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Preface 
 
 NLOGIT is a major suite of programs for the estimation of discrete choice models.   It is built 
on the original DISCRETE CHOICE command in LIMDEP Version 6.0 which provided some of the 
features that are described with the estimator presented in Chapter N13 of this reference guide.  
NLOGIT, itself, began in 1996 with the development of the nested logit command, originally an 
extension of the multinomial logit model.  With the additions of the multinomial probit model and the 
mixed logit model among several others, NLOGIT has now grown to a self standing superset of 
LIMDEP.  The focus of most of the recent development is the random parameters logit model, or 
‘mixed logit’ model as it is frequently called in the literature.  NLOGIT is now the only generally 
available package that contains panel data (repeated measures) versions of this model, in random 
effects and autoregressive forms.  We note, the technology used in the random parameters model, 
originally proposed by Dan McFadden and Kenneth Train, has proved so versatile and robust, that we 
have been able to extend it into most of the other modeling platforms that are contained in LIMDEP.  
They, like NLOGIT, now contain random parameters versions.  Finally, a major feature of NLOGIT is 
the simulation package.  With this program, you can use any model that you have estimated to do ‘what 
if’ sorts of simulations to examine the effects on predicted behavior of changes in the attributes of 
choices in your model. 
 NLOGIT Version 4.0 is the result of an ongoing (since 1985) collaboration of William Greene 
(Econometric Software, Inc.) and David Hensher (Econometric Software, Australia.)  Recent 
developments, especially the random parameters logit in its cross section and panel data variants have 
also benefited from the suggestions of Kenneth Train of UC Berkeley.  Version 4.0 has also been 
greatly improved by the enthusiastic collaboration of John Rose (Econometric Software, Australia).   
 We note, the recently published work Applied Choice Analysis: A Primer (Hensher, D., Rose, 
J. and Greene, W., Cambridge University Press, 2005) is a wide ranging introduction to discrete choice 
modeling that contains numerous applications developed with Versions 3.0 and 4.0 of NLOGIT.  This 
book should provide a useful companion to the documentation for NLOGIT. 
 
William H. Greene 
Econometric Software, Inc. 
15 Gloria Place 
Plainview, NY  11803 
January 2007 
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Chapter 1: Introduction to NLOGIT 
 
1.1 Discrete Choice Modeling with NLOGIT 
 
 NLOGIT is a set of tools for building models of discrete choice among multiple alternatives.  
The essential building block that underlies the set of programs is the random utility model of 
consumer choice, 
 
  U(choice 1) = f1 (attributes of choice 1, characteristics of the consumer, ε1,v,w) 
  ... 
  U(choice J) = fJ (attributes of choice J, characteristics of the consumer, εJ,v,w) 
 
where the functions on the right hand side describe the utility to a consumer – decision maker – of J 
possible choices, as functions of the attributes of the choices, the characteristics of the consumer,  
random choice specific elements of preferences, εj, that may be known to the chooser but are 
unobserved by the analyst and random elements v and w, that will capture the unobservable 
heterogeneity across individuals.  Finally, a crucial element of the underlying theory is the 
assumption of utility maximization, 
 
  The choice made is alternative j such that U(choice j) > U(choice q) ∀ q ≠ j. 
 
The tools provided by NLOGIT are a complete suite of estimators beginning with the simplest binary 
logit model for choice between two alternatives and progressing through the most recently developed 
models for multiple choices, including random parameters, mixed logit models with individual 
specific random effects for repeated observation choice settings and the multinomial probit model. 
 Background theory and applications for the programs described here can be found in many 
sources.  For a primer that develops the theory in detail and presents many examples and 
applications, all using NLOGIT, we suggest 
 
 Applied Choice Analysis: A Primer, Hensher, D., Rose, J. and Greene, W., Cambridge 
 University Press, Cambridge, 2005. 
 
It is not possible (nor even desirable) to present all of the necessary econometric methodology in a 
manual of this sort.  The econometric background needed for Applied Choice Analysis as well as for 
use of the tools to be described here can be found in many graduate econometrics books.  One 
popular choice is 
 
 Econometric Analysis, 7th Edition, Greene, W., Prentice Hall, Englewood Cliffs, 2011. 
 
Finally, this guide is primarily focused on the specialized tools in NLOGIT for extensions of the 
multinomial logit model.  Users will find the LIMDEP documentation, the LIMDEP Reference Guide 
and Volumes 1 and 2 of the LIMDEP Econometric Modeling Guide, essential for effective use of this 
program. 
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 It is assumed throughout that you are already a user of LIMDEP.  The NLOGIT Reference 
Guide, by itself, will not be sufficient documentation for you to use NLOGIT unless you are already 
familiar with the program platform, LIMDEP, on which NLOGIT is placed.   
 
1.2 NLOGIT and LIMDEP 
 
 This Reference Guide describes NLOGIT Version 4.0.  NLOGIT is a suite of programs for 
estimating discrete choice models that are built around the logit and multinomial logit form.  This is 
a superset of LIMDEP’s models – NLOGIT 4.0 is all of LIMDEP 9.0 plus the set of tools and 
estimators described in this manual.  LIMDEP 9.0 contains the CLOGIT command and the 
estimator for the ‘conditional logit’ (or multinomial logit) model. CLOGIT is the same as the most 
basic form of the NLOGIT command described in Chapter 6.  This manual will describe the tools 
and estimators that extend the multinomial logit model.  These include, for example, extensions of 
the multinomial logit model such as the nested logit, mixed logit and multinomial probit models. 
 We emphasize, NLOGIT Version 4.0 is a superset of LIMDEP 9.0.  It is created by adding 
certain features to LIMDEP Version 9.0.  As such, the full set of features of LIMDEP 9.0 is part of 
this package as well.  We assume that you will use the other parts of LIMDEP as part of your 
analysis.  More to the point, this manual is primarily oriented to the commands added to LIMDEP 
that request the set of discrete choice estimators.    
 To use NLOGIT, you will need to be familiar with the LIMDEP platform.  At various points 
in your operation of the program, you will encounter LIMDEP, rather than NLOGIT as the program 
name, for example in certain menus, dialog boxes, window headers, diagnostics, and so on.  Once  
again, these result from the fact that in obtaining NLOGIT, you have installed LIMDEP plus some 
additional capabilities.  If you are uncertain which program is actually installed on your computer, go 
to the About box in the main menu.  It will clearly indicate which program you are operating. 
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Chapter 2: Discrete Choice Models 
 
2.1 Introduction 
 
 This chapter will provide a short, thumbnail sketch of the discrete choice models discussed 
in this manual. NLOGIT supports a large array of models for both discrete and continuous variables, 
including regression models, survival models, models for counts and, of relevance to this setting, 
models for discrete outcomes.  The group of models described in this manual are those that arise 
naturally from a random utility framework, that is, those that arise from a consumer choice setting in 
which the model is of an individual’s selection among two or more alternatives.  This includes 
several of the models described in the LIMDEP manual, such as the binary logit and probit models, 
but also excludes some others, including the models for count data and some of the loglinear models 
such as the geometric regression model. 
 
2.2 Random Utility Models 
 
 The random utility framework starts with a structural model, 
 
 U(choice 1)  =  f1 (attributes of choice 1, characteristics of the consumer, ε1,v,w), 
  ... 
 U(choice J)  =  fJ (attributes of choice J, characteristics of the consumer, εJ,v,w), 
 
where ε1,...,εJ denote the random elements of the random utility functions and in our later treatments, 
v and w will represent the unobserved individual heterogeneity built into models such as the error 
components and random parameters (mixed logit) models.  The assumption that the choice made is 
alternative j such that  
 
   U(choice j) > U(choice q) ∀ q ≠ j. 
 
The observed outcome variable is then  
 
   y  =  the index of the observed choice. 
 
The econometric model that describes the determination of y is then built around the assumptions 
about the random elements in the utility functions that endow the model with its stochastic 
characteristics.  Thus, where Y is the random variable that will be the observed discrete outcome,  
 
   Prob(Y = j)  =  Prob(U(choice j) > U(choice q) ∀ q ≠ j). 
 
The objects of estimation will be the parameters that are built into the utility functions including 
possibly those of the distributions of the random components and, with estimates of the parameters  
in hand, useful characteristics of consumer behavior that can be derived from the model, such as 
partial effects and measures of aggregate behavior. 



Chapter 2: Discrete Choice Models        12 

 

 To consider the simplest example, that will provide the starting point for our development, 
consider a consumer’s random utility derived over a single choice situation, say whether to make a 
purchase.  The two outcomes are ‘make the purchase’ and ‘do not make the purchase.’  The random 
utility model is simply 
 
   U(not purchase)   =  β0′x0  +  ε0, 

   U(purchase)   =  β1′x1  +  ε1. 
 
Assuming that ε0 and ε1 are random, the probability that the analyst will observe a purchase is 
 
   Prob(purchase)   =  Prob(U(purchase) > U(not purchase)) 

       =  Prob(β1′x1  +  ε1  > β0′x0  +  ε0) 

       =  Prob(ε1 - ε0 < β1′x1  -  β0′x0) 

       =  F(β1′x1  -  β0′x0), 
 
where F(z) is the CDF of the random variable ε1 - ε0.  The model is completed and an estimator, 
generally maximum likelihood, is implied by an assumption about this probability distribution.  For 
example, if ε0 and ε1 are assumed to be normally distributed, then the difference is also, and the 
familiar probit model emerges.  
 The sections to follow will outline the models described in this manual in the context of this 
random utility model.  The different models derive from different assumptions about the utility 
functions and the distributions of their random components. 
 
2.3 Binary Choice Models 
 
 Continuing the example in the previous section, the choice of alternative 1 (purchase) 
reveals that U1 > U0, or that  
 
   ε1 - ε0  <  β1′x1 -  β0′x0. 
 
Let ε = ε1 - ε0 and β′x represent the difference on the right hand side of the inequality – x is the union 
of the two sets of covariates, and β is constructed from the two parameter vectors with zeros in the 
appropriate locations if necessary.  Then, a binary choice model applies to the probability that ε ≤ 
β′x.  Two of the parametric model formulations in NLOGIT for binary choice models are the probit 
model based on the normal distribution: 
 

   F  =  dtti

∫
β

∞− π

−x' 2

2
)2/exp(   =  Φ(β′xi), 

 
and the logit model based on the logistic distribution 
 

   F  =  exp( )
1 exp( )

i

i

′
′+

x
x

β
β

  =  Λ(β′xi). 
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 Numerous variations on the model can be obtained. A model with multiplicative 
heteroscedasticity is obtained with the additional assumption 
 
   εi  ~  normal or logistic with variance ∝ [exp(γ′zi)]2, 
 
where zi is a set of observed characteristics of the individual. A model of sample selection can be 
extended to the probit and logit binary choice models.  In both cases, we depart from 
 
   Prob(yi = 1 |xi)  =  F(β′xi), 

where    F(t)   =  Φ(t) for the probit model and Λ(t) for the logit model, 

   di*   =  α′zi + ui, ui ~ N[0,1], di = 1(di* > 0), 

   yi, xi      observed only when di = 1. 
 
where zi is a set of observed characteristics of the individual.  In both cases, as stated, there is no 
obvious way that the selection mechanism impacts the binary choice model of interest.  We modify 
the models as follows:  For the probit model, 
 
   yi*  =  β′xi + εi, εi ~ N[0,1], yi  =  1(yi* > 0), 
 
which is the structure underlying the probit model in any event, and 
 
   ui, εi  ~  N2[(0,0),(1,ρ,1)]. 
 
(We use NP to denote the P-variate normal distribution, with the mean vector followed by the 
definition of the covariance matrix in the succeeding brackets.)  For the logit model, a similar 
approach does not produce a convenient bivariate model.  The probability is changed to 
 

   Prob(yi = 1 | xi,εi)  =  exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

. 

 
With the selection model for zi as stated above, the bivariate probability for yi and zi is a mixture of a 
logit and a probit model.  The log likelihood can be obtained, but it is not in closed form, and must 
be computed by approximation.  We do so with simulation.    
 There are several formulations for extensions of the binary choice models to panel data 
setting. These include  
 

• Fixed effects:     Prob(yit = 1)  =  F(β′xit  +  αi), αi correlated with xit. 
 

• Random effects: Prob(yit = 1)  =  Prob(β′xit + εit + ui > 0), ui uncorrelated with xit. 
 

• Random parameters: Prob(yit = 1)  =  F(βi′xit),   
    βi | i ~ h(β|i) with mean vector β and covariance matrix Σ. 
 

• Latent class:  Prob(yit = 1|class j) =  F(βj′xit),  
    Prob(class = j)  =  Gj(θ,zi), 
 
where zi is a set of observed characteristics of the individual. Other variations include simultaneous 
equations models and semiparametric formulations. 
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2.4 Multinomial Logit Model 
 
 The canonical random utility model is as follows: 
 
   U(alternative 0)  =  β0′xi0  +  ε i0, 

   U(alternative 1)  =  β1′xi1  +  ε i1, 
    ... 

    U(alternative J)  =  βJ ′xiJ  +  εiJ, 

   Observed yi  = choice j if  Ui (alternative j) > Ui (alternative q) ∀ q ≠ j. 
 
The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed to be 
independently and identically distributed with identical type 1extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)). 
 
Based on this specification, the choice probabilities are 
 
   Prob(choice j)   =  Prob(Uj > Uq), ∀ q ≠ j 

     =  
0

exp( )

exp( )
j ij

J
q iqq=

′

′∑
x

x

β

β
, j = 0,...,J. 

 
At this point we make a purely semantic distinction between two cases of the model.  When the 
observed data consist of individual choices and (only) data on the characteristics of the individual, 
identification of the model parameters will require that the parameter vectors differ across the utility 
functions, as they do above.  The study on labor market decisions by Schmidt and Strauss (1975) is a 
classic example.  For the moment, we will call this the multinomial logit model.  When the data also 
include attributes of the choices that differ across the alternatives, then the forms of the utility 
functions can change slightly – and the coefficients can be generic, that is the same across 
alternatives.  Again, only for the present, we will call this the conditional logit model.  (It will 
emerge that the multinomial logit is a special case of the conditional logit model, though the reverse 
is not true.)  The conditional logit model is defined in Section 2.5. 
 The general form of the multinomial logit model is 
  

   Prob(choice j)  =  
0

exp( )

exp( )
j i

J
q iq=

′

′∑
x

x

β

β
, j = 0,...,J. 

 
A possible J + 1 unordered outcomes can occur.  In order to identify the parameters of the model, we 
impose the normalization  β0 = 0.  This model is typically employed for individual or grouped data in 
which the ‘x’ variables are characteristics of the observed individual(s), not the choices.   
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 The data will appear as follows: 
 

• Individual data:   yi coded 0, 1, ..., J, 
• Grouped data:    yi0, yi1,...,yiJ  give proportions or shares. 

 The structural equations of the multinomial logit model are 
 
   Uijt  =  βj′xit  +  εijt, t = 1,...,Ti, j = 0,1,...,J,i=1,...,N, 
 
where Uijt gives the utility of choice j by person i in period t – we assume a panel data application 
with t = 1,...,Ti.  The model about to be described can be applied to cross sections, where Ti = 1.  
Note also that as usual, we assume that panels may be unbalanced.  We also assume that εijt has a 
type 1 extreme value distribution and that the J random terms are independent.  Finally, we assume 
that the individual makes the choice with maximum utility.  Under these (IIA inducing) assumptions, 
the probability that individual i makes choice j in period t is 
 

   Pijt  =  
0

exp( )

exp( )
j it

J
q itq=

′

′∑
x

x

β

β
. 

 
We now suppose that individual i has latent, unobserved, time invariant heterogeneity that enters the 
utility functions in the form of a random effect, so that 
 
   Uijt  =  βj′xit  + αij + εijt, t = 1,...,Ti, j = 0,1,...,J,i=1,...,N. 
 
The resulting choice probabilities, conditioned on the random effects, are 
 

    Pijt | αi1,...,αiJ =  
0

exp( )

exp( )
j it ij

J
q it iqq=

′ + α

′ + α∑
x

x

β

β
. 

 
To complete the model, we assume that the heterogeneity is normally distributed with zero means 
and (J+1)×(J+1) covariance matrix, Σ.  For identification purposes, one of the coefficient vectors, 
βq, must be normalized to zero and one of the αiqs is set to zero. We normalize the first element – 
subscript 0 – to zero.  For convenience, this normalization is left implicit in what follows.  It is 
automatically imposed by the software.  To allow the remaining random effects to be freely 
correlated, we write the J×1 vector of nonzero αs as 
 
   αi  =  Γ vi 
 
where Γ is a lower triangular matrix to be estimated and vi is a standard normally distributed (mean 
vector 0, covariance matrix, I) vector. 
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2.5 Conditional Logit Model 
 
 If the utility functions are conditioned on observed individual, choice invariant 
characteristics, zi, as well as the attributes of the choices, xij, then we write 
 
   U(choice j for individual i)  =  Uij  =  β′xij + γj′zi +  εij, j = 1,...,Ji. 
 
(For this model, which uses a different part of NLOGIT, we number the alternatives 1,...,Ji rather 
than 0,...,Ji.  There is no substantive significance to this – it is purely for convenience in the context 
of the model development for the program commands.)  The random, individual specific terms, 
(εi1,εi2,...,εiJ) are once again assumed to be independently distributed across the utilities, each with 
the same type 1 extreme value distribution 
 
   F(εij)  =  exp(-exp(-εij)). 
 
Under these assumptions, the probability that individual t chooses alternative j is 
 
   Prob(Uij > Uiq) for all q ≠ j. 
 
It has been shown that for independent type 1 extreme value distributions, as above, this probability 
is 

   Prob(yi = j)  =  
( )
( )1

exp

expi

ij j i
J

iq q iq=

′ ′+

′ ′+∑
x z

x z

β γ

β γ
 

 
where yi is the index of the choice made.  We note at the outset that the IID assumptions made about 
εj are quite stringent, and induce the ‘Independence from Irrelevant Alternatives’ or IIA features that 
characterize the model. This is functionally identical to the multinomial logit model of Section 2.4.  
Indeed, the earlier model emerges by the simple restriction γj = 0. We have distinguished it in this 
fashion because the nature of the data suggests a different arrangement than for the multinomial logit 
model and, second, the models in the section to follow are formulated as extensions of this one.  
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2.6 Nested Logit Model 
 
 The nested logit model is an extension of the conditional logit model.  The models supported 
by NLOGIT are based on variations of a four level tree structure such as the following: 
 
ROOT                                   root 
                                        │ 
                        ┌───────────────┴────────────────┐ 
                        │                                │ 
TRUNKS                trunk1                            trunk2               
                        │                                │ 
                ┌───────┴───────┐               ┌────────┴──────┐ 
                │               │               │               │ 
LIMBS                       limb1                         limb2                           limb3                            limb4        
                │               │               │               │ 
            ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
            │       │       │       │       │       │       │       │ 
BRANCHES   branch1      branch2     branch3     branch4     branch5     branch6     branch7     branch8   
            │       │       │       │       │       │       │       │ 
          ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐ 
          │   │   │   │   │   │   │   │   │   │   │   │   │   │   │   │        
ALTS              a1    a2      a3     a4     a5      a6     a7      a8     a9     a10   a11   a12    a13   a14    a15    a16 
 
 The choice probability under the assumption of the nested logit model is defined to be the 
conditional probability of alternative j in branch b, limb l, and trunk r,  j|b,l,r: 
 

   P(j|b,l,r)  =  | , ,| , ,

| , , | ,| , ,

exp( )exp( )
exp( ) exp( )

j b l rj b l r

q b l r b l rq b l r
J

′′

′∑
xx

   =   
x

ββ

β
, 

 
where Jb|l,r is the inclusive value for branch b in limb l, trunk r, Jb|l,r = log Σq|b,l,rexp(β′xq|b,l,r).  At   the 
next level up the tree, we define the conditional probability of choosing a particular branch in limb l, 
trunk r, 
 

   P(b|l,r)  =  | , | , | , | , | , | ,

| , | , | , || ,

exp( ) exp( )
exp( ) exp( )

b l r b l r b l r b l r b l r b l r

s l r s l r s l r l rs l r

J J
J I

′ ′+ τ + τ
′ + τ∑

y y
   =   

y
α α

α
, 

 
where Il|r is the inclusive value for limb l in trunk r, Il|r = log Σs|l,rexp(α′ys|l,r + τs|l,rJs|l,r).  The 
probability of choosing limb l in trunk r is 
 

   P(l|r)  =  | | | | | |

| | ||

exp( ) exp( )
exp( ) exp( )

l r l r l r l r l r l r

q r s r s r rs r

I I
I H

′ ′+ σ + σ
′ + σ∑

z z
   =   

z
δ δ

δ
, 
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where Hr is the inclusive value for trunk r, Hr = log Σs|lexp(δ′zs|r + σs|rIs|r).  Finally, the probability of 
choosing a particular limb is  
 

   P(r)  =  exp( )
exp( )

r r r

s s ss

H
H

′ + φ
′ + φ∑

h . 
h

θ
θ

 

 
By the laws of probability, the unconditional probability of the observed choice made by an 
individual is 

  P(j,b,l,r)  =  P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r). 
 
This is the contribution of an individual observation to the likelihood function for the sample. 
 The ‘nested logit’ aspect of the model arises when any of the τb|l,r or σl|r or φr differ from 1.0.  
If all of these deep parameters are set equal to 1.0, the unconditional probability reduces to 
 

   P(j,b,l,r)  =  | , , | , |

, , , , , ,

exp( )
exp( )

j b l r b l r l r r

j b l r b l r l r rr l b j

′ ′ ′ ′+ + +
′ ′ ′ ′+ + +∑ ∑ ∑ ∑

x y z h
x y z h

β α δ θ

β α δ θ
, 

  
which is the probability for a one level conditional (multinomial) logit model. 
 
 
2.7 Random Parameters Logit Models 
 
 In its most general form, we write the multinomial logit probability as 
 

  
1

exp( )
( | )

exp( )
ji j i j ji ji ji

i J
qi q i q qi qi qiq

P j
=

′ ′ ′α + +
=

′ ′ ′α + +∑
θ z + f x

v
θ z + f x

φ β

φ β
, 

 
where    U(j,i)  =  ji j i j ji ji ji′ ′ ′α + +z + f xθ φ β , j = 1,...,Ji alternatives in individual i’s choice set, 

         αji  is an alternative specific constant which may be fixed or random, αJi = 0, 

θj   is a vector of nonrandom (fixed) coefficients, θJi = 0, 

φj  is a vector of nonrandom (fixed) coefficients, 

         βji   is a coefficient vector that is randomly distributed across individuals; vi enters βji, 

  zi   is a set of choice invariant individual characteristics such as age or income, 

         fji  is a vector of M individual and choice varying attributes of choices, multiplied by φj, 

 xji   is a vector of L individual and choice varying attributes of choices, multiplied by βji. 
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The term ‘mixed logit’ is often used in the literature for this model.  The choice specific constants, 
αji and the elements of βji are distributed randomly across individuals such that for each random 
coefficient, ρki = any (not necessarily all of) αji or βjki, the coefficient on attribute xjik, k = 1,...,K, 
 
                 ρjki  =  αji or βjki  =  ρjk  +  δk′wi  +  σkvki, 

or               ρjki  =  αji or βjki  =  exp(ρjk  +  δjk′wi  +  σjkvjki). 
 
The vector wi (which does not include one) is a set of choice invariant characteristics that produce 
individual heterogeneity in the means of the randomly distributed coefficients; ρjk is the constant 
term and δjk is a vector of ‘deep’ coefficients which produce an individual specific mean.  The 
random term, vjki is normally distributed (or distributed with some other distribution) with mean 0 
and standard deviation 1, so σjk is the standard deviation of the marginal distribution of ρjki. The vjkis 
are individual and choice specific, unobserved random disturbances – the source of the 
heterogeneity.  Thus, as stated above, in the population 
 
               αji or βjki   ~  Normal or Lognormal [ρjk + δjk′wi, σjk

2]. 
 
(Other distributions may be specified.)  For the full vector of K random coefficients in the model, we 
may write 
 
   ρi  =  ρ  +  ∆wi  +  Γvi 
 
where Γ is a diagonal matrix which contains σk on its diagonal.  A nondiagonal Γ allows the random 
parameters to be correlated.  Then, the full covariance matrix of the random coefficients is Σ = ΓΓ′.  
The standard case of uncorrelated coefficients has Γ = diag(σ1,σ2 ,…,σk). If the coefficients are 
freely correlated, Γ is a full, unrestricted, lower triangular matrix and Σ will have nonzero off 
diagonal elements. An additional level of flexibility is obtained by allowing the distributions of the 
random parameters to be heteroscedastic,  
 
   σijk

2  =  σjk
2 × exp(γjk′hi). 

 
This is now built into the model by specifying 
 
   ρi  =  ρ  +  ∆wi  +  Γ Ωi vi 

where   Ωi  = diag[σijk
2] 

 
and now, Γ is a lower triangular matrix of constants with ones on the diagonal.  Finally, 
autocorrelation can also be incorporated by allowing the random components of the random 
parameters to obey an autoregressive process, 
 
   vki,t  =  τki vki,t-1 + cki,t  
 
where cki,t is now the random element driving the random parameter. 
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 This produces, then, the full random parameters logit model 
 

  
1

exp( )
( | )

exp( )
ji i ji

i J
mi i mim

P j
=

′α +
=

′α +∑
x

v
x

β

β
, 

           βi  =  β  +  ∆zi  +  Γ Ωi vi 

           vi  ~  with mean vector 0 and covariance matrix I.  
 
The specific distributions may vary from one parameter to the next.  We also allow the parameters to 
be lognormally distributed so that the preceding specification applies to the logarithm of the specific 
parameter. 
 
2.8 Multinomial Probit Model 
 

In this model, the individual’s choice among J alternatives is the one with maximum utility, 
where the utility functions are 

 
      Uji   = β′xji  +  εji 

where   Uji  =  utility of alternative j to individual i 

   xjit   = union of all attributes that appear in all utility functions.  For 
     some alternatives, xjit,k may be zero by construction for some 
     attribute k which does not enter their utility function for 
     alternative j. 
 
The multinomial logit model specifies that εji are draws from independent extreme value 
distributions (which induces the IIA condition).  In the multinomial probit model, we assume that εji 
are normally distributed with standard deviations Sdv[εji] = σj and correlations Cor[εji, εqi] = ρjq (the 
same for all individuals).  Observations are independent, so Cor[εji,εqs ] = 0 if i is not equal to s, for 
all j and q.  A variation of the model allows the standard deviations and covariances to be scaled by a 
function of the data, which allows some heteroscedasticity across individuals. 

The correlations ρjq are restricted to -1 < ρjq < 1, but they are otherwise unrestricted save for 
a necessary normalization.  The correlations in the last row of the correlation matrix must be fixed at 
zero.   The standard deviations are unrestricted with the exception of a normalization – two standard 
deviations are fixed at 1.0 – NLOGIT fixes the last two.   
 This model may also be fit with panel data.  In this case, the utility function is modified as 
follows: 
 
      Uji,t   =   β′xji,t  +  εji,t  +  vji,t 
 
where ‘t’ indexes the periods or replications.  There are two formulations for vji,t,  
 
   Random effects   vji,t =  vji,t (the same in all periods) 

   First order autoregressive vji,t  =  αj vji,t-1  +  aji,t. 
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It is assumed that you have a total of Ti observations (choice situations) for person i.  Two situations 
might lend themselves to this treatment.   If the individual is faced with a set of choice situations that 
are similar and occur close together in time, then the random effects formulation is likely to be 
appropriate.  However, if the choice situations are fairly far apart in time, or if habits or knowledge 
accumulation are likely to influence the latter choices, then the autoregressive model might be the 
better one. 
 You can also add a form of individual heterogeneity to the disturbance covariance matrix.  
The model extension is 

 
  Var[εi]  =  exp[γ′hi] × Σ 

 
where Σ is the matrix defined earlier (the same for all individuals), and hi is an individual (not 
alternative) specific set of variables not including a constant. 
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Chapter 3: Model and Command Summary for 
Discrete Choice Models 

 
3.1 Introduction 
 
 The chapters to follow will provide details on the various discrete choice models you can 
estimate with NLOGIT and on the model commands you will use to request the estimates.  This 
chapter will provide a brief summary listing of the models and model commands.  The variety of 
logit models now use a set of specific names, rather than qualifiers to more general model classes as 
in earlier versions.  For example, the model name OLOGIT can be used instead of ORDERD ; 
Logit.  The earlier formats remain available, but the newer ones may prove more convenient.  The 
full listing of these commands is also given below.  The commands below specify the essential parts 
needed to fit the model.  The numerous options and different forms are discussed in the chapters to 
follow. 
 
3.2 Model Summary 
 
 The descriptions below present the different discrete choice models that are the main feature 
of NLOGIT.  Note, once again, NLOGIT contains all of LIMDEP, so all of the models documented in 
the Econometric Modeling Guide, including the regression models, limited dependent variable 
models, generalized linear models, sample selection models, and so on are supported in NLOGIT, as 
well as the ancillary tools including MATRIX, etc.  
 
3.3 Basic Discrete Choice Models 
 
 The binomial probit and logit models and the ordered probit and logit models are the primary 
model frameworks for single equation, single decision, discrete choice models.  The ordered choice 
and the bivariate and multivariate probit models are multivariate extensions of the simple probit 
model.   
 There are five binary choice models, probit, logit, complementary log log, Gompertz and 
Burr.  The ones that interest us here are the binary probit and logit models.  The probit model is 
requested with 
 
 PROBIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
The binary logit model may be invoked with 
 
 BLOGIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
In earlier versions, you would use the LOGIT command, which is still useable.  LOGIT is the same 
as BLOGIT when the data on the dependent variable are either binary (zeros and ones) or 
proportions (strictly between zero and one). 
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3.4 Multinomial Logit Models 
 

 The ‘multinomial logit model’ is an early, restrictive version of the conditional logit model, 
which, itself, is the gateway model to the main model extensions described in Section 3.5. 
 

3.4.1 Multinomial Logit 
 

 The multinomial logit model is invoked with 
 
 MLOGIT ; Lhs  = dependent variable 
   ; Rhs  = independent variables $ 
 
Data for the MLOGIT model consist of an integer valued variable taking the values 0, 1, ..., J.  This 
model may also be fit with proportions data.  In that case, you will provide the names of J+1 Lhs 
variables that will be strictly between zero and one, and will sum to one at every observation.  The 
MLOGIT command is the same as LOGIT.  The program inspects the command (Lhs) and the data, 
and determines internally whether BLOGIT or MLOGIT is appropriate.  Note, on proportions data, 
if you want to fit a binary logit model with proportions data, you will supply a single proportions 
variable, not two.  (What would be the second one is just one minus the first.)  If you want to fit a 
multinomial logit model with proportions data with three or more outcomes, you must provide the 
full set of proportions.  Thus, you would never supply two Lhs variables in a LOGIT, BLOGIT or 
MLOGIT command. 
 
