LIMDEP’s more advanced features, each of which is invoked with a single command, are: 
 

• univariate, bivariate and multivariate probit models, probit models with partial observability, 
selection, heteroscedasticity and random effects, 

• Poisson and negative binomial models for count data, with fixed or random effects, sample 
selection, underreporting, and numerous other models of over and underdispersion, 

• tobit and truncation models for censored and truncated data, 
• models of sample selection with one or two selection criteria, 
• parametric and semiparametric duration models with time varying covariates, 
• stochastic frontier regression models, 
• ordered probit and logit models, with censoring and sample selection, 
• switching regression models, 
• nonparametric and kernel density regression, 
• fixed effects models, random parameters models and latent class models for over 25 different 

linear and nonlinear model classes, 
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and over fifty other model classes.  Each of these allows a variety of different specifications.  Most of 
the techniques in wide use are included.  Among the aspects of this program which you will notice 
early on is that regardless of how advanced a technique is, the commands you use to request it are the 
same as those for the simplest regression.   
 LIMDEP also provides numerous programming tools, including an extensive matrix algebra 
package and a function optimization routine, so that you can specify your own likelihood functions and 
add new specifications to the list of models.  All results are kept for later use.  You can use the matrix 
program to compute test statistics for specification tests or to write your own estimation programs.  The 
structure of LIMDEP’s matrix program is also especially well suited to the sorts of moment based 
specification tests suggested, for example, in Pagan and Vella (1989) – all the computations in this 
paper were done with LIMDEP.  The programming tools, such as the editor, looping commands, data 
transformations, and facilities for creating ‘procedures’ consisting of groups of commands will also 
allow you to build your own applications for new models or for calculations such as complicated test 
statistics or covariance matrices. 
 Most of your work will involve analyzing data sets consisting of externally generated samples 
of observations on a number of variables.  You can read the data, transform them in any way you like, 
for example, compute logarithms, lagged values, or many other functions, edit the data, and, of course, 
apply the estimation programs. You may also be interested in generating random (Monte Carlo) 
samples rather than analyzing ‘live’ data.  LIMDEP contains random number generators for 15 discrete 
and continuous distributions including normal, truncated normal, Poisson, discrete or continuous 
uniform, binomial, logistic, Weibull, and others.  A facility is also provided for random sampling or 
bootstrap sampling from any data set, whether internal or external, and for any estimation technique 
you have used, whether one of LIMDEP’s routines or your own estimator created with the 
programming tools.  LIMDEP also provides a facility for bootstrapping panel data estimators, a feature 
not available in any other package. 
 
1.2  References for Econometric Methods 
 
 This manual will document how to use LIMDEP for econometric analysis.  There will be a 
number of examples and applications provided as part of the documentation.  However, we will not be 
able to provide extensive background for the models and methods.  A few of the main general 
textbooks currently in use are:  
 

• Baltagi, B., Econometric Analysis of Panel Data, 3rd ed., Wiley, 2005 
• Cameron, C. and Trivedi, P., Microeconometrics: Methods and Applications, Cambridge 

University Press, 2005. 
• Greene, W., Econometric Analysis, 6th Edition, Prentice Hall, 2008. 
• Gujarati, D., Basic Econometrics, McGraw Hill, 2003. 
• Johnston, J. and DiNardo, J., Econometric Methods, 4th Edition, McGraw-Hill, 1997. 
• Stock, J. and  Watson, M., Introduction to Econometrics, 2nd. Ed., Addison Wesley, 2007. 
• Wooldridge, J., Econometric Analysis of Cross Section and Panel Data, MIT Press, 2002. 
• Wooldridge, J., Modern Econometrics, 2nd ed., Southwestern, 2007 
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Chapter 2: Getting Started 
 
2.1  Introduction 
 
 This chapter will describe how to install LIMDEP on your computer.  Sections 2.5 to 2.7 
describe how to start and exit LIMDEP. 
 
2.2  Equipment 
 
 LIMDEP is written for use on Windows driven computers.  As of this writing, we do not 
support operation on any Apple Macintosh computers.  Windows emulation software that allows you 
to run Windows on Apple machines should allow LIMDEP to operate, but we are unable to offer any 
assurance, nor any specific advice.   
  
2.3  Installation  
 
 To install LIMDEP, first close all applications.  Insert the LIMDEP CD in your CD-ROM 
drive.  The setup program should start automatically.  If it does not, open My Computer or 
Windows Explorer (see Figure 2.2) and double click your CD-ROM drive to view the contents of 
the LIMDEP CD.  To launch the Setup program, double click Setup.  In either case, the installation 
wizard will start.  

Installation proceeds as follows: 
 
Step 1. Preparing to Install…:  The InstallShield Wizard checks the operating system and configures 

the Windows installer.  Installation proceeds to the next step automatically.  
Step 2. Welcome to the InstallShield Wizard for LIMDEP 9.0:  Note, LIMDEP is protected by 

copyright law and international treaties.  Click Next to continue.  
Step 3. Econometric Software End-User License Agreement:  In order to install LIMDEP 9.0, you 

must select ‘I accept the terms in the license agreement.’  Click Next to continue.   
Step 4. Welcome to LIMDEP 9.0:  This window presents a brief introduction to LIMDEP 9.0.  

Please take a moment to read this information and click Next to continue.  
Step 5. Destination Folder:  This window indicates the destination folder for the program: 

C:\Program Files.  (The complete folder location is C:\Program Files\Econometric 
Software\LIMDEP9\Program.)   Click Next to continue.  

Step 6. Ready to Install the Program:  This window reviews the installation instructions.  Click 
Install to install LIMDEP 9.0.  Installation takes about 60 seconds.  

Step 7. InstallShield Wizard Completed:  Click Finish to complete installation.  (You do not have to 
restart your computer to complete installation.)  

Step 8. The first time you launch LIMDEP, you will be presented with the Welcome and 
Registration dialog box.  See Section 2.3.1 for a complete explanation of the registration 
process.  
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Installation also creates a resource folder, C:\LIMDEP9 with three subfolders: 
 
 C:\LIMDEP9\Data Files 
 C:\LIMDEP9\LIMDEP Command Files 
 C:\LIMDEP9\Project Files 
 
NOTE: All sample data files referenced in this documentation will be found in these folders.  
 
2.4  Registration  
 
 The first time you use LIMDEP you will be presented with the Welcome and Registration 
dialog box.  There are two steps to register LIMDEP.  First, provide the registration information 
requested in the dialog box.  Carefully input the serial number included with your program.  This 
will place the registration information, including your serial number, in the About box.  You must 
complete all three fields of this dialog box in order to begin using LIMDEP.  See Figure 2.1.  
 Second, send your registration information to Econometric Software.  You can register with 
Econometric Software by completing the registration card included with your order and faxing or 
mailing it to us.  You can also send your registration information to Econometric Software online via 
our website, www.limdep.com.  To submit your registration information on our website, click Help, 
then select LIMDEP Web Site and proceed to the Registration page. 
 

 
Figure 2.1  Welcome and Registration Dialog Box 
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2.5  Execution – Beginning the LIMDEP Session 
 
 Start LIMDEP as you would any other program, for example by double clicking the LIMDEP 
icon on your desktop.   
 The opening window is the LIMDEP desktop, shown in Figure 2.2.  At the top of the screen, 
the main menu is shown above the LIMDEP toolbar.  Below the toolbar is the command bar discussed 
in Chapter 3. The open window is the project window.  The session is identified as your ‘project,’ 
which will ultimately consist of your data and the various results that you accumulate. This is where 
you will begin your LIMDEP session.  Operation is discussed in Chapter 3. 
 

 
Figure 2.2  LIMDEP Desktop Window 

 
If you do not see the command bar when you first start the program, so that your initial desktop appears 
as below in Figure 2.3, then select Tools in the desktop menu and Options... from the drop down 
menu.  In the dialog that appears next, as shown in Figure 2.4, tick the option to “Display Command 
Bar” to change the desktop menu so that it will then appear as in Figure 2.2, with the command bar 
included. 
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Figure 2.3  Tools Menu on Desktop 

 

 
Figure 2.4  Options Dialog Box 

 
2.6  Components of a LIMDEP Session  
 
 When you are operating LIMDEP, you are accumulating a project that consists of at least four 
components:  
 

• Your data, matrices, scalars, the environment, and so on.  The window associated with this 
information is the project window – usually at the upper left of your screen as in Figure 2.2.. 

• The commands that you have accumulated on the screen in an editing window. 
• The output that you have accumulated in the output window. 
• LIMDEP’s session trace file described in Section 2.11. 

 
Figure 2.5 shows an example.  In this session, we are analyzing a data set that contains 840 
observations on about 20 variables.  The chapters to follow will describe the various components and 
how the analysis proceeds.  Figure 2.5 shows a fairly typical arrangement of a LIMDEP session.  (The 
screen parts are arranged for the figure. It will be more conveniently spaced when you use the 
program.)   
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 The four parts of the session can be seen in the figure: 
 

• The project consists of the CLOGIT data, which we will use later in several examples. 
• The editing window (also referred to as a text or command editor) at the upper right shows the 

one command that we have entered. 
• The output window (mostly obscured) is in the lower half of the split window. 
• The trace of the session is shown in the center of the screen, at the top of the split output 

window. 
 
 

 
Figure 2.5  LIMDEP Data Analysis Session 
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2.7  Exiting LIMDEP and Saving Results  
 
 To leave LIMDEP, select Exit from the File menu.  Whenever you exit a session, you 
should save your work.  At any time in any session, you can save all of LIMDEP’s active memory, 
tables, data matrices, etc. into a file, and retrieve that file later to resume the session.   
 When you exit, LIMDEP will ask if you wish to save the contents of the editing, project 
and output windows.  In each case, you may save the component as a named file.  The query in 
each case is 
   ! Save changes to …<name>… 
 
where <name> is the name that appears in the title banner of each of the active windows.  See Figure 
2.6 for an example, where the query refers to the output window. You may also have other working 
windows open, such as graphs or your scientific calculator and, if so, you can save these as well.  This 
operation is discussed further in Chapter 3. 
 

 
Figure 2.6  Exiting LIMDEP – Saving Window Contents 
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 The filename extension for a saved project window is .LPJ.  The extension for a saved editing 
window file or output window is .LIM.  When you use LIMDEP’s dialog box to save the project, 
editing or output windows, LIMDEP will remember the name of the file.  When you return, you will be 
able to select the file from those listed in the File menu.  The files listed 1-4 are the last four editing or 
output window files saved by LIMDEP, and the files listed 5-8 are the last four project files.  (See 
Figure 2.7.)  Just click the file name in the File menu to open the file.  You can also save files by using 
the save options in the File menu. 
 
NOTE:  A saved editing window is referred to as a command or input file. 
 
WARNING:  Output files and command files are both saved with the .LIM extension.  You will need to 
make careful note of which files you save are which type. 
 

 
Figure 2.7  File Menu 
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2.8  Fast Input of a Data Set with OPEN/LOAD 
 
 File:Save (or just saving the files upon Exit) then File:Open offers an extremely fast and easy 
way for you to transform ASCII or any other raw format data to binary format for quick input. The first 
time you use the data set, use File:Save or the LIMDEP SAVE command – see Chapter 3 – to rewrite 
it in LIMDEP’s binary format.  (You can create any new variables you want to before doing so, these 
will be written with the raw data.)  Later, instead of reading the raw data set, just use File:Open or any 
of the Windows Explorers to retrieve the file you saved earlier.  If you created any new variables 
before you saved the data set, they will be loaded as well.  The time savings in reading an ASCII data 
set which is unformatted are about 90%!  For a formatted data set, it is still at least three times as fast. 
 
TIP:  The popular data transfer program Stat/Transfer supports LIMDEP and will translate many 
common system files, such as SAS, Stata, SYSTAT, TSP, EViews, and so on to .LPJ style LIMDEP 
project files. 
 
2.9  Starting LIMDEP from your Desktop or with a Web 
Browser 
 
 Files with the .LPJ and .LIM extensions are ‘registered’ in your Windows system setup.  This 
means that whenever you double click any file with a .LPJ or .LIM extension in any context, such as 
Find File, My Computer, any miniexplorer, or in a web browser, Windows will launch LIMDEP, and 
open the file.  Note, however, in order to operate LIMDEP, you must have a project file open, not just a 
command or input file.  
 For example, you can create shortcuts by moving any .LIM or .LPJ files you wish to your 
Windows desktop.  These files will then appear as icons on your desktop, and you can launch 
LIMDEP from your desktop.  Similarly, if you open a .LIM file on our website or someone else’s, or 
a .LIM file that is sent to you as an email attachment, you can launch LIMDEP and place the 
indicated file in an editing window.  If you start LIMDEP in this way, you must then use 
File:New/Project to open a new project window.   
 
NOTE:  Until you open a project, no other program functions are available.  You must now open a 
project with any of the options in the File menu in order to proceed. 
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Chapter 3: Operating LIMDEP 
 
3.1  Introduction 
 
 This chapter will explain how to give commands to LIMDEP and will describe some essential 
features of operation.  The sections to follow are: 
 
 3.2: Beginning the LIMDEP Session  
 3.3: Using the Editing Window 
 3.4: A Short Tutorial 
 3.5: Help 
 
3.2  Beginning the LIMDEP Session 
 
 When you begin your LIMDEP session from the Start:Programs menu or a shortcut on 
your desktop, the initial screen will show a project window entitled ‘Untitled Project 1’ and an 
empty desktop as shown in Figure 3.1.  You can now begin your session by starting a new project or 
reloading an existing one.  Figure 3.2 shows the File menu (the lower sections show some of our 
previous work).  
 
3.2.1  Opening a Project 
 

You can select Open or Open Project in the File menu (they are the same at this point) to 
reload a project that you saved earlier or select one of the existing projects known to LIMDEP (if any 
are). You may also select New to begin a new project. 

 
NOTE:  In order to operate LIMDEP, you must have a project open.  This may be the default 
untitled project or a project that you created earlier.  You will know that a project is open by the 
appearance of a project window on your desktop.  Most of LIMDEP’s functions will not operate if 
you do not have a project open. 
 
Note that the window shows that the data area has 3,333 rows.  Your project window will show a 
different value.  This is determined by a setting of the size of the data area  
 
TIP:  You can associate a LIMDEP project file (see Section 2.9) with the program, and launch 
LIMDEP directly with your project file.  Use My Computer or the Windows Explorer to navigate to 
the folder where you have created your project file – its name will be <the name>.LPJ.  Drag the icon 
for the .LPJ file to your desktop, then close My Computer.  Now, you can double click the icon on the 
desktop to launch LIMDEP and open the project file at the same time to begin your session. 
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Figure 3.1  The LIMDEP Desktop 

 
3.2.2  Opening an Editing Window 

 
To begin entering commands you should now open an editing window.  Select New in the 

File menu to open the File:New dialog box as shown in Figure 3.3. Now, select Text/Command 
Document and OK to open the editing window, which will appear to the right of the project 
window. 
 
TIP: You can press Ctrl-N at any time to bring up the File:New dialog box. 
 
The desktop will now appear as shown in Figure 3.4, and you can begin to enter your commands in 
the editing window as we have done in an example in the figure.  (We have arranged the various 
windows for appearance in our figures.  Your desktop will be more conveniently arranged, and will 
be full screen sized.) 
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Figure 3.2  The File Menu 

 

 
Figure 3.3  The File:New Dialog Box 

 
NOTE:  If you have created a text file that contains LIMDEP commands that you will be using, 
instead of creating a new set of commands, you can use File:Open to open that file.  If the file that 
you open has a .LIM file extension in its filename, then LIMDEP will automatically open an editing 
window and place the contents of the file in the window.  You can also use Insert:Text File to place 
a copy of a text file (any text file) in an editing window that is already open. 
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Figure 3.4  Project Window and Editing Window 

 
Note that the editing window shown in Figure 3.4 is labeled ‘Untitled 1.’  This means that the 
contents of this window are not associated with a file; the commands in an untitled window are just 
added to the window during the session.  When you open a ‘.LIM’ file, the file will be associated 
with the window, and its name will appear in the window banner.  The ‘*’ in the title means that the 
contents of this window have not yet been saved. 
 
TIP:  You can also associate a LIMDEP command file, <the name>.LIM, with LIMDEP.  As in the 
earlier tip, if you use My Computer and your mouse to drag the icon for a .LIM file to the desktop, 
then you can double click the icon to start LIMDEP and at the same time, open an editing window for 
this command file.  Note, however, that when you do this, you must then either open an existing project 
file with File:Open, File:Open Project, or one of the menu entries, or start a new project with 
File:New/Project/OK. 
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3.3  Using the Editing Window  
 
 LIMDEP’s editing window is a standard text editor.  Enter text as you would in any other 
Windows based text editor. The Edit menu provides standard Undo, Cut, Copy, Paste, Clear, Select 
All, Find, Replace, and so on, as shown in Figure 3.5.  You can also use the Windows clipboard 
functions to move text from other programs into this window, or from this window to your other 
programs.  You can, for example, copy text from any word processor, such as Microsoft Word, and 
paste it into the editing  window.  The LIMDEP  editing window will inherit all the features in your 
word processor, including fonts, sizes, boldface and italic, colors, math objects, etc.  However, once 
you save, then retrieve this window, these features will be lost, and all that will remain will be the text 
characters, in Courier font. 
 

 
Figure 3.5  Editing Window and the Edit Menu 

 
TIP:  The text editor uses a Courier, size 9 font.  If you are displaying information to an audience or 
are preparing materials for presentation, you might want to have a larger or different font in this 
window.  You can select the font for the editor by using the Tools:Options/Editor:Choose Font 
menu.  You may then choose a different font and size for your displays.  This font will be used in the 
text editing window, and in the output window. 
 
NOTE:  The editing window is also referred to as a text editor or a command editor. 
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 When you are ready to execute commands, highlight the ones you wish to submit with your 
mouse by placing the cursor at the beginning of the first line you wish to submit and, while holding 
down the left mouse button, moving the mouse cursor to the end of the last line you wish to submit. 
(This is the same movement that you use in your word processor to highlight text.)  The highlighted 
section will change from black text on white to white text on black.  Then, to execute the commands you 
may do either of the following: 
 

• Click GO  on the LIMDEP toolbar. (See  below.  If the toolbar is not showing on your 
screen, select the Tools:Options/View tab, then turn on the Display Tool Bar option.)  The 
GO button is seen in green in the tool bar in Figure 3.6. 

 

 
Figure 3.6  Command Bar 

 
• Select the Run menu at the top of your screen.  The Run menu is shown in Figure 3.7.  The first 

two items in this menu are:  
 

° Run Line (or Run Selection if multiple lines are highlighted) will allow you to execute 
the selected commands once. 

° Run Line Multiple Times (or Run Selection Multiple Times if multiple lines are 
highlighted) will allow you to specify that the selected commands are to be executed more 
than one time.  The dialog box queries you for the number of times. 

 
 The commands you have selected will now be carried out.  In most cases, this will produce 
some output.  LIMDEP will now automatically open a third window, your output window, discussed in 
Section 3.4. 
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Figure 3.7  Submitting Commands with the Run Menu 

 
 If your commands fit on a single line – many of LIMDEP’s commands do not, there are 
additional ways for you to submit commands: 
 

• You can type a one line command in the command window, then press Enter to submit it.  The 
command window or command bar is the small window located below the LIMDEP toolbar.  
The  button at the end of the line allows you to recall and select among the last several such 
commands you have submitted.  See Figure 3.6. 

 
• You can submit a single line of text in the text editor to the command processor just by placing 

the cursor anywhere on that line (beginning, middle or end), and then clicking the GO button.  
The single line does not have to be highlighted for this. 

 
• For desktop computers (this does not apply to most laptop or notebook computers), the two 

Enter keys on your keyboard, one in the alphabetic area and one in the numeric keypad, are 
different from LIMDEP’s viewpoint.  You can submit the line with the cursor in it as a one line 
command by pressing the numeric Enter key.  The alphabetic Enter key acts like an ordinary 
editing key. 
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 Finally, the right mouse button is also active in the editing window.  The right mouse button 
invokes a small menu that combines parts of the Edit and Insert menus, as shown in Figure 3.8.  As in 
the Edit menu, some entries (Cut, Copy) are only active when you have selected text, while Paste is 
only active if you have placed something on the clipboard with a previous Cut or Copy.   Run Line is 
another option in this menu.  Run Line changes to Run Selection when one or more lines are 
highlighted in the editing window, and if you make this selection, those lines will be submitted to the 
program.  If no lines are highlighted, this option is Run Line, for the line which currently contains the 
cursor. 
 

 
Figure 3.8  The Edit/Right Mouse Button Menu 

 
 You may have noted by this point, that operating of LIMDEP uses a mixture of menus and 
commands submitted from the text editor.  Though most modern software is largely “point and click” 
menu driven, much of what you do in econometrics is not very well suited to this style of processing.  
In fact, it is possible to operate LIMDEP almost without using your keyboard once your data are 
entered and ready.  We will demonstrate use of the menus for model building as we go along.  But, you 
will almost surely find that using the command editor and the LIMDEP command language is far 
simpler and more efficient than using the menus and dialog windows.  Moreover, when you do begin to 
write your own computations, such as using matrix algebra where you must compose mathematical 
expressions, then the menus will no longer be useful. 
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3.4  A Short Tutorial 
 
Start the Program. 
 
 We assume that you have successfully installed LIMDEP on your computer and created a 
shortcut to use to invoke the program.  Now, invoke LIMDEP, for example, by double clicking the 
shortcut icon or from the Start:Programs menu.  The desktop will appear as shown in Figure 3.9, with a 
new project window open, and no other windows active. 

 
Figure 3.9  Initial LIMDEP Desktop 

 
Open an Editing Window. 
 
 Select File:New, then Text/Command Document to open an editing window, exactly as 
discussed in Section 3.2.2.  (See Figure 3.3.) 
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Place Commands in the Editing Window. 
 
 Type the commands shown in the editing window of Figure 3.10.  These commands will do the 
following: 
 

1. Instruct LIMDEP to base what follows on 100 observations. 
2. Create two samples of random draws from the normal distribution, a ‘y’ and an ‘x.’ 
3. Compute the linear regression of y on x. 

 
Spacing and capitalization do not matter – type these three lines in any manner you find convenient.  But, 
do use three lines.  (You need not type the comment lines “I will use ... data.” 
 
Submit the First Two Commands. 
 
 Highlight the first two lines of this command set.  Now, move the mouse cursor up to the (now) 
green button marked GO – it is directly below Tools – and click the GO button. Note that a new window 
appears, your output window – see Figure 3.11.  (You may have to resize it to view the output.) 
 

 
Figure 3.10   Editing Window 

 
The output window will always contain a transcript of your commands.  Since you have not generated 
any numerical results, at this point, that is all it contains. 
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Figure 3.11  Output Window with Command Echo 

 
Compute the Regression. 
 
 Before doing this step, notice that the top half of the output window has the Trace tab selected. If 
you click the Status tab, this will change the appearance of the top half of the window, as you’ll see later. 
The trace feature in the output window is useful when you execute iterative, complicated nonlinear 
procedures that involve time consuming calculations.  The status window will help you to see how the 
computation is progressing, and if it is near completion. 
 Now, select the last line in your command set, the REGRESS command, and click the GO 
button.  The regression output appears in the lower half of the window, and you can observe the 
accumulating trace in the upper half of the window.  This trace in the top half of the window will be 
recorded as the trace file, TRACE.LIM when you exit the program.  (Exit status of 0.0 means that the 
model was estimated successfully.) 
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Figure 3.12  Regression Output in Output Window 

 
The Project Window. 
 
 Note in Figure 3.9, in the project window, that the topics Matrices and Scalars have  symbols 
next to them, indicating that the topic can be ‘expanded’ to display its contents.  But, the Variables entry 
is not marked.  After you executed your second line in your editing window, and created the two variables 
x and y, the Variables topic is now marked with .  Click this symbol to expand the topic.  The 
REGRESS command created another variable, logl_obs.  It also created three matrices, as can be seen in 
Figure 3.13. 



Chapter 3: Operating LIMDEP  23 

 Some other features you might explore in the project window:  
 

• Click the   symbol next to the Matrices and/or Scalars topics. 
• Double click any name that you find in the project window in any of the three topics. 
• Single click any of the matrix or scalar names, and note what appears at the bottom of the 

window. 
 
 

 
Figure 3.13  Project Window 

 
Exit the Program. 
 
 When you are done exploring, select File:Exit.  There is no need to save any of these windows, 
so answer no to the three queries about saving your results. 
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3.5  Help  
 
NOTE:  LIMDEP’s help feature uses a .hlp format file.  This is (was) a standard Windows format 
feature, and its operation relies on a Windows utility program.  With the release of Windows Vista, 
without notification, Microsoft made a decision to end support of this format, and did not include a 
version of the help engine in the new operating system.  Thus, the Help procedure in LIMDEP (and 
many other programs) is not compatible with Windows Vista.  But, evidently in response to the 
predictable protest, Microsoft has produced a patch for this feature that can be added to the operating 
system to revive help engines such as ours.  Please go to http://www.limdep.com/support/faq/ for more 
information about this as well as instructions on how to obtain the patch. 
 
 LIMDEP offers an extensive Help file.  Select Help:Help Topics from the menu to bring up 
the help editor.  LIMDEP’s Help file is divided into seven parts, or ‘books.’  In the first book, you will 
find a selection of Topics that discuss general aspects of operating the program.   The second book is 
the Commands list. This contains a list of the essential features and parts of all of LIMDEP’s 
commands.  The third book contains a summary of the various parts of the desktop.  The fourth book 
contains descriptions of updates to LIMDEP that were added after the manual went to press.  Finally, 
there are three books of useful ancillary material: a collection of LIMDEP programs, some of which 
appear in the manual for the program, a collection of data sets that can be used for learning how to use 
LIMDEP and for illustrating the applications – these include the data sets used in the applications in 
this manual, and, finally, some of the National Institute of Standards accuracy benchmark data sets.  
The files in the last three books are also available in a resource folder created when LIMDEP is 
installed.  The location for the folder is C:\LIMDEP9, and there are three subfolders, Data Files, 
LIMDEP Command Files, and Project Files.   
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Chapter 4: LIMDEP Commands 
 
4.1  Commands 
 
 There are numerous menus and dialog boxes provided for giving instructions to LIMDEP.   
But, ultimately, the large majority of the instructions you give to the program will be given by 
commands that you enter in the text editor.  This chapter will describe the LIMDEP command 
language.  We begin by describing the general form and characteristics of LIMDEP commands.   
Section 4.4 will illustrate how the menus and dialog boxes can also be used to operate the program. 
 

4.2  Command Syntax 
 
 All program instructions are of the form: 
 

VERB    ; specification  ; specification  ;  ...  ; specification  $ 
 
The verb is a unique four character name which identifies the function you want to perform or the 
model you wish to fit.  If the command requires additional information, the necessary data are given in 
one or more fields separated by semicolons (;).  Commands always end with a ‘$.’  The set of 
commands in LIMDEP consists generally of data setup commands such reading a data file, data 
manipulation commands such as transforming a variable, programming commands such as matrix 
manipulation and scientific calculation commands, and model estimation commands.  All are 
structured with this format.  Examples of the four groupings noted are: 
 
 READ   ; File = “C:\WORK\FRONTIER.DAT” ; Nobs = 27 ; Nvar = 4 $ 
 CREATE  ; logq = Log(output) $ 
 MATRIX  ; identity = Iden(5)  ;  bols = <X’X> * X’y $ 
 REGRESS  ; Lhs = logq ; Rhs = one, Log(k), Log(l) ; Plot residuals $ 
 
The following command characteristics apply: 
 

• You may use upper or lower case letters anywhere in any command.  All commands are 
translated to upper case immediately upon being read by the program, so which you use never 
matters.  But, note that this implies that you cannot use upper and lower case as if they were 
different in any respect.  That is, the variable CAPITAL is the same as capital. 

 

• You may put spaces anywhere in any command. LIMDEP will ignore all spaces and tabs in 
any command. 

 

• Every command must begin on a new line in your text editor 
 

• In any command, the specifications may always be given in any order.  Thus, 
 

 READ  ; Nobs = 100 ; File = DATA.PRJ $, and 
READ  ; File = DATA.PRJ ; Nobs = 100 $  

 
are exactly the same. 
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• You may use as many lines as you wish to enter a command.  Just press Enter when it is 
convenient. Blank lines in an input file are also ignored 

 
• Most of your commands will fit on a single line.  However, if a command is particularly long, 

you may break it at any point you want by pressing Enter.  The ends of all commands are 
indicated by a $.  LIMDEP scans each line when it is entered.  If the line contains  a $, the 
command is assumed to be complete.  
 

HINT:  Since commands must generally end with a $, if you forget the ending $ in a command, it will 
not be carried out.  Thus, if you submit a command from the editor and ‘nothing happens,’ check to see 
if you have omitted the ending $ on the command you have submitted.  Another problem can arise if 
you submit more than one command, and one of them does not contain a $.  The subsequent command 
will be absorbed into the offending line, almost surely leading to some kind of error message.  For 
example, suppose the illustrative commands we used above were written as follows:  Note that the 
ending $ is missing from the second command. 
 
 SAMPLE  ; 1 – 100 $ 
 CREATE  ; x = Rnn(0,1) ; y = x + Rnn(0,1)  
 REGRESS  ; Lhs = y ; Rhs = one,x $ 
 
This command sequence produces a string of errors: 
 
Error   623: Check for error in ONE,X 
Error   623: Look for: Unknown names, pairs of operators, e.g., * 
Error    61: Compilation error in CREATE. See previous diagnostic. 
 
The problem is that the REGRESS command has become part of the CREATE command, and the 
errors arise because this is now not a valid CREATE instruction. 
 
4.3  Naming Conventions and Reserved Names 
 
 Most commands refer to entities such as variables, groups of variables, matrices, procedures, 
and particular scalars by name.  Note in our examples, we have referred to ‘x,’ ‘y,’ abd ‘capital.’  Your 
data are always referenced by variable names.  The requirements for names are: 

 
• They must begin with a letter.  Remember that LIMDEP is not case sensitive.  Therefore, you 

can mix upper and lower case in your names at will, but you cannot create different names 
with different mixes. E.g., GwEn is the same as GWEn, gwen and GWEN. 

 
• You should not use symbols other than the underscore (‘_’) character and the 26 letters and 10 

digits in your names. Other punctuation marks can cause unexpected results if they are not 
picked up as syntax errors. 

 
• Names may not contain more than eight characters. 
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 There are a few reserved words which you may not use as names for variables, matrices, 
scalars,  namelists, or procedures.  These are: 
 
 one  (used as a variable name, the constant term in a model), 
 b, varb, sigma (used as matrices, to retain estimation results from all models), 
 n  (always stands for the current sample size), 
 pi  (the number 3.14159...), 
 _obsno  (observation number in the current sample, used by CREATE), 
 _rowno  (row number in data set, used by CREATE), 
 s, sy, ybar, degfrdm, kreg, lmda, logl, nreg, rho, rsqrd, ssqrd, sumsqdev 
   (scalars retained after regressions are estimated), 
 exitcode  (used to tell you if an estimation procedure was successful). 
 
Several of the reserved names are displayed in the project window.  Note in Figure 4.1 that there are 
‘keys’ next to the three matrix names b, varb and sigma.  These names are ‘locked,’ i.e., reserved.  You 
may not change these entities – for example, you may not create a matrix named b.  That name is 
reserved for program use.  You are always protected from name conflicts that would arise if you try to 
name a variable or a matrix with a name which is already being used for something else, such as a 
matrix or scalar, or if you try to use one of the reserved names.  For example, you may not name a 
variable ‘s’; this is reserved for the standard deviation of the residuals from a regression.  LIMDEP will 
give you a diagnostic if you try to do so, and decline to carry out the command. 
 

 
Figure 4.1  Reserved Names 
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4.4  Command Builders 
 
 The desktop provides menus and dialog boxes for the functions that you need to manage 
your data, open projects and text windows, and so on.  In almost most all cases, there are commands 
that you can use for these same functions, though generally you will use the menus.  The reverse is 
true when you analyze your data and do statistical and econometric analysis.  You will usually use 
commands for these procedures.  However, we note, for most statistical operations, there are also 
menus and dialog boxes if you prefer to use them. 
 For an example, in Figure 4.2, you can see an editing window that contains four commands, 
a SAMPLE command, followed by two CREATE commands that create a simulated data set on ‘X; 
and ‘Y.’ and a regression command.  The first three commands have already been executed, and the 
data, as you can see in the project window, are already created.  I can now compute the regression by 
highlighting the REGRESS command and pressing the GO button. 
 

 
Figure 4.2  Regression Command 

 
An alternative way to request the regression is to use the Model menu on the desktop and locate the 
command builder for the linear regression.  This is shown in Figure 4.3.  When I select this item 
from the menu, this will open a dialog box that lets me construct my linear regression model without 
typing the commands in the editor.  The command builder is shown in Figure 4.4. 
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Figure 4.3  Model Menu 

 

 
Figure 4.4  Regression Command Builder 
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After selecting the variables that I want to appear on the left and right hand sides of my regression 
equation, I press Run, and the regression is computed.  The results are shown in Figure 4.5. 
 

 
Figure 4.5  Regression Results in Output Window 

 
 The dialog box just shown is called a ‘Command Builder’ because in addition to submitting 
the necessary information to the program to carry out the regression, it literally creates the command 
you have issued, and places it in the output window.  You can see this result in Figure 14.6, where 
the ‘REGRESS’ command is echoed in the output window before the results.  You can edit/copy 
and paste this command to move it to your editing window where you may change it and use it as if 
you had typed it yourself.  
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Figure 4.6  Command Builder Output 
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Chapter 5: Program Output 
 
5.1  The Output Window 
 
 LIMDEP will automatically open an output window and use it for the display of results 
produced by your commands.  Figure 5.1 below shows an example.  The output window is split into 
two parts.  In the lower part, an echo of the commands and the actual statistical results are 
accumulated.  The upper part of the window displays the TRACE.LIM file as it is being 
accumulated.  Note that there are two tabs in the upper window.  You have two options for display in 
this window.  The Trace display is as shown below.  If you select the Status tab, instead, this 
window will display technical information during model estimation, such as the iterations, line 
search, and function value during maximum likelihood estimation, and execution time if you have 
selected this option from the Project:Project Settings/Execution tab as well.   
 

Figure 5.1  Output Window 
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5.2  Editing Your Output 
 
 The output window provides limited capability for editing.  You can select, then delete any 
of the results in the window.  You can also highlight, then use cut or copy in the output window. 

But, there is a way to get full editing capability.  You can select, then cut or copy the 
material from the output window and paste it into an editing window (or into any other program, 
such as a word processor, that you might be using at the same time).  The editing window then 
provides full editing capability, so you can place any annotation in the results that you like.  You can 
save the contents of the editing window as an ordinary text file when you exit LIMDEP. 
 
TIP:  If you wish to extract from your output window a little at a time, one approach is to open a 
second editing window, and use it for the output you wish to collect.  You may have several editing 
windows open at any time. 
 
5.3  Exporting Your Output. 
 
 When you wish to use your statistical results in a report, you will generally copy the results 
from your output window directly into your word processor.  Results in the window are displayed in 
the default 9 point Courier New font.  (You can change this to any font you wish using 
Tools:Options/Editor.)  All numerical results are shown in this form.  Graphical results may also be 
copied directly off the screen.  They are produced in a “.wmf” (windows metafile) format.  You can 
paste a graph into your word processor, then resize the figure to whatever size you like.  An example 
appears below in Figure 5.2.  An extensive application appears in the next chapter. 
  

 
Figure 5.2  Figure Exported From LIMDEP Output 
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Chapter 6: Application and Tutorial 
 
6.1  Application – An Econometrics Problem Set 
 
 This chapter will illustrate most of the features in LIMDEP that you will use for basic 
econometric analysis.  We will use a simulated problem set to motivate the computations.  This 
application will use many of the commands and computational tools in the program.  Of course, we 
have not documented these yet – they appear later in the manual in the succeeding chapters.  We do 
anticipate, however, that you will be able to proceed from this chapter alone to further use of the 
program. 
 
6.2  Assignment: The Linear Regression Model 
 
 The data listed below are a set of yearly time series observations (1953-2004) on the U.S. 
Gasoline Market.  Use these data to perform the following analyses: 
 

1. Read the raw data into LIMDEP. 
 

2. Obtain descriptive statistics (means, standard deviations, etc.) for the raw data in your data set. 
 

3. The data are in levels.  We wish to fit a constant elasticity model, which will require that the 
variables be in logarithms.  Obtain the following variables: 

 
logG = log of per capital gasoline consumption 
logPg = log of the price (index) of gasoline 
logI = log of per capita income 
logPnc = log of price (index) for new cars 
logPuc = log of price (index) for used cars 
logPpt = log of price (index) for public transportation 
t = time trend = year – 1952. 

 
4. We notice immediately that if we intend to use the (logs of the) price indexes in our 

regression model, there is at least the potential for a problem of multicollinearity.  As a 
preliminary indication of how serious the problem is likely to be, obtain a time series plot of 
the four price series. 

 
5. We begin with a simple ‘demand’ equation.  Obtain the least squares regression results in a 

regression of logG on the log of the price index, logPg.  Report your regression results 
 

a. Notice that the coefficient on log price is positive.  Shouldn’t a demand curve slope 
downward?  What is wrong here? 

 
b. Now, add the obviously missing income variable to the equation.  Compute the 

linear regression of logG on logI and logPg.  Report your results and comment on 
your findings. 
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6. The full regression model that you will explore for the rest of this exercise is 
 

a. logG = β1 + β2logPg + β3logI + β4logPnc + β5logPuc + β6logPpt + β7t + ε 
 

7. Obtain the least squares estimates of the coefficients of the model.  Report your results.  
Obtain a plot of the residuals as part of your analysis. 

 
a. (For more advanced courses)  Compute the least squares regression coefficients, b, 

s2, the covariance matrix for b, and R2 using matrix algebra. 
 

b. Test the hypothesis that all of the coefficients in the model save for the constant term 
are zero using an F test.   Obtain the sample F and the appropriate critical value for 
the test.  Use the 95% significance level. 

 
8. Still using the full model, use an F test to test the hypothesis that the coefficients on the three 

extra prices are all zero 
 

9. Test the hypothesis that the elasticities with respect to the prices of new and used cars are 
equal. 
 

a. Do the test using an F test. 
 

b. Use a t test, showing all computations. 
 
10. The market for fossil fuels changed dramatically at the end of 1973.  We will examine 

whether the data contain clear evidence of this phenomenon. 
 

a. Use a Chow test for structural break to ascertain whether the same model applies for 
the period 1953 – 1973 as for 1974 – 2004. 

 
b. (More advanced) Use a Wald test to test the hypothesis.  How do the assumptions 

underlying these two tests differ?  
 
 In the analysis to follow, we will work through the problem set in detail.  You can work 
through the steps with the presentation by typing the commands into the text editor.  To save time 
typing, you can just upload the file Tutorial.lim that you will find in the  
 
 C:\LIMDEP9\LIMDEP Command Files 
 
folder.  The data set that we will use is also provided as file Gasoline.txt and Gasoline.xls in the 
folder 
 
 C:\LIMDEP9\LIMDEP Data Files 
 
The data for the exercise are listed below. 
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Year  GasExp   GasPrice Income  PNewCar PUsedCar PPubTrn  Pop 
1953     7.4    16.668    8883    47.2    26.7    16.8  159565 
1954     7.8    17.029    8685    46.5    22.7    18.0  162391 
1955     8.6    17.210    9137    44.8    21.5    18.5  165275 
1956     9.4    17.729    9436    46.1    20.7    19.2  168221 
1957    10.2    18.497    9534    48.5    23.2    19.9  171274 
1958    10.6    18.316    9343    50.0    24.0    20.9  174141 
1959    11.3    18.576    9738    52.2    26.8    21.5  177130 
1960    12.0    19.112    9770    51.5    25.0    22.2  180760 
1961    12.0    18.924    9843    51.5    26.0    23.2  183742 
1962    12.6    19.043   10226    51.3    28.4    24.0  186590 
1963    13.0    18.997   10398    51.0    28.7    24.3  189300 
1964    13.6    18.873   11051    50.9    30.0    24.7  191927 
1965    14.8    19.587   11430    49.7    29.8    25.2  194347 
1966    16.0    20.038   11981    48.8    29.0    26.1  196599 
1967    17.1    20.700   12418    49.3    29.9    27.4  198752 
1968    18.6    21.005   12932    50.7    30.7    28.7  200745 
1969    20.5    21.696   13060    51.5    30.9    30.9  202736 
1970    21.9    21.890   13567    53.0    31.2    35.2  205089 
1971    23.2    22.050   14008    55.2    33.0    37.8  207692 
1972    24.4    22.336   14270    54.7    33.1    39.3  209924 
1973    28.1    24.473   15309    54.8    35.2    39.7  211939 
1974    36.1    33.059   15074    57.9    36.7    40.6  213898 
1975    39.7    35.278   15555    62.9    43.8    43.5  215981 
1976    43.0    36.777   15693    66.9    50.3    47.8  218086 
1977    46.9    38.907   15991    70.4    54.7    50.0  220289 
1978    50.1    40.597   16674    75.8    55.8    51.5  222629 
1979    66.2    54.406   16843    81.8    60.2    54.9  225106 
1980    86.7    75.509   16711    88.4    62.3    69.0  227726 
1981    97.9    84.018   17046    93.7    76.9    85.6  230008 
1982    94.1    79.768   17429    97.4    88.8    94.9  232218 
1983    93.1    77.160   17659    99.9    98.7    99.5  234333 
1984    94.6    76.005   18922   102.8   112.5   105.7  236394 
1985    97.2    76.619   19622   106.1   113.7   110.5  238506 
1986    80.1    60.175   19944   110.6   108.8   117.0  240683 
1987    85.4    62.488   19802   114.6   113.1   121.1  242843 
1988    88.3    63.017   20682   116.9   118.0   123.3  245061 
1989    98.6    68.837   21048   119.2   120.4   129.5  247387 
1990   111.2    78.385   21379   121.0   117.6   142.6  250181 
1991   108.5    77.338   21129   125.3   118.1   148.9  253530 
1992   112.4    77.040   21505   128.4   123.2   151.4  256922 
1993   114.1    76.257   21515   131.5   133.9   167.0  260282 
1994   116.2    76.614   21797   136.0   141.7   172.0  263455 
1995   120.2    77.826   22100   139.0   156.5   175.9  266588 
1996   130.4    82.596   22506   141.4   157.0   181.9  269714 
1997   134.4    82.579   22944   141.7   151.1   186.7  272958 
1998   122.4    71.874   24079   140.7   150.6   190.3  276154 
1999   137.9    78.207   24464   139.6   152.0   197.7  279328 
2000   175.7   100.000   25380   139.6   155.8   209.6  282429 
2001   171.6    96.289   25449   138.9   158.7   210.6  285366 
2002   163.4    90.405   26352   137.3   152.0   207.4  288217 
2003   191.3   105.154   26437   134.7   142.9   209.3  291073 
2004   224.5   123.901   27113   133.9   133.3   209.1  293951 
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6.3  Read the Raw Data 
 
 In order to analyze your data, you must “read” them into the program.  There are many ways 
to read your data into LIMDEP.  We will consider two simple ones, via an Excel spreadsheet and as 
portable ASCII text.  Others are described in the full manual for the software. 
 
Excel Spreadsheet 
 
 If your data are given to you in the form of an Excel spreadsheet, then you can “import” 
them directly into the program.  The first step is to use the Project menu on the desktop as shown in 
Figure 6.1.  This would then launch a mini-explorer.  You would then locate your file in the menu.  
Finally, you can just double click the file name and the data are read into the program. 
 

 
Figure 6.1  Reading an Excel Spreadsheet File 

 
WARNING:  For at least 15 years, until 2007, the .XLS format has served as a lingua franca for 
exchanging data files between programs.  Almost any statistical package could read one.  Beginning 
in 2007, Microsoft drastically changed the internal format of spreadsheet files, and Excel 2007 files 
are no longer compatible with other software.  It will be quite a while (if ever) for software authors 
to catch up with this change, so for the present, we note that LIMDEP cannot read an Excel 2007 
spreadsheet file. If you are using Excel 2007, be sure to save your spreadsheets in the 2003 format. 
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Text Input File 
 
 A second, equally simple way to read your data is simply to read them off the screen in a 
text editor.  The file GasolineData.lim contains text that is exactly the highlighted command, names 
and data that appear in Figure 6.3.  To get these data into the program, we can proceed as follows:  
First, we start LIMDEP.   Then, use File:Open and navigate to the file.  You will reach the file in the 
mini-explorer. 
 

 
Figure 6.2  Mini-explorer for Data File 

 
Now, just double click the file name, and the contents of the file will be placed in a new text editing 
window as shown in Figure 6.3.  With the data in this form, all that is needed now is Edit/Select All, 
then click the GO button,  in the desktop toolbar, and the data will be read from the screen. 
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Figure 6.3  Reading ASCII Data in a Text Editor 

 
Using Copy/Paste 
 
 For purposes of this method, suppose you have been given the data table in a document file 
that will allow you to copy and paste the data file exactly the way they appear on the page.  Figure 
6.4 below shows the example for our tutorial.  The data that we wish to analyze appear on the left 
hand page.  To transport these data into LIMDEP, we could proceed as follows:  First, start LIMDEP.  
Then, we open a text editor in LIMDEP with File:New/Text/Command Document Type the 
command “READ$” in the top line. (Do not forget the $ at the end of the command.)  Finally, just 
highlight the data (and names line) in the document, use Edit/Copy in the word processor and 
Edit/Paste in LIMDEP. 
 The end result of either of these approaches will be to place the data in the text editor, ready 
for you to use. 
 
Running the Data File as a Command Set 
 
 Placing the READ$ command and data in the text editor, then highlighting the material and 
clicking GO to execute the READ$ actually involves an extra step. You can instruct LIMDEP to do the 
whole thing at once, since the file GasolineData.lim contains the command and the data. If you use 
Run:Run File from the desktop menu, then select the .lim file from the mini-explorer, LIMDEP will 
read the file and internally, by itself, highlight the material and press its own GO button. This process 
will carry out the READ$ command and proceed directly to the confirmation shown in Figure 6.5. 
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Figure 6.4  Word Processor File Containing the Data Set 
 
The confirmation in the output window and the appearance of the names of the variables in the 
project window indicate that the raw data have been read and we can now analyze them. 
 

 
Figure 6.5  Data Confirmation 
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 You can verify that the data have been properly imported by looking at the data editor.  This 
is a small spreadsheet editor.  You might use it to enter a small data set with a few observations by 
typing them directly into the program’s memory.  The data editor will display the data that have 
already been placed in memory.  To open the data editor, click the Data Editor button on the 
desktop toolbar, as shown in Figure 6.6. 
 

 
Figure 6.6  Data Editor 

Rereading the Data 
 
 Though each one of these methods of reading the data into the program is short and simple, 
it might still seem like a bit of effort just to get the data ready to use.   The first time you use a data 
set, there has to be some way to get the data ready for this program to use them.  You could just type 
them in yourself – there is a spreadsheet style editor as shown in Figure 6.6.  But, if the data already 
exist somewhere else, that would be terribly inefficient and inconvenient.  We do emphasize, 
however, that however you enter your data set into LIMDEP the first time, you will only do it once.  
Once the data are in the program and in a project, you will save that project in a file.  Thereafter, 
when you want to use these data again, you will simply double click the project, in a mini-explorer, 
on your desktop, in LIMDEP’s recently used files, or somewhere else, and you will be ready to go 
back to work.  See Section 6.5.3 for further discussion. 
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6.4  Tutorial Commands 
 
 In this tutorial, you will used nearly all of the features of LIMDEP that you will need to 
complete a graduate course in econometrics.  We will run through a long sequence of operations one 
at a time, and display the results at each step.  You will want to carry out these operations as we do.  
Rather than type them one at a time, it will be more convenient for you to have them available in a 
text editor, where you can execute each one just by highlighting one or more lines and clicking the 
GO button, . 
 The listing below contains all of the commands that we used in this tutorial.  You can place 
them in your screen editor by using File:Open then making your way to 
 
 C:\LIMDEP9\LIMDEP Command Files\Tutorial.lim 
 
Select this file.  Your screen will then contain all the commands that will be used in the tutorial to 
follow.  (The text editor does not replicate the boldface in the listing below.)  You can then ‘follow 
along’ by highlighting and executing each command or set of commands as they are discussed 
below. 
 