3.4.2 Conditional Logit 
 
 The command for the conditional model, and the commands in the sections to follow, are 
variants of the NLOGIT command.  This is a full class of estimators based on the conditional logit 
form.  There are several forms of the essential command for fitting the conditional logit model with 
NLOGIT.  The simpler one is 
 
 CLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
As discussed in Chapter 5, the data for this estimator consist of a set of J observations, one for each 
alternative.  (The observation resembles a group in a panel data set.)  The command just given 
assumes that every individual in the sample chooses from the same size choice set, J.  The choice 
sets may have different numbers of choices, in which case, the command is changed to 
 
   ; Lhs  = dependent variable, choice set size variable 
 
The second Lhs variable is structured exactly the same as a ; Pds variable for a panel data estimator.  
In the second form of the model command, the utility functions are specified directly, symbolically.   
 
 The ; Rhs and ; Rh2 specifications can be replaced with 
 
   ; Model: ... specification of the utility functions 
 
This is discussed in Chapter 6. 
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 The CLOGIT command is the same as DISCRETE CHOICE.  It is also the same as 
NLOGIT when the only information given in the command is that specified above, that is when 
none of the specifications that invoke the model extensions that are described in the sections to 
follow are provided. 
 
3.5 NLOGIT Extensions of Conditional Logit 
 
3.5.1 Nested 
 
 The nested logit model is the default form of the NLOGIT command.  Request the nested 
logit model with 
 
 NLOGIT ; Tree = specification of the tree structure 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
 
3.5.2 Random Parameters Logit 
 
 The random parameters logit model (mixed logit model) is requested by specifying a 
conditional logit model, and adding the specification of the random parameters.  The model 
command is 
 
 RPLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn  = the specifications of the random parameters   
   ; ... other specifications for the random parameters model $ 
 
Once again, variable choice set sizes and utility function specifications are specified as in the 
CLOGIT command.  This command is the same as 
 
 NLOGIT ; RPL 
   ; ... the rest of the command $ 
 
There is one modification that might be necessary.  If you are providing variables that affect the 
means of the random parameters, you would generally use 
 
 NLOGIT ; RPL = the list of variables 
   ; ... the rest of the command $ 
 
The RPL specification may still be used this way.  The command can be NLOGIT as above, or 
 
 RPLOGIT ; RPL = the list of variables 
   ; ... the rest of the command $ 
 
These are identical.   
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 The random parameters model may also include an error components specification defined 
in the next section.  The command will be 
 
 RPLOGIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics  
   ; Fcn  = the specifications of the random parameters   
   ; ... other specifications for the random parameters model  
   ; ECM = specification $ 
 

3.5.3 Multinomial Probit 
 
 The multinomial probit model is described in Chapter 11.  The essential command is 
 
 MNPROBIT ; Lhs  = dependent variable 
   ; Choices = the names of the J alternatives 
   ; Rhs  = list of choice specific attributes 
   ; Rh2  = list of choice invariant individual characteristics $ 
 
Variable choice set sizes and utility function specifications are specified as in the CLOGIT 
command.  This command is the same as 
 
 NLOGIT ; MNP 
   ; ... the rest of the command $ 
 

3.6 Command Summary 
 
 The following lists the current and where applicable, alternative forms of the discrete choice 
model commands.  The two sets of commands are identical, and for each model, in NLOGIT 4.0, 
either command may be used for that model. 
 
Models    Command           Alternative Command Form 
 
Binary Choice Models 
 Binary Probit   PROBIT  PROBIT 
 Binary Logit   BLOGIT  LOGIT 
 
Multinomial Logit Models 
 Multinomial Logit   MLOGIT  LOGIT 
 Conditional Logit   CLOGIT  DISCRETE CHOICE 
 
Conditional Logit Extensions  
 Conditional Logit   CLOGIT  CLOGIT 
 Multinomial Logit   NLOGIT  NLOGIT (Same as CLOGIT) 
 Nested Logit   NLOGIT ; Tree = ... NLOGIT ; Tree = ... 
 Random Parameters Logit  RPLOGIT  NLOGIT ; RPL 
 Multinomial Probit   MNPROBIT  NLOGIT ; MNP 
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3.7 Subcommand Summary 
 
 The following subcommands are used in NLOGIT model commands.  The BLOGIT, 
BPROBIT, BVPROBIT, MVPROBIT, OLOGIT and OPROBIT commands have additional 
specifications that are documented in the LIMDEP Econometric Modeling Guide for these specific 
models.  The specifications below are those that may appear in the NLOGIT command or the 
conditional logit extensions described above. 
 
General Model Specification and Data Setup 
     Data on Dependent Variable 

 ; Ranks  indicates that data are in the form of ranks, possibly ties at last place. 
 ; Shares indicates that data are in the form of proportions or shares. 
 ; Frequencies indicates that data are in the form of frequencies or counts. 
 ; Checkdata checks validity of the data before estimation. 
 ; Wts = weighting variable uses a weighting variable.  (Noscale is not used here.) 
 ; Scale (list of variables) = values for scaling loop specifies scaling of certain variables 
    during iterations. 
 ; Pds = specification used by RPL, LCM, ECM, MNP and by binary choice models to 
    indicate a panel data set.  Indicates multiple choice situations for individuals. 

     Specification of the Dependent Variable 

 ; Lhs = list of variables used by all models to name the dependent variable. Second Lhs 
    variable indicates variable choice set size. Third Lhs variable indicates 
    specific  choices in a universal choice set.  First variable is a set of utilities if  
    ; MCS is used. 
 ; MCS  requests data generated by Monte Carlo simulation. 
 ; Choices = list lists names for alternatives. 

     Specification of Utility Functions 

 ; Rhs = list of variables lists choice varying attribute variables. 
 ; Rh2 = list of variables lists choice invariant characteristic variables. 
 ; Model:  alternative way to specify utility functions, followed by definitions of 
    utility functions. 
 ; Fix = list lists names of and values for coefficients that are to be fixed. 
 ; Uset (list of alternatives) = list of values or [list of values] alternative method of 
   specifying starting values or fixed coefficients. 
 ; Lambda = value specifies coefficient to use for Box-Cox transformation. 
 ; Attr = list of names names for attributes used in one line entry format. 
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Output Control 
     List and Retain Variables and Results 

 ; Prob = variable name keeps predicted probabilities from estimated model as variable. 
 ; Keep  = variable name keeps predicted values from estimated model as variable. Used by 
   PROBIT and BLOGIT only. 
 ; Utility = name keeps predicted utilities as variable. 
 ; List  lists predicted probabilities and predicted outcomes with model results. 
 ; Parameters retains additional parameters as matrices.  With RPL and LCM, keeps 
   matrices of individual specific parameter means. 
 ; WTP = list of specifications retains computations of willingness to pay. 

     Covariance Matrices 

 ; Printvc displays estimated covariance matrix with model output. 
 ; Robust computes robust sandwich estimator for asymptotic covariance matrix. 
 ; Cluster = specification computes robust cluster corrected asymptotic covariance matrix. 

     Display of Estimation Results 

 ; Show  displays model specification and tree structure. 
 ; Describe lists descriptive statistics for attributes by alternative. 
 ; Odds  includes odds ratios in estimation results. Used only by BLOGIT. 
 ; Crosstab includes crosstabulation of predicted and actual outcomes. 
 ; Table = name adds model results to stored tables. 

     Marginal Effects 

 ; Effects: specification displays estimated marginal effects.  Used by NLOGIT. 
 ; Marginal Effects displays estimated marginal effects.  Used by PROBIT, BLOGIT,  
   BVPROBIT, MVPROBIT, OLOGIT, OPROBIT. 
 ; Means computes marginal effects using data means.  Uses average partial effects if  
   this is not specified. 
 ; Pwt  uses probability weights to compute average partial effects. 
 
Hypothesis Testing 
 ; Wald: specification computes Wald test statistic for specified linear restrictions. 
 ; Test: specification same as Wald: specification. 
 ; IAS = list of choices used with CLOGIT to test IIA assumption. 
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Optimization 
     Iterations Controls 

 ; Alg = algorithm specifies optimization method. 
 ; Maxit = value specifies maximum iterations. 
 ; Tlg = value tolerance for convergence on gradient. 
 ; Tlb = value tolerance for convergence on change in parameters. 
 ; Tlg = value tolerance for convergence on change in function. 
 ; Set   keeps settings of tolerance values. 
 ; Output = value displays technical output during iterations. 

     Starting Values 

 ; Start = list of values provides starting values for all model parameters. 
 ; PR0 = list of values provides starting values for free parameters only.  (Generally not used.) 

     Constrained Estimation 

 ; CML: specification constrained maximum likelihood estimator. 
 ; Rst = list of values and symbols imposes fixed value and equality constraints. 
 ; Calibrate fixes parameters at previously estimated values. 
 ; ASC    initially fit model with just ASCs. 

     Criterion Function for CLOGIT 

 ; GME [= number of support points] generalized maximum entropy. Used by MLOGIT  
   and CLOGIT. 
 ; Sequential sequential two step estimator for nested logit.  (Generally not used.) 
 ; Conditional conditional estimator for two step nested logit.  (Generally not used.) 

     Simulation Based Estimation 

 ; Pts = number of replications number of replications for simulation estimator.  Used by   
   ECM and MNP.  (Also used by LCM to specify number of latent classes.) 
 ; Shuffled uses shuffled uniform draws to compute draws for simulations. 
 ; Halton uses Halton sequences for simulation based estimators. 
 
Simulation Processor  (BINARY CHOICE Command for PROBIT and BLOGIT) 
 ; Simulation [ = list of choices] simulates effect of changes in attributes on aggregate  
  outcomes. 
 ; Scenarios specifies changes in attributes for simulations. 
 ; Arc  computes arc elasticities during simulations. 
 ; Merge merges revealed and stated preference data during simulations. 
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Specific NLOGIT Model Commands 
 ; LCM [ = list of variables] specifies latent class model.  Optionally, specifies variables that  
  enter the class probabilities.  (Command is also LCLOGIT.)  Also used by  
  PROBIT and BLOGIT. 
 ; ECM = list of specifications specifies error components logit model. (Command is also 
  ECLOGIT.) 
 ; HEV specifies heteroscedastic extreme value model.  (Command is also 
  HCLOGIT.) 

     Nested Logit Model 

 ; Tree = specification specifies tree structure in nested logit model. 
 ; GNL specifies generalized nested logit model. (Command is also GNLOGIT.) 
 ; RU1 specifies parameterization of second and third levels of the tree. 
 ; RU2 specifies parameterization of second and third levels of the tree. 
 ; RU3  specifies parameterization of second and third levels of the tree. 
 ; IVSET: specifications imposes constraints on inclusive value parameters. 
 ; IVB = variable name keeps branch level inclusive values as a variable. 
 ; IVL = name for limb IV keeps limb level inclusive values as a variable. 
 ; IVT = name for trunk IV keeps trunk level inclusive values as a variable. 
 ; Prb = name   keeps branch level probabilities as a variable. 
 ; Cprob = name  keeps conditional probabilities for alternatives. 

     Random Parameters Logit Model 

 ; RPL [ = list of variables] requests mixed logit model. Optionally specifies variables to 
  enter means of random parameters. 
 ; AR1 AR(1) structure for random terms in random parameters. 
 ; Fcn: defines names and types of random parameters. 
 ; Correlation specifies that random parameters are correlated. 
 ; Hfr = list of variables defines variables in heteroscedasticity.  Also used by HEV and 
  covariance heterogeneity. 

     Multinomial Probit 

 ; MNP specifies multinomial probit model.  (Command is also MNPROBIT.) 
 ; EQC = list of choices specifies a set of choices whose pairwise correlations are all equal. 
 ; RCR = list of specifications specifies configurations for correlations for multinomial 
   probit model.  Also used by RPL. 
 ; SDV = list of specifications specifies diagonal elements of covariance matrix.  Also used 
   by RPL and HEV. 
 ; REM  specifies random effects form of the model. 
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Chapter 4: The Basic Multinomial Logit Model 
 
4.1 Introduction 
 
 This chapter will describe a basic form of the ‘multinomial logit’ model.  These models are 
also known variously as ‘conditional logit,’ ‘discrete choice,’ and ‘universal logit’ models, among 
other names.  All of them can be viewed as special cases of a general model of utility maximization: 
An individual is assumed to have preferences defined over a set of alternatives (travel modes, 
occupations, food groups, etc.) 
 
   Ui(alternative 0)  =  β0′xi0  +  ε i0, 

   Uj(alternative 1)  =  β1′xi1  +  ε i1, 

    ... 

    Ui(alternative J)  =  βJ ′xiJ  +  εiJ, 

   Observed Yi  = j if  Ui( alternative j ) > Ui( alternative q ) ∀ q ≠ j. 
 
The ‘disturbances’ in this framework (individual heterogeneity terms) are assumed to be 
independently and identically distributed with identical type 1 extreme value distribution; the CDF is 
 
   F(εj)  =  exp(-exp(-εj)). 
 
Based on this specification, the choice probabilities, 
 
   Prob(choice j ) =  Prob(Uj > Uq), ∀ q ≠ j 
 

     =  
0

exp( )

exp( )
j ji

J
m mim=

′

′∑
x

x

β

β
, j = 0,...,J, 

 
where ‘i’ indexes the observation, or individual, and ‘j’ and ‘m’ index the choices.  The IID 
assumptions made about εj are quite stringent, and lead to the ‘Independence from Irrelevant 
Alternatives’ or IIA implications that characterize the model.  Much (perhaps all) of the research on 
forms of this model consists of development of alternative functional forms and stochastic 
specifications that avoid this feature.  The observed data consist of the Rhs vectors, xjt, and the 
outcome, or choice, yt.  (We also consider a number of variants.)  
 This chapter will examine what we call, for the present, the multinomial logit model.  In this 
model, it is assumed that the Rhs variables consist of a set of individual specific characteristics, such 
as age, education, marital status, etc.  These are the same for all choices, so the choice subscript on x 
in the formula above is dropped.  The observation setting is the individual’s choice among a set of 
alternatives, where it is assumed that the determinant of the choice is the characteristics of the 
individual.  An example might be a model of choice of occupation.  The remaining chapters of this 
manual after this one will examine what we call (again only for convenience) the discrete choice 
model and, also, to differentiate the command, the conditional logit model.  In this framework, we 
observe the attributes of the choices, rather than the characteristics of the individual.  A well known 
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example is travel mode choice.  Samples of observations often consist of the attributes of the 
different modes and the choice actually made.  Usually, no characteristics of the individuals are 
observed beyond their actual choice.  Models may also contain mixtures of the two types of choice 
determinants.  These are considered in the later chapters as well. (We emphasize, these naming 
distinctions are meaningless in the modeling framework – we just use them here only to organize the 
applicable parts of NLOGIT. 
 
4.2 The Multinomial Logit Model 
 
 The general form of the multinomial logit model is 
 

   Prob(choice j)  =  
1

exp( )

exp( )
j t

J
m tm=

′

′∑
x

x

β

β
, j = 0,...,J. 

 
A possible J+1 unordered outcomes can occur.  In order to identify the parameters of the model, we 
impose the normalization β0 = 0.  This model is typically employed for individual or grouped data in 
which the ‘x’ variables are characteristics of the observed individual(s), not the choices.  For present 
purposes, that is the main distinction between this and the discrete choice model described in 
Chapter 8.  The characteristics are the same across all outcomes. 
 The data will appear as follows: 
 

• Individual data: yi coded 0, 1, ..., J, 
• Grouped data:  y0i, y1i,...,yJi give proportions or shares. 

 
In the grouped data case, a weighting variable, nt, may also be provided if the observations happen to 
be frequencies.  The proportions variables must range from zero to one and sum to one at each 
observation.  The full set must be provided, even though one is redundant.  The data are inspected to 
determine which specification is appropriate.  The number of Lhs variables given and the coding of 
the data provide the full set of information necessary to estimate the model, so no additional 
information about the dependent variable is needed. 
 This model proliferates parameters.  There are J×K nonzero parameters in all, since there is a 
vector βj for each probability except the first.  Consequently, even moderately sized models quickly 
become very large ones if your outcome variable, y, takes many values. The maximum number of 
parameters which can be estimated in a model is 150 as usual with the standard configuration.  
However, if you are able to forego certain other optional features, the number of parameters can 
increase to 300.  (This is the only model in NLOGIT  that extends the 150 parameter limit.)  The 
model size is detected internally.  If your configuration contains more than 150 parameters, the 
following options and features become unavailable: 
 

• marginal effects 
• choice based sampling 
• ; Rst = list for imposing restrictions 
• ; CML: specification for imposing linear constraints 
• ; Hold for using the multinomial logit model as a sample selection equation 

 
In addition, if your model size exceeds 150 parameters, the matrices b and varb cannot be retained.   
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4.3 Model Command for the Multinomial Logit Model 
 
 The command for fitting this form of multinomial logit model is 
 
 MLOGIT  ; Lhs = y     or     y0,y1,...yJ   
   ; Rhs = regressors $  
 
(The command may also be LOGIT, which is what has always been used in previous versions of 
LIMDEP and NLOGIT.)  All general options for controlling output and iterations are available 
except ; Keep = name.  (A program which can be used to obtain the fitted probabilities is listed 
below.)  There are internally computed predictions for the multinomial logit model.   
 The ; Rst = list form of restrictions is supported for imposing constraints on model 
parameters, either fixed value or equality.  One possible application of the constrained model 
involves making the entire vector of coefficients in one probability equal that in another.  You can do 
this as follows: 
 
 NAMELIST ; x  = the entire set of Rhs variables $ 
 CALC  ; k  = Col(x) $ 
 LOGIT  ; Lhs  = y 
   ; Rhs  = x 
   ; Rst  = k_b, k_b, ... , k_b $ 
 
This would force the corresponding coefficients in all probabilities to be equal.  You could also 
apply this to some, but not all of the outcomes, as in 
  
   ; Rst = k_b, k_b, k_b2, k_b3 
 
HINT:  The coefficients in this model are not the marginal effects.  But, forcing the coefficient on a 
characteristic in probability j to equal its counterpart in probability m also forces the two marginal 
effects to be equal. 
 
4.4 Robust Covariance Matrices 
 
 It has become common in the literature to compute a ‘robust covariance matrix’ for the 
MLE.  (The misspecification to which the matrix is robust is left unspecified in most cases.)  The 
desired robust covariance matrix would result in the preceding computation if wi equals one for all 
observations. This suggests a simple way to obtain it, just by specifying ; Choice Based ; Wts = 
one. Alternatively, just use 
 
   ; Robust 
 
which is equivalent. 
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 A related calculation is used when observations occur in groups which may be correlated.  
This is rather like a panel; one might use this approach in a random effects kind of setting in which 
observations have a common latent heterogeneity.  The parameter estimator is unchanged in this 
case, but an adjustment is made to the estimated asymptotic covariance matrix.  The calculation is 
done as follows: Suppose the n observations are assembled in C clusters of observations, in which 
the number of observations in the cth cluster is nc.  Thus, 
 
   

1

C
cc

n
=∑   =  n. 

 
Denote by β the full set of model parameters, [β1′, ..., βJ′]′.  Let the observation specific gradients 
and Hessians for individual i in cluster c be 
 

   gic   =  
log icL∂
∂β

,  

 

   Hic  =  
2 log

'
icL∂

∂ ∂β β
. 

 
The uncorrected estimator of the asymptotic covariance matrix based on the Hessian is 
 

   VH   =   -H-1  =  ( ) 1

1 1
cC n

icc i

−

= =
−∑ ∑ H . 

 
The corrected asymptotic covariance matrix is 
 

  Est.Asy.Var ˆ 
 β   =  ( )( )1 1 1

'
1

c cC n n
H ic ic Hc i i

C
C = = =

 
  − ∑ ∑ ∑V  g g  V . 

 
Note that if there is exactly one observation per cluster, then this is C/(C-1) times the sandwich 
(robust) estimator discussed above.  Also, if you have fewer clusters than parameters, then this 
matrix is singular – it has rank equal to the minimum of C and JK, the number of parameters.  This 
estimator is requested with 
 
   ; Cluster = specification  
 
where the specification is either a fixed number of observations per cluster, or an identifier that 
distinguishes clusters, such as an identification number.  This estimator can also be extended to 
stratified as well as clustered data, using 
 
   ; Stratum = specification 
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4.5 Output for the Multinomial Logit Model 
 
 Initial ordinary least squares results are used for the starting values for this model.  For 
individual data, J binary variables are implied by the model.  These are used in a least squares 
regression.  For the grouped data case, a minimum chi squared, generalized least squares estimate is 
obtained by the weighted regression of 
 
   oij =  log(Pij / Pi0)  
 
on the regressors, with weights hij =  (niPijPi0)1/2  (ni may be 1.0).  (Note that the dependent variables 
in these regressions are the ‘odds ratios.’) The OLS estimates based on the individual data are 
inconsistent, but the grouped data estimates are consistent (and, in the binomial case, efficient).  The 
least squares estimates are included in the displayed results by including 
 
   ; OLS 
 
in the model command.  The iterations are followed by the maximum likelihood estimates with the 
usual diagnostic statistics.  An example is shown below. 
 
NOTE:  Minimum chi squared (MCS) is an estimator, not a model.  Moreover, the MCS estimator 
has the same properties as, but is different from the maximum likelihood estimator.  Since the MCS 
estimator in NLOGIT  is not iterated, it should not be used as the final result of estimation.  Without 
iteration, the MCS estimator is not a fixed point – the weights are functions only of the sample 
proportions, not the parameters.  For current purposes, these are only useful as starting values. 
 
 Standard output for the logit model will begin with a table such as the following which 
results from estimation of a model in which the dependent variable takes values 0,1,2,3,4,5: 
 
 LOGIT ; Lhs = newhsat ; Rhs = one,educ,hhninc,age,hhkids $ 
 
+---------------------------------------------+ 
| Multinomial Logit Model                     | 
| Maximum Likelihood Estimates                | 
| Dependent variable              NEWHSAT     | 
| Weighting variable                 None     | 
| Number of observations             8140     | 
| Iterations completed                  5     | 
| Log likelihood function       -11246.97     | 
| Number of parameters                 25     | 
| Info. Criterion: AIC =          2.76953     | 
|   Finite Sample: AIC =          2.76955     | 
| Info. Criterion: BIC =          2.79104     | 
| Info. Criterion:HQIC =          2.77688     | 
| Restricted log likelihood     -11308.02     | 
| McFadden Pseudo R-squared      .0053989     | 
| Chi squared                    122.1013     | 
| Degrees of freedom                   20     | 
| Prob[ChiSqd > value] =         .0000000     | 
+---------------------------------------------+ 
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This is based on the health satisfaction variable analyzed in the preceding chapter.  We reduced the 
sample to those with newhsat reported zero to five.  We would note, though these make for a fine 
numerical example, the multinomial logit model would be inappropriate for these ordered data.) The 
restricted log likelihood is computed for a model in which one is the only Rhs variable.  In this case, 
 
   log L0   =  Σj nj logPj, 
 
where nj is the number of individuals who choose outcome j and Pj = nj/n = the jth sample 
proportion.  The chi squared statistic is 2(log L - log L0).  If your model does not contain a constant 
term, this statistic need not be positive, in which case it is not reported.  But, even if it is, the statistic 
is meaningless if your model does not contain a constant. 
 The diagnostic statistics are followed by the coefficient estimates:  These are β1,...,βJ.  Recall 
β0 is normalized to zero, and not reported. 
 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Characteristics in numerator of Prob[Y = 1] 
 Constant|   -1.77566023       .69486152    -2.555   .0106 
 EDUC    |     .07325707       .04476186     1.637   .1017   10.8759203 
 HHNINC  |     .28572052       .58129003      .492   .6231    .32998942 
 AGE     |     .00565832       .00838172      .675   .4996   46.9925061 
 HHKIDS  |     .27187563       .19642471     1.384   .1663    .33169533 
---------+Characteristics in numerator of Prob[Y = 2] 
 Constant|    -.54216913       .54865993     -.988   .3231 
 EDUC    |     .06151644       .03616780     1.701   .0890   10.8759203 
 HHNINC  |     .85929376       .44943471     1.912   .0559    .32998942 
 AGE     |    -.00089766       .00650574     -.138   .8903   46.9925061 
 HHKIDS  |     .13920984       .15529658      .896   .3700    .33169533 
---------+Characteristics in numerator of Prob[Y = 3] 
 Constant|    -.25432932       .49206457     -.517   .6053 
 EDUC    |     .10995580       .03246796     3.387   .0007   10.8759203 
 HHNINC  |    1.54516927       .40166793     3.847   .0001    .32998942 
 AGE     |    -.00955207       .00583708    -1.636   .1017   46.9925061 
 HHKIDS  |     .08177804       .14014086      .584   .5595    .33169533 
---------+Characteristics in numerator of Prob[Y = 4] 
 Constant|     .09378185       .48301274      .194   .8461 
 EDUC    |     .10453491       .03201865     3.265   .0011   10.8759203 
 HHNINC  |    1.74362305       .39382043     4.427   .0000    .32998942 
 AGE     |    -.01430375       .00571476    -2.503   .0123   46.9925061 
 HHKIDS  |     .19548647       .13659829     1.431   .1524    .33169533 
---------+Characteristics in numerator of Prob[Y = 5] 
 Constant|    1.58458651       .45170179     3.508   .0005 
 EDUC    |     .07526768       .03034831     2.480   .0131   10.8759203 
 HHNINC  |    1.64030015       .37209397     4.408   .0000    .32998942 
 AGE     |    -.01481141       .00525964    -2.816   .0049   46.9925061 
 HHKIDS  |     .19988328       .12654882     1.579   .1142    .33169533 
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 The prediction for any observation is the cell with the largest predicted probability for that 
observation. 
 
NOTE:  If you have more than three outcomes, it is very common, as occurred above, for the model 
to predict zero outcomes in one or more of the cells.  Even in a model with very high t ratios and 
great statistical significance, it takes a very well developed model to make predictions in all cells. 
 
 The ; List specification produces a listing such as the following: 
 
Observation   Observed Y     Predicted Y     Residual     MaxPr(i)    Prob[Y*=y] 
      1         2.0000         .00000         .0000        .2905        .1443 
      2         .00000         .00000         .0000        .2538        .2538 
      3         .00000         .00000         .0000        .2866        .2866 
      4         5.0000         3.0000         .0000        .2532        .1088 
      5         4.0000         3.0000         .0000        .2535        .2452 
      6         4.0000         3.0000         .0000        .2584        .2503 
      7         4.0000         4.0000         .0000        .2568        .2568 
      8         5.0000         .00000         .0000        .2354        .1440 
      9         .00000         4.0000         .0000        .2596        .2045 
     10         1.0000         .00000         .0000        .2554        .1027 
 
In the listing, the MaxPr(i) is the probability attached to the outcome with the largest predicted 
probability; the outcome is shown as the Predicted Y.  The last column shows the predicted 
probability for the observed outcome.  Residuals are not computed – there is no significance to the 
reported zero. 
 The results kept for further use are: 
 
 Matrices:  b and varb. 
 
An additional matrix named b_logit is created which is (J+1)×K.  This matrix contains the 
parameters arranged so that βj′ is the jth row.  The first row is zero.  This matrix can be used to 
obtain fitted probabilities, as discussed below. 
 
 Scalars: kreg, nreg, logl, and exitcode. 
 
Labels for WALD are constructed from the outcome and variable numbers.  For example, if there 
are three outcomes and ; Rhs = one,x1,x2, the labels will be 
 
 Last Model: [b1_1,b1_2,b1_3,b2_1,b2_2,b2_3]. 
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4.6 Marginal Effects 
 
 The marginal effects in this model are 
 
   δj  =  ∂Pj/∂x,  j = 0,1,...,J. 
 
For the present, ignore the normalization β0 = 0.  The notation Pj is used for Prob[y = j].  After some 
tedious algebra, we find  
 
   δj   =  Pj(βj  - β ),   

where   β  = ∑ =

J
j 0

Pj βj. 

 
It follows that neither the sign nor the magnitude of δj need bear any relationship to those of βj.   
(This is worth bearing in mind when reporting results.)  The asymptotic covariance matrix for the 
estimator of δj would be computed using 
 
   Asy.Var. ˆ

j
 
 δ   =  Gj Asy.Var ˆ

j
 
 β Gj′, 

 
where β is the full parameter vector.  It can be shown that  
 
   Asy.Var. ˆ

j
 
 δ   =  Σl Σm  Vjl Asy.Cov.[ β̂ l, ˆ

m′β ]Vjm′, j=0,...,J, 

 
where   Vjl  =  [1(j = l) - Pl ]{PjI  + δjx′} - Pjδlx′, 
 
and   1(j = l)  =  1 if j = l, and 0 otherwise. 
 
This full set of results is produced automatically when your LOGIT command includes 
 
   ; Marginal Effects 
 
 There is no conditional mean function in this model, so marginal effects are interpreted a bit 
differently from the usual case.  What is reported are the derivatives of the probabilities.  (Note this 
is the same as the ordered probability models.)  These derivatives are saved in a matrix named 
partials which has J+1 rows and K columns.  Each row is the vector of partial effects of the 
corresponding probability.  Since the probabilities will always sum to one, the column sums in this 
matrix will always be zero.  That is, 
 
 MATRIX ; List  ; 1 ’ partials $ 
 
will display a row matrix of zeros.  The elasticities of the probabilities, (∂Pj/∂xk)×(xk/Pj) are placed in 
a (J+1)×K matrix named elast_ml.  The format of the results is illustrated in the example below. 
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+-------------------------------------------+ 
| Partial derivatives of probabilities with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
| A full set is given for the entire set of | 
| outcomes, NEWHSAT  = 0 to NEWHSAT  =  5.  | 
| Probabilities at the mean vector are      | 
|  0= .052 1= .030 2= .078 3= .145 4= .171  | 
|  5= .523                                  | 
+-------------------------------------------+ 
+--------+--------------+----------------+--------+--------+----------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 
+--------+--------------+----------------+--------+--------+----------+ 
---------+Marginal effects on Prob[Y = 0] 
 Constant|    -.03681271       .02185753    -1.684   .0921 
 EDUC    |    -.00415059       .00144841    -2.866   .0042   -.87310224 
 HHNINC  |    -.07533229       .01759541    -4.281   .0000   -.48080659 
 AGE     |     .00059378       .00025180     2.358   .0184    .53968780 
 HHKIDS  |    -.00874507       .00608176    -1.438   .1505   -.05610378 
---------+Marginal effects on Prob[Y = 1] 
 Constant|    -.07581474       .01624087    -4.668   .0000 
 EDUC    |    -.00021399       .00101558     -.211   .8331   -.07636415 
 HHNINC  |    -.03569724       .01353007    -2.638   .0083   -.38652184 
 AGE     |     .00052245       .00019922     2.622   .0087    .80558651 
 HHKIDS  |     .00313091       .00463577      .675   .4994    .03407609 
---------+Marginal effects on Prob[Y = 2] 
 Constant|    -.09814200       .02502533    -3.922   .0001 
 EDUC    |    -.00146816       .00158947     -.924   .3557   -.20405436 
 HHNINC  |    -.04677448       .02027747    -2.307   .0211   -.19724874 
 AGE     |     .00082844       .00031003     2.672   .0075    .49750446 
 HHKIDS  |    -.00234229       .00728521     -.322   .7478   -.00992853 
---------+Marginal effects on Prob[Y = 3] 
 Constant|    -.13990259       .03064835    -4.565   .0000 
 EDUC    |     .00429655       .00187257     2.294   .0218    .32276832 
 HHNINC  |     .01275949       .02392200      .533   .5938    .02908292 
 AGE     |     .00027978       .00039814      .703   .4822    .09081229 
 HHKIDS  |    -.01264824       .00934649    -1.353   .1760   -.02897839 
---------+Marginal effects on Prob[Y = 4] 
 Constant|    -.10599103       .03277396    -3.234   .0012 
 EDUC    |     .00415859       .00200931     2.070   .0385    .26381106 
 HHNINC  |     .04913321       .02486677     1.976   .0482    .09457056 
 AGE     |    -.00048333       .00042477    -1.138   .2552   -.13248126 
 HHKIDS  |     .00451648       .00978660      .461   .6444    .00873817 
---------+Marginal effects on Prob[Y = 5] 
 Constant|     .45666308       .04483400    10.186   .0000 
 EDUC    |    -.00262240       .00279117     -.940   .3475   -.05449699 
 HHNINC  |     .09591130       .03450901     2.779   .0054    .06047510 
 AGE     |    -.00174112       .00056626    -3.075   .0021   -.15633760 
 HHKIDS  |     .01608821       .01313247     1.225   .2205    .01019657 
 Marginal Effects Averaged Over Individuals 
 --------+---------+---------+---------+---------+---------+---------+ 
 Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
 --------+---------+---------+---------+---------+---------+---------+ 
 ONE     |  -.0377 |  -.0772 |  -.0975 |  -.1380 |  -.1051 |   .4556 | 
 EDUC    |  -.0044 |  -.0002 |  -.0014 |   .0043 |   .0042 |  -.0025 | 
 HHNINC  |  -.0786 |  -.0361 |  -.0459 |   .0136 |   .0494 |   .0977 | 
 AGE     |   .0006 |   .0005 |   .0008 |   .0003 |  -.0005 |  -.0018 | 
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 HHKIDS  |  -.0092 |   .0033 |  -.0023 |  -.0125 |   .0045 |   .0162 | 
 --------+---------+---------+---------+---------+---------+---------+ 
 Averages of Individual Elasticities of Probabilities 
 --------+---------+---------+---------+---------+---------+---------+ 
 Variable|    Y=00 |    Y=01 |    Y=02 |    Y=03 |    Y=04 |    Y=05 | 
 --------+---------+---------+---------+---------+---------+---------+ 
 ONE     |  -.7050 | -2.4807 | -1.2472 |  -.9593 |  -.6112 |   .8796 | 
 EDUC    |  -.8732 |  -.0764 |  -.2041 |   .3227 |   .2638 |  -.0545 | 
 HHNINC  |  -.4847 |  -.3904 |  -.2011 |   .0252 |   .0907 |   .0566 | 
 AGE     |   .5315 |   .7974 |   .4894 |   .0827 |  -.1406 |  -.1645 | 
 HHKIDS  |  -.0571 |   .0330 |  -.0110 |  -.0300 |   .0077 |   .0092 | 
 --------+---------+---------+---------+---------+---------+---------+ 
 

 
Figure 4.1  Matrices Computed by MLOGIT 

 
Marginal effects are computed by averaging the effects over individuals rather than computing them 
at the means.  The difference between the two is likely to be quite small.  Current practice favors the 
averaged individual effects, rather than the effects computed at the means.  MLOGIT also reports 
elasticities with the marginal effects.  An example appears below. 
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4.7 Computing Predicted Probabilities  
 
 Predicted probabilities can be computed automatically for the multinomial logit model.  
Since there are multiple outcomes, this must be handled a bit differently from other models.  The 
procedure is as follows:  Request the computation with 
 
   ; Prob = name 
 
as you would normally for a discrete choice model.  However, for this model, NLOGIT does the 
following: 
 

1. A namelist is created with name consisting of up to the first four letters of ‘name’ and prob 
is appended to it.  Thus, if you use ; Prob = pfit, the namelist will be named pfitprob. 

 
2. The set of variables, one for each outcome, are named with the same convention, with prjj 

instead of prob.  
 
For example, in a five outcome model, the specification  
 
   ; Prob = job 
 
produces a namelist 
 
   jpbprob  =  jobpr00, jobpr01, jobpr02, jobpr03, jobpr04. 
 
The variables will then contain the respective probabilities.  You may also use 
 
   ; Fill 
 
with this procedure to compute probabilities for observations that were not in the sample.  
Observations which contain missing data are bypassed as usual. 
 You can also compute a vector of probabilities for a specific observation, for example the 
sample means, by using the matrix b_logit.  The following suggests how this might be done using the 
group means 
 
 NAMELIST ; x  = the Rhs variables $ 

MATRIX  ; xb = Mean(x) $  
MATRIX ; pvec = b_logit*xb 

; pvec = Expn(pvec) 
; pvec = <1’pvec> * pvec $ 
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Chapter 5: Data Setup for NLOGIT 
 
5.1 Introduction 
 
 In general, the data for the models described in Parts III and IV will be arranged in a format 
that is set up to work well with the specific NLOGIT estimators.  In almost all cases, the data used 
for all models that you fit with NLOGIT will be set up as if they were a panel.  That is, each 
individual ‘observation’ will have a set of observations, with one ‘line’ of data for each choice in the 
choice set.  Thus, in the analogy to a panel, the ‘group’ is a person and the group size would be the 
number of choices.  You will use this arrangement in nearly all cases.  This chapter will explain the 
various aspects of setting up the data for the NLOGIT models.   
 
5.2 Basic Data Setup for NLOGIT 
 
 In the base case, the data are arranged as follows, where we use a specific set of values for 
the problem to illustrate.  Suppose you observe 25 individuals.  Each individual in the sample faces 
three choices and there are two attributes, q and w.  For each observation, we also observe which 
choice was made.  Suppose further that in the first three observations, the choices made were two, 
three, and one, respectively.  The data matrix would consist of 75 rows, with 25 blocks of three rows.  
Within each block, there would be the set of attributes and a variable y, which, at each row, takes the 
value one if the alternative is chosen and zero if not.  Thus, within each block of J rows, y will be 
one once and only once.  For the hypothetical case, then, we have: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and so on, continuing to i = 25, where         marks the row of the respondent’s actual choice. 
 When you read these data, the data set is not treated any differently from any other panel.  
Nobs would be the total number of rows in the data set, in the hypothetical case, 75, not 25.  The 
separation of the data set into the above groupings would be done at the time your particular model is 
estimated. 
 
NOTE:  Missing values are handled automatically by estimation programs in NLOGIT.  You should 
not reset the sample or use SKIP with the NLOGIT models.  Observations that have missing values 
are bypassed as a group. 
  

 Y        Q        W  
i=1 0        q1,1     w1,1  
      1        q2,1     w2,1  
       0        q3,1     w3,1  
        
i=2 0        q1,2     w1,2  
 0        q2,2     w2,2  
       1        q3,2     w3,2  
        
i=3    1        q1,3     w1,3  
 0        q2,3     w2,3  
 0        q3,3     w3,3  
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 Thus far, it is assumed that the observed outcome is an indicator of which choice was made 
among a fixed set of up to 100 choices.  Numerous variations on this are possible: 
 

• Data on the observed outcome may be in the form of frequencies, market shares, or ranks.   
• The number of choices may differ across observations.   
• The choice set may be extremely large.    

 

 The preceding described the base case model for a fixed number of choices using individual 
level data.  There are several alternative formulations that might apply to the data set you are using.   
 

5.3 Fixed and Variable Numbers of Choices 
 

 When every individual in the sample chooses from the same choice set, and all alternatives 
are available to all individuals, then the data set will appear as in the first example above, and will 
consist of n sets of J ‘observations.’  You indicate this case with a command such as: 
 

 NLOGIT ; Lhs = y 
     or CLOGIT ; Choices = ... a list of J names for the choices 
     or ...  ; ... the rest of the command  $ 
 

For convenience in what follows, we will use the generic model name NLOGIT in the command.  
The specific verbs, CLOGIT, RLPOGIT, etc. will be used in the specific chapters where the model 
itself is developed.)  For example, 
  
 NLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; ... the rest of the command $ 
 
The list of choices is crucial, as it tells the program how many choices constitute an observation. 
(Otherwise, for example, there is no way to tell if 12 rows of data are three observations on a four 
choice setting or four observations on a three choice setting.)   
 We now consider the random utility model first in which the number of choices is not constant 
from one observation to the next.  Two possible arrangements that might occur are as follows: 
 

• There is a ‘universal choice set,’ from which individuals make their choices.  But, not all 
choices are available to all individuals.  Consider, for example, the choice of travel mode 
among (air, train, bus, car).  If respondents are observed at many different locations, one or 
more of the choices, for example, train, might be unavailable to some of them, and those 
might vary from person to person.  

 

• Individuals each choose among a set of Ji alternatives.  However, there is no universal choice 
set defined as such.  Consider, for example, the choice of which shopping center to shop at.  
If observations are taken in many different cities, we will observe numerous different choice 
sets, but there is no well defined universal choice set. 

 
Either case can be accommodated.  For both cases, you will provide a second ; Lhs variable which 
gives the number of choices for each observation.  The command is 
 
 NLOGIT  ; Lhs = y,nij 
   ; ... specification of the utility functions 
   ; ... the rest of the command $ 
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Note that the ; Choices = list is not defined in this command, since in this case (the second one 
above), there is no clearly defined choice set.  Nothing else need be changed.  NLOGIT does all of 
the accounting internally.  In this case, it is simply assumed that each individual has his or her own 
choice set.  For example, one such data set might appear as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The model command might be 
 
 NLOGIT  ; Lhs = y,nij   
   ; Rhs = q,w $   
 
Notice, once again, that the command does not contain a definition of the choice set, such as              
; Choices = list specification. 
 For the case of a universal choice set, suppose that the data set were, instead: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The specific choice identifier, when it is needed, is provided as a third Lhs variable.  For this case, 
the choice set would have to be defined.  For example, 
 
 NLOGIT  ; Lhs = y, nij, altij  
   ; Choices = air,train,bus,car $ 
   ; Rhs = q,w $ 
 
Once again, in this setting, every individual is assumed to choose from a set of four alternatives, 
though the altij variable indicates that some of these choices are unavailable to some individuals. 

 Y        Q        W        Nij    
i=1 0        q1,1     w1,1  3 
     1        q2,1     w2,1  3 
       0        q3,1     w3,1  3 
        
i=2 0        q1,2     w1,2  4 
 0        q2,2     w2,2  4 
       1        q3,2     w3,2  4 
 0        q4,2     w4,2  4 
        
i=3    1        q1,3     w1,3  2 
 0        q2,3     w2,3  2 

 Y        Q       W         Nij Altij   
i=1 0        q1,1     w1,1  3 1 (Air) 
     1        q2,1     w2,1  3 2 (Train) 
       0        q3,1     w3,1  3 4 (Car) 
        
i=2 0        q1,2     w1,2  4 1 (Air) 
 0        q2,2     w2,2  4 2 (Train) 
       1        q3,2     w3,2  4 3 (Bus) 
 0        q4,2     w4,2  4 4 (Car) 
        
i=3    1        q1,3     w1,3  2 3 (Bus) 
 0        q2,3     w2,3  2 4 (Car) 
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 Do note that if you are not defining a universal choice set, NLOGIT simply uses the largest 
number of choices for any individual in the sample to determine J. As such, an expanded set of 
choice specific constants is not likely to be meaningful.  Also, in the absence of a universal choice 
set, the variable altij will not be meaningful. 
 The IIA test described later is carried out by fitting the model to a restricted choice set, then 
comparing the two sets of parameter estimates.  You can restrict the choice set used in estimation, 
irrespective of the IIA test, by a slight change in the command.  In the ; Choices = list of 
alternatives specification, enclose any choices to be excluded in parentheses.  For example, in our 
CLOGIT application, the specification 
 
   ; Choices = air, (train), (bus), car 
 
produces (in part – most of the results are omitted) the following display in the model output: 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+---+ 
|Choice   (prop.)|Weight|IIA| 
+----------------+------+---+ 
|AIR       .49573| 1.000|   | 
|TRAIN     .00000| 1.000| * | 
|BUS       .00000| 1.000| * | 
|CAR       .50427| 1.000|   | 
+----------------+------+---+ 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| INVC     INVT     GC       TTME     A_AIR     | 
|        |Row  2| A_TRAIN  A_BUS                                | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| INVC     INVT     GC       TTME     Constant  | 
|        |     2| none     none                                 | 
|TRAIN   |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| Constant none                                 | 
|BUS     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     Constant                             | 
|CAR     |     1| INVC     INVT     GC       TTME     none      | 
|        |     2| none     none                                 | 
+---------------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Weighting variable                 None     | 
| Number of observations              117     | 
| Iterations completed                  6     | 
| Log likelihood function       -52.79148     | 
| Number of parameters                  5     | 
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| Info. Criterion: AIC =           .98789     | 
|   Finite Sample: AIC =           .99251     | 
| Info. Criterion: BIC =          1.10593     | 
| Info. Criterion:HQIC =          1.03581     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only     -81.0939  .34901  .31995 | 
| Chi-squared[ 4]          =     56.60494     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped  93 bad obs. | 
+---------------------------------------------+ 
| Restricted choice set. Excluded choices are | 
| TRAIN    BUS                                | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 INVC    |    -.04871233       .02756765    -1.767   .0772 
 INVT    |    -.01195151       .00394602    -3.029   .0025 
 GC      |     .08575924       .02654046     3.231   .0012 
 TTME    |    -.08221552       .01854075    -4.434   .0000 
 A_AIR   |    2.12899069      1.20530610     1.766   .0773 
 A_TRAIN |       .000000    ......(Fixed Parameter)....... 
 A_BUS   |       .000000    ......(Fixed Parameter)....... 
 
Note that as in the IIA test, this procedure results in exclusion of some ‘bad’ observations, that is, the 
ones that selected the excluded choices.  Because of the model specification, the ASCs for bus and 
train have been fixed at zero. 
 You may combine the choice based sampling estimator with the restricted choice set.  All 
the necessary adjustments of the weights are made internally.  Thus, the specification 
 
   ; Choices = air,(train),(bus),car / .14,.13,.09,.64  
 
produces the following listing: 
 
  +----------------+------+---+ 
  |Choice   (prop.)|Weight|IIA| 
  +----------------+------+---+ 
  |AIR       .49573|  .387|   | 
  |TRAIN     .00000|  .000| * | 
  |BUS       .00000|  .000| * | 
  |CAR       .50427| 1.739|   | 
  +----------------+------+---+ 
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5.4 Types of Data on the Choice Variable 
 
 We allow several types of data on the choice variable, y.  If you have grouped data, the 
values of y will be proportions or frequencies, instead of individual choices.  In the first case, within 
each observation (J data points), the values of y will sum to one when summed down the J rows.  
(This will be the only difference in the grouped data treatment.)  In the second case, y will simply be 
a set of nonnegative integers.  An example of a setting in which such data might arise would be in 
marketing, where the proportions might be market shares of several brands of a commodity.  Or, the 
data might be counts of responses to particular questions in a survey in which groups of people in 
different locations or at different times were surveyed.  Finally, y might be a set of ranks, in which 
case, instead of zeros and ones, y would take values 1,2,...,J (not necessarily in that order) within, 
and reading down, each block. 
 More specifically, data on the dependent (Lhs) variable may come in these four forms: 
 

• Individual Data:  The Lhs variable consists of zeros and a single one which indicates the 
choice that the individual made.  When data are individual, the observations on the Lhs 
variable will sum exactly to 1.0 for every person in the sample.  A sum of 0.0 or some other 
value will only arise if a data error has occurred.  Individual choice data may also be 
simulated.  

 
• Proportions Data:  The Lhs variable consists of a set of sample proportions.  Values 

range from zero to one, and again, they sum to 1.0 over the set of choices in the choice set. 
Observed proportions may equal 1.0 or 0.0 for some individuals. 

 
• Frequency Data:  The Lhs variable consists of a set of frequency counts for the outcomes. 

Frequencies are nonnegative integers for the outcomes in the choice set and may be zero.  
 

• Ranks Data:  The Lhs variable consists of a complete set of ranks of the alternatives in 
the individual’s choice set.  Thus, if there are J alternatives available, the observation will 
consist of a full set of the integers 1,...,J not necessarily in that order, which indicate the 
individual’s ranking of the alternatives.  The number of choices may still differ by 
observation.  Thus, we might have [(unranked),0,1,0,0,0] in the usual case, and [(ranked) 
4,1,3,2,5] with ranks data.  Note that the positions of the ones are the same for both sets, 
by definition.  You may also have partial rankings.  For example, suppose respondents 
are given 10 choices and asked to rank their top three. Then, the remaining six choices 
should be coded 4.0.  A set of ranks might appear thusly:  [1,4,2,4,3,4,4,4,4,4].  The ties 
must only appear at the lowest level. Ties in the data are detected automatically.  No 
indication is needed. For later reference, we note the following for the model based on 
ranks data: 
 

° You may have observation weights, but no choice based sampling. 
° The IIA test described in Chapter 8 is not available. 
° The number of choices may be fixed or variable, as described above. 
° You may keep probabilities or inclusive values as described in Chapter 7. 
° Ranks data may only be used with the conditional logit model (CLOGIT) and the 

mixed logit (random parameters) model (RPLOGIT). 
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 The first three data types are detected automatically by NLOGIT.  You do not have to give any 
additional information about the data set, since the type of data being provided can usually be deduced 
from the values.  (See below for one exception.)  The ranks data are an exception for which you would 
use 
 NLOGIT   ; ... as usual ...; Ranks $ 
 

If you are using frequency or proportions data, and your data contain zeros or ones, certain 
kinds of observations cannot be distinguished from erroneous individual data, and they may be 
flagged as such.  For example, in a frequency data set, the observation [0,0,1,1,0,0] is a valid 
observation, but for individual data, it looks like a badly coded observation.  In order to avoid this 
kind of ambiguity, if you have frequency data containing zeros, add 
 
   ; Frequencies 
 
to your NLOGIT command.  (You may use this in any event to be sure that the data are always 
recognized correctly.)   If you have proportions data, instead, you may use 
 
   ; Shares 
 
to be sure that the data are correctly marked.  (Again, this will only be relevant if your data contain 
zeros and/or ones.) 
 Data are checked for validity and consistency.  An unrecognizable mixture of the three types 
will cause an error.  For example, a mixture of frequency and proportions data cannot be properly 
analyzed.  For the ranks data, an error will occur if the set of ranks is miscoded or incomplete or if 
ties are detected at any ranks other than the lowest. 
 

5.5 Data for the Applications 
 
 The documentation of the NLOGIT program in the chapters to follow includes numerous 
applications based on the data set CLOGIT.DAT, that is distributed with NLOGIT.  These data are a 
survey of the transport mode chosen by a sample of 210 travelers between Sydney and Melbourne 
(about 500 miles) and other points in nonmetropolitan New South Wales.  As discussed in Section 
5.2, data for NLOGIT will generally consist of a record (row of data) for each alternative in the 
choice set, for each individual.  Thus, the data file contains 210 observations, or 840 records.  The 
variables in the data set are as follows: 
 

Original Data 
 
 mode  =  0/1 for four alternatives: air, train, bus, car 
      (this variable equals one for the choice made, labeled choice below), 
 ttme  =  terminal waiting time, 
 invc  =  invehicle cost for all stages, 
 invt  =  invehicle time for all stages, 
 gc    =  generalized cost measure = Invc + Invt × value of time, 
 chair  =  dummy variable for chosen mode is air, 
 hinc  =  household income in thousands, 
 psize  =  traveling party size. 
 



Chapter 5: Data Setup for NLOGIT        48 

 

Transformed variables 
 

 aasc  =  choice specific dummy for air (generated internally), 
 tasc  =  choice specific dummy for train, 
 basc  =  choice specific dummy for bus, 
 casc  =  choice specific dummy for car, 
 hinca  =  hinc × aasc, 
 psizea  =  psize × aasc. 
 
The table below lists the first 10 observations in the data set.  In the terms used here, each 
‘observation’ is a block of four rows.  The mode chosen in each block is boldfaced. 
 
mode  choice  ttme  invc   invt        gc   chair  hinc  psize  aasc tasc basc casc  hinca  psizea   obs. 
Air   0   69    59   100    70 0   35   1   1   0   0   0  35   1    i=1 
Train 0   34    31   372    71 0   35   1   0   1   0   0   0   0   
Bus   0   35    25   417    70 0   35   1   0   0   1   0   0   0   
Car   1    0    10   180    30 0   35   1   0   0   0   1   0   0        

Air   0   64    58    68    68 0   30   2   1   0   0   0  30   2    i=2 
Train 0   44    31   354    84 0   30   2   0   1   0   0   0   0   
Bus   0   53    25   399    85 0   30   2   0   0   1   0   0   0   
Car   1    0    11   255    50 0   30   2   0   0   0   1   0   0     

Air   0   69   115   125   129 0   40   1   1   0   0   0  40   1    i=3 
Train 0   34    98   892   195 0   40   1   0   1   0   0   0   0   
Bus   0   35    53   882   149 0   40   1   0   0   1   0   0   0   
Car   1    0    23   720   101 0   40   1   0   0   0   1   0   0         

Air   0   64    49    68    59 0   70   3   1   0   0   0  70   3    i=4 
Train 0   44    26   354    79 0   70   3   0   1   0   0   0   0   
Bus   0   53    21   399    81 0   70   3   0   0   1   0   0   0   
Car   1    0     5   180    32 0    0   3   0   0   0   1   0   0         

Air   0   64    60   144    82 0   45   2   1   0   0   0  45   2    i=5 
Train 0   44    32   404    93 0   45   2   0   1   0   0   0   0   
Bus   0   53    26   449    94 0   45   2   0   0   1   0   0   0   
Car   1    0     8   600    99 0   45   2   0   0   0   1   0   0         

Air   0   69    59   100    70 0   20   1   1   0   0   0  20   1    i=6 
Train 1   40    20   345    57 0   20   1   0   1   0   0   0   0   
Bus   0   35    13   417    58 0   20   1   0   0   1   0   0   0   
Car   0    0    12   284    43 0   20   1   0   0   0   1   0   0    

Air   1   45   148   115   160 1   45   1   1   0   0   0  45   1    i=7 
Train 0   34   111   945   213 1   45   1   0   1   0   0   0   0   
Bus   0   35    66   935   167 1   45   1   0   0   1   0   0   0   
Car   0    0    36   821   125 1   45   1   0   0   0   1   0   0        

Air   0   69   121   152   137 0   12   1   1   0   0   0  12   1    i=8 
Train 0   34    52   889   149 0   12   1   0   1   0   0   0   0   
Bus   0   35    50   879   146 0   12   1   0   0   1   0   0   0   
Car   1    0    50   780   135 0   12   1   0   0   0   1   0   0      

Air   0   69    59   100    70 0   40   1   1   0   0   0  40   1    i=9 
Train 0   34    31   372    71 0   40   1   0   1   0   0   0   0   
Bus   0   35    25   417    70 0   40   1   0   0   1   0   0   0   
Car   1    0    17   210    40 0   40   1   0   0   0   1   0   0         

Air   0   69    58    68    65 0   70   2   1   0   0   0  70   2    i=10 
Train 0   34    31   357    69 0   70   2   0   1   0   0   0   0   
Bus   0   35    25   402    68 0   70   2   0   0   1   0   0   0   
Car   1    0     7   210    30 0   70   2   0   0   0   1   0   0         
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Chapter 6: NLOGIT Commands and Results 
 
6.1 Introduction 
 
 This chapter will describe the common features of the NLOGIT models.  The specification of 
models for NLOGIT follows the general pattern for model commands in LIMDEP.  The different 
models, such as  nested logit and multivariate probit, are requested by modifying the basic command.    
 NLOGIT is built around estimation of the parameters of the random utility model for discrete 
choice, 

U(choice j for individual i)  =  Uij  =  βij′xij  +  εij, j = 1,...,Ji, 
 
in which individual i makes choice j if Uij is the largest among the Ji utilities in the choice set.  The 
parameters in the model are the weights in the utility functions and the deeper parameters of the 
distribution of the random terms.  In some cases, the ‘taste’ parameters in the utility functions might 
vary across individuals and in most cases, they will vary across choices.  The latter is simple to 
accommodate just by merging all parameters into one grand β and redefining x with some zeros in 
the appropriate places.  But, for the former case, we will be interested in a lower level 
parameterization  that involves what are sometimes labeled the ‘hyperparameters.’  Thus, it might be 
the extreme case (as in the random parameters logit model) that βij  =  f(zi, ∆, Γ, β, vi) where ∆, Γ, β 
are lower level parameters, zi is observed data, and vi is a set of latent unobserved variables.  The 
parameters of the random terms will generally be few in number, usually consisting of a small 
number of scaling parameters as in the heteroscedastic logit model, but they might be quite 
numerous, again in the random parameters model.  In all cases, the main function of the routines is 
estimation of the structural parameters, then use of the estimated model for analysis of individual and 
aggregate behavior. 
 
6.2 NLOGIT Commands 
 
 The essential command for the set of discrete choice models in NLOGIT is the same for all, 
with the exception of the model name: 
 
 Model   ; Lhs  = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant variables, including one for ASCs $ 
 
The various models are as follows, where either of the two forms given may be used: 
 
Model               Command         Alternative Command Form 
Conditional Logit   CLOGIT   NLOGIT 
Nested Logit    NLOGIT   NLOGIT ; Tree = ... 
Random Parameters Logit  RPLOGIT   NLOGIT ; RPL 
Multinomial Probit   MNPROBIT   NLOGIT ; MNP 
 



Chapter 6: NLOGIT Commands and Results       50 

 

The description to follow in the rest of this chapter applies equally to all models.  For convenience, 
we will use the generic NLOGIT command in most of the discussion, while you can use the specific 
model names in your estimation commands.    
 The commands builders for these models can be found in Model:Discrete Choice.  There 
are several model options as shown in Figure 6.1 
  

 
Figure 6.1 Command Builders for NLOGIT Models 

 
The Main and Options pages of the command builder for the conditional logit model are shown in 
Figures 6.2a and 6.2b.  (Some features of the models, and the ECM model, are not provided by the 
command builders.  Most of the features of these models are much easier to specify in the editor or 
command mode of entry.)  The model and the choice set are set up on the Main page.  The Rhs 
variables (attributes) and Rh2 variables (characteristics) are defined on the Options page.  Note in 
the two windows on the Options page, the Rhs variables of the model are defined in the left window 
and the Rh2 variables are specified in the right window. 
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Figure 6.2a  Main Page of Command Builder for Conditional Logit Model 

 

 
Figure 6.2b  Options Page of Command Builder for Conditional Logit Model 

 
 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 
   The internal limit on J, the number of choices, is 100. 
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 There are K attributes (Rhs variables) measured for the choices.  The sections below will 
describe variations of this for different formulations and options.  The total number of parameters in 
the utility functions will include K1 for the Rhs variables and (J-1)K2 for the Rh2 variables.  The total 
number of  utility function parameters is thus K = K1 + (J-1)K2. 
 
  The internal limit on K, the number of utility function parameters, is 100. 
 
 The random utility model specified by this setup is precisely of the form 
 
  Ui,j  =  β1xi,1 + β2xi,2 + ... + βK1xi,K1  +  γ1,jzi,1 + ... + γK2,jzi,K2 + εi,j, 
 
where the x variables are given by the Rhs list and the z variables are in the Rh2 list.  By this 
specification, the same attributes and the same characteristics appear in all equations, at the same 
position.  The parameters, βk appear in all equations, and so on.  There are various ways to change 
this specification of the utility functions – i.e., the Rhs of the equations that underlie the model, and 
several different ways to specify the choice set.  These will be discussed at several points below. 
 
6.2.1 Other Optional Specifications on NLOGIT Commands 
 
 The NLOGIT command operates like other LIMDEP model commands.  The following lists 
command features and options that may or may not be specified with the NLOGIT command.  
Features marked with ‘*’ are unavailable with this command. 
 
Controlling Output from Model Commands 
 

; Par  use with the random parameters logit model to save person specific 
parameter vectors. 

; Margin displays marginal effects.  (Use ; Effects: specification.) 
* ; OLS  displays least squares starting values.  Not used here. 

; Table = name saves model results to be combined later in output tables. 
 
Robust Asymptotic Covariance Matrices 
 

; Printvc displays estimated asymptotic covariance matrix (normally not shown). 
* ; Choice uses choice based sampling (sandwich with weighting) estimated matrix. 
   (This is specified in the ; Choices = list specification for NLOGIT.) 
 ; Cluster = name cluster form of corrected covariance estimator. 
* ; Robust sandwich estimator or robust VC for TSCS and some discrete choice. 
 
Optimization Controls for Nonlinear Optimization 
  

; Start = list gives starting values for a nonlinear model. 
 ; Tlg[ = value] sets convergence value for gradient. 
 ; Tlf[ = value] sets convergence value for function. 
 ; Tlb[ = value] sets convergence value for parameters. 
 ; Alg = name algorithm.  Newton’s method is best.  BFGS is occasionally needed. 
 ; Maxit = n maximum iterations. 
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 ; Output = n technical output. 
* ; Lpt = n Laguerre quadrature, number of points to use. 
* ; Hpt = n Hermite quadrature, number of points to use. 
 ; Set  keeps current setting of optimization parameters as permanent. 
 
Predictions and Residuals 
 

; List  displays a list of estimated probabilities with model results. 
* ; Keep = name keeps fitted values as a new (or replacement) variable in data set. 
   (Several other similar specifications are used with NLOGIT.) 
* ; Res = name keeps residuals as a new (or replacement) variable. 
 ; Prob = name saves probabilities as a new (or replacement) variable. 
* ; Fill  fills missing values (outside estimating sample) for fitted values. 
 
Hypothesis Tests and Restrictions 
 

; Wald:spec Wald test of linear restrictions in any model. 
; CML:spec constrained maximum likelihood. 
; Test:spec Wald test of linear restrictions - same as Wald:spec. 

* ; Rst = list specifies equality and fixed value restrictions. 
 ; Maxit = 0 ; Start = the restricted values  specifies Lagrange multiplier test. 
 
6.2.2 Specifying the Choice Variable and the Choice Set 
 
 Every model fit by NLOGIT must include a specification for the choice variable and a 
definition of the choice set.  The basic formulation would appear as 
 
   ; Lhs = the dependent, or choice variable 
   ; Choices = the names of the choices in the model 
 
In general, your dependent variable is the name of a variable which indicates by a one or zero 
whether a particular alternative is selected, or it gives the proportion or frequency of individuals 
sampled that selected a particular alternative.  When they are enumerated, the ; Choices list gives 
names and possibly sampling weights for the set of alternatives. 
 All command builders begin with these two specifications.  The discrete choice and nested 
logit models allow the full set of variants discussed earlier while the other command builders expect 
the simple form with a fixed choice set.  The Main page of the conditional logit command builder 
shown in Figure 6.3 illustrates.  (A similar Main page is used for the nested logit command builder.)  
The command builder allows you to specify the choice variable and type of choice set in the three 
sections of this dialog box. 
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Figure 6.3  Main Page of Command Builder for Conditional Logit Model 

 
NOTE:  The command builder for the multinomial probit, HEV and RPL models requires you to 
provide a fixed sized choice set.  This is a limitation of the command builder window, not the 
estimator.  With the exception of the multinomial probit model, this is not a requirement of the 
models themselves.  Only the multinomial probit model requires the number of choices to be fixed.  
For the HEV and RPL models, if you build your command in the text editor, rather than with the 
command builder, you may specify a variable choice set. 
 