 
Figure 6.7  Tutorial Commands in Text Editor 
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 These are the commands contained in the tutorial command file.  Lines that begin with a 
question mark are comments.  If you submit these lines to the program as if they were commands, 
they are ignored. 
 
? Read the raw data 

READ $ 
Year   GasExp GasPrice   Income PNewCar PUsedCar  PPubTrn  Pop 
1953     7.4    16.668    8883    47.2    26.7    16.8  159565 
... 
2004   224.5   123.901   27113   133.9   133.3   209.1  293951 
? Descriptive Statistics for all variables 
 DSTAT ; Rhs = * $ 
? Transformed Variables 
 CREATE ; logg  = log (gasexp/(pop*gasprice)) 
   ; logpg  = log(gasprice) 
   ; logi = log(income) 
   ; logpnc = log(pnewcar) 
   ; logpuc = log(pusedcar) 
   ; logppt = log(ppubtrn) 
   ; t = year – 1953 $ 
? Define data to be yearly time series and set first year as 1953, observations 1953 to 2004. 
 DATES ; 1953 $             (This indicates the first year of the data) 
 PERIOD ; 1953 – 2004 $ (This indicates which years of data to use) 
? Time series of four price variables with title and grid for readability 
 PLOT  ; Rhs = gasprice, pnewcar, pusedcar, ppubtrn  

; Grid 
; Title=Time Series Plot of Price Indices $ 

? Three different ways to display a correlation matrix for four variables 
 DSTAT ; Rhs = gasprice,pnewcar,pusedcar,ppubtrn ; Output = 2 $ 
 MATRIX    ; list ; Xcor (gasprice,pnewcar,pusedcar,ppubtrn) $ 
 NAMELIST ; prices = gasprice,pnewcar,pusedcar,ppubtrn $ 
 MATRIX ; list ; Xcor (prices) $ 
? Simple regression of logG on a constant and log price.  Computations to analyze 
? potential biases based on the left out variable formula and plausible values. 
 REGRESS ; Lhs = logg  ;  Rhs = one,logpg $ 
 CALC ; list ; spi = Cov(logPg,logI)  
   ; spp  = Var(logPg) 
   ; plim = -0.1 + spi/spp * 1.0 $ 
? Multiple regression including both price and income to confirm expectations about what 
? happens when income is omitted from the equation.  Includes a plot of residuals. 
 REGRESS  ; Lhs = logG ; Rhs = one,logpg,logi  ; Plot residuals $ 
? Full regression model including all variables 
 NAMELIST ; x1 = logpg,logI 
    ; x2 = logpnc,logpuc,logppt  
    ; x =one, x1,x2,t $ 
 REGRESS  ; Lhs = logg ; Rhs = x ; Plot residuals $ 
? Least squares computations using matrix algebra, slopes, standard error, R squared, 
? covariance matrix for coefficients.  Results are displayed in a table. 
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 MATRIX  ; bols = <X'X> * X  logg $ 
 MATRIX  ; e  = logg - X * bols $ 
 CALC   ; list  ; se  =  sqr((e'e) / (n-col(X))) ; r2 = 1  - e'e/((n-1)*var(logg))$ 
 MATRIX  ; v = s2 * <X'X>   ; Stat (bols,v,x) $ 
? F statistic for the hypothesis that all coefficients are zero. R squared for the regression 
 CALC ; list  ; f = (r2/(col(X)-1)) / ((1-r2)/(n-col(X))) $ 
 CALC ; list   ; se  =  sqr(sumsqdev /degfrdm) 
    ; r2 = 1  - e'e/((n-1)*var(logg)) $ 
? F statistic using results retained by the regression.   Critical values for F and t. 
 CALC  ; list ; f    = rsqrd/(k-1)/((1-rsqrd)/degfrdm) $ 
 CALC  ; list  ; fc  = Ftb(.95,(kreg-1),degfrdm)  
                                    ; tc  =  ttb(.95, (n-col(x))) $ 
? Constrained least squares, three coefficients constrained to equal zero.  Test of 
? hypothesis using F statistic.  Two ways: Built in and using the R squareds. 
 REGRESS  ; Lhs = logg ; Rhs = x  ; Cls: b(4) = 0, b(5) = 0, b(6) = 0 $ 
 NAMELIST ; xu = x  ; xr = one,x1,t $ 
 REGRESS  ; Lhs = logg ; Rhs = xu $ 
 CALC   ; rsqu = rsqrd $ 
 REGRESS  ; Lhs = logg ; Rhs = xr $ 
 CALC   ; rsqr = rsqrd 
  ; list  ; f = ((rsqu – rsqr)/Col(x2))/((1-rsqu)/(n-Col(x))) $ 
? Use the built in calculator function to compute R squared 
 CALC   ; rsqu = rsq(Xu,logg)  
    ; rsqr = rsq(Xr,logg)  
  ; list  ; f = ((rsqu – rsqr)/Col(x2))/((1-rsqu)/(n-Col(x))) $ 
? Testing the hypothesis using the Wald statistic.  Built in command then using matrix algebra. 
 REGRESS  ; Lhs = logg ; Rhs = x  $ 
 WALD   ; Fn1 = b_logpnc-0 
    ; Fn2 = b_logpuc-0 
    ; Fn3 = b_logppt-0 $ 
? Compute the regression. Then use the saved matrices. 
 REGRESS  ; Lhs = logg ; Rhs = x  $ 
 MATRIX  ; b2 = b(4:6)  
    ; v22 = Varb(4:6,4:6) 
    ; list  ; W = b2'<v22>b2  $ 
 REGRESS ; Lhs = logg ; Rhs = x ; Cls: b(4) – b(5) = 0 $ 
? Compute a restricted least squares estimator using matrix algebra. 
 MATRIX  ; r = [0,0,0,1,0,0,0 / 0,0,0,0,1,0,0 / 0,0,0,0,0,1,0] ; q = [0/0/0] $ 
 MATRIX ; bu = <X’X>*X’y ; C = R*<X’X>*R’ ; d = R*b - q 
   ; bc = bu - <X’X>*R’*<C>*d $ 
? Test the hypothesis that two coefficients are equal using a t test. 
? This could be built directly into the REGRESS command with ; Cls:b(b(-b(5)=0. 
 REGRESS ; Lhs = logg ; Rhs = x $ 
 CALC ; list  ; tstat = (b(4)-b(5)) / sqr(varb(4,4)+varb(5,5)-2*varb(4,5)) 
   ; tc = ttb (.975, degfrdm)  
  ; pvalue = 2*(1-tds(tstat,degfrdm)) $ 
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? Chow test of structural change.  For each subperiod and for the full period, obtain the residual 
? sum of squares (without displaying the whole regression). 
 PERIOD ; 1953-2004 $ 
 CALC ; ssep = Ess(x,logg) ; k = col(x) $ 
 PERIOD ; 1953 – 1973 $ 
 CALC ; sse1 = Ess(x,logg) ; n1 = n $ 
 PERIOD ; 1974 – 2004 $ 
 CALC ; sse2 = Ess(x,logg) ; n2 = n $ 
 CALC ; list   ; f = ((ssep - (sse1+sse2))/k) / ((sse1+sse2)/(n1+n2-2*k)) 
    ; Ftb(.95,k,(n1+n2-2*k)) $ 
? Structural change test using Wald approach requires separate regressions and some 
? matrix algebra. 
 PERIOD ; 1953 – 1973 $ 
? Compute regressions quietly as I am not interested in seeing the results. 
 REGRESS ; Lhs = logg ; Rhs = x ; quietly $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 PERIOD ; 1974 – 2004 $ 
 REGRESS ; Lhs = logg ; Rhs = x ; quietly $ 
 MATRIX ; b2 = b ; v2 = varb $ 
? Compute Wald statistic.  Then display critical value from chi squared table. 
 MATRIX ; db = b1 – b2 ; vdb = v1 + v2  
       ; list  ; w = db’<vdb>db $ 
 CALC    ; list  ; cstar = ctb(.95,k) $ 
 
6.5  Using LIMDEP for Linear Regression Analysis 
 
 The following analyses show how to use LIMDEP for the standard applications in analysis 
of the linear model. 
 
6.5.1  Obtain Descriptive Statistics 
 
 The command for obtaining descriptive statistics is 
 
 DSTAT  ; Rhs = the variables to be described $ 
 
There is a useful short hand; the ‘wildcard’ character ‘*’ in this context means ‘all variables.’  So, we 
will use the simpler instruction, 
 
 DSTAT ; Rhs = * $ 
 
The results are shown in the output window shown in Figure 6.8. 
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Figure 6.8  Descriptive Statistics in the Output Window 

 
6.5.2  Transformed Variables 
 
 The command for computing transformed variables is CREATE.  A single command can be 
used for all of the transformations listed,  
 
 CREATE ; logg  = log (gasexp/(pop*gasprice)) 
   ; logpg  = log(gasprice) 
   ; logi = log(income) 
   ; logpnc = log(pnewcar) 
   ; logpuc = log(pusedcar) 
   ; logppt = log(ppubtrn) 
   ; t = Year – 1953 $ 
 
After we place this command in the text editor and execute it, the project expands to include the new 
variables.  The new project window in shown in Figure 6.9. 
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Figure 6.9  Project Window 

 

6.5.3  Saving and Retrieving Your Project 
 
 Since you have read your data into the program and created some new variables, this is a 
good time to save your project.  Select File:Save Project As…  The mini-explorer that appears next 
allows you to save the file anywhere you like.  The Project Files folder is a natural choice.  See 
Figures 6.10 and 6.11 for our application. 
 

 
Figure 6.10  Saving the Current Project 
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Figure 6.11  Mini-explorer for Saving the Project 

 
When you restart LIMDEP later, you can use the File menu to retrieve your project file and resume 
your work where you left off before.  The File menu is shown in Figure 6.12.  Note that once we 
have saved our project file, the file name will reappear in the Recently Used part of the File menu. 
 

 
Figure 6.12  Reloading the Project 

 
As with any software, it is a good idea to save your work this way periodically. 
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6.5.4  Time Series Plot of the Price Variables 
 
 The PLOT instruction is used to produce the different types of graphs you will obtain.  
Since these are time series data, we will first inform LIMDEP of that fact.  The commands are 
 
 DATES ; 1953 $  (This indicates the first year of the data) 
 PERIOD ; 1953 – 2004 $ (This indicates which years of data to use) 
 
Then, we generate our plot with the command 
 
 PLOT  ; Rhs = gasprice, pnewcar, pusedCar, ppubtrn  

; Grid 
; Title=Time Series Plot of Price Indices $ 

 
It is clear from Figure 6.13 that although the price series are correlated – that is in the nature of 
aggregate long period time series data – the correlations between the gasoline price and the public 
transport price seem unlikely to be severe enough to seriously impact the regression.  However, the 
new and used car price indexes are quite highly correlated, and one might surmise that together in a 
regression, it would be difficult to resolve separate impacts of these two variables. 
 

 
Figure 6.13  Time Series Plots 
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To pursue the issue a bit, we will compute a correlation matrix for the four price variables.  As usual, 
there is more than one way to proceed.  Here are two:  First, the DSTAT command can be extended 
to request correlations by simply adding ; Output = 2 to the instruction.  Thus, we might use 
 
 DSTAT ; Rhs = gasprice,pnewcar,pusedcar,ppubtrn ; Output = 2 $ 
 
This produces the results in Figure 6.14; the descriptive statistics now include the correlations among 
the price variables. 
 

 
Figure 6.14  Descriptive Statistics with Correlations 

 
It is possible to obtain these results with the dialog boxes in the command builder.  We begin with 
Model:Data Description:Descriptive Statistics on the desktop menu shown in Figures 6.15 and 6.16. 
 

 
Figure 6.15  Model Menu for Descriptive Statistics
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Figure 6.16  Command Builder for Descriptive Statistics 

 
The variables are specified on the Main page, then the correlation matrix is requested as an option on 
the Options page.  Clicking Run then produces the results that appear in Figure 6.14. 
 A second approach is to compute and display the correlation matrix.  To do this, since we are 
computing a correlation matrix, we use the MATRIX command.  There is a matrix function that 
computes correlations, which would appear as follows: 
 
 MATRIX    ; list ; Xcor (gasprice,pnewcar,pusedcar,ppubtrn) $ 
 
This produces the following results in the output window. 
 

Correlation Matrix for Listed Variables 
         GASPRICE  PNEWCAR PUSEDCAR  PPUBTRN 
GASPRICE  1.00000   .93605   .92277   .92701 
 PNEWCAR   .93605  1.00000   .99387   .98074 
PUSEDCAR   .92277   .99387  1.00000   .98242 
 PPUBTRN   .92701   .98074   .98242  1.00000 

 
which are, of course the same as those with the descriptive statistics.  
 There is another convenient feature of MATRIX that we should note at this point.  The 
NAMELIST command below associates the name ‘prices’ with the four price variables: 
 
 NAMELIST ; prices = gasprice,pnewcar,pusedcar,ppubtrn $ 
 
Now, in any setting where we wish to use these four variables, we can use the name prices instead.  
This defines a data matrix with these four columns.  Thus, we can now shorten the MATRIX 
command to 
 
 MATRIX ; list ; Xcor (prices) $ 
 
 Finally, note that each MATRIX command begins with ;list.  This requests that the result of 
the matrix computation be displayed on the screen in the output window.  Why is this needed?  
MATRIX is part of the programming language.  You might be writing sets of commands that do 
matrix computations that are intermediate results to be used later that you are not necessarily 
interested in seeing.  If you do not request LIMDEP to list the results, the program assumes this is the 
case.  Several examples below will illustrate this. 
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6.5.5  Simple Regression 
 
 The REGRESS command is used to compute a linear regression.  (As usual, you can also 
use the Model menu and command builders, however, we will generally use the commands.)  The 
essential instruction is 
 
 REGRESS ; Lhs = one,logpg $ 
 
The regression results are displayed in the output window shown in Figure 6.17. 
 
NOTE: The right hand side of the REGRESS command contains two ‘variables,’ one and the variable 
that we wish to appear in the model.  The ‘one’ is the constant term in the model.  If you wish for your 
model to include a constant term – and this should be in the vast majority of cases – you request it by 
including one on the right hand side.  LIMDEP does not automatically include a constant term in the 
model.  In fact, most programs work this way, though there are a few that automatically put a constant 
term in the model.  Then, it becomes inconvenient to fit a model without one.  In general, LIMDEP 
requires you to specify the model the way you want it; it does not make assumptions for you. 
 

 
Figure 6.17  Regression Results 

 
 The regression output shows LIMDEP’s standard format.  The set of diagnostics, including 
R2, s2, sum of squares, F statistic for the regression, and so on are shown above the regression 
coefficients.  The coefficients are reported with standard errors, t ratios, ‘p values’ and the means of 
the associated independent variables. 
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 For the specific application, we note, the estimated price elasticity is, indeed, positive, which 
is unexpected for economic data.  Two explanations seem natural.  First, assuming we are estimating 
a demand equation, then a demand equation should include income as well as price.  In this 
particular market, in fact, it is well known that demand is strikingly inelastic with respect to price, 
and that income is the primary driver of consumption.  The estimated equation is missing a crucial 
variable.  The theoretical result for a demand equation from which income has been omitted would 
be as follows: 
 
 Model:  logG  =  α + βPrice logPrice + βIncome logIncome + ε 
 

 Price Price Income
Cov( , )plim b

Var( )
logPrice logIncome

logPrice
= β + β  

 
where bPrice is the simple least squares slope in the regression of logG on a constant and logPg.  It is 
clear from the data that the two terms in the fraction are positive.  If the income elasticity were 
positive as well, then the result shows that the estimator in this short regression is biased upward 
toward and possibly even past zero.  We could construct some evidence on what might be expected 
here.  Suppose the income elasticity were +1.0 and the price elasticity were -0.1.  The terms in the 
fraction can be obtained with the command 
 
 CALC ; list ; spi = Cov(logpg,logi)  
   ; spp  = Var(logpg) 
   ; plim = -0.1 + spi/spp * 1.0 $ 
 
The result is shown here.  If the theory is right, then even if the price elasticity really is negative, 
with these time series data and the positive income elasticity, we should observe a positive 
coefficient on logPg in the simple regression (which we did). 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 SPI     =       .223618 
 SPP     =       .461029 
 PLIM    =       .385040 
Calculator: Computed   3 scalar results 
 
We proceed to compute the more appropriate regression which contains both price and income (and 
which will either confirm or refute our theory above).  We do note the second explanation for the 
finding, however.  We have presumed so far that we are actually fitting a demand curve, and that we 
can treat the price as exogenous.  If the price were determined on a world market, this might be 
reasonable, but that is less so in the U.S. which does manipulate the price of gasoline.  We leave for 
others to resolve this issue, and continue with the multiple regression. 
 The more complete model is estimated with the command 
  
 REGRESS  ; Lhs = logG ; Rhs = one,logpg,logi $ 
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The results shown below are more in line with expectations, and conform fairly closely to the 
hypothetical exercise done earlier.  The data from this period do suggest that the income elasticity is 
close to one and the price elasticity is indeed negative and around -0.17.  The fit of the model is 
extremely good as well. 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =  -12.24504     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =         49     | 
| Residuals    Sum of squares       =   .1849006     | 
|              Standard error of e  =   .6142867E-01 | 
| Fit          R-squared            =   .9364292     | 
|              Adjusted R-squared   =   .9338345     | 
| Model test   F[  2,    49] (prob) = 360.90 (.0000) | 
| Diagnostic   Log likelihood       =   72.83389     | 
|              Restricted(b=0)      =   1.188266     | 
|              Chi-sq [  2]  (prob) = 143.29 (.0000) | 
| Autocorrel   Durbin-Watson Stat.  =   .1168578     | 
|              Rho = cor[e,e(-1)]   =   .9415711     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -20.9557732       .59398134   -35.280   .0000 
 LOGPG   |    -.16948546       .03865426    -4.385   .0001   3.72930296 
 LOGI    |     .96594886       .07529145    12.829   .0000   9.67214751 
 
 As a final check on the model, we have plotted the residuals by adding ; PlotResiduals to 
the REGRESS command. 
  
 REGRESS  ; Lhs = logG ; Rhs = one,logpg,logi  ; Plot residuals $ 
 
The results are striking;.  The residuals are far from a random sequence.  The long sequences of 
negative, then positive, then negative residuals suggests that something is clearly missing from the 
equation. 
 

 
Figure 6.18  Residual Plot 
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6.5.6  Multiple Regression 
 
 For the full model, we use the following setup, which combines some of our earlier 
commands. 
 
 NAMELIST ; x1 = logpg,logI 
    ; x2 = logpnc,logpuc,logppt  
    ; x =one, x1,x2,t $ 
 
Notice the third namelist is constructed by combining the first two and adding a variable to the list.  
The regression is then computed using 
 
 REGRESS  ; Lhs = logg ; Rhs = x ; Plot residuals $ 
 
The full results are as follows: 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =  -12.24504     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          7     | 
|              Degrees of freedom   =         45     | 
| Residuals    Sum of squares       =   .1014368     | 
|              Standard error of e  =   .4747790E-01 | 
| Fit          R-squared            =   .9651249     | 
|              Adjusted R-squared   =   .9604749     | 
| Model test   F[  6,    45] (prob) = 207.55 (.0000) | 
| Diagnostic   Log likelihood       =   88.44384     | 
|              Restricted(b=0)      =   1.188266     | 
|              Chi-sq [  6]  (prob) = 174.51 (.0000) | 
| Autocorrel   Durbin-Watson Stat.  =   .4470769     | 
|              Rho = cor[e,e(-1)]   =   .7764615     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -26.9680492      2.09550408   -12.869   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2127   3.72930296 
 LOGI    |    1.64909204       .20265477     8.137   .0000   9.67214751 
 LOGPNC  |    -.03199098       .20574296     -.155   .8771   4.38036654 
 LOGPUC  |    -.07393002       .10548982     -.701   .4870   4.10544881 
 LOGPPT  |    -.06153395       .12343734     -.499   .6206   4.14194132 
 T       |    -.01287615       .00525340    -2.451   .0182   25.5000000 
 
The coefficient on logPg has now fallen to only -0.05.  The implication is that after accounting for 
the uses of gasoline and the price of a major competitor (public transport) and income, the price 
elasticity of demand for gasoline really does seem to be close to zero.  The residuals are still far from 
random, but are somewhat more in that direction than the earlier ones.  This suggests, as surmised 
earlier, that the specification of the model is in need of improvement. 
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Figure 6.19  Residual Plot from Expanded Model 

 
 The least squares coefficients, standard errors, s and R2 are all reported with the standard 
results.  It is also convenient to obtain these results using least squares algebra, as shown below. 
 
 MATRIX    ; bols = <X'X> * X  logg $ 
 MATRIX    ; e  = logg - X * bols $ 
 CALC ; list  ; se  =  sqr((e'e) / (n-col(X))) 
      ; r2 = 1  - e'e/((n-1)*var(logg))$ 
 MATRIX    ; v = s2 * <X'X>  
      ; Stat (bols,v,x) $ 
 
(Note that in this set of commands, we are avoiding using the reserved names s and rsqrd.) 
   
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 SE      =       .047478 
 R2      =       .965125 
+---------------------------------------------------+ 
|Number of observations in current sample =      52 | 
|Number of parameters computed here       =       7 | 
|Number of degrees of freedom             =      45 | 
+---------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Constant|   -26.9680492      2.09550408   -12.869   .0000 
 LOGPG   |    -.05373342       .04251099    -1.264   .2062 
 LOGI    |    1.64909204       .20265477     8.137   .0000 
 LOGPNC  |    -.03199098       .20574296     -.155   .8764 
 LOGPUC  |    -.07393002       .10548982     -.701   .4834 
 LOGPPT  |    -.06153395       .12343734     -.499   .6181 
 T       |    -.01287615       .00525340    -2.451   .0142 
 
To test the hypothesis that all the coefficients save for the constant term are zero, we need 
 
 F[K-1,n-K]  =  [R2/K] / [(1-R2)/(n-K)] 
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The value is reported in the regression results above (207.55).  But, it is easy enough to compute it 
directly, using 
 
 CALC  ;  list ; f = (r2/(col(X)-1)) / ((1-r2)/(n-col(X))) $ 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 F       =    207.553435 
 
In fact, this can be made a bit easier, because the ingredients we need were automatically computed 
and retained by the regression command.  After the REGRESS command is executed, the new 
project window is 
 
The new scalars that appear in the project window are 
 

ssqrd  = s2 
rsqrd  = R2 
s  = s 
sumsqdev = e′e 
degfrdm = n - K 
kreg  = K 
nreg  = n 

 
for the most recent regression computed.  Thus, after the regression command, we could have used 
 
 CALC ; list  ; se  =  sqr(sumsqdev /degfrdm) 
       ; r2 = 1  - e'e/((n-1)*var(logg)) $ 
 
Of course, se and r2 were superfluous, since s and rsqrd are the same values.  For computing the F 
statistic, we could have used 
 
 CALC       ; 5 = rsqrd/(k-1)/((1-rsqrd)/degfrdm) $ 
 
Finally, in order to obtain the critical value for the F test, we use the internal table.  For the F statistic 
and t statistics, we use 
 
 CALC ; list ; fc = Ftb(.95,(kreg-1),degfrdm)  
                                   ; tc  =  ttb(.95, (n-col(x)))$ 
which produces 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 FC      =      2.308273 
 TC      =      2.014103 
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Figure 6.20  Project Window 
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6.5.7  Hypothesis Tests 
 
 There are usually several ways to carry out a computation.  Here we will test a hypothesis 
using several tools.  The model is 

 
logG = β1 + β2logPg + β3logI + β4logPnc + β5logPuc + β6logPpt + β7t + ε 

 
The first hypothesis to be tested is that the three cross price elasticities are all zero.  That is,  
 
 H0: β4 = β5 = β6 = 0. 
 
A direct approach is to build the linear hypothesis directly into the model command.  There is a 
particular specification for this, as shown in the command below: 
 
 NAMELIST ; x1 = logpg,logi   ; x2 = logpnc,logpuc,logppt ; x =one, x1,x2,t $ 
 REGRESS  ; Lhs = logg ; Rhs = x  
    ; Cls: b(4) = 0, b(5) = 0, b(6) = 0 $ 
 
This produces the following results:  The results of the unrestricted regression are shown first, 
followed by 
 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LOGG     Mean                 =  -12.24504     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =         48     | 
| Residuals    Sum of squares       =   .1193176     | 
|              Standard error of e  =   .4985762E-01 | 
| Fit          R-squared            =   .9589773     | 
|              Adjusted R-squared   =   .9564134     | 
| Model test   F[  3,    48] (prob) = 374.03 (.0000) | 
| Diagnostic   Log likelihood       =   84.22267     | 
|              Restricted(b=0)      =   1.188266     | 
|              Chi-sq [  3]  (prob) = 166.07 (.0000) | 
| Autocorrel   Durbin-Watson Stat.  =   .4220089     | 
|              Rho = cor[e,e(-1)]   =   .7889955     | 
| Restrictns.  F[  3,    45] (prob) =   2.64 (.0606) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -28.0817710      1.46871226   -19.120   .0000 
 LOGPG   |    -.13016036       .03229378    -4.031   .0002   3.72930296 
 LOGI    |    1.73922391       .16247609    10.704   .0000   9.67214751 
 LOGPNC  |    .249800D-15   ......(Fixed Parameter)....... 
 LOGPUC  |   -.555112D-16   ......(Fixed Parameter)....... 
 LOGPPT  |   -.117961D-15   ......(Fixed Parameter)....... 
 T       |    -.01960344       .00381652    -5.136   .0000   25.5000000 
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(The coefficients on the three prices in the restricted regression are not exactly zero – the values are 
pure rounding error.)  The F statistic is on the boundary, not quite statistically significant. 
 Although the restrictions can be built into the REGRESS command, there will be cases in 
which one is interested in applying the theoretical results directly.  The template formula for 
computing the F statistic is 

 
2 2
Unrestricted Restricted

2
Unrestricted

( ) /
(1 ) /( )
R R JF

R n K
−

=
− −

 

 
Where J is the number of restrictions and K is the number of parameters in the full regression with 
no restrictions.  In order to compute the statistic this way, we need the R2s from the two regressions.  
For this application, the restricted regression omits the three additional price variables.  A way we 
can proceed is 
 
 NAMELIST ; x1 = logpg,logI ; x2 = logpnc,logpuc,logppt  ; x =one, x1,x2,t  
    ; xu = x  ;  xr = one,x1,t $ 
 REGRESS  ; Lhs = logg ; Rhs = xu $ 
 CALC   ; rsqu = rsqrd $ 
 REGRESS  ; Lhs = logg ; Rhs = xr $ 
 CALC   ; rsqr = rsqrd 
   ; List  ; f = ((rsqu – rsqr)/Col(x2))/((1-rsqu)/(n-Col(x))) $ 
 
Finally, since we aren’t actually interested in seeing the regressions at this point, there is a more 
direct way to proceed.  The calculator function Rsq(matrix,variable) computes the R2 in the 
regression of the variable on the variables in the matrix, which is exactly what we need.  Thus, 
 
 CALC   ; rsqu = Rsq(xu,logg) ; rsqr = Rsq(xr,logg)  
  ; List  ; f = ((rsqu – rsqr)/Col(x2))/((1-rsqu)/(n-Col(x))) $ 
 
 An alternative way to compute the test statistic is to use the large sample version, which is a 
chi squared statistic, the Wald statistic.  Formally, the Wald statistic is 
 
 W  =  b2′ (W22)-1 b2 
 
Where b2 is the subset of the least squares coefficient vector, the three price coefficients, and W22 is 
the 3×3 submatrix of the covariance matrix of the coefficient estimator.  This is estimated with 
s2(X′X)-1.  For the linear regression model, the W statistic turns out to be just J times the F statistic, 
where J is the number of restrictions (three).  We can compute this by using the built in program 
written just for this purpose, as follows: 
 
 REGRESS  ; Lhs = logg ; Rhs = x  $ 
 WALD   ; Fn1 = b_logpnc-0 
    ; Fn2 = b_logpuc-0 
    ; Fn3 = b_logppt-0 $ 
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The WALD procedure is used for two purposes, first, to compute estimates of standard errors for 
functions of estimated parameters and, second, to compute Wald statistics.  The result for our model 
is 
 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =      7.93237     | 
| Prob. from Chi-squared[ 3] =       .04743     | 
+-----------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 Fncn(1) |    -.03199098       .20574296     -.155   .8764 
 Fncn(2) |    -.07393002       .10548982     -.701   .4834 
 Fncn(3) |    -.06153395       .12343734     -.499   .6181 
 
The chi squared statistic is given in the box of results above the estimates of the functions.  The 
statistic given is the statistic for the joint test of the hypothesis that the three functions equal zero. 
 To illustrate the computations, we consider how to obtain the Wald statistic ‘the hard way,’ 
that is, by using matrix algebra.  This would be 
 
 REGRESS  ; Lhs = logg ; Rhs = x  $ 
 MATRIX  ; b2 = b(4:6)  ; v22 = Varb(4:6,4:6) 
    ; list  ; w = b2'<v22>b2  $ 
 
Matrix W has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|    7.93237 
 
 It is also instructive to see how to compute the restricted least squares estimator using the 
textbook formulas.  The result for computing the least squares estimator b* subject to the restrictions 
Rb –q = 0 is 
 
 b* = b – (X′X)-1R′[R(X′X)-1R′]-1(Rb – q) 
 
where b is the unconstrained estimator.  To compute this using matrix algebra, we use 
 
 MATRIX  ; r = [0,0,0,1,0,0,0 / 0,0,0,0,1,0,0 / 0,0,0,0,0,1,0] ; q = [0/0/0] $ 
 MATRIX ; bu = <X’X>*X’y ; c = r*<X’X>*r’ ; d = r*b - q 
   ; bc = bu - <X’X>*r’*<c>*d $ 
 
 The second hypothesis to be tested is that the elasticities with respect to new and used cars 
are equal to each other, which is 
 
 H0: β4 = β5. 
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To carry out this test using the F statistic, we can use any of the devices we used earlier.  The most 
straightforward would be to place the restriction in the REGRESS command; 
 
 REGRESS ; Lhs = logg ; Rhs = x ; Cls: b(4) – b(5) = 0 $ 
 
The regression results with this restriction imposed are shown below.  In order to carry out the test 
using a t statistic, we will require 
 

   4 5

44 55 45

b b
v +v -2v

t −
=  

 
Where vkl is the estimated covariance of bk and bl.  After computing the unrestricted regression, we 
can use CALC to obtain this result: 
 
 REGRESS ; Lhs = logg ; Rhs = x $ 
 CALC; List  ; tstat = (b(4)-b(5)) / sqr(varb(4,4)+varb(5,5)-2*varb(4,5)) 
   ; tc = ttb (.975, degfrdm)  
  ; pvalue = 2*(1-tds(tstat,degfrdm)) $ 
 
+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| LHS=LOGG     Mean                 =  -12.24504     | 
|              Standard deviation   =   .2388115     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          6     | 
|              Degrees of freedom   =         46     | 
| Residuals    Sum of squares       =   .1014853     | 
|              Standard error of e  =   .4697022E-01 | 
| Fit          R-squared            =   .9651083     | 
|              Adjusted R-squared   =   .9613157     | 
| Model test   F[  5,    46] (prob) = 254.47 (.0000) | 
| Autocorrel   Durbin-Watson Stat.  =   .4411613     | 
|              Rho = cor[e,e(-1)]   =   .7794194     | 
| Restrictns.  F[  1,    45] (prob) =    .02 (.8841) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|   -26.7523913      1.47691600   -18.114   .0000 
 LOGPG   |    -.05231601       .04095506    -1.277   .2080   3.72930296 
 LOGI    |    1.63099549       .15903625    10.255   .0000   9.67214751 
 LOGPNC  |    -.06096105       .05689811    -1.071   .2897   4.38036654 
 LOGPUC  |    -.06096105       .05689811    -1.071   .2897   4.10544881 
 LOGPPT  |    -.05636622       .11703582     -.482   .6324   4.14194132 
 T       |    -.01262751       .00491914    -2.567   .0137   25.5000000 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 TSTAT   =       .146654 
 TC      =      2.014103 
 PVALUE  =       .884061 
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6.5.8  Test of Structural Break 
 
 The ‘Chow test’ is used to determine if the same model should apply to two (or more) 
subsets of the data.  Formally, the test is carried out with the F statistic, 
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Where SSEj is the sum of squared residuals from the indicated regression and K is the number of 
coefficients (variables plus the constant) in the model.  Superficially, this requires us to compute the 
three regressions, then compute the statistic.  We might not be interested in seeing the actual 
regression results for the subperiods, so we go directly to the sum of squares function using the 
calculator.  We proceed as follows: 
 
 PERIOD ; 1953-2004 $ 
 CALC ; ssep = Ess(x,logg) ; k = col(x) $ 
 PERIOD ; 1953 – 1973 $ 
 CALC ; sse1 = Ess(x,logg) ; n1 = n $ 
 PERIOD ; 1974 – 2004 $ 
 CALC ; sse2 = Ess(X,logg) ; n2 = n $ 
 CALC ; list   ; f = ((ssep - (sse1+sse2))/k) / ((sse1+sse2)/(n1+n2-2*k)) 
   ; fc = Ftb(.95,k,(n1+n2-2*k)) $ 
 
The results shown are the sample F and the critical value from the F table.  The null hypothesis of 
equal coefficient vectors is clearly rejected. 
 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 F       =     83.664571 
 FC      =      2.262304 
 
 The second approach suggested is to use a Wald test to test the hypothesis of equal 
coefficients.  For the structural change test, the statistic would be 
 
 W  =  (b1 – b2)′ [V1 + V2]-1 (b1 – b2). 
 
The difference in the two approaches is that the Wald statistic does not assume that the disturbance 
variances in the two regressions are the same.  We compute the test statistic using matrix algebra 
then obtain the critical value from the chi squared table. 
 
 PERIOD ; 1953 – 1973 $ 
 REGRESS ; Lhs = logg ; Rhs = x ; quietly $ 
 MATRIX ; b1 = b ; v1 = varb $ 
 PERIOD ; 1974 – 2004 $ 
 REGRESS ; Lhs = logg ; Rhs = x ; quietly $ 
 MATRIX ; b2 = b ; v2 = varb $ 
 MATRIX ; db = b1 – b2 ; vdb = v1 + v2 ; list ; W = db’<vdb>db $ 
 CALC  ; list  ; cstar = ctb(.95,k) $ 
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The results of the Wald test are the same as the F test.   The hypothesis is decisively rejected. 
 
Matrix W        has  1 rows and  1 columns. 
               1 
        +-------------- 
       1|  612.92811 
+------------------------------------+ 
| Listed Calculator Results          | 
+------------------------------------+ 
 Result  =     14.067140 
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Chapter 7: Essentials of Data Management 
 
7.1  Introduction 
 
 The tutorial in Chapter 6 showed how to read a simple data file, how to obtain transformed 
variables (logs), and how to change the sample by setting the period for time series data.  There are 
many different options for these operations in LIMDEP.  This chapter will describe a few of the 
additional features available in the program for managing your data.  The sections to follow are: 
 
 7.2:  Reading and Entering Data 
 7.3 Computing Transformed Variables 
 7.4: Lists of Variables 
 7.5: The Current Sample of Observations 
 7.6: Missing Data 
 
7.2  Reading and Entering Data 
 
 Most of the analyses of externally created data that you do with LIMDEP will involve data sets 
that are entered via disk files.  (The alternative is internally created data that you produce using 
LIMDEP’s random number generators.)  The READ command is provided for this purpose.   
 
7.2.1  The Data Area 
 
 Your data are stored in an area of memory that we will refer to as the data array.  The data 
array in the student version of LIMDEP or NLOGIT contains 1,000 rows and 99 columns.  These 
values are preset and cannot be changed. 
 
7.2.2  The Data Editor 
 
 For initial entry of data, LIMDEP’s data editor resembles familiar spreadsheet programs, such 
as Microsoft Excel.  You can reach the data editor in several ways: 
 

• Click the data editor (grid) icon on the LIMDEP toolbar,   
• Double click any variable name in the project window. 
• Select the menu entry Project:Data Editor. 

 
The data editor is shown in Figure 7.1.  (The chevrons next to the observation numbers indicate that 
these observations will be in the current sample.  See Section 7.5.)  
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Figure 7.1  Data Editor 

 
The data editor appears with an empty editing area when no variables exist. The functions of 

the data editor are shown in the smaller menu, which you obtain by pressing the right mouse button, 
displayed in Figure 7.1. The functions are: 
 
New Variable 
 

Click New Variable to open a dialog box that will allow you to create new variables with 
transformations as shown in Figure 7.2.  (This is analogous to the CREATE command described in 
Section 7.3.)  If you wish simply to type in a column of data – a variable – in the New Variable 
dialog box, just enter the name at the top of the box and click OK.  This will create a new variable 
with a single observation equal to zero, which you will replace, and all remaining observations 
missing.  You will then enter the data editor where you can type in the values in the familiar fashion. 
 

 
Figure 7.2  New Variable Dialog Box 
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 The New Variable dialog box also allows you to transform existing variables after they 
have been entered.  For example, in Figure 7.2, the dialog is being used to create a variable named 
logprod using two existing variables named y and x and the Log and Phi (normal CDF) functions.   

After you create and enter new variables, the project window is updated, and the data, 
themselves, are placed in the data area.  Figure 7.3 illustrates.   
 

 
Figure 7.3  Data Editor and Project Window 

 
Import Variables 
 
Click Import Variables to open a dialog box that allows you to import a spreadsheet or other data 
file.  This is analogous to the READ command described below. 
 
Set Sample 
 

Click Set Sample to obtain a menu of options for setting the current sample.  This uses the 
REJECT, INCLUDE and DATES features discussed in Section 7.5 to set the current sample.  (This 
option is not available until data have been read into the data area.) 
 
HINT:  The data editor does not automatically reset the current sample. After you enter a data set 
with it, the current sample is unchanged.  

 
 Data may be edited in the data editor in the usual fashion for spreadsheets.  Note, however, 
that this means only entering new values or replacing old ones.  We have not replicated the full 
transformation functionality in, e.g., Excel.  Data may be transformed and manipulated using other 
features in LIMDEP.  The New Variable... option, however, does provide all the features you might 
need to transform variables.  Exit the editor simply by closing the window. 
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7.2.3  Reading Data Files Into LIMDEP 
 
 Data may be entered into LIMDEP from many different kinds of files. Formats include 
simple ASCII files, spreadsheet files written by other programs such as Excel, and binary as well as 
other types of files written by other statistical programs. The usual way of entering data in LIMDEP 
if you are not typing them in the data editor is in the form of ASCII text.   An ASCII file is a text file 
that you can display in a word processing program.  This section will describe how to read ASCII 
files. You will typically ‘read’ an ASCII file by instructing LIMDEP to locate the file on one of your 
computer’s storage drives and ‘read’ the file.  The next few sections of this chapter will show you 
how to do that.  We begin, however, with a simpler operation that does the same thing.  (Section 6.3 
also shows you how to read data into LIMDEP using the text editor.) 
 
Simple Rectangular ASCII File 
 

The simplest, basic starting point for reading data files, instead of from the text editor, is the 
rectangular ASCII file that contains exactly one row of variable names at the top of the file and 
columns of data below it, as shown in the example in Figure 7.4. 

 
 
 
 
 
 
            Figure 7.4  Sample Data File 
 
The sample data set shown illustrates several degrees of flexibility.   
 

• Variable names in a file may be separated by spaces and/or commas. 
• Names need not be capitalized in the file. LIMDEP will capitalize them as they are read. 
• The numbers need not be lined up in neat columns in a data file. 
• Values in the data set may be separated by spaces, tabs, and/or commas. 
• Missing values in a data set may be indicated by anything that is not a number. (But, they 

must be indicated by something.  A blank is never understood to be a missing value.) 
 
To read a data file of this form, you need only tell LIMDEP where it is.  The command to read this file 
is 
 READ  ; File  =  … < the name of the file > $ 
 
The READ command may be submitted from the text editing window or in the command bar at the 
top of the screen.  There are two other ways to import a data file of this form:   
 

• Use Project:Import Variables to open the Import dialog box, as shown in Figure 7.5. Select 
All Files (*.*) in the file types, then locate and select your data file and click Open. 

• In the data editor, select Import Variables from the menu invoked by clicking the right 
mouse button.  (See Figure 7.1.)  This opens the same Import dialog box described above. 

ID  Year  Age,   Educ 
1   1960   23    16 
2,  1975, 44, 12.5 
3   1990   14   11.5 
4   1993 missing  20 
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Figure 7.5  Import Dialog Box 

 
When you read a file of this type, LIMDEP determines the number of variables to be read by 
counting the number of names that appear in the first line of the file.  The number of observations in 
the file is determined by reading until the end of the file is reached. 
 
Obtaining the Path to a File 
 

The preceding application is one of several situations in which you will need to specify the 
full path to a file.  Sometimes this is hard to locate.  You can obtain the full path to a file by using 
Insert:File Path. For example, where is the file “TableF1-1.txt” that is selected in Figure 7.5?  Step 
one is to make sure that your text editing window is active.  The file path will be inserted where the 
cursor is.  Insert:File Path brings up exactly the dialog box shown in Figure 7.5 except that the 
banner title will be Insert File Path instead of Import.  When you click Open, the full path to the 
file will be placed in double quotes in the text editor.  The result is shown in Figure 7.6. 
 

 
Figure 7.6  Editing Window with Insert File Path 
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7.2.4  General ASCII Files 
 
 The more general command for reading an ASCII data file is 
 
 READ  ; Nvar   = number of variables 
   ; Nobs   = number of observations 
   ; Names = names for the variables 
   ; File = the full file name, including path  $ 
 
(Note that the preceding shows the ‘default’ form of this command.)  This assumes that the file is an 
ASCII file (not a spreadsheet) with numbers arranged in rows, separated by blanks, tabs, and/or 
commas.  Numbers in the file need not be neatly arranged vertically.  If there are missing values, there 
must be placeholders for them; since blanks just separate values, they cannot be interpreted as missing 
data.  Use as many as lines as needed for each observation to supply all of the values.  For example, for 
the following data in a file, 
 

 1   2   5  
 3   4   6  
 2   5   4  
 3   6   7  

 
you might use  
 
 READ   ; File = \Project\SMALL.DAT ; Nobs = 4 ; Nvar = 3 ; Names = x,y,z $ 
 
There are several optional features, and a number of other different types of data files you can use. 
 
HINT:  If you do not know the exact number of observations in your data set, give Nobs a number that 
you are sure will be larger than the actual value.  LIMDEP will just read to the bottom of the file and 
adjust the number of observations appropriately. 
 
Variable Names 
 
 The normal way to enter variable names is in the command, as in the example above, 
 

; Names = name_1,...,name_nvar 
 
The following name conventions apply: names may have up to eight characters, must begin with a 
letter, and must be composed from only letters, numbers, and the underscore character.  Remember that 
names are always converted to upper case.  Reserved names are listed in Section 4.3. 
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Names in the Data File 
 
 You may find it convenient to make the variable names a part of the data set instead of the 
READ command.  (Note that this is the basic case described in the tutorial in the previous chapter.)  To 
do so, add the specification 
 
   ; Names = n 
 
to your READ command, where n is the number of lines you need to list the names.  Then, at the 
absolute beginning of the data set, include exactly n lines of 80 or fewer characters containing the 
variable names, separated by any number of spaces and/or commas.  (For appearance’s sake, you 
might, for example, position the names above the variables.)  
 The following reads a data set containing three observations on four variables: 
 

READ   ; Nobs = 3 ; Nvar = 4 ; Names = 2 ; File =”... MACRO.DAT “$ 
 
The data set could be 

            Year     Consmptn     GNP 
            Govt 
            1961     831.25       996.19    128.37 
            1962     866.95      1024.82   138.83 
            1963     904.44      1041.03   153.21 
 
 

Observation Labels 
 
 The data file below contains labels for the individual observations as well as the names of the 
variables.  You may read a file with observation labels with the following format: 
 
 READ  ; File = ... filename... ; Nobs = ... ; Nvar = ...  
   ; Labels = the column in the data file that contains the labels $ 
 
The labels column is an extra column in the data.  It is not a variable.  For the file below, you would use 
 READ   ; … ; Nvar = 4 ; Nobs = 25 ; Names = 1 ; Labels = 1 $ 
 
This indicates that the labels are in the first column, which is probably typical. 
 
State          ValueAdd     Capital     Labor        NFirm 
Alabama         126.148       3.804     31.551           68 
California     3201.486     185.446    452.844         1372 
Connecticut     690.670      39.712    124.074          154 
Florida          56.296       6.547     19.181          292 
Georgia         304.531      11.530     45.534           71 
... (20 more observations) 
 
You must include a name for the labels.  Note that the ‘State’ name is used for the labels, but not for 
the data. 
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7.2.5  Reading a Spreadsheet File 
 
 You can read worksheet files such as those created by Lotus (.WKx) or Microsoft Excel 
(.XLS) directly into LIMDEP without conversion.  The command is simply 
 

READ   ; File = name ; Format = WKS $ 
or READ   ; File = name ; Format = XLS $  
 
 All of the information needed to set up the data is contained within the file.  However, if the 
columns in your worksheet were created by formulas within the spreadsheet program, rather than being 
typed in initially, then LIMDEP will not find the transformed data.  The reason is that the .XLS file 
does not contain the data, themselves, but merely the formula for recreating the data.  Since we have 
not replicated the spreadsheet program inside LIMDEP, it is not possible to redo the transformation.  
    
NOTE:  Please note the caution about Excel 2007 in Section 6.3 
 
7.2.6  Missing Values in Data Files 
 
 LIMDEP will catch nonnumeric or missing data codes in most types of data sets.  In general, 
any value not readable as a number is considered a missing value and given the value -999. 
 
NOTE: In all settings, -999 is LIMDEP’s internal missing data code. 
 
Some things to remember about missing data are: 
 A blank in a data file is normally not a missing value; it is just a blank.  Since a data file  can 
be arranged any way you want, LIMDEP has no way of knowing that a blank is supposed to be 
interpreted as a missing value.  But, all other nonnumeric, nonblank entries are treated as missing. This 
includes  SAS’s ‘.’ character, the word ‘missing,’ or any other code you care to use.   
 There will be occasions when LIMDEP claims it found missing values when you did not think 
there were any.  The cause is usually an error in your READ command.  For example, if you have a set 
of names at the top of your data file and you forget to warn  the program to expect them, they will be 
read as missing values rather than as variable names. 
 After a data set is READ, you are given a count of the variables then existing and a summary 
of any missing values found. 
 When a data set contains missing values, you must indicate this in some way at the time the 
data are read.  How you do this depends on the type of file you are reading: 
 

Worksheet file from a spreadsheet program:  Blank cells in a worksheet file are sufficient to 
indicate missing data.  It is not necessary to put any alphabetic indicator in the cell. 
 
Unformatted ASCII file:  Any nonnumeric data in the field, such as the word ‘missing’ will 
suffice. Alternatively, a simple period surrounded by blanks will suffice.  Note that in such a 
file, a blank will not be read as missing, since blanks just separate numbers in the data file. 
 

 The internal code for a missing datum is -999.  You may use this numeric value in any type of 
file to indicate a missing value.  Upon reading the data, LIMDEP immediately converts any missing 
data encountered to the numeric value -999. 
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7.3  Computing Transformed Variables 
 
 You will usually need to transform your data, for example to obtain logarithms, differences, or 
any number of other possibilities.  LIMDEP provides all of the algebraic transformations you are likely 
to need with the CREATE command.  It is often useful to recode a continuous variable into discrete 
values or to combine discrete values into a smaller number of groups, for example to prepare data for 
contingency tables.  The RECODE command is provided for this purpose.  You can use SORT to 
arrange one or more variables in ascending or descending order.   
 