6.2.3 Restricting the Choice Set 
 
 The IIA test described in the Chapter 8 is carried out by fitting the model to a restricted 
choice set, then comparing the two sets of parameter estimates.  You can restrict the choice set used 
in estimation, irrespective of IIA, by a slight change in the command.  In the ; Choices = list of 
alternatives specification, enclose any choices to be excluded in parentheses.  For example, the 
specification 
   ; Choices = air, (train), (bus), car 
 
produces (in part – the results are omitted) the following display in the model output: 
 

+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped  93 bad obs. | 
| Restricted choice set. Excluded choices are | 
| TRAIN    BUS                                | 
+---------------------------------------------+ 
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Note that as in the IIA test, this procedure results in exclusion of some ‘bad’ observations, that is, the 
ones that selected the excluded choices.  The model specified is fit to the data set that is based on the 
remaining choices.  We note a caution at this point that applies equally here and in the IIA test.  It is 
possible that there are attributes that do not vary within the retained choice set.  If these remain in the 
model, it will not be possible to fit it.  Consider, for example, a six choice model with choices air, 
train, bus, car as driver, car as passenger, motorcycle.  Now, suppose that one of the attributes is 
terminal time.  It will happen that the last three choices always have terminal time equal to zero.  So, 
while it may be no trouble to fit a six choice model which includes terminal time, the same model 
specified with 
   ; Choices = (air), (train), (bus), car_d, car_p, mc 
 
will not be estimable, as terminal time will always be zero for all choices for all individuals. 
 
6.2.4 Specifying the Utility Functions with Rhs and Rh2 
 
 There are several ways to specify the utility functions in your NLOGIT command, in the 
text editor and in the command builder.  In order to provide a simple explanation that covers the 
cases, we will develop the application that will be used in the chapters to follow to illustrate the 
models.  The application is based on the data summarized in Section 5.5.  We will model travel mode 
choice for trips between Sydney and Melbourne with utility functions for the four choices as follows: 
 
            gc   ttme   one    hinc     one    hinc     one   hinc     one  hinc 

U(air) =  GC   TTME  A_AIR  AIR_HIN1   0       0       0      0       0     0 

U(train) =  GC   TTME    0       0    A_TRAIN  TRA_HIN2  0      0       0     0 

U(bus) =  GC   TTME    0       0       0       0     A_BUS  BUS_HIN3  0     0 

U(car) =  GC   TTME    0       0       0       0       0      0       0     0 
 
The columns are headed by the names of variables, generalized cost (gc), terminal time (ttme) and 
household income (hinc).  The entries in the body of the table are the names given to coefficients that 
will multiply the variables.  Note that the generic coefficients in the first two columns are given the 
names of the variables they multiply while the interactions with the constants are given compound 
names.  It is important to note the last two columns.  The last one in a set of choice specific constants 
or variables that are interacted with them must be dropped to avoid a problem of collinearity in the 
model.  In what follows, for brevity, we will omit these two columns.  Before proceeding, we note 
the format of a set of parameter estimates for a model set up in exactly this fashion: 
 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01092735       .00458775    -2.382   .0172 
 TTME    |    -.09546055       .01047320    -9.115   .0000 
 A_AIR   |    5.87481336       .80209034     7.324   .0000 
 AIR_HIN1|    -.00537349       .01152940     -.466   .6412 
 A_TRAIN |    5.54985728       .64042443     8.666   .0000 
 TRA_HIN2|    -.05656186       .01397335    -4.048   .0001 
 A_BUS   |    4.13028388       .67636278     6.107   .0000 
 BUS_HIN3|    -.02858418       .01544418    -1.851   .0642 
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Note the construction of the compound names includes what might seem to be a redundant number at 
the end. This is necessary to avoid constructing identical names for different variables.  
 
Utility Functions 
 
 A basic four choice model which contains cost, time, one and income will have utility 
functions 
 
 Ui,air =  βcost costi,air  +  βtime timei,air  +  αair  +  γair incomei   +  εi,air, 
 Ui,train =  βcost costi,train  +  βtime timei,train  +  αtrain  +  γtrain incomei   +  εi,train, 
 Ui,bus =  βcost costi,bus   +  βtime timei,bus   +  αbus   +  γbus incomei    +  εi,bus, 
 Ui,car =  βcost costi,car   +  βtime timei,car                          +  εi,bus. 
 
 The simple device you will use to construct utility functions in this fashion is  
 
   ; Rhs = list of attributes that vary across choices 
and 
   ; Rh2 = list of variables that do not vary across choices 
 
The Rh2 variables are automatically expanded into a set of J-1 interactions with the choice specific 
constants, as they are in the matrix shown above.  The implication is that, generally, you do not need 
to have these variables in your data set.  They are automatically created by your command.  (Note 
that our clogit.dat data set in Chapter 5 actually does contain the superfluous set of four choice 
specific constants, aasc, tasc, basc and casc. 
 
NOTE:  If you include one in your Rhs list, it is automatically expanded to become a set of 
alternative specific constants.  That is, one is automatically moved to the Rh2 list if it is placed in the 
Rhs list. 
 
The model specification for the four utility functions shown above would be 
 
   ; Rhs = cost,time ; Rh2 = one,income 
 
Note that the distinction between Rh2 and Rhs variables is that all variables in the first category are 
expanded by interacting with the choice specific binary variables.  (The last term is dropped.) 
 
Generic Coefficients 
 
 The simpler, but less flexible way to specify generic coefficients in a model is to use 
NLOGIT’s standard construction, by specifying a set of Rhs variables.  The specification 
 
   ; Rhs = gc,ttme 
 
produces the utility functions in the first two columns in the table. Rhs variables are assumed to vary 
across the choices and will receive generic coefficients. 
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Alternative Specific Constants and Interactions with Constants 
 
 The logit model is homogeneous of degree zero in the attributes.  Any attribute which does 
not vary across the choices, such as age, marital status, income etc., will simply fall out of the 
probability.  Consider an example with a constant, one attribute and one characteristic, 
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 With a generic coefficient, the choice invariant characteristic falls out of the model. This 
includes the constant term, one.  A model which contains such a characteristic with a generic 
coefficient is not estimable.  This carries over to all of the more elaborate models such as the HEV, 
nested logit and MNP models as well.  The solution to this complication is to create choice specific 
constant terms and, if need be, interact the invariant characteristic with the constant term.  This is 
what appears in the last eight columns in the example above. Here, it produces a hybrid model, 
which can have both types of variables in the utility functions. 
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There remains an indeterminacy in the model after it is expanded in this fashion.  Suppose the same 
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So, the identical model arises for any θ.  This means that the model still cannot be estimated in this 
form.  The solution to this remaining issue is to normalize the coefficients so that one of the choice 
varying parameters is equal to zero.  NLOGIT sets the last one to zero.  The same result applies to the 
choice specific constant terms that you create with one.  This produces the data matrix shown earlier, 
with the last two columns (in the dashed box) normalized to zeros. 
 Finally, while it is necessary for choice invariant variables to appear in the Rh2 list, it is not 
necessary that all variables in the Rh2 list actually be choice invariant.  Indeed, one could specify the 
preceding model with choice specific coefficients on the cost variable; it would appear 
 
 Ui,air =  γcost,air costi,air  +  βtime timei,air   +  αair   +  γair incomei  +  εi,air, 
 Ui,train =  γcost,train costi,train  +  βtime timei,train +  αtrain  +  γtrain incomei  +  εi,train, 
 Ui,bus =  γcost,bus costi,bus   +  βtime timei,bus  +  αbus   +  γbus incomei   +  εi,bus, 
 Ui,car =  γcost,car costi,car   +  βtime timei,car      +  εi,bus. 
 
Note also, that there is no need to drop one of the cost coefficients because the variable cost varies 
by choices.  You can estimate a model with four separate coefficients for cost, one in each utility 
function.  However, it is not possible to do it by including cost in the Rh2 list as described above, 
because this form will automatically drop the last term (the one in the car utility function).  You 
could obtain this form, albeit a bit clumsily, by creating the four interaction terms yourself and 
including them on the right hand side.  We already have the alternative specific constants, so the 
following would work 
 
 CREATE ; cost_a = gc * aasc 
   ; cost_t = gc * tasc 
   ; cost_b = gc * basc 
   ; cost_c = gc * casc $ 
 NLOGIT  ; ...   ; Rhs = time,cost_a,cost_t,cost_b,cost_c 
    ; Rh2 = one,income $ 
 
Having to create the interaction variables is going to be inconvenient.  The alternative method of 
specifying the model described in the next section will be much more convenient.  This method also 
allows you much greater flexibility in specifying utility functions. 
 
HINT:  There are many different possible configurations of alternative specific constants (ASCs) 
and alternative specific variables.  In estimating a model, it is not possible to determine a priori if a 
singularity will arise as a consequence of the specification.  You will have to discern this from the 
estimation results for the particular model. 
 
 The constant term, one fits the hint above.  Recognizing this, NLOGIT assumes that if your 
Rhs list includes one, you are requesting a set of alternative specific constants.  As such, when the 
Rhs list includes one, NLOGIT will create a full set of J-1 choice specific constants.  (One of them 
must be dropped to avoid what amounts to the dummy variable trap.)   
 
HINT:  You need not have choice specific dummy variables in your data set.  The Rh2 setup 
described here allows you to produce these variables as part of the model specification. 
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The remaining columns of the utility functions in the example above are produced with 
 
   ; Rh2 = one,hinc 
 
You should note, in addition, how the variables are expanded, as a set, in constructing the utility 
functions. 
 
Command Builders 
 
 You can specify utility functions in this format in any of the command builders, as shown in 
Figure 6.4.  The two windows allow you to select variables from the list at the right and assemble the 
Rhs list at the left or the Rh2 list in the center. 
 

 
Figure 6.4  Specifying Utility Functions in the Command Builder 

 
6.2.5 Building the Utility Functions 
 
 The model specification thus far builds the utility functions from the common Rhs and Rh2 
specification.  For example, in a four outcome model which contains cost, time, one and income, the 
data for the choice variable and the utility functions are contained in 
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The utility functions are all the same; 
 
   Ui,j  =  β1costi,j + β2timei,j + αj + γjincomei + εi,j. 
 
One might want to have different attributes appear in the different utility functions, or impose other 
kinds of constraints on the parameters.   This section will describe how to structure the utility 
functions individually, rather than generically with the Rhs and Rh2 lists.   
 The utility functions need not be the same for all choices.  Different attributes may enter, and 
the coefficients may be constrained in different ways.  The following more flexible format can be 
used instead of the ; Rhs = list and ; Rh2 = list parts of the command described above.  This format 
also provides a way to provide starting values for parameters, so this can also replace the ; Start = 
list specification.  Finally, you will also be able to use this format to fix coefficients, so it will be an 
easy way to replace the ; Rst = list specification. 
 We begin with the case of a fixed (and named) set of choices, then turn to the cases of 
variable numbers of choices.  We replace the Rhs/Rh2 setup with explicit definitions of the utility 
functions for the alternatives.  Utility functions are built up from the format 
  
   ; Model: U (choice 1) = linear equation  / 
    U (choice 2) = linear equation  / 
    ... 
    U (choice J) = linear equation $ 
 
Though we have shown all J utility functions, for a given model specification, you could, in 
principle, not specify a utility function in the list.  (The implied specification would be Uij = εij.)  The 
: U (list) is mandatory.  NLOGIT scans for the ‘U’ and the parentheses.  For example: 
 
   ; Model:  U (air)  =  ba  +  bcost * gc 
 
Note that the specification begins with ‘; Model:’ – the colon (‘:’) is also mandatory.  Parameters 
always come first, then variables.  Constant terms need not multiply variables.  Thus, ba in this 
model could be an ‘air specific constant.’  (It depends on whether ba appears elsewhere in the 
model.)  Notice that the utility function defines both the variables and the parameters.  Usually, you 
would give an equation for each choice in the model.  For example: 
 
 NLOGIT ; Lhs = mode   
   ; Choices = air,train,bus,car 
   ; Model: U(air) = ba + bcost * gc + btime * ttme / 
                           U(car) = bc + bcost * gc   / 
                                U(bus) = bb + bcost * gc   / 
                                U(train) =   bcost * gc + btime * ttme $ 
 
Utility functions are separated by slashes.  Note also that the alternative specific constants stand 
alone without multiplying a variable.  Your utility definitions now provide the names for the 
parameters.  The estimates produced by this model command are as follows: 
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+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 BA      |    1.55491032       .37580063     4.138   .0000 
 BCOST   |    -.02020918       .00434927    -4.647   .0000 
 BTIME   |    -.08680295       .01122237    -7.735   .0000 
 BC      |   -3.65316491       .46378035    -7.877   .0000 
 BB      |   -3.91982604       .45611114    -8.594   .0000 
 
One point that you might find useful to note.  The order of the parameters in this list is determined by 
moving through the model definition from beginning to end.  Each time a new parameter name is 
encountered, it is added to the list.  Looking at the model command above, you can now see how the 
order in the displayed output arose. 
 The last example in the preceding subsection, which has four separate coefficients on a cost 
variable, gc, could be specified using 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
  ; Model: U(air)   = bc*invc+bt*invt+aa+cha*hinc +cga *gc / 
       U(train) = bc*invc+bt*invt+at +cht *hinc +cgt *gc / 
       U(bus)  = bc*invc+bt*invt+ab+chb*hinc +cgb *gc / 
       U(car) = bc*invc+bt*invt                       +cgc *gc $ 

 
The estimates are 
 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 BC      |    -.04386562       .01712959    -2.561   .0104 
 BT      |    -.00815115       .00241976    -3.369   .0008 
 AA      |   -1.37473591       .83837138    -1.640   .1011 
 CHA     |     .00703267       .01078793      .652   .5145 
 CGA     |     .03762100       .01676624     2.244   .0248 
 AT      |    2.53156832       .60800716     4.164   .0000 
 CHT     |    -.05096641       .01214303    -4.197   .0000 
 CGT     |     .03348741       .01506250     2.223   .0262 
 AB      |    1.17857565       .73948909     1.594   .1110 
 CHB     |    -.03339204       .01299642    -2.569   .0102 
 CGB     |     .03455919       .01516387     2.279   .0227 
 CGC     |     .03808057       .01523791     2.499   .0125 
 
Shorthand Notations for Sets of Utility Functions 
 
 There are several shorthands which will allow you to make the model specification much 
more compact.  If the utility functions for several alternatives are the same, you can group them in 
one definition.  Thus, 
 
   ; Model: U(air) = b0 + bcost * gc   / 
                        U(car)  = b0 + bcost * gc   $ 
 
could be specified with 
 
   ; Model: U(air, car) = b0 + bcost * gc $ 
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For the model we have been considering, i.e., 
 
   ; Choices = air,train,bus,car 
 
all of the following are the same 
 
   ; Model: U(air)  = b1 * ttme + bcost * gc   / 
                        U(train) = b1 * ttme + bcost * gc   / 
                        U(bus) = b1 * ttme + bcost * gc   / 
                        U(car) = b1 * ttme + bcost * gc   $ 
 
and   ; Model: U(air,train,bus,car) = b1 * ttme + bcost * gc $ 
 
and   ; Model: U(*) = b1 * ttme  + bcost * gc $ 
 
and   ; Rhs = ttme, gc 
 
The last will use the variable names instead of the supplied parameter names for the two parameters, 
but the models will be the same. 
 
Alternative Specific Constants and Interactions 
 
 You can also specify alternative specific constants in this format, by using a special notation.  
When you have a U(a1, a2, ..., aJ) for J alternatives, then you may specify, instead of a single 
parameter, a list of parameters enclosed in pointed brackets, to signify interaction with choice 
specific constants.  Thus, <b1,b2,...,bL> indicates L interactions with choice specific dummy 
variables.  L may be any number up to the number of alternatives.  Use a zero in any location in 
which the variable does not appear in the corresponding equation.  For example, 
 
   ; Model: U(air)  = ba + bcost * gc   / 
                            U(car)  = bc + bcost * gc   / 
                            U(bus)  =          bcost * gc   / 
                            U(train) = bt  + bcost * gc   $ 
could be specified as 
 
        ; Model: U(air,car,bus,train) = <ba,bc,0,bt> + bcost * gc $ 
 
NOTE:  Within a < ... > construction, the correspondence between positions in the list is with the  U 
(... list ...) list, not with the original ; Choices list. 
 
 Note the considerable savings in notation. The same device may also be used in interactions 
with  attributes.  For example: 
 
   ; Model: U(air)  = ba  + bcprv * gc   / 
                            U(car)  = bc  + bcprv  * gc   / 
                            U(bus)  =         bcpub * gc   / 
                            U(train) = bt  + bcpub * gc   $ 
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There are two cost coefficients, but the variable gc is common.  This entire model can be collapsed 
into the single specification 
 
   ; Model:  U(air,car,bus,train) = <ba,bc,0,bt> +  
    <bcprv,bcprv,bcpub,bcpub> * gc $ 
 
Parameters inside the brackets need not all be different if you wish to impose equality constraints. 
 
Equality Constraints 
 
 There is no requirement that parameters be unique across any specification.  Equality 
constraints may be imposed anywhere in the model, just by using the same parameter name.  For 
example, nothing precludes 
 
   ; Model:  U(air,car,bus,train) = <ba,bc,0,bt> +  
    <ba,bc,bcpub,bcpub> * gc $ 
  
This forces two of the slope coefficients to equal the alternative specific constants.  Expanded, this 
specification would be equivalent to 
  
   ; Model: U(air)  = ba + ba      * gc   / 
                            U(car)  = bc + bc       * gc   / 
                            U(bus)  =          bcpub * gc   / 
                            U(train)  = bt + bcpub * gc   $ 
 
Logs and the Box-Cox Transformation 
 
 Variables may be specified in logarithms.  This will be useful when you are using aggregate 
data and you wish to include, e.g., market size in a choice.  To indicate that you wish to use logs, use 
Log(variable name) instead of just variable name in the utility definition.  (The syntax ; Rhs = ... 
Log(x) as described above is not available.  This option may only be used when you are explicitly 
defining the utility functions.)  Thus, the model above might have been 
 
 NLOGIT ; Lhs = mode  
   ; Choices = air,train,bus,car 
           ; Model: U(air) = ba + bcost * Log(gc)   / 
                            U(car)  = bc + bcost * Log(gc)   / 
                            U(bus)  = bb + bcost * Log(gc)   / 
                            U(train) =          bcost * Log(gc)   $ 
 
When a variable appears in more than one utility function, you should take logs each time it appears.  
Although this is not mandatory, if you do not, your model will contain a mix of levels and logs, 
which is probably not what you want.  Also, it will be necessary for you to be aware in your results 
when you have used this transformation.  The model results will not contain any indication that logs 
have appeared in the equation.  The preceding, for example, produces the following estimation 
results: 
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+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 BA          -.5929844379       .21339917   -2.779   .0055 
 BCOST       -2.630222154       .45170772   -5.823   .0000 
 BC          -.9545367356       .24330526   -3.923   .0001 
 BB          -.9785661344       .22951885   -4.264   .0000 
 
 You may also use the Box-Cox transformation to transform variables.  Indicate this with 
Bcx(x) where x is the variable (which must be positive).  The transformation is 
 

Bcx(x)  =  (xλ  -  1)  /  λ, 
 
which is Log(x) if λ equals 0 and is x-1 (not x) if λ equals 1.  The Bcx(.) function may appear any 
number of times in the model specification.  In general, if a variable is transformed with this 
function, it should be transformed every time it appears in the model.  Not doing so is analogous to 
including both levels and logs of a variable, which while not invalid, is usually avoided. The default 
value of the transformation parameter, λ, is 1.0. The same value is used in all transformations.  You 
may specify a different value by including the specification 
 

  ; Lambda = value 
 
in your NLOGIT command.  Lambda is treated as a fixed value during estimation, not an estimated 
parameter.  Thus, no standard error is computed for lambda (since you provide the fixed value) and 
the standard errors for the other estimates are not adjusted for the presence of lambda.  I.e., by this 
construction, the Box-Cox transformation is treated like the log function – just a transformation.  In 
this case, the model results will contain an indication that the transformation has appeared in the 
utility functions.  For example, the preceding, with λ = 0.5, produces 
 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -267.4253     | 
| Log-L for Choice   model =   -267.42533     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .05756  .05154 | 
| Chi-squared[ 1]          =     32.66687     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Box-Cox model. LAMBDA used is      .50000   | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 BA          -.6425631472       .21842858   -2.942   .0033 
 BCOST       -.2433427492   .44558999E-01   -5.461   .0000 
 BC          -.8456971936       .23246443   -3.638   .0003 
 BB          -.9996728009       .22980046   -4.350   .0000 
 
Do note, however, that the results can only indicate that a Box-Cox transformation using λ = 0.5 has 
appeared in the model.  It is not possible to report where it appears. 
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Command Builders 
 
 The command builders provide space for you to build the utility functions in this fashion.  
See Figure 6.5.   Since this is done by typing out the functions in the windows – there is no menu 
construction that would allow this – these will not save much effort. 
 

 
 

 
Figure 6.5  Utility Functions Assembled in Command Builder Window 
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Note that in the window, you must provide the entire specification for the utility functions, including 
the listing of which alternatives the definitions are to apply to.  The model shown in the window in 
Figure 6.5 produces these results. 
 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Weighting variable                 None     | 
| Number of observations              210     | 
| Iterations completed                  6     | 
| Log likelihood function       -199.6825     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          1.95888     | 
|   Finite Sample: AIC =          1.96085     | 
| Info. Criterion: BIC =          2.05451     | 
| Info. Criterion:HQIC =          1.99754     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .29630  .28953 | 
| Chi-squared[ 3]          =    168.15262     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
 
+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 AA      |    6.41353627      1.10452186     5.807   .0000 
 AT      |    3.69564345       .52116476     7.091   .0000 
 AB      |    2.96221779       .54485066     5.437   .0000 
 BC      |    -.01702110       .00471351    -3.611   .0003 
 BTA     |    -.10758045       .01791733    -6.004   .0000 
 BTG     |    -.08939996       .01419339    -6.299   .0000 
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6.3 Standard Model Results 
 
 Estimation results for the model commands consist of the initial display of diagnostic 
followed by notes about the model, then the estimated coefficients.  The preceding command, 
without the tree structure or the initial echo of the model specification,  
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc $ 
 
produces the following results: 
 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Weighting variable                 None     | 
| Number of observations              210     | 
| Iterations completed                  5     | 
| Log likelihood function       -246.1098     | 
| Number of parameters                  9     | 
| Info. Criterion: AIC =          2.42962     | 
|   Finite Sample: AIC =          2.43390     | 
| Info. Criterion: BIC =          2.57306     | 
| Info. Criterion:HQIC =          2.48761     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .13268  .12011 | 
| Chi-squared[ 6]          =     75.29796     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
 

+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
 

+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 INVC    |    -.04612501       .01664864    -2.770   .0056 
 INVT    |    -.00838543       .00214019    -3.918   .0001 
 GC      |     .03633292       .01477727     2.459   .0139 
 A_AIR   |   -1.31602481       .72323155    -1.820   .0688 
 AIR_HIN1|     .00648950       .01079433      .601   .5477 
 A_TRAIN |    2.10710471       .43179879     4.880   .0000 
 TRA_HIN2|    -.05058498       .01206873    -4.191   .0000 
 A_BUS   |     .86502331       .50318615     1.719   .0856 
 BUS_HIN3|    -.03316081       .01299094    -2.553   .0107 
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NOTE:  (This is one of our frequently asked questions.)  The ‘R-squareds’ shown in the output are 
R2s in name only.  They do not measure the fit of the model to the data.  It has become common for 
researchers to report these with results as a measure of the improvement that the model gives over 
one that contains only a constant.  But, users are cautioned not to interpret these measures as 
suggesting how well the model predicts the outcome variable.  It is essentially unrelated to this. 
 
 To underscore the point, we will examine in detail the computations in the diagnostic 
measures shown in the box that precedes the coefficient estimates.  Consider the example below, 
which was produced by fitting a model with five coefficients subject to two restrictions, or three free 
coefficients - npfree = 3.  The effect is achieved by specifying  
 
   ; Choices = air,(train),(bus),car 
 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  93 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .49573| 1.000| 
|TRAIN     .00000| 1.000|* 
|BUS       .00000| 1.000|* 
|CAR       .50427| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    A_TRAIN  A_BUS     | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant none     none      | 
|TRAIN   |     1| GC       TTME     none     Constant none      | 
|BUS     |     1| GC       TTME     none     none     Constant  | 
|CAR     |     1| GC       TTME     none     none     none      | 
+---------------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Weighting variable                 None     | 
| Number of observations              117     | 
| Iterations completed                  6     | 
| Log likelihood function       -62.58418     | 
| Number of parameters                  3     | 
| Info. Criterion: AIC =          1.12110     | 
|   Finite Sample: AIC =          1.12291     | 
| Info. Criterion: BIC =          1.19192     | 
| Info. Criterion:HQIC =          1.14985     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
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| Constants only     -81.0939  .22825  .20794 | 
| Chi-squared[ 2]          =     37.01953     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped  93 bad obs. | 
+---------------------------------------------+ 
| Restricted choice set. Excluded choices are | 
| TRAIN    BUS                                | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |     .01320101       .00694790     1.900   .0574 
 TTME    |    -.07141256       .01604643    -4.450   .0000 
 A_AIR   |    3.96116758       .98004184     4.042   .0001 
 A_TRAIN |       .000000    ......(Fixed Parameter)....... 
 A_BUS   |       .000000    ......(Fixed Parameter)....... 
 
There are 210 individuals in the data set, but this model was fit to a restricted choice set which 
reduced the data set to n = 210 - 93 = 117 useable observations.  The original choice set had Ji = 4 
choices, but two were excluded, leaving Ji = 2 in the sample.  The log likelihood is -62.58418.  The 
‘constants only’ log likelihood is obtained by setting each choice probability to the sample share for 
each outcome in the choice set.  For this application, those are 0.49573 for air and 0.50427 for car.  
(This computation cannot be done if the choice set varies by person or if weights or frequencies are 
used.)  Thus, the log likelihood for the restricted model is  
 
 Log L0  =  117 ( 0.49573 × log 0.49573 + 0.50427 × log 0.50427 )  =  -81.09395. 
 
The ‘R2’ is 1 - (-62.54818/-81.0939) = 0.22869 (including some rounding error).  The adjustment 
factor is  
 
 K  =  (Σi Ji - n) / [(Σi Ji - n) - npfree]  =  (234 - 117)/(234 - 117 - 3)  =  1.02632. 
 
and the ‘Adjusted R2’ is 1 - K(log L /LogL0); 
 
 Adjusted R2  =  1  -  1.02632 (-62.54818/-81.0939)  =  0.20794. 
 
6.3.1 Retained Results 
 
 Results kept by this estimator are: 
 
 Matrices: b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl  =  log likelihood function 
   nreg  =  N, the number of observational units 
   kreg  =  the number of Rhs variables 
 
 Last Model: b_variable =  the labels kept for the WALD command 
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 In the Last Model, groups of coefficients for variables that are interacted with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.   For example, the sum of the three estimated choice 
specific constants could be analyzed as follows: 
 
 WALD  ; Fn1 = a_air + a_train + a_bus $ 
 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =     57.91928     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)      13.32858178       1.7513477    7.610   .0000 
 
6.3.2 Robust Standard Errors   
 
 The ‘cluster’ estimator described elsewhere in this document is available in NLOGIT. 
However, this routine does not support hierarchical samples. There may be only one level of 
clustering. Also, the cluster specification is defined with respect to the NLOGIT groups of data, not 
the data set.  NLOGIT sorts out how many clusters there are and how they are delineated.  But, since 
the row count of the data set is used in constructing the estimator, you must treat a group of NALT 
observations as one.  For example, our sample data used in this section contain 210 groups of four 
rows of data.  Each group of four is an observation.  Suppose that these data were grouped in clusters 
of three choice situations. The estimation command with the cluster estimator would appear 
 
 NLOGIT  ; ... (the model) ; Cluster = 12 $ 
 
The relevant part of the output would appear as follows: 
 
+---------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.    | 
| Sample of    210 observations contained     70 clusters defined by  | 
|      3 observations (fixed number) in each cluster.                 | 
+---------------------------------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01578375       .00543575    -2.904   .0037 
 TTME    |    -.09709052       .01366784    -7.104   .0000 
 A_AIR   |    5.77635888       .74564933     7.747   .0000 
 A_TRAIN |    3.92300124       .47890812     8.192   .0000 
 A_BUS   |    3.21073471       .48991386     6.554   .0000 
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6.3.3 Descriptive Statistics for Alternatives 
 
 You may request a set of descriptive statistics for your model by adding 
 
   ; Describe 
 
to the model command.  For each alternative, a table is given which lists the nonzero terms in the 
utility function and the means and standard deviations for the variables that appear in the utility 
function.  Values are given for all observations and for the individuals that chose that alternative.  
For the example shown above, the following tables would be produced: 
 

NLOGIT ; Lhs = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc ; Rh2 = one,hinc 

   ; Show Model  
   ; Describe $ 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  : 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   85.252     27.409|   97.569    31.733 | 
| INVT         -.0084  INVT     |  133.710     48.521|  124.828    50.288 | 
| GC            .0363  GC       |  102.648     30.575|  113.552    33.198 | 
| A_AIR       -1.3160  ONE      |    1.000       .000|    1.000      .000 | 
| AIR_HIN1      .0065  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                : 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   51.338     27.032|   37.460    20.676 | 
| INVT         -.0084  INVT     |  608.286    251.797|  532.667   249.360 | 
| GC            .0363  GC       |  130.200     58.235|  106.619    49.601 | 
| A_TRAIN      2.1071  ONE      |    1.000       .000|    1.000      .000 | 
| TRA_HIN2     -.0506  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  : 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   33.457     12.591|   33.733    11.023 | 
| INVT         -.0084  INVT     |  629.462    235.408|  618.833   273.610 | 
| GC            .0363  GC       |  115.257     44.934|  108.133    43.244 | 
| A_BUS         .8650  ONE      |    1.000       .000|    1.000      .000 | 
| BUS_HIN3     -.0332  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  : 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| INVC         -.0461  INVC     |   20.995     14.678|   15.644     9.629 | 
| INVT         -.0084  INVT     |  573.205    274.855|  527.373   301.131 | 
| GC            .0363  GC       |   95.414     46.827|   89.085    49.833 | 
+-------------------------------------------------------------------------+ 
 
 You may also request a cross tabulation of the model predictions against the actual choices. 
(The predictions are obtained as the integer part of Σt P̂ jt yjt.)  Add 
 
   ; Crosstab 
 
to your model command.  For the same model, this would produce 
 
+------------------------------------------------------+ 
| Cross tabulation of actual vs. predicted choices.    | 
| Row indicator is actual, column is predicted.        | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i). | 
| Column totals may be subject to rounding error.      | 
+------------------------------------------------------+ 
         AIR           TRAIN         BUS           CAR           Total 
        +---------------------------------------------------------------------- 
AIR     |   19.00000     13.00000      8.00000     18.00000     58.00000 
TRAIN   |   12.00000     30.00000      9.00000     12.00000     63.00000 
BUS     |   10.00000      8.00000      6.00000      6.00000     30.00000 
CAR     |   17.00000     12.00000      7.00000     23.00000     59.00000 
Total   |   58.00000     63.00000     30.00000     59.00000    210.00000 
 
6.4 Marginal Effects and Elasticities 
 
 In the discrete choice model, the effect of a change in attribute ‘k’ of alternative ‘j’ on the 
probability that individual i would choose alternative ‘m’ (where m may or may not equal j) is 
 
   δim(k|j)  =  ∂Prob[yi = m]/∂xi(k|j)  =  [1(j = m) - Pij]Pimβk.. 
 