7.3.1  The CREATE Command 
 
 The CREATE command is used to modify existing variables or compute new ones. The 
essential syntax of the command is  
 
 CREATE ; name = expression  ;  name = expression ; ...  $ 
 
 You may also enter your command in a dialog box, as shown in Figure 7.7.  The dialog box is 
invoked by selecting Project:New/Variable or by going to the data editor and pressing the right mouse 
button which will bring up a menu that includes New Variable.  You may now enter the name for the 
new or transformed variable in the Name window.  If you click OK at this point without entering an 
expression for the variable, the new variable is created, and the first observation is set to zero.  
Remaining observations are treated as missing.  You may enter an expression for the new or 
transformed variable in the Expression window.   
 

 
Figure 7.7  New Variable Dialog Box 
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 A CREATE command operates on the ‘current sample.’  (See Section 7.5.)  If this is a subset 
of the data, remaining observations will not be changed.  If you are creating a new variable for the 
subset of observations, remaining observations will be undefined (missing).  You can override this 
feature by using 
 
 CREATE   ; Fill  ;  ... the rest of the command $  
 
in your command.  With this additional setting, the transformations listed will be applied to all 
observations in the data set, whether in the current sample or not.  This is the Data fill option that 
appears at the bottom center of the dialog box in Figure 7.7. 
 
Algebraic Transformations 
 
 An algebraic transformation is of the form ; name  =  expression.  Name is the name of a 
variable.  It may be an existing variable or a new variable.  Name may have been read in or previously 
created.  
 The expression can be any algebraic transformation of any complexity.  You may nest 
parentheses, functions, and operations to any level.  Functions that may appear in expressions are listed 
in Section 7.3.3.  The operators that may appear in CREATE commands are the standard ones, +, -, *, 
and / for addition, subtraction, multiplication, and division, as well as the special operators listed 
below: 
 
 ^ =  raise to the power;  a ^ b = ab 
 @ =  Box-Cox transformation; a @ b  = (ab - 1) / b or loga if b = 0 and a > 0 
 !  =  maximum;      a ! b  = max(a,b) 

(The maximum of a string of operands is obtained just by writing the set 
separated by !s.  For example, 5 ! 3 ! 6 ! 0 ! 1   =   6.) 

 ~ = minimum;      a ~ b    =  min(a,b) 
 % = percentage change;    a % b   =  100(a/b - 1)  E.g., 5 % 4  =  25 
 
The following operators create binary variables: 
 
 > = binary variable;   a >  b =  1 if a > b and 0 else. 
 >= = binary variable;   a >= b =  1 if a ≥ b and 0 else. 
    <    = binary variable;   a <  b =  1 if a < b and 0 else. 
 <=   = binary variable;   a <= b =  1 if a ≤ b and 0 else. 
 =    = binary variable;   a =  b  =  1 if a = b and 0 else. 
 #    = binary variable;   a  #  b =  1 if a is not equal to b. 
 
For example,  
 
 CREATE  ; a = x > 0 * Phi(y)  creates a equal to Phi(y) if x is positive and 0 else 
   ; p = z > 0         creates p = 1 if z is positive and 0 otherwise 
   ; zeq1 = z = 1 $        equals 1 if z equals 1 and 0 otherwise. 
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To avoid ambiguity, it is often useful to enclose these operations in parentheses, as in  
 
 CREATE  ; a = (x = 1) * Phi(z) $   
 
This set of tools can be used in place of conditional commands, and sometimes provides a convenient 
way make conditional commands.  For example ‘and’ conditions result from products of these 
relational operators. Thus, 
 
 CREATE  ; v = (x >= 8) * (x <= 15) * Log (q) $ 
 
creates v equal to the log of q if x is greater than or equal to 8 and less than or equal to 15.  You can 
also produce an ‘or’ condition using addition, though the conditional command construction may be 
more convenient.  For example: 
 
 CREATE  ; v = (  (  (x = 8) + (x = 15)   )  >  0   )* Log (q) $ 
 
does the transformation if x equals 8 or 15. 
 The following algebraic order of precedence is used to evaluate expressions: 
 

• First:  functions, such as Log(.) are evaluated. 
 
• Second: ^ and @, which have equal precedence are computed. 
 
• Third:  *,  /,  !,  ~,  %,  > , >=,  <,  <=,  =,  # are computed. 

 
• The special operators, !, %, etc. are evaluated from left to right with the same precedence as  * 

and /.  Thus, for example, y * x > 0  equals 1 if y*x is greater than 0 and equals 0 otherwise.  It 
will usually be useful to use parentheses to avoid ambiguities in these calculations. 

 
• Fourth:   + and -  (addition and subtraction) are computed. 

 
NOTE:  LIMDEP does not give the unary minus highest precedence.  The expression -x^2 evaluates to 
the negative of the square of x (which would be negative) not the square of negative x (which would be 
positive).  This is the current standard in software, but it is not universal. 
 
 You may use as many levels of parentheses as necessary in order to group items in an 
expression or to change the order of evaluation.  For example, 
 
 CREATE  ; ma = (pz + pz[-1] + pz[-2] + pz[-3]) / 4 $ 
 
computes a moving average of a current and three lagged values. Parentheses may also be nested to any 
depth.  
 
 CREATE  ; ratio = ((x + y)^2-(a + c)^2)^2/((a + x)*(c + y))$  
 

is a valid command which computes ratio  =  
2 2 2(( ) ( ) )

( )( )
x y a c

a x c y
+ − +

+ +
.   
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You may also nest functions.  For a few examples, the following functions are used to invert certain 
probability distributions: 
 
 Gompertz: CREATE ; t  = Log(1 - w*Log(a)/p) / w $ 
 Weibull:   CREATE ; t  = (-Log(a))^(1/p) / w $ 
 Normal:    CREATE ; t  = Exp(-Inp(a)/p) / w $ 
 Logistic:  CREATE ; t  = ((1 - a) / a ) ^ (1/p) / w $ 
 
Functions may be nested to any depth, and expressions may appear in the parentheses of a function.  
Consider, for example, the following which creates the terms in the log likelihood function for a tobit 
model 
 
 CREATE  ; loglik = (1 - d)   *  Log(Phi(-x’b/sigma)) 
    + d    *  Log((1/sigma)*N01((y-x’b)/sigma)) $ 
 
Cautions: 
   

• Any transformation that involves a missing value (-999) at any point returns a missing value. 
 
• It is unlikely to be necessary, but if you should require expressions in the parameter list of a 

two parameter function, put them in parentheses.  The Trn function which computes trend 
variables is such a function.  Thus,  

 
 CREATE  ; trend = Trn( a+b’x , step ) $    

 
would confuse the compiler.  Instead, you should use  

 
 CREATE  ; trend = Trn( (a + b’x) , step ) $ 
 

• Many operations allow you to access particular observations of a variable by using an 
observation subscript enclosed in parentheses.  If you will be using this construction, you must 
avoid variable names which are the same as the function names listed in Section 7.3.3.  For 
example, if you have a variable named phi, then Phi(1) could be the first observation on phi or 
the standard normal CDF evaluated at 1.0.  (CREATE will translate it as the latter.)  Function 
names all have three letters.  You should examine the list given in Section 7.3.3. 

 
 Variables may appear on both sides of the equals sign as long as they already exist, and 
transformations may be grouped in a single command.  In a multiple CREATE command, later 
transformations may make use of variables created in earlier ones.  For example, 
 
 CREATE  ; sam = x1 * x2   
   ; bob = x2 + x3  
   ; this = sam * bob  
   ; that = Log(this)  
   ; that = 1 / that $  
 
is the same as five consecutive CREATE commands.  You should write your transformations so that 
they are as ‘self documenting’ as possible – that is, so that they are as easy to understand as possible. 
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7.3.2  Conditional Transformations 
 
 Any transformation may be made conditional.  The essential format is 
 
 CREATE   ;  If ( logical expression ) name = expression $ 
 
Logical expressions are any desired expressions that provide the condition for the transformation to be 
carried out.  They may include any number of levels of parentheses and may involve mathematical 
expressions of any complexity involving variables, lagged variables of the form name[lag], named 
scalars, matrix or vector elements, and literal numbers.  The operators are the same as above with a few 
exceptions:  The ones that may be used are the math and relational operators: +, -, *, /, ^, >, >=, <, <=, 
=, #.  The special operators, @, !, %, and ~ are not used here.   
 
NOTE:  Logical expressions may not involve functions such as Log, Exp, etc. 
 
 Concatenation operators which can be used for transformations are & for ‘and,’ and | for ‘or.’ 
A simple example might be: CREATE ; If ( x > 0 ) ... expression $  For a more complex example, we 
compute an expression for observations which are not inside a ball of unit radius.  
 
 CREATE  ; If ( x1^2  +  x2^2  +  x2^2 >= 1 ) ... expression... $   
 
The hierarchy of operations is  ^,  (*, /) (+,-), (>,>=,<,<=,=,#), &, |.  Operators in parentheses have 
equal precedence and are evaluated from left to right.  When in doubt, add parentheses.  There is 
essentially no limit to the number of levels of parentheses.  (They can be nested to about 20 levels.) 
 
7.3.3  Transformations Involving Missing Values  
 
NOTE:  Any mathematical expression that involves a missing value produces a missing value as the 
result. 
 
 Any transformation that requires a value which turns out to be a cell containing missing data 
will return a missing value, not 0.  Thus, if you compute y = Log(x), and some values of x are missing, 
the corresponding values of y will be also.   
 When computing a column of predictions, LIMDEP returns a missing value for any 
observations for which any of the variables needed to compute the prediction are missing, even if the 
variable which will contain the predictions already exists at the time.  This results because when you 
request a model to produce a set of predictions, LIMDEP begins the process by ‘clearing’ the column 
in the data area where it will store the predictions.  Data areas are cleared by filling them with the 
missing value code. 
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7.3.4  CREATE Functions 
 
 The expressions in CREATE may involve the following functions: 
 
Common Algebraic Functions 
 
 Log(x)   = natural logarithm, 
 Exp(x)   = exponent, 
 Abs(x)  = absolute value, 
 Sqr(x)    = square root, 
 Sin(x)   = sine, 
 Rsn(x)    = arcsine (operand between -1 and 1), 
 Cos(x)    = cosine, 
 Rcs(x)    = arccosine (operand between -1 and 1), 
 Tan(x)   = tangent, 
 Ath(x)  = hyperbolic arctangent = ½ log((1+x)/(1-x)), -1 < x < 1, 
 Ati(x)  = inverse hyperbolic arctangent = [exp(2x)-1]/[exp(2x)+1], 
 Gma(x)   = gamma function = (x-1)! if x is an integer, 
 Psi(x)   = digamma = log-derivative of gamma function = Γ′/Γ = Ψ(x), 
 Psp(x)     = trigamma = log-2nd derivative of gamma = (ΓΓ′′-Γ′2)/Γ2 = Ψ′(x), 
 Lgm(x)   = log of gamma function (returned for Gma if x > 50), 
 Sgn(x)   = sign function = -1,0,1 for x <, =, > 0, 
 Fix(x)  = round to nearest integer, 
 Int(x)  = integer part of operand. 
 
Univariate Normal  and logistic Distributions 
 
 Phi(x)   = CDF of standard normal, 
 N01(x)    = PDF of standard normal, 
 Lgf(x)  = log of standard normal PDF = -.5(log2π + x2) = Log(N01(x)), 
 Lmm(x)  = -N01/Phi        = E[x | x < operand], x ~ N(0,1), 
 Lmp(x)   = N01/(1-Phi)    = E[x | x > operand], 
 Lmd(x,z) = (z-1)Lmp(x) - zLmm(x) where z = 0/1 (selectivity variable), 
 Tvm(x)   = [1 - Lmm(Lmm+z)] = Var[x | x < operand], 
 Tvp(x)     = [1 - Lmp(Lmp+z)] = Var[x | x > operand], 
 Tvr(x,z)  = (1-z)Tvm(x) + zTvp(x) where z = 0/1 (selected variance), 
 Inp(x)   = inverse normal CDF, 
 Inf(x)  = inverse normal PDF (operand is CDF, returns density). 
 Lgt(x)  = logit = log[z/(1-z)], 
 Lgp(x)   = logistic CDF = exp(x)/(1 + exp(x)), 
 Lgd(x)   = logistic density = Lgp(1-Lgp). 
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Trends and Seasonal Dummy Variables 
 
 Trn(x1,x2)    = trend = x1+(i-1) x2 where i = observation number, 
     Ind(i1,i2)    = 1 if  i1 ≤ observation number ≤ i2, 0 else, 
     Dmy(p,i1)     = 1 for each pth observation beginning with i1, 0 else. 
 
The Dmy function is used to create seasonal dummy variables.  The Ind function operates on specific 
observations, as in 
 CREATE  ; eighties = Ind (22,31) $ 
 
If your data are time series and have been identified as such with the DATES command (see Chapter 
R7), then you may use dates instead of observation numbers in the Ind function, as in 
 
 CREATE  ; eighties = Ind (1980.1,1989.4) $ 
 
NOTE:  The Ind function is oblivious to centuries.  You must provide four digit years to this function, 
so there is no ambiguity about 19xx vs. 20xx. 
 
 The trend function, Trn is used to create equally spaced sequences of values, such as 1,2,3,...,  
which is Trn(1,1).  There are two additional variants used primarily with panel data. These are 
discussed in Chapter R6. 
 
Leads and Lags 
 
 You can use a lagged or leaded variable with the operand  
 
 variable [ n ] = observation on the variable n periods prior or ahead. 
 
The use of square brackets is mandatory; ‘n’ is the desired lag or lead. If n is negative, the variable is 
lagged; if it is positive, it is leaded.  For example, a familiar transformation, Nerlove’s ‘universal filter’ 
is (1 - .75L)² where L is the lag operator.  This would be  
 
 CREATE  ; filterx = x - 1.5 * x[-1] + .5625 * x[-2] $ 
 
A value of -999 is returned for the operand whenever the value would be out of the range of the current 
sample.  For example, in the above command, filterx would equal -999 for the first two observations. 
You can change this default value to something else, like zero, with  
 
 CREATE  ; [LAG] = the desired value  $ 
 
For example, 
 
 CREATE  ; [LAG] = 0 $ 
 
would change the default value for noncomputable lags to zero.  This must be used in isolation, not 
as part of some other command.  
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 If you use lags or leads, you should modify the applicable sample accordingly when you use 
the data for estimation.  LIMDEP makes no internal note of the fact that one variable is a lagged value 
of another one. It just fills the missing values at the beginning of the sample with -999s at the time it is 
created. 
 Moving average and autoregressive sequences can easily be constructed using CREATE, but 
you must be careful to set up the initial conditions and the rest of the sequence separately. Also, 
remember that CREATE does not reach beyond the current sample to get observations.  A special 
read-only variable named _obsno (note the leading underscore) is provided for creating recursions. 
Consider computing the (infinite) moving average series 
 
 yt  =  xt + θxt-1 + θ ² xt-2 + ... + θ t-1 xt-1. 
 
To do the computation, we would use the autoregressive form, yt  =  xt + θyt-1 with y1 = 0.  The 
following could be used: 
 
 CREATE  ; If(_obsno = 1) y = 0  
   ;     (Else) y = x + theta * y[-1] $ 
 
 Second, consider generating a random sample from the sequence  yt  =  θyt-1  +  et,  where et 
~N[0,1].  Simply using CREATE ; y = theta*y[-1] + Rnn(0,1) $ will not work, since, once again, the 
sequence must be started somewhere.  But, you could use the following 
 
  CREATE  ; If(_obsno = 1) y = Rnn(0,1) / Sqr(1 - theta^2)  
       ;    (Else)  y = theta * y[-1] + Rnn(0,1) $ 
 
Matrix Function 
 
 A transformations based on matrix algebra is used to create linear forms with the data.  Linear 
combinations of variables are obtained with 
 
 CREATE  ; name = b’x $ 
 
where x is a namelist of variables (see Section 7.5) and b is any vector with the same number of 
elements. It creates the vector of values from the linear combination of the variables in the namelist 
with coefficients in the row or column matrix.  Dot products may also be used with other 
transformations.  For example,  
 
 CREATE  ; bx12 = x1’b1 / x2’b2 ; p = Phi(x’b/s) $  
 
(The order is not mandatory.  d’z is the same as z’d.)  Also, if you need this construction, a dot product 
may be used for two vectors or two namelists.  In the latter case, the result is the sum of squares of the 
variables. 
 
  



Chapter 7: Essentials of Data Management  81 

7.3.5  Expanding a Categorical Variable into a Set of Dummy Variables 
 
 It is often useful to transform a categorical variable into a set of dummy variables  For example, 
a variable, educ, might take values 1, 2, 3, and 4, for less than high school, high school, college, post 
graduate.  For purposes of specifying a model based on this variable, one would normally expand it into 
four dummy variables, say underhs, hs, college, postgrad.  This can easily be done with a set of 
CREATE commands, involving, for example, hs = (educ=2) and so on.  LIMDEP provides a single 
function for this purpose, that simplifies the process and also provides some additional flexibility.   The 
categorical variable is assumed to take values 1,2,...,C.   The command 
 
 CREATE  ; Expand (variable) = name for category 1, ... name for category C $ 
 
does the following: 

 
• A new dummy variable is created for each category.  (If the variable to be created already 

exists, it is overwritten). 
 

• A namelist is created which contains the names of the new variables.  The name for the namelist 
is formed by appending an underscore both before and after up to six characters of the original 
name of the variable. 
 

• A tabulation of the transformation is produced in the output window. 
 
 The example suggested earlier might be simulated as  follows, where the commands and the 
resulting output are both shown: 
 
 CREATE  ; educ = Rnd(4) $ 
 CREATE  ; Expand (educ) = underhs, hs, college, postgrad $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   4 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=      28 
2 New variable = HS          Frequency=      22 
3 New variable = COLLEGE     Frequency=      30 
4 New variable = POSTGRAD    Frequency=      20 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 

 
As noted, the transformation begins with the value 1.  Values below 1 are not transformed and no new 
variable is created for the missing category.  Also, the transformation does not collapse or compress the 
variable.  If you have empty categories in the valid range of values, the variable will simply always take 
the value 0.0.  Thus, if educ had been coded 2, 4, 6, 8, then the results of the transformation might have 
appeared as shown below 
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       EDUC     was expanded as _EDUC_  . 
Largest value =   8.   4 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=       0  <--- ! 
2 New variable = HS          Frequency=      23 
3 New variable = COLLEGE     Frequency=       0  <--- ! 
4 New variable = POSTGRAD    Frequency=      29 
5 New variable = EDUC05      Frequency=       0  <--- ! 
6 New variable = EDUC06      Frequency=      22 
7 New variable = EDUC07      Frequency=       0  <--- ! 
8 New variable = EDUC08      Frequency=      26 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 

 
Things to note:  

 
• The empty cells are flagged in the listing, but the variable is created anyway.   

 
• If your list of names is not long enough, the remaining names are built up from the original 

variable name and the category value. 
 

• The program warns you that this has computed a complete set of dummy variables.  If you use 
this set of variables in a regression or other model, you should not include an overall constant 
term in the model because that would cause perfect collinearity – the ‘dummy variable trap.’  
Thus, a model which contained both one and _educ_  would contain five variables that are 
perfectly collinear. 

 
 You may want to avoid the last of these without having to choose one of the variables to omit 
from the set.  You can direct the transformation to drop one of the categories by adding ‘,0’ after the 
variable name in the parentheses.  
 
 CREATE  ; Expand (variable,0) = list of names $ 
 
For our previous example, this modification would change the results as follows: 
 
 CREATE  ; Expand (educ,0) = underhs, hs, college, postgrad $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   0 New variables were created. 
Category 
1 New variable = UNDERHS     Frequency=      27 
2 New variable = HS          Frequency=      26 
3 New variable = COLLEGE     Frequency=      21 
Note, the last category was not expanded. You may use 
this namelist as is in a regression with a constant. 

 
The note at the end of the listing reminds you of the calculations done.  The last category is the one 
dropped.  (Note that ‘0 new variables were created.’  The reason is that these variables already existed 
after our earlier example.) 
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 Finally, the list of names for the new variables is optional.  If it is omitted, names are built up 
as in the second example above.  Continuing the example, we might have 
 
 CREATE  ; educ = Rnd(4) $ 
 CREATE  ; Expand (educ) $ 
 

EDUC     was expanded as _EDUC_  . 
Largest value =   4.   4 New variables were created. 
Category 
1 New variable = EDUC01      Frequency=      28 
2 New variable = EDUC02      Frequency=      22 
3 New variable = EDUC03      Frequency=      30 
4 New variable = EDUC04      Frequency=      20 
Note, this is a complete set of dummy variables.  If 
you use this set in a regression, drop the constant. 
 

NOTE:  This transformation will refuse to create more than 100 variables.  If it reaches this limit, you 
have probably tried to transform the wrong variable. Thus, the variable must be coded 1,2,..., up to 99. 
 
7.3.6  Random Number Generators 
 
 There are numerous transformations which draw samples using LIMDEP’s random number 
generators.  The basic generator is the one which will draw a sample from a continuous uniform 
distribution in the indicated range 
 
 CREATE  ; name = Rnu (lower limit, upper limit) $ 
 
and the one which will create a variable containing a sample from the indicated normal distribution, 
 
 CREATE ; name = Rnn (mean, standard deviation) $  
 
The sample is placed with the observations in the current sample.  (Note how we used this feature in 
the examples in Sections 3.3 and 3.4.) 
 Random draws may also appear anywhere in an expression as operands whose values are 
random draws from the specified distribution.  For example, a random sample from a chi squared 
distribution with one degree of freedom could be drawn with  
 
 CREATE  ; name = Rnn(0,1) ^ 2 $  
 
Random samples can be made part of any other transformation. For example, the following shows how 
to create a random sample from a regression model in which the assumptions of the classical model are 
met exactly: 
 
 CREATE  ; x1 = Rnu(10,10)  
   ; x2 = Rnn(16,10) 
   ; y   = 100 + 1.5 * x1 + 3.1 * x2 + Rnn(0,50) $ 
 
The regression of y on x1 and x2 would produce estimates of  β1 = 100, β2 = 1.5, and β3 = 3.1.  
 In addition to the Rnn(m,s) (normal with mean m and standard deviation s) and Rnu(l,u) 
(continuous uniform between l and u), you can generate random samples from continuous and discrete.  
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Random Samples from Continuous Distributions 
 
 Rng(m,s)  = lognormal with parameters m and s, 
 Rnt(n)  = t with n degrees of freedom, 
 Rnx(d)  = chi squared with d degrees of freedom, 
 Rnf(n,d) = F with n numerator and d denominator degrees of freedom, 
 Rne(q)   = exponential with mean q, 
 Rnw(a,c) = Weibull with location a and scale c.  If c = 1, use Rnw(a). 
 Rnh(a,c) = Gumbel (extreme value) with location a, scale c.  If c = 1, use Rnh(a). 
 Rni(a,c)  = gamma with scale a and shape c.  If a = 1, use Rni(c). 
 Rna(a,b) = beta with parameters a and b, 
 Rnl(0)  = logistic, 
 Rnc(0)  = Cauchy. 
 
Random Samples from Discrete Distributions 
 
 Rnp(q)  = Poisson with mean q, 
 Rnd(n)  = discrete uniform, x=1,...,n, 
 Rnb(n,p) = binomial, n trials, probability p, 
 Rnm(p)  = geometric with success probability p. 
 
For sampling from the binomial distribution, The limits on n and p are nlog(p), and nlog(1-p) must 
both be greater than -264 to avoid numerical overflow errors.  You must provide the ‘a’ in the 
Weibull and Gumbel and the ‘0’, logistic, and Cauchy functions.  You may also sample from the 
truncated standard normal distribution. Two formats are 
 
 Rnr(lower)   = sample from the distribution truncated to the left at ‘lower,’ 
 Rnr(lower,upper) = distribution with both tails truncated.  
 
E.g., Rnr(.5) samples observations greater than or equal to .5 
 Parameters of all requests for random numbers are checked for validity.  For the truncated 
normal, you must have 
 
   lower  ≤  1.5,upper  ≥  -1.5,  upper - lower ≥  .5 
 
If ‘upper’ is not provided, it is taken as +∞.  If you need upper truncation, a transformation which will 
produce the desired result is -Rnr(-lower). 
 The parameters of any random number generator can be variables, other functions, or 
expressions, as well.  For example, you might simulate draws from a Poisson regression model with 
 
 CREATE ; x1 = Rnn(0,1) 
   ; x2 = Rnu(0,1) 
   ; y   = Rnp(Exp (.2 + .3 * x1 - .05 * x2 ) ) $ 
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Setting the Seed for the Random Number Generator 
 
 To reset the seed for the random number generator (the same one is used for all distributions), 
use the command 
 
 CALC   ; Ran (seed) $  
 
In this fashion, you can replicate a sample from one session to the next.  Use a large (e.g., seven digit) 
odd number for the seed.  Using this device will allow you to draw the same string of pseudo-random 
numbers more than once. 
 
7.4  Lists of Variables 
 
 As part of estimation, it is necessary to define two sets of information, the variables to be used 
and the observations.  LIMDEP’s data handling and estimation programs are written to handle large 
numbers of variables with simple, short commands.  Two methods are provided to reduce the amount 
of typing involved in giving a list of names, the NAMELIST and a wildcard character.  The 
NAMELIST feature is used as follows: 
 
 NAMELIST ; name = the list of variables names $ 
 
7.4.1  Lists of Variables in Model Commands 
 
 Lists of variables are used in every model estimation command and a large number of other 
commands, such as WRITE.  For example, nearly all model commands are of the form 
 
 MODEL COMMAND ; Lhs = a variable 
    ; Rhs = a list of variables   
    ; Rh2 = a list of variables $ 
 
Each of the lists may, in principle, have 150 or more names in it.  As such, some shorthands will be 
essential. 
 One simple shorthand for lists of variable names is the wildcard character, ‘*.’  You may use 
the ‘*’ character to stand for lists of variables in any variable list.  There are three forms: 
 

• * stands for all variables. 
 
 LIST   ; * $ requests a list of all existing variables. 
 DELETE  ; * $ is a global erasure of all data. (You should use RESET.) 
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• aaaa* stands for all variables whose names begin with the indicated characters, any 
number from one to seven.  For example:  If you have variables x1, x2, xa,xxx,xxy, 

 
 x*    = all five variables, 
 xx*  = xxx and xxy, 
 
 then the following command requests simultaneous scatter plots of all variables whose
 names begin with x, 
 
 SPLOT  ; Rhs  = x* $  
 

• *aaaa stands for variables whose names end with the indicated characters.  For example, if 
you have xa, ya, and, y, 
 

 REGRESS  ; Lhs = y ; Rhs = one, *a $ regresses y on one, xa, and ya. 
 
7.4.2  Namelists 
 
 The wildcard character described above will save some typing.  But, namelists will usually be 
a more efficient approach to specifying a list of names.  The NAMELIST command is used to define a 
single name which will be synonymous with a group of variables.  It can be used at any time and 
applies to the entire set of variables currently in the data array, regardless of how they got there. 
(Variables are placed in the data array with many commands including READ, CREATE, MATRIX, 
and any of the model commands.)  The form of the command is 
 
 NAMELIST  ; name = list of variable names $ 
 
Several namelists may be defined with the same NAMELIST command by separating the definitions 
with semicolons, e.g., 
 
 NAMELIST  ; w1 = x1,x2 ; w2 = x3,x4,x5 $ 
 
The lists of variables defined by separate namelists may have names in common.  For example, 
 

NAMELIST   ; w1 = x1,x2 ; w2 = x2,x3 $ 
 
By double clicking or right clicking the name of a namelist in the project window, you can enter an 
editor that allows easy modification of namelists.  See Figure 7.8 for the setup. 
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Figure 7.8  Editing a Namelist 

 
 You can also define new namelists with the New Namelist editor.  There are several ways to 
reach this editor: 
 

• Select New/Namelist from the Project menu, 
• Select Item into Project/Namelist from the Insert menu, 
• Right click the Namelists header in the project window, and select New Namelist. 

 
All these will invoke the dialog box shown in Figure 7.9. 
 

 
Figure 7.9  New Namelist Dialog Box 
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7.4.3  Using Namelists 
 
 Namelists will have many uses as you use LIMDEP to analyze your data.  Consider the 
example, 
 
 NAMELIST ; job = butcher, baker, cndlmakr 
   ; place = north, south, east, west 
   ; person = job, place, income $ 
 
Note that in the example, the namelist person will contain eight variables, as the other two namelists 
are expanded and included with the eighth variable, income. 
 Your primary use of the NAMELIST command will be for defining variable lists for the 
estimation commands.  However, a namelist may be used at any point at which a list of variable names 
is called for.  Some other applications are in defining data matrices for the MATRIX command and in 
several CALCULATE and CREATE commands.  Some examples: 
 
 NAMELIST  ; xlist = x1, x2, x3, x4 $ 
 REGRESS ; Lhs = y ; Rhs = one, xlist $ 
 CALC  ; Col(xlist) $   How many variables in list? 
 WRITE ; xlist, y1, y2, y3 ; File = DATA.DAT $ 
 MATRIX ; xtx = <x’x> $   Computes an (X′X)-1 matrix. 
 
7.5  The Current Sample of Observations 
 
 In many cases, you will simply analyze the entire data set that you input.  But, most analyses 
also involve partitioning the data set into subsamples, either by stratification, or by excluding or 
including observations based on some data related criteria.  This section will describe these two aspects 
of operation.  The final section will include a discussion of how the sample is modified, either by you 
or automatically, when the data set contains missing observations. 
 
 SAMPLE designate specific observations to be included in a subsample, 
 DATES establish the periodicity of time series data, 
 PERIOD designate specific time series observations to be included in a subsample, 
 REJECT exclude certain observations from the sample based on an algebraic rule, 
 INCLUDE include certain observations from the sample based on an algebraic rule, 
 
 In most cases, you will read in a data set and use the full set of observations in your 
computations.  But, it is quite common to partition the sample into subsamples and use its parts in 
estimation instead.  You will also frequently want to partition the data set to define data matrices for 
use in the MATRIX commands.  
 
NOTE:  The ‘current sample’ is the set of observations, either part or all of an active data set, which is 
designated to be used in estimation and in the data matrices for MATRIX, CREATE, etc.   
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 The commands described in this section are used to designate certain observations either ‘in’ 
or ‘out of’ the current sample.  With only a few exceptions, operations which use your data, such as 
model estimation and data transformation, operate only on the current sample.  For example, if you 
have initially read in 10 observations on x and y, but then set the sample to include only observations 1-
3, 6, and 8-10, nearly all commands will operate on or use only these seven observations.  Thus, if you 
compute log(x), only seven observations will be transformed. 
 To define the current sample, LIMDEP uses a set of switches, one for each observation in the 
data set.  Thus, when you define the sample, you are merely setting these switches.  As such, the 
REJECT command does not actually remove any data from the data set, it merely turns off some of 
these switches.  The data are not lost.  The observations are reinstated with a simple SAMPLE ; All $.  
Figure 7.10 shows the process.  The sequence of instructions in the editing window creates a sample of 
draws from the standard normal distribution.  The SAMPLE command chooses the first 12 of these 
observations, then the REJECT command removes from the sample observations that are greater than 
1.0 or less than -1.0.  This turns out to be observations 6 and 12, as can be seen in the data editor.  The 
chevron to the right of the row number in the data editor is the switch discussed above. 
 There are two sets of commands for defining the current sample, one appropriate for cross 
section data and the other specifically for time series. 
 

 
Figure 7.10  Current Sample and the REJECT Command 
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7.5.1  Cross Section Data 
 
 Initially, observations are defined with respect to ‘rows’ of the data matrix, which are simply 
numbered 1 to 1,000. 
 
Sample Definition – The SAMPLE Command 
 
 Designate particular observations to be included in the current sample with the command 
 
 SAMPLE  ; range, range, range, ..., range $ 
 
A ‘range’ is either a single observation number or a range of observations of the form lower-upper.  For 
example, 
 
 SAMPLE  ; 1, 12-35, 38, 44-301, 399 $  
 
You can set the sample in this fashion, do the desired computations, then reset the sample to some 
other definition, at any time.  To restore the sample to be the entire data set, use 
 
 SAMPLE  ; All $ 
 
Because of the possibility of missing data being inadvertently added to your data set, LIMDEP 
handles this command as follows:  ‘All’ observations are rows 1 to N where N is the last row in the 
data area which is not completely filled with missing data.  In most cases, this will be the number of 
observations in the last data set you read.  But, you can go beyond this last row by giving specific 
ranges on the command.  For example, suppose you begin your session by reading a file of 100 
observations.  Thereafter,  SAMPLE ; All $ would be equivalent to SAMPLE ; 1-100 $.  But, you 
could then do the following: 
 

SAMPLE  ; 1 - 250 $ 
CREATE  ; x = Rnn(0,1) $  (Random sample)  

 
Now, since there are 250 rows containing at least some valid data, SAMPLE ; All $ is equivalent to 
SAMPLE ; 1-250 $. 
 
Exclusion and Inclusion – The REJECT and INCLUDE Commands 
 
 These commands are used to delete observations from or add observations to the currently 
defined sample.  They have the form 
 
 VERB   ; logical expression $ 
 
 ‘VERB’ is either REJECT or INCLUDE.  ‘Logical expression’ is any desired expression that 
provides the condition for the observation to be rejected or included. It may include any number of 
levels of parentheses and may involve mathematical expressions of any complexity involving 
variables, named scalars, matrix or vector elements, and literal numbers.  The operators are as follows: 
 
 Math and relational operators are  +, -, *, /, ^, >, >=, <, <=, =, #. 
 Concatenation operators are & for ‘and’, | for ‘or.’ 
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A simple example appears in Figure 7.10.  Another might be: 
 
 REJECT  ; x > 0  $ 
 
For a more complex example, we compute an expression for observations which are not inside a ball of 
unit radius. 
 
 REJECT  ; x^2  +  y^2  +  z^2  >= 1 $ 
 
The hierarchy of operations is  ^,  (*, /) (+,-), ( >, >=, <, <=, =, #), &, |.  Operators in parentheses have 
equal precedence and are evaluated from left to right.  When in doubt, add parentheses.  There is 
essentially no limit to the number of levels of parentheses.  (They can be nested to about 20 levels.) 
 It is important to note that in evaluating expressions, you get a logical result, not a 
mathematical one.  The result is either true or false.  An expression which cannot be computed cannot 
be true, so it is false.  Therefore, any subexpression which involves missing data or division by zero or 
a negative number to a noninteger power produces a result of false.  But, that does not mean that the 
full expression is false.  For example:  (x / 0) > 0 | x > y  could be true.  The first expression is false 
because of the zero divide, but the second might be true, and the ‘or’ in the middle returns ‘true’ if 
either expression is true.  Also, we adopt the C language convention for evaluation of the truth of a 
mathematical expression.  A nonzero result is true, a zero result is false.  Thus, your expression need 
not actually make logical comparisons. For example:  Suppose x is a binary variable (zeros and ones).  
REJECT ;  x $ will reject observations for which x equals one, since the expression has a value of 
‘true’ when x is not zero.  Therefore, this is the same as REJECT ;  x # 0 $. 
 REJECT deletes observations from the currently defined sample while INCLUDE adds 
observations to the current sample. You can use either of these to define the current sample by writing 
your command as 
 
 REJECT or INCLUDE ; New ; … expression … $ 
 
For a REJECT command, this has the result of first setting the sample to All, then rejecting all 
observations which meet the condition specified in the expression.  For an INCLUDE command, this 
has the effect of starting with no observations in the current sample and selecting for inclusion only 
those observations which meet the condition.  In the latter case, this is equivalent to ‘selecting cases,’ 
as may be familiar to users of SAS or SPSS. 
 You may enter REJECT and INCLUDE commands from the dialog box shown in Figure 
7.11.  The dialog box is invoked by selecting Include or Reject in the Project:Set Sample menu or 
by right clicking in the data editor, clicking Set Sample, then selecting Reject or Include from the 
Set Sample menu.  Note in the dialog box, the ‘Add observations to the current sample’ option at 
the top is the ; New specification in the command.  Also, by clicking the query (?) button at the lower 
left, you can obtain information about these commands from the online Help file. 
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Figure 7.11  INCLUDE and REJECT Dialog Box 

 
 The same Set Sample menu offers All, which just generates a SAMPLE ; All $ command 
and Range which produces the dialog box shown in Figure 7.12. 
 

 
Figure 7.12  Set Sample Range Dialog Box 

 
TIP:  If your REJECT command has the effect of removing all observations from the current sample, 
LIMDEP takes this as an error, gives you a warning that this is what you have done, and ignores the 
command. 
 
Interaction of REJECT/INCLUDE and SAMPLE 
 
 REJECT and INCLUDE modify the currently defined sample unless you include ; New.  
But, SAMPLE always redefines the sample, in the process discarding all previous REJECT, 
INCLUDE, and SAMPLE commands.  Thus, 
 
 SAMPLE  ; 1-50,200-300 $ 
 
and SAMPLE  ; 1-50 $ 
 SAMPLE  ; 200-300 $  
 
are not the same.  The second SAMPLE command undoes then replaces the first one. 
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 Any of these three commands may appear at any point, together or separately.  Before any 
appear, the default sample is SAMPLE ; All $. 
 
TIP:  If you are using lagged variables, you should reset the sample to discard observations with 
missing data.  This is generally not done automatically. 
 
7.5.2  Time Series Data 
 
 When you are using time series data, it is more convenient to refer to rows of the data area and 
to observations by date, rather than by observation number.  Two commands are provided for this 
purpose. 
 To give specific labels to the rows in the data area, use 
 
 DATES  ; Initial date in sample $ 
 
The initial date may be one of: 
 
 Undated same as before.  (Use this to undo a previous DATES command.) 
   DATES ; Undated $ 
 YYYY  year for yearly data, e.g., 1951. 
   DATES ; 1951 $ 
 YYYY.Q  year.quarter for quarterly data. Q must be 1, 2, 3, or 4. 
   DATES ; 1951.1 $ 
 YYYY.MM  year.month for monthly data. MM is 01 02 03 ... 12. 
   DATES ; 1951.04 $ 
 
Note that .1 is a quarter, and .5 is invalid.  The fifth month is .05, and the tenth month is .10, not .1. 
Once the row labels are set up, the counterpart to the SAMPLE command is 
 
 PERIOD  ; first period  -  last period  $ 
 
For example,    
 
 PERIOD  ; 1964.1 - 1977.4 $ 
 
 These two commands do not change the way that any computations are done with LIMDEP.  
They will change the way certain output is labeled.  For example, when you use the data editor, the row 
markers at the left will now be the dates instead of the observation numbers. 
 
NOTE:  You may not enter a date using only two digits.  Your dates must contain all four digits.  No 
computation that LIMDEP does or command that you submit that involves a date of any sort, for any 
purpose, uses two digits.  Therefore, there is no circumstance under which LIMDEP could mistake 
20xx for 19xx.  Any two digit date submitted for any purpose will generate an error, and will not be 
processed. 
 
 The DATES command may be given from the Project:Settings/Data Type menu item.  
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Figure 7.13  Dialog Box for DATES Command 

 
 The SAMPLE and PERIOD commands may be given from the Project:Set Sample Range 
dialog box.  See Figure 7.14. 
 

 
Figure 7.14  Dialog Box for the PERIOD Command 
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NOTE:  The current data type, Data:U, Data:Y, Data:Q, or Data:M is displayed at the top of the 
project window.  The data editor will also be changed to show the time series data.  Figure 7.13 shows 
an example using quarterly data.  The top of the project window displays the ‘Q’ which indicates 
quarterly data.  The data editor has also automatically adjusted following the setting in Figure 7.14 for 
quarterly data beginning in 1961.4. 
 
7.6  Missing Data 
 
 Observations that contain missing values for variables in a model are automatically bypassed.  
(The full version of LIMDEP uses a SKIP command for this setting.  The SKIP switch is 
automatically turned on in the Student version.)  Missing values are handled specifically elsewhere in 
the program by the CREATE, CALCULATE and MATRIX commands. 
 The treatment of missing values by CALCULATE is as follows: 
 

• Dot products involving variables:  The procedure is aborted, and -999 is returned. 
• Max and Min functions: Missing data are skipped. 
• Lik, Rsq, etc. (regression functions):  Same as dot products. 

 
 The matrix algebra program that directly accesses the data in several commands, including x’x, 
for sums of squares and cross products, <x’x> for inverses of moment matrices, and many others will 
simply process them as if the -999s were legitimate values.  Since it is not possible to deduce precisely 
the intention of the calculation, LIMDEP does not automatically skip these data or abort to warn you.  
It should be obvious from the results.  You can specifically request this.  If you do have the ‘SKIP 
switch’ set to ‘on’ during matrix computations (the student version does), LIMDEP will process 
MATRIX commands such as x’x and automatically skip over missing values.  But, in such a case,  the 
computation is usually erroneous, so your output will contain a warning that this has occurred, and you 
might want to examine closely the calculations being done to be sure it is really how you want to 
proceed. 
 Figure 7.15 illustrates the results discussed in the previous paragraph.  The commands are 
shown in the editing window.  Variables x and y are random samples of 100 observations from the 
standard normal distribution.  The CREATE command changes a few observations in each column to 
missing values – the observations are not the same for x and y.  The NAMELIST defines zx to be x and 
a column of ones – a two column matrix, and zy likewise.  With SKIP turned on, the 2×2 matrix 
product zx′zy shows that there are 88 observations in the reduced sample (see the 88 that is 1′1 at the 
upper left corner) and a warning is issued.  With SKIP turned off, in the second computation, the 
missing values are treated as -999s, and the resulting matrix has values that appear to be inappropriate. 
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Figure 7.15  Matrix Computations Involving Missing Data 
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Chapter 8: Estimating Models 
 
8.1  Introduction 
 
 Once your data are in place and you have set your desired current sample, most of your 
remaining commands will be either model estimation commands or the data manipulation commands, 
CREATE, CALCULATE, and MATRIX.  We consider the model commands in this  chapter and the 
other commands in Chapter 9.  This chapter will describe the common form of all model estimation 
commands, estimation results, and how to produce useable output in an output file.   Section 8.3 
contains a general discussion on the important statistical features of the model estimators, such as using 
weights and interpreting resultsinal effects.  This chapter will also describe procedures that are 
generally used after a model is estimated, such as testing hypotheses, retrieving and manipulating 
results, and analyzing restrictions on model parameters.  In terms of your use of LIMDEP for model 
estimation and analysis, this chapter is the most important general chapter in this part of the manual.  
The chapters in the second part of this manual will provide free standing and fairly complete 
descriptions of how to estimate specific models, but users are encouraged to examine Chapters 8 and 9 
here closely for the essential background on these procedures. 
 
8.2  Model Estimation Commands 
 
 Nearly all model commands are variants of the basic structure 
 
 MODEL COMMAND ; Lhs = dependent variable  
    ; Rhs  = list of independent variables 
    ; ... other parts specific to the model  ; ... $ 
 
The 75 or so different models are specified by changing the model name or by adding or subtracting 
specifications from the template above.  At different points, other specifications, such ; Rh2 = a 
second list, are used to specify a list of variables.  These will be described with the particular 
estimators.  Different models will usually require different numbers and types of variables to be 
specified in the lists above.  Note that, in general, you may always use namelists at any point where a 
list of variables is required.  Also, a list of variables may be composed of a set of namelists. 
 

NOTE ON CONSTANT TERMS IN MODELS:  Of the over 75 different models that LIMDEP 
estimates, only one, the linear regression model estimated by stepwise regression, automatically 
supplies a constant term in the Rhs list.  If you want your model to contain a constant term, you must 
request it specifically by including the variable ‘one’ among your Rhs variables.  You should notice 
this in all of our examples below. 
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ADVICE ON MODEL SPECIFICATION:  It is fairly rare that a model would be explicitly 
specified without a constant.  In almost all cases, you should include the constant term.  Omitting the 
constant amounts to imposing a restriction that will often distort the results, sometimes severely.  (We 
recall a startling exchange among some of our users in reaction to what appeared to be drastic 
differences in the estimates of a probit model produced by LIMDEP and Stata.  The difference turned 
out to be due to the omitted constant term in the LIMDEP command.)  In a few cases, though it is not 
mandatory by the program, you definitely should consider the constant term essential – these would 
include the stochastic frontier and the ordered probit models.  However, in a few other cases, you 
should not include a constant term.  These are the fixed effects, panel data estimators, such as 
regression, logit, Poisson and so on.  (In most cases, if you try to include an overall constant term in a 
fixed effects model, LIMDEP will remove it from the list.) 
 
 
 
 
 
 
 
 In addition to the specifications of variables, there are roughly 150 different specifications of 
the form 
   ; sss  [= additional information] 
 
which are used to complete the model command.  In some cases, these are mandatory, as in 
 
 REGRESS  ; Lhs = ... ; Rhs = ... ; Panel ; Str = variable $. 
 
This is the model command for the fixed and random effects linear regression model.  The latter two 
specifications are necessary in order to request the panel data model.  Without them, the command 
simply requests linear least squares.  In other cases, specifications will be optional, as in 
 
 REGRESS  ; Lhs = ... ; Rhs = ... ; Keep = yf $ 
 
which requests LIMDEP to fit a model by linear least squares, then compute a set of predictions and 
keep them as a new variable named yf. 
 Some model specifications are general and are used by most, if not all, of the estimation 
commands.  For example, the ; Keep = name specification in the command above is used by all single 
equation models, linear or otherwise, to request LIMDEP to keep the predictions from the model just 
fit.  In other cases, the specification may be very specific to one or only a few models.  For example, 
the ; Cor in 
 
 SWITCHING REGRESSION ; Lhs = ... ; Rh1 = ... ; Rh2 = ... ; Cor $ 
 
is a special command used to request a particular variant of the switching regression model, that with 
correlation across the disturbances in the two regimes.  The default is to omit ; Cor, which means no 
correlation. 
 

NOTE:  With all of the different forms and permutations of features, LIMDEP supports several 
hundred different models.  They are described fully in the 3 volume documentation for the full 
program.  This student version contains all of those models, however, the manual will only 
describe a few of the available model specifications. 
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8.2.1  The Command Builder 
 
 LIMDEP contains a set of dialog boxes and menus that you can use to build up your model 
commands in parts, as an alternative to laying out the model commands directly as shown above.  
Figure 8.1 shows the top level model selection.  The menu items, Data Description, etc., are subsets 
of the modeling frameworks that LIMDEP supports.  We’ve selected Linear Models from the menu, 
which produces a submenu offering Regression, 2SLS, and so on.  From here, the command builder 
contains specialized dialog boxes, specific to a particular model command. 
 

 
Figure 8.1  Model Command Builder with Linear Models Menu 

 
 We’ll illustrate operation of the command builder with a familiar application, Grunfeld’s panel 
data set, 10 firms, 20 observations per firm, on three variables, investment, i, profit, f, and capital stock, 
c.  The data are contained in the project shown in Figure 8.2.  The variables, d1, d2,… are dummy 
variables for the 10 firms. 
 Figure 8.3 shows the main model specification dialog box (Main page), which will be quite 
similar for most of the models.  The main window provides for specification of the dependent variable, 
the independent variables, and weights if desired.  (Weights are discussed in Section 8.3.)  We will not 
be using them in this example.  If desired, the model is fully specified at this point.  Note that the 
independent variables have been moved from window at the right, which is a menu, to the specification 
at the left.  The highlighted variables D3 – D9 will be moved when we click the ‘<<’ button to select 
them.  You may also click the query (?) button at the lower left of the dialog box to obtain a Help file 
description of the REGRESS command for linear models that is being assembled here.  The Run 
button allows you now to submit the model command to the program to fit the model.  There is also a 
box on the Main page for the REGRESS command for specifying the optional extension, the GARCH 
model.  Since the main option box for this specification is not checked, this option will not be added to 
the model command. 
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Figure 8.2  Project Window for the Grunfeld Data 

 

 
Figure 8.3  Main Page of Command Builder for Linear Regression Model 
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 The other two tabs in the command builder provide additional options for the linear regression 
model, as shown in Figures 8.4 and 8.5.  For this example, we’ll submit the simple command from the 
Main page with none of the options.  Clicking the Run button submits the command to the program, 
and produces the output shown in Figure 8.6. 
 

 
Figure 8.4  Options Page for Linear Regression Model 

 

 
Figure 8.5  Output Page for Linear Regression Model 
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 The regression command that was assembled by the command builder can be seen in the 
output window directly above the regression output: 
 
 REGRESS  ; Lhs = i ; Rhs = one,f,c,d1,d2,d3,d4 $ 
 
The command builder has done the work of constructing the command and sending it to the program.  
Although the command builders do not remember their previous commands, the commands are 
available for you to reuse if you wish. You can use edit copy/paste to copy commands from your 
output window into your editing window, then just submit them from the editing window.  The 
advantage of this is that you now need not reenter the dialog box to reuse the command.  For example, 
if you wanted to add a time trend, year, to this equation, you could just copy the command to the 
editor, add year to the Rhs list, then select the line and click GO.  
 
TIP:  Commands that are ‘echoed’ to the output window are always marked with the leading ‘-- >.’ 
The command reader will ignore these, so you can just copy and paste the whole line, or block of lines 
to move commands to your editing window. 
 

 
Figure 8.6  Regression Output Window 
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 The command builders are not complete for all models that can be specified by LIMDEP.  
Many features, such as the newer panel data estimators, are not contained in the command builders.  In 
fact, you will probably ‘graduate’ from the dialog boxes fairly quickly to using the text editor for 
commands.  The editors provide a faster and more flexible means of entering program instructions. 
 
8.2.2  Output from Estimation Programs 
 
 Results produced by the estimation commands will, of course, vary from model to model.  The 
display in the output window in Figure 8.7 would be typical.  These are the results produced by 
estimation of a basic tobit model.  (We converted the dependent variable in the preceding linear model 
to deviations from the overall mean then forced a tobit model on the resulting variable.)   
 

 
Figure 8.7  Output Window for an Estimated Model 
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Displaying Covariance Matrices 
 
 One conspicuous absence from the output display is the estimate of the asymptotic covariance 
matrix of the estimates.  Since models can have up to 150 parameters, this part of the output is 
potentially voluminous.  Consequently, the default is to omit it.  You can request that it be listed by 
adding 
   ; Printvc 
 
to the model command.   Since covariance matrices can be extremely large, this is handled two ways.  
If the resultant matrix is quite small, it is included in the output.  The earlier tobit equation is shown in 
Figure 8.8.  If the matrix has more than five columns, then it is offered as an additional embedded 
matrix with the output, as shown in Figure 8.9 for a larger regression model.  (We also included             
; Matrix in this estimation.  Note that there are two embedded matrices in the output.) 
 When estimation is done in stages ; Printvc will only produce an estimated covariance matrix 
at the final step.  Thus, no covariance matrix is displayed for initial least squares results.   

 

 
Figure 8.8  Model Output with Covariance Matrix 
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Figure 8.9  Regression Output with Embedded Covariance Matrix 

 
8.3  Model Components and Results 
 
 The primary components of a model are provided with the model command 
 
 MODEL COMMAND ; Lhs = dependent variable 
    ; Rhs = independent variables $ 
 
In many cases, this is all that is required.  However there are a few common variations, notably using 
weights. 
 
Constant Terms 
 
 As noted earlier, LIMDEP almost never forces a constant term in a model – the only case is the 
linear regression model fit by stepwise least squares.  For any other case, if you want a constant term in 
a model, you must include the variable one in the appropriate variable list.  The variable one is 
provided by the program; you do not have to create it. You can, however, use one at any point, in any 
model where you wish to have a constant term, and any MATRIX command based on a  column of 
ones as a variable in the analysis of data.   
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 The typical estimation command will appear like the following example: 
 
 REGRESS ; Lhs = y ; Rhs = one, x $ 
 
which produces output including 
 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant -.00280548254    .0070621362      -.397   .6912 
 X         .01489733909    .0071169806      2.093   .0363    -.006473082 
 
A MATRIX command based on the same construction might be the following which computes the 
inverse of a matrix of sums of squares and cross products: 
 
 NAMELIST  ; xdata = one,x $ 
 MATRIX  ; xxi  =  <x’x> $ 
 
8.3.1  Using Weights 
 
 Any procedure which uses sums of the data, including descriptive statistics and all regression 
and nonlinear models can use a weighting variable by specifying 
 
   ; Wts = name 
 
where name is the name of the variable to be used for the weighting. 
 Any model based on least squares of any sort or on likelihood methods can be estimated with 
weights.  This includes REGRESS, PROBIT, all LOGIT models, and so on.  The only substantive 
exceptions are the nonparametric and semiparametric estimators, MSCORE, NPREG, and the Cox 
proportional hazard model. 
 
NOTE:  In computing weighted sums, the value of the variable, not its square root is used.  As such, if 
you are using this option to compute weighted least squares for a heteroscedastic regression, name 
should contain the reciprocals of the disturbance variances, not the standard deviations. 
 
In maximum likelihood estimation, the terms in the log likelihood and its derivatives, not the data 
themselves, are multiplied by the weighting variable.  That is, when you provide a weighting variable, 
LIMDEP computes a sum of squares and cross products in a matrix as X′WX  =  Σiwixix′ and a log 
likelihood Log L  =  Σiwilog(fi), where wi is an observation on your weighting variable. 
 The weighting variable must always be positive.  The variable is examined before the 
estimation is attempted.  If any nonpositive values are found, the estimation is aborted. 
 During computation, weights are automatically scaled so that they sum to the current sample 
size.  The variable, itself, is not changed, however.  If you specify that variable w is to be the weighting 
variable in ; Wts = w, the weight actually applied is wi*  =  [N/Σiwi] × wi.  This scaling may or may not 
be right for a selected sample in a sample selection model.  That is, after selection, the weights on the 
selected data points may or may not sum to the number of selected data points.  As such, the weights in 
SELECT with univariate and bivariate probit criterion equations are rescaled so that they sum exactly 
to the number of selected observations. 
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TIP:  The scaling will generally not affect coefficient estimates.  But, it will affect estimated standard 
errors, sometimes drastically. 
 
 To suppress the scaling, for example for a grouped data set in which the weight is a replication 
factor, use  
   ; Wts = name,noscale  or just ; Wts = name,n 
 
WARNING:  When this option is used with grouped data qualitative choice models, such as logit, it 
often has the effect of enormously reducing standard errors and  blowing up t-ratios. 
 
The ‘noscale’ option would most likely be useful when examining proportions data with a known 
group size.  For example, consider a probit analysis of county voting returns.  The data would consist 
of N observations on [ni, pi, xi], where ni is the county size, pi is the proportion of the county population 
voting on the issue under study, and xi is the vector of covariates.  Such data are heteroscedastic, with 
the variance of the measured proportion being proportional to 1/ni.  We emphasize, once again, when 
using this option with population data, standard errors tend to become vanishingly small, and call upon 
the analyst to add the additional measure of interpretation. 
 
8.3.2  Model Output 
 
 Most of the models estimated by LIMDEP are single equation, ‘index function’ models.  That 
is, there is a dependent variable, which we’ll denote ‘y,’ a set of independent variables, ‘x,’ and a 
model, consisting, in most cases, of either some sort of regression equation or a statement of a 
probability distribution, either of which depends on an index function, x′β and a set of ‘ancillary’ 
parameters, θ, such as a variance term, σ2 in a regression or a tobit model.  The parameters to be 
estimated are [β,θ].  In this framework, estimation will usually begin with a least squares regression of 
y on x.  This will often be for the purpose of obtaining the default starting values for the iterations, but 
is sometimes done simply because in this modeling framework, the ordinary least squares (OLS) 
estimate is often an interesting entity in its own right.  Model output, not including the technical output 
from the iterations (see Section R8.4) will thus consist of the OLS results, followed by the primary 
objects of estimation. 
 
NOTE:  In order to reduce the amount of superfluous output, OLS results are not reported 
automatically except for the linear regression model.  To see the OLS outputs when they are computed, 
add ; OLS to your model command. 
 
TIP:  It is important to keep in mind that the OLS estimates are almost never consistent estimates of 
the parameters of the nonlinear models estimated by LIMDEP.  
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 Listed below are the results from estimation of a Poisson regression model.  (The example is 
used at various points in the chapters to follow.)  The model command requests a set of marginal 
effects.  These are discussed in the next section. 
 
 READ   ; Nobs = 40 ; Nvar = 2 ; Names = num,months ; By Variables $ 
      0 0 3 4  6 18  m 11 39 29 58 53 12 44  m 18  1  1  0 1 
      6 2 m 1  0  0  0  0  2 11  m  4  0  m  7  7  5 12  m 1 
      127 63 1095 1095 1512 3353 0 2244 44882 17176 28609 20370  
      7064 13099 0 7117 1179 552 781 676 783 1948 0 274 251 105 
      288 192 349 1208 0 2051 45 0 789 437 1157 2161 0 542 
 REJECT ; num < 0 $ 
 CREATE ; a = Ind(9,16) ; c = Ind(17,24) ; d = Ind(25,32) ; e = Ind(33,40) 
         ; c67 = Dmy(8,3)+Dmy(8,4) ; c72  = Dmy(8,5)+Dmy(8,6) 
         ; c77 = Dmy(8,7)+Dmy(8,8) ; p77 = Dmy(2,2) 
         ; logmth = Log(months) $ 
 NAMELIST   ; x = one,a,c,d,e,c67,c72,c77,logmth$ 
 POISSON ; Lhs = num ; Rhs = x ; OLS ; Marginal = c67 $ 
 
The following results are reported when your model command contains ; OLS. 
 
+----------------------------------------------------+ 
| Poisson Regression Model - OLS Results             | 
| Ordinary    least squares regression               | 
| LHS=NUM      Mean                 =   10.47059     | 
|              Standard deviation   =   15.73499     | 
| WTS=none     Number of observs.   =         34     | 
| Model size   Parameters           =          9     | 
|              Degrees of freedom   =         25     | 
| Residuals    Sum of squares       =   2076.755     | 
|              Standard error of e  =   9.114286     | 
| Fit          R-squared            =   .7458219     | 
|              Adjusted R-squared   =   .6644848     | 
+----------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     -39.6343740     9.30415297    -4.260   .0000 
 A             4.38284585     5.12356623      .855   .3923     .23529412 
 C            -1.60558349     4.85887959     -.330   .7411     .23529412 
 D             1.75161158     4.99174267      .351   .7257     .23529412 
 E             1.28368407     7.62716506      .168   .8663     .05882353 
 C67            .13630013     4.67310647      .029   .9767     .29411765 
 C72          -5.06717068     4.97659408    -1.018   .3086     .29411765 
 C77          -7.29195392     5.63651443    -1.294   .1958     .14705882 
 LOGMTH        7.30381292     1.36910416     5.335   .0000    7.04925451 
 
The following are the standard results for a model estimated by maximum likelihood or some other 
technique.  Most parts are common, while a few are specific to the particular model. 
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+---------------------------------------------+ 
| Poisson Regression                          | 
| Maximum Likelihood Estimates                |  
| Dependent variable                  NUM     | 
| Number of observations               34     | 
| Log likelihood function       -72.69771     | 
| Number of parameters                  9     | 
| Info. Criterion: AIC =          4.80575     | 
|   Finite Sample: AIC =          5.02634     | 
| Info. Criterion: BIC =          5.20978     | 
| Info. Criterion:HQIC =          4.94354     | 
| Restricted log likelihood     -356.2029     | 
| Chi squared                    567.0104     | 
| Degrees of freedom                    8     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Chi- squared =    46.55065  RsqP=   .9403   | 
| G  - squared =    47.52893  RsqD=   .9227   | 
| Overdispersion tests: g=mu(i)  :  1.770     | 
| Overdispersion tests: g=mu(i)^2:   .498     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     -4.80807969      .65751784    -7.312   .0000 
 A              .00373503      .15767690      .024   .9811     .23529412 
 C             -.83536379      .36686744    -2.277   .0228     .23529412 
 D              .29514731      .24430603     1.208   .2270     .23529412 
 E              .13092973      .32043868      .409   .6828     .05882353 
 C67            .70947001      .17792942     3.987   .0001     .29411765 
 C72            .86911092      .19268330     4.511   .0000     .29411765 
 C77            .51343007      .24440891     2.101   .0357     .14705882 
 LOGMTH         .80295174      .06534072    12.289   .0000    7.04925451 

 
Some notes about the results shown above: 
 

• The sample was changed from the initial 40 observations to the 34 observations with a 
nonmissing value of num before estimation.   

• The least squares results are the standard set of results that will appear with every ordinary 
least squares regression.  However, the table of diagnostic statistics shown above the 
coefficient estimates is slightly abridged when the model command is not specifically for a 
linear regression.  The linear regression model would show autocorrelation diagnostics and 
other information criteria. 

• Results always include the coefficients, standard errors, and ratios of coefficients to standard 
errors.  In the index function models, the coefficients are named by the variable that multiplies 
them in the index function.  In models which do not use an index function (NLSQ,  
MINIMIZE, CLOGIT, and a few others), the parameter label that you provide will appear 
with the estimate instead. 

• Results for index function models include the mean values of the variables that are multiplied 
by the coefficients.  Ancillary parameters and user defined parameters will show blanks in this 
part of the table.  Note that ‘one’ becomes ‘Constant’ in the table. 
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• The prob value shown, ‘P[|Z| > z],’ is the value for a two tailed test of the hypothesis that the 
coefficient equals zero.  The probability shown is based on the standard normal distribution in 
all cases except the linear regression model, when it is based on the ‘t’ distribution with 
degrees of freedom that will be shown in the table. 

• The diagnostics table for the Poisson regression reports some statistics which will be present 
for all models (indicated by the box in the figure): 

1. left hand side variable, 
2. number of observations used, 
3. number of iterations completed, 
4. log likelihood function or other estimation criterion function. 

• Some results will be computable only for some models.  The following results listed for the 
Poisson model will not appear when there is no natural, nested hypothesis to test.  (For 
example, they will not normally appear in the output for the tobit model.) 

1. log likelihood at a restricted parameter estimate, usually zero, 
2. chi squared test of the restriction, 
3. significance level, 
4. degrees of freedom. 

• Finally, there are usually some statistics or descriptors which apply specifically to the model 
being estimated.  In this example, chi squared, G squared and two overdispersion tests are 
statistics that are specific to the Poisson model. 

 
8.3.3  Retrievable Results 
 
 When you estimate a model, the estimation results are displayed on the screen and in the 
output file if one is open.  In addition, each model produces a number of results which are saved 
automatically and can be used in subsequent procedures and commands.  The POISSON command 
above shows an example.  After the model is estimated, scalars named nreg, kreg, and logl are created 
and set equal to the number of observations, number of coefficients estimated, and the log likelihood 
for the model, respectively.  For another, after you give a REGRESS command, the scalar rsqrd is 
thereafter equal to the R² from that regression.  You can retrieve these and use them in later commands.  
For example, 
 
 REGRESS  ; ... $ 
 CALC   ; f = rsqrd/(kreg-1) / ((1 - rsqrd)/(nreg - kreg)) $ 
 
to compute a standard F statistic.  (There is an easier way to do this.) 
 Although your CALCULATOR has 50 cells, the first 14 are ‘read only’ in the sense that 
LIMDEP reserves them for estimation results.  You may use these scalars in your calculations, or in 
other commands (see the example above),  but you may not change them.  (The one named rho may be 
changed.) Likewise, the first three matrices are reserved by the program for ‘read only’ purposes. The 
read only scalars are 
 
  ssqrd, rsqrd, s, sumsqdef, degfrdm, ybar, sy, kreg, nreg, logl, exitcode 
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and two whose names and contents will depend on the model just estimated.  The names used for 
these will be given with the specific model descriptions.  At any time, the names of the read only 
scalars are marked in the project window with the  symbol to indicate that these names are 
‘locked.’ Figure 8.10 illustrates.  This shows the setup of the project window after the tobit example 
developed above. 
 A parameter vector is automatically retained in a matrix named b.  The program will also save 
the estimated asymptotic covariance matrix and name it varb.  The reserved matrices are thus b and 
varb, with a third occasionally used and renamed.  The third, protected matrix name will depend on the 
model estimated.  A few examples are: 
 
   mu   created by ORDERED PROBIT, 
   sigma  created by SURE and 3SLS, 
   pacf         created by IDENTIFY. 
 
 All estimators set at least some of these matrices and scalars.  In the case of the scalars, those 
not saved by the estimator are set to 0.  For example, the PROBIT estimator does not save rsqrd.  
Matrices are simply left unchanged.  So, for example, if you estimate a fixed effects model, which 
creates the third matrix and calls it alphafe, then estimate a probit model which only computes b and 
varb, alphafe will still be defined. 
 

 
Figure 8.10  Project Window 
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TIP:  Each time you estimate a model, the contents of b, varb, and the scalars are replaced.  If you do 
not want to lose the results, retain them by copying them into a different matrix or scalar. For example, 
the following computes a Wald test statistic for the hypothesis that the slope vector in a regression is 
the same for two groups (a Chow test of sorts): 
 
 REGRESS  ; Lhs = y ; Rhs = ...  ; If [Male = 1] $ 
 MATRIX ; bmale  =  b ; vmale = varb $ 
 REGRESS ; Lhs = y ; Rhs = ...  ; If [Female = 1] $ 
 MATRIX ; bfemale = b ; vfemale = varb $ 
 MATRIX ; d = bmale - bfemale  
   ; waldstat = d' * Nvsm(vmale, vfemale) * d $ 
 
 The matrix results saved automatically in b and varb are, typically, a slope vector, b, and the 
estimated asymptotic covariance matrix of the estimator, from an index function model.  For example, 
when you estimate a tobit model, the estimates and asymptotic covariance matrix are 
 

   
β
σ







    and   

V V
V V
ββ

σβ σσ

βσ
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


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The results kept are β, in b, Vββ in varb, and σ in a scalar named s. The other parts of the asymptotic 
covariance matrix are generally discarded.  We call the additional parameters, such as s, the ancillary 
parameters in the model.  Most of the models that LIMDEP estimates contain one or two ancillary 
parameters.  These are generally handled as in this example; the slope vector is retained as b, the 
ancillary parameters are kept as named scalars, and the parts of the covariance matrix that apply to 
them are discarded. 
 In some applications, you may want the full parameter vector and covariance matrix.  You can 
retain these, instead of just the submatrices listed above, by adding the specification 
 
   ; Parameters 
 
(or, just ; Par) to your model command. (Note, for example, the computation of marginal effects for a 
dummy variable in a tobit model developed in the previous section.)  Without this specification, the 
saved results are exactly as described above.  The specific parameters saved by each command are 
listed with the model application in the chapters to follow.  You will find an example of the use of this 
parameter setting in the program for marginal effects for a binary variable in the tobit model, which is 
in the previous section. 
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8.3.4  Creating and Displaying Predictions and Residuals 
 
 Most of the single equation models in LIMDEP, though not all, contain a natural ‘dependent 
variable.’  Model predictions for any such model are easily obtained as discussed below.  What 
constitutes a residual in these settings is a bit ambiguous, but, once again, some construction that 
typically reflects a deviation of an actual from a predicted value can usually be retained.  The exact 
definition of a ‘fitted value’ and a ‘residual’ are given with the model descriptions in the chapters to 
follow. 
 There are several options for computing and saving fitted values from the regression models.  
You may request fitted values and/or residuals for almost any model.  (The exceptions are, e.g., 
multiple equation models.)  The fitted values are requested by adding 
 
   ; Keep  =  name 
 
to your model command.  The request for residuals is 
 
   ; Res  =  name 
 
In each of these cases, the command will overwrite the variable if it already exists, or create a new one.  
In any model command, the specification   
 
   ; List 
 
requests a listing of the residuals and several other variables. 
 
TIP:  To keep fitted values in a text file, you can either use ; List with an output file or use WRITE 
and write the values in their own file or LIST ; variable $. 
 
 If the current sample is not the entire data set, and the data array contains observations on the 
regressors but not the dependent variable, you can interpolate and produce predicted values for these 
observations by adding the specification 
 
   ; Fill 
 
to your model command.  ; Res, ; Keep, and ; Fill do not compute values for any observations for 
which any variable to be used in the calculation is missing (i.e., equals -999).  Otherwise, a prediction 
is computed for every row for which data can be found. 
 
TIP:  ; Fill provides a very simple way of generating out of sample predictions. 
 
 To provide an example of the ; Fill feature, we will examine some data on gasoline sales in the 
U.S. before and after the 1973-1974 oil embargo.  The data below are yearly series on gasoline sales 
(g), per capita income (y), and index numbers for a number of prices: pg is the gasoline price, pnc, puc, 
and ppt are price indices for new and used cars and public transportation, and pn, pd, and ps are 
aggregate price indices for nondurables, durables, and services. 
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READ   ; Nobs = 27 ; Nvar = 10 ; Names = year,g,pg,y,pnc,puc,ppt,pd,pn,ps $ 
 
1960 129.7   .925  6036  1.045   .836   .810   .444   .331   .302 
1961 131.3   .914  6113  1.045   .869   .846   .448   .335   .307 
1962 137.1   .919  6271  1.041   .948   .874   .457   .338   .314 
1963 141.6   .918  6378  1.035   .960   .885   .463   .343   .320 
1964 148.8   .914  6727  1.032  1.001   .901   .470   .347   .325 
1965 155.9   .949  7027  1.009   .994   .919   .471   .353   .332 
1966 164.9   .970  7280   .991   .970   .952   .475   .366   .342 
1967 171.0  1.000  7513  1.000  1.000  1.000   .483   .375   .353 
1968 183.4  1.014  7728  1.028  1.028  1.046   .501   .390   .368 
1969 195.8  1.047  7891  1.044  1.031  1.127   .514   .409   .386 
1970 207.4  1.056  8134  1.076  1.043  1.285   .527   .427   .407 
1971 218.3  1.063  8322  1.120  1.102  1.377   .547   .442   .431 
1972 226.8  1.076  8562  1.110  1.105  1.434   .555   .458   .451 
1973 237.9  1.181  9042  1.111  1.176  1.448   .566   .497   .474 
1974 225.8  1.599  8867  1.175  1.226  1.480   .604   .572   .513 
1975 232.4  1.708  8944  1.276  1.464  1.586   .659   .615   .556 
1976 241.7  1.779  9175  1.357  1.679  1.742   .695   .638   .598 
1977 249.2  1.882  9381  1.429  1.828  1.824   .727   .671   .648 
1978 261.3  1.963  9735  1.538  1.865  1.878   .769   .719   .698 
1979 248.9  2.656  9829  1.660  2.010  2.003   .821   .800   .756 
1980 226.8  3.691  9722  1.793  2.081  2.516   .892   .894   .839 
1981 225.6  4.109  9769  1.902  2.569  3.120   .957   .969   .926 
1982 228.8  3.894  9725  1.976  2.964  3.460  1.000  1.000  1.000 
1983 239.6  3.764  9930  2.026  3.297  3.626  1.041  1.021  1.062 
1984 244.7  3.707 10421  2.085  3.757  3.852  1.038  1.050  1.117 
1985 245.8  3.738 10563  2.152  3.797  4.028  1.045  1.075  1.173 
1986 269.4  2.921 10780  2.240  3.632  4.264  1.053  1.069  1.224 

 
We will compute simple regressions of g on one, pg, and y.  The first regression is based on the pre-
embargo data, 1960-1973, but fitted values are produced for all 27 years.  The second regression uses 
the full data set and also produces predicted values for the full sample.  We then plot the actual and 
both predicted series on the same figure to examine the influence of the later data points. 
 
 DATE   ; 1960 $ 
 PERIOD ; 1960 - 1973 $ 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; Fill $ 
 PERIOD ; 1960 - 1986 $ 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6086  $ 
 PLOT  ; Rhs = g, gfit6073, gfit6086 ; Grid $ 
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Figure 8.11  Time Series Plot 

 
 The following chapters will detail the formulas used in computing predictions, residuals, and 
accompanying information. When you use ; List, some additional information will be displayed in 
your output.  In some cases, there is no natural residual or prediction to be computed, for example in 
the bivariate probit model. In these cases, an alternative computation is done, so what is requested by      
; Res or ; Keep may not actually be a residual or a fitted value.  Individual model descriptions will 
provide details.  In general, the ; List specification produces the following: 
 

1. an indicator of whether the observation was used in estimating the model.  If not, the 
observation is marked with an asterisk, 

2. the observation number or date if the data are time series, 
3. the observed dependent variable when this is well defined, 
4. the ‘fitted value’ = variable retained by ; Keep,  
5. the ‘residual’ = variable retained by ; Res, 
6. ‘variable 1,’ a useful additional function of the model which is not kept, and 
7. ‘variable 2,’ another computation. 

 
 Although the last two variables are not kept internally, they are written to your output window 
and to the output file if one is open, so you can retrieve them later by editing the file with a word 
processor.  In all cases, the formulas for these variables will be given, so if you need to have them at 
the time they are computed, you can use a subsequent CREATE command to obtain the variables. 
 We illustrate these computations with a Poisson regression and with the out of sample 
predictions generated by the regression above.  The POISSON command would be 
 
 POISSON ; Lhs = …  ; Rhs = … ; List $ 
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The following table results and items listed for the Poisson model are: 
 
 Actual:     y,  Prediction: E[y]  =  exp(b′x), 
 Residual:  y  -  E[y], Index:  b′x, 
 Probability: Pr[Y = y] = exp(-λ)λy/y!, λ = E[y]. 
 
LIMDEP Estimation Results                  Run log line    6  Page   3 
Current sample contains      34 observations. 
Predicted Values    * ⇒ observation was not in estimating sample. 
Observation Observed Y   Predicted Y    Residual       x(i)ß    Pr[y*=y] 
       1    0.00000       0.39914        -0.3991      -0.9184     0.6709 
       2    0.00000       0.22733        -0.2273      -1.4813     0.7967 
       3     3.0000        4.5761        -1.5761       1.5209     0.1644 
       4     4.0000        4.5761        -0.5761       1.5209     0.1881 
       5     6.0000        6.9559        -0.9559       1.9396     0.1499 
       6     18.000        13.185         4.8150       2.5791     0.0426 
       8     11.000        6.6922         4.3078       1.9009     0.0375 
       9     39.000        44.388        -5.3881       3.7930     0.0453 
      10     29.000        20.603         8.3967       3.0255     0.0162 
 
For a linear regression, the listed items are the familiar ones: 
 
 REGRESS ; Lhs = g ; Rhs = one, pg, y ; Keep = gfit6073 ; List ; Fill $ 
 

Predicted Values (* => observation was not in estimating sample.) 
Observation  Observed Y   Predicted Y   Residual   95% Forecast Interval 
  1960       129.70        127.98         1.7243     113.5586   142.3929 
  1961       131.30        129.47         1.8315     115.8623   143.0746 
  1962       137.10        134.80         2.3032     121.5356   148.0580 
  1963       141.60        138.04         3.5551     124.9718   151.1179 
  1964       148.80        148.58          .2217     134.9251   162.2315 
  1965       155.90        160.79        -4.8910     147.7508   173.8312 
  1966       164.90        170.39        -5.4906     157.4244   183.3568 
  1967       171.00        180.11        -9.1072     167.4143   192.8002 
  1968       183.40        187.95        -4.5490     175.1447   200.7533 
  1969       195.80        195.73          .0665     182.9210   208.5460 
  1970       207.40        204.04         3.3641     191.1278   216.9441 
  1971       218.30        210.46         7.8377     197.3139   223.6107 
  1972       226.80        219.00         7.8000     205.4731   232.5270 
  1973       237.90        242.57        -4.6662     226.7579   258.3745 
* 1974       225.80        271.46       -45.6629     197.8524   345.0734 
* 1975       232.40        282.81       -50.4150     193.9795   371.6504 
* 1976       241.70        295.84       -54.1380     199.1641   392.5119 
* 1977       249.20        310.71       -61.5120     201.1378   420.2862 
* 1978       261.30        328.38       -67.0848     210.8962   445.8733 
* 1979       248.90        388.25      -139.3480     168.3394   608.1566 
* 1980       226.80        469.95      -243.1545      93.6745   846.2345 
* 1981       225.60        505.76      -280.1606      67.3596   944.1616 
* 1982       228.80        486.73      -257.9265      80.0424   893.4107 
* 1983       239.60        482.43      -242.8259      97.6831   867.1688 
* 1984       244.70        493.02      -248.3244     122.6819   863.3669 
* 1985       245.80        499.99      -254.1909     126.6925   873.2893 
* 1986       269.40        439.62      -170.2191     191.3035   687.9347 
 



Chapter 9: Using Matrix Algebra  117 

Chapter 9: Using Matrix Algebra 
 
9.1  Introduction 
 
 The data manipulation and estimation programs described in the chapters to follow are part of 
LIMDEP’s general package for data analysis.  The MATRIX, CREATE, and CALCULATE 
commands provide most of the additional tools.  By defining data matrices with the NAMELIST, 
SAMPLE, REJECT, INCLUDE, PERIOD, and DRAW commands, you can arbitrarily define as 
many data matrices as you want.  Simple, compact procedures using MATRIX commands will then 
allow you to obtain covariance and correlation matrices, condition numbers, and so on.  More involved 
procedures can be used in conjunction with the other commands to program new, possibly iterative, 
estimators, or to obtain complicated marginal effects or covariance matrices for two step estimators. 
 To introduce this extensive set of tools and to illustrate its flexibility, we will present two 
examples. (These are both built in procedures in LIMDEP, so the matrix programs are only 
illustrative.)  The rest of the chapter will provide some technical results on matrix algebra and material 
on how to use MATRIX to manipulate matrices. 
 
Example Restricted Least Squares 
 
 In the linear regression model, y = Xβ + ε, the linear least squares coefficient vector, b*, and 
its asymptotic covariance matrix, computed subject to the set of linear restrictions Rb* = q are 
 
   b*  =  b - (X′X)-1R′[R(X′X)-1R′]-1(Rb-q),  
 
where    b = (X′X)-1X′y 
 
and   Est.Asy.Var[b*]  =  s2(X′X)-1 - s2(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1. 
 
First, define the X matrix, columns then rows.  We assume the dependent variable is y. 
 
 NAMELIST ; x = ... $ 
 CREATE ; y = the dependent variable $ 
 SAMPLE ; ... as appropriate  $ 
 
Next, define R and q.  This varies by the application.  Get the inverse of X’X now, for convenience. 
 
 MATRIX ; r = ... ; q = ... ; xxi = <x’x> $ 
 
Compute the unrestricted least squares and the discrepancy vector. 
 
 MATRIX        ; bu = xxi * x’y ; d = r * bu - q $ 
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Compute the restricted least squares estimates and the sum of squared deviations. 
 
 MATRIX ; br = bu - xxi * r’ * Iprd(r,xxi,r’) * d $ 
 CREATE ; u = y - x’br $ 
 
Compute the disturbance variance estimator. 
 
 CALC  ; s2 = (1/(n-Col(x)+Row(r))) * u’u $ 
 
Compute the covariance matrix, then display the results. 
 
 MATRIX ; vr = s2 * xxi - s2 * xxi * r’ * Iprd(r,xxi,r’) * r * xxi  
   ; Stat(br,vr,x) $ 
 
 The preceding gives the textbook case for obtaining the restricted least squares coefficient 
vector when X′X is nonsingular.  For the case in which there is multicollinearity, but the restrictions 
bring the problem up to full rank, the preceding is inadequate.  (See Greene and Seaks (1991).)  The 
general solution to the restricted least squares problem is provided by the partitioned matrix equation: 
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If the matrix in brackets can be inverted, then the restricted least squares solution is obtained along with 
the vector of Lagrange multipliers, λ.  The estimated asymptotic covariance matrix will be the estimate 
of σ2 times the upper left block of the inverse.  If X′X has full rank, this coincides with the solution 
above.  The routine for this computation is 
 
 MATRIX ; xx  = x’x   ; xy = x’y ; r = ... ; q = ... $ 
 CALC  ; k  = Col(x)   ; j = Row(r) $ 
 MATRIX ; zero = Init (j, j, 0)    
   ; a  = [xx / r,zero]    ? Shorthand for symmetric partitioned matrix 
   ; v  = [xy / q]  
   ; ai  = Ginv(a)  ; b_l = ai * v  
   ; br  = b_l(1:k)  ; vr = ai(1:k, 1:k) $ 

CREATE ; u  = y - x’br $ 
MATRIX ; vr  =  { u’u  / (n-k+j) } * vr ; Stat(br,vr,x) $ 
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9.2  Entering MATRIX Commands 
 
 MATRIX commands are typically given as parts of programs that perform larger functions, 
such as in the examples in Section 9.2.1.  You also have a matrix ‘calculator’ that you can access 
occasionally in a window that is separate from your primary desktop windows (project, editing, and 
output). 
 
9.2.1  The Matrix Calculator 
 
 You may invoke the matrix calculator by selecting  Tools:Matrix Calculator as shown in 
Figure 9.1. 
 

 
Figure 9.1  Tools Menu for Matrix Calculator 

 
The matrix calculator window is shown in Figure 9.2. 
 

 
Figure 9.2  Matrix Calculator Window 
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 You can leave the matrix calculator window open while you go to some other function.  For 
example, you may find it convenient to interrupt your work in the editing/output windows by activating 
the matrix calculator to check some result which, perhaps, is not emerging the way you expected.  
 There are two other ways to enter commands in the matrix calculator window.  You can type 
MATRIX commands in the smaller ‘Expr:’ (expression) window.  In this dialog mode, if your 
command will not fit on one line, just keep typing.  At some convenient point, the cursor will 
automatically drop down to the next line.  Only press Enter when you are done entering the entire 
command.  In this mode of entry, you do not have to end your commands with a $. 
 Alternatively, you can click the fx button to open a  subsidiary window that provides a menu of 
the functions (procedures):  See Figure 9.3. 
 

 
Figure 9.3  Insertion Window for Matrix Functions 

 
You can select the function you wish to insert in your command.  You must then fill in the arguments 
of the function that are specific to your expression.  (E.g., if you want Chol(sigma), you can select 
Chol(A) from the menu, then you must change ‘A’ to ‘sigma.’) in the command. 
 
9.2.2  MATRIX Commands 
 
 If your MATRIX command is part of a program, it is more likely that you will enter it ‘in 
line,’ rather than in the matrix calculator.  That is as a command in the text editor, in the format, 
 
 MATRIX   ;  ... the desired command ... $ 
 
Commands may be entered in this format from the editor, as part of a procedure, or in an input file. All 
of the applications given elsewhere in this manual are composed of in line commands, as are the 
examples given in Section R12.1 and in many places in the preceding chapters. 
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 The essential format of a MATRIX command is 
 
 MATRIX   ;  name  =  result  ;  ... additional commands ... $ 
 
If you wish to see the ‘result’ but do not wish to keep it, you may omit the ‘; name =.’  (The same 
applies to the scalar calculator described in the next chapter.)  For example, you are computing a result 
and you receive an unexpected diagnostic.  We sometimes come across a matrix, say rxx, that we 
thought was positive definite, but when we try something like MATRIX ; Sinv(rxx) $, a surprise error 
message that the matrix is not positive definite shows up.  A simple listing of the matrix shows the 
problem.  The .001 in the 4,4 element is supposed to be a 1.0.  Now we have to go back and find out 
how the bad value got there – some previous calculation did something unexpected. 
 
Matrix ; Sinv(Rxx) $ 
 
Error   185: MATRIX - GINV,SINV,CHOL  singular, not P.D. if SINV or CHOL 
 
Matrix ; List ; Rxx $ 
 
Matrix Result   has  4 rows and  4 columns. 
               1             2             3             4 
        +-------------------------------------------------------- 
       1|    1.00000       .66647       .13895       .70138 
       2|     .66647      1.00000      -.27401       .25449 
       3|     .13895      -.27401      1.00000      -.05935 
       4|     .70138       .25449      -.05935       .00100 
 
If you want only to see a matrix, and not operate on it, you can just double click its name in the 
project window.  That will open a window that displays the matrix. The offending rxx matrix shown 
above is displayed in Figure 9.4. 
 

 
Figure 9.4  Matrix Display from Project Window 

 
 Matrix results will be mixtures of matrix algebra, i.e., addition, multiplication, subtraction, and 
matrix functions, such as inverses, characteristic roots, and so on, and, possibly, algebraic manipulation 
of functions of matrices, such as products of inverses. 
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9.2.3  Matrix Output 
 
 The results of MATRIX commands can be matrices with up to 50,000 elements, and can thus 
produce enormous amounts of output.  As such, most of the display of matrix results is left up to your 
control.  
 Matrix results are always displayed in the calculator window.  When commands are in line, 
results are generally not shown unless you specifically request the display with ; List.  (See Section 
9.2.5.)  The figures below demonstrate. 
 

 
Figure 9.5  Matrix Result in the Calculator Window 

 When the computed result has more than five columns or more than 20 rows, it will be shown 
in the output window as a place holder (object). 
 

 
Figure 9.6  Matrix Result in the Output Window 

 
If you double click the object, you can display the full matrix in a scaleable window. 
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9.2.4  Matrix Results 
 
 When MATRIX commands are given in line, the default is not to display the results of any 
matrix computations on the screen or in the output file.  It is assumed that in this mode, results are 
mostly intermediate computations.  The output file will contain, instead, a listing of the matrix 
expression and either a confirmation that the result was obtained or just a statement of the expression 
with a diagnostic in the trace file.  For example, the command  
 
 MATRIX ; a = Iden(20) $  
 
produces only an echo of the expression. 
 You can request full display of matrices  in the output file by placing 
 
   ; List 
 
before the matrix to be listed.  Note how this has been used extensively in the preceding examples in 
Section R12.1.  This is a switch that will now remain on until you turn it off with ; Nolist.  When the 
end of a command is reached, ; Nolist once again becomes the default.  The ; Nolist and ; List 
switches may be used to suppress and restore output at any point.  When the ; Nolist specification 
appears in a MATRIX command, no further output appears until the ; List specification is used.  At 
the beginning of a command, the ; List switch is off, regardless of where it was before.  If you are 
doing many computations, you can suppress some of them, then turn the output switch back on, in the 
middle of a command.  For example: 
 
 MATRIX  ; Nolist  
   ; xxi = <x1’x1>  
   ; List    
   ; Root(xxi) $  
 
displays only the characteristic roots of the inverse of a particular X′X matrix.  Neither x1′x1 nor xxi are 
displayed. 
 Displaying matrices that already exist in the matrix work area requires only that you give the 
names of the matrices.  I.e., 
 
 MATRIX  ; List ; abcd ; qed $  Note, separated by semicolons, not commas. 
 
would request that the matrices named abcd and qed be displayed on your screen.  You might also 
want to see the results of a matrix procedure displayed, without retaining the results.  The following are 
some commands that you might type: 
 
 MATRIX ; Root(xx) $ lists characteristic roots of xx. 
 MATRIX ; a* b $  displays the matrix product ab. 
 MATRIX ; Mean(x*) $ displays the means of all variables whose  
     names begin with x. 
 
These commands just display the results of the computations; they do not retain any new results. 
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9.2.5  Matrix Statistical Output 
 
 Your matrix procedures will often create coefficient vectors and estimated covariance matrices 
for them.  For any vector, beta, and square matrix, v, of the same order as beta, the command  
 
 MATRIX  ; Stat (beta,v) $ 
 
will produce a table which assumes that these are a set of statistical results.  The table contains the 
elements of beta, the diagonal elements of v and the ratios of the elements of beta to the square root of 
the corresponding diagonal element of v (assuming it is positive).  For example, the listing below 
shows how the Stat function would redisplay the model results produced by a POISSON command 
from one of our earlier examples. 
 
NOTE:  MATRIX ; Stat(vector,matrix) $ has no way of knowing that the matrix you provide really 
is a covariance matrix or that it is the right one for the vector that precedes it.  It requires only that 
‘vector’ be a vector and ‘matrix’ be a square matrix of the same order as the vector.  You must insure 
that the parts of the command are appropriate. 
 

The routine to produce model output for a matrix computed set of results can be requested to 
display variable names by adding a namelist with the appropriate variables as a third argument in the 
MATRIX ; Stat(b,v) $ function.  If your estimator is a set of parameters associated with a set of 
variables, x, they are normally labeled b_1, b_2, etc. Adding the namelist to the MATRIX ; 
Stat(b,v,x) $ function carries the variable labels into the function.  An example follows: (Some 
results are omitted.) 
 
Results from Poisson regression 
 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     -5.33586673      .69883851    -7.635   .0000 
 C67            .74916894      .17622269     4.251   .0000     .29411765 
 C72            .84733072      .18996097     4.461   .0000     .29411765 
 C77            .36254858      .24697201     1.468   .1421     .14705882 
 P77            .39897106      .12475671     3.198   .0014     .55882353 
 LOGMTH         .84714538      .06903915    12.271   .0000    7.04925451 

 
 MATRIX  ; Stat(b,varb) $ 
 
+---------------------------------------------------+ 
|Number of observations in current sample =      34 | 
|Number of parameters computed here       =      10 | 
|Number of degrees of freedom             =      24 | 
+---------------------------------------------------+ 
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+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 B_1          -5.33586673      .69883851    -7.635   .0000 
 B_6            .74916894      .17622269     4.251   .0000 
 B_7            .84733072      .18996097     4.461   .0000 
 B_8            .36254858      .24697201     1.468   .1421 
 B_9            .39897106      .12475671     3.198   .0014 
 B_10           .84714538      .06903915    12.271   .0000 

 
 MATRIX  ; Stat(b,varb,x) $ 
 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Constant     -5.33586673      .69883851    -7.635   .0000 
 C67            .74916894      .17622269     4.251   .0000 
 C72            .84733072      .18996097     4.461   .0000 
 C77            .36254858      .24697201     1.468   .1421 
 P77            .39897106      .12475671     3.198   .0014 
 LOGMTH         .84714538      .06903915    12.271   .0000 
 
9.3  Using MATRIX Commands with Data 
 
 LIMDEP’s matrix package is designed to allow you to manipulate large amounts of data 
efficiently and conveniently.  Applications involving up to three million observations on 150 variables 
are possible.  With MATRIX, manipulation of a data matrix with 1,000,000 rows and 50 columns, 
which would normally take 400 megabytes of memory just to store, is not only feasible, but no more 
complicated than it would be if the data set had only 100 rows instead!  It is important for you to be 
aware of how this is done in order to use this program successfully. 
 The essential ingredient is the form in which matrix results generally appear in econometrics.  
It is quite rare for an estimator or a procedure to be based upon ‘data matrices,’ per se.  Rather, they 
almost always use functions of those matrices, typically moments, i.e., sums of squares and cross 
products.  For example, an OLS estimator, b = (X′X)-1X′y, can be viewed as a function of X and y.  
But, it is much more useful to view it as a function of X′X and X′y.  The reason is that, regardless of 
the number of observations in the data set, these matrices are K×K and K×1, and K is usually small.  
LIMDEP uses this result to allow you to manipulate your data sets with matrix algebra results, 
regardless of the number of observations.  To underscore the point, consider that currently, most other 
econometrics packages provide a means of using matrix algebra. But, to continue our example, in order 
to do a computation such as that for b directly, some of them must physically move the data that 
comprise X into an entity that will be the matrix, X.  Thus X must be created, even though the data 
used to make X are already in place, as part of the data set currently being analyzed.  It is this step 
which imposes the capacity constraints on some econometrics programs.  Avoiding it allows LIMDEP 
to manipulate data matrices of any length.  The utility of this approach will be clear shortly. 
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 It is important to keep in mind the distinction between two kinds of matrices that you will be 
manipulating.  We define them as follows: 
 

• Data matrices:  A data matrix is a set of rows defined by observations and columns defined by 
variables.  The elements of the data matrix reside in your data area  
 

• Computed matrices:  A computed matrix is the result of an operation that is based on data  
matrices or other computed matrices.  The elements of a computed matrix will reside in your 
matrix work area, which is defined below. 

 
The distinction is purely artificial, since, as will soon be evident, every numeric entity in LIMDEP is a 
matrix.  The important element is that the size of a data matrix is n×K where n is the current sample 
size and K is a dimension that you will define.  The size of a computed matrix is K×L where K and L 
are numbers of variables, or some other small values that you will define with your commands. 
 
9.3.1  Data Matrices 
 
 To use your data to compute matrices, you will usually define ‘data matrices.’  This amounts to 
nothing more than labeling certain areas of the data array;  you do not actually have to move data 
around (whatever that might mean) to create a data matrix.  For LIMDEP’s purposes, a data matrix is 
any set of variables which you list. You can overlap the columns of data matrices in any way you 
choose; data matrices may share columns.  An example appears below.  One useful shortcut which can 
be used to ‘create’ a data matrix is simply to associate certain variables and observations with the 
matrix name by using NAMELIST.  The variables are defined with the NAMELIST command. The 
rows or observations are defined by the current sample, with the SAMPLE, REJECT/INCLUDE, 
DRAW, and PERIOD commands.   If you change the current sample,  the rows of all existing data 
matrices change with it.  If you change the variables in a namelist, you redefine all matrices that are 
based on that namelist. 
 For example, suppose the data array consists of the following:  
 
   YEAR      CONS    INVST      GNP    PRICES  
   1995      1003      425     1821     124.5  
   1996      1047      511     2072     139.2  
   1997      1111      621     2341     154.7  

1998      1234      711     2782     177.6 
 
Two data matrices, demand and alldata would be defined by the command  
 
 NAMELIST ; demand = cons,invst,gnp   
   ; alldata = year,cons,invst,gnp,prices $ 
 
Notice that these data matrices share three columns.  In addition, any of the 31 possible subsets of 
variables can be a data matrix, and all could exist simultaneously. 
 The number of rows each data matrix has depends on the current sample.  For example, to 
have the matrices consist of the last three rows of the data, it is necessary only to define 
 
 SAMPLE  ; 2 - 4 $ 
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You can vary the sample at any time to redefine the data matrices.  For example, suppose it is desired 
to base some computations on demand using all four years, and then compute other matrices using 
alldata only for the last three years.  The sequence might appear as follows: 
 
 SAMPLE    ; All $ 
 MATRIX commands using demand 
 SAMPLE    ; 2 - 4 $ 
 MATRIX commands using alldata 
 
 The reason for the distinction between data and computed matrices is this:  Consider the 
computation of a matrix of weighted sums of squares and cross products 
 
   F  =  (1/n)X′WX 
 
where X is n×K with n being the sample size, and W is an n×n diagonal matrix of weights.  Suppose n 
were 10,000 and K were 20.  In principle, just setting up X and W for this computation would require 
at least 8(10000×20 + 10000×10000), or over 800 million bytes of memory, before computation even 
begins!  But, computations of this size are routine for LIMDEP, because 
 

• F  =  (1/n)Σiwi xi xi′ where xi is a row of X, which is always only 20×20, and 
• The data needed for the sum already exist in your data area. 

 
That is, by treating this sort of computation as a summing operation, not as a formal matrix product, we 
can achieve tremendous efficiencies.  The important feature to exploit is that regardless of n, the result 
will always be K×K. 
 
9.3.2  Computations Involving Data Matrices 
 
 You can manipulate any sized data matrix with MATRIX.  There are two simple rules to 
remember when using large samples: 
 

• Ensure that in any expression, MATRIX ; name = result $, the target matrix (name) is not of 
the order of a data matrix.  That is, neither rows nor columns is n. This will be simple to 
achieve, since the sorts of computations that you normally do will ensure this automatically. 
 

• Ensure that when data matrices appear in an expression, they are either in the form of a 
moment matrix, i.e., in a summing operation, or they appear in a function that does summing.  