You can request a listing of the effects of a specific attribute on a specified set of outcomes with 
 
   ; Effects: attribute [list of outcomes] 
 
The outcomes listing defines the variables ‘j’ in the definition above.  The attribute is the ‘kth.’  A 
calculated marginal effect is then listed for all alternatives (i.e., all ‘m’) in the model.  You can 
request additional tables by separating additional specifications with slashes.  For example: 
 
   ; Effects: gc [car, train] / ttme [bus,train] 
 
HINT:  It may generate quite a lot of output if your model is large, but you can request an analysis 
of ‘all’ alternatives by using the wildcard, attribute [*].   
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 The tables below are produced by 
 

NLOGIT ; Lhs  = mode ; Choices = air,train,bus,car  
; Rhs = invc,invt,gc 

   ; Rh2 = one,hinc 
   ; Effects: gc[*] $ 
 
+---------------------------------------------------+ 
| Derivative (times 100) averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR                .6042     .2397   | 
|       Choice=TRAIN             -.2007     .1132   | 
|       Choice=BUS               -.1237     .0798   | 
|       Choice=CAR               -.2798     .2044   | 
+---------------------------------------------------+ 
| Derivative (times 100) averaged over observations.| 
| Attribute is GC       in choice TRAIN             | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.2007     .1132   | 
| *     Choice=TRAIN              .6180     .2612   | 
|       Choice=BUS               -.1754     .1377   | 
|       Choice=CAR               -.2420     .1305   | 
+---------------------------------------------------+ 
| Derivative (times 100) averaged over observations.| 
| Attribute is GC       in choice BUS               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.1237     .0798   | 
|       Choice=TRAIN             -.1754     .1377   | 
| *     Choice=BUS                .4332     .1431   | 
|       Choice=CAR               -.1342     .0648   | 
+---------------------------------------------------+ 
| Derivative (times 100) averaged over observations.| 
| Attribute is GC       in choice CAR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.2798     .2044   | 
|       Choice=TRAIN             -.2420     .1305   | 
|       Choice=BUS               -.1342     .0648   | 
| *     Choice=CAR                .6559     .2159   | 
+---------------------------------------------------+ 
 
These effects are always extremely small.  They are multiplied by 100 in the output to make sure that 
some significant digits are shown in the tables.  The effects are computed by averaging the individual 
specific results, so the report contains the average partial effects.  Since the mean is computed over a 
sample of observations, we also report the standard deviation of the estimates. 
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NOTE:  The standard deviations are not the asymptotic standard errors for the estimators of the 
marginal effects.  In principle, that could be computed using the delta method.  However, the 
estimates computed by NLOGIT are average partial effects.  They are computed for each individual 
in the sample, then averaged.  Computing an appropriate standard error for that statistic is difficult to 
impossible owing to its extreme nonlinearity and due to the fact that all observations in the average 
are correlated – they use the same estimated parameter vector.  Nonetheless, it may be tempting to 
use the standard deviations for tests of hypotheses that the marginal effects are zero.  We advise 
against this.  There is no meaning that could be attached to an elasticity or marginal effect being zero 
– these are complicated functions of all parameters in the model.  The hypothesis that a variable is 
not influential in the determination of the choices should be tested at the coefficient level. 
 
 As noted in the tables, the marginal effects are computed by averaging the individual sample 
observations.  An alternative way to compute these is to use the sample means of the data, and 
compute the effects for this one hypothetical observation.  Request this with 
 
   ; Means 
 
For the first table above, the results would be as follows: 
 
+---------------------------------------------------+ 
| Derivative (times 100) Computed at sample means.  | 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR                .7263     .0000   | 
|       Choice=TRAIN             -.3010     .0000   | 
|       Choice=BUS               -.1434     .0000   | 
|       Choice=CAR               -.2819     .0000   | 
+---------------------------------------------------+ 
 
Note that the changes are substantial.  The literature is divided on this computation.  Current practice 
seems to favor the first approach. 
 Rather than see the partial effects, you may want to see elasticities, 
 
  ηim(k|j)  =  ∂logProb[yi = m]/∂logxi(k|j) =  xi(k|j)/Pim × δim(k|j) 
       =  [1(j = m) – Pij] xi(k|j)βk. 
 
Notice that this is not a function of Pim.  The implication is that all the cross elasticities are identical. 
This will be obvious in the results below.  This aspect of the model is specific to the basic 
multinomial logit model.  As will emerge in the chapters to follow, the IIA property which produces 
this result is absent from every other model in NLOGIT. 
 You may request elasticities instead of partial effects simply by changing the square brackets 
above to parentheses, as in 
 
   ; Effects: attribute (list of outcomes) 
 
The first set of results above would become as shown in the following table: 
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+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               2.6002     .8212   | 
|       Choice=TRAIN            -1.1293     .9295   | 
|       Choice=BUS              -1.1293     .9295   | 
|       Choice=CAR              -1.1293     .9295   | 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice TRAIN             | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR              -1.2046     .8221   | 
| *     Choice=TRAIN             3.5259    2.1605   | 
|       Choice=BUS              -1.2046     .8221   | 
|       Choice=CAR              -1.2046     .8221   | 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice BUS               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.5695     .2859   | 
|       Choice=TRAIN             -.5695     .2859   | 
| *     Choice=BUS               3.6181    1.4924   | 
|       Choice=CAR               -.5695     .2859   | 
+---------------------------------------------------+ 
| Elasticity             Averaged over observations.| 
| Attribute is GC       in choice CAR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR               -.8688     .5119   | 
|       Choice=TRAIN             -.8688     .5119   | 
|       Choice=BUS               -.8688     .5119   | 
| *     Choice=CAR               2.5979    1.5604   | 
+---------------------------------------------------+ 
 
The force of the independence from irrelevant alternatives (IIA) assumption of the multinomial logit 
model can be seen in the identical elasticities in the tables above.  The table also shows two aspects 
of the model.  First, the meaning of the raw coefficients in a multinomial logit model, all of sign, 
magnitude and significance, are ambiguous.  It is always necessary to do some kind of post 
estimation such as this to determine the implications of the estimates.  Second, in light of this, we 
can see that the particular model we estimated seems to be misspecified.  The estimates imply that as 
the generalized cost of each mode rises, it becomes more attractive.  The gc coefficient has the 
‘wrong’ sign. 
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6.5 Predicted Probabilities and Inclusive Values 
 
 There are some models that make use of the predicted probabilities from the discrete choice 
model.     
 
6.5.1 In Sample Predicted Probabilities and Inclusive Values 
 
 You can compute a column of predicted probabilities for any estimated choice model.  Each 
‘observation’ consists of Ji rows of data, where the number of choices may be fixed or variable.  Use 
the command 
 
 NLOGIT  ; Lhs = ... ; ...  
   ; Prob = name $ 
 
The variable name will contain the predicted probabilities.  The probabilities will sum to 1.0 for each 
observation, that is, down each set of Ji choices.  The ; Prob option will put the probabilities in the 
right places in your data set regardless of the setting of the current sample.  For example, if you 
happen to be estimating a model after having rejected some observations, the predictions will be 
placed with the outcomes for the observations actually used.  Unused rows of the data matrix are left 
undefined. 
 If your model has 14 or fewer choices, you can also include  
 
   ; List 
 
in your command to request a listing of the predicted probabilities.  These will be listed a full 
observation at a time, rowwise, with an indicator of the choice that was made by that individual.  For 
example, the first 10 observations (individuals) in the sample for the model above are 
 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .1481     .2376     .1101     .5042*+ 
    2   .1182     .3694 +   .1687     .3437* 
    3   .5783 +   .0702     .0663     .2853* 
    4   .2367     .0725     .0659     .6250*+ 
    5   .2203     .3176 +   .1884     .2736* 
    6   .1048     .4958*+   .1589     .2405 
    7   .6500*+   .0548     .0565     .2387 
    8   .3241     .3868 +   .1472     .1419* 
    9   .1824     .2199     .1112     .4866*+ 
   10   .2863     .0575     .0491     .6071*+ 
 
The ‘+’ and ‘*’ indicate the actual and predicted choices.  Where these mark the same probability, 
the model has predicted the outcome correctly. 
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 The inclusive value, or log sum, for the discrete choice model is 
 
   IVi  =  log Σj exp(β′xi,j ). 
 
Inclusive values are used for a number of purposes, including computing consumer surplus 
measures.  You can keep the inclusive values for your model and data with the specification 
 
   ; Ivb = name 
 
The specification, Ivb stands for ‘inclusive value for branch.’  Inclusive values are stored the same 
way that predicted probabilities are stored.  Since each observation has only one inclusive value, the 
same value will be stored for all rows (choices) for the observation (person).  Figure 6.6 illustrates 
 

                       
Figure 6.6  Saved Inclusive Values and Probabilities 
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6.5.2 Computing Out of Sample Model Probabilities 
 
 You can use an estimated model to compute (list and/or save) all probabilities, utilities, 
elasticities, and all descriptive statistics and crosstabulations for any specified set of observations, 
whether they were used in estimating the model or not.  For example, this feature will allow you to 
compute predicted probabilities for a ‘control’ sample, to assess how well the model predicts 
outcomes for observations outside the estimation sample.  For this feature, use the following steps: 
 
Step 1. Set up the full model for estimation, and estimate the model parameters. 
 
Step 2. Reset the sample to specify the observations for which you wish to simulate the model. 
 
Step 3. Use the identical NLOGIT command, but add the specification ; Prlist to the command. 
 
The sample that you specify at Step 2 may contain as many observations as you wish; it may be just 
one individual or it may be an altogether different set of data. 
 
NOTE:  The observations in the new sample must be consistent with the specification of the model. 
The usual data checking is done to ensure this. 
 
WARNING:  You must not change the specification of the model between Steps 1 and 3.  The 
coefficient vector produced by Step 1 is used for the simulation at Step 3.  But it is not possible to 
check whether the coefficient vector used at Step 3 is actually the correct one for the model 
command used at Step 3.  It will be if your model commands at Steps 1 and 3 are identical. 
 
 The following sequence fits the model in the preceding examples using the first 200 
observations (800 data rows), then simulates the probabilities for the remaining 10 observations in 
the full sample: 
 

SAMPLE ; 1 - 800 $ 
NLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs = invc,invt,gc,ttme 
; Rh2 = one $ 

SAMPLE ; 801 - 840 $ 
NLOGIT ; Lhs = mode 

; Choices = air,train,bus,car 
; Rhs  = invc,invt,gc,ttme 
; Rh2 = one 
; Prlist $ 
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+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable               Choice     | 
| Number of observations              200     | 
| Log likelihood function       -174.8393     | 
| Number of parameters                  7     | 
| Info. Criterion: AIC =          1.81839     | 
|   Finite Sample: AIC =          1.82131     | 
| Info. Criterion: BIC =          1.93383     | 
| Info. Criterion:HQIC =          1.86511     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -267.3168  .34595  .33823 | 
| Chi-squared[ 4]          =    184.95510     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   200, skipped   0 bad obs. | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 INVC    |    -.08826012       .01987417    -4.441   .0000 
 INVT    |    -.01344131       .00256769    -5.235   .0000 
 GC      |     .07053307       .01778244     3.966   .0001 
 TTME    |    -.10176138       .01117372    -9.107   .0000 
 A_AIR   |    5.33347705       .92158644     5.787   .0000 
 A_TRAIN |    4.44686822       .52777949     8.426   .0000 
 A_BUS   |    3.69334154       .52916432     6.980   .0000 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations               10     | 
+---------------------------------------------+ 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0543     .0445     .7540*+   .1472 
    2   .2402     .2189     .2014     .3395*+ 
    3   .0137     .0885     .8571*+   .0406 
    4   .0203     .0890     .8287*+   .0620 
    5   .4058 +   .1092     .3745*    .1105 
    6   .2766     .3248 +   .2785     .1201* 
    7   .6129*+   .1446     .1240     .1185 
    8   .0824     .5444 +   .0648*    .3084 
    9   .1815     .3629 +   .1795     .2761* 
   10   .1958     .1863     .0514     .5665*+ 
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This arrangement of the model may also include 
 
   ; Describe 
   ; Show Model to display the model configuration 
   ; Effects: desired elasticities or marginal effects 
   ; Prob = name to save probabilities 
   ; Ivb = name to save inclusive values 
 
All of these computations are done for the current sample.  This process is the same as the full model 
computations listed earlier.  But, with ; Prlist in place, the model estimated previously is used; it is 
not reestimated. 
 
6.6 Testing Hypotheses 
 
 We consider two types of hypothesis tests.  The first is a specification test of the IID extreme 
value specification.  The model assumptions induce the most prominent shortcoming of the 
multinomial logit model, the independence from irrelevant alternatives (IIA) property.  The fact that 
the ratio of any two probabilities in the model involves only the utilities for those two models 
produces a number of undesirable implications, including the striking pattern in the elasticities in the 
model shown earlier.  We consider a test of the IIA assumption.  The second part of this section 
considers more conventional hypothesis tests about the coefficients in the model. 
 
6.6.1 Testing the Assumption of Independence from Irrelevant 
Alternatives (IIA) 
 
 Hausman and McFadden (1984) have proposed a specification test for this model to test the 
inherent assumption of the independence from irrelevant alternatives (IIA). (IIA is a consequence of 
the initial assumption that the stochastic terms in the utility functions are independent and extreme 
value distributed.  Discussion may be found in standard texts on qualitative choice modeling, such as 
Hensher, Rose and Greene (2005) and Greene (2011).) The procedure is, first, to estimate the model 
with all choices.  The alternative specification is the model with a smaller set of choices.  Thus, the 
model is estimated with this restricted set of alternatives and the same model specification.  The set 
of observations is reduced to those in which one of the smaller set of choices is made.  The test 
statistic is 
 
   q = [br - bu]′[Vr - Vu]-1[br - bu], 
 
where ‘u’ and ‘r’ indicate unrestricted and restricted (smaller choice set) models and V is an 
estimated variance matrix for the estimates.  To use NLOGIT to carry out this test, it is necessary to 
estimate both models.  In the second, it is necessary to drop the outcomes indicated.  This is done 
with the  
 
   ; Ias = list 
 
specification.  The list gives the names of the outcomes to be dropped.   
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 This procedure is automated as shown in the following example: 
 
 CLOGIT ; Lhs  = mode 
   ; Choices  = air,train,bus,car  
   ; Rhs  = invc,invt,gc,ttme $ 
 CLOGIT ; Lhs  = mode 
   ; Choices = air,train,bus,car    
   ; Ias  = car  
   ; Rhs  = invc,invt,gc,ttme $ 
 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -244.1342     | 
| Number of parameters                  4     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .13964  .13414 | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 INVC    |    -.02242963       .01435409    -1.563   .1181 
 INVT    |    -.00634473       .00184168    -3.445   .0006 
 GC      |     .03182946       .01372856     2.318   .0204 
 TTME    |    -.03480667       .00469397    -7.415   .0000 
+------------------------------------------------------+ 
|WARNING:   Bad observations were found in the sample. | 
|Found  59 bad observations among     210 individuals. | 
|You can use ;CheckData to get a list of these points. | 
+------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable               Choice     | 
| Number of observations              151     | 
| Log likelihood function       -103.2012     | 
| Number of parameters                  4     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -159.0502  .35114  .34243 | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped  59 bad obs. | 
+---------------------------------------------+ 
| Hausman test for IIA. Excluded choices are  | 
| CAR                                         | 
| ChiSqrd[ 4] =  51.9631, Pr(C>c) =  .000000  | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 INVC    |    -.04641792       .02108920    -2.201   .0277 
 INVT    |    -.00963276       .00271137    -3.553   .0004 
 GC      |     .04116251       .01984102     2.075   .0380 
 TTME    |    -.07938809       .00991501    -8.007   .0000 
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 In order to compute the coefficients in the restricted model, it is necessary to drop those 
observations that choose the omitted choice(s).  In the example above, 59 observations were skipped.  
They are marked as bad data because with car excluded, no choice is made for those observations.  
As a consequence, the log likelihood functions are not comparable.  The Hausman statistic is used to 
carry out the test.  In the preceding example, the large value suggests that the IIA restriction should 
be rejected. Note that you can carry out several tests with different subsets of the choices without 
refitting the benchmark model.  Thus, in the example above, you could follow with a third model in 
which ; Ias = bus instead of car. 
 There is a possibility that restricting the choice set can lead to a singularity.  It is possible 
that when you drop one or more alternatives, some attribute will be constant among the remaining 
choices.  Thus, you might induce the case in which there is a ‘regressor’ which is constant across the 
choices.  In this case, NLOGIT will issue a diagnostic about a singular Hessian (it is).  Hausman and 
McFadden (1984) suggest estimating the model with the smaller number of choice sets and a smaller 
number of regressors.  There is no question of consistency, or omission of a relevant attribute, since 
if the attribute is always constant among the choices, variation in it is obviously not affecting the 
choice. After estimation, the subvector of the larger parameter vector in the first model can be 
measured against the parameter vector from the second model using the Hausman statistic given 
earlier.  This possibility arises in the model with alternative specific constants, so it is going to be a 
common case.  The examples below suggest one way you might proceed in such as case. 
 The first step is to fit the original model using the entire sample and retrieve the results. 
 
 NLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car  
   ; Rhs = invc,invt,gc,ttme,one $ 
 MATRIX ; bu = b(1:4) ; vu = Varb(1:4,1:4) $ 
 
The variable choice takes values 1,2,3,4,1,2,3,4... indicating the indexing scheme for the choices 
 
 CREATE ; choice = Trn(-4,0)$ 
 
Chair is a dummy variable that equals one for all four rows when choice made is air.  Now restrict 
the sample to the observations for choices train, bus, car. 
 
 REJECT ; chair = 1  |  choice = 1 $ 
 
Fit the model with the restricted sample (choice set) and one less constant term. 
 
 NLOGIT ; Lhs = mode ; Choices = train,bus,car   
   ; Rhs = invc,invt,gc,ttme,one $ 
 
Retrieve the restricted results and compute the Hausman statistic. 
 
 MATRIX ; br = b(1:4) ; vr = Varb(1:4,1:4) 
   ; db = br - bu ; vdb = Nvsm(vr,-vu) $ 
 CALC  ; List ; q = Qfr(db,vdb) ; 1 - Chi(q,4) $ 
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The results are: 
 
     Q       =  .33784450384775710D+02 

Result  =  .82501941289780950D-06 
 

NOTE:  (We’ve been asked this one several times.)  The difference matrix in this calculation, vdb, 
might be nonsingular (have an inverse), but not be positive definite.  In such a case, the chi squared 
can be negative.  If this happens, the right conclusion is probably that it should be zero. 
 
6.6.2 Lagrange Multiplier, Wald, and Likelihood Ratio Tests 
 
 NLOGIT keeps the usual statistics for the classical, Neyman-Pearson hypothesis tests.  After 
estimation, the matrices b and varb will be kept as usual, and can be further manipulated for any 
purposes, for example, in the WALD command.  You can use 
 
   ; Test: ... restrictions 
 
as well within the NLOGIT command to set up Wald tests of linear restrictions on the parameters.  
Likelihood ratio tests can be carried out by using the scalar logl, which will be available after 
estimation.  The value of the log likelihood function for a model which contains only J-1 alternative 
specific constants will be reported in the output as well (see the sample outputs above).  If your 
model actually contains the ASCs, NLOGIT will also report the chi squared test statistic and its 
significance level for the hypothesis that the other coefficients in the model are all 0.0. 
 
HINT:  NLOGIT can detect that a model contains a set of ASCs if you have used one in an ; Rhs 
specification.  But, it cannot determine from a set of dummy variables that you, yourself, provide, if 
they are a set of ASCs, because it inspects the model, not the data, to make the determination.  As 
such, there is an advantage, when possible, to letting NLOGIT set up the set of alternative specific 
constants for you. 
 
Finally, an LM statistic for testing the hypothesis that the starting values are not significantly 
different from the MLEs (the standard LM test) is requested by adding  
 
   ; Maxit  =  0 
 
to the NLOGIT command. 
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Chapter 7: Simulating Probabilities in Discrete 
Choice Models 

 
7.1 Introduction 
 
 The simulation program described here allows you to fit a model, use it to predict the set of 
choices for your sample, then examine how those choices would change if the attributes of the 
choices changed.   You can also examine scenarios that involve restricting the choice set from the 
original one.  Finally, you can use your estimated model and this simulator to do these analyses with 
data sets that were not actually used to fit the model. The calculation proceeds as follows: 
 
Step 1. Set the desired sample for the model estimation.  Estimate the model using NLOGIT.  This 

processor is supported for the following discrete choice models that are specific to NLOGIT: 
 
   Model    Command  Alternative Command 
 Conditional Logit  CLOGIT  NLOGIT 
 Nested Logit   NLOGIT  NLOGIT ; Tree = ... 
 Random Parameters Logit RPLOGIT  NLOGIT ; RPL 
 Multinomial Probit  MNPROBIT  NLOGIT ; MNP 
 
Step 2. The model is viewed as a random utility model in which the utility functions are functions of 

attributes x1,...,xK.  The model is then fit to describe the choice among J alternatives, 
C1,...,CJ.  This may be a very simple model such as the basic multinomial logit model 
(MNL) of Chapter 8 or as complicated as a four level nested logit model as described in 
Chapter 9.  In any event, the model is ultimately viewed in terms of these attributes and 
choices. 

 
Step 3. (If desired) Reset the sample to any desired setup that is consistent with the model. This may 

be all or a subset of the data used to fit the model, or a set of individuals that were not used 
in fitting the model, or any mixture of the two. 

 
Step 4. Specify which of the choices (possibly but not necessarily all) are to be used as the choice 

set for the simulation.  The simulation is then produced to predict choice among this possibly 
reduced set of choices.  (Probabilities for the full choice set are reallocated, but not 
necessarily proportionally.  This would only occur in the MNL model which satisfies IIA.) 

 
Step 5. Specify how the attributes that enter the utility functions will change – for example that a 

particular price is to rise by 25%. 
 
Step 6. Simulate the model by computing the probabilities and predicting the outcomes for the 

specified sample and summarize the results, comparing them to the original, base case. 
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Steps 3-6 may be repeated as many times as desired once a model has been estimated.  The model is 
not reestimated; the existing model is used to compute the simulation results.  The simulation 
produces an output table that compares absolute frequencies and shares for each alternative in the 
full or a restricted choice set to the base case in which the predicted shares are the means of the 
sample predictions from the model absent the changes specified in the scenario. 
 In addition, this feature provides a capability for implementing simulation/scenario analysis 
when one is using mixtures of data (for example stated preference and revealed preference).  This 
option allows you to combine the two types of data in a simulation.  An example is shown in the case 
study below. 
 
7.2 Essential Subcommands 
 

NLOGIT’s models are all built around the specification which indicates the choice set being 
modeled: 

 ; Choices = the full list of alternatives in the model 
 
This simulation program is used to compute simulated probabilities assuming that the individuals in 
the sample being simulated are choosing among some or all of these alternatives.  The first 
subcommand for the simulation is 
 

 ; Simulation = a list of names of alternatives 
 
The list of names must be some or all of the names in the ; Choices list.  If they are to be all of them, 
then you may use 
 
   ; Simulation = * (or, just ; Simulation) 
 
NOTE:  Simulation on a subset of alternatives in the full choice set is done by analyzing the full set 
of data while, in process, pretending (simulating) that alternatives not in the simulation list are not 
available to these individuals even if they are physically in the data set and actually available. (Note, 
this is just for the purposes of the simulation.)  You must not change the sample settings in any way 
to produce this effect yourself.  It is handled completely internally by this program simply by using a 
set of switches (‘on’ for included, ‘off’ for excluded) for the choice set while numerical results are 
computed. 
 

The second specification you will provide is the name of the attribute that is being set or 
changed and the names of the alternatives in which this attribute is changing.  This is the ‘scenario.’  
The base case, for a single changing attribute is 

 
; Scenario: attribute name (list of alternatives whose attribute levels will change) 
  = [ action ] magnitude of action 
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If you wish to include in the scenario, all the alternatives that are defined in the simulation, simply 
use the wildcard character, * as the list.  Note that this ‘all items in list’ refers back to your ; 
Simulation list, not to the ; Choices list.  The actions in the scenario specification are as follows: 
 

  =  specific value to force the attribute to take this value in all cases, 
or  =  [*] value to multiply observed values by the value, 
or  =  [+] value to add ‘value’ to the observed values, 
or  =  [/ ] value to divide the attribute by the specified value, 
or  =  [- ] value to subtract ‘value’ from the observed values. 

 
The following example: 
 

; Choices = air,train,bus,car 
   ; Simulation = air,car  

; Scenario: gc(car) = [*] 1.5 
 
specifies a simulation over two choices in a four choice model.  The scenario is enacted by changing 
the gc attribute for car only by multiplying whatever value is found in the original sample by 1.5. 
 
7.3 Multiple Attribute Specifications and Multiple 
Scenarios 
 
 The simulation may specify that more than one attribute is to change.  The multiple settings 
may provide for changes in different alternatives.  The specification is 
 

; Scenario: attribute name 1 (list of alternatives) = [ action ] magnitude of action   /  
  attribute name 2 (list of alternatives) = [ action ] magnitude of action   / 

      ...   repeated up to a maximum of 20 attributes specifications 
 
The different change specifications are separated by slashes.  To continue the earlier example, we 
might specify 
 
   ; Choices = air,train,bus,car 

  ; Simulation = air,train, car 
  ; Scenario: gc(car)  = [ * ] 1.5 / 
   ttme (air,train) = [ * ] 1.25 

 
You may also provide more than one full scenario for the simulation.  In this case, each 

scenario is compared to the base case, then the scenarios are compared to each other.  You may 
compare up to five scenarios in one run with this tool.  Use 
 

; Scenario: attribute name 1 (list of alternatives) = [ action ] magnitude of action ... 
  & 
  attribute name 2 (list of alternatives) = [ action ] magnitude of action ... 

 
Use ampersands (&) to separate the scenarios.  Within each scenario, you may have up to 20 
attribute specifications separated by slashes. 
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7.4 Simulation Commands 
 
 The simulation instruction does not produce new model estimates.  However all other 
NLOGIT options can be invoked with the command, such as descriptive statistics and computing 
and retaining predicted probabilities. 
 
7.4.1 Observations Used for the Simulations 
 

The data set used in the simulation can be the original data set used to estimate the model or 
a new data set.   The base model is fit with an ‘estimation’ data set.  After this operation (Steps 1 and 
2 in the introduction), if desired, you may respecify the sample to direct the simulator to do the 
calculations with a completely different set of observations.  This would precede Step 4 above.  If 
you do not change the sample setting, the same data are used for the simulation.  (The simulation 
must follow the estimation.  In any case, it will require a second command, which will generally be 
identical to the first save for the specification of the simulation.) 
 
7.4.2 Variables Used for the Simulations 
 

If a new data set is used, the attributes must have the exact same names and measurement 
units and the alternatives must also have the same names as the full or a restricted set of those used 
in model estimation.  A natural application that would obey this convention would be to use one half 
of a sample to estimate the model, then repeat the simulation using the other half of the same sample. 
 
7.4.3 Choices Simulated 
 

One can undertake simulation either on the full choice set used in estimation or a restricted 
set. This latter option is very useful for modelers using mixtures of data (e.g., combined stated and 
revealed preference data), where some alternatives are only included in estimation but not in 
application.  An extensive example is shown below in the case study. 
 
7.4.4 Other NLOGIT Options 
 

The routine that does simulation also allows you to compute the various elasticities and/or 
derivatives (; Effects: ...) and descriptive statistics (; Describe and ; Crosstab) as described in 
Chapter 6, and will produce the standard results for these.  You might already have done this at the 
estimation step, but if you change the sample, you can use this simulation program to recompute 
those values. 
 
7.4.5 Observations Used for the Simulations 
 

This program also allows you to compute, display, and save fitted probabilities, utilities and 
inclusive values for specific observations, using the standard setup for these as described in the 
LIMDEP documentation.  Once again, this is likely to be useful when your estimation and simulation 
steps are based on different sets of observations. 
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7.5 Applications 
 
 We compute the shares for a particular sample using the following: 
 

   S(alternative j) =  N  ×  
1

N
iji

P
∧

=∑ . 
 

Thus, save for the rounding error which is distributed, the model predicts the number of individuals 
in the sample who will choose each alternative.  The crosstabulation described in Section 6.3 
summarizes this calculation.  For example, using the clogit.dat data, the following results from 
estimation of a simple multinomial logit model: 
 
+------------------------------------------------------+ 
| Cross tabulation of actual vs. predicted choices.    | 
| Row indicator is actual, column is predicted.        | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i). | 
| Column totals may be subject to rounding error.      | 
+------------------------------------------------------+ 
         AIR           TRAIN         BUS           CAR           Total 
        +---------------------------------------------------------------------- 
AIR     |    34.0000        8.0000        4.0000       13.0000       58.0000 
TRAIN   |     8.0000       39.0000        4.0000       12.0000       63.0000 
BUS     |     5.0000        4.0000       17.0000        4.0000       30.0000 
CAR     |    11.0000       13.0000        5.0000       30.0000       59.0000 
Total   |    58.0000       63.0000       30.0000       59.0000      210.0000 
 
The feature described here is used to examine how these predictions change when the value of an 
attribute changes.  For example, how do the predictions change when the generalized cost of air 
travel changes.  The simulator is used as follows: 
 
Step 1. Fit the model. 
 
Step 2. Use the identical model specification, but add to the command: 
 

 ; Simulation [ = a subset of the choices, if desired – see below] 
 ; Scenario = what changes and how 

 
We take the base case first, in which all alternatives are considered in the simulation.  A scenario is 
defined using 
   ; Scenario: attribute (choices in which it appears) = the change    
 
as shown in the preceding section.  The results of the computation will show the market shares 
before and after the change. 
 For example, we will refit the transport mode model examined at various points in Chapters 7 
and 8, then examine the effect of increasing by 25% the terminal time spent waiting for air transport. 
 
 SAMPLE ; 1 - 840 $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme ; Choices = air,train,bus,car  
   ; Simulation  

; Scenario: ttme (air) = [*]1.25 $ 
The estimated model appears first, followed by the simulation. 
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+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -199.9766     | 
| Log-L for Choice   model =   -199.97662     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .29526  .28962 | 
| Chi-squared[ 2]          =    167.56429     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 GC       -.1578374521E-01  .43827919E-02   -3.601   .0003 
 TTME     -.9709052295E-01  .10435090E-01   -9.304   .0000 
 A_AIR        5.776358875       .65591872    8.807   .0000 
 A_TRAIN      3.923001236       .44199360    8.876   .0000 
 A_BUS        3.210734711       .44965283    7.140   .0000 
 
These are the predictions of the model in the base case and after enacting the scenario. 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
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The model predicts the base case using the actual data, shown in the left side and what would 
become of this case if the scenario is assumed.  In this case, each person’s ttme for air travel is 
increased by 25%, and the probabilities are recomputed.  In this case, a fairly strong effect is 
predicted.  26 of 58 people who chose air are now expected to take other modes, eight changing to 
train, four to bus, and 15 to car.  (The one stray person at the end is the result of rounding error in 
the allocation of the probabilities.) 
 You may combine up to five scenarios in each simulation.  This allows you to have 
simultaneous changes in attributes.  Use 
 
 ; Scenario :   attribute (choices in which it appears) = the change   / 

attribute (choices in which it appears) = the change   /  
... 