 
Suppose that x and y are data matrices defined as above with 500,000 rows and 25 columns each (i.e., 
they are very large). Any operation that uses x or y directly will quickly run into space problems.  For 
example, 
 
 MATRIX   ; z = x’ * y $ 
 
(the matrix product equal to the transpose of x times y) is problematic, since copies of both x’ and y 
must be created.  But, the apostrophe is a special operator, and 
 
 MATRIX   ; z = x ’ y $ 
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can be computed because in this form LIMDEP knows that the operation is a sum of cross products, 
and will be only 25×25.   The second rule above, then, amounts to this:  When data matrices appear in 
matrix expressions, they should always be in some variant of x’y, i.e., as an explicit sum, or in one of 
the special moment functions listed in Section 9.7, such as Xdot.  The apostrophe (’) is a special 
operator in this setting.  Although it can be used in multiplying any matrices, it is the device which 
allows you to manipulate huge data matrices, as illustrated by the examples given at the beginning of 
this chapter. All of them work equally well with small samples or huge ones.  The commands are all 
independent of the number of observations. 
 Finally, consider the weighted sum above, F = (1/n)X′WX where there are 10,000 
observations and 20 variables.  Once again, the result is going to be 20×20.  LIMDEP provides many 
different ways to do this sort of computation.  For this case, the best way to handle it is as follows: 
 
 NAMELIST   ; x =  the list of 20 variables $ 
 SAMPLE ; ... set up the 10,000 observations $ 
 CREATE ; w =  the weighting variable  $ 
 MATRIX ; f = 1/n * x’[w]x  $ 
 
This would work with 10 or 10,000,000 observations.  The matrix f is always 20×20. 
 
9.4  Manipulating Matrices 
 
 The preceding described how to operate the matrix algebra package.  The example in Section 
9.1 also showed some of the more common uses of MATRIX.  This and the following sections will 
now detail the specifics of LIMDEP’s matrix language.  In addition to the basic algebraic operations of 
addition, subtraction, and multiplication, LIMDEP provides nearly 100 different functions of matrices, 
most of which can, themselves, be manipulated algebraically.  In this section, we will list the various 
conventions that apply to these operations. 
 
9.4.1  Naming and Notational Conventions 
 
 Every numeric entity in LIMDEP is a matrix, and you will rarely have to make a distinction 
among them.  For example, in the expression, 
 
 MATRIX   ; f = q ’ r $ 
 
q and r could be any mix of: 
 

• variables, 
• data matrices, 
• computed matrices, 
• named scalars, 
• literal numbers, e.g., 2.345, 
• the number (symbol) 1, which has special meaning in matrix multiplication. 
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Of course, the two entities must be conformable for the matrix multiplication, but there is no 
requirement that two matrices be the same type of entity.  (Usually, they will be.)  For convenience, we 
will sometimes make the following definitions: 
 

• Variable names are vnames. 
• Namelists are  xnames. 
• Computed matrices are    mnames. 
• Scalars are  rnames. 
• Numbers are  scalars. 

 
At any time, you can examine the contents of the tables of these names in your project workspace, just 
by clicking the particular name in your project window. Whenever you create an entity in any of these 
tables, all of the others are checked for conflicts.  For example, if you try to create a variable named q, 
and there is already a matrix with that name, an error will occur. 
 
There are two reserved matrix names in LIMDEP.  The matrix program reserves the names b and varb 
for the results of estimation programs.  These two names may not appear on the left hand side of a 
matrix expression.  They may appear on the right, however.  (This is known as ‘read only.’)   
 
There are a few additional names which are read only some of the time.  For example, after you use the 
SURE command, sigma becomes a reserved name.  Model output will indicate if a reserved name has 
been created.   
 In the descriptions of matrix operations to follow, 
 

• xname is the name of a data matrix.  This will usually be a namelist.  However, most data 
manipulation commands allow you merely to give a set of variable names instead. 

• mname is the name of a computed matrix. 
• s is a scalar.  It may be a number or the name of a scalar which takes a value. 
• A matrix has r rows and c columns. 
• Matrices in matrix expressions are indicated with boldfaced uppercase letters. 
• The transpose of matrix in a matrix algebra expression C is denoted C ′. 
• The apostrophe, ’, also indicates transposition of a matrix in LIMDEP commands. 
• The ordinary inverse of matrix C is denoted C-1. 

 
 The result of a procedure that computes a matrix A is denoted a.  Input matrices are  c, d, etc.  
In any procedure, if a already exists, it may appear on both sides of the equals sign with no danger of 
ambiguity; all matrices are copied into internal work areas before the operation actually takes place.  
Thus, for example, a command may replace a with its own transpose, inverse or determinant.  You can 
replace a matrix with some function of that matrix which has different dimensions entirely.  For 
example, you might replace the matrix named a with a′a or with a’s rank, trace or determinant.   
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 Note in these definitions and in all that follows, we will make a distinction between a matrix 
expression (in theory), such as F = (1/n)X′X, and the entities that you manipulate with your LIMDEP 
commands, for example, ‘you have created f = x’x.’  There are thus three sets of symbols.  We will use 
bold upper case symbols in matrix algebra descriptions; we will use bold lower case symbols for the 
parts of LIMDEP commands.  We will use italic lower case symbols when we refer, outside LIMDEP 
commands, to the names of matrices, variables, namelists and scalars you have created.  Consider, for 
example, the following:  ‘The sample second moment matrix of the data matrix X is F = (1/n)X′X.  
You can compute this by defining X with a command such as NAMELIST ; x = one,age,income $, 
then using the command MATRIX ; f = 1/n*x’x $.  After you execute this command, you will see the 
matrix f in your project window listing of matrices.  The namelist x will also appear in the project 
window list of namelists.’  You might note, we have used this convention at several points above. 
 
9.4.2  Matrix Expressions 
 
 Most of the operations you do with matrices, particularly if you are constructing estimators, 
will involve expressions, products, sums, and functions such as inverses.  This section will show how 
to arrange such mathematical expressions of matrices.  We have used these procedures at many points 
in our earlier discussion. 
 As noted above, every numerical entity in LIMDEP is a matrix and may appear in a matrix 
expression.  There are very few functions that require data matrices.  These will be noted below.  The 
algebraic operators are  
 
 *  for matrix multiplication, 
 +  for addition, 
 -  for subtraction, 
 ’  (apostrophe) for transposition and also for transposition then multiplication, 
 /  for a type of division (see below), 
 ^  for raising a matrix to a power (several forms, see below). 
 
Thus, c*d equals C × D and c*Ginv(c) (or c*<c>) equals C times its inverse, or I, and c′*Ginv(c)*c 
equals C′.  As will be evident shortly, the apostrophe operator, (’) is a crucial part of this package.   
 When scalars appear in matrix computations, they are treated as scalars for purposes of 
computation, not as matrices.  Thus, AsB′, where s is a scalar, is the same as sAB′.  The 1×1 matrix in 
the middle does not interfere with conformability; it produces scalar multiplication.  1×1 matrices 
which are the result of matrix computations, such as quadratic forms, also become scalars for purposes 
of matrix multiplication.  Thus, in a′ * r’b*r * a will not require conformability of A’ and r’ (number 
columns of A′ equal number of rows of r′) if the quadratic form r’Br is collected in one term;  also, 
A′*r′*B*r*A does require conformability, but the same expression could be written a′ * r’[b]r * a to 
achieve greater efficiency.  Also, if r happens to be a variable, this may be essential. The implications 
of these different forms will be presented in detail below. 
 All syntaxes are available for any entity, so long as conformability is maintained where 
appropriate.  A and B are any matrix; w is any vector, row or column, including, if desired, a variable; 
and, C is any matrix.  (Once again, a matrix is any numeric entity – there is no need to distinguish, e.g., 
variables from previously computed matrices.) 
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 Each result in the following table produces a result that, for later purposes, may be treated as a 
single matrix. 
 

a’b       =  transpose of a times b 
a’[w]b        =  a’diag(w) b   (Do not create diagonal matrices!) 
a’< w > b        =  a’[diag(w)]-1 b 
a’[c] b        =  a’ c b 
a’< c > b        =  a’ c -1 b  c is any matrix. 
< a >           =  a -1 
[a]           =  G-2 inverse of a.  
< a’ b >         =  (a’ b)-1 
< a’[w] b >      =  (a’[w] b)-1 
< a’< w > b >  =  (a’< w > b)-1. 

Table 9.1  Matrix Expressions 
 
In a matrix expression, the symbol ‘1’ can be used where needed to stand for a column of ones.  Thus,  
 

  1’a  =  a row of ones times matrix a 
  a’1  =  transpose of matrix a times a column of ones. 

 
Note that in each of these cases, the apostrophe is an operator that connotes multiplication after 
transposition. 
 
NOTE:  You should never need to compute a′ * b.  Always use a′b.  Thus, in the earlier example,  c′< 
c > c is better than c ′*Ginv(c)* c or c ′< c >* c. 
 
  In any matrix function list, you may use the transpose operator for transposition.  For example, 
two ways to obtain the sum of a matrix and its transpose are 
 
   sum  =  a + a’    and   sum  =  Msum(a, a’). 
 
The transpose of a matrix may appear in an expression simply by writing it with a following 
apostrophe.  For example, 
 
   a’c’c a could be computed with a’ * c’ * c * a 
 
though a’ * c’c * a would be necessary if c were a data matrix. 
 You may string together as many matrices in a product as desired. As in the example, the terms 
may involve other matrices or functions of other matrices.  For example, the following commands will 
compute White’s heteroscedasticity corrected covariance matrix for the OLS coefficient vector. 
 
 NAMELIST ; x = list of Rhs variables $ 
 REGRESS  ; Lhs = y ; Rhs = x ; Res = e $ 
 CREATE   ; esq = e^2 $ 
 MATRIX ; white = <x’x> * x’[esq]x * <x’x> 
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The CREATE command that computes the squared residuals is actually unnecessary.  The last two 
lines could be combined in 
 
 MATRIX     ; white = <x’x> * Bhhh(x,e) * <x’x> $ 
 
LIMDEP also provides a function to compute the center matrix for the Newey-West estimator; 
 

Nwst(x,e,l)  computes the Newey-West middle matrix for l lags. l = 0 => White.  
                   e is the vector of residuals, x is a namelist defining the set of variables. 

 

 You may also multiply simple matrices that you enter directly.  For example 
 

   















55
42

53
31

   =  [1 / 3,5] * [2,4 / 5,5]. 

 

The multiplication operator sorts out scalars or 1 1 matrices in a product.  Consider, for example,  V = 
A(r′Ar)-1A′.  If r is a column vector, this is a matrix (AA′) divided by a quadratic form.  To compute 
this, you could use 
 
 MATRIX ; v = a * <r’[a]r> * a’ $ 
 
The scanner will sort out scalars and multiply them appropriately into the product of matrices.  But, in 
all cases, matrices which are not 1×1 must be conformable for the multiplication.  Thus, if r were a 
matrix instead of a vector, it might not be possible to compute V. 
 The ‘+’ operator is used to add matrices.  Thus, to add the two matrices above instead of 
multiply them, we could use 
 

   







+








55
42

53
31

    =  [1 / 3,5] + [2,4 / 5,5]. 

 

The matrix subtraction operator is ‘-.’  Thus,  a - c   gives   A - C (of course). 
 You may also combine the +, -, and * operators in a command.  For example, the restricted 
least squares estimator in a classical regression model, when the linear restrictions are Rb = q, is 
 

   br = bu - (X′X)-1R′[R(X′X)-1R′]-1(Rbu - q). 
 

This could be computed with 
 
 NAMELIST  ; x  = list of variables $ 
 MATRIX    ; bu = <x’x> * x’y 
         ; r  = ... ; rt = r’ 
   ; q  = ...  
   ; d  = r * bu - q 
   ; xxi = <x’x> 
           ; br  = bu - xxi * r’ * <rt’[xxi]r > * d $ 
 
(Why did we transpose r into rt then use rt’, which is just r,  in the last expression?  Because the 
apostrophe operator is needed to produce the correct matrix multiplication inside the < > operation. 
There are other ways to do this, but the one above is very convenient.)  Notice in the preceding that if 
there is only one constraint, r will be a row vector, and the quadratic form will be a scalar, not a matrix. 
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 Any of the product arrangements shown in Table R12.1 may appear in any function or 
expression as if it were already an existing matrix.  For example, Root (< x’[w]x >) computes the 
characteristic roots of [Σiwixix]-1. But, longer matrix expressions may not be grouped in parentheses, 
nor may they appear as arguments in other matrix functions.  Expressions which must be used in later 
sums and differences or functions must be computed first.  There will usually be other ways to obtain 
the desired result compactly.  For examples, 
 
 d = Sinv(a + c) is invalid but can be computed with      d = Nvsm(a,c), 
 d = (a + c) * q is invalid but can be computed with         d = Msum(a,c) * q, 
and d = Ginv (a * q * r) is invalid, but can be computed with  d = Iprd(a,q,r). 
 
The functions Msum, Mdif, Nvsm, and Iprd may facilitate grouping matrices if necessary. 
 
9.5  Entering, Moving, and Rearranging Matrices 
 
 To define a matrix, use   
 
 MATRIX  ; name  =  [... row 1 / ... row 2 ... / ... ] $ 
 
Elements in a row are separated by commas while rows are separated by slashes.  For example, 
 
 MATRIX  ; a = [1,2,3,4 / 4,3,2,1 / 0,0,0,0] $ 
 

creates a = 
















0000
1234
4321

  To facilitate entry of matrices you can use these two arrangements: 

 
   k | value =  a K×1 column vector with all elements equal to value 
   k_value =  a 1×K row vector with all elements equal to value 
 
Thus, in the last row above, 0,0,0,0 could be replaced with 4_0. 
 Symmetric matrices may be entered in lower triangular form.  For example, 
 

 MATRIX   ; a = [1  /  2 , 3  /  4 , 5 , 6]  $   creates a = 
















654
532
321

. 

 
 Matrix elements given in a list such as above may be scalars, or even other matrices and 
vectors.  For example, to compute the column vector, [γ′ , θ] = [(1/σ)β′,(1/σ)]′ after fitting a tobit 
model, you could use 
 
 TOBIT     ; ... $ 
 CALC      ; theta = 1/s $ 
 MATRIX  ; gamma = theta * b ; gt = [gamma / theta] $  
 
Note that the slash used here indicates stacking, not division, and that gt is a column vector. 
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Partitioned Matrices 
 
 A partitioned matrix may be defined with submatrices.  For example, suppose c1 is a 5×2 
matrix and c2 is 5×4.  The matrix c=[c1,c2] is a 5×6 matrix which can be defined with  
 
 MATRIX  ; c = [c1 , c2] 
 
The two matrices must have the same number of rows.  Matrices may also be stacked if they have the 
same number of columns. For example, to obtain 
 

   F  =  








2

1

C
C

  use  f = [c1 / c2].    

 

To obtain   M =  








2221

1211

MM
MM

 use  m = [m11,m12 / m21,m22].   

 
Symmetric matrices may be specified in lower triangular form.  For example, suppose M were 
symmetric, so that M21 = M12′.  M could be constructed using  
 
   m = [m11 / m21 , m22].   
 
Matrices with Identical Elements 
 
 If a matrix or vector has all elements identical, use a = Init(r,c,s).  This initializes an r×c matrix 
with every element equal to scalar, s.  This is a way to define a matrix for later use by an estimation 
program.  Example 3 in Section R12.1 shows an application.  This method can also be used to initialize 
a row (r=1) or column (c=1) vector.  Alternatively, you could use a  =  [c_s] for a row vector or a  =  
[r|s] for a column vector. 
 
Identity Matrices 
 
 To define an r×r identity matrix, use a = Iden ( number of rows ).  It may be useful to use a 
scalar for the number of rows.  For example, suppose that x is the name of a namelist of K variables 
which will vary from application to application and you will require a to be a K×K identity matrix, 
where K is the number of variables in x.  You can use the following: 
 
 CALC   ; k   = Col(x) $ 
 MATRIX  ; ik  = Iden(k) $   
 

The notation I[r] produces the same matrix as Iden(r. 
 
Equating One Matrix to Another 
 
 Use a  =  c to equate a to c.  To equate a to the transpose of c, use a  =  c’.  You would 
typically use this operation to keep estimation results.  After each model command, the estimated 
parameter vector is placed in the read only matrix, b.  Thus, to avoid losing your coefficient vector, you 
must equate something to b. 
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Diagonal Elements of a Matrix in a Vector 
 
 The function  
   a = Vecd (c)  
 
creates column vector a from the diagonal elements of the matrix c. 
 
Diagonal Matrix Created from a Vector 
 
 The command  
   a = Diag (c)  
 
creates a square matrix a with diagonal elements equal to those of row or column vector c.  If c is a 
square matrix, the diagonal elements of a will be the same as those of c while the off diagonal elements 
of a will be zero. 
  
9.6  Matrix Functions 
 
 There are roughly 50 functions that can be combined with the algebraic operators to create 
matrix expressions.  Some of these, such as Nvsm(.) are used to combine algebraic results, while 
others, such as Root(.) are specialized functions that produce complex transformations of matrices. 
 Any of the constructions in Table 9.1 can be used as a standalone matrix.  For example, to 
obtain the determinant of (X′WX)-1, where W is a diagonal weighting matrix, you can use 
Dtrm(<x’[w]x>).  Likewise, several such constructions can appear in functions with more than one 
input matrix.  This should allow you to reduce some extremely complex computations to very short 
expressions.  
 
Characteristic Roots and Vectors 
 
 a = Cvec(c) -  characteristic vectors. 
 
If C is a K×K matrix, A has K columns. The kth column is the characteristic vector which corresponds 
to the kth largest characteristic root, ordered large to small.  C must be a symmetric matrix.  If not, only 
the lower triangle will be used. 
 
 A = Root(c) - characteristic roots of a symmetric matrix. 
 
For symmetric matrix C, A will be a column vector containing the characteristic roots ordered in 
descending order.  For nonsymmetric matrices, use 
 
 a = Cxrt(c) - possibly complex characteristic roots of asymmetric matrix. 
 
The characteristic roots of a nonsymmetric matrix may include complex pairs.  The result of this 
function is a K×2 matrix.  The first column contains the real part.  The corresponding element of the 
second column will be the imaginary part, or zero if the root is real.  The roots are ordered in 
descending order by their moduli. 
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 You can use Cxrt to obtain the dominant root for a dynamic system.  Then, the modulus can be 
obtained with CALC.  Let C be the relevant submatrix of the structural coefficient matrix in the 
autoregressive form.  Then, 
 
 MATRIX  ; rt = Cxrt(C) $ 
 CALC    ; check = rt(1,1)^2 + rt(1,2)^2 $  
 
Cxrt(c) gives the same results as Root(c) if C is a symmetric matrix.  But, if C is nonsymmetric, 
Root(c) gives the wrong answer because it assumes that C is symmetric, and uses only the lower 
triangle. 
 It is always possible to obtain the roots of a symmetric matrix.  But, certain nonsymmetric 
matrices may not be decomposable.  If this occurs, an error message results. 
 The Root function can also be used to find the possibly complex roots of a dynamic equation.  
If C is a vector of elements [c1 ,c2 ,…,cQ ] instead of a symmetric matrix, then A = Root(c) reports in a 
K×2 matrix the reciprocals of the characteristic roots of the matrix 
 

   C  =  























0100

010
0001

321









 Qcccc

 

 

These are the roots of the characteristic equation, 1 – c1 z – c2 z2 - … – cQ zQ = 0, of the dynamic 
equation 
   yt = c1 yt-1 + c2 yt-2 + … + cQ yt-Q + other terms. 
 
The dominant root of the system is the largest reciprocal reported.  If its modulus is larger than one, the 
equation is unstable. 
 
Scalar Functions 
 
     The following always result in a 1×1 matrix: 
 
 a = Dtrm(c)  - determinant of square matrix, 
 a = Logd(c)  - log-determinant of positive definite matrix, 
 a = Trce(c)  - trace of square matrix, 
 a = Norm(c)  - Euclidean norm of vector C, 
 a = Rank(c)  - rank of any matrix. 
 
The rank is computed as the number of nonzero characteristic roots of  C’C.  To find the rank of a data 
matrix X (i.e. several columns of data in a namelist, X), you could use 
 
 c = Rank(x). 
 
However, this may not be reliable if the variables are of different scales and there are many variables.  
You should use, instead, 
 
 MATRIX ; C  =  Diag (X’X) ; C = Isqr(C) * X’X * Isqr(C) ; Rank (C) $  
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9.7  Sums of Observations 
 
 There is no obstacle to computing a matrix X′X, even if X has 1,000,000 rows, so long as the 
number of columns in X is not more than 225.  The essential ingredient is that X′X is not treated as the 
product of a K×n and an n×K matrix, it is accumulated as a sum of K×K matrices.  By this device, the 
number of rows, n, is immaterial (except, perhaps, for its relevance to how long the computation will 
take).  Matrix operations that involve C′AC or C′A-1C are, as in all cases, limited to 50,000 cells.  But, 
suppose that C is 5,000×2 and A is a diagonal matrix.  Then, the result is only 2×2, but apparently it 
cannot be computed because A requires 25,000,000 cells.  But, in fact, only 5,000 cells of A are 
needed, those on the principal diagonal.  LIMDEP allows you to do this computation by providing a 
vector (in this case, 5,000×1) instead of a matrix, for a quadratic form.  Thus, in c’[a]c, if a is a column 
or row vector, LIMDEP will expand (at least in principle) the diagonal matrix and compute the 
quadratic form C′AC as if A were Diag(a).  This result will be crucial when C is a data matrix, X, 
which may have tens or hundreds of thousands of rows.  The second aspect of the computation of 
matrices that involve your data is that once the data are in place in the data area, in fact, there is no 
need to create A or Diag(a) at all.  The data are just used in place; you need only use variables and 
namelists by name. 
 Invariably, when you manipulate data matrices directly in matrix algebra expressions, you will 
be computing sums of squares and/or cross products, perhaps weighted, but in any event, of order K×K.  
The simple approach that will allow you to do so is to ensure that when xnames and vnames (namelists 
and variables) appear in matrix expressions, they appear in one of the following constructions, where x 
and y are namelists of variables and w is a variable:  Some data summation functions are listed in Table 
9.2. 
 

x’x         =  the usual moment matrix. 
X’y         =  cross moments. 
X’[w] x     =  X’diag(w)X, weighted sums. W is a variable.  Or, X’[w]Y. 
x’<w> x     =  X’[diag(w)]-1X, weighted by reciprocals of weights.  
< x’ x >      =  (X’X)-1, inverse of moment matrix.    
< x’y>      =  (X’Y)-1, inverse of cross moments, if it exists .    
< x’[w] x >   =  (X’[w]X)-1, inverse of weighted moments.  Or <X’[w]Y>. 
< x’<w> x >   =  (X’<w>X)-1, inverse, weighted by reciprocals of weights. 
 

Table 9.2  Sums of Observations in Matrix Functions 
 
Again, the use of the apostrophe operator here is important in that it sets up the summing operation that 
allows you to use large matrices.  That is, while logically x’ * y is the same as x’y for LIMDEP’s 
purposes, they are very different operations.  The left hand side requires that copies of x and y be made 
in memory, while the right hand side requires only that the sum of cross products be accumulated in 
memory. 
 
TIP: All sample moments are computed for the currently defined sample.  If the current sample 
includes variables with missing data, you should make sure the SKIP switch is turned on.  Missing 
values in a matrix sum are treated as valid data, and can distort your results.  If you precede the 
MATRIX command(s) with SKIP, then in summing operations, observations with missing values will 
be ignored. 
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 The operations described here for manipulating data matrices are logically no different from 
other matrix operations already described.  That is, in your expressions, there is no real need to 
distinguish data manipulations from operations involving computed matrices  The purpose of this 
section is to highlight some special cases and useful shortcuts. 
 
Sums, Means, and Weighted Sums of Observations and Subsamples 
 
 To sum the rows of a data matrix, use 
 
   ; name  =  x’1  or  x’one 
 
The symbol, 1 is allowable in this context to stand for a column of ones of length n.  This returns a K×1 
column vector whose kth element is the sum of the n observations for the kth variable in x.  To obtain a 
row vector instead, use 
  
   ; name  =  1’x  or  one’x 
 
Do note, in most applications, this distinction between row and column vectors will be significant.  
You can obtain a sample mean vector with 
 
   ; name  =  1/n * x’1 
 
A matrix function, Mean, is also provided for obtaining sample means, so 
 
   ; Mean(x)  =  1/n * x’1 
 
Note that the Mean function always returns a column vector of means, so if you want a row, you must 
transpose the column after using the function.  (1/n*1’x may be more convenient.)  The Mean function 
provides one advantage over the direct approach.  You can use Mean with a list of variables without 
defining a namelist.  Thus, to obtain the means of z,x,w,log(k), f21, you could use 
 
   ; name  =  Mean (z , x , w , Log(k), f21). 
 
To obtain a weighted mean, you can use 
 
   ; name  =  <1’w> * x’w 
 
where w is the weighting variable.  Note that this premultiplies by the reciprocal of the sum of the 
weights.  If the weights sum to the sample size, then you can use 1/n or <n> instead of <1’w>.  A 
related usage of this is the mean of a subsample.  To obtain a mean for a subsample of observations, 
you will need a binary variable that equals one for the observations you want to select and zero 
otherwise.  Call this variable d.  Then, 
 
   ; name  =  <1’d> * x’d 
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will compute the desired mean.  The Mean function also allows weights, so you can use Mean(x,w) or 
Mean(x,d).  In order to use this construction, the parameters of the Mean function must be a namelist 
followed by a variable. 
 
 Xvcm(x) -  covariance matrix for X 
and Xcor(x)  -  correlation matrix for X 
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Chapter 10: Scientific Calculator 
 
10.1  Introduction 
 
 You will often need to calculate scalar results.  The scientific calculator, CALC is provided for 
this purpose. For example, you can use CALC to look up critical points for the normal, t, F, and chi 
squared distributions instead of searching a table for the appropriate value.  (And, CALC will give you 
any value, not just the few in the tables.)  Another case will be calculation of a test statistic such as a t 
ratio or likelihood ratio statistic.  LIMDEP’s calculator can function like a hand calculator, but, it is an 
integral part of the larger program as well.  Results you produce with the calculator can be used 
elsewhere, and results you obtain elsewhere, such as by computing a regression, can be used in scalar 
calculations.  The programs listed in the chapters to follow contain numerous examples.  The example 
below is a simple application. 
 
Example:  Testing for a Common Parameter in a Probit Model 
 
 Suppose a sample consists of 1000 observations in 10 groups of 100.  The subsamples are 
observations 1-100, 101-200, etc.  We consider a probit model, y* = β0+β1x+ε, observed y = 1 if    y* > 
0 and 0 otherwise.  With ε ~ N[0,1], Prob[y=1]=Φ(β0+β1x).  We are interested in using a likelihood 
ratio statistic to test the hypothesis that the same parameters, β0 and β1, apply to all 10 subsamples 
against the alternative that the parameters vary across the groups.  We also want to examine the set of 
coefficients.  
 The first two commands initialize the log likelihood function and define a place to store the 
estimates. 
 
 CALC  ; lu = 0 ; i1 = 1 $ 
 MATRIX ; slopes = Init(10,2,0) $ 
 
The following commands define a procedure to compute probit models and sum unrestricted log L. 
 
 PROC 
 CALC  ; i2 = i1 + 99 $ 
 SAMPLE ; i1 – i2 $ 
 PROBIT ; Lhs = y ; Rhs = one,x $ 
 CALC  ; lu = lu + logl ; i1 = i1 + 100 $ 
 MATRIX ; slopes(i,*) = b $ 
 ENDPROC 
 
Execute the procedure 10 times, resetting the sample each time. 
 
 EXECUTE ; i = 1,10 $ 
 
The next two commands compute the restricted log likelihood. 
 
 SAMPLE ; 1 – 1000 $ 
 PROBIT ; Lhs = y ; Rhs = one,x $  Computes restricted (pooled) logL. 
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Now, carry out the likelihood ratio test. 
 
 CALC  ; chisq = 2 * (lu – logl) ; prob = 1 – Chi(chisq,18) $ 
    
CALC plays several roles in this example.  It is used to accumulate the unrestricted log likelihood 
function, lu.  The counters i1 and i2 are set and incremented to set the sample to 1-100, 101-200, etc. 
The loop index, i, is also a calculator scalar, and once it is defined, any other command, such as the 
MATRIX command above, can use i like any other number.  Finally, the last CALC command 
retrieves the log likelihood from the unrestricted model, computes the test statistic, then computes the 
tail area to the right of the statistic to determine if the hypothesis should be rejected. 
 
10.2  Command Input in CALCULATE 
 
 CALCULATE is the same as MATRIX in the two modes of input. Select Tools:Scalar 
Calculator to open the calculator window, shown in Figure 10.1. 
 

 
Figure 10.1  Calculator Window 

 
 There are two ways to enter commands in the calculator window.  You can type 
CALCULATE commands in the smaller ‘Expr:’ window.  If your command will not fit on one line, 
just keep typing.  At some convenient point, the cursor will automatically drop down to the next line.  
Only press Enter when you are done entering the entire command.  In this mode of entry, you do not 
have to end your commands with a $. 
 Alternatively, you can click the fx button to open a subsidiary window, the Insert Function 
dialog box that provides a menu of matrix and calculator functions (see Figure 10.2).  Select Scalar to 
display the calculator functions.  By selecting a function and clicking Insert, you can insert a template 
for the indicated function into your ‘Expr:’ window in the calculator window.  You must then change 
the arguments in the function (e.g., the ‘x’ in the Phi(x) in Figure 10.2) to the entity that you desire.  
When you have entered your full expression in the window, press Enter to display the command in the 
lower part of the window, as shown above. 
 If your command is part of a program, it is more likely that you will enter it in ‘command 
mode’ or in what we will label the ‘in line’ format.  You will use this format in the editing window. 
That is, in the format, 
 
 CALC   ; … the desired result … $ 
 
Commands may be entered in this format from the editor, as part of a procedure, or in an input file. See 
Figure 10.3.  One difference between the calculator window and display in the text editor or the output 
window is that in the latter, you must include ; List in your command to have the result actually 
displayed.  This is the same as MATRIX.  See Section R13.3 for details on the ; List. Specification. 
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Figure 10.2  Insert Function Dialog Box for Calculator Functions 

 

 
Figure 10.3  CALCULATE Command in Text Editor 
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CALCULATE is similar to CREATE at this point, except that instead of calculating whole columns 
of data, you calculate single, or ‘scalar’ values.  When you give a name to the result, it is kept in a work 
area and you can use it later.  For example, suppose you wanted to have the value of e (Euler’s 
constant) to use later on.  You could, for example, calculate e = Exp(1). You could then 
 
 CREATE  ; etotheax = e ^ (a*x) $   
 
CALC is also similar to MATRIX in that if you wish to see a value without keeping it you may type 
the expression without giving it a name, as in 
 
 CALC   ; 1 + pi * Log(25) + 2.5 / 1.23 $ 
 
or, for the 99 % critical value for a two tailed test from the standard normal distribution,  Ntb(.995).  
(Ntb stands for Normal table. You also have a t table, and so on.)  
 
10.3  Results from CALCULATE 
 
 As shown above, when you are in the calculator window, the result of a calculator expression, 
named or not, is displayed on your screen when it is obtained. When CALC commands are given in 
command mode, the default is not to display the results of any computations in the output window or in 
the output file if one is open.  We assume that in this mode, results are intermediate computations, for 
example, the increments to the counters in the example in Section R13.1.  Commands that you give will 
be listed in your trace file in all cases and in your output window. 
 You can request a full display of results both in the output window and in an output file by 
placing 
   ; List 
 
before the result to be listed.  You can turn this switch off with 
 
   ; Nolist 
 
Thus, the command CALC ; tailprob = Phi(1) $ will create a named scalar, but will not show any 
visible numerical results.  But,  
 
 CALC   ; List ; tailprob = Phi(1) $  
 
will show the result on the screen in the output window.  Once the end of a command is reached,        ; 
Nolist once again becomes the default.  The ; Nolist and ; List switches may be used to suppress and 
restore output at any point.  When the ; Nolist specification appears in a CALC command, no further 
output appears until the ; List specification is used to restore the listing.  At the beginning of a 
command, the ; List switch is off, regardless of where it was before.  
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 To see a result that was computed earlier, there are several ways to proceed.  A CALC 
command can simply ‘calculate’ a name.  Thus, in the command format, you could just give the 
command 
 
 CALC   ; List ; tailprob $ 
 
You may also open the calculator window and just type the name of the scalar you want to see. Finally, 
when you obtain a named scalar result, it will be added to the project window.  (You must ‘open’ the 
Scalars data group by clicking the .)  When the list of scalars is displayed, click any name to display 
the value at the bottom of the window, in the border.  Double clicking a scalar name will open the New 
Scalar dialog box which may also be used to replace the value of that scalar.  See Figure10.4. 
 

 
Figure 10.4  Edit Function of New Scalar Dialog Box 
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10.4  Forms of CALCULATE Commands – Conditional 
Commands 
 
 The essential format of a CALCULATE command is 
 
 CALC    ; name = result ; … additional commands … $ 
 
If you wish to see the ‘result’ but do not wish to keep it, just omit ‘; name = .’  The same applies to the 
dialog mode in the calculator window.  Scalar results will be mixtures of algebraic expressions 
(addition, multiplication, subtraction, and division), functions, such as logs, probabilities, etc., and, 
possibly, algebraic manipulation of functions of scalars or expressions. 
 All calculator commands may be made conditional, in the same manner as CREATE or 
MATRIX.  The conditional command would normally appear  
 
 CALC   ; If (logical expression) name = expression $  
 
The logical expression may be any expression that resolves either to TRUE or FALSE or to a numeric 
value, with nonzero implying true.  The rules for the expression are identical to those for CREATE 
(see Section R5.2.2) and REJECT (see Section R7.4), as well as MATRIX, and all forms of DO.  In 
this setting, if the condition is true, ‘name’ is computed; if it is false, name is not computed.  Thus, if 
name is a new scalar, and the condition is false, after the command is given, name will not exist.  For 
example, 
 
 CALC   ; If (A(1,1) > rsqrd) q = Log(Dtr(sigma)) $  
 
 An entire set of CALCULATE commands can be made conditional by placing a semicolon 
after the condition, as in 
 
 CALC    ; If (condition) ; name = result ; result $  
 
If the condition is false, none of the commands which follow it are carried out.  This form of condition 
may appear anywhere in a group of CALCULATE commands.  This will be most useful in iterative 
programs to condition your CALC commands. 
 
10.4.1  Reserved Names 
 
 You can have a total of 50 scalar results stored in your work area.  You can obtain a complete 
list of the names and values assigned to any scalars in the calculator work area by navigating the 
project window.  Fourteen of the scalars are used by the program to save estimation results, and are 
reserved.  The 14 reserved names are 
 
  ssqrd, degfrdm, ybar, logl, kreg, sumsqdev, rsqrd, sy, rho, lmda, nreg, theta, s, exitcode 
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You can see the reserved scalars in the project window in Figure 10.4.  They are the ones marked as 
‘locked’ with the gold key icon,.  These scalars (save for rho – see the hint below) are ‘read only.’ You 
may not change them with your commands. Most of these results apply to the linear regression model, 
but values such as ybar, sy, and logl are saved by nearly all models. Scalars  lmda and theta will change 
from model to model, depending on the ancillary parameters in the model.  After you estimate a model, 
you will find these scalars defined automatically with the indicated values.  These values can thereafter 
be used on the right hand side of any command.  The final one, exitcode, is an indicator of the success 
or failure of the most recent estimation command.  

 
HINT:  Since it is such a common application, there is an exception to the read only setting of  these 
scalars.  The scalar rho may be set by a loop control.  For example, for scanning in a model of 
autocorrelation, you might EXECUTE ; rho = 0, 1, .025 $.  In general rho is not a protected name. 
However, you cannot delete rho. 
 
10.4.2  Work Space for the Calculator 
 
 Although there are 50 scalars available, the 14 protected names leave you a total of 36 to work 
with.  If you find yourself running out of room, the command 
 
 CALC   ; Delete  name, name, … $ 
 
can be used to clear space.  Note that there is no comma or semicolon between the ; Delete 
specification and the first scalar name.  You may also delete scalars that are not reserved in the project 
window by highlighting their names and pressing the Del key. 
 
10.4.3  Compound Names for Scalars 
 
 The names of scalars may be indexed by other scalars, in the form ssss:iiii where ‘ssss’ is a 
name and ‘iiii’ is an integer valued index scalar.  For example, 
 
 CALC   ; i = 37 ; value : i = pi $ 
 
creates a scalar named value37 and assigns it the value π.  The procedure in the editor window in 
Figure 10.5 shows how one might use this feature.  The data set consists of 10 groups of 20 
observations.  The procedure computes a linear regression model using each subsample.  Then it 
catches the log likelihood function from each regression, and puts it in a correspondingly named 
scalar.  Thus, the loop index, j, takes values 1,2,…,10, so the scalar names are logl:j = 
logl1,…,logl10. 
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10.5  Scalar Expressions 
 
 The rules for calculator expressions are identical to those for CREATE. The rules of algebra 
apply, with operations ^ and @ (Box-Cox transformation) taking first precedence, * and / next, 
followed last by + and -.  You may also use any of the functions listed below in any expression.  This 
includes the percentage points or critical values from the normal, t, F, and chi squared distributions, 
sums of sample values, determinants of matrices, or any other algebraic functions.  Chapter 9 describes 
how to obtain matrix results.  You may also use an element of a matrix with its subscript enclosed in 
parentheses in any scalar calculation.  Finally, any particular observation on any variable in your data 
area may also be used in an expression.  For example, you might 
 

 
Figure 10.5  Procedure with Indexed Scalar Names 

 
 CREATE  ; x = some function $ 
 CALC   ; q = x(21) * sigma(2,2) $  
 
In evaluating subscripts for variables, the observation refers to rows in the data array, not the current 
sample.  Expressions may also contain any number of functions, other operators, numbers, and matrix 
elements.  A scalar may appear on both sides of the equals sign, with the result being replacement of 
the original value.  For examples: 
 
 CALC ; varsum = b(1)^2 * varb(1,1) + b(2)^2 * varb(2,2) + 2 * b(1) * b(2) * varb(1,2)$ 
 CALC ; messy    = messy^2/pi – Gma(.5)/Gma(.1) * Sum(age)  $ 
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If it is necessary to change the algebraic order of evaluation, or to group parts of an expression, use 
parentheses nested to as many levels as needed.  For example, 
 
 CALC   ; func = (Gma(3) + Gma(5))^3 + ((x + y)/c) * (f + g) $ 
 
You may also nest functions.  For example, 
 
 CALC   ; q = Log(Phi(a1 + a2 * Exp(a3 + a4 * Gma(z)))) $ 
 
There are two constants which can be used by name without having been set by you.  At all points in 
the program, the name ‘pi’ will be understood to be the number π = 3.14159…  Note that this will 
preempt matrices and scalars named pi, so this name should be avoided in other contexts.  The name pi 
may also appear in MATRIX and CREATE commands, for example, 
 
 MATRIX  ; pii = pi * Iden(5) $ 
 CREATE  ; f = 1/(sg * Sqr(2 * pi)) * Exp(-.5 * ((x – mu)/sg)^2) $ 
 
 When you give a CALC, MATRIX, or CREATE command, the name ‘n’ is always taken to 
mean the current sample size.  You may use n in any scalar calculation.  For example, after you 
compute a regression, the log likelihood function could be computed using 
 
 CALC   ; l = -n/2 * (1 + Log(2 * pi) + Log(sumsqdev/n)) $ 
 
NOTE:  n and pi have the meanings described above everywhere in LIMDEP.  Thus, you could use pi 
in a list of starting values, as part of a model command, or in CALCULATE. 
 
10.6  Calculator Functions 
 
 The functions listed below may appear anywhere in any expression.  The arguments of the 
functions can be any number within the range of the function (e.g., you cannot take the square root of 
-1) as well as matrix elements and names of other scalars.  Function arguments may also be 
expressions, or other functions whose arguments may, in turn, be expressions or other functions, and 
so on.  For example,  
 
   z = Log(Phi(a1 + a2 + Log(a2 + (q + r)^2))) 
 
is a valid expression which could appear in a CALC command.  The depth of nesting functions 
allowed is essentially unlimited.  When in doubt about the order of evaluation, you should add 
parentheses to remove the ambiguity.  Also, in functions which have more than one argument 
separated by commas, such as Eql(x,y) (which equals one if x equals y), include expression(s) in 
parentheses.  For example,  
 

Eql( x+y , (r+c)^2 )  
 
may not evaluate correctly because of the ‘x+y’ term.  But,  
 

Eql( (x+y) , ((r+c)^2) )  
 
will be fine.  The supported functions are listed below: 
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Basic Algebraic Functions 
 

Log(x)   = natural log,  Exp(x)   = exponent, 
Abs(x)   = absolute value, Sqr(x)   = square root, 
Sin(x)   = sine,   Cos(x)   = cosine, 
Tan(x)   = tangent,  Rcs(x)   = arccosine, 
Rsn(x)   = arcsine   
Ath(x)  = hyperbolic arctangent = ½ ln[(1+x)/(1-x)], 
Ati(x)  = inverse hyperbolic arctangent = [exp(2x)-1] / [exp(2x)+1]. 

 
Relational Functions 
 

Eql(x,y)   = 1 if x equals y, 0 if not,  
Neq(x,y)   = 1 – Eql(x,y), 
Sgn(x)   = 1 if x > 0, 0 if x = 0, -1 if x < 0. 

 
Critical Points from the Normal Family of Distributions 
 

In each case, when you enter ‘Fcn(P,…)’ where P is the probability, LIMDEP finds the x 
such that for that distribution, the probability that the variable is less than or equal to x is P.  For 
example, for the normal distribution, Ntb(.95) = 1.645.  The P you give must be strictly between 0 
and 1. 

 

Ntb(P)      = standard normal distribution, 
Ttb(P,d)    = t distribution with d degrees of freedom, 
Ctb(P,d)    = chi squared with d degrees of freedom, 
Ftb(P,n,d)  = F with n numerator and d denominator degrees of freedom, 
Ntb(P,µ,σ)  = normal distribution with mean µ and standard deviation σ. 

 
Probabilities and Densities for Continuous Distributions 
 

Phi(x)       = probability that N[0,1]  ≤  x, 
Phi(x,µ,σ)  = probability that N[µ,σ]  ≤  x, 
N01(x)      = density of the standard normal evaluated at x (Note ‘N-zero-one’), 
Lgf(x)  = log of standard normal density = -½ (ln2π + x2). Lgf(0)=.918938542, 
N01(x,µ,σ)  = density of normal[µ,σ] evaluated at x, 
Tds(x,d)    = prob[t with d degrees of freedom   ≤  x], 
Chi(x,d)    = prob[chi squared variable with d degrees of freedom  ≤  x], 
Fds(x,n,d)  = prob[F with n numerator and d denominator degrees of freedom  ≤  x], 
Lgp(x)      = logit probability = exp(x)/(1+exp(x)), 
Lgd(x)      = logit density = Lgp(x)×(1 – Lgp(x)), 
Lgt(P)      = logit of x = Log(P/(1-P)) for 0 < P < 1, 
Xpn(x,θ)    = prob[exponential variable with mean 1/θ  ≤  x], 
Bds(x,α,β)  = prob[beta variable with parameters α,β   ≤  x]. 
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Matrix Dimensions 
 

If A is the name of a matrix, 
 

Row(A)      = number of rows in matrix A, 
Col(A)       = number of columns in matrix A. 

 
If ‘X’ is the name of a namelist, then 

 
Row(X)    = number of observations in current sample = n, 
Col(X)    = number of variables in the namelist. 

 
Sample Statistics and Regression Results 
 

The observations used in any of the following are the current sample less any missing 
observations.  For the Sum, Xbr, Var, and Sdv functions of a single variable, missing data are 
checked for the particular variable. Thus, Xbr(x1) and Xbr(x2) may be based on different 
observations.  You should keep close track of this if your data have gaps or different sample lengths.  
For the remaining functions, all observations are used without regard to missing data. For example, 
in the covariance function, LIMDEP uses all data points, so some data may be missing.  Be careful 
using these to prevent the -999s from distorting the statistics. 
 
     Sample Moments 
 

For any variable in your data area, or namelist which contains only one variable name, the 
functions listed below can be used just like any other function, such as Sqr(2).  If you wish only to 
display the statistic, just calculate it.  Otherwise, these functions can be included in any  expression.    
 

Sum(variable)   = sum of sample values, 
Xbr(variable)   = mean of sample values, 
Sdv(variable)   = standard deviation of sample values, 
Var(variable)   = variance of sample values, 
Xgm(variable)   = the geometric mean; Xgm(x) = Exp[1/nΣi log(xi)], 
Xhm(variable,h)  = the harmonic mean using parameter h; Xhm(x,h) = [Σixi

h]1/h. 
 

The summing functions (Sum, Var, Sdv, Xbr) can be restricted to a subsample by including a second 
variable in the list.  If a second variable appears, the function is compute for nonzero values of that 
second variable.  Thus, Sum(variable, dummy) is the sum of observations for which the dummy 
variable is nonzero. This allows a simple way to obtain a mean or variance in a subset of the current 
sample.   
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     Covariance and Correlation 
 
For any pair of variables, 
 

Cov(variable,variable)  =  sample covariance, 
Cor(variable,variable)   =  sample correlation.    

 
We note, for obtaining the correlation between a continuous variable, x, and a binary variable, d, one 
would use the ‘biserial’ correlation.  It turns out that the biserial correlation is equal to the ordinary, 
Pearson product moment correlation.  So no special function is created for this. Just use 
 
 CALC   ; List ; Cor (continuous variable x, binary variable d) $ 
 
to obtain a biserial correlation coefficient.     
 
     Order Statistics 

 
Med(variable)  = median of sample values 
Min(variable)   = sample minimum, 
Max(variable)   = sample maximum, 
Qnt(quantile,variable) = the indicated quantile for the variable. 

 
To locate the minimum or maximum value in the current sample, use 
 

Rmn(variable)  = observation number where minimum value of variable occurs, 
Rmx(variable)  = observation number where maximum value of variable occurs. 

 
Dot Products 
 

For any vector (matrix with one row or column),  which we denote c or d, or variable in your 
data set, denoted x or y, 
 

Dot(c,c)    = c′c, 
Dot(c,d)    = c′d, 
Qfr(c,A)    = c′Ac (A is a square matrix conformable with c.). 

 
Two forms of the Dot function are  
 

Dot(x,x)   = x′x, 
Dot(x,y)   = x′y. 
 

You may also use the simpler form with the apostrophe, and may mix variables and vectors in the 
function.  Thus, if x and y are variables, and c and d are vectors, all of the following are admissible 
(assuming they are conformable):   
 

CALC   ; x’y ; c’y ; Dot(x,y) ; d’d $  and so on. 
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Regression Statistics 
 
       The CALC command has several functions which allow you to obtain certain regression 
statistics, such as an R2 in isolation from the rest of the least squares computations.  In the following, 
the list of variables in the parentheses is of the form 
 

list = independent variables, dependent variable. 
 

The dependent variable is always given last in a list.  As always, if you want a constant term, include 
one.  You can use a namelist for the independent variables if you wish, and the wildcard character, *, 
may be used to abbreviate lists of variable names.  The following functions can be computed, where 
X is the list of independent variables: 
 

Rsq(X,y)    =  R2 in regression of variable y on X,   R2 =1-e’e/Σi(yi - y )2, 
Xss(X,y)   =  explained sum of squares, 
Ess(X,y)    =  error, or residual sum of squares, 
Tss(X,y)    =  total sum of squares, 
Ser(X,y)    =  standard error of regression, 
Lik(X,y)    =  log likelihood function. 

 
Count for a Panel 
 
 The number of groups in a panel defined by the stratification variable ‘y’ is given by 
 
 Ngi(y)   = number of sequences of consecutive identical values of 

   variable y. 
 
This examines the sample of values and counts the number of runs of the same value, assuming that 
each run defines a stratum.  In a sample of 10, if i = 1,1,1,2,2,3,4,4,4, the number of runs (groups) is 
four. 
 
10.7  Correlation Coefficients 
 
 There are several types of correlation coefficients that one might compute, beyond the 
familiar product moment measure.  The nonparametric measures of rank correlation and of 
concordance are additional examples.  One might also be interested in correlations of discrete 
variables, which are usually not measured by simple moment based correlations.  The following 
summarizes the computations of several types of correlations with LIMDEP.  Some of these are 
computed with CALC, as described earlier, while a few others are obtained by using certain model 
commands. 
 
Pearson Product Moment Correlations for Continuous Variables 
 
For any pair of variables, 
 

Cor(variable,variable)   =  sample correlation, 
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Chapter 11: Programming with Procedures 
 
11.1  Introduction 
 

 Your first uses of LIMDEP will undoubtedly consist of setting up your data and estimating the 
parameters of some of the models described in the Econometric Modeling Guide.  The purpose of this 
chapter is to introduce LIMDEP’s tools for extending these estimators and writing new ones. The 
programs described in this chapter will also help you make more flexible use of the preprogrammed 
estimators, such as in testing hypotheses, analyzing specifications, and manipulating the results of the 
estimation procedures. 
 

11.2  The Text Editor 
 
 The tools and methods described in this chapter will make heavy use of the editing features of 
the program.  The various menus described earlier and in the model sections to follow will be of 
limited usefulness when you are writing your own programs.  The text editor will be essential. 
 

11.2.1  Placing Commands in the Editor 
 
 LIMDEP’s editing window shown in Figure 11.1 is a standard Windows text editor.  Enter text 
as you would in any other Windows based text editor.  You may enter as much text as you like on the 
editing screen.  The Edit menu provides standard editing features such as cut, copy, paste, go to, and 
find.  

 
Figure 11.1  The Editing Window and the Edit Menu 

  
The Insert menu shown in Figure 11.2 can also be used in the editing window.  The Insert menu allows 
you to place specific items on the screen in the editing window: 
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Figure 11.2  Insert Menu for Text Editor 

 

• Insert:Command will place a specific LIMDEP command (verb) at the insertion point (where 
the cursor is).  A dialog box allows you to select the verb from a full listing (with explanation) 
of the verbs. 

• Insert:File Path will place the full path to a specific file at the insertion point.  Several 
LIMDEP commands use files.  The dialog box will allow you to find the full path to a file on 
your disk drive, and insert that path in your command. 

• Insert: Text File will place the full contents of any text file you select in the editor at the 
insertion point.  You can merge input files, or create input files, using this tool. 

 

11.2.2  Executing the Commands in the Editor 
 
 When you are ready to execute commands, highlight the ones you wish to submit. Then, you 
can execute the commands in one of two ways: 
 

• Click the GO button on the LIMDEP toolbar.  (If the toolbar is not displayed click the 
Tools:Options/View tab, then turn on the Display Tool Bar option. See Figure 11.3.) 

• Select the Run menu at the top of your screen.  See Figure 11.4.  When commands are 
highlighted, the first two items in this menu will be: 

° Run selection to execute the selected commands once. 
° Run selection Multiple Times to open a dialog box to specify the number of times to 

run the highlighted commands.   
 

TIP:  If you have not selected any lines in the editor, the two selections in the Run menu will be Run 
Line and Run Line Multiple Times.  In this case, the line in question is the line where the cursor is 
located. 
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Figure 11.3  Tools:Options/View Menu to Set Up Desktop 

 

 
Figure 11.4  Run Menu 
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11.3  Procedures 
 
 LIMDEP operates primarily as an ‘interpreter.’  This means that commands are submitted one 
at a time, and carried out as they are received.  This is as opposed to a ‘compiler’ which would 
assemble a number of commands in some fashion, translate them into its own language, then execute 
them all at once.  ‘Batch’ mode, or batching commands provides a middle ground between these, 
whereby you can submit groups of commands from input files or as streams of commands from the 
editor or in a procedure.  If the use of this is merely to submit a sequence of commands with a small 
number of keystrokes (for which LIMDEP provides several methods), then batching provides nothing 
more than a convenience.  But, LIMDEP also provides batch like capabilities which make it operate 
more like a compiler than an interpreter.  Consider the logic of an iterative program: 
  
Step 1. Initial setup. 
Step 2. Compute a result based on current information and previous results. 
Step 3. Decide whether to exit the iteration or return to Step 2, and act on the decision. 
  
In order to carry out such a sequence of commands, you must have several capabilities available.  First, 
results of Steps 1 and 2 must be retrievable.  Second, it must be possible not only to submit the set of 
commands in Step 2 in a batch mode, it must be possible to do so repeatedly.  Step 3 may call for many 
repetitions of the same set of commands.  Here is a trivial example: 
 
Step 1. CALCULATE ;  i = 0 $ 
Step 2. CALCULATE ;  List ;  i = i + 1 $ 
Step 3. If i <  10, go to Step 2. 
 
If we execute this program, it will display the numbers 1 to 10.  The problem of retrievability is 
obviously solved, assuming, of course, that CALC can compute and define something called ‘i’ in such 
a way that later on, i will exist.  (Certainly it can; see the previous chapter.)  The second step will be 
carried out 10 times.  Obviously, you could simply be the program.  That is, type the command and 
look at i.  If i is less than or equal to 10, type it again.  The point of this discussion is to devise a way to 
make LIMDEP do the repetitions for you. 
 As noted, LIMDEP provides several methods of batching commands.  The example above 
could be handled as follows: 
 
 CALC  ; i = 0 $ 
 PROCEDURE 
 CALC  ; i = i + 1 $ 
 ENDPROCEDURE 
 EXECUTE ; n = 10 $ 
 
This example initializes i, stores the updating command, then executes the stored command 10 times.  
There are other ways to do this, as well.  For example, a shorter way to display the numbers from 1 to 
10 is 
 
 PROCEDURE 
 CALC  ; List ; i $ 
 ENDPROCEDURE 
 EXEC  ; i = 1,10 $ 
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Yet another way to proceed would program the steps literally.  This would be 
  
 CALC  ; i = 1 $ 
 PROCEDURE 
 LABEL  ; 100 $ 
 CALC  ; List ; i ; i =  i + 1 $ 
 GO TO  ; 100 ; i <= 10 $ 
 ENDPROCEDURE 
 EXECUTE 
  
This procedure is only executed once, but it contains a loop within it.  It displays, then updates i 10 
times.   
 The device used in each case (and generally) will be the ‘procedure.’  Procedures such as these 
provide a convenient way to store commands.  The EXECUTE command offers numerous options for 
how to carry out the procedure and how to decide to exit from the procedure. 
 LIMDEP is highly programmable.  As shown in numerous examples already, and throughout 
the Econometric Modeling Guide, you can arrange long sequences of commands to perform intricate 
analyses.  Procedures, which are similar to small programs greatly extend this capability.  Procedures 
will allow you to automate new estimators that are not already present in LIMDEP, and to compute 
certain test statistics that are not routine parts of the standard output.  The remainder of this chapter will 
show you how to write and execute procedures. 
 
11.4  Defining and Executing Procedures 
 
 To store a set of commands you begin with the command 
 
 PROCEDURE or just PROC 
  
This tells LIMDEP that the commands that will follow are not to be executed at the time, but just stored 
for later use.  The end of a procedure is indicated with 
 
 ENDPROCEDURE or just ENDPROC  
 
Once a set of commands has been entered as a procedure, you can execute it with 
 
 EXECUTE or just EXEC 
  
The EXECUTE command has a number of options which are discussed below. 
 A procedure can be entered at any point, just by submitting it from the editing window.  For 
example 
 
 CREATE ; x = Rnn(0,1) ; y = x + 1 + Rnn(0,2) $ 
 PROC 
 SAMPLE ; first – last $ 
 REGRESS ; Lhs = y ; Rhs = one,x $ 
 ENDPROC 
 CALC  ; first = 1 ; last = 10 $ 
 EXEC 
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At the time the procedure is created, the sample limits might not exist.  The procedure is defined, the 
sample limits are set, and, finally, the procedure is executed.  The procedure, in turn, sets the sample 
and computes a regression. 
 You can also load a procedure from an input file.  The file must contain the command 
PROCEDURE at the point at which the procedure is to begin, and ENDPROCEDURE at the end of 
the procedure.  These might be the first and last commands in the file if you want only to input a 
procedure.  If you OPEN such an input file, it will simply be loaded into the procedure buffer, exactly 
as if you had typed it.  But, remember, the PROCEDURE cannot OPEN any files itself. 
 Some notes on procedures: 
 

• The procedure loader is not a compiler.  The commands you type are not checked in any way 
for validity.  If you type nonsense, LIMDEP will dutifully store it for you.  The problems will 
show up when you try to execute the procedure. (But, see below, procedures can be edited.) 

• A procedure may consist of no more than 2,500 nonblank characters.  When the commands are 
stored, the embedded blanks are removed and comments are stripped off.  Still, it may pay to 
use short names and always use the four letter convention for model commands. 

• The procedure may contain up to 50 commands, but remember that you can combine many 
CREATE, CALC, or MATRIX operations in a single command by separating them with 
semicolons. 

• Only one active procedure can be defined at a time.  If you issue a PROCEDURE command, 
any procedure which existed before is immediately erased.  But, you can store up to 10 more 
procedures in a library, which is described in the next section. 

• Project files (.LPJ files) always contain not only the active procedure, but also any procedures 
that you have stored in your procedure library.  They become part of the project. 

 
11.4.1  Executing a Procedure Silently 
 
 Procedures are often used to produce a final result with many intermediate computations.  You 
can suppress intermediate output with 
 
 EXECUTE   ; Silent  $ 
  
This suppresses all output.  When the procedure is completed, the SILENT switches are turned off. 
You can then use MATRIX, CALC, or whatever other means are necessary to inspect the desired final 
result from the procedure.  You might use this in an experiment in which you fit the same model many 
(possibly thousands of) times and accumulate a statistic from the execution.  For example, you might 
investigate whether the mean of a certain statistic is zero with the following procedure. The procedure 
is general – you could replace the application specific part with some particular estimation problem. It 
accumulates a result, then uses the central limit to test the hypothesis that the statistic being computed 
is drawn from a distribution with mean zero.  
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 CALC    ; meanb = 0 ; sb = 0 ; nrep = 1000 $ 
 PROC 
    … generate the data set for the model command that computes the statistic 
 CALC  ; meanb = meanb + the statistic 
   ; sb = sb + the statistic ^2 $ 
 ENDPROC 
 EXECUTE   ; Silent ; n = nrep $ 
 CALC  ; meanb = meanb / nrep 
   ; sb = Sqr((sb – nrep * meanb^2)/(nrep – 1)) 
   ; List  ; z = Sqr(nrep) * meanb/sb  $ 
 
The procedure estimates the same model 1,000 times.  The statistic of interest is z, computed at the last 
line.  Since the model results are not useful, we use ; Silent to suppress them.  The number of 
repetitions is specified generically in a scalar named nrep, so if a larger or smaller sample is desired, it 
is necessary only to change the fixed value in the first line. 
 
11.4.2  Parameters and Character Strings in Procedures 
 
 Procedures may have parameters.  Define the procedure as follows: 
 
 PROC = name (parameter1, …, up to 15 parameters) $ 
Then,  
  EXECUTE  ; Proc = name (actual1, …) $ 
 
The actual arguments are substituted for the dummy parameters at execution time.  This is like a 
subroutine call, but more flexible.  For execution, the passed parameters are simply expanded as 
character strings, then the procedure, after creation in this fashion, becomes the current procedure.  For 
example, 
 
 PROC = Dstats (x) $ 
 DSTAT  ; Rhs = x $ 
 ENDPROC 
 NAMELIST ; zbc = … a list of variables 
   ; q123 = a different list of variables $ 
 EXEC   ; Proc = Dstats (zbc) $ 
 EXEC   ; Proc = Dstats (q123) $ 
 
Any string may be substituted anywhere in the procedure.  This will allow great flexibility.  For 
example, even models can be changed with the procedure. 
  
 PROC = Modeler (model) 
 Model   ; Lhs = y ; Rhs = one,x $ 
 ENDPROC 
 EXEC   ; Proc = Modeler (probit) $ 
 EXEC   ; Proc = Modeler (logit) $ 
 

• Your procedures may have up to 15 parameters in the list. 
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• The number of parameters in the EXEC command is checked against the number in the 

procedure definition at execution time.  But, it is not possible to check the consistency of the 
parameters in the two lists.  Thus, you can’t be prevented from sending a bad command to the 
Modeler routine above. 

 
 With this device, you are free to pass variables, namelists, matrices, model names, or any other 
entities you require.  Also, strings can vary in type from one execution to another, though you must be 
careful to avoid causing conflicts.  For example, assuming that t is a scalar in the named procedure, one 
might use 
 
  PROC = name (t) $ 
then, 
 EXEC   ; Proc = name (x) $ 
 EXEC   ; Proc = name (1.2345) $ 
 
which would not cause a conflict. 
 Such procedures would generally be useful for creating prepackaged subroutines.  For 
example, the following procedure computes LM statistics for a given model using two sets of variables: 
 
 PROC = Lmtest (model, y, x1, x2) $ 
 Model   ; Lhs = y ; Rhs = x1 $ 
 MATRIX  ; k2 = Col(x2)  
   ; b2 = k2 _ 0 $ 
 Model  ; Lhs = y ; Rhs = x1,x2 
   ; Start = b, b2 ; Maxit = 0 $ 
 ENDPROC 
 
You could execute this with something like the following: 
 
 NAMELIST ; v1 = one,v1a,ddd 
   ; v2 = ll,g123 $ 
 EXEC  ; Proc = Lmtest (probit, y, v1, v2) $ 
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Chapter 12: Econometric Model Estimation 
 
12.1  Introduction 
 
 The primary function carried out by LIMDEP is the estimation of econometric models.  The 
first part of the documentation, the Reference Guide describes how to use LIMDEP to read a data set, 
establish the current sample, compute transformations of variables, and carry out other functions that 
get your data ready to use for estimation purposes.  Several important tools, such as the matrix 
algebra program, scientific calculator and program editor are described there as well.  This second 
part, the econometric modeling guide, will describe some specific modeling frameworks and 
instructions to be used for fitting these models. 
 The organization of this manual is by estimation framework, not by model command.  We 
have found that users prefer that the program documentation be oriented toward the types of 
functions they want to perform, not to an alphabetical listing of commands. As such, you will find 
the arrangement of topics in this manual rather similar to the arrangement of topics in treatises in 
econometrics, such as Greene (2011).  We begin with descriptive statistics in Chapter 13, various 
linear regression models in Chapters 14 and 15, and so on.   
 
12.2  Econometric Models 
 
 This manual is devoted primarily to the methods by which you can use LIMDEP to fit 
equations to data and test hypotheses about the relationships implied by that estimation process.  For 
purposes of documenting the program, we use the term ‘model estimation’ broadly, to encompass all 
those functions that involve manipulation of data to produce statistics to summarize the information 
the data contain.  Thus, this manual begins with a chapter about computing descriptive statistics, 
which one might not normally consider model building.  However, as data summaries, for program 
purposes, we consider these part of the model building functions in LIMDEP. 
 The definition of a ‘model’ in LIMDEP consists of the modeling framework, the statement 
of the variables in the model, and what role the variables will play in that model.  The remainder of 
this chapter will describe in general terms how to use this format to construct model estimation 
commands in LIMDEP.  
 
12.3  Model Commands 
 
 LIMDEP’s model commands all use the same format.  The essential parts are as follows: 
 
 Model name ; model variables specification 
   ; essential specifications for some models 
   ; optional specifications $ 
 
 The ‘Model name’ designates the modeling framework.  In most cases, this defines a broad 
class of models, such as POISSON, which indicates that the command is for one of the twenty or so 
different models for count data, most of which are extensions of the basic Poisson regression model. 
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 The ‘model variables specification’ generally defines the dependent and independent variables 
in a model.  In almost all cases, the model will include one or more dependent variables, denoted a Lhs, 
or ‘left hand side’ variable in LIMDEP’s command structure.  Independent variables usually appear on 
the Rhs, or ‘right hand side,’ of a model specification.  To continue our example, a Poisson model 
might be specified using 
 
 POISSON ; Lhs = patents ; Rhs = one , r_and_d $ 
 
which specifies one of  the most well known applications of this model in economics.  (The variable 
‘one’ is the constant term.  We’ll return to this below.)  Some ‘model’ commands will have only one of 
these two specifications, such as  
 
 DSTAT ; Rhs = patents $ 
 
which requests descriptive statistics for the variable patents.  As can be seen here, we use the term 
‘model command’ broadly to indicate analysis of a set of data, whether for description or parameter 
estimation.  Other model commands might have only a Lhs variable, such as 
 
 SURVIVAL ; Lhs = failtime $ 
 
which requests a nonparametric (life table) analysis of a variable named failtime.  There are also many 
other types of variable specifications, such as 
 
   ; Inst = a set of variable names 
 
which will be used to specify the set of instrumental variables in the 2SLS command. 
 Most models can be specified with nothing more than the model name and the identification of 
the essential variables.  But, some models require additional specifications in order to be identified.  
For example, the specific model you want may be a particular case of a broad class of models and in 
order to specify it, you must provide the ‘essential’ specifications.  For example, the basic command 
for survival modeling (with covariates to provide the ‘model’) would be 
 
 SURVIVAL ; Lhs = failtime ; Rhs = one, usehours $ 
 
This form of the command is for Cox’s proportional hazard model.  In order to fit a parametric model, 
such as the Weibull model, you would use 
 
 SURVIVAL ; Lhs = failtime ; Rhs = one, usehours   
   ; Model = Weibull $ 
 
Note the last specification.  This is the only way to specify a Weibull model, so for this model, this 
specification is essential.  The Weibull model is requested as a type of survival model by this 
command.  Obviously, not all models have mandatory specifications – the examples above do not.  
But, many do.  The documentation in the chapters to follow will identify these. 
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 Finally, all model frameworks have options which either extend the model itself or control 
how the model is estimated or how the estimation results are displayed.  For example, the following fits 
a linear regression model and requests a robust estimator of the covariance matrix of the  
estimates: 
 
 REGRESS ; Lhs = profit ; Rhs = one, sales ; Heteroscedasticity consistent  $ 
 
The latter specification does not change the model specification, it requests an additional computation, 
the White heteroscedasticity consistent estimator.  For another example, 
 
 REGRESS ; Lhs = profit ; Rhs = one, sales  ; Plot residuals $ 
 
fits a linear model and then plots the residuals.  If the latter specification is omitted, the residuals will 
not be plotted. 
 
12.4  Command Builders 
 
 In what follows, we will describe the model commands that you can use to fit the indicated 
model.  In all cases, there are command builders that can be used instead of the text editor and 
command language.  The command builders are described in Sections 4.4, 6.5.4 and 8.2.1. 
 
12.5  Model Groups Supported by LIMDEP 
 
 A few of the various model commands and modeling frameworks supported by LIMDEP and 
NLOGIT are discussed in the chapters to follow. To suggest the breadth of the full menu, the following 
are the model names for the different classes of estimators supported by the program.  Some, such as 
HISTOGRAM and BURR are quite narrow, single purpose instructions, while others, such as 
POISSON, call for large classes of models that may (as in this case) contain a large number of 
different variants.  The specific models that are presented in Chapters 13 – 16 in this manual are 
highlighted in the list.  The documentation below will present the basic forms of each of these.  
Additional specifications, options and model forms are developed in the full manual for LIMDEP. 
 
Descriptive Statistics 

 
CLASSIFY  Discriminant analysis – classification into latent groups. 
DSTAT  Descriptive statistics. 
TABLES  Descriptive statistics for stratified data.  

      CROSSTAB Cross tabulations for discrete data. 
HISTOGRAM Histograms for discrete and continuous data. 
KERNEL  Kernel density estimation of the density for a variable. 
IDENTIFY  Descriptive statistics (ACF, PACF) for time series data. 
SPECTRAL Spectral analysis of a time series. 
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Plotting 
 
FPLOT  Function plot for user specified function. 
MPLOT  Scatter plot of matrices. 
PLOT  Scatter or time plots of variables against each other. 
SPLOT  Simultaneous scatter plots for several variables. 

 
Linear Regressions and Variants 
 
   Single Equation 

FRONTIER Stochastic frontier models. 
HREG  Heteroscedastic linear regression 
QREG  Quantile regression. 
REGRESS  Linear regression models (also OLSQ and CRMODEL). 
TSCS  Time series/cross section, covariance structure models. 
2SLS  Two stage (instrumental variable) estimation of linear models. 

 
   Multiple Equation 

SURE  Linear seemingly unrelated regression models. 
3SLS  Three stage (IV, GLS) estimator for systems of linear equations. 

     
Sample Selection Models 

 
MATCH  Propensity score matching to analyze treatment effects. 
SELECT  Sample selection models with linear and tobit models. 
INCIDENTAL Incidental truncation (selection) model. 
SWITCH  Switching regression models. 

 
Nonlinear Regression, Optimization, Manipulation of Nonlinear Functions 

 
ARMAX  Box Jenkins ARMA and dynamic linear equations. 
BOXCOX  Regression based on the Box-Cox transformation of variables. 
NLSQ  Nonlinear least squares for nonlinear regression models. 
NLSURE  Nonlinear systems of equations, SURE or GMM estimation. 

 
Analysis of Nonlinear Functions 

 
FINTEGRATE   Function integration for user specified nonlinear function. 
GMME  GMM estimation of model parameters. 
MAXIMIZE Maximization of user specified functions. 
MINIMIZE User defined minimization command. 
WALD  Standard errors and Wald tests for user specified nonlinear 
   functions. 
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Single Equation Models for Binary, Ordered and Multiple Discrete Choices 
 
BINARY CHOICE Simulation program for all binary choice estimators. 
BIVARIATE Bivariate probit models, partial observability models. 
BURR  Burr model for binary choice. 
CLOGIT  Multinomial logit model for discrete choice among multiple alternatives 
COMPLOG Complementary log log model for binary choice. 
GOMPERTZ Gompertz model for binary choice. 
LOGIT  Binary and multinomial choice models based on the logistic distribution. 
MLOGIT  Multinomial logit model. 
MPROBIT  Multivariate probit model. 
MSCORE  Maximum score semiparametric estimation for binary dependent variable. 
NPREG  Nonparametric regression models. 
ORDERED Ordered probability models for ordered discrete choice. 
PROBIT  Several forms of binary choice models. 
SEMIPAR  Klein and Spady semiparametric estimator for binary choice. 

 
Models for Count Data 

 
GAMMA  Gamma model for count data. 
NEGBIN  Negative binomial regression model. 
POISSON  Models for count data. 

 
Models for Censored Variables 

 
BTOBIT  Bivariate tobit models. 
GROUPED Regression models for categorical censored data. 
MIMIC  Multiple indicators and multiple causes for a latent variable. 
NTOBIT  Nested tobit models. 
TOBIT  Censored regression models. 

 
Models for Variables with Limited Range of Variation 

 
LOGLINEAR Loglinear models, beta, gamma, Weibull, exponential, geometric, 
   inverse Gaussian. 
LOGNORMAL   Lognormal regression model. 
TRUNCATE Truncated regression models. 

 
Models for Survival Times and Hazard Functions 

 
SURVIVAL Survival (hazard function) models. 
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12.6  Common Features of Most Models 
 
 There is wide variety in the components and features across the different model classes.  But, 
there are several elements that are common to nearly all of them.  Some of those are listed below. 
 
12.6.1  Controlling Output from Model Commands 
 
 These two settings control model results that are generally not reported unless requested. 
 

; Margin requests display of marginal effects. 
; Printvc requests display of the estimated asymptotic covariance matrix.  

Normally, the matrix is not shown in the model results. 
 

12.6.2  Robust Asymptotic Covariance Matrices 
 
 These settings control how the covariance matrix for the coefficient estimator is estimated.. 
 

; Cluster=spec requests computation of the cluster form of covariance the estimator. 
; Str = spec is used with ; Cluster to specify a stratified, two level form of data 
  clustering. 
; Robust requests a ‘sandwich’ estimator or robust covariance matrix for  
  several discrete choice models. 

12.6.3  Predictions and Residuals 
 
 Fitted values (predictions) and residuals from most single equation models are requested as 
follows:.   
 

; List  displays a list of fitted values with the model estimates. 
; Keep = name keeps the fitted values as a new (or replacement) variable in 
  the data set. 
; Res = name keeps the residuals as a new (or replacement) variable. 
; Prob = name saves the probabilities as a new (or replacement) variable 
  for discrete choice models such as probit or logit. 
; Fill  requests that missing values or values outside the estimating sample 

   be replaced by fitted values based on the estimated model. 
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Chapter 13: Describing Sample Data 
 
13.1  Introduction 
 
 This chapter describes methods of obtaining descriptive statistics for one or more variables in 
your data set.  Procedures are given for cross sections and for panel data.   
 
13.2  Summary Statistics 
 
 The primary command for descriptive statistics is 
 
 DSTAT  ; Rhs = list of variables $  
 

This produces a table which lists for each variable, xk, k = 1,…,K, the basic statistics: 
 
 Sample mean  = 1(1/ ) == Σ kN

k k i ikx N x , 

 Standard deviation =, 2
1(1/( 1) ( )== − Σ −N

k i ik ks N x x  
 Maximum value, 

 Minimum value, 

 Number of valid (nonmissing) cases. 
 
Use 
 DSTAT  ; Rhs = list of variables  ; All  $ 
 
to request, in addition, the skewness and kurtosis measures, 
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After the table of results is given, you may elect to display a covariance or correlation matrix (or 
both) for the variables.  The request is added to the command: 
 
   ; Output = 1 to obtain the covariance matrix, 
   ; Output = 2 to obtain the correlation matrix, 
   ; Output = 3 for both covariance and correlation matrices. 
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By adding  
   ; All  
 
to the command, we obtain the expanded results that include the skewness and kurtosis measures. 
 
13.2.1  Weights  
 
 Weights may be used in computing all of the sums above by specifying  
 
   ; Wts = name of weighting variable 
 
Weights are always scaled so they sum to the current sample size.  Thus, for example, the weighted 
mean would be 
   1(1/ ) == Σ kN

k k i ik ikx N w x  

where   
1=

=
Σ k

k ik
ik N

i ik

n zw
z

 

 
and   zik  =  the weighting variable. 
 
13.2.2  Missing Observations in Descriptive Statistics 
 
 In all cases, weighted or otherwise, sums are based on the valid observations.  DSTAT 
automatically selects out the missing data.  Most other models (save for those in NLOGIT 4.0 and most 
of the panel data estimators) do not routinely do so unless you have the SKIP switch set.    Each 
variable may have a different number of valid cases, so the table of results gives the number for each 
one.   
 
NOTE: The covariance and correlation matrices are based on the subset of observations for which 
there were no missing data for any variables.  Each row in the table of results will list the number of 
valid cases used for that particular variable.  Unfortunately, if different observations are missing for the 
various variables used in a covariance or correlation matrix, the union of the observations for which all 
variables are present can contain very few observations.  For better or worse, this union is the set of 
observations used in computing the matrices. 
 
 If your data contain missing values, the scaling in the previous section is automatically 
adjusted for each variable.  Moments are scaled by the number of valid observations or sum of weights 
for that variable. 
 
13.2.3  Sample Quantiles 
 
 You may obtain more detailed statistics about variables by requesting the sample quantiles. 
This feature produces sample order statistics and the deciles and quartiles of the sample of values for 
each variable.  The keyword in the command is 
 
   ; Quantiles 
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For example: 
 
 CALC  ; Ran(12345) $ 
 SAMPLE ; 1 – 1000 $ 
 CREATE  ; x = Rnn(0,1) $ 
 CREATE ; y = Rnn(0,1) ^ 2 $ 
 DSTAT ; Rhs  = x, y ; Quantiles  ; Matrix $ 
 
The CREATE commands produce random samples from the standard normal and the chi squared[1] 
distributions.  The following output results: 
 
Descriptive Statistics 
All results based on nonmissing observations. 
=============================================================================== 
Variable        Mean         Std.Dev.        Minimum         Maximum      Cases 
============================================================================== 
All observations in current sample 
------------------------------------------------------------------------------ 
X       | -.177875E-01  .972540     -3.14333      3.02263         1000       0 
Y       |  .983443      1.42493      .162304E-07  11.6616         1000       0 

 
Order Statistics for Variables 
Percentile     X            Y 
Min.         -3.1433       .16230E-07 
10th         -1.2680       .11610E-01 
20th         -.84366       .51309E-01 
25th         -.68126       .83422E-01 
30th         -.53522       .13160 
40th         -.26384       .28056 
Med.         -.48192E-01   .43805 
60th          .25616       .71992 
70th          .51574       1.0797 
75th          .65565       1.3230 
80th          .83508       1.6071 
90th          1.1866       2.5999 
Max.          3.0226       11.662 
Partition of range Minimum to Maximum 
Range of X     X            Y 
Minimum      -3.1433       .16230E-07 
1st.Qrtl     -1.6018       2.9154 
Midpoint     -.60348E-01   5.8308 
3rd.Qrtl      1.4811       8.7462 
Maximum       3.0226       11.662 
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13.3  Histograms 
 
 The command for computing and plotting a histogram for a variable is 
 

HISTOGRAM ; Rhs = the variable $ 
 
 LIMDEP computes two types of histograms, for discrete (count) and for continuous data.  The 
default type is for a frequency count of discrete data.  Data are assumed to be coded 0,1,…,99.  Values 
less than zero or above 99 are treated as out of range.  A count of invalid observations is given with the 
output of the command.  Continuous variables are assigned to 40 equal width intervals over the range 
of the variables.  The histogram is accompanied by a table listing the relative frequencies and 
cumulated frequencies. 
 To illustrate the use of this feature, we use a data set that was employed in the study of health 
care system utilization,  Regina T. Riphahn, Achim Wambach, and Andreas Million, ‘Incentive 
Effects in the Demand for Health Care: A Bivariate Panel Count Data Estimation,’ Journal of 
Applied Econometrics, Vol. 18, No. 4, 2003, pp. 387-405.  The raw data were downloaded from the 
journal’s data archive website: 
  
 http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million  
 
The data, which will be used in several applications below, are an unbalanced panel of observations 
on health care utilization by 7,293 individuals.  The group sizes in the panel number as follows: Ti: 
1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987. There are altogether 27,326 observations.  
Variables in the file are 
 
     hhninc   =  household nominal monthly net income in German marks / 10000. 
 Hhkids  =  children under age 16 in the household = 1, otherwise = 0, 
      educ   =  years of schooling   
      married  =  marital status 
      female  =  1 for female, 0 for male 
      docvis  =  number of visits to the doctor 
      doctor    =  number of doctor visits > 0  
      hospvis  =  number of visits to the hospital 
 
13.3.1  Histograms for Continuous Data 
 
 A histogram for the continuous variable hhninc would appear as follows: 
 
 HISTOGRAM ; Rhs = hhninc $ 
 
You can select the number of bars to plot with 
 
   ; Int = k 
 
This can produce less than satisfactory results, however.   
 

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/�
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Figure 13.1  Histogram for a Continuous Variable 

 
 There are other ways to examine continuous data.  One way is to use RECODE to change 
your continuous variable into a discrete one.  Alternatively, you may provide a set of interval limits and 
request a count of the observations in the intervals you define.  The command would be 
 
  HISTOGRAM ; Rhs = … ; Limits = l0,l1,…,lk $ 
 
where the limits you give are the left boundaries of the intervals.  Thus, the number of limits you 
provide gives the number of intervals.  Intervals are defined as ‘greater than or equal to lower and less 
than upper.’  For example, still using our income data,  
 
 HISTOGRAM ; Rhs = educ ; Limits = 0, .75, 2.5, 4, 6, 9, 12 $ 
 
defines five bins for the histogram, with the rightmost containing all values greater than or equal to 12.    
To request K equal length intervals in the range lower to upper, use 
 
 HISTOGRAM ; Rhs = variable ; Int = k ; Limits = lower,upper $ 
 
Finally, you can use HISTOGRAM to search for the interval limits instead of the frequency counts. 
The command 
 
 HISTOGRAM ; Rhs = variable ; Bin = p $ 
 
where ‘p’ is a sample fraction (proportion), will obtain the interval boundaries such that each bin 
contains the specified proportion of the observations. 
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NOTE:  If the specified proportion does not lead to an even set of bins, then an extra, smaller bin is 
created if the remaining proportion is more than p/2.  For example, if p is .22, there will be four bins 
with .22 and one at the right end with .12.  But, if the extra mass is less than p/2, it is simply added to 
the rightmost bin, as for p = .16, for which the sixth bin will contain .2 of the observations. 
 
13.3.2  Histograms for Discrete Data 
 
 The data are also inspected to determine the type and the correct number of bars to plot for a 
discrete variable.  For a discrete variable, the plot can be exact.  Once again, up to 99 bars may be 
displayed:  For example, the count of doctor visits in the health care data appear as follows: 
 
 HISTOGRAM ; Rhs = docvis $ 
 

 
Figure 13.2  Histogram for a Discrete Variable 

 
The long tail of the skewed distribution has rather distorted the figure.  The options described earlier 
can be used to modify the figure.  However, those options are assumed to be used for continuous data, 
which would distort the figure in another way.  A more straightforward way to deal with the preceding 
situation is to operate on the data directly.  For example, 
 
 HISTOGRAM ; If [docvis <= 25] ; Rhs = docvis $ 
 
truncates the distribution, but produces a more satisfactory picture of the frequency count. 
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13.4  Cross Tabulations 
 
 The command for crosstabs based on two variables is 
 
 CROSSTAB  ; Lhs = rows variable ; Rhs = columns variable $ 
 
 Use CROSSTAB to analyze a pair discrete of variables that are coded 0,1,… up to 49 (i.e., up 
to 2,500 possible outcomes).  The table may be anywhere from 2×2 to 50×50.  (Row and column sizes 
need not be the same.)  Observations which do not take these values are tabulated as ‘out of range.’ 
 This command assumes that your data are coded as integers, 0,1,…  If you wish to analyze 
continuous variables, you must use the RECODE command to recode the continuous ranges to these 
values. 
 The categories are automatically labeled ‘NAME=0,’ ‘NAME=1,’…, etc. for the two 
variables.  To provide your own labels and to specify the number of categories for the variables, add 
 
   ; Labels = list of labels for Lhs  /  list of labels for Rhs 
 
to the command.  Labels may contain up to eight characters. Separate labels in the lists with commas. 
Cross tabulations may be computed with unequally weighted observations.  The specification is 

  ; Wts = variable  
 
as usual.  This scales the weights to sum to the sample size.  If the weights are replications that 
should not be scaled, use 
 

  ; Wts = variable,Noscale 
 
13.5  Kernel Density Estimation 
 
 The command for kernel density estimation 
 
 KERNEL  ; Rhs = the variable $ 
 
The kernel density estimator is a device used to describe the distribution of a variable 
nonparametrically, that is, without any assumption of the underlying distribution.  The kernel density 
function for a single variable is computed using 
 

  f(zj)  =  
( )

1

1 1n j i

i

z x
K

n h h=

 −
 
  

∑ , j = 1,…,M. 

 
The function is computed for a specified set of values zj, j = 1,…,M.  Note that each value requires a 
sum over the full sample of n values.  The default value of M is 100.  The primary component of the 
computation is the kernel function, K[.], a weighting function that integrates to one.   
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Eight alternatives are provided: 
 

1. Epanechnikov: K[z]   =   .75(1 - .2z2) / √5 if |z| < 5, 0 else, 
2. Normal:   K[z] =  φ(z) (normal density), -∞ < z < ∞ 
3. Logit:    K[z] =  Λ(z)[1-Λ(z)] (default) , -∞ < z < ∞ 
4. Uniform:  K[z] =  .5 if |z| < 1, 0 1 else, 
5. Beta:   Z[z] =  (1-z)(1+z)/24 if |z| < 1, 0 1 else, 
6. Cosine:   K[z] =  1 + cos(2πz) if |z| < .5, 0 else, 
7. Triangle:   K[z] =  1 - |z|, if |z| <  1, 0 else. 
8. Parzen:   K[z] =  4/3 – 8z2 + 8|z|3 if |z| < .5, 8(1-|z|)3 else. 

 
The other essential part of the computation is the smoothing (bandwidth) parameter, h.  Large values 
of h stabilize the function, but tend to flatten it and reduce the resolution (in the same manner as its 
discrete analog, the bin width in a histogram).  Small values of h produce greater detail, but also 
cause the estimator to become less stable. 
 The basic command is 
 
 KERNEL ; Rhs = the variable  $ 
 
With no other options specified, the routine uses the logit kernel function, and uses a data driven 
bandwidth equal to 
 

   h  =  .9Q/n0.2 where Q  =  min(std.dev., range/1.5) 
 
For an example, we will compute the kernel density that is a smoothed counterpart to the histogram 
for income distribution in Figure 13.1.  The command is 
 
 KERNEL ; Rhs = hhninc $ 
 
The results follow.  The histogram is repeated to show the similarity.  Once again, the very long tail 
of the distribution distorts the figure.  We show below how to adjust the parameters to accommodate 
this problem.  For the figure below, we used 
 
   ; Endpoints = 0,30  
 
to force the figures to have the same range of variation on the horizontal axis. 
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Figure 13.3  Kernel Density Estimator for Incomes 

 
The kernel density also produces some summary statistics, as shown below for the example in Figure 
in 13.3. 
 

+---------------------------------------+ 
| Kernel Density Estimator for HHNINC   | 
| Observations       =         27326    | 
| Points plotted     =           100    | 
| Bandwidth          =       .206384    | 
| Statistics for abscissa values----    | 
| Mean               =      3.520836    | 
| Standard Deviation =      1.769083    | 
| Minimum            =       .000000    | 
| Maximum            =     30.671000    | 
| ----------------------------------    | 
| Kernel Function    =      Logistic    | 
| Cross val. M.S.E.  =       .000000    | 
| Results matrix     =        KERNEL    | 
+---------------------------------------+ 

 
The data used to plot the kernel estimator are also retained in a new matrix named (of course) kernel.  
Figure 13.4 shows the results for the preceding plot: 
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Figure 13.4  Matrix Results from KERNEL 

 
 You may specify the kernel function to be used with 
 

; Kernel = one of the eight types of kernels listed earlier 
 
The bandwidth may be specified with 
 
   ; Smooth = the bandwidth parameter 
 
The default number of points specified is 100, with zj = a partition of the range of the variable 
You may specify the number of points, up to 200 with 
 
   ; Pts = number of points to compute and plot 
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13.6  Scatter Plots and Plotting Data 
 
 This chapter will describe commands for producing high resolution graphs.  This feature can 
be used for simple scatter diagrams, time series plots, and for plotting functions such as log likelihoods.  
You can print the graphics on standard printers and create plotter files for export to word processing 
programs such as Microsoft Word.    
 
13.6.1  Printing and Exporting Figures 
 
 LIMDEP uses the standard Windows interface between input and output devices.  When a plot 
appears in a window, you can use File:Print to send a copy to your printer.  You can also save the graph 
as a Windows metafile (.WMF format) by using File:Save or File:Save As.  For purposes of illustrating 
these functions, we will use Figure 13.5 which was generated by a PLOT command.  The figure shows 
LIMDEP’s base format for graphics.  Every graph generated is placed in its own scalable window, as 
shown in Figure 13.6, apart from the project, editing and output windows already open.  This window 
will remain open until you close it.  When you are finished reviewing the figure, you should close the 
window to avoid proliferating windows. You will be prompted to save the graph if you have not already 
done so. 

 
Figure 13.5  Time Series Plot Using the PLOT Command 
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13.6.2  Saving a Graph as a Graphics File 
 
 You may save any figure from a graphics window to disk in the Windows metafile (.wmf) 
format.  Use File:Save or File:Save As.  This file type is transportable to many other programs, 
including Microsoft Word and Excel.  For example, in Word, click the Insert menu and then select 
Picture, then From File to import your .wmf file into your Word document.  The Windows .wmf format 
includes codes that allow you to scale the figure to whatever size you desire. 
 
TIP: Using Edit/Copy in LIMDEP then Edit/Paste in Word or Excel will transport the graph from the 
screen to your document.  However, the internal components of the figure are not fully formed by this 
method, and the quality of the figure will be inferior to what you will obtain by writing the figure to a 
.wmf file and importing the file into the other program. 
 

 
Figure 13.6  LIMDEP Desktop with Graphics Window 
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Figure 13.7  Excel Spreadsheet with LIMDEP .mf File Imported 

 
13.6.3  The PLOT Command 
 
 The command for producing a basic scatter (XY) plot of one or more variables against  
 another variable is 
 
 PLOT  ; Lhs = variable on horizontal axis 
   ; Rhs = variables (up to five) on vertical axis  $ 
 
Note the reversal of LIMDEP’s usual convention.  This command puts the Lhs variable on the 
horizontal axis, whereas a regression might be expected to do the reverse. 
 You may add a title to the figure by including 
 
   ; Title = the title to be used 
 
The title is placed at the top of the figure.  The vertical axis of the plot is usually labeled with some 
variable name.  You can override this with 
 
   ; Yaxis = the label to be used, up to eight characters 
 
This will often be useful when you plot a function or more than one variable.   
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13.6.4  Plotting One Variable Against Another 
 
 To produce a scatter plot of one variable (y) against another (x) variable, the PLOT command 
is given with only a single Rhs variable.  The command would be 
 
 PLOT  ;  Lhs = x  ; Rhs  =  y $ 
 
Figure E13.5 was produced with the commands listed. 
 
 CREATE  ; g  = gasq/(100*pop/282429)$ 

PLOT  ; Lhs  = gasp ; Rhs = g 
   ; Title  = Simple Plot of Gas against Price $  
 

 
Figure 13.8  Simple Scatter Plot 

 
13.6.5  Plotting a Simple Linear Regression 
 
 To add a regression line to a figure, add 
 
   ; Regression 
 
to the PLOT command.  By adding ; Regression to the preceding command, we obtain the plot in 
Figure 13.9.  (You can also obtain this by selecting Display linear regression line in the Options 
page of the command builder.)  (In previous versions of LIMDEP, the regression equation would 
replace the title in the figure.  In this version, the title appears as a header and the regression equation 
is placed in the footer of the figure.) 
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Figure 13.9  Scatter Plot with Linear Regression 

 
13.6.6  Time Series Plots 
 
 Time series plots, that is, plots of variables against the date can be obtained by using DATES 
and PERIOD to set up the dating, then omitting the ; Lhs part of the PLOT command. When you 
omit the ; Lhs part of the command, it is assumed that this is a time series plot, and the adjacent points 
are automatically connected. The figure is also automatically labeled with the dates. The ; Fill 
specification discussed below is not necessary.  Figure 13.10 is a time series plot of the three 
macroeconomic price series for the data above.  Note the use of the ; Grid specification to improve the 
readability of the figure.  (See Section E4.3.5 for details on this specification.)  The command is 
 

DATES ; 1953 $ 
PERIOD ; 1953 – 2004 $ 

 PLOT  ; Rhs  = pn, pd, ps  
   ; Grid  
   ; Title  = Time Series Plot of Price Series  
   ; Yaxis  = Prices $ 
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Figure 13.10  Time Series Plot for Several Variables 

 
13.6.7  Plotting Several Variables Against One Variable 
 
 To plot several variables against a single one, just include more than one Rhs variable in the 
command.   The command is 
 
 PLOT   ; Lhs = variable on horizontal axis  
   ; Rhs = up to five variables to be plotted  
   ; … other options, such as ; Grid and ; Fill $ 
 
(Note that the command builder dialog box allows you to specify multiple variables.)  A different line 
style is used for each variable if you use ; Fill. (The time series plot above is an example in which the 
Lhs variable is the automatically supplied date.)  A different type of point is constructed for each if you 
are using a cross section. Generally, PLOT with ; Fill (see the next section) creates a figure with one 
or more line plots, joining segments at the points, but suppressing any symbols for the points.  The 
symbols (dots, stars, etc.) may be retained with ; Symbols. The ; Regression command is ignored if 
more than one variable is being plotted.  An example is shown in Figure 13.11: 
 
 PLOT   ; Rhs  = pn, pd, ps  
   ; Lhs  = year 
   ; Title  = Scatter Plot of Price Series  
   ; Yaxis  = Prices 
   ; Grid   
   ; Fill  
   ; Symbols $ 
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Figure 13.11  Multiple Plots in the Same Figure 

 
NOTE:  This is not a time series plot, in spite of the fact that year is the variable on the horizontal axis.  
Although at this point, LIMDEP does know that these are time series data, it does not know that ‘year’ 
is a date variable; year is just another variable in the data set.  If you omit the ; Lhs = variable 
specification in the command, LIMDEP will label the x axis ‘YEAR,’ but this is not with respect to a 
variable in your data set; it is the date labeling that you gave in your DATES command. Even if you 
did not have a variable named year in your data set, you can obtain a time series style plot with yearly 
observations, and labeled as such. 
 
13.6.8  Options for Scaling and Labeling the Figure 
 
Scaling 
 The limits for the vertical and horizontal axes are chosen automatically so that every point 
appears in the figure.  Boundaries are set by the ranges of the variables.  You can override these 
settings, however.  The options are as follows: 
 
 To set the limits for the horizontal axis use ; Endpoints = lower value, upper value 
 To set specific limits for the vertical axis use ; Limits = lower value, upper value 
 
HINT:  If you plot variables of very different magnitudes in the same figure, or if your series has 
outliers in it, the scaling convention that seeks to include every point in the graph may severely distort 
your figure.  Missing values will also severely distort your scatter plot. 
 
NOTE:  If the endpoints or limits that you specify push any points out of the figure – x or y values are 
outside the limits – then the specifications are ignored, and the original default values are used. 
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 For example, the top panel in Figure 13.12 is the same as Figure 13.9, produced by the 
command below without the specification of the endpoints and limits.  The lower panel shows the 
effect of expanding the limits 
 
 PLOT   ; Rhs = gasp  
   ; Lhs = g 
   ; Title = Gasoline Consumption vs. Price  
   ; Yaxis = Gas_Cons  
   ; Grid  
   ; Limits = 0,125         ? Set the vertical axis limits 
   ; Endpoints = 0,1.2 $    Set the horizontal axis limits 
 

 
 

 
Figure 13.12  Scatter Plots with Rescaled Axes 
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 The following describe some devices for changing the appearance of the figure, and creating 
particular types of graphs.  Some of these have been used in the examples above.  More extensive 
applications appear below. 
 
Grids and Lines in the Plotting Field 
  
It is sometimes helpful when plotting to put a grid in the figure.  This makes it easier to relate the points 
in the graph to the distances on the axes.  You may request a grid to be placed in the figure with 
 
   ; Grid   
 
This divides the screen into a grid of rectangles using dotted bars.  The option was used in the  
preceding examples.  You may also put horizontal and/or vertical lines in the figure at specific 
numerical benchmarks.  The syntax is 
 
   ; Spikes = up to five value(s) to put vertical lines at particular values 
   ; Bars   = up to five value(s) to put horizontal lines at particular values 
 
The vertical or horizontal line is drawn from axis to axis, the full width or height of the box.   The 
examples below use these devices to create different types of graphs. 
 
Connecting Points in the Plotting Field 
  
If you are plotting a function or a time series, it may also be useful to connect adjacent points.  To do 
so, add 
   ; Fill  
 
to the command.  One way you might use this device would be to draw a function by creating a set of 
equally spaced  values, then plotting the function of these values, connecting the points to create the 
continuous function.  
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Chapter 14: The Linear Regression Model 
 
14.1  Introduction 
 
 This chapter will detail estimation of the single equation, linear regression model 
 
   yi   =  xi1β1  +  xi2β2  +  ...  +  xiKβK  +  εi 

    =  xi′β  +  εi, i = 1,...,n. 
 
The full set of observations is denoted for present purposes as 
 
   y  =   Xβ  +  ε. 
 
The initial stochastic assumptions are the most restrictive for the linear model: 
 
   E[εi| X ]   =  0  =  E[εi] ∀ i      (zero mean) 

   Var[εi | X]   =  Var[εi]  =  σ2, ∀ i      (homoscedastic) 

   Cov[εi , εj | X] =  Cov[εi , εj ]  =  0  ∀ i ,j  (nonautocorrelation). 
 