 
For example, suppose terminal time for both air and train both increased by 25%.  We would extend 
our previous setup as follows: 
 
 SAMPLE ; 1 - 840 $ 
 NLOGIT ; Lhs = mode  ; Rhs = one,gc,ttme ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme ; Choices = air,train,bus,car  
   ; Simulation   
   ; Scenario: ttme (air)  = [*] 1.25 / 
    ttme (train) = [*] 1.25  $ 
 
+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
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+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 16.417    34 |-11.202%      -24 | 
|TRAIN     | 30.000    63 | 23.178    49 | -6.822%      -14 | 
|BUS       | 14.286    30 | 18.796    39 |  4.510%        9 | 
|CAR       | 28.095    59 | 41.609    87 | 13.514%       28 | 
|Total     |100.000   210 |100.000   209 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
 
 You may also compare the effects of different scenarios.  For example, rather than assume 
that ttme for both air and train changed, you might compare the two scenarios.  To do a pairwise 
comparison of scenarios, separate them with ‘&’ in the command.  For example, 
 
 NLOGIT  ; Lhs = mode ; Rhs = one,gc,ttme 

 ; Choices = air,train,bus,car  
 ; Simulation  

; Scenario:  ttme (air)  = [*] 1.25    
     & ttme (train) = [*] 1.25  $ 

 
produces the separate results, then the pairwise comparison: 
 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: (Note rounding error) 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 15.118    32 |-12.501%      -26 | 
|TRAIN     | 30.000    63 | 33.694    71 |  3.694%        8 | 
|BUS       | 14.286    30 | 16.126    34 |  1.841%        4 | 
|CAR       | 28.095    59 | 35.061    74 |  6.966%       15 | 
|Total     |100.000   210 |100.000   211 |   .000%        1 | 
+----------+--------------+--------------+------------------+ 
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------------------------------------------------------------------------- 
Specification of scenario 2 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       TRAIN                            Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario.  
Simulated Probabilities (shares) for this scenario:  
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 27.619    58 | 30.168    63 |  2.548%        5 | 
|TRAIN     | 30.000    63 | 20.787    44 | -9.213%      -19 | 
|BUS       | 14.286    30 | 16.383    34 |  2.097%        4 | 
|CAR       | 28.095    59 | 32.662    69 |  4.567%       10 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------+ 
The simulator located    209 observations for this scenario. 
Pairwise Comparisons of Specified Scenarios 
Base     for this comparison is scenario 1. 
Scenario for this comparison is scenario 2. 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 15.118    32 | 30.168    63 | 15.049%       31 | 
|TRAIN     | 33.694    71 | 20.787    44 |-12.907%      -27 | 
|BUS       | 16.126    34 | 16.383    34 |   .257%        0 | 
|CAR       | 35.061    74 | 32.662    69 | -2.399%       -5 | 
|Total     |100.000   211 |100.000   210 |   .000%       -1 | 
+----------+--------------+--------------+------------------+ 
 
Finally, you can use the simulator to restrict the choice set.  The computed probabilities are 
computed assuming only the specified alternatives are available.  To do this, use 
 
   ; Scenario = the subset of alternatives 
 
 To continue the example, we simulate the model assuming that people could not drive, and 
examine what the effect of increasing terminal time in airports would do to the market shares for the 
remaining three alternatives. 
 
 SAMPLE ; 1 - 840 $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme ; Choices = air,train,bus,car $ 
 NLOGIT ; Lhs = mode ; Rhs = one,gc,ttme ; Choices = air,train,bus,car  
   ; Simulation = air,train,bus  

; Scenario: ttme (air)  = [*] 1.25  $ 
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+---------------------------------------------+ 
| Discrete Choice (One Level) Model           | 
| Model Simulation Using Previous Estimates   | 
| Number of observations              210     | 
+---------------------------------------------+ 
+------------------------------------------------------+ 
|Simulations of Probability Model                      | 
|Model: Discrete Choice (One Level) Model              | 
|Simulated choice set may be a subset of the choices.  | 
|Number of individuals is the probability times the    | 
|number of observations in the simulated sample.       | 
|Column totals may be affected by rounding error.      | 
|The model used was simulated with    210 observations.| 
+------------------------------------------------------+ 
------------------------------------------------------------------------- 
Specification of scenario 1 is: 
Attribute  Alternatives affected            Change type             Value 
---------  -------------------------------  ------------------- --------- 
TTME       AIR                              Scale base by value     1.250 
------------------------------------------------------------------------- 
The simulator located    209 observations for this scenario. 
Simulated Probabilities (shares) for this scenario: 
+----------+--------------+--------------+------------------+ 
|Choice    |     Base     |   Scenario   | Scenario - Base  | 
|          |%Share Number |%Share Number |ChgShare ChgNumber| 
+----------+--------------+--------------+------------------+ 
|AIR       | 39.353    83 | 22.933    48 |-16.420%      -35 | 
|TRAIN     | 40.985    86 | 52.281   110 | 11.297%       24 | 
|BUS       | 19.662    41 | 24.786    52 |  5.123%       11 | 
|Total     |100.000   210 |100.000   210 |   .000%        0 | 
+----------+--------------+--------------+------------------- 
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Chapter 8: The Multinomial Logit Model 
 
8.1 Introduction 
 
 In the multinomial logit model, there is a single vector of characteristics, which describes the 
individual, and a set of J parameter vectors.  In the ‘discrete choice’ setting of this section, these are 
essentially reversed.  The J alternatives are each characterized by a set of K ‘attributes,’ xij. 
Respondent ‘i’ chooses among the J alternatives.  There is a single parameter vector, β.  The model 
underlying the observed data is assumed to be the following random utility specification: 
 
   U(choice j for individual i)  =  Uij  =  β′xij  +  εij, j = 1,...,Ji. 
 
The random, individual specific terms, (εi1,εi2,...,εiJ) are assumed to be independently distributed, 
each with an extreme value distribution.  Under these assumptions, the probability that individual i 
chooses alternative j is 
 
   Prob(Uij > Uiq) for all q ≠ j. 
  
It has been shown that for independent extreme value distributions, as above, this probability is 
 

   Prob(yi = j)  =  
( )
( )1

exp

expi

ij
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imm=
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β
 

 
where yi is the index of the choice made.  Regardless of the number of choices, there is a single 
vector of K parameters to be estimated.  This model does not suffer from the proliferation of 
parameters that appears in the logit model described in Chapter 4.  It does, however, make the very 
strong ‘Independence from Irrelevant Alternatives’ assumption which will be discussed below. 
 
NOTE:  The distinction made here between ‘discrete choice’ and ‘multinomial logit’ is not hard and 
fast.  It is made purely for convenience in the discussion.  By interacting the characteristics with the 
alternative specific constants, the discrete choice model of this chapter becomes the multinomial 
logit model.  From this point, in the remainder of this reference guide for NLOGIT, we will refer to 
the model described in this chapter, with mathematical formulation as given above, as the 
‘multinomial logit model,’ or MNL model as is common in the literature. 
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 The basic setup for this model consists of observations on n individuals, each of whom 
makes a single choice among Ji choices, or alternatives.  There is a subscript on Ji because we do not 
restrict the choice sets to have the same number of choices for every individual.  The data will 
typically consist of the choices and observations on K ‘attributes’ for each choice.  The attributes that 
describe each choice, i.e., the arguments that enter the utility functions, may be the same for all 
choices, or may be defined differently for each utility function.  The estimator described in this 
chapter allows a large number of variations of this basic model.  In the discrete choice framework, 
the observed ‘dependent variable’ usually consists of an indicator of which among Ji alternatives was 
most preferred by the respondent.  All that is known about the others is that they were judged inferior 
to the one chosen.  But, there are cases in which information is more complete and consists of a 
subjective ranking of all Ji alternatives by the individual.  NLOGIT allows specification of the model 
for estimation with ‘ranks data.’  In addition, in some settings, the sample data might consist of 
aggregates for the choices, such as proportions (market shares) or frequency counts.  NLOGIT will 
accommodate these cases as well. 
 
8.2 Command for the Multinomial Logit Model 
 
 The simplest form of the command for the discrete choice models is 
 
 CLOGIT  ; Lhs  = variable which indicates the choice made 
                  ; Choices = a set of J names for the set of choices  
   ; Rhs = choice varying attributes in the utility functions  
   ; Rh2 = choice invariant characteristics $ 
 
(With no qualifiers to indicate a different model, such as RPL or MNP, CLOGIT and NLOGIT are 
the same.)  There are various ways to specify the utility functions – i.e., the right hand sides of the 
equations that underlie the model, and several different ways to specify the choice set.  The ; Rhs 
specification may be replaced with an explicit definition of the utility functions, using ; Model ...   
 A set of exactly J choice labels must be provided in the command.  These are used to label 
the choices in the output.  The number you provide is used to determine the number of choices there 
are in the model.  Therefore, the set of the right number of labels is essential.  Use any descriptor of 
eight or fewer characters desired – these do not have to be valid names, just a set of labels, separated 
in the list by commas. 
 The command builder for this model is found in Model:Discrete Choice/Discrete Choice.  
The Main and Options pages are both used to set up the model.  The model and the choice set are 
defined in the Main page; the attributes are defined in the Options page.  See Figure 8.1. 
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Figure 8.1  Command Builder for Multinomial Logit Model 
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8.3 Results for the Multinomial Logit Model 
 
 Results for the multinomial logit model will consist of the standard model results and any 
additional descriptive output you have requested.  The application below will display the full set of 
available results.  Results kept by this estimator are: 
 
 Matrices:  b and varb =  coefficient vector and asymptotic covariance matrix 
 
 Scalars:  logl   =  log likelihood function 
   nreg   =  N, the number of observational units 
   kreg   =  the number of Rhs variables 
 
 Last Model:  b_variable =  the labels kept for the WALD command. 
 
 In the Last Model, groups of coefficients for variables that are integrated with constants get 
labels choice_variable, as in trai_gco.  (Note that the names are truncated – up to four characters for 
the choice and three for the attribute.)  The alternative specific constants are a_choice, with names 
truncated to no more than six characters.  For example, the sum of the three estimated choice specific 
constants could be analyzed as follows: 
 
 WALD   ; Fn1 = a_air + a_train + a_bus $ 
 
+-----------------------------------------------+ 
| WALD procedure. Estimates and standard errors | 
| for nonlinear functions and joint test of     | 
| nonlinear restrictions.                       | 
| Wald Statistic             =     57.91928     | 
| Prob. from Chi-squared[ 1] =       .00000     | 
+-----------------------------------------------+ 
+---------+--------------+----------------+--------+---------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | 
+---------+--------------+----------------+--------+---------+ 
 Fncn(1)      13.32858178       1.7513477    7.610   .0000 
 

8.4 Application 
 
 The MNL model based on the CLOGIT data is estimated with the command 
 
 CLOGIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one,hinc 
   ; Show Model 
   ; Describe 
   ; Crosstab 
   ; Effects: gc(*)  
   ; Ivb  = incvlu 
   ; Prob = pmnl  

; List $ 



Chapter 8: The Multinomial Logit Model 98 

 

This requests all the optional output from the model.  The ; Describe specification detailed in 
Chapter 6 requests a set of descriptive statistics for the variables in the model, by choice.  The 
leftmost set of results gives the coefficient estimates.  Note that in this model, they are the same for 
the two generic coefficients, on gc and ttme, but they vary by choice for the alternative specific 
constant and its interaction with income. Also, since there is no ASC for car (it was dropped to avoid 
the dummy variable trap), there are no coefficients for the car grouping.  The second set of values in 
the center section gives the mean and standard deviation for that attribute in that outcome for all 
observations in the sample.  The third set of results gives the mean and variance for the particular 
attribute for the individuals that made that choice.  The full set of results from the model is as 
follows. 
 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
+---------------------------------------------+ 
Sample proportions are marginal, not conditional. 
Choices marked with * are excluded for the IIA test. 
+----------------+------+--- 
|Choice   (prop.)|Weight|IIA 
+----------------+------+--- 
|AIR       .27619| 1.000| 
|TRAIN     .30000| 1.000| 
|BUS       .14286| 1.000| 
|CAR       .28095| 1.000| 
+----------------+------+--- 
+---------------------------------------------------------------+ 
| Model Specification:  Table entry is the attribute that       | 
| multiplies the indicated parameter.                           | 
+--------+------+-----------------------------------------------+ 
| Choice |******| Parameter                                     | 
|        |Row  1| GC       TTME     A_AIR    AIR_HIN1 A_TRAIN   | 
|        |Row  2| TRA_HIN2 A_BUS    BUS_HIN3                    | 
+--------+------+-----------------------------------------------+ 
|AIR     |     1| GC       TTME     Constant HINC     none      | 
|        |     2| none     none     none                        | 
|TRAIN   |     1| GC       TTME     none     none     Constant  | 
|        |     2| HINC     none     none                        | 
|BUS     |     1| GC       TTME     none     none     none      | 
|        |     2| none     Constant HINC                        | 
|CAR     |     1| GC       TTME     none     none     none      | 
|        |     2| none     none     none                        | 
+---------------------------------------------------------------+ 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -189.5252     | 
| Number of parameters                  8     | 
| Info. Criterion: AIC =          1.88119     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .33209  .32350 | 
| Chi-squared[ 5]          =    188.46723     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
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+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01092735       .00458775    -2.382   .0172 
 TTME    |    -.09546055       .01047320    -9.115   .0000 
 A_AIR   |    5.87481336       .80209034     7.324   .0000 
 AIR_HIN1|    -.00537349       .01152940     -.466   .6412 
 A_TRAIN |    5.54985728       .64042443     8.666   .0000 
 TRA_HIN2|    -.05656186       .01397335    -4.048   .0001 
 A_BUS   |    4.13028388       .67636278     6.107   .0000 
 BUS_HIN3|    -.02858418       .01544418    -1.851   .0642 
 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .0984     .3311     .1959     .3746*+ 
    2   .2566     .2262     .0530     .4641*+ 
    3   .1401     .1795     .1997     .4808*+ 
    4   .2732     .0297     .0211     .6759*+ 
    5   .3421     .1478     .0527     .4575*+ 
    6   .0831     .3962*+   .2673     .2534 
    7   .6066*+   .0701     .0898     .2335 
    8   .0626     .6059 +   .1925     .1390* 
    9   .1125     .2932     .1995     .3947*+ 
   10   .1482     .0804     .1267     .6447*+ 
 
   (Rows 11 – 210 are omitted.) 
 
+------------------------------------------------------+ 
| Cross tabulation of actual vs. predicted choices.    | 
| Row indicator is actual, column is predicted.        | 
| Predicted total is F(k,j,i)=Sum(i=1,...,N) P(k,j,i). | 
| Column totals may be subject to rounding error.      | 
+------------------------------------------------------+ 
 
Matrix Crosstab has  5 rows and  5 columns. 
         AIR           TRAIN         BUS           CAR           Total 
        +---------------------------------------------------------------------- 
AIR     |   33.00000      7.00000      4.00000     14.00000     58.00000 
TRAIN   |    7.00000     39.00000      5.00000     12.00000     63.00000 
BUS     |    3.00000      6.00000     15.00000      6.00000     30.00000 
CAR     |   15.00000     11.00000      6.00000     27.00000     59.00000 
Total   |   58.00000     63.00000     30.00000     59.00000    210.00000 
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+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.8019     .3834   | 
|       Choice=TRAIN              .3198     .3370   | 
|       Choice=BUS                .3198     .3370   | 
|       Choice=CAR                .3198     .3370   | 
+---------------------------------------------------+ 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice TRAIN             | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR                .3534     .3511   | 
| *     Choice=TRAIN            -1.0693     .7134   | 
|       Choice=BUS                .3534     .3511   | 
|       Choice=CAR                .3534     .3511   | 
+---------------------------------------------------+ 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice BUS               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR                .1679     .2308   | 
|       Choice=TRAIN              .1679     .2308   | 
| *     Choice=BUS              -1.0916     .5183   | 
|       Choice=CAR                .1679     .2308   | 
+---------------------------------------------------+ 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice CAR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
|       Choice=AIR                .2934     .2674   | 
|       Choice=TRAIN              .2934     .2674   | 
|       Choice=BUS                .2934     .2674   | 
| *     Choice=CAR               -.7492     .4430   | 
+---------------------------------------------------+ 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  : 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  102.648     30.575|  113.552    33.198 | 
| TTME         -.0955  TTME     |   61.010     15.719|   46.534    24.389 | 
| A_AIR        5.8748  ONE      |    1.000       .000|    1.000      .000 | 
| AIRxHIN1     -.0054  HINC     |   34.548     19.711|   41.724    19.115 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                : 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  130.200     58.235|  106.619    49.601 | 
| TTME         -.0955  TTME     |   35.690     12.279|   28.524    19.354 | 
| A_TRAIN      5.5499  ONE      |    1.000       .000|    1.000      .000 | 
| TRAxHIN2     -.0566  HINC     |   34.548     19.711|   23.063    17.287 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  : 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |  115.257     44.934|  108.133    43.244 | 
| TTME         -.0955  TTME     |   41.657     12.077|   25.200    14.919 | 
| A_BUS        4.1303  ONE      |    1.000       .000|    1.000      .000 | 
| BUSxHIN3     -.0286  HINC     |   34.548     19.711|   29.700    16.851 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  : 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| GC           -.0109  GC       |   95.414     46.827|   89.085    49.833 | 
| TTME         -.0955  TTME     |     .000       .000|     .000      .000 | 
+-------------------------------------------------------------------------+ 
 
8.5 Marginal Effects 
 
 We define the marginal effects in the multinomial logit model as the derivatives of the 
probability of choice j with respect to attribute k in alternative m.  This is 
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where the function 1(j = m) equals one if j equals m and zero otherwise.  These are naturally scaled 
since the probability is bounded.  They are usually very small, so NLOGIT reports 100 times the 
value obtained, as in the example below, which is produced by  
 
   ; Effects: gc[air] 
 
  



Chapter 8: The Multinomial Logit Model 102 

 

+---------------------------------------------------+ 
| Derivative (times 100) averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Derivative effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.1339     .0880   | 
|       Choice=TRAIN              .0362     .0309   | 
|       Choice=BUS                .0204     .0204   | 
|       Choice=CAR                .0773     .0763   | 
+---------------------------------------------------+ 
 

Derivatives and elasticities are obtained by averaging the observation specific values, rather 
than by computing them at the sample means.  The listing reports the sample mean (average partial 
effect) and the sample standard deviation. 

It is common to report elasticities rather than the derivatives.  These are 
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The example below shows the counterpart to the preceding results produced by 
 
   ; Effects: gc(air) 
 
which requests a table of elasticities for the effect of changing gc in the air alternative.   
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.8019     .3834   | 
|       Choice=TRAIN              .3198     .3370   | 
|       Choice=BUS                .3198     .3370   | 
|       Choice=CAR                .3198     .3370   | 
+---------------------------------------------------+ 
 
The difference between the two commands is the use of ‘[air]’ for derivatives and ‘(air)’ for 
elasticities.  The full set of tables, one for each alternative, is requested with 
 
   alternative[*]  or  alternative(*). 
 
 Note that for this model, the elasticities take only two values, the ‘own’ value when j equals 
m and the ‘cross’ elasticity when j is not equal to m.  The fact that the cross elasticities are all the 
same is one of the undesirable consequences of the IIA property of this model.  
 
 



Chapter 9: The Nested Logit Model      103 

 

Chapter 9: The Nested Logit Model 
 
9.1 Introduction 
 
 The nested logit model is an extension of the multinomial model presented in Chapter 8.  The 
models described here are based on variations of a four level tree structure such as the following: 
 
ROOT                                  root 
                                        │ 
                        ┌───────────────┴────────────────┐ 
                        │                                │ 
TRUNKS                trunk1                             trunk2               
                        │                                │ 
                ┌───────┴───────┐               ┌────────┴──────┐ 
                │               │               │               │ 
LIMBS                        limb1                             limb2                             limb3                             limb4        
                │               │               │               │ 
            ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
            │       │       │       │       │       │       │       │ 
BRANCHES   branch1      branch2     branch3     branch4     branch5     branch6     branch7     branch8   
            │       │       │       │       │       │       │       │ 
          ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐   ┌─┴─┐ 
          │   │   │   │   │   │   │   │   │   │   │   │   │   │   │   │        
ALTS              a1      a2     a3      a4     a5      a6      a7     a8     a9     a10   a11   a12    a13   a14    a15    a16 
 
Individuals are assumed to make a choice among NALT = J alternatives (alts) in a choice set.  The 
‘twigs’ in the tree are the elemental alternatives in the choice set.  There may be up to 100 
alternatives in the model, a total of 25 branches throughout the tree, 10 limbs, and five trunks.  The 
model may contain one or more limbs.  Each limb may contain one or more branches, and each 
branch may contain one or more twigs (choices).  If there is only one trunk and one limb, the model 
is, by implication, a two level model.  As for single level models, choice sets may vary by individual.  
However, in order to construct a tree for such a setting, a universal choice set, as described in 
Chapter 5, is necessary.  The variable sized choice set is then indicated by setting up the full tree 
structure, and indicating that certain choices are unavailable for the particular individual. 
 The command for fitting nested logit models is the same as described in Chapter 3 for one 
level models, save for the addition of the tree definition in the command and, optionally, the 
specification of additional utility functions for choices made at higher levels in the tree.  The nested 
logit model is limited to four level models for full information maximum likelihood (FIML) estimation. 
It also allows estimation of two and higher level models by sequential, or two step estimation. 
 Utility functions can be specified for trunks the same as for limbs and branches (though it is 
unlikely that there will be very many attributes at this level in a tree).  All options are available, 
including logs, Box-Cox transformation, fixed values, starting values, trunk specific constants, 
interaction terms, and so on.  Utility functions for the trunks may include up to 10 variables including 
the set of constant terms if used.  Since the command structure and options for the nested logit model 
are the same as those for the one level model, we will present in this chapter only the parts of the 
command setup that are specific to nested models.  All users of this program should read Chapters 2-6 
before proceeding.   
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9.2 Mathematical Specification of the Model 
 
 Individuals are assumed to choose one of the alternatives at the lowest level of the tree.  
Thus, they also choose a branch, a limb and a trunk.  We denote by j|b,l,r the choice of alternative j 
in branch b in limb l in trunk r.  The number of alternatives in the branch/limb/trunk, Nb|l,r, can vary 
in every branch, limb, and trunk, and the number of branches in the l,rth limb/trunk, Nl|r is likely to 
vary across limbs and trunks as well.  No assumption of equal choice set sizes is made at any point in 
the following.  (Note that for ease of presentation, we have dropped the observation subscript.) 
 The choice probability defined in Chapter 8 is now redefined to be the conditional 
probability of alternative j in branch b, limb l, and trunk r, j|b,l,r: 
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where Jb|l,r is the inclusive value for branch b in limb l, trunk r, Jb|l,r = log Σq|b,l,r exp(β′xq|b,l,r).  At the 
next level up the tree, we define the conditional probability of choosing a particular branch in limb l, 
trunk r, 
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where Il|r is the inclusive value for limb l in trunk r, Il|r = log Σs|l,r exp(α′ys|l,r + τs|l,rJs|l,r).  The 
probability of choosing limb l in trunk r is 
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where Hr is the inclusive value for trunk r, Hr = log Σs|r exp(δ′zs|r + σs|r Is|r).  Finally, the probability 
of choosing a particular limb, r, is  
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By the laws of probability, the unconditional probability of the observed choice made by an 
individual is 
 

P(j,b,l,r) =   P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r). 
 
This is the contribution of an individual observation to the likelihood function for the sample. 
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 The ‘nested logit’ aspect of the model arises when any of the τj|i,l or σi|l or φl differ from 1.0.  
If all of these deep parameters are set equal to 1.0, the unconditional probability specializes to 
 

 P(j,bj,l,r) = | , , | , |

, , , ,

exp( )
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which is the probability for a one level model.  The model is written in a very general form.  The 
parameters of the model are, in exactly this order: 
 
 β1,β2,...,βnx,α1,α2,...,αny,δ1,δ2,...δnz,θ1,θ2,...,θnh,τ1...τB,σ1...,σL,φ1,...,φR 
 
where B is the total number of branches in the model, L is the number of limbs, and R is the number 
of trunks in the model.  The x, y, z, and h vectors in the formulation above include all basic variables 
as well as all variables that interact with choice, branch, or limb specific dummy variables, etc.  Once 
again, in this form, there may be different utility functions for each choice and, as described below, 
different utility functions defined for branches and limbs. 
 There is a vector of ‘shallow’ parameters, [β,α,δ,θ] at each level, which multiplies the 
attributes (at the lowest level), or, e.g., demographics, at a higher level.  There are also three vectors 
of ‘deep’ parameters, which multiply the inclusive values at the middle and high levels.  In principle, 
there is one free inclusive value parameter for each branch in the model (Jb|l,r), one for each limb 
(σl|r), and one for each trunk (φr).  But, some may have to be restricted to equal 1.0 for identification 
purposes. There are some degenerate cases: 
 

• If the model has one trunk, then the one φ equals 1.0. 
• If the model has one limb in a trunk, the one σ also equals 1.0. 
• If a limb contains a single branch, the τ for that branch equals 1.0. 

 

9.3 Commands for FIML Estimation 
 
 This section will describe how to set up a nested logit model.  The default estimation 
technique is full information maximum likelihood (FIML).  That is, the entire model is estimated in a 
single pass.  . 
 
9.3.1 Data Setup 
 
 The arrangement of the data set for estimation of the nested logit model is exactly the same 
as shown in Chapter 5.  There is no requirement that the choice sets be the same across individuals, 
but the nested logit model will require a definition of a universal choice set, so the command must 
contain the 
 

  ; Choices = list of labels ... 
 
specification.  The nested model structure does mandate one special consideration if you are going to 
define utility functions for branches (ys), or limbs (zs).  Since you have one line of data for each 
alternative, you will have more than one line of data for the variables in any branch or limb.  In these 
cases, the values of y and z must be repeated for each alternative in the branch or limb.  
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 The following model and setup illustrate this for a three level model: (all in trunk 1) 
 
      x1   x2   y1    y2     z1     z2 
 limb 1 branch 1|1 twig 1|1,1 .6     1     3   .02    104    .9 
    twig 2|1,1 .1     2     3   .02    104    .9 
  branch 2|1 twig 1|2,1 .8     2     7   .15    104    .9 
    twig 2|2,1 .2     3     7   .15    104    .9 
 limb 2 branch 1|2 twig 1|1,2 .9     6    11   .08     96    .4 
    twig 2|1,2 .3     1    11   .08     96    .4 
    twig 3|1,2 .4     0    11   .08     96    .4 
 
9.3.2 Tree Definition 
 
 The model command for estimating nested logit models is exactly as described in Chapter 8 
for single level models, where the model name is now the generic NLOGIT; 
 
 NLOGIT  ; Lhs = ... ; Choices = ... definition of choice set 
   ; ... definition of utility functions for alternatives 
 
All of the options described earlier are available.  The nested logit model is requested by adding 
 
   ; Tree = ... definition of the tree structure 
 
to the command.  In order to specify the tree, use these conventions: 
 
   {  }  specifies a trunk, 
   [   ]  specifies a limb within a trunk, 
   (   )  specifies a branch within a limb in a trunk. 
 
Entries in a list are separated by commas.  Names for trunks, limbs and branches are optional before 
the opening ‘{’  or ‘[’  or ‘(’.  If you elect not to provide names, the defaults chosen will be Trunk{l}, 
Lmb[i|l] and Br(j|i,l) respectively, where the numbering is developed reading from left to right in your 
tree definition.  Alternative names appear inside the parentheses.  Some examples are as follows: 
 
 One limb: 
 

   ; Tree  = travel [fly(air), ground(train,bus,car)] 
 
 One limb:  (With one limb, the [ ] is optional.) 
 
   ; Tree  = fly(air), ground(train,bus,car) 
 
 One limb:  (Branch names are optional. These would be Limb[1], Br(1|1) and Br(2|1).) 
 
   ; Tree  = (air), (train,bus,car) 
 
 One limb, one branch, no nesting: (This would be unnecessary and could be omitted.) 
 
   ; Tree  = (air,train,bus,car) 
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 Nested logit model – two limbs, one with one branch: 
 
   ; Tree  = private [fly(air), ground(car_pas, car_drv)], 
          public [(train,bus)] 
 
The fully nested 2×2×2×2 model shown in Section 9.1 could be specified with 
 

; Choices = a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16 
; Tree = Trunk1 { limb1 [branch1 (a1, a2), branch2 (a3, a4)    ],  

      limb2 [branch3 (a5, a6),  branch4 (a7, a8)    ] }, 
         Trunk2 { limb3 [branch5 (a9, a10), branch6 (a11, a12)],  

       limb4 [branch7 (a13, a14), branch8 (a15, a16)] }  
 
9.3.3 Utility Functions 
 
 You may define the utility functions exactly as described in Chapter 3 for one level models.  
You may also define utility functions for branches and limbs and trunks, but note that in order to do 
so, you must use the explicit form.  These are specified exactly the same as those for elemental 
alternatives.  For example, in a two level model, you might put demographic characteristics, such as 
income or family size, at the top level.  A complete model might appear as follows: 
  
        NLOGIT  ; Lhs = mode ; Choices = air,train,bus,car 
   ; Tree  = travel [public(bus,train), private(air,car)] 
   ; Model: U(air) = ba + bcost * gc + btime * ttme   / 
                             U(train) = bt  +  bcost * gc + btime * ttme   / 
                             U(car) = bc +  bcost * gc + btime * ttme   / 
                             U(bus) =          bcost * gc + btime * ttme   / 
                             U(public) = ap + apub * hinc / 
                              U(private) =        aprv  * hinc $ 
 
This model can be considerably collapsed; 
 
   ; Model: U(air,train,bus,car) = <ba,bc,0,bt> + 
           bcost * gc + btime * ttme / 
                     U(public,private)     = <ap,0> +  
        <apub, aprv> * income $ 
 
Note that the same function specification U(...) is used for all three kinds of equations, for 
alternatives, branches, and limbs. 
  
 Finally, as noted earlier, you may impose equality constraints at any points in the model, just 
by using the same parameter name where you want the equality imposed.  For example, if, for some 
reason, you desired to force the parameters apub and bcost to be equal, you could just change apub 
to bcost in the utility equation for public.  That is, you can, if you wish, force equality of parameters 
at different levels of a model, once again, just by using the same parameter name in the model 
specification.  (Given the impact of the scale parameters, this is probably inadvisable, but the 
program will allow you to do it nonetheless.) 
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 The interaction of alternative specific constants, and branch and limb specific constants is 
complex, and it is difficult to draw generalities.  As a general rule, models will usually become 
overdetermined, resulting in a singular Hessian, when there are more than NALT-1 constants, of all 
three types, in the entire model.  Likewise, interactions of attributes and choice specific dummy 
variables can produce this effect as well.  Users who encounter problems in which NLOGIT claims 
either that it is impossible to maximize the log likelihood function, or there is a singular Hessian, 
should examine the model for this pitfall. 
 
9.3.4 Setting and Constraining Inclusive Value Parameters 
 
 There is an inclusive value parameter for each limb, branch, and trunk in the model.  For 
example, in the tree 
   ; Choices = air,train,bus,car 
   ; Tree = travel [public(bus,train), private(air,car)] 
 
with the other parameters, we estimate τpublic|travel, τprivate|travel, σtravel.  Since there is only one limb, 
travel, σtravel = 1.0.  The other two parameters are free and unrestricted.  You can modify the 
specification of these parameters in two ways: 
 

• You may specify that they are equal to each other. 
• You may specify that they are fixed values instead of free parameters to estimate. 

 
To use these features, add the specification 
 
   ; Ivset: ... specification  
 
Note, once again, the presence of a colon in this specification.  For purposes of this specification, τs, 
σs, and φs are treated the same.  To force parameters to be equal, put the names of the branches 
and/or limbs together in parentheses in the ; Ivset: specification. 
 For the example given above, to force the two τs to be equal in the estimated model, use 
 
   ;  Ivset: (public,private) 
 
For a second example, consider this larger tree: 
 
                                Commute     TRUNK 
                                   │ 
                   ┌───────────────┴────────────────┐ 
                   │                                │ 
                Private                                  Public            LIMBS  
                   │                                │ 
           ┌───────┴───────┐               ┌────────┴──────┐ 
           │               │               │               │ 
          Fly             Drive            Land            Water     BRANCHES 
           │               │               │               │ 
       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
       │       │       │       │       │       │       │       │ 
    Plane     Helicopter    Car_Drv   Car_Ride  Train           Bus        Ferry           Raft   TWIGS 
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We would define this with 
 
   ; Tree  = private [fly(plane,helicptr), drive(car_ride,car_drv)], 
          public [land(train,bus), water(ferry,raft)] 
  
There are six IV parameters, τi|l for each of fly, drive, land, and water, and σl for private and public.  
If it were desired to force σprivate = σpublic, τfly|private = τland|public, and τwater|public (for some reason) to 
equal σpublic, you could use 
 
   ; Ivset: (private,public,water) / (fly,land) 
  
Note, once again, separate specifications are separated by slashes.  Also, there is no problem using 
this device to force IV parameters at one level to equal those at another.  Thus, 
‘(private,public,water)’ forces σpublic to equal τwater|public and σprivate. 
 In addition to the preceding, you may fix inclusive value parameters.  The setup is the same 
as above with the additional specification of the value in square brackets.  I.e., 
 
   ; Ivset: ( ... ) = [the value] 
  
The list in parentheses may contain a single name, so as to fix a particular coefficient at a given 
value.  You might have 
  
   ; Ivset: (private,public) / (fly,ground) = [.75] / (land) = [.95] $ 
  
You will see a diagnostic message if you attempt to modify an inclusive value parameter that is fixed 
at 1.0 for identification purposes.  For example, this specification of a two level model: 
  
   ; Tree = travel [public(bus,train), private(air,car)] 
   ; Ivset:  (travel) = [.75] 
  
generates an error message, since σtravel = 1.0  (one limb).  Note, also, that fixed IV parameters are 
off limits to equality constraints, as well.  Thus, for this example, the specification 
 
   ; Ivset:  (travel,public) 
 
also generates an error.  
 
Error:  1093: You have given a spec for an IV parm that is fixed at 1. 
 
You may not change the specification of φtravel. 
 In the output of the estimation procedure, inclusive value parameters are denoted by the 
name of the branch or limb to which they are attached (or the default names given earlier). 
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9.3.5 Command Builder 
 
 The command builders can be used to specify the nested logit models.  Select 
Model:Discrete Choice/Nested Logit to access the command builder.  The choice variable is 
defined on the Main page and the rest of the model may be specified on the Options page.  See 
Figure 9.1. 
 

 
 

 
Figure 9.1  Command Builder for Nested Logit Models 
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The tree is specified in a subsidiary dialog box by selecting Tree Specification at the bottom of the 
Options page.  The dialog box, shown in Figure 9.2, allows you to define the tree graphically.  Note 
in the dialog shown, public and private are siblings while bus is a child node of public. 
 

 
Figure 9.2  Tree Specification Dialog Box for Defining the Tree Structure 

 
The remaining options for output and results to be saved are defined in the Output page as shown in 
Figure 9.3. 
 

 
Figure 9.3  Output Page of Command Builder for Nested Logit Models 
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9.4 Marginal Effects and Elasticities 
 
 In the nested logit model with P(j,b,l,r) = P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r), the marginal 
effect of a change in attribute k in the utility function for alternative J in branch B of limb L of trunk 
R on the probability of choice j in branch b of limb l of trunk r is computed using the following 
result: Lower case letters indicate the twig, branch, limb and trunk of the outcome upon which the 
effect is being exerted.  Upper case letters indicate the twig, branch, limb and trunk which contain 
the outcome whose attribute is being changed: 
 

  log ( , , , ) ( | , , , ) ( )
( ) | , , , )

P alt j limb l branch b trunk r D k J B L R k F
x k alt J limb L branch B trunk R
∂ = = = =

= = ∆ ×
∂ = = = =

, 

 
where  ∆(k) = coefficient on x(k) in U(J|B,L,R) 
 
and F = 1(r=R) ×  1(l=L) ×  1(b=B) ×  [1(j=J)   -  P(J|BLR)]                   (trunk effect), 
   1(r=R) ×  1(l=L) × [1(b=B)  - P(B|LR)] ×  P(J|BLR) × τB|LR           (limb effect), 
   1(r=R) × [1(l=L)  -  P(L|R)] × P(B|LR)  ×  P(J|BLR) × τB|LR × σL|R  (branch effect), 
     [1(r=R)  -   P(R)]  ×  P(L|R) × P(B|LR) ×  P(J|BLR)  × τB|LR × σL|R × φR  (twig effect). 
 
(Note, in this expression, J, B, L and R are being used generically to indicate a particular choice, 
branch, limb and trunk, not the total numbers of twigs, branches, limbs and trunks.)  The marginal 
effect is 

 ∂ P(j,b,l,r)/∂x(k)|J,B,L,R  =  P(j,b,l,r) ∆(k) F. 
 
A marginal effect has four components, an effect on the probability of the particular trunk, one on 
the probability for the limb, one for the branch, and one for the probability for the twig.  (Note that 
with one trunk, P(l) = P(1) = 1, and likewise for limbs and branches.)  For continuous variables, such 
as cost, you might be interested, instead, in the 
 
   Elasticity = x(k)|J,B,L,R × ∆(k|J,B,L,R) × F. 
 
NLOGIT will provide either.  As in the case of nonnested models, marginal effects are requested 
with 
   ; Effects: attribute [list of outcomes] / ...  
or 
    ; Effects: attribute (list) / ... for elasticities 
 
This generates a table of results for each of the outcomes listed. For example, 
 
 NLOGIT    ; Lhs = mode  
   ; Choices = air,train,bus,car 
   ; Tree = travel [public(bus,train), private(air,car)] 
   ; Model: U(air) = ba + bcost * gc + btime * ttme / 
                             U(train) = bc + bcost * gc + btime * ttme / 
                             U(bus) =  bcost * gc + btime * ttme / 
                             U(car) = bc + bcost * gc 
   ; Effects: gc(car) $ 
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This lists the effects on all four probabilities of changes in attribute generalized cost (gc) of choice car. 
 

+------------------------------------------------------------+ 
| Partial effects = average over observations                | 
|                                                            | 
| dlnP[alt=j,br=b,lmb=l,tr=r]                                | 
| ---------------------------- = D(k:J,B,L,R) = delta(k)*F   | 
| dx(k):alt=J,br=B,lmb=L,tr=R]                               | 
| delta(k) = coefficient on x(k) in U(J|B,L,R)               | 
| F = (r=R)  (l=L) (b=B) [(j=J)-P(J|BLR)]                    | 
|  +  (r=R)  (l=L) [(b=B) -P(B|LR)]P(J|BLR)t(B|LR)           | 
|  +  (r=R) [(l=L)-P(L|R)] P(B|LR) P(J|BLR)t(B|LR)s(L|R)     | 
|  + [(r=R) -P(R)] P(L|R)  P(B|IR) P(J|BIR)t(B|LR)s(L|R)f(R) | 
|                                                            | 
| P(J|BLR)=Prob[choice=J |branch=B,limb=L,trunk=R]           | 
| P(B|LR), P(L|R), P(R) defined likewise.                    | 
| (n=N) = 1 if n=N, 0 else, for n=j,b,l,r and N=J,B,L,R.     | 
| Elasticity = x(k) * D(j|B,L,R)                             | 
| Marginal effect = P(JBLR)*D = P(J|BLR)P(B|LR)P(L|R)P(R)D   | 
| F is decomposed into the 4 parts in the tables.            | 
+------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Elasticity             averaged over observations.                    | 
| Attribute is GC       in choice CAR                                   | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Elasticity effect of the attribute.                | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Trunk=Trunk{1}                                                        | 
| Limb=TRAVEL                                                           | 
|    Branch=PUBLIC                                                      | 
|       Choice=BUS        .000   .000    .857    .000       .857   .532 | 
|       Choice=TRAIN      .000   .000    .857    .000       .857   .532 | 
|    Branch=PRIVATE                                                     | 
|       Choice=AIR        .000   .000  -1.015    .571      -.444   .746 | 
| *     Choice=CAR        .000   .000  -1.015   -.338     -1.353  1.059 | 
+-----------------------------------------------------------------------+ 
 

Note that across a row, the effects sum to the total effect given.  The default method of computing 
the elasticities is to average the observation specific results.  The results show the mean and the 
sample standard deviations.  If you use the ; Means specification, then the elasticities are computed 
once, and the results reflect the change, as shown below. (The differences are noticeably large.) 
 

+-----------------------------------------------------------------------+ 
| Elasticity             computed at sample means.                      | 
| Attribute is GC       in choice CAR                                   | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Elasticity effect of the attribute.                | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Trunk=Trunk{1}                                                        | 
| Limb=TRAVEL                                                           | 
|    Branch=PUBLIC                                                      | 
|       Choice=BUS        .000   .000    .584    .000       .584   .000 | 
|       Choice=TRAIN      .000   .000    .584    .000       .584   .000 | 
|    Branch=PRIVATE                                                     | 
|       Choice=AIR        .000   .000   -.411    .303      -.107   .000 | 
| *     Choice=CAR        .000   .000   -.411   -.605     -1.016   .000 | 
+-----------------------------------------------------------------------+ 
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9.5 Inclusive Values, Utilities, and Probabilities 
 
 You can request a listing of the actual outcomes and predicted probabilities with 
 
   ; List 
 
For large nested logit models, the listing would be extremely cumbersome, so a list can only be 
produced for models with seven or fewer elemental alternatives.  You can also keep as variables the 
fitted probabilities and the branch, limb, and trunk inclusive values.  The predicted probabilities are 
P(j,b,l,r).  The inclusive values for the branches are repeated for each choice (row of data) within the 
branches.  The inclusive values for the limbs are, likewise, repeated for every alternative in the limb 
and similarly for trunks.  An example appears below.  The command specifications are: 
 
   ; Prob = name  to retain predicted probabilities as a variable 
    ; Ivb  = name  to retain the branch level inclusive values as a variable 
    ; Ivl  = name  to retain the limb level inclusive values as a variable 

 ; Ivt  = name to retain the trunk level inclusive values as a variable 
 
Normally, in this setting, the unconditional probability, P(j,b,l,r), is the one of interest.  However, for 
some purpose, you might want, instead, the conditional probabilities at the twig level, P(j,b,l,r).  You 
can request to have this retained as a variable with 
  
   ; Cprob = name to retain estimated conditional probabilities 
  
Lastly, the utility values at the twig level of the tree are 
  
   U(j|b,l,r)  =  β′xj|b,l,r . 
  
These are the values that you define in your ; Model: ... specification.  You may request to retain 
these for later use with 
 
    ; Utility = name of the variable 
  
If you have not defined a utility function for an alternative, the value returned for that row of data is 
0.0, not missing (-999).  Utility values may be further processed like any other variable.  You may 
find them useful, for example, for computing inclusive values in another model. 
 An example of the use of these features is shown in the next section. 
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9.6 Application of a Nested Logit Model 
 
 The following estimates a two level model.  The tree has a ‘degenerate’ branch; the air 
branch has only a single alternative, fly.  It also uses most of the optional features mentioned above. 
 
 NLOGIT ; Lhs = mode   
   ; Start = logit 
   ; Choices = air,train,bus,car 
   ; Tree = travel[fly(air), ground(train,bus,car)] 
   ; Model: U(air,train,bus,car) = bt *tasc +bb*basc+bg*gc+at*ttme / 
    U(fly,ground) = aa *aasc +ah*hinca 
   ; Describe  
   ; Effects: gc[car] ; Pwt  
   ; List  
   ; Ivb = branchiv 
   ; Ivl = limbiv  
   ; Utility = u_choice  
   ; Prob = pkji  
   ; Cprob = pk_ji $ 
 
 Starting values for the iterations are obtained by a one level multinomial logit model.  The 
MNL also reports results of estimation of the branch choice model. These are the (inconsistent) 
estimates of α in the branch choice model. 
 
+---------------------------------------------+ 
| Discrete choice and multinomial logit models| 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Start values obtained using MNL model       | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Weighting variable                 None     | 
| Number of observations              210     | 
| Iterations completed                  5     | 
| Log likelihood function       -378.5920     | 
| Number of parameters                  6     | 
| Info. Criterion: AIC =          3.66278     | 
|   Finite Sample: AIC =          3.66475     | 
| Info. Criterion: BIC =          3.75841     | 
| Info. Criterion:HQIC =          3.70144     | 
| Log-L for Choice   model =    -260.1975     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .08303  .07124 | 
| Log-L for Branch   model =    -118.3945     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
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+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Model for Choice Among Alternatives 
 BT      |     .77778700       .20792992     3.741   .0002 
 BB      |    -.13076048       .22872416     -.572   .5675 
 BG      |    -.01773795       .00405470    -4.375   .0000 
 AT      |    -.01340138       .00317904    -4.216   .0000 
---------+Model for Choice Among Branches 
 AA      |   -1.92254215       .35420335    -5.428   .0000 
 AH      |     .02612091       .00817431     3.195   .0014 
 
The MNL estimates are followed by the nested logit estimates. 
 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| FIML Nested Multinomial Logit Model         | 
| Dependent variable                 MODE     | 
| Number of observations              210     | 
| Log likelihood function       -193.6561     | 
| Number of parameters                  8     | 
| Info. Criterion: AIC =          1.92053     | 
|   Finite Sample: AIC =          1.92395     | 
| Info. Criterion: BIC =          2.04804     | 
| Info. Criterion:HQIC =          1.97208     | 
| Restricted log likelihood     -312.5500     | 
| McFadden Pseudo R-squared      .3803994     | 
| Chi squared                    237.7877     | 
| Degrees of freedom                    8     | 
| Prob[ChiSqd > value] =         .0000000     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| No coefficients   -312.5500  .38040  .37243 | 
| Constants only    -283.7588  .31753  .30875 | 
| At start values   -287.6816  .32684  .31818 | 
| Response data are given as ind. choice.     | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
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+---------------------------------------------+ 
| FIML Nested Multinomial Logit Model         | 
| The model has 2 levels.                     | 
| Nested Logit form:IV parms = taub|l,r,sl|r  | 
| and fr. No normalizations imposed a priori. | 
| p(alt=j|b=B,l=L,r=R)=exp[bX_j|BLR]/Sum      | 
| p(b=B|l=L,r=R)=exp[aY_B|LR+tauB|LRIVB|LR)]/ | 
| Sum. p(l=L|r=R)=exp[cZ_L|R+sL|RIVL|R)]/Sum  | 
| p(r=R)=exp[qH_R+fRIVR]/Sum...               | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Attributes in the Utility Functions (beta) 
 BT      |    5.06460277       .66202159     7.650   .0000 
 BB      |    4.09631480       .61515554     6.659   .0000 
 BG      |    -.03158748       .00815636    -3.873   .0001 
 AT      |    -.11261749       .01412912    -7.971   .0000 
---------+Attributes of Branch Choice Equations (alpha) 
 AA      |    3.54086522      1.20812715     2.931   .0034 
 AH      |     .01533132       .00938134     1.634   .1022 
---------+IV parameters, tau(j|i,l),sigma(i|l),phi(l) 
 FLY     |     .58600939       .14062118     4.167   .0000 
 GROUND  |     .38896192       .12366583     3.145   .0017 
 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative AIR                  : 
|     Utility Function          |                    |     58.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose AIR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |     .000       .000|     .000      .000 | 
| BB           4.0963  BASC     |     .000       .000|     .000      .000 | 
| BG           -.0316  GC       |  102.648     30.575|  113.552    33.198 | 
| AT           -.1126  TTME     |   61.010     15.719|   46.534    24.389 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative TRAIN                : 
|     Utility Function          |                    |     63.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose TRAIN    | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |    1.000       .000|    1.000      .000 | 
| BB           4.0963  BASC     |     .000       .000|     .000      .000 | 
| BG           -.0316  GC       |  130.200     58.235|  106.619    49.601 | 
| AT           -.1126  TTME     |   35.690     12.279|   28.524    19.354 | 
+-------------------------------------------------------------------------+ 
+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative BUS                  : 
|     Utility Function          |                    |     30.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose BUS      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |     .000       .000|     .000      .000 | 
| BB           4.0963  BASC     |    1.000       .000|    1.000      .000 | 
| BG           -.0316  GC       |  115.257     44.934|  108.133    43.244 | 
| AT           -.1126  TTME     |   41.657     12.077|   25.200    14.919 | 
+-------------------------------------------------------------------------+ 
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+-------------------------------------------------------------------------+ 
|             Descriptive Statistics for Alternative CAR                  : 
|     Utility Function          |                    |     59.0 observs.  | 
|     Coefficient               | All      210.0 obs.|that chose CAR      | 
| Name          Value  Variable | Mean      Std. Dev.|Mean      Std. Dev. | 
| -------------------  -------- | -------------------+------------------- | 
| BT           5.0646  TASC     |     .000       .000|     .000      .000 | 
| BB           4.0963  BASC     |     .000       .000|     .000      .000 | 
| BG           -.0316  GC       |   95.414     46.827|   89.085    49.833 | 
| AT           -.1126  TTME     |     .000       .000|     .000      .000 | 
+-------------------------------------------------------------------------+ 
PREDICTED PROBABILITIES (* marks actual, + marks prediction.) 
Indiv    AIR       TRAIN     BUS       CAR 
    1   .1515     .3518     .1232     .3734*+ 
    2   .2676     .1949     .0260     .5114*+ 
    3   .1563     .1040     .1509     .5888*+ 
    4   .3998     .1180     .0153     .4669*+ 
    5   .3418     .3510 +   .0469     .2603* 
    6   .1323     .3423*+   .2212     .3043 
    7   .4186*+   .0815     .1182     .3817 
    8   .0955     .4956 +   .1848     .2241* 
    9   .1685     .3915 +   .1371     .3030* 
   10   .2484     .3203 +   .1122     .3191* 
 
   (Observations 11 - 210 are omitted.) 
 
+------------------------------------------------------------+ 
| Partial effects = average over observations                | 
|                                                            | 
| dlnP[alt=j,br=b,lmb=l,tr=r]                                | 
| ---------------------------- = D(k:J,B,L,R) = delta(k)*F   | 
| dx(k):alt=J,br=B,lmb=L,tr=R]                               | 
|                                                            | 
| delta(k) = coefficient on x(k) in U(J|B,L,R)               | 
| F = (r=R)  (l=L) (b=B) [(j=J)-P(J|BLR)]                    | 
|  +  (r=R)  (l=L) [(b=B) -P(B|LR)]P(J|BLR)t(B|LR)           | 
|  +  (r=R) [(l=L)-P(L|R)] P(B|LR) P(J|BLR)t(B|LR)s(L|R)     | 
|  + [(r=R) -P(R)] P(L|R)  P(B|IR) P(J|BIR)t(B|LR)s(L|R)f(R) | 
|                                                            | 
| P(J|BLR)=Prob[choice=J |branch=B,limb=L,trunk=R]           | 
| P(B|LR), P(L|R), P(R) defined likewise.                    | 
| (n=N) = 1 if n=N, 0 else, for n=j,b,l,r and N=J,B,L,R.     | 
| Elasticity = x(k) * D(j|B,L,R)                             | 
| Marginal effect = P(JBLR)*D = P(J|BLR)P(B|LR)P(L|R)P(R)D   | 
| F is decomposed into the 4 parts in the tables.            | 
+------------------------------------------------------------+ 
 
(Note, the within branch cross elasticities are not equal, as would be imposed by the IID 
assumptions, because we used ; Pwt to weight the observations.) 
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+-----------------------------------------------------------------------+ 
| Derivative (times 100) averaged over observations.                    | 
| Attribute is GC       in choice CAR                                   | 
| Effects on probabilities of all choices in the model:                 | 
| * indicates direct Derivative effect of the attribute.                | 
|                        Decomposition of Effect if Nest    Total Effect| 
|                        Trunk   Limb   Branch   Choice     Mean  St.Dev| 
| Limb=TRAVEL                                                           | 
|    Branch=FLY                                                         | 
|       Choice=AIR        .000   .000    .119    .000       .119   .083 | 
|    Branch=GROUND                                                      | 
|       Choice=TRAIN      .000   .000   -.017    .235       .218   .147 | 
|       Choice=BUS        .000   .000   -.014    .223       .209   .130 | 
| *     Choice=CAR        .000   .000   -.105   -.399      -.504   .140 | 
+-----------------------------------------------------------------------+ 
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Chapter 10: The Random Parameters Logit 
Model 

 
10.1 Introduction 
 
 The random parameters logit (RPL) model, also referred to as the mixed logit model, is the 
most general model form in NLOGIT in terms of the variety of model specifications it can 
accommodate and in terms of the range of behavior that it can model.  This chapter will develop the 
numerous different specifications of the model that can be accommodated.   
 NLOGIT offers an extensive set of specifications within the mixed logit structure. This 
model is gaining great popularity in applications. Capabilities provided by the estimator include (i) 
choosing from among a large number of analytical distributions for each random parameter, (ii) 
accounting for the non-independence between observations associated with the same respondent (a 
theme of importance in stated choice studies), (iii) decomposing the mean and standard deviation of 
one or more random parameters to reveal sources of systematic taste heterogeneity, (iv) accounting 
for correlation of random parameters, (v) imposing priors based on known choices in model 
estimation, (vi) imposing constraints on distributions (e.g. constraining the triangular or normal to 
ensure that it does not change sign over its range), (vii) selecting subsets of pre-specified variables to 
interact with the mean and standard deviation of random parameterized attributes, and (viii) deriving 
willingness to pay estimates when both the numerator and denominator are random parameter 
estimates. 
 
10.2 Random Parameters (Mixed) Logit Models 
 
 This model is somewhat similar to the random coefficients model for linear regressions.  The 
model formulation is a one level multinomial logit model, for individuals i = 1,...,N in choice setting t.  
Neglecting for the moment the error components aspect of the model, we begin with the basic form of 
the multinomial logit model, with (optional) alternative specific constants αji and attributes xji, 
 

   Prob(yit = j)  =  
( )
( )1

exp

exp

x

xi

ji i ji
J

qi i qiq=

′α

′α∑
+ β

+ β
. 

 
The RPL model emerges as the form of the individual specific parameter vector, βi is developed. The 
most familiar, simplest version of the model specifies 
 
   βki =  βk  +  σkvik, 

and   αji =  αj   +  σjvji, 
 
where βk is the population mean, vik is the individual specific heterogeneity, with mean zero and 
standard deviation one, and σk is the standard deviation of the distribution of βiks around βk. The term 
‘mixed logit’ is often used in the literature for this model.  The choice specific constants, αji and the 
elements of βi are distributed randomly across individuals with fixed means.  A refinement of the 
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model is to allow the means of the parameter distributions to be heterogeneous with observed data, 
zi, (which does not include one).  This would be a set of choice invariant characteristics that produce 
individual heterogeneity in the means of the randomly distributed coefficients so that 
 
   βki =  βk  +  δk′zi  +  σkvki, 
 
and likewise for the constants.  The model is not limited to the normal distribution.  We consider 
several alternatives below.  One important variation is the lognormal model, 
 
   βki   =  exp(ρk  +  δk′zi  +  σkvki). 
 
The vjkis are individual and choice specific, unobserved random disturbances – the source of the 
heterogeneity.  Thus, as stated above, in the population, if the random terms are normally distributed, 
 
   αji or βki   ~  Normal or Lognormal [ρj or k + δj or k′zi, σj or k

2]. 
 
(Other distributions may be specified.)  For the full vector of K random coefficients in the model,  
we may write the full set of random parameters as 
 
   ρi   =  ρ  +  ∆zi  +  Γvi. 
 
where Γ is a diagonal matrix which contains σk on its diagonal.  For convenience at this point, we 
will simply gather the parameters, choice specific or not, under the subscript ‘k.’  (The notation is a 
bit more cumbersome for the lognormally distributed parameters.  We will return to that in the 
technical details.)   
 We can go a step further and allow the random parameters to be correlated.  All that is 
needed to obtain this additional generality is to allow Γ to be a triangular matrix with nonzero 
elements below the main diagonal.  Then, the full covariance matrix of the random coefficients is Σ 
= ΓΓ′.  The standard case of uncorrelated coefficients has Γ = diag(σ1,σ2 ,…,σk). If the coefficients 
are freely correlated, Γ is a full, unrestricted, lower triangular matrix and Σ will have nonzero off 
diagonal elements.  (It will be convenient to aggregate this one step further.  We may gather the 
entire parameter vector for the model in this formulation simply by specifying that for the 
nonrandom parameters in the model, the corresponding rows in ∆ and Γ are zero.)  We will also 
define the data and parameter vector so that any choice specific aspects are handled by appropriate 
placements of zeros in the applicable parameter vector. 
 An additional extension of the model allows the distribution of the random parameters to be 
heteroscedastic.  As stated above, the variance of vik is taken to be a constant.  The model is made 
heteroscedastic by assuming, instead, that 
 
   Var[vik]  =  σjk

2 [exp(ωk′hri)]2. 
 
A convenient way to parameterize this is to write the full model as 
 
   ρi   =  ρ  +  ∆zi  +  ΓΩivi 
 
where Ωi is the diagonal matrix of individual specific variance terms; ωik = exp(ωk′hri). 
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 The list of variations above produces an extremely flexible, general model.  Typically, you 
would use only some of them, though in principle, all could appear in the model at once.  We will 
develop them in parts in the sections to follow.  A convenient form of the full random parameters 
logit model to begin with is 
 

  Prob(yit = j)  =  
1

exp( )

exp( )it

ji i jit
J

qi i qitq=

′α +

′α +∑
x

x

β

β
, 

 
Finally, an additional layer of individual heterogeneity may be added to the model in the form of the 
error components detailed below.  The full model with all components is 
 

   Prob(yit = j)  =  1

11

exp exp( )

exp exp( )i

M
ji i jit m jm m m i im

J M
qi i qit m qm m m i imq

d E

d E
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x he

x he

β Σ γ

β Σ γ
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where the components of the model are as follows: 
 
Random Alternative Specific Constants and Taste Parameters: 
 

  ( , ) ( , ) z vji i j i i iα = α + +β β ∆ ΓΩ , Ωi =  diag(ωi1, ωi2, ...) or Ωi = diag(σ1,...,σk) 

  β,αji = constant terms in the distributions of the random taste parameters 
 
 Uncorrelated Parameters with Homogeneous Means and Variances 
 
  βik = βk + σkvik when ∆ = 0, Γ = I, Ωi = diag(σ1,...,σk)  

  xjit = all observed choice attributes and individual characteristics 

  vi    = random unobserved taste variation, with mean vector 0 and covariance 
    matrix I 
 
 Uncorrelated Parameters with Heterogeneous Means and Variances 
 
  βik = βk + δk′zi + σk exp(ωk′hri)vik when Γ = I, Ωi = diag(ωi1, ωi2, ...) 

  ∆ = parameters that enter the heterogeneous means of the distributions of 
    the random parameters; β + ∆zi = the heterogeneous means 

  ωik    = exp(ωk′hri) = heterogeneity in the variances of the distributions of the 
    random parameters 

  ωk = parameters in the variance heterogeneity of the random parameters 

  σik = σkωik = heterogeneous standard deviations in the distributions of the 
    random parameters; σik = σk in a homoscedastic model 

  zi = observed variables that measure the heterogeneity in the means of the 
    random parameters 

  hri = observed variables that measure the heterogeneity in the variances of 
    the random parameters 
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 Correlated Parameters with Heterogeneous Means 
 
  βik = βk + δk′zi + 1

k
s=Σ Γks vis when Γ ≠ I, and Ωi = diag(σ1,...,σk) 

  Γ = lower triangular matrix with ones on the diagonal that allows 
    correlation across random parameters when Γ ≠ I 
 
Individual Error Components 
 
  Eim = the individual specific underlying random error components, 
    m = 1,...,M, Eim ~ N[0,1] 

  djm = 1 if Eim appears in utility for alternative j and 0 otherwise 

  θm = scale factor for error component m 

  γim = exp(γm′hei) = heterogeneity in the variances of the error components 

  λim = θmγim = standard deviations of random error components 

  γm = parameters in the heteroscedastic variances of the error components 

  hei = individual choice invariant characteristics that produce heterogeneity in 
    the variances of the error components 
 
The model specification will dictate which parameters are random and which are not, how the 
heteroscedasticity, if any, is parameterized, the distributions of the random terms, and how the error 
components enter the model. 
 The probabilities defined above are conditioned on the random terms, vi and the error 
components, Ei.  The unconditional probabilities are obtained by integrating vik and Eim out of the 
conditional probabilities: Pj = Ev,E[P(j|vi,Ei)].  This is a multiple integral which does not exist in 
closed form. The integral is approximated by sampling nrep draws from the assumed populations 
and averaging.  (See Bhat (1996) and Revelt and Train (1998) and Greene (2003) for discussion.) 
Parameters are estimated by maximizing  the simulated log likelihood, 
 

log Ls  =  1 ,

1 1 1
1 ,1

exp exp( )1log
exp exp( )

i

i

M
TN R ji ir jit m jm m m i im r

Ji r t M
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with respect to (β, ∆, Γ, Ω, θ, γ), where 
 
  R = the number of replications, 

  βir = β  +  ∆zi  +  ΓΩivir  =  the rth draw on βi, 

  vir = the rth multivariate draw for individual i, 

  Eim,r = the rth univariate normal draw on the underlying effect for individual i. 
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(Note that the multivariate draw, vir is actually K independent draws.  The heteroscedasticity is 
induced first by multiplying by Ωi, then the correlation is induced by multiplying Ωivir by Γ.)
 The model components may be restricted and varied in several ways. 
 

• A variety of distributions may be chosen for the random parameters, and they need not be 
the same for all parameters. 