14.2  Least Squares Regression 
 
 The basic command for estimating a linear regression model with least squares is 
 
 REGRESS ; Lhs = dependent variable 
                           ; Rhs = regressors $ 
 
The Rhs list may also include lagged variables and logs of variables.  This requests a linear ordinary 
least squares regression of the Lhs variable on the set of Rhs variables.  The standard output from the 
procedure is listed in the next section. 
 
NOTE:  Remember that LIMDEP does not automatically include a constant term in the equation.  If 
you want one, be sure to include one among the Rhs variables.   
 
 An example of the standard output for a linear regression appears below. 
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+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated Dec 13, 2007 at 08:34:51AM     | 
| LHS=LOGG     Mean                 =  -.2571288     | 
|              Standard deviation   =   .2384918     | 
| WTS=none     Number of observs.   =         52     | 
| Model size   Parameters           =          6     | 
|              Degrees of freedom   =         46     | 
| Residuals    Sum of squares       =   .1070036     | 
|              Standard error of e  =   .4823033E-01 | 
| Fit          R-squared            =   .9631123     | 
|              Adjusted R-squared   =   .9591028     | 
| Model test   F[  5,    46] (prob) = 240.21 (.0000) | 
| Diagnostic   Log likelihood       =   87.05475     | 
|              Restricted(b=0)      =   1.257919     | 
|              Chi-sq [  5]  (prob) = 171.59 (.0000) | 
| Info criter. LogAmemiya Prd. Crt. =  -5.954335     | 
|              Akaike Info. Criter. =  -5.955367     | 
| Autocorrel   Durbin-Watson Stat.  =   .2512498     | 
|              Rho = cor[e,e(-1)]   =   .8743751     | 
+----------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     -11.5997167     1.48817387    -7.795   .0000 
 LOGPG         -.03438256      .04201503     -.818   .4174    3.72930296 
 LOGINC        1.31596815      .14198287     9.268   .0000    9.67487347 
 LOGPNC        -.11963708      .20384305     -.587   .5601    4.38036655 
 LOGPUC         .03754405      .09814077      .383   .7038    4.10544880 
 LOGPPT        -.21513953      .11655849    -1.846   .0714    4.14194132 
 
The statistics reported are as follows: 
 
 • The model framework – linear least squares regression 

 • The date and time when the estimates were computed 

 • Name of the dependent variable 

 • Mean of Lhs variable  y  =  (1/n)Σiyi, 

 • Standard deviation of Lhs variable  =  {[1/(n-1)] { 1=ΣN
i (yi - y )2}1/2 

 • Name of  the weighting variable if one was specified 
 • Number of observations    =  n, 

 • Number of parameters in regression  =  K, 
 • Degrees of freedom     =  n-K, 

 • Sum of squared residuals    e′e  =  2 2
1 1

ˆ( ) ( )n n
i i i ii i

y y y
= =

′− = −∑ ∑ x b  

 • Standard error of e  s =  /( )n K−e'e  
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 • R2  R2  =  1  -  e′e/ 2
1( )= ′Σ − x bN

i i iy  

 • Adjusted R2  2R  =  1 – (n-1)/(n-K)[1 – R2] 

 • F statistic  F[K-1,n-K]  =  [R2/(K-1)] / [(1-R2)/(n-K)] 

 • Prob value for F  ProbF =  Prob[F(K-1,n-k)] > observed F 

 • Log likelihood  logL =  -n/2[1 + log2π + log(e′e/n)] 

 • Restricted log likelihood  logL0 =  -n/2[1 + log2π + log( 2
1(1/ ) ( )n

i in y y=Σ − )] 

 • Chi squared[K-1]  χ2 =  2(logL – logL0) 

 • Prob value for chi squared  Probχ2 =  Prob[χ2(K-1)] > observed chi squared 

 • Log Amemiya Prediction Criterion =  log[s2 (1 + K/n)] 

 • Akaike Information Criterion AIC =  (logL – K)/(n/2)  -  (1 + log2π) 

 • Durbin-Watson  dw =  2 2
2 1 1( ) /T T

t t t t te e e= − =Σ − Σ  

 • Autocorrelation  r =  1 – dw/2. 
 
The R2 and related statistics are problematic if your regression does not contain a constant term.  For 
the linear model, LIMDEP will check your specification, and issue a warning in the output . Finally, the 
main table of regression results contains, for each Rhs variable in the regression: 
 
 • Name of the variable, 

 • Coefficient bk, 

 • Standard error of coefficient estimate =  sek = {[s2(X′X)-1]kk}1/2. 

 • t ratio for the coefficient estimate tk = bk / sek 

 • Significance level of each t ratio based on the t distribution with [n-K] degrees of 

  freedom = p value = Prob[t(n-K)] > observed tk 

 • Sample mean of the variable. 
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14.2.1  Retrievable Results 
 
 The retrievable results which are saved automatically by the REGRESS command are 
 
 Matrices: b = slope vector = (X′X)-1 X′y 
   varb = estimated covariance matrix = [e′e/(n-K)](X′X) -1 
 
 Scalars: ssqrd  = e′e/(n-K) 
   rsqrd = R2 
   s = s 
   sumsqdev = sum of squared deviations, e′e 
   rho = autocorrelation coefficient, r 
   degfrdm = n-K 
   sy = sample standard deviation of Lhs variable 
   ybar = sample mean of Lhs variable 
   kreg = number of independent variables, K 
   nreg = number of observations used to compute the regression, n 
       Note, this may differ from the sample size if you have skipped 
       observations containing missing values. 
   logl = log likelihood 
   exitcode = 0.0 unless the data were collinear or OLS gives a perfect fit 
 
 Last Model: b_name     where the names are the Rhs variables.  
       (See WALD in Section R11.5.2) 
 
14.2.2  Predictions and Residuals 
 
 To obtain a list of the residuals and fitted values from a linear regression model, add the 
specification 
   ; List 
 
to the command.  The residuals and predicted values may be kept in your data area by using the 
specifications 
   ; Res = name for residuals 
and   ; Keep = name for predicted values 
 
 If you are not using the full sample or all of the rows of your data matrix, some of the cells in 
these columns will be marked as missing.  If you have data on the regressors but not the dependent 
variable, you can use  
 
   ; Fill 
 
to obtain predictions for the missing data.  Remember, though, that the prediction is -999 (missing) for 
any observation for which any of the xs are missing. 
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 The following commands could be used for computing forecast standard errors. This routine 
uses the matrices b (the coefficients) and varb (estimated covariance matrix) kept by the regression and 
scalar ssqrd which is s-squared from the regression.  The forecast standard errors are the values 
computed inside the Sqr function in the CREATE  command. 
 
 NAMELIST ; x = the set of regressors  $ 

REGRESS  ; Lhs = y ; Rhs = x ; Keep = yhat  $ 
CALC  ; ct = Ttb(.975,degfrdm)  $ 
CREATE  ; lowerbnd  = yhat -  ct * Sqr(ssqrd + Qfr(x,varb)) 

   ; upperbnd = yhat + ct * Sqr(ssqrd + Qfr(x,varb))  $ 
 
 A plot of the residuals from your regression can be requested by adding  
 
   ; Plot 
 
to the command.  Residuals are plotted against observation number (i.e., simply listed).  If you would 
like to plot them against another variable, change the preceding to 
 
   ; Plot(variable name) 
 
These variables can be any existing variables.  They need not have been used in the regression.  The 
residuals are sorted according to the variable you name and plotted against it.  The plot will show the 
residuals graphed against either the observation number, the date for time series data, or the variable 
you specify using the ; Plot(variable) option described above.  
 

• If there are outliers in the data, this may severely cramp the figure, since the vertical axis is 
scaled so that every observation will appear. 

 
• The mean residual bar may not appear at zero because the residuals may not have zero mean. 

They will not if you do not have a constant term in your regression or if you are plotting two 
stage least squares residuals.  Since 0.0 will generally not be the midpoint between the high 
and low residual, the zero bar will not be in the center of your screen even when you do have 
a constant term in the model. 

 
14.2.3  Robust Covariance Matrix Estimation 
 
 REGRESS will compute robust estimators for the covariance matrix of the least squares 
estimator for both heteroscedastic and autocorrelated disturbances.  Although OLS is generally quite 
robust, some researchers have advocated other estimators for finite sample purposes.  REGRESS can 
also be used to compute the least absolute deviations estimator. 
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Heteroscedasticity – The White Estimator 
 
 For the heteroscedasticity corrected (White) estimator, use 
 
   ; Heteroscedasticity 
 
in the REGRESS command.  The White estimator is 
 

   Est.Var[b]  =  (X′X)-1 × '
1

2
ii

n
i ie xx∑ =

 × (X′X)-1 
 
Autocorrelation – The Newey-West Estimator 
 
 The Newey-West robust estimator for the covariance matrix of the least squares estimator in 
the presence of autocorrelation is 
 

 Est.Var[b]  =  (X′X)-1 × '
1

2
tt

T
t te xx∑ =

 × (X′X)-1 

        +  (X′X)-1 × [ ]

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
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You (the analyst) must provide the value of L, the number of lags for which the estimator is 
computed.  Then, request this estimator by adding 
 
   ; Pds = ... the value for L 
 
to the REGRESS command. 
 
14.2.4  Restricted Least Squares  
 
 This section describes procedures for estimating the restricted regression model,   
 
   y  =  Xβ  +  e 
subject to  Rβ  =  q. 
 
R is a J×K matrix assumed to be of full row rank.  That is, we impose J linearly independent 
restrictions.  They may be equality restrictions, inequality restrictions, or a mix of the two.  Inequality 
restricted least squares is handled by a quadratic programming method that is documented in the full 
manual. 
 The constrained ordinary least squares estimator is 
 
   bc =  b – (X′X)-1R′[R(X′X)-1R′]-1  (Rb-q) 

where   b  =  (X′X)-1X′y 
 
  



Chapter 14: The Linear Regression Model  192 

is the unrestricted least squares estimator.  The estimator of the variance of the constrained estimator is 
   Est.Var[bc] = s²(X′X)-1 - s²(X′X)-1R′[R(X′X)-1R′]-1R(X′X)-1. 

where   s2  =  (y - X bc)′ (y - X bc)/(n-K+J). 
 
The parameter vector is written b = b1, b2, ..., bK where the correspondence is to your Rhs list of 
variables, including the constant, one if it is included. The restrictions are then imposed algebraically 
with 
   ; CLS:  linear function = value ,  
    linear function = value , ... 
 
For example, the following imposes constant returns to scale (capital coefficient + labor coefficient = 
1) on a (hypothetical) production function: 
 
 CALC  ; Ran (123457) $ 
 SAMPLE ; 1 – 100 $ 

CREATE ; l  = Rnu(1,3) 
  ; k = Rnu(.5,2)  
  ; y = Exp(3 + .6 * Log(l) + .4 * Log(k) + Rnn(0,4)) $ 
REGRESS ; Lhs = Log(y) ; Rhs = one,log(l),log(k) 
  ; CLS: b(2) + b(3) = 1 $ 

 
The following results for restricted least squares are produced.  (The CALC function sets the seed for 
the random number generator at a specific value, so you can replicate the results.) 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| LHS=LOGY     Mean                 =   3.618745     | 
|              Standard deviation   =   4.069505     | 
| WTS=none     Number of observs.   =        100     | 
| Model size   Parameters           =          3     | 
|              Degrees of freedom   =         97     | 
| Residuals    Sum of squares       =   1624.362     | 
|              Standard error of e  =   4.092187     | 
| Fit          R-squared            =   .9249439E-02 | 
|              Adjusted R-squared   =  -.1117841E-01 | 
| Model test   F[  2,    97] (prob) =    .45 (.6372) | 
| Diagnostic   Log likelihood       =  -281.2789     | 
|              Restricted(b=0)      =  -281.7435     | 
|              Chi-sq [  2]  (prob) =    .93 (.6284) | 
+----------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant      3.20014797     1.06375203     3.008   .0033 
 LOGL           .80563172     1.40618551      .573   .5680     .68423500 
 LOGK          -.85445443     1.14222281     -.748   .4562     .15523890 
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+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| LHS=LOGY     Mean                 =   3.618745     | 
|              Standard deviation   =   4.069505     | 
| WTS=none     Number of observs.   =        100     | 
| Model size   Parameters           =          2     | 
|              Degrees of freedom   =         98     | 
| Residuals    Sum of squares       =   1629.865     | 
|              Standard error of e  =   4.078146     | 
| Fit          R-squared            =   .5892627E-02 | 
|              Adjusted R-squared   =  -.4251326E-02 | 
| Model test   F[  1,    98] (prob) =    .58 (.4478) | 
| Diagnostic   Log likelihood       =  -281.4480     | 
|              Restricted(b=0)      =  -281.7435     | 
|              Chi-sq [  1]  (prob) =    .59 (.4420) | 
| Info criter. LogAmemiya Prd. Crt. =   2.831088     | 
|              Akaike Info. Criter. =   2.831082     | 
| Autocorrel   Durbin-Watson Stat.  =  2.0643771     | 
|              Rho = cor[e,e(-1)]   =  -.0321885     | 
| Restrictns.  F[  1,    97] (prob) =    .33 (.5678) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant      2.70416555      .61679283     4.384   .0000 
 LOGL          1.43543661      .87473554     1.641   .1040     .68423500 
 LOGK          -.43543661      .87473554     -.498   .6198     .15523890 
 
You may impose as many restrictions as you wish with this estimator; simply separate the 
restrictions with commas. 
 
14.2.5  Hypothesis Tests in the Linear Model 
 
 The REGRESS and MATRIX commands can be used to test a variety of hypotheses.   
 
 The F statistic for testing the set of  J restrictions  
 
   H0: Rβ    =  q 
 
is   F[J,n-K]  =   )Rb – q)′[s²R(X′X)-1R′]-1(Rb – q)/J   

         =  [(e*′e* - e′e)/J] / [e′e/(n-K)] 
 
where the subscript ‘*’ indicates the sum of squares with the restrictions imposed and b is the 
unrestricted ordinary least squares estimator.  This statistic is included in the diagnostic table whenever 
you use ; CLS: to impose linear restrictions. 
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 Consider an example, where now we make two restrictions hold as equalities: 
 

SAMPLE  ; 1 - 500 $ 
CALC  ; Ran(123457) $ 
CREATE ; l = Rnu(1,3)  ; k = Rnu(.5,2) ; ll = Log(l) ; lk = Log(k)  
  ; lk2 = lk*lk ; ll2 = ll*ll ; lkl = ll*lk  
  ; ly = 3 + .6*ll + .4*lk - .05*ll2 - .15*lk2 + .2*lkl + Rnn(0,4) $ 
REGRESS ; Lhs = ly ; Rhs = one, ll, lk, ll2, lk2, lkl 

   ; CLS: b(2)+b(3) = 1, b(4)+b(5)+b(6) = 0 $ 
 
+----------------------------------------------------+ 
| Ordinary    least squares regression               | 
| Model was estimated Dec 13, 2007 at 09:30:11AM     | 
| LHS=LY       Mean                 =   3.494703     | 
|              Standard deviation   =   4.036799     | 
| WTS=none     Number of observs.   =        500     | 
| Model size   Parameters           =          6     | 
|              Degrees of freedom   =        494     | 
| Residuals    Sum of squares       =   8108.399     | 
|              Standard error of e  =   4.051390     | 
| Fit          R-squared            =   .2850337E-02 | 
|              Adjusted R-squared   =  -.7242271E-02 | 
| Model test   F[  5,   494] (prob) =    .28 (.9227) | 
| Diagnostic   Log likelihood       =  -1405.981     | 
|              Restricted(b=0)      =  -1406.695     | 
|              Chi-sq [  5]  (prob) =   1.43 (.9213) | 
| Info criter. LogAmemiya Prd. Crt. =   2.810049     | 
|              Akaike Info. Criter. =   2.810048     | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    3.40853548       .76285798     4.468   .0000 
 LL      |    -.09422513      2.56561134     -.037   .9707    .66349271 
 LK      |    -.05073476      1.16722384     -.043   .9653    .16198512 
 LL2     |     .54115572      2.06524209      .262   .7934    .53150388 
 LK2     |    -.70218471      1.38385662     -.507   .6121    .16242739 
 LKL     |    -.15810258      1.55538131     -.102   .9191    .10542795 
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+----------------------------------------------------+ 
| Linearly restricted regression                     | 
| Ordinary    least squares regression               | 
| Model was estimated Dec 13, 2007 at 09:30:11AM     | 
| LHS=LY       Mean                 =   3.494703     | 
|              Standard deviation   =   4.036799     | 
| WTS=none     Number of observs.   =        500     | 
| Model size   Parameters           =          4     | 
|              Degrees of freedom   =        496     | 
| Residuals    Sum of squares       =   8123.764     | 
|              Standard error of e  =   4.047043     | 
| Fit          R-squared            =   .9607608E-03 | 
|              Adjusted R-squared   =  -.5081815E-02 | 
| Model test   F[  3,   496] (prob) =    .16 (.9239) | 
| Diagnostic   Log likelihood       =  -1406.454     | 
|              Restricted(b=0)      =  -1406.695     | 
|              Chi-sq [  3]  (prob) =    .48 (.9231) | 
| Info criter. LogAmemiya Prd. Crt. =   2.803941     | 
|              Akaike Info. Criter. =   2.803941     | 
| Restrictns.  F[  2,   494] (prob) =    .47 (.6265) | 
| Not using OLS or no constant. Rsqd & F may be < 0. | 
| Note, with restrictions imposed,  Rsqd may be < 0. | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
 Constant|    2.87115229       .26637740    10.779   .0000 
 LL      |    1.16811718       .94623345     1.234   .2176    .66349271 
 LK      |    -.16811718       .94623345     -.178   .8591    .16198512 
 LL2     |    -.33357188      1.05355989     -.317   .7517    .53150388 
 LK2     |     .31357011       .76300427      .411   .6813    .16242739 
 LKL     |     .02000176      1.26678767      .016   .9874    .10542795 
 
14.3  Estimating Models with Heteroscedasticity 
 
 For the model in which ωi is either known or has been estimated already, the weighted least 
squares estimator is requested with 
 
 REGRESS ; Lhs = ... ; Rhs = ... ; Wts = weighting variable $ 
 
In computing weighted estimators, we use the formulas: 
 
 n  =  the current sample size, after skipping any missing observations, 

 wi  =  (n/ΣiWi)Wi    =   Scale × Wi  (note that Σiwi = n), 

 bw    =  [Σiwixixi′]-1[Σiwixiyi], 

 sw
2  =  Σiwi(yi - xi′bw)2, 

 Est.Var.[bw] =  [sw
2/(n-K)][ Σiwixixi′]-1, 

 
where Wi is your weighting variable.  Your original weighting variable is not modified (scaled) during 
this computation.  The scale factor is computed separately and carried through the computations. 
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NOTE:  Apart from the scaling, your weighting variable is the reciprocal of the individual specific 
variance, not the standard deviation, and not the reciprocal of the standard deviation. This construction 
is used to maintain consistency with the other models in LIMDEP. 
 
For example, consider the common case, Var[εi]  =  σ2zi

2.  For this case, you would use 
 
 CREATE ; wt  =  1 / z ^ 2 $ 
 REGRESS ; Lhs = ... ; Rhs = ... ; Wts = wt $  
 
14.4  Correcting for First Order Autocorrelation 
 
 There are numerous procedures for estimating a linear regression with first order 
autoregressive disturbances, 
 
    yt  =  β′xt  +  εt, 
    εt  =  ρεt-1 +  ut . 
 
The simplest form of the command is  
 
 REGRESS  ; Lhs = ... ; Rhs = ... ; AR1 
  
The default estimator is the iterative Prais-Winsten algorithm.  That is, the first observation is not 
discarded; the full GLS transformation is used.  This is a repeated two step estimator: 
 
Step 1. OLS regression of y on X.  Then, estimate ρ with r  =  1  -  ½ × Durbin-Watson statistic. 
 
Step 2. OLS regression of    y1* =  (1 - r2)1/2 y1 and   y
 on the same transformation of xt.   

t*  =  yt  -  ryt-1, t = 2,...,T 

 
After Step 2, r is recomputed based on the GLS estimator, and the regression is repeated.  This iteration 
continues until the change in r from one iteration to the next is less than 0.0001. The covariance matrix 
for the slope estimators is the usual OLS estimator, s2(X*′X*)-1 based on the transformed data.  The 
asymptotic variance for r is estimated by (1 - r2)/(T-1).  Results and diagnostics are presented for both 
transformed and untransformed models.   
 
NOTE:  If no other specification is given, the estimator is allowed to iterate to convergence, which 
usually occurs after a small number of iterations.  The updated value of r at each iteration is computed 
from the Durbin-Watson statistic based on the most recent GLS coefficients estimates. Iterating these 
estimators to convergence does not produce a maximum likelihood estimator. 
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 Other estimation procedures are requested by adding them to the ; AR1 request: 
 
   ; AR1 ; Alg = Corc  
  
requests the iterative Cochrane-Orcutt estimator.  The first observation is skipped, and the 
pseudo-difference defined above is applied to the remaining observations.  (We do not recommend this 
estimator, as it needlessly discards the information contained in the first observation, with no 
accompanying gain in speed, efficiency, or any statistical properties.)  Alternatively, 
 
   ; AR1 ; Alg = MLE  
  
requests the maximum likelihood estimator of Beach and MacKinnon (1978).  In this model, the MLE 
is not GLS because in addition to the generalized sum of squares, the log likelihood function contains 
an extra term, the Jacobian for the first observation, ½log(1 - ρ2).  This term becomes deminimus as 
T→∞, so in a large sample, the MLE and the other GLS estimators should not differ substantially.   
 To use a grid search for the autocorrelation coefficient, use 
 
    ; AR1 ; Alg  = grid(lower, upper, step)  
  
This requests a simple grid search over the indicated range with a stepsize as given.  The method used 
for the grid search is the default Prais-Winsten estimator.  To request the Cochrane-Orcutt estimator, 
instead, use 
 
   ; AR1 ; Alg   = grid(lower, upper, step, 1) 
  
(As before, the Cochrane-Orcutt estimator is inferior to the MLE or Prais-Winsten estimator.)  You can 
request a particular value for ρ by a simple request: 
  
   ; AR1 ; Rho  =  specific value  
 
When you use this form of the model command, the output will still contain an estimated standard 
error for the estimate of ρ, as if it had been estimated.  The number of iterations allowed for the first 
three estimators can be controlled with the specification  
 
   ; Maxit  = maximum 
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14.5  Two Stage Least Squares  
 
    The essential command fitting linear models by instrumental variables is 
 
 2SLS   ; Lhs = dependent variable  
   ; Rhs = list of right hand side variables (all)  
   ; Inst =  list of all instrumental variables, including one  $  
 
 The command for computing instrumental variables or two stage least squares estimates differs 
from that for ordinary least squares (REGRESS) only in a list of instrumental variables. All options are 
the same as for the linear regression model – see Chapter E5 for details.  This includes the 
specifications of ; AR1 disturbances, ; Plot for residuals, etc.  The list of instruments may include any 
variables existing in the data set. 
 
HINT:  If your equation (Rhs) includes a constant term, one, then you should also include one in the 
list of instrumental variables.  Indeed, it will often be the case that Inst should include one even if the 
Rhs does not. 
 
 Computations use the standard results for two stage least  squares.  (See, e.g., Greene (2008)  
There are no degrees of freedom corrections for variance estimators when this estimator is used.  All 
results are asymptotic, and degrees of freedom corrections do not produce unbiased estimators in this 
context.  Thus, 

   σ̂ 2   =  (1/n)Σi(yi - β̂ ′xi)2 . 
  
This is consistent with most published sources, but (curiously enough) inconsistent with most other 
commercially available computer programs.  It will show up as a proportional difference in all 
estimated standard errors.  If you would prefer that the degrees of freedom correction be made, add the 
specification 
   ; Dfc 
 
to your 2SLS command. 
 
14.5.1  Robust Estimation of the 2SLS Covariance Matrix 
 
 The White and Newey-West robust estimators of the covariance matrix of the least squares 
estimator described in Section 14.2.3 can also be obtained for 2SLS by requesting it in the same 
fashion.  All necessary corrections for the use of the instrumental variables are made in the 
computation.   
 
14.5.2  Model Output for the 2SLS Command 
 
 The output for the 2SLS command is identical to that for REGRESS.  The only indication that 
2SLS, rather than OLS, was used in estimating the model will be a line at the top of the model results 
indicating that two stage least squares was used in the computations and a listing of the instrumental 
variables that will appear above the coefficient estimates.  All retrievable results and methods for 
testing hypotheses are likewise identical. 
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14.6  Panel Data Models 
 
 This chapter will detail estimation of linear models for panel data.  The essential structure for 
most of them is an ‘effects’ model, 
 
   yit  =  αi  +  γt  +  β′xit  +  εit 
 
in which variation across groups (individuals) or time is captured in simple shifts of the regression 
function – i.e., changes in the intercepts.  These models are the fixed effects (FE) and random effects 
(RE) models. 
 
 
 The commands for estimation of these models are variants of the basic structure 
 
 REGRESS ; Lhs = y ; Rhs = x...  
   ; Panel       
   ; Str = the name of a stratification variable  
  or ; Pds = specification of the number of periods, variable or fixed 
   ; ... other options $ 
 
14.6.1  Data Arrangement and Setup 
 
 Your data are assumed to consist of variables: 
 
   yit, x1it, x2it, ..., xKit, Iit,  i = 1,...,N, t = 1,...,Ti, 

   yit =  dependent variable, 
   xit =  set of independent variables, 
   Iit =  stratification indicator, 
   K   =  number of regressors, not including one, 
   N   =  number of groups, 
   Ti  =  number of observations in group ‘i.’ 
 
The data set for all panel data models will normally consist of multiple observations, denoted            t = 
1,...,Ti, on each of i = 1,...,N observation units, or ‘groups.’  A typical data set would include 
observations on several persons or countries each observed at several points in time, Ti, for each 
individual.  In the following, we use ‘t’ to symbolize ‘time’ purely for convenience.  The panel could 
consist of N cross sections observed at different locations or N time series drawn at different times, or, 
most commonly, a cross section of N time series, each of length Ti.  The estimation routines are 
structured to accommodate large values of N, such as in the national longitudinal data sets, with Ti 
being as large or small as dictated by the study but not directly relevant to the internal capacity of the 
estimator 
 We define a balanced panel to be one in which Ti is the same for all i, and, correspondingly, an 
unbalanced panel is one in which the group sizes may be different across i. 
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NOTE:  Panels are never required to be ‘balanced.’  That is, the number of time observations, Ti may 
vary with ‘i.’   The computation of the panel data estimators is neither simpler nor harder with constant 
Ti.  No distinction is made internally.  There are some theoretical complications, though.   
 
Data Arrangement 
 
 Data for the panel data estimators in LIMDEP are assumed to be arranged contiguously in the 
data set.  Logically, you will have  
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and likewise for the data on y, the dependent variable.  When you first read the data into your program, 
you should treat them as a cross section with Nobs observations.  The partitioning of the data for panel 
data estimators is done at estimation time.  
 
NOTE:  Missing data are handled automatically by this estimator.  You need not make any changes in 
the current sample to accommodate missing values – they will be bypassed automatically.  Group sizes 
and all computations are obtained using only the complete observations.  Whether or not you have used 
SKIP to manage missing values, this estimator will correctly arrange the complete and incomplete 
observations. 
 
Specifying the Stratification for Balanced Panels 
 
 If you have a balanced panel, that is the same number of observations for each group, you can 
use 
   ; Pds = T  (where you give the specific value of T) 
 
to define the panel.  There is no need for a stratification variable.  For example, in one of our 
applications, we use a balanced panel data set with N = 10 firms and T = 20 years.  The regression 
command is 
 
 REGRESS ; Lhs = i ; Rhs = one,f,c ; Panel ; Pds = 20 $ 
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Specifying the Stratification for Unbalanced Panels 
 
 If you will be using unbalanced panels, you may use a stratification variable. The variable is 
given in the 
 
   ; Str = group 
 
part of the command.  The stratification variable, group, may be any indicator that distinguishes the 
groups – that is, a firm number, any kind of identification number, a telephone number, etc. 
 For example, the following could be used for our 100 observation panel mentioned earlier 
 
 REGRESS ; Lhs = i 
   ; Rhs = one,f,c 
   ; Str = firm  
   ; Panel $ 
 
Specifying the Stratification with a Count Variable 
 
 This and all other panel data estimators in LIMDEP use a count variable to specify the 
stratification in a panel.  Your panel is specified with 
 
   ; Pds = a specific number of periods 
 
as discussed above, or with 
 
   ; Pds = a variable which gives the group counts 
 
For an example of such a variable, suppose a panel consists of three, then four, then two observations. 
The nine values taken by the variable, say ni, would be 3,3,3,4,4,4,4,2,2.  The panel specification 
would be 
 
   ; Pds = ni 
 
You may also use this kind of stratification indicator with the linear regression models discussed here. 
 
The Stratification Variable 
 
 LIMDEP inspects your stratification variable before estimation of these models begins.  If you 
have specified a balanced panel with ; Pds = T or if your stratification variable is not a consecutive 
sequence of integers 1,2,...,N, then a new stratification variable called _stratum is automatically created 
for you.  The new variable will consist of the consecutive integers. Thereafter, for the same panel, you 
can use this created variable for your indicator.  Suppose, for example, you have a panel data set 
indicated by postal codes, which are not sorted in your data set (though we assume that all observations 
for a particular postal code appear together).   
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 Then, 
 
 REGRESS ; ... ; Str = postcode  $ 
 
would automatically create the new stratification variable.  Obviously, it is redundant for current 
purposes, but you might have use for it later.  Looking ahead, suppose you were going to fit a linear 
regression model to one variable in your panel, and a probit model to a different one.  For the first one, 
you can use your postal code to specify the panel.  But, the probit model needs a count variable. The 
next section shows how to obtain this variable. 
 
The Count Variable 
 
 In addition to the stratification variable, _stratum, this estimator also always creates a count 
variable named _groupti.  If you have a balanced panel, the count variable will just equal the number of 
periods.  But, if your panel is unbalanced, _groupti is exactly what you will need for the other panel 
data estimators in LIMDEP. 
 
Using REGRESS to Create Stratification and Count Variables 
 
 The preceding suggests an extremely helpful tool that should be useful elsewhere in LIMDEP, 
so much so that a special form has been provided for you to use.  If you have a stratification variable 
that identifies the group that an individual is in, you will need a count variable constructed from this in 
order to use the other panel data estimators in LIMDEP. The preceding suggests that computing a panel 
data based linear regression might be a good way to create the variable, so a method is set up whereby 
you can use REGRESS without actually computing the regression (which you might not have any 
interest in) to compute this variable.  The method is to use the following command: 
 
 REGRESS  ; Lhs = one  ; Rhs = one  
   ; Str = the stratification variable ; Panel $ 
 
Notice that this attempts to regress one on one, which is not a regression at all.  LIMDEP will notice 
this, and respond to such a command with results such as the following: 
 
===================================================== 
| No variables specified. Stratification and count  | 
| variables were created. Ngroup =        6         | 
| Full sample with missing data  =       20         | 
| Stratification variable is       _STRATUM         | 
| Count variable for N(i) is       _GROUPTI         | 
===================================================== 
 
A variable id with the results of the command are shown in Figure 14.1. 
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14.6.2  One Way Fixed and Random Effects Models 
 
 The next several sections consider formulation and estimation of one way common effects 
models, 
   yit  =  αi + β′xit + εit. 
 
The fixed effects model is 
 
   yit  = α1d1it + α2d2it + ... + β′xit + εit 

        = αi + β′xit + εit, 

where   E[εit|Xi] = 0, Var[εit|Xi] = σ2, Cov[εit,εjs|Xi,Xj] = 0 for all i,j, 

   Cov[αi,xit] ≠ 0. 
 
The efficient estimator for this model in the base case is least squares.  The random effects model is 
 
   yit = α + β′xit + εit + ui 

where   E[ui] = 0,  Var[ui] = σu
2  Cov[εit,ui] = 0. 

   Var[εit + ui]  =  σ2 = σε
2  + σu

2 . 
 

 
Figure 14.1  Internally Created Stratification and Count Variables 
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For a given i, the disturbances in different periods are correlated because of their common 
component, ui, 
   Corr[εit + ui,εis + ui] = ρ = σu

2 / σ2. 
  
The efficient estimator is generalized least squares.  Before considering the various different 
specifications of the two models, we describe two standard devices for distinguishing which seems to 
be the more appropriate model for a given data set. 
 
Specification Tests for the One Factor Models 
 
 Breusch and Pagan’s Lagrange multiplier statistic, 
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is used to test the null hypothesis that there are no group effects in the random effects model.  
Arguably, a rejection of the null hypothesis is as likely to be due to the presence of fixed effects. The 
statistic is computed from the ordinary least squares residuals from a pooled regression. Large values 
of LM favor the effects model over the classical model with no common effects.   
 A second statistic is Hausman’s chi squared statistic for testing whether the GLS estimator is 
an appropriate alternative to the LSDV estimator.  Computation of the Hausman statistic requires 
estimates of both the random and fixed effects models.  The statistic is 

   H  =  (β
∧

fgls - blsdv )′{Est.Var[blsdv] - Est.Var[β
∧

fgls]}-1(β
∧

fgls - blsdv). 

 
Large values of H weigh in favor of the fixed effects model.  See Greene (2008) for details.  Note 
that in some data sets, H cannot be computed because the difference of the two covariance matrices 
is not positive definite.  (The algebra involved does not guarantee this.)  Some authors suggest 
computing a generalized inverse in such a case, which will force the issue. But, it will not produce an 
appropriate test statistic.  The better strategy in such a case is to take the difference between the two 
estimators to be random variation, which would favor the random effects estimator. 
 These two statistics are presented as part of the results when you fit both the fixed effects 
and random effects models.  The REGRESS command can be stated to request specifically either of 
the two.  But, if you do not specify either in particular, LIMDEP fits both, and near the end of the 
voluminous output, presents a table such as the following, which contains the LM and H statistics. 
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+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .322976D+04  | 
|             Var[u]              =   .296782D+04  | 
|             Corr[v(i,t),v(i,s)] =   .478868      | 
| Lagrange Multiplier Test vs. Model (3) =  188.08 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Fixed vs. Random Effects (Hausman)     =    3.17 | 
| ( 2 df, prob value =  .205357)                   | 
| (High (low) values of H favor FEM (REM).)        | 
| Reestimated using GLS coefficients:              | 
|  Original:  Var[e]              =   .141468D+05  | 
|             Var[u]              =   .325318D+05  | 
|             Sum of Squares          .572940D+06  | 
|             R-squared               .747284D+00  | 
+--------------------------------------------------+ 
 
HINT:  Large values of the Hausman statistic argue in favor of the fixed effects model over the 
random effects model.  Large values of the LM statistic argue in favor of one of the one factor models 
against the classical regression with no group specific effects.  A large value of the LM statistic in the 
presence of a small Hausman statistic (as in our application) argues in favor of the random effects 
model. 
 
Commands for One Factor Common Effects Models 
 
 The basic command for estimation of the fixed effects model is 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Str = stratification or ; Pds = count (variable) 
   ; Panel ; Fixed Effects $ 
The command for random effects is 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Str = stratification or ; Pds = count (variable) 
   ; Panel ; Random Effects $ 
 
If the last line specifies only ; Panel, and neither fixed nor random effects, then both models are fit.  
(When you fit a random effects model, the fixed effects regression may be computed in the background 
without reporting the results, in order to use the estimates to compute the variance components.) 
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14.6.3  One Way Fixed Effects Models 
 
 The two models estimated with this program are ‘one way’ or ‘one factor’ designs of the form 
   yit  =  µi  +  β′xit  +  εit 
 
where εit is a classical disturbance with E[εit] = 0 and Var[εit] = σε

2.  In the fixed effects model, µi is a 
separate constant term for each unit.  Thus, the model may be written 
 
   yit  = α1d1it + α2d2it + ... + β′xit + εit 

        = αi + β′xit + εit, 
 
where the αis are individual specific constants, and the djs are group specific dummy variables which 
equal one only when j = i.  The fixed effects model is a classical regression model.  The complication 
for the least squares procedure is that N may be very large so that the usual formulas for computing 
least squares coefficients are cumbersome (or impossible) to apply.  The model may be estimated in a 
simpler form by exploiting the algebra of least squares.  This model adds the covariates xit to the 
‘model’ of the previous section. 
 
Commands for One Way Fixed Effects Models 
 
 To invoke this procedure, use the command 
 
 REGRESS ; Lhs = y  
   ; Rhs = list of regressors 
   ; Str = stratification variable or ; Pds = number of periods 
   ; Panel    
   ; Fixed Effects $ 
 
You need not include one among your regressors.  The constant is placed in the regression 
automatically when it is needed. You may also use: 
 
   ; Output = 2  
 
to list fixed effects in an output file.  This will also produce estimated standard errors for the fixed 
effects.  If the number of groups is large, the amount of output can be very large.    
 
Standard options for residuals and fitted values, include the following.  All of 
 
   ; List     to display residuals and fitted values 
    ; Keep = name to retain predictions 
    ; Res  = name to retain residuals 
    ; Var  = a submatrix of the parameter VC matrix 
    ; Fill     (missing observations) 
    ; Wts  = weighting variable 
    ; Printvc 
 
are available as usual.  If your stratification indicators are set up properly for out of sample 
observations, ; Fill will allow you to extrapolate outside the estimation sample. 
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WARNING:  If you do not have a stratification indicator already in use, ; Fill will not work.  The 
_stratum variable is set up only for the estimation sample.  Thus, with ; Pds = T, you cannot 
extrapolate outside the sample. 
 
 Two full sets of estimates are computed by this estimator: 
 

1. Constrained Least Squares Regression:  The fixed effects model above with all of the 
individual specific constants assumed equal is yit = α+β′xit+εit. This model is estimated by 
simple ordinary least squares.  It is reported as ‘OLS Without Group Dummy Variables.’ 

 
2. Least Squares Dummy Variable:  The fixed effects model with individual specific 

constant terms is estimated by partitioned ordinary least squares.  For the one factor models, 
we  formulate this model with N group specific constants and no overall constant. 

 
NOTE:  If you have time invariant regressors, such as sex or region, you cannot compute the fixed 
effects estimator.  (The fixed effects estimator requires that there be within group variation in all 
variables for at least some groups.)   In this case, you should use ; Random in your command. 
 
Program Output for One Way Fixed Effects Models  
 
 For purposes of the discussion, define the four models: 
  
 Model   1    yit = α  +              εit   (no group effects or xs), 
 Model   2    yit = αi +              εit (group dummies only), 
 Model   3    yit = α  + β′xit  + εit  (regressors only), 
 Model   4    yit = αi + β′xit  + εit (xs and group effects). 
 
Output from this program, in the order in which it will appear, is as follows: 
 

1. Ordinary least squares regression of y on a single constant and the regressors, x1,...,xK.  These K 
variables do not include one.  This is Model 3 above.  Output consists of the standard results 
for least squares regression.  The diagnostic statistics in this regression output will also include 
the unconditional analysis of variance for the dependent variable.  This is the usual ANOVA 
for the groups, ignoring the regressors.  (See Section E11.5.1 for details.)  The output from this 
procedure could be used to test the hypothesis that the unconditional mean of y is the same in 
all groups.  (This test is done by the program.  See part 3 below.) 

 
2. Ordinary least squares estimates of Model 4 above.  Output is the same as in part 1, the usual 

for a least squares regression.  The estimates of the dummy variable coefficients and the 
estimated standard errors are listed in the output file if requested with ; Output = 2.  (There 
may be hundreds or thousands of them!) 
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3. Test statistics for the various classical models.  The table contains 
 

a. For Models 1 - 4, the log likelihood function, sum of squared residuals based on the 
least squares estimates, and R2. 

 
b. Chi squared statistics based on the likelihood functions and F statistics based on the 

sums of squares for testing the restrictions of: 
 

• Model 1 as a restriction on Model 2 (no group effects on the mean of y), 
• Model 1 as a restriction on Model 3 (no fit in the regression of y on xs), 
• Model 1 as a restriction on Model 4 (no group effects or fit in regression), 
• Model 2 as a restriction on Model 4 (group effects but no fit in regression), 
• Model 3 as a restriction on Model 4 (fit in regression but no group effects). 

 
The statistic, degrees of freedom, and prob value (probability that the statistic would 
be equaled or exceeded by the chi squared or F random variable) are given for each  
hypothesis. 

 
Saved Results 
 
 As always, the matrices b and varb are saved by the procedure.  In addition, a matrix alphafe 
will contain the estimates of the fixed effects, αi.  This matrix is limited to 20,000 cells, so if your data 
have more than 20,000 groups, alphafe will contain the first 20,000 fixed effects computed.  Estimates 
of the variances or standard errors of the fixed effects are not kept.  But, a simple method of computing 
them is given below.  
 
 Scalars that are kept are: 
 
 ssqrd   = s2 from least squares dummy variable (LSDV) 
 rsqrd   = R2 from LSDV 
 s   = √s2 from LSDV 
 sumsqdev = sum of squared residuals from LSDV 
 rho   = estimated disturbance autocorrelation from whatever model is fit last 
 degfrdm  = ΣiTi  -  K 
 sy   = standard deviation of Lhs variable 
 ybar   = mean of Lhs variable 
 kreg   = K 
 nreg   = total number observations 
 logl   = log likelihood from LSDV model 
 exitcode  = 0.0 if the model was estimable 
 ngroup  = number of groups 
 nperiod  = number of periods.  This will be 0.0 if you fit a one way model. 
 
 The Last Model is constructed as usual, b_variable.  Predicted values are based on the last 
model estimated, one or two way, fixed or random.  Predictions are not listed when you use the group 
means estimator, but they can be computed with MATRIX.   
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Robust Estimation of the Fixed Effects OLS Covariance Matrix 
 
 There is a counterpart to the White estimator for unspecified heteroscedasticity for the one way 
fixed effects model.  The model is 
 
   yit  =  αi  +  β′xit  +  εit. 
 
Suppose that every εit has a different variance, σit

2  In the fashion of White’s estimator for the linear 
model, the natural approach is simply to replace εit

2  with eit
2 in the preceding, and compute 

 

   Est.Asy.Var[blsdv]  =  [X*′X*]-1 X*′ Ω
∧

X* [X*′X*]-1 
 
where ‘*’ denotes deviations from group means.  This produces the same results as if the White 
correction were applied to the OLS results in full model including both regressors and group dummy 
variables.   
 If the variances can be assumed to be the same for all observations in the ith group, then each 
group specific variance can be estimated by the group mean squared residual, and the result inserted 
directly into the formulas above.  In this case, Ω becomes a block diagonal matrix, in which the ith 
diagonal block is σi

2I.  (This resembles the time series/cross section model discussed at the end of this 
chapter.)  In practical terms, we simply replace eit

2 with si
2 in the estimate of the asymptotic covariance 

matrix.  To request these estimators, add 
 
   ; Het or ; Het ; Hc1 or ; Het ; Hc2 or ; Het ; Hc3 
and   ; Het  =  group 
 
respectively to the REGRESS command. 
 The asymptotic covariance matrix for the fixed effects estimator may also be estimated with a 
Newey-West style correction for autocorrelation.  Request this computation with 
 
   ; Lags  =  the number of lags, up to 10 
 
14.6.4  One Way Random Effects Model 
 
 The command for the random effects model is 
 
 REGRESS ; Lhs = dependent variable 
   ; Rhs = independent variables 
   ; Str = stratification or ; Pds = count (variable) 
   ; Panel  
   ; Random Effects $ 
 
This is the base case.  Other specifications will be added as we proceed. 
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NOTE:  The default command for panel data regressions is simply 
 
 REGRESS ; Lhs = ... ; Rhs = ... ; Panel ; Str =... or ; Pds = ... $ 
 
This command requests both FE and RE results.  The full set of results for both models will be 
presented.  Adding either ; Fixed Effects or ; Random Effects will suppress the display of results for 
the other model. 
 
NOTE:   In computing the random effects model, the second step FGLS estimator generally relies on 
the first step OLS and LSDV (fixed effects) sums of squares.  You may be suppressing the FE model, 
perhaps because of the presence of time invariant variables which preclude the FE model, but not the 
RE model.  In previous versions of LIMDEP, and in some other programs, this will force the estimator 
to rely on another device to estimate the variance components, typically a group means estimator.  In 
the current version of LIMDEP, the FE model is computed in the background, whether reported or not.  
The sums of squares needed are obtainable even in the presence of time invariant variables.  Thus, you 
will get the same results for the RE model whether or not you have allowed LIMDEP to report the 
fixed effects results.   
 
A crucial element of the computation of the random effects model is the estimation of the variance 
components.  You may supply your own values for σε

2 and σu
2. The specification is 

 
   ; Var = s2e,s2u  
 
This overrides all other computations.  The values are checked for validity.  A nonpositive value 
forces estimation to halt at that point. 
 
Results Reported by the Random Effects Estimator 
 
 After display of any previous results, including ordinary least squares and the fixed effects 
estimator, a display such as the following: 
 
+--------------------------------------------------+ 
| Random Effects Model: v(i,t) = e(i,t) + u(i)     | 
| Estimates:  Var[e]              =   .135360D-02  | 
|             Var[u]              =   .578177D-02  | 
|             Corr[v(i,t),v(i,s)] =   .810298      | 
| Lagrange Multiplier Test vs. Model (3) = 3721.10 | 
| ( 1 df, prob value =  .000000)                   | 
| (High values of LM favor FEM/REM over CR model.) | 
| Baltagi-Li form of LM Statistic =        3721.10 | 
| Fixed vs. Random Effects (Hausman)     =   37.62 | 
| ( 6 df, prob value =  .000001)                   | 
| (High (low) values of H favor FEM (REM).)        | 
|             Sum of Squares          .843423D+01  | 
|             R-squared               .990075D+00  | 
+--------------------------------------------------+ 
 

will be presented, followed by the standard form table of coefficient estimates, standard errors, etc.   
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 The results in the table are as follows: 
 

1. Estimates of σε
2 and σu

2 based on the least squares dummy variable model residuals.  These are 
used to estimate the variance components. Since there are some potential problems that can 
arise, the sequence of steps taken in this part is documented in the trace file.  The application  
shows an example.  This trace output may be quite lengthy, as several attempts may be made 
to fit the model with different variance components estimators. 

 
2. The estimate of ρ = σu

2 / (σε
2 + σu

2) based on whatever first round estimator has been used. 
 

3. Breusch and Pagan’s Lagrange multiplier statistic for testing the REM against the simple linear 
regression model with no common effects is  
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4. Baltagi and Li’s modification of the LM statistic for unbalanced panels is also reported with 
the results.  This replaces the term outside the square brackets with 
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LIMDEP’s computation of the LM statistic already accounts for unbalanced panels.  The 
Baltagi and Li modification evidently has some improved finite sample performance.  As 
can be seen in the example above, which uses a balanced panel, the Baltagi and Li correction 
has no impact when group sizes are all equal.  In this case, both  these complicated statistics 
reduce to NT/[2(T-1)].  The prob value is given for the LM statistic.  To a degree of 
approximation, the same result would apply to the Baltagi and Li form. 

5. Hausman’s chi squared statistic for testing the REM against the FEM is reported next. 
 
  -1ˆ ˆ ˆ ˆ ˆ ˆ=( - )  [ ( ) -  ( )] ( - )FE RE FE RE FE REH Est.Var Est.Var′β β β β β β     
 
 The prob value and degrees of freedom for the Hausman statistic are reported. 
 
HINT:  Large values of the Hausman statistic argue in favor of the fixed effects model over the 
random effects model.  Large values of the LM statistic argue in favor of one of the one factor models 
against the classical regression with no group specific effects. A large value of the LM statistic in the 
presence of a large Hausman statistic (as in our application) argues in favor of the fixed effects model. 
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NOTE:  Sometimes it is not possible to compute the Hausman statistic.  The difference matrix in the 
formula above may not be positive definite.  The theory does not guarantee this.  It is more likely to be 
so, but still not certain, if the same estimate of σε

2 is used for both cases.  As such, LIMDEP uses the 
FGLS estimator of this, however it has been obtained, for the computation.  Still, the matrix may fail to 
be positive definite.  In this case, a 0.00 is reported for the statistic and a diagnostic warning appears in 
the results.  Users are warned, some other programs attempt to bypass this issue by using some other 
matrix or some other device to force a positive statistic.  These ad hoc measures do not solve the 
problem – they merely mask it.  At worst, the appropriate zero value can be replaced by a value that 
appears to be ‘significant.’ 

 
6. The simple sum of squared residuals based on the random effects coefficients is reported. 

 
7. An R2 measure is reported (by popular request)   
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Users are warned, this measure can be negative.  It is only guaranteed to be positive when OLS 
has been used to fit a model with a constant term.  There are other measures that could be 
computed, such as the squared correlation between the actual and fitted values, but neither 
these, nor the one above, are fit measures in the same sense as in the linear model. 

 
8. Estimates of the coefficients, their standard errors, and the ratio of each coefficient to its 

estimated standard error.  (This is asymptotically distributed as standard normal.) 
 
As always, the matrices b and varb are saved by the procedure.  These will be the FGLS estimates of 
the random effects model  
 
 ssqrd   = s2 from least squares dummy variable (LSDV) estimator or from FGLS 
 rsqrd   = R2 from LSDV 
 s   = √s2 from LSDV 
 sumsqdev = sum of squared residuals from LSDV 
 rho   = estimated disturbance autocorrelation from whatever model is fit last, 
 degfrdm  = ΣiTi  -  K 
 sy   = standard deviation of Lhs variable 
 ybar   = mean of Lhs variable 
 kreg   = K 
 nreg   = total number observations 
 logl   = log likelihood from LSDV model 
 ssqrdu   = estimate of σu

2 from FGLS 
 ssqrde   = estimate of σε

2 from FGLS 
 ssqrdw   = estimate of σw

2  from GLS if two way random effects model is fit 
 exitcode  = 0.0 if the model was estimable 
 ngroup  = number of groups 
 nperiod = number of periods.  This will be 0.0 if you fit a one way model. 
 
The Last Model is constructed as usual, b_variable.  Predicted values are based on the last model 
estimated, one or two way, fixed or random. 
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Chapter 15: Models for Discrete Choice 
 
15.1  Introduction 
 
 We define models in which the response variable being described is inherently discrete as 
qualitative response (QR) models.  This chapter will describe two of LIMDEP’s many estimators for 
qualitative dependent variable model estimators.  The simplest of these is the binomial choice models, 
which are the subject of Section 15.2.  The ordered choice model in Section 15.3 is an extension of the 
binary choice model in which there are more than two ordered, nonquantitative outcomes, such as 
scores on a preference scale. 
 
15.2  Modeling Binary Choice 
 
 A binomial response may be the outcome of a decision or the response to a question in a 
survey.  Consider, for example, survey data which indicate political party choice, mode of 
transportation, occupation, or choice of location. We model these in terms of probability distributions 
defined over the set of outcomes.  There are a number of interpretations of an underlying data 
generating process that produce the binary choice models we consider here.  All of them are consistent 
with the models that LIMDEP estimates, but the exact interpretation is a function of the modeling 
framework. 
 
 The essential model command for the parametric binary choice models is 
 

  






PROBIT
; Lhs = dependent variable ; Rhs = regressors $or

LOGIT
  

 
 A latent regression is specified as  
 
   y* = β′x + ε.   
 
The observed counterpart to y* is  
 
   y = 1 if and only if y* > 0.   
 
This is the basis for most of the binary choice models in econometrics, and is described in further detail 
below.  It is the same model as the reduced form in the previous paragraph.  Threshold models, such as 
labor supply and reservation wages lend themselves to this approach. 
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 The probabilities and density functions for the most common binary choice specifications are 
as follows: 
 
 Probit 
 

 F = dtti

∫
β

∞− π

−x' 2

2
)2/exp(   =  Φ(β′xi),     f = φ(β′xi) 

 
 Logit 
 

 F = exp( )
1 exp( )

i

i

′
′+

x
x

β
β

  =  Λ(β′xi),    f = Λ(β′xi)[1 - Λ(β′xi)] 

 
15.2.1  Model Commands 
 
 The model commands for the five binary choice models listed above are largely the same: 
 

   






PROBIT
; Lhs = dependent variable ; Rhs = regressors $or

LOGIT
  

 
Data on the dependent variable may be either individual or proportions.  You need not make any 
special note of which. LIMDEP will inspect the data to determine which type of data you are using.  In 
either case, you provide only a single dependent variable.  As usual, you should include a constant term 
in the model unless your application specifically dictates otherwise. 
 
15.2.2  Output 
 
 The binary choice models generate a very large amount of output.  Computation begins with 
least squares estimation in order to obtain starting values.  
 
NOTE:  The OLS results will not normally be displayed in the output.  To request the display, use   ; 
OLS in any of the model commands. 
 
Reported Estimates 
 
 Final estimates include: 
 

• logL   =  the log likelihood function at the maximum, 
 

• logL0  =  the log likelihood function assuming all slopes are zero.  If your Rhs variables do not 
include one, this statistic will be meaningless.  It is computed as 

 
   logL0  =  n[PlogP + (1-P)log(1-P)] 

 
where P is the sample proportion of ones. 
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• The chi squared statistic for testing H0: β = 0 (not including the constant) and the significance 
level = probability that χ2 exceeds test value.  The statistic is 

 
   χ2  =  2(logL  -  logL0). 
 
Numerous other results, listed in detail, will appear with these in the output.  The standard statistical 
results, including coefficient estimates, standard errors, t ratios, and descriptive statistics for the Rhs 
variables appear next.  A complete listing is given below with an example.  After the coefficient 
estimates are given, two additional sets of results appear, an analysis of the model fit and an analysis of 
the model predictions. 
 We will illustrate with binary logit and probit estimates of a model for visits to the doctor using 
the German health care data described in Chapter E2.  The first model command is 
 
 LOGIT  ; Lhs = doctor  
   ; Rhs = one,age,hhninc,hhkids,educ,married 
   ; OLS $ 
 
Note that the command requests the optional listing of the OLS starting values.  The results for this 
command are as follows.  With the exception of the table noted below, the same results (with different 
values, of course) will appear for all five parametric models.  Some additional optional computations 
and results will be discussed later. 
 The initial OLS estimates are generally not reported unless requested with ; OLS. 
 
+------------------------------------------------+ 
| Binomial logit model for binary choice         | 
| These are the OLS values based on the          | 
| binary variables for each outcome Y(i) = j.    | 
+------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|     .56661068       .02118790    26.742   .0000 
 AGE     |     .00468710       .00029114    16.099   .0000   43.5256898 
 HHNINC  |    -.03976003       .01726656    -2.303   .0213    .35208362 
 HHKIDS  |    -.05217181       .00680260    -7.669   .0000    .40273000 
 EDUC    |    -.01071245       .00131378    -8.154   .0000   11.3206310 
 MARRIED |     .01946888       .00757540     2.570   .0102    .75861817 
 
Standard results for maximum likelihood estimation appear next (or first if OLS is not presented). 
These are the results generated for all models fit by maximum likelihood. The Hosmer-Lemeshow 
chi squared statistic is specific to the binary choice models.  It is discussed in Section E18.3.7.  The 
information criteria are computed from the log likelihood, logL, and the number of parameters 
estimated, K, as follows: 
 
 AIC = Akaike Information Criterion  = -2(logL – K)/n 

 BIC = Bayesian Information Criterion  = -2(logL – KlogK)/n 

 Finite Sample AIC    = -2(logL – K –K(K+1)/(n-K-1))/n 

 HQIC      = -2(logL – Klog(logn))/n  
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Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Binomial Logit Model for Binary Choice      | 
| Maximum Likelihood Estimates                | 
| Dependent variable               DOCTOR     | 
| Weighting variable                 None     | 
| Number of observations            27326     | 
| Iterations completed                  4     | 
| Log likelihood function       -17673.10     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.29394     | 
|   Finite Sample: AIC =          1.29394     | 
| Info. Criterion: BIC =          1.29574     | 
| Info. Criterion:HQIC =          1.29452     | 
| Restricted log likelihood     -18019.55     | 
| McFadden Pseudo R-squared      .0192266     | 
| Chi squared                    692.9077     | 
| Degrees of freedom                    5     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared = 110.37153     | 
| P-value=  .00000 with deg.fr. =       8     | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|     .25111543       .09113537     2.755   .0059 
 AGE     |     .02070863       .00128517    16.114   .0000   43.5256898 
 HHNINC  |    -.18592232       .07506403    -2.477   .0133    .35208362 
 HHKIDS  |    -.22947000       .02953694    -7.769   .0000    .40273000 
 EDUC    |    -.04558783       .00564646    -8.074   .0000   11.3206310 
 MARRIED |     .08529305       .03328573     2.562   .0104    .75861817 
 
 The next set of results computes various fit measures for the model.  This table of 
information statistics is produced only for the logit model.  It is generally used for analysis of the 
generalized maximum entropy (GME) estimator of the multinomial logit model, but it also provides 
some useful information for the binomial model even when fit by ML instead of GME.  The entropy 
statistics are computed as follows: 
 
   Entropy   =  - Σi Pi log Pi 
 
where Pi is the probability predicted by the model.  The three ‘models’ are ‘M,’ the model fit by 
maximum likelihood, ‘MC,’ the model in which all predicted probabilities are the sample proportion 
of ones (here 0.6291), and ‘M0,’ (no model) in which all predicted probabilities are 0.5.  The 
normalized entropy is the entropy divided by nlog2. Finally, the entropy ratio statistic equals 
2(nlog2)(1 - normalized entropy).  The percent correct predicted values are discussed below. 
 The next set of results examines the success of the prediction rule 
 
   Predict yi = 1 if Pi  >  P* and 0 otherwise 
 
where P* is a defined threshold probability.  The default value of P* is 0.5, which makes the 
prediction rule equivalent to ‘Predict yi = 1 if the model says the predicted event yi = 1 | xi is more 
likely than the complement, yi = 0 | xi.’  You can change the threshold from 0.5 to some other value 
with 
   ; Limit = your P* 
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+--------------------------------------------------------------------+ 
| Information Statistics for Discrete Choice Model.                  | 
|                            M=Model MC=Constants Only   M0=No Model | 
| Criterion F (log L)   -17673.09788      -18019.55173  -18940.93986 | 
| LR Statistic vs. MC      692.90772            .00000        .00000 | 
| Degrees of Freedom         5.00000            .00000        .00000 | 
| Prob. Value for LR          .00000            .00000        .00000 | 
| Entropy for probs.     17673.09788       18019.55173   18940.93986 | 
| Normalized Entropy          .93306            .95135       1.00000 | 
| Entropy Ratio Stat.     2535.68395        1842.77624        .00000 | 
| Bayes Info Criterion       1.29537           1.32072       1.38816 | 
| BIC(no model) - BIC         .09270            .06744        .00000 | 
| Pseudo R-squared            .01923            .00000        .00000 | 
| Pct. Correct Pred.        62.85223            .00000      50.00000 | 
| Means:       y=0    y=1    y=2    y=3    y=4    y=5     y=6   y>=7 | 
| Outcome     .3709  .6291  .0000  .0000  .0000  .0000  .0000  .0000 | 
| Pred.Pr     .3709  .6291  .0000  .0000  .0000  .0000  .0000  .0000 | 
| Notes: Entropy computed as Sum(i)Sum(j)Pfit(i,j)*logPfit(i,j).     | 
|        Normalized entropy is computed against M0.                  | 
|        Entropy ratio statistic is computed against M0.             | 
|        BIC = 2*criterion - log(N)*degrees of freedom.              | 
|        If the model has only constants or if it has no constants,  | 
|        the statistics reported here are not useable.               | 
+--------------------------------------------------------------------+ 
 
A variety of fit measures for the model are listed. 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Logit    model for variable DOCTOR     | 
+----------------------------------------+ 
| Proportions P0= .370892   P1= .629108  | 
| N =   27326 N0=   10135   N1=   17191  | 
| LogL=   -17673.098 LogL0=  -18019.552  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .02528  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .02435 |    .01923  |       .54487  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .02470 |    .04348  |       .02504  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria        1.29394       1.29574  | 
+----------------------------------------+ 
+---------------------------------------------------------+ 
|Predictions for Binary Choice Model.  Predicted value is | 
|1 when probability is greater than  .500000, 0 otherwise.| 
|Note, column or row total percentages may not sum to     | 
|100% because of rounding. Percentages are of full sample.| 
+------+---------------------------------+----------------+ 
|Actual|         Predicted Value         |                | 
|Value |       0                1        | Total Actual   | 
+------+----------------+----------------+----------------+ 
|  0   |    378 (  1.4%)|   9757 ( 35.7%)|  10135 ( 37.1%)| 
|  1   |    394 (  1.4%)|  16797 ( 61.5%)|  17191 ( 62.9%)| 
+------+----------------+----------------+----------------+ 
|Total |    772 (  2.8%)|  26554 ( 97.2%)|  27326 (100.0%)| 
+------+----------------+----------------+----------------+ 
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This table computes a variety of conditional and marginal proportions based on the results using the 
defined prediction rule.  For examples, the 97.708% equals (16797/17191)100% while the 63.256% 
is (16797/26554)100%. 
 
======================================================================= 
Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 
----------------------------------------------------------------------- 
Prediction Success 
----------------------------------------------------------------------- 
Sensitivity = actual 1s correctly predicted                     97.708% 
Specificity = actual 0s correctly predicted                      3.730% 
Positive predictive value = predicted 1s that were actual 1s    63.256% 
Negative predictive value = predicted 0s that were actual 0s    48.964% 
Correct prediction = actual 1s and 0s correctly predicted       62.852% 
----------------------------------------------------------------------- 
Prediction Failure 
----------------------------------------------------------------------- 
False pos. for true neg. = actual 0s predicted as 1s            96.270% 
False neg. for true pos. = actual 1s predicted as 0s             2.292% 
False pos. for predicted pos. = predicted 1s actual 0s          36.744% 
False neg. for predicted neg. = predicted 0s actual 1s          51.036% 
False predictions = actual 1s and 0s incorrectly predicted      37.148% 
======================================================================= 
 
Retained Results 
 
 The results saved by the binary choice models are: 
 
 Matrices: b   =  estimate of β (also contains γ for the Burr model) 
   varb   =  asymptotic covariance matrix 

 Scalars: kreg   =  number of variables in Rhs 
   nreg   =  number of observations 
   logl   =  log likelihood function 
 
15.2.3  Analysis of Marginal Effects 
 
 Marginal effects in a binary choice model may be obtained as 
 

   [ | ] ( ) ( )
( )

E y F dF
d

′ ′∂ ∂
= =

′∂ ∂
x x x

x x x
β β

β
β

 = F′(β′x)β  =  f(β′x)β 

 
That is, the vector of marginal effects is a scalar multiple of the coefficient vector.  The scale factor, 
f(β′x),  is the density function, which is a function of x.  (The densities for the five binary choice 
models are listed in Section E18.3.1.)  This function can be computed at any data vector desired.  
You can request the computation to be done automatically at the vector of means of the current 
sample by adding 
 
   ; Marginal Effects 
 
to your command.    
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Marginal Effects for Dummy Variables 
 
 When one of the variables in x is a dummy variable, the derivative approach to estimating 
the marginal effect is not appropriate.  An alternative which is closer to the desired computation for a 
dummy variable which we denote z, is 
 
   ∆Fz   =  Prob[y = 1 | z = 1]  -  Prob[y = 1 | z = 0] 

  =  F(β′x + αz | z = 1)  - F(β′x + αz | z = 0). 
 
For this type of variable, the asymptotic standard error must be changed as well.  This is 
accomplished simply by changing the appropriate row of G to 
 

   Gz   =  [f(β′x+ αz)] 







1
x

′  - [f(β′x + αz)] '
0







x
 

 
LIMDEP examines the variables in the model and makes this adjustment automatically.   
 
15.2.4  Robust Covariance Matrix Estimation 
 
 The preceding describes a covariance estimator that accounts for a specific, observed aspect of 
the data.  The concept of the ‘robust’ covariance matrix is that it is meant to account for hypothetical, 
unobserved failures of the model assumptions.  The intent is to produce an asymptotic covariance 
matrix that is appropriate even if some of the assumptions of the model are not met.  (It is an important, 
but infrequently discussed issue whether the estimator, itself, remains consistent in the presence of 
these model failures – that is, whether the so called robust covariance matrix estimator is being 
computed for an inconsistent estimator.)  (Section R10.8 in the Reference Guide provides general 
discussion of robust covariance matrix estimation.) 
 
The Sandwich Estimator 
 
 It is becoming common in the literature to adjust the estimated asymptotic covariance matrix 
for possible misspecification in the model which leaves the MLE consistent but the estimated 
asymptotic covariance matrix incorrectly computed.  One example would be a binary choice model 
with unspecified latent heterogeneity.  A frequent adjustment for this case is the ‘sandwich estimator,’ 
which is the choice based sampling estimator suggested above with weights equal to one. (This 
suggests how it could be computed.)  The desired matrix is 
 

 Est.Asy.Var ˆ 
 β   =  

1 1
2 2

1 1 1

log log log log'ˆ ˆ ˆ ˆ ˆ ˆ
n n ni i i i
i i i

F F F F
− −

= = =

           ∂ ∂ ∂ ∂
           

′ ′ ′∂ ∂ ∂ ∂ ∂ ∂                
∑ ∑ ∑

β β β β β β
 

 
Three ways to obtain this matrix are 
 
   ; Wts = one ; Choice Based sampling 
or   ; Robust 
or   ; Cluster = 1 
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The computation is identical in all cases.  (As noted below, the last of them will be slightly larger, as it 
will be multiplied by n/(n-1).) 
 
Clustering 
 
 A related calculation is used when observations occur in groups which may be correlated.  This 
is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this case, 
but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is done as 
follows: Suppose the n observations are assembled in G clusters of observations, in which the number 
of observations in the ith cluster is ni.  Thus, 

1

G
ii

n
=∑  =  n.  Let the observation specific gradients and 

Hessians be 

   gij  =  
log ijL∂

∂β
 Hij  =  

2 log
'
ijL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH =   -H-1  =  ( ) 1

1 1
iG n

iji j

−

= =
−∑ ∑ H  

 
Estimators for some models will use the BHHH estimator, instead; 
 

   VB =  ( ) 1

1 1
iG n

ij iji j

−

= =
′∑ ∑ g g  

 
Let V be the estimator chosen.  Then, the corrected asymptotic covariance matrix is 
 

   Est.Asy.Var ˆ 
 β   =  ( )( )1 1 11

i iG n n
ij iji j j

G
G = = =

 ′
 −  
∑ ∑ ∑V g g  V  

 
Note that if there is exactly one observation per cluster, then this is G/(G-1) times the sandwich 
estimator discussed above.  Also, if you have fewer clusters than parameters, then this matrix is 
singular – it has rank equal to the minimum of G and K, the number of parameters. 
 To request the estimator, your command must include 
 
   ; Cluster = specification 
 
where the specification is either the fixed value if all the clusters are the same size, or the name of an 
identifying variable if the clusters vary in size.  Note, this is not the same as the variable in the Pds 
function that is used to specify a panel.  The cluster specification must be an identifying code that is 
specific to the cluster.  For example, our health care data used in our examples is an unbalanced panel.  
The first variable is a family id, which we will use as follows 
 
   ; Cluster = id 
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15.3  Ordered Choice Models 
 
 The basic ordered choice model is based on the following specification:  There is a latent 
regression, 
   yi*   =  β′xi + εi,  εi ~ F(εi |θ), E[εi|xi] = 0, Var[εi|xi] = 1, 
 
The observation mechanism results from a complete censoring of the latent dependent variable as 
follows: 
   yi     =  0 if yi  ≤ µ0, 

    =  1 if µ0 < yi  ≤ µ1, 

    =  2 if µ1 < yi   ≤ µ2, 
    ... 

    =  J if  yi  > µJ-1. 
 
The latent ‘preference’ variable, yi* is not observed.  The observed counterpart to yi* is yi.  Four 
stochastic specifications are provided for the basic model shown above.  The ordered probit model 
applies in applications such as surveys, in which the respondent expresses a preference with the above 
sort of ordinal ranking.  The variance of εi is assumed to be one, since as long as yi*, β, and εi are 
unobserved, no scaling of the underlying model can be deduced from the observed data.  Since the µs 
are free parameters, there is no significance to the unit distance between the set of observed values of y.  
They merely provide the coding.  Estimates are obtained by maximum likelihood.  The probabilities 
which enter the log likelihood function are 
 
   Prob[yi  =  j]  =  Prob[yi* is in the jth range]. 
 
The model may be estimated either with individual data, with yi = 0, 1, 2, ... or with grouped data, in 
which case each observation consists of a full set of J+1 proportions, p0i,...,pJi. 
 
NOTE:  If your data are not coded correctly, this estimator will abort with one of several possible 
diagnostics – see below for discussion.  Your dependent variable must be coded 0,1,...,J.  We note that 
this differs from some other econometric packages which use a different coding convention. 
 
 There are numerous variants and extensions of this model which can be estimated: The 
underlying mathematical forms are shown below, where the CDF is denoted F(z) and the density is f(z).  
(Familiar synonyms are given as well.) 
 

 Probit:  F(z)   =  
2exp( / 2)

2
z t dt
−∞

−
π∫   =  Φ(z),   f(z) =  φ(z) 

 

 Logit:   F(z)   =  exp( )
1 exp( )

z
z+

  =  Λ(z),    f(z) =  Λ(z)[1 - Λ(z)] 

 
The ordered probit model is an extension of the probit model for a binary outcome with normally 
distributed disturbances.  The ordered logit model results from the assumption that ε has a standard 
logistic distribution instead of a standard normal.  
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15.3.1  Estimating Ordered Probability Models 
 

 The essential command for estimating ordered probability models  is 
  
 ORDERED  ; Lhs = y ; Rhs = regressors  $ 
 
If you are using individual data, the Lhs variable must be coded 0,1,...,J.  All the values must be present 
in the data.  LIMDEP will look for empty cells.  If there are any, estimation is halted.  (If value ‘j’ is not 
represented in the data, then the threshold parameter, µj is not estimable.) In this circumstance, you will 
receive a diagnostic such as 
 

ORDE,Panel,BIVA PROBIT:A cell has (almost) no observations. 
Empty cell: Y        never takes value  2 

 
This diagnostic means exactly what it says.  The ordered probability model cannot be estimated unless 
all cells are represented in the data.  Users frequently overlook the coding requirement,          y = 0,1,...  
If you have a dependent variable that is coded 1,2,..., you will see the following diagnostic: 
 

Models - Insufficient variation in dependent variable. 
 
The reason this particular diagnostic shows up is that LIMDEP creates a new variable from your 
dependent variable, say y, which equals zero when y equals zero, and one when y is greater than zero.  
It then tries to obtain starting values for the model by fitting a regression model to this new variable.  If 
you have miscoded the Lhs variable, the transformed variable always equals one, which explains the 
diagnostic.  In fact, there is no variation in the transformed dependent variable.  If this is the case, you 
can simply use CREATE to subtract 1.0 from your dependent variable to use this estimator. 
 The probit model is the default specification.  To estimate an ordered logit, add  
 
 ; Model  = Logit 
 
to the command. The standardized logistic distribution (mean zero, standard deviation approximately 
1.81) is used as the basis of the model instead of the standard normal. 
 
15.3.2  Model Structure and Data 
 
 This model must include a constant term, one, as the first Rhs variable.  Since the equation 
does include a constant term, one of the µs is not identified.  We normalize µ0 to zero.  (Consider the 
special case of the binary probit model with something other than zero as its threshold value.  If it 
contains a constant, this cannot be estimated.)  Data may be grouped or individual.  (Survey data might 
logically come in grouped form.)  If you provide individual data, the dependent variable is coded 0, 1, 
2, ..., J.  There must be at least three values.  Otherwise, the binary probit model applies. If the data are 
grouped, a full set of proportions, p0, p1, ..., pJ, which sum to one at every observation must be 
provided.  In the individual data case, the data are examined to determine the value of J, which will be 
the largest observed value of y which appears in the sample.  In the grouped data case, J is one less than 
the number of Lhs variables you provide.  Once again, we note that other programs sometimes use 
different normalizations of the model.  For example, if the constant term is forced to equal zero, then 
one will instead, add a nonzero threshold parameter, µ0, which equals zero in the presence of a nonzero 
constant term.   
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15.3.3  Output from the Ordered Probability Estimators 
 
 All of the ordered probit/logit models begin with an initial set of least squares results of some 
sort.  These are suppressed unless your command contains ; OLS.  The iterations are then followed by 
the maximum likelihood estimates in the usual tabular format.  The final output includes a listing of the 
cell frequencies for the outcomes.  When the data are stratified, this output will also include a table of 
the frequencies in the strata.  The log likelihood function, and a log likelihood computed assuming all 
slopes are zero are computed.  For the latter, the threshold parameters are still allowed to vary freely, so 
the model is simply one which assigns each cell a predicted probability equal to the sample proportion.  
This appropriately measures the contribution of the nonconstant regressors to the log likelihood 
function.  As such, the chi squared statistic given is a valid test statistic for the hypothesis that all slopes 
on the nonconstant regressors are zero.  
 The sample below shows the standard output for a model with six outcomes.  These are the 
German health care data described in detail in Chapter E2. The dependent variable is the self reported 
health satisfaction rating. For the purpose of a convenient sample application, we have truncated the 
health satisfaction variable at five by discarding observations – in the original data set, it is coded 
0,1,...,10. 
 
+---------------------------------------------+ 
| Ordered Probability Model                   | 
| Maximum Likelihood Estimates                | 
| Dependent variable              NEWHSAT     | 
| Weighting variable                 None     | 
| Number of observations             8140     | 
| Log likelihood function       -11284.69     | 
| Number of parameters                  9     | 
| Info. Criterion: AIC =          2.77486     | 
| Info. Criterion: BIC =          2.78261     | 
| Restricted log likelihood     -11308.02     | 
| McFadden Pseudo R-squared      .0020635     | 
| Chi squared                    46.66728     | 
| Degrees of freedom                    4     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Underlying probabilities based on Normal    | 
|    Cell frequencies for outcomes            | 
|  Y Count Freq  Y Count Freq  Y Count Freq   | 
|  0   447 .054  1   255 .031  2   642 .078   | 
|  3  1173 .144  4  1390 .170  5  4233 .520   | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Index function for probability 
 Constant|    1.32892012       .07275667    18.265   .0000 
 FEMALE  |     .04525825       .02546350     1.777   .0755    .52936118 
 HHNINC  |     .35589979       .07831928     4.544   .0000    .32998942 
 HHKIDS  |     .10603682       .02664775     3.979   .0001    .33169533 
 EDUC    |     .00927669       .00629721     1.473   .1407   10.8759203 
---------+Threshold parameters for index 
 Mu(1)   |     .23634786       .01236704    19.111   .0000 
 Mu(2)   |     .62954428       .01439990    43.719   .0000 
 Mu(3)   |    1.10763798       .01405938    78.783   .0000 
 Mu(4)   |    1.55676227       .01527126   101.941   .0000 
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 The model output is followed by a (J+1)×(J+1) frequency table of predicted versus actual 
values.  (This table is not given when data are grouped or when there are more than 10 outcomes.)  The 
predicted outcome for this tabulation is the one with the largest predicted probability.   
 
+---------------------------------------------------------------------------+ 
|   Cross tabulation of predictions. Row is actual, column is predicted.    | 
|   Model = Probit    .  Prediction is number of the most probable cell.    | 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
| Actual|Row Sum|  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  | 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
|      0|    447|    0|    0|    0|    0|    0|  447| 
|      1|    255|    0|    0|    0|    0|    0|  255| 
|      2|    642|    0|    0|    0|    0|    0|  642| 
|      3|   1173|    0|    0|    0|    0|    0| 1173| 
|      4|   1390|    0|    0|    0|    0|    0| 1390| 
|      5|   4233|    0|    0|    0|    0|    0| 4233| 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
|Col Sum|   8140|    0|    0|    0|    0|    0| 8140|    0|    0|    0|    0| 
+-------+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
 
Even though the model appears to be highly significant, the table of predictions has some large 
gaps in it.  The estimation criterion for the ordered probability model is unrelated to its ability to 
predict those cells, and you will rarely see a predictions table that closely matches the actual 
outcomes.  It often happens that even in a set of results with highly significant coefficients, only 
one or a few of the outcomes are predicted by the model. 
 Computation of predictions and ancillary variables is as follows:  For each observation, the 
predicted probabilities for all J+1 outcomes are computed.  Then if you request ; List, the listing will 
contain 
 
 Predicted Y is the Y with the largest probability. 
 
 Residual is the largest of the J+1 probabilities (i.e., Prob[y = fitted Y]). 
 

Var1 is the estimate of E[yi]  =  
i

J

=∑ 0
i ×  Prob[Yi  = i].   

 
(Note that since the outcomes are only ordinal, this is not a true expected value. 
   
 Var2 is the probability estimated for the observed Y. 
 
 Estimation results kept by the estimator are as follows: 
  
 Matrices: b   =  estimate of β, 
         varb =  estimated asymptotic covariance, 
   mu =  J-1 estimated µs. 
 
 Scalars:  kreg, nreg, and logl. 
 
 Last Model: The labels are b_variables, mu1, ... 
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The specification ; Par adds µ (the set of estimated threshold values) to b and varb.  The additional 
matrix, mu is kept regardless, but the estimated asymptotic covariance matrix is lost unless the 
command contains ; Par. 
 
15.3.4  Marginal Effects 
 
 Marginal effects in the ordered probability models are quite involved.  Since there is no 
meaningful conditional mean function to manipulate, we consider, instead, the effects of changes in the 
covariates on the cell probabilities.  These are: 
 

   ∂Prob[cell j]/∂xi  =  [f(µj-1 - β′xi) - f(µj - β′xi)] × β, 
 
where f(.) is the appropriate density for the standard normal, φ(•), logistic density, Λ(•)(1-Λ(•)), Weibull 
or Gompertz.  Each vector is a multiple of the coefficient vector. But it is worth noting that the 
magnitudes are likely to be very different.  In at least one case, Prob[cell 0], and probably more if there 
are more than three outcomes, the partial effects have exactly the opposite signs from the estimated 
coefficients.  Thus, in this model, it is important to consider carefully the interpretation of the 
coefficient estimates.  Marginal effects for all cells can be requested by including ; Marginal Effects 
in the command. An example appears below. 
  
NOTE:  This estimator segregates dummy variables for separate computation in the marginal effects.  
The marginal effect for a dummy variable is the simple difference of the two probabilities, with and 
without the variable.  See the application below for an illustration. 
 
+----------------------------------------------------+ 
| Marginal effects for ordered probability model     | 
| M.E.s for dummy variables are Pr[y|x=1]-Pr[y|x=0]  | 
| Names for dummy variables are marked by *.         | 
+----------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+These are the effects on Prob[Y=00] at means. 
 Constant|       .000000    ......(Fixed Parameter)....... 
 *FEMALE |    -.00498024       .00280960    -1.773   .0763    .52936118 
 HHNINC  |    -.03907462       .00862973    -4.528   .0000    .32998942 
 *HHKIDS |    -.01131976       .00277405    -4.081   .0000    .33169533 
 EDUC    |    -.00101850       .00069179    -1.472   .1409   10.8759203 
---------+These are the effects on Prob[Y=01] at means. 
 Constant|       .000000    ......(Fixed Parameter)....... 
 *FEMALE |    -.00209668       .00118069    -1.776   .0758    .52936118 
 HHNINC  |    -.01647123       .00362630    -4.542   .0000    .32998942 
 *HHKIDS |    -.00483428       .00119623    -4.041   .0001    .33169533 
 EDUC    |    -.00042933       .00029148    -1.473   .1408   10.8759203 
Effects for Y=02, Y=03 and Y=04 are omitted. 
---------+These are the effects on Prob[Y=05] at means. 
 Constant|       .000000    ......(Fixed Parameter)....... 
 *FEMALE |     .01803285       .01014562     1.777   .0755    .52936118 
 HHNINC  |     .14180876       .00073836   192.060   .0000    .32998942 
 *HHKIDS |     .04218672       .00029837   141.390   .0000    .33169533 
 EDUC    |     .00369631       .00250467     1.476   .1400   10.8759203 
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+-------------------------------------------------------------------------+ 
| Summary of Marginal Effects for Ordered Probability Model (probit)      | 
+-------------------------------------------------------------------------+ 
Variable|    Y=00    Y=01    Y=02    Y=03    Y=04    Y=05    Y=06    Y=07 | 
--------------------------------------------------------------------------+ 
ONE         .0000   .0000   .0000   .0000   .0000   .0000 
*FEMALE    -.0050  -.0021  -.0041  -.0047  -.0021   .0180 
HHNINC     -.0391  -.0165  -.0326  -.0373  -.0164   .1418 
*HHKIDS    -.0113  -.0048  -.0096  -.0112  -.0052   .0422 
EDUC       -.0010  -.0004  -.0008  -.0010  -.0004   .0037 
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Chapter 16: Censoring and Sample Selection 
 
16.1  Introduction 
 
 The models described in this chapter are variations on the following general structure: 
 
 Latent Underlying Regression: yi*  =  β′xi  +  εi, εi ~ N[0,σ2]. 
 Observed Dependent Variable: if  yi*  ≤  Li, then yi  =  Li  (lower tail censoring) 
      if  yi*  ≥  Ui, then yi  =  Ui  (upper tail censoring) 
      if  Li   <  yi*  <  Ui, then  yi  =  yi* =  β′xi  +  εi. 
  
The thresholds, Li and Ui, may be constants or variables.  We accommodate censoring in the upper or 
lower (or both) tails of the distribution.  The most familiar case of this model in the literature is the 
‘tobit’ model, in which Ui = +∞ and Li = 0, i.e., the case in which the observed data contain a cluster of 
zeros.  In the standard ‘censored regression,’ or tobit model, the censored range of yi* is the half of the 
line below zero.  (For convenience, we will drop the observation subscript at this point.)  If y* is not 
positive, a zero is observed for y, otherwise the observation is y*.  Models of expenditure are typical.  
We also allow censoring of the upper tail (‘on the right’).  A model of the demand for tickets to 
sporting events might be an application, since the actual demand is only observed if it is not more than 
the capacity of the facility (stadium, etc.).  A somewhat more elaborate specification is obtained when 
the range of y* is censored in both tails.  This is the ‘two limit probit’ model.  An application might be 
a model of weekly hours worked, in which less than half time is reported as 20 and more than 40 is 
reported as ‘full time,’ i.e., 40 or more. 
 
NOTE: The mere presence of a clump of zeros in the data set does not, by itself, adequately motivate 
the tobit model.  The specification of the model also implies that the nonlimit observations will have a 
continuous distribution with observations near the limit points.  In general, if you try to fit a tobit 
model, e.g., to financial data in which there is a clump of zeros, and the nonzero observations are 
ordinary financial variables far from zero, the model is as likely as not to break down during 
estimation.  In such a case, the model of sample selection is probably a more appropriate specification. 
 
16.2  Single Equation Tobit Regression Model 
 
 The base case considered here is the familiar ‘tobit’ model: 
 
 Latent underlying regression: yi*  =  β′xi  +  εi, εi ~ N[0,σ2]. 
 Observed dependent variable: if  yi*  ≤  Li, then yi  =  Li  (lower tail censoring) 
      if  yi*  ≥  Ui, then yi  =  Ui  (upper tail censoring) 
      if   Li   <  yi*  <  Ui, then  yi  =  yi* =  β′xi  +  εi. 
 
Within this framework, the most familiar form is the lower censoring only, at zero variant. 
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16.2.1  Commands 
 
 The basic command for estimation of the censored regression, or tobit model is 
  
 TOBIT  ; Lhs = y ; Rhs = ... $ 
  
The default value for the censoring limit is zero, at the left (i.e., the familiar case).  Censoring limits 
can be varied in two fashions.  To specify upper, rather than lower tail censoring, add 
  
   ; Upper 
 
to the model.  With no other changes, this would specify a model in which the observed values of the 
dependent variable would be either zero or negative rather than zero or positive.  The specific limit 
point to use can be changed by using 
 
   ; Limit = limit value 
 
where ‘limit value’ is either a fixed value (number or scalar) or the name of a variable.  For example, 
the model of the demand for sporting events at stadiums with fixed capacities which sell out a 
significant proportion of the time might be 
  
 TOBIT  ; Lhs  = tickets    
   ; Rhs  = one, price, ... 
   ; Upper censoring 
   ; Limit  = capacity $  
 
Models with censoring in both tails of the distribution are requested by changing the ; Limit 
specification to 
   ; Limits = lower limit, upper limit 
 
where ‘lower limit’ and ‘upper limit’ are either numbers, scalars, or the names of variables (or one of 
each).  For example, in a labor supply model, we might have 
  
   ; Limits = 20,40 
 
 Other options for the tobit model are the standard ones for nonlinear models, including 
 
   ; Printvc   to display the estimated asymptotic covariance matrix 
   ; List    to display predicted values 
   ; Parameters   to include the estimate of σ in the retained parameter 
      vector 
   ; Maxit = n   to set maximum iterations 
   ; Alg = name   to select algorithm  
   ; Tlf, ; Tlb, ; Tlg to set the convergence criteria  
      (use ; Set to keep these settings) 
   ; Output = value  to control the technical output during iterations 
   ; Keep = name   to retain fitted values 
   ; Res = name   to retain residuals 
   ; Marginal Effects 
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and so on.  Sample clustering for the estimated asymptotic covariance matrix may be requested with 
 
   ; Cluster = specification 
 
as usual. 
 
16.2.2  Results for the Tobit Model 
 
 You may request the display of ordinary least squares results by adding  
 
   ; OLS 
 
to the command.  These will be suppressed if you do not include this request.  The OLS values will be 
used as the starting values for the iterations.  Maximum likelihood estimates are presented in full.   
Note that unlike most of the discrete choice models, there is no restricted log likelihood presented.  The 
maximum likelihood estimates for a model that contains only a constant term are no less complicated 
than one with covariates, and there is no closed form solution for the (β,σ) parameter pair for this 
model.  For a general test of the joint significance of all the variables in the model, we suggest the 
standard trio of Neyman-Pearson tests, which can be carried out as follows:  First set up the Rhs 
variables in the model. 
 
 NAMELIST  ; xvars = the x variables in the model, without the constant term $ 
 CALC  ; kx  = Col(xvars) $ 
 TOBIT  ; Lhs = y ; Rhs = one $ 
 CALC  ; l0 = logl $ 
 
This command will produce the Lagrange multiplier statistic. 
 
 TOBIT  ; Lhs = y ; Rhs = xvars,one ; Start = kx_0,b,s ; Maxit = 0 $ 
 TOBIT  ; Lhs = y ; Rhs = xvars,one $ 
 
Compute the likelihood ratio statistic. 
 
 CALC  ; List ; lr = 2*(logl - l0) ; 1 - Chi(lr,kx) $ 
 
This computes a Wald statistic. 
 
 MATRIX ; beta = b(1:kx) ; vb = varb(1:kx,1:kx) 
   ; List ; Wald = beta’<vb>beta $ 
 CALC  ; List ; 1 - Chi(wald,kx) $ 
 
Retained output from the model includes 
 
 Matrices: b, varb 
 
 Scalars: s  = estimated σ 
   ybar, sy, kreg  = number of coefficients,  
   nreg = number of observations 
   nonlimts  = number of nonlimit observations in estimating sample 
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 The diagnostic information for the model also includes Lin and Schmidt’s LM test for the 
model specification against the alternative suggested by Cragg as well as a test for nonnormality.   
 
16.2.3  Marginal Effects 
 
 The marginal effects in the tobit model when censoring is at the left, at zero, are computed 
using 
    E[y|x]  =  Φ(β′x/σ)[β′x + σφ(β′x/σ)/Φ(β′x/σ)]. 
 
After some algebra, we find 
 
   ∂E[y|x]/∂x  =  Φ(β′x/σ)β. 
 
The preceding is a broad result which carries over to more general models.  That is, 
 
   ∂E[y|x]/∂x  =  Prob(nonlimit)β 
 
for all specifications of the censoring limits, whether in one tail or both. To obtain a display of the 
marginal effects for the tobit model, add 
 
   ; Marginal Effects 
  
to the TOBIT command.  A full listing of the marginal effects computed at the sample means, 
including standard errors, the estimated conditional mean, and the scale factor, will be included in the 
model output. 
 
16.3  Sample Selection Model 
 
 Many variants of the ‘sample selection’ model can be estimated with LIMDEP. Most of them 
share the following structure:  A specified model, denoted A, applies to the underlying data.  However, 
the observed data are not sampled randomly from this population.  Rather, a related variable z* is such 
that an observation is drawn from A only when z* crosses some threshold.  If the observed data are 
treated as having been randomly sampled from A instead of from the subpopulation of A associated 
with the ‘selected’ values of z*, potentially serious biases result.  The general solution to the selectivity 
problem relies upon an auxiliary model of the process generating z*.  Information about this process is 
incorporated in the estimation of A. 
 Several of the forms of this model which can be estimated with LIMDEP depart from 
Heckman’s now canonical form, a linear regression with a binary probit selection criterion model: 
 
    y   =  β′x + ε, 

    z*   =  α′w + u, 

    ε,u ~  N[0,0,σε
2, σu

2, ρ]. 
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A bivariate classical (seemingly unrelated) regressions model applies to the structural equations.  The 
standard deviations are σε and σu, and the covariance is ρσεσu.  If the data were randomly sampled 
from this bivariate population, the parameters could be estimated by least squares, or GLS combining 
the two equations.  However, z* is not observed.  Its observed counterpart is z, which is determined by 
 
   z   =  1 if z* > 0 

and   z   =  0 if z* ≤ 0. 
 
Values of y and x are only observed when z equals one.  The essential feature of the model is that under 
the sampling rule, E[y|x,z=1] is not a linear regression in x, or x and z.  The development below 
presents estimators for the class of essentially nonlinear models that emerge from this specification. 
 

 The basic command structure for the models described in this chapter is 
 
 PROBIT ; Lhs = variable z ; Rhs = variables in w ; Hold $ 
 SELECT ; Lhs = variable y ; Rhs = variables in x $ 
 
Note that two commands are required for estimation of the sample selection model, one for each 
structural equation. 

 
16.3.1  Regression Models with Sample Selection 
 
 The models described in this section are based on a dichotomous selection mechanism. 
Heckman’s approach to estimation is based on the following observations:  In the selected sample, 
  
   E[yi |xi, in sample] =  E[yi  | xi, zi =1] 

       =  E[yi  | xi, α′wi+ui > 0] 

       =  β′xi + E[εi  | ui > -α′wi] 

       =  β′xi + (ρσεσu ){φ(-α′wi)/[1 - Φ(-α′wi)]} 

       =  β′xi + (ρσεσu )[φ(α′wi)/Φ(α′wi)]. 
  
Given the structure of the model and the nature of the observed data, σu cannot be estimated, so it is 
normalized to 1.0.  (We observe the same values of zi regardless of the value of σu.)  Then, 
  
   E[yi | xi, in sample] =  β′xi + (ρσε )λi 

      =  β′xi + θλi . 
 
  



Chapter 16: Censoring and Sample Selection  232 

 There are some subtle ambiguities in the received applications of this model.  First, it is 
unclear whether the index function, β′xi, or the conditional mean is really the function of interest.  If the 
model is to be used to analyze the behavior of the selected group, then it is the latter.  If not, it is 
unclear.  The index function would be of interest if attention were to be applied to the entire population, 
rather than those expected to be selected.  This is application specific.  Second, the marginal effects in 
this model are complicated as well.  For the moment, assume that xi and wi are the same variables.  
Then, 

   
i

iii zyE
x
x
∂

=∂ ]1,|[
 =  β  +  θ(-λiα′xi - λi

2)α 

 
For any variable xk which appears in both the selection equation (for zi) and the regression equation, the 
marginal effect consists of both the direct part (βk) and the indirect part, which is of opposite sign – the 
term in parentheses is always negative; θ(-λiα′xi - λi

2)αk.  It is not obvious which part will dominate.  
Most applications have at least some variables that appear in both equations, so this is an important 
consideration.  Note also that variables which do not appear in the index function still affect the 
conditional mean function through their affect on the inverse Mills ratio (the ‘selection variable’).  (We 
note the risk of conflict in the notation used here for the selection term, λi, and the loglinear term in the 
conditional mean functions of the generalized linear models in the previous chapter.  There is no 
relationship between the two.  The two uses of ‘lambda’ are so common in the literature as to have 
become part of the common parlance and as such, the risk of ambiguity is worse if we try to change the 
notation used here for clarity.) 
 LIMDEP contains three estimators for this model, Heckman’s two step (or ‘Heckit’) estimator, 
full information maximum likelihood, and two step maximum likelihood (which is, more or less, a 
limited information maximum likelihood estimator).  The two step estimator is given here.  The others 
are documented in the full manual for the program. 
 
16.3.2  Two Step Estimation of the Standard Model 
 
 Heckman’s two step, or ‘Heckit’ estimation method, is based on the method of moments.  It is 
consistent, but not efficient estimator. 
 
Step 1. Use a probit model for zi to estimate α.  
 For each observation, compute λi = φ(α′wi)/Φ(α′wi) using the probit coefficients. 
 
Step 2. Linearly regress yi on xi and λi to estimate β and θ = ρσε. 
 Adjust the standard errors and the estimate of σε

2, which is inconsistent. 
  
The corrected asymptotic covariance matrix for the two step estimator, (b,c), is 
 
 Asy.Var[b,c]  =  σε

2(X*′X*)-1[X*′(I - ρ2∆)X*  +  ρ2(X*′∆W)Σ(W′∆X*)](X*′X*)-1 

where   X* =  [X : λ], 

   ∆    =  diag[δ], 

   δi   =  -λi(α′wi + λi)  (-1 ≤ δi ≤ 0), 

and   Σ    =  asymptotic covariance matrix for the estimator of α. 
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A consistent estimator of σε
2 is 2ˆ εσ  = e′e/n - 2ˆ ˆθ δ .  The remaining parameters are estimated using the 

least squares coefficients.  The computations used in the estimation procedure are those discussed in 
Heckman (1979) and in Greene (1981). 
 
NOTE:  (This is one of our frequently asked questions.)  LIMDEP always computes the corrected 
asymptotic covariance matrix, for all variants of selection models in all model frameworks. 
 

The estimator of the correlation coefficient, ρ, is 2 2ˆ ˆ ˆsign( ) εθ θ /σ .  This is the ratio of a regression 
coefficient (the coefficient on λi) and the variance estimator above.  Note that it is not a sample 
moment estimator of the correlation of two variables.  This ratio is not guaranteed to be between       -1 
and +1.  (See Greene (1981), which is about this result.)  But, note also that an estimate of ρ is needed 
to compute the asymptotic covariance matrix above, so this is a potential complication.  When this 
occurs, LIMDEP uses either +1 or -1, and continues.  We emphasize, this is not an error, nor is it a 
program failure.  It is a characteristic of the data.  (It may signal some problems with the model.)  
When this condition occurs, the model results will contain the diagnostic 
 
 Estimated correlation is outside the range -1 < r < 1. Using 1.0 
 
This condition is specific to the two step regression estimators.  The maximum likelihood estimators 
discussed below force the coefficient to lie in the unit interval – ρ is estimated directly, not by the 
method of moments. 
 To estimate this model with LIMDEP, it is necessary first to estimate the probit model, then 
request the selection model.  The pair of commands is 
 
   PROBIT  ; Lhs = name of z ; Rhs = list for w ; Hold results $      
  SELECT ; Lhs = name of y ; Rhs = list for x $  
  
For this simplest case, ; Hold ... may be abbreviated to ; Hold.  All of the earlier discussion for the 
probit model applies.  (See Chapter E18.)  This application differs only in the fact the ; Hold requests 
that the model specification and results be saved to be used later. Otherwise, they disappear with the 
next model command.  The PROBIT command is exactly as described in Chapter E18.  The selection 
model is completely self contained.  You do not need to compute or save λi. 
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