 
• The observed heterogeneity, ∆zi, is optional. You may specify that a coefficient is randomly 

distributed around a fixed mean.  Thus, δk may be set to a zero vector for some or all random 
coefficients. 

 
• σk may be set equal to zero for some coefficients.  This may change the way a coefficient 

enters the model.  If σk = 0 and δk = 0, then the coefficient is a nonrandom fixed parameter.  
But, including it in β allows you to force a coefficient to be positive.  This device also allows 
you to form a hierarchical model with nonrandom coefficients. 

 
• Any coefficient in the model may be fixed at a specific value. 

 
• The heteroscedasticity may apply to some or all (or none) of the random parameters. 

 
• Different variables may be placed in the heterogeneous means (∆zi) or the heteroscedastic 

variances (Ωi) of any of the random parameters. 
 

• The variables that enter the heteroscedasticity of the error components may be different. 
 

• The model with both heteroscedasticity and cross parameter correlation is not estimable.  
(There is no way to make the covariance heterogeneous.) 

 
A number of additional features are listed in the sections to follow. 
 

10.3 Command for the Random Parameters Logit Models 
 

The command for the mixed logit model is as follows: 
 
 RPLOGIT   ; Lhs = ... as usual 

; Choices = ...   
; ... Utility function specification using  
      ; Rhs = ... ; Rh2 = ...  or 
      ; Model: U(...) = ... to specify utilities 
; Fcn = specification of random parameters $ 

 
(The model command NLOGIT ; RPL is equivalent.)  The last specification is used to define the 
random parameters.  There are many variants.  We begin with the simplest, and add features as we 
proceed.   The ; Fcn specification takes the basic form 
 
   ; Fcn = parameter label (type) 
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where ‘parameter label’ is defined either by a variable name that you use in your ; Rhs specification or 
by the name you give in your ; Model: ... definitions and the ‘type’ is one of the distributions defined 
in the next section.  Alternative specific constants are a special case.  You will generally not want to 
specify the parameters that multiply Rh2 variables as random.  These two cases are considered 
specifically below.  For example, the following specifies two normally distributed random parameters: 
 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = gc,ttme,invc ; Rh2 = hinc 
   ; Fcn  = gc(n),ttme(n) $ 
 
(The ‘type’ in the example is ‘n’ indicating normally distributed parameters.  Several other 
specifications would probably be added.)  Alternatively, you might use the following to specify a 
model with two random parameters: 
 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Model: U(air) = a_air + bgc*gc + btt*ttme + binvc*invc + ghinc*hinc / 
       U(train,bus,car) = a_ground + bgc*gc   
   ; Fcn = a_ground(n),btt(n) $ 
 
Note that the specifications of the random parameters are separated by commas, not semicolons.  The 
next several subsections will describe the various parts of the specifications of the random 
parameters.  The last part of this section describes the command builder for this model.  Because so 
much of this model is custom made for the particular application, the command builder is somewhat 
limited compared to the command form indicated above. 
 
10.3.1 Distributions of Random Parameters in the Model 
 
 There are many distributions that can be used for the random parameters.  The most common 
will be the normal, which is used in the example above.  Many alternatives are supported, however.  
A few of these are listed below.  The basic distributions are specified with the following: 
 
   ; Fcn = parameter name (type), ... 
The types are 
 
 n  normal   βi  =  β + σvi, vi ~ N[0,1] 

 l   lognormal  βi  =  exp(β + σvi), vi ~ N[0.1] 

 u uniform   βi  =  β + σvi, vi ~ U[-1.1,] 

 t   triangular  βi  =  β + σvi, vi ~ triangle[-1.1] 

 d dome   βi  =  β + σvi, vi ~ 2×beta(2,2) - 1 

 e Erlang   βi  =  β + σvi, vi ~ gamma(1,4) - 4 

 w Weibull   βi  =  β + σ vi, vi = 2(-logui)√.5, ui ~ U[0,1] 

 p exponential  βi  =  β + σvi, vi ~ exponential - 1 

 c   nonstochastic   βi  =  β 



Chapter 10: The Random Parameters Logit Model      126 

 

In the list above, we have denoted the constant in the distribution as ‘β.’  However, the parameter 
definition may involve heterogeneity in the mean – so, what appears there may be of the form θi = β 
+ δ′zi.  We have also written the scaling parameter in each form as ‘σ,’ however, you may also 
specify heterogeneity in the variances – so what appears there may be of the form σi = σ exp(ω′hi).  
The list above suggests the variety of different distributions that may be used. 
 Any distribution may be used for any parameter.  The normal distribution will be the usual 
choice.  However, you may wish to restrict a particular coefficient in the model to be positive.  The 
lognormal distribution is the obvious choice, though there are several other possibilities.  The 
normal, lognormal, exponential, Erlang and Weibull distributions all have infinite ranges. If you 
wish to restrict the range of variation of a parameter, then the triangular, dome or uniform can be 
used.  The lognormal distribution has an infinite tail in the positive direction and is anchored at zero 
while the Erlang and Weibull models as specified have infinite range from [ ]iE vβ − σ  to +∞.    
 It is important to note that the means and variances of the distributions are not always simple 
functions when the parameters are not linear functions of the underlying random variables.  For all but 
the Weibull distributions shown above, the mean of vi is zero, which centers the distributions at β.  For 
the lognormal and Weibull models, the mean depends on the parameters. This is also true of the 
modified distributions shown below.  This means that one must be careful in interpreting the estimated 
coefficients, even in simple cases in which there is no heterogeneity in the means or variances. It is 
possible to learn about these empirically however, it is often not possible to state a priori what the 
population means are for most of the distributions. The problem becomes yet more complicated as 
additional features such as heterogeneity in the means and heteroscedasticity are added to the model. 
 Some practical aspects of the specifications are as follows: 
 
• If you will be mixing distributions, the specification of correlated parameters, while 

allowable, produces ambiguous results.  The nature of the correlation is difficult to define.  
However, the program will have no unusual difficulty estimating a model in which 
correlated parameters have different distributions.  One particular case worth noting is a 
mixture of normal and lognormal parameters.  In such a model, the reported correlation will 
be between the normally distributed parameter and the log of the lognormally distributed 
parameter.  This is probably not a useful result. 

 

• Researchers often find that the long, thick tail of the lognormal distribution produces an 
implausible distribution of parameters.  . 

 

• Type ‘c’ is the same as not including the parameter in the Fcn list, which is how this usually 
should be done. But sometimes, for convenience, this might be preferred. Variable name (c) 
specifies a free mean and zero variance of the parameter.   

 
 Model results for these distributions will display the structural parameters, not necessarily 
the means and variances of the parameter distributions.  Note, for example, that the means of the 
lognormal and the Weibull distributions are not equal to β; for the lognormal it is exp(β+σ2/2) while 
for the Weibull it is β+2σΓ(1+1/√2).  Consider an example.  The following estimates a model with 
two random parameters.  We will use the normal, Weibull and exponentiated Weibull (our 
‘Rayleigh’) distributions.  Since the exponentiated Weibull estimator forces the coefficient to be 
positive, and the coefficients on the two variables would naturally be negative, we reverse the signs 
on the data before estimation. 
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 The commands are: 
 
 CREATE ; mgc = -gc ; mttme = -ttme $ 

RPLOGIT ; Lhs = mode   
  ; Choices = air,train,bus,car 

; Rhs  = mgc,mttme ; Rh2 = one 
; Fcn  = mgc(n),mttme(n) ? Normally distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

RPLOGIT ; Lhs  = mode   
  ; Choices = air,train,bus,car 

; Rhs  = mgc,mttme ; Rh2 = one 
; Fcn  = mgc(w),mttme(w) ? Weibull distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

RPLOGIT ; Lhs  = mode   
  ; Choices = air,train,bus,car 

; Rhs  = mgc,mttme ; Rh2 = one 
; Fcn = mgc(r),mttme(r) ? Modified Weibull distributed parameters 
; Maxit = 50 ; Pts = 25 ; Halton ; Pds = 3 $ 

 
These are the reported random parameter estimates.  (The nonrandom alternative specific constants 
are not shown.)  The values for the random parameters are β and σ.  For the normally distributed 
variables, these are the means and standard deviations.  For the other distributions, they are only the 
structural parameters.  To see the similarity, however, note for the coefficient on mgc in the Rayleigh 
model, exp(-3.3585415) is about 0.035, which resembles the value for the normal distribution.  
Accounting for σ would likely bring them yet closer.   
 
---------+Multinomial logit with nonrandom parameters 
 MGC     |     .01578374       .00438279     3.601   .0003 
 MTTME   |     .09709052       .01043509     9.304   .0000 
+--------+-------------------------------------------------------------- 
---------+Normal Random parameters in utility functions 
 MGC     |     .02179446       .00691475     3.152   .0016 
 MTTME   |     .14140119       .01958762     7.219   .0000 
---------+Derived standard deviations of parameter distributions 
 NsMGC   |     .00867259       .01372168      .632   .5274 
 NsMTTME |     .07424180       .01489564     4.984   .0000 
+--------+-------------------------------------------------------------- 
---------+Weibull Random parameters in utility functions 
 MGC     |     .03546490       .02059812     1.722   .0851 
 MTTME   |     .23934417       .03347361     7.150   .0000 
---------+Derived standard deviations of parameter distributions 
 WsMGC   |     .00683164       .00915062      .747   .4553 
 WsMTTME |     .05604114       .01237808     4.527   .0000 
+--------+-------------------------------------------------------------- 
---------+Rayleigh  Random parameters in utility functions 
 MGC     |   -3.35385415      1.36800576    -2.452   .0142 
 MTTME   |   -1.26324106       .21598047    -5.849   .0000 
---------+Derived standard deviations of parameter distributions 
 RsMGC   |     .33488248       .89249718      .375   .7075 
 RsMTTME |     .47230483       .10945909     4.315   .0000 
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10.3.2 Spreads, Scaling Parameters and Standard Deviations 
 
 The RPL model is complicated.  It is also necessary to note that the interpretation of the 
parameters is partly a function of the specification chosen.  What are described earlier as the ‘means’ 
and ‘variances’ are actually only those parameters in the simplest cases.  The reported parameters 
may need to be interpreted, and manipulated further to obtain the expected results.  We consider 
several examples.  In a model with a normally distributed parameter, 
 
   βi  =  β  +  δzi  +  σvi, vi ~ N[0,1], 
 
(β + δzi) is, indeed, the conditional mean and σ is the standard deviation.  The model results might 
appear as follows, in which the parameter on variable mgc is specified to have a normal distribution 
with a mean that is a function of hinc, which has a mean of about 35.  The specification is 
 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = mgc,ttme,one 
   ; RPL = hinc ; Pts = 15 ; Maxit = 10 ; Pds = 3 ; Fcn = mgc(n) $ 
 
---------+Random parameters in utility functions 
 MGC     |     .01317029       .01052638     1.251   .2109 
---------+Nonrandom parameters in utility functions 
 TTME    |    -.09909916       .01076768    -9.203   .0000 
 A_AIR   |    6.00438917       .69301957     8.664   .0000 
 A_TRAIN |    4.09897595       .47136837     8.696   .0000 
 A_BUS   |    3.39330467       .48215182     7.038   .0000 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |     .00023602       .00023165     1.019   .3083 
---------+Derived standard deviations of parameter distributions 
 NsMGC   |     .01723103       .00801915     2.149   .0317 
 
According to these results, the population mean of parameters on mgc computed at the mean income, 
or an estimate of E[βi|E[zi]] ≈ EzE[βi|z]] is roughly .01317029 + 35(.00023602) = .02143099 and the 
population standard deviation is about .01723103.  Suppose in the same model, we change the 
distribution to lognormal with ; Fcn = mgc(l).  The results change to 
 
---------+Random parameters in utility functions 
 MGC     |   -4.69325083       .77314298    -6.070   .0000 
---------+Nonrandom parameters in utility functions 
 TTME    |    -.09826080       .01030574    -9.535   .0000 
 A_AIR   |    5.91314197       .70223867     8.420   .0000 
 A_TRAIN |    4.04515395       .49255837     8.213   .0000 
 A_BUS   |    3.32819477       .51874172     6.416   .0000 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |     .01415413       .01472297      .961   .3364 
---------+Derived standard deviations of parameter distributions 
 LsMGC   |     .68944036       .54389813     1.268   .2049 
 
But, the reported parameters are those of the underlying normal distribution.  In this model, 
 
   βi  =  exp(β  +  δzi  +  σvi), vi ~ N[0,1]. 
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The conditional (population) mean of the distribution will be 
 
   E[βi|zi]  =  exp(β  +  δzi + σ2/2). 
 
Inserting the estimated parameters and the mean of 35 for income, we obtain an estimate of the 
overall population mean of 0.0190543, which is quite similar to the .02143099 for the normal 
distribution.  The variance for the lognormal is obtained as 
 
   Var[βi|zi]  =  {E[βi|zi]}2 [exp(σ2) - 1]. 
 
Inserting our estimates and taking the square root produces an estimate of the population standard 
deviation of 0.014864085.  The result for the normal distribution is .01723103.  (We emphasize, we 
are implicitly averaging over incomes in these computations – the results are close to, but not exactly 
equal to the analytical results.) 
 The results for the lognormal distribution, correctly interpreted, are quite similar to those for 
the normal distribution.  The structural parameters, however, are quite different.  A similar 
characterization applies to the other distributions that are obtained as transformations of the 
underlying random terms.  In most cases, it is not possible to obtain closed form results for the 
overall means and variances – the lognormal distribution is a convenient special case.  The program 
will report its estimates of the structural parameters, but it is not generally possible to disentangle the 
reduced form to report the actual ‘mean’ and ‘standard deviation’ in spite of the labeling of the 
estimates in the program output. 
 Random parameter distributions that depend on the uniform distribution present another 
ambiguity in the interpretation of the results.  For the uniform distribution, we estimate the spread of 
the distribution, not the standard deviation or the variance.  Suppose we now change the earlier 
model to ; Fcn = mgc(u).  By this construction,  
 
   βi  =  β  +  δzi  +  σvi, vi ~ U[-1,1], 
 
the values of βi are distributed uniformly between (β+ δzi - σ)  and (β+ δzi + σ).  The mean is      β + 
δzi, but the variance is 4σ2/12, with a standard deviation of σ/√3.  The estimated parameters are as 
follows: 
 
---------+Random parameters in utility functions 
 MGC     |     .00893792       .00978908      .913   .3612 
---------+Nonrandom parameters in utility functions 
 TTME    |    -.09779935       .01063867    -9.193   .0000 
 A_AIR   |    5.86320087       .68262859     8.589   .0000 
 A_TRAIN |    3.99147415       .46159989     8.647   .0000 
 A_BUS   |    3.28433873       .47262187     6.949   .0000 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |     .00021461       .00022919      .936   .3491 
---------+Derived standard deviations of parameter distributions 
 UsMGC   |     .02222135       .01975890     1.125   .2607 
 
Based on these results, the overall mean is about .00893792 + 35(.00021461) = .0164492, again 
comparable, and the standard deviation is .01289502.  What is reported is a scale factor, or spread 
parameter, not the standard deviation of the distribution.   
  



Chapter 10: The Random Parameters Logit Model      130 

 

 The triangular distribution presents the same ambiguity.  In this model,  
 
   βi  =  β  +  δzi  +  σvi, vi ~ Triangular[-1,1], 
 
The mean is β + δzi, but the variance is σ2/6, which is one half the variance of the uniform 
distribution with the same spread (and mean).  Repeating the previous estimation, now with ; Fcn =  
mgc(t), we obtain the results below. 
 
---------+Random parameters in utility functions 
 MGC     |     .01396869       .01082759     1.290   .1970 
---------+Nonrandom parameters in utility functions 
 TTME    |    -.09931295       .01083732    -9.164   .0000 
 A_AIR   |    6.00304781       .69769310     8.604   .0000 
 A_TRAIN |    4.10077954       .47428938     8.646   .0000 
 A_BUS   |    3.39796835       .48316868     7.033   .0000 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |     .00021077       .00023228      .907   .3642 
---------+Derived standard deviations of parameter distributions 
 TsMGC   |     .05487307       .02445605     2.244   .0248 
 
Now, the mean is .02134585 and the standard deviation is .05487307/√6 = .022401837. 
 The preceding serves to emphasize the need to interpret the estimated model parameters on a 
case by case basis.  Each distribution has different characteristics.  Worse yet, in some of those cases, 
we do not even have the convenient formulas given above to use to convert the parameters to 
population moments.  Consider the Weibull distribution, which we obtain with ; Fcn = mgc(w).  For 
this model, 
 

   exp(β + δzi + σvi), vi = (-2log ui) √.5, ui ~ U[0,1]. 
 
The estimated parameters of the model are as follows: 
 
---------+Random parameters in utility functions 
 MGC     |   -3.44822322      1.06929334    -3.225   .0013 
---------+Nonrandom parameters in utility functions 
 TTME    |    -.09807615       .01018490    -9.630   .0000 
 A_AIR   |    5.90493475       .69570219     8.488   .0000 
 A_TRAIN |    4.04347670       .49138509     8.229   .0000 
 A_BUS   |    3.32608885       .51475257     6.462   .0000 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |     .01555286       .01425775     1.091   .2753 
---------+Derived standard deviations of parameter distributions 
 WsMGC   |     .79003797       .83918130      .941   .3465 
 
There is no obvious way to translate these back to a mean and variance.  But, there is an indirect 
method.  If you add 
 

   ; Parameters 
 
to your RPLOGIT command, then NLOGIT creates two matrices from the model results.  The 
matrix beta_i contains for each random parameter (column) and each individual (row), an estimate of 
 
   ˆ ˆ[ | all information about individual ]ik ikE iβ = β . 
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The information about individual i includes their choices, so this is not quite the same as the 
estimator that we are using above, E[βi|zi].  But, since the average of conditional means gives the 
unconditional mean, the average of the estimates contained in beta_i provides an estimator of the 
unconditional population mean that we are estimating above.  Figure 10.1 below shows the first 10 
rows of this 70×1 matrix as created by the model command that generated the Weibull results above. 
 

 
Figure 10.1  Estimated Conditional Means and Standard Deviations 

 
We can estimate the overall mean by averaging the elements in beta_i.  This produces 
 
 MATRIX ; ebi = list ; 1/70*beta_i'1 $ 
          +-------------- 
         1|     .01984 
 
which is the now familiar result.  Estimating the population variance is a bit more complicated 
because the population variance is not the average of the conditional variances.  Rather, the variance 
we seek equals the average of the conditional variances (squares of the elements in sdbeta_i) plus the 
variance of the conditional means.  The computation can be done (a bit inelegantly) with 
 
 MATRIX ; vi = Dirp(sdbeta_i,sdbeta_i) $ 
 MATRIX ; evi = 1/70*vi'1 ; vei = 1/70*beta_i'beta_i - ebi*ebi $ 
 MATRIX ; v = evi + vei ; Peek ; sd = Sqrt(v) $ 
 
The result of this computation is 0.015192655.  Recall, the counterpart for the normal distribution 
that we examined at the outset was .01723103. 
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10.3.3 Alternative Specific Constants 
 

If you have used the ; Rhs = list specification with choices specific constants, then the 
constants will be labeled a_name.  For example, if you have used 
 

; Choices = bus,train,car 
; Rhs = one,cost  

 
then to specify the model for random ASCs, you might use  
 

; Fcn = a_bus(n),a_train(n)   
 
If you are using the ; Model: form, then you will have supplied your own names for the ASCs. 
 Random choice specific constants in the random utility model with cross section data 
produce a random term that is a convolution of the original extreme value random variable and the 
one specified in your model command.  Suppose, for example, that you specify a normally 
distributed random constant for ‘car.’  Then, the utility function for car will be 
 
   U(car) =  αcar  +  (the rest of the utility function)  +  σcarvcar  +  εcar 

    =  αcar  +  (the rest of the utility function)  +  ucar. 
 
The random term in this equation is the sum of a normally distributed variable and one with an 
extreme value distribution.  This produces a different stochastic model, but probably not a useful 
extension of the model in general.  For this reason, unless you are using panel data – it is generally 
not useful to specify random constant terms in the random parameters logit model.  That said, 
however, there is an exception which might prove useful.  Random constant terms that are correlated 
will produce correlation across the alternatives, which is one of the oft cited virtues of the 
multinomial probit model.  In addition, the error components logit specification produces a useful 
extension that serves much the same function as a random constant term. 
 
10.3.4 Heterogeneity in the Means of the Random Parameters 
 

The RPLOGIT command requests the random parameters model generally, with the 
parameters specified in the ; Fcn list varying around a mean that is the same for all individuals.  The 
variables in zi provide the variation of the mean across individuals.  To specify the variables in zi, use 

 
; RPL = list of variables in zi 

 
If you desire to specify that zi enter the means of some of the coefficients but not all, you can change 
the specification of the random coefficients in the ; Fcn specification as follows: 
 
   name (type) implies zi enters the mean 
   name [type] implies that zi does not enter the mean. 
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The difference here is the parentheses in the first as opposed to the brackets in the second.  The 
second of these forces the applicable row of ∆ to contain zeros instead of free parameters.  There are 
also some variations on this specification that allow some flexibility in the construction of ∆.  First, 
an alternative, equivalent form of name [type] is 
 

  name (type | #)  
 
This requests that if there are RPL variables (; RPL = list), these not appear in the mean for this 
parameter. This puts a row of zeros in the ∆ matrix.  For example, 
 
   ; RPL = income  

  ; Fcn = gc(n),ttme(n|#)  
 
specifies that income does not appear in the mean of the ttme parameter. This form may be extended to 
exclude and include specific variables from the RPL list in the mean of a particular parameter.  The 
specification is 

  name (type | # pattern)  
 
where the pattern consists of ones and zeros which indicate which variables in the list are included 
(ones) and excluded (zeros).  There must be the same number of items in the pattern as there are in 
the list. For example, the specification 

 
  ; RPL = age,sex,income  
  ; Fcn = gc(n), 
    ttme (n|#101) 
    invt (n|#011) 
    invc (n|#000) 

 
includes all three variables in the mean of gc, excludes sex from the mean of ttme, excludes age from 
the men of invt, and excludes all three variables from the mean of invc.  All parameters may be 
specified independently, and there is no restriction on how this feature is used.  Do note, however, if 
you exclude an RPL variable from all parameters, the model becomes inestimable. 
 

10.3.5 Correlated Parameters 
 

The model specified thus far assumes that the random parameters are uncorrelated.  Use 
 

   ; Correlation 
 
to allow free correlation among the parameters.  In this case, estimates of the below diagonal 
elements of Γ will be obtained with the other parameters of the model.  No restrictions may be 
imposed on these new parameters.  After these are presented, the elements of Σ = ΓΓ′ are given. An 
example appears below.  Some ambiguity in the results will be unavoidable when this feature is used 
with other modifications of the model, such as mixed distributions and heteroscedasticity.  The most 
favorable case for use of this feature would be a sparse model, 
 
   βi  =  β  +  Γvi. 
 
We would note, many, perhaps most of the received applications of the mixed logit model are of this 
form – it is much less restrictive than its bare appearance would suggest. 
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 In the model developed thus far, the covariance matrix for the random components for the 
simple distributions (normal, uniform, triangle) is 
 
   Var[βi|xi,zi]  =  Σ  =  ΓΓ′. 
 
In the uncorrelated case, Γ is a diagonal matrix, and the variance of βik is simply σk

2.  When the 
parameters are correlated, then the diagonal element of Σ is γk′γk where γk is the kth row of Γ.   The 
model results will show the elements of Γ and the implied standard deviations.  The following 
demonstrates the computations.  The command below specifies two correlated random parameters. 
 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
; Rhs  = gc,ttme 
; Rh2  = one 
; Fcn  = gc(n),ttme(n)  
; Correlated 
; Maxit = 50 ; Pts = 25 ; Halton ; Output = 3 ; Pds = 3 $ 

 
The relevant results from estimation are as follows.  The coefficients reported are, first, β from the 
random parameter distributions, then the nonstochastic β from the distributions of the nonrandom 
alternative specific constants.  The next results display the elements of the 2×2 lower triangular 
matrix, Γ.  The diagonal elements appear first, then the below diagonal element(s).  The matrix Γ is 
shown again, in natural form at the end of the results, labeled ‘Cholesky matrix.’ The ‘Standard 
deviations of parameter distributions’ are derived from Γ.  The first is (.011001342)1/2 = .001100134.  
The second is ((-.07458)2 + .036782)1/2 = .08315251.  The standard errors for these estimators are 
computed using the delta method.  Hensher, Rose and Greene (2005) discuss the Cholesky 
decomposition in detail with numerous examples. 
 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Random parameters in utility functions 
 GC      |    -.02260684       .00724332    -3.121   .0018 
 TTME    |    -.14522848       .02205029    -6.586   .0000 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    8.70238058      1.22465947     7.106   .0000 
 A_TRAIN |    6.95973395      1.03548341     6.721   .0000 
 A_BUS   |    6.12199207      1.13357506     5.401   .0000 
---------+Diagonal values in Cholesky matrix, L. 
 NsGC    |     .01100134       .01124017      .979   .3277 
 NsTTME  |     .03678160       .03024421     1.216   .2239 
---------+Below diagonal values in L matrix. V = L*Lt 
 TTME:GC |    -.07457516       .02353048    -3.169   .0015 
---------+Standard deviations of parameter distributions 
 sdGC    |     .01100134       .01124017      .979   .3277 
 sdTTME  |     .08315251       .01967123     4.227   .0000 
Correlation Matrix for Random Parameters 
Matrix COR.MAT. has  2 rows and  2 columns. 
         GC            TTME 
        +---------------------------- 
GC      |    1.00000      -.89685 
TTME    |    -.89685      1.00000 



Chapter 10: The Random Parameters Logit Model      135 

 

Covariance Matrix for Random Parameters 
Matrix COV.MAT. has  2 rows and  2 columns. 
         GC            TTME 
        +---------------------------- 
GC      |     .00012      -.00082 
TTME    |    -.00082       .00691 
 
Cholesky Matrix for Random Parameters 
Matrix Cholesky has  2 rows and  2 columns. 
         GC            TTME 
        +---------------------------- 
GC      |     .01100    .0000000D+00 
TTME    |    -.07458       .03678 
 
 We emphasize, these results apply to the linear functions of the underlying random variables, 
not necessarily to the implied distributions of the random parameters themselves.  In most of the 
specifications, the parameters involve nonlinear transformations of these variables.    
 
10.3.6 Command Builders for the RPL Models 
 
 With a few important exceptions the random parameters logit (RPL) model can be specified 
with the command builder by selecting Model:Discrete Choice/Multinomial Probit, HEV, RPL.  
The Main page, shown in Figure 10.2, requests specification of the choice variable and the utility 
functions.  This page provides both ways to do this specification.  The random parameters model is 
set up on the Options page, shown in Figure 10.3.  Note that there are a few options not specified in 
the command builder, notably the ; Sdv specification and the technical controls of the simulation.  
However, in the random parameters window, you can add these additional specifications as text.  
Thus, where we have typed ‘gc(n),ttme(n)’ we could have typed ‘gc(n),ttme(n) ; Stv = s1,1.0’ 
which would have added the additional specification, as a text string. 
 

 
Figure 10.2  Main Page of Command Builder for RPL Model 
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Figure 10.3  Options Page of Command Builder for RPL Model 

 
General options for NLOGIT’s models are requested on the Output page, shown in Figure 10.4.  A 
separate page for model estimates may be opened by clicking Model Estimates in the lower right of 
the Output page.  See Figure 10.5 
 

 
Figure 10.4  Output Page of Command Builder for RPL Model 
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Figure 10.5  Model Estimates Page of Command Builder for RPL Model 

 
10.4 Heteroscedasticity and Heterogeneity in the Variances 
 
 The random parameters model allows heterogeneity in the variances as well as in the means 
in the distributions of the random parameters.  The model is expanded to 
 

  σik = σk exp[ωk′hri], 
 
If γ equals 0, this returns the homoscedastic model.  The implied form of the RPL model is 
 
   βik   =  β + δk′zi  +  σikvik. 

    =  β + δk′zi  +  σk exp(ωk′hri)vik. 
 
 Request the heteroscedasticity model with 
 

  ; Hfr  = list of variables in hri   
 
The variables in hri may be any variables, but they must be choice invariant. Only the last value in J 
rows for choice situation it is used. This specification will produce the same form of 
heteroscedasticity in each parameter distribution – note that each parameter has its own parameter 
vector, γk. 
 There is a method of modifying the specification of the heterogeneous means of the 
parameters so that some RPL variables in zi may appear in the means of some parameters and not 
others.  A similar construction may be used for the variances.  The general form of the specification 
is as follows:  For any parameter specification, 
 
   ; Fcn  = name (type ...) 
 
(it may contain more information beyond just the distribution type), the specification may end with 
an exclamation point, ‘!’ to indicate that the particular parameter is to be homoscedastic even if 
others are heteroscedastic.  For example, the following produces a model with heterogeneous means, 
and one heteroscedastic variance: 
 
   ; RPL = age,sex 
   ; Hfr = income 
   ; Fcn = gc(n),ttme(n | # 01 !) 
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The parameter on gc has both heterogeneous mean and heteroscedastic variance.  The parameter on 
ttme has heterogeneous mean, but age is excluded, and homogeneous variance.  Note that there are 
no commas before or after the !.  As in the case of the means, when there is more than one Hfr 
variable, you may add a pattern to the specification to include and exclude them from the model.  To 
continue the previous example, consider 
 
   ; RPL = age,sex 
   ; Hfr = income,family,urban 
   ; Fcn = gc(n),ttme(n | # 01 ! 101) 
 
Now, the variance for gc includes all three variables, but the variance for ttme excludes family. 
 
NOTE:  The model with both correlated parameters (; Correlated) and heteroscedastic random 
parameters is not estimable.  If your model command contains both ; Correlated and ; Hfr = list, 
the heteroscedasticity takes precedence, and the ; Correlated is ignored. 
 
10.5 Controlling the Simulations 
 
 There are two parameters of the simulations that you can change, the number of draws used 
in the replications and the type of sequence used to effect the integration. 
 
10.5.1 Number and Initiation of the Random Draws 
 
 R is the number of points (replications) in the simulation.  Authors differ in the appropriate 
value. Generally, the more complex the model is, and the greater the number of random parameters 
in it, the larger will be the number of draws required to stabilize the estimates. Train recommends 
several hundred.  Bhat suggests 1,000 is an appropriate value.  The program default is 100.  You can 
choose the value with 
 
   ; Pts  =  number of draws, R 
 
The RPL model is fairly time consuming to estimate.  For exploratory work while you develop a 
final model specification, you will find that setting R to a small value such as 10 or 20 (as we do in 
the examples in this chapter) will be a useful time saver.  Once a specification is finalized, a larger 
value will be appropriate. 
 In order to replicate an estimation, you must use the same random draws.  One implication 
of this is that if you give the identical model command twice in sequence, you will not get the 
identical set of results because the random draws in the sequences will be different.  To obtain the 
same results, you must reset the seed of the random number generator with a command such as 
 
 CALC   ; Ran(seed value) $ 
 
We generally use CALC ; Ran(12345) $ before each of our examples, precisely for this reason.  The 
specific value you use for the seed is not of consequence; any odd number will do. 
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10.5.2 Halton Draws and Random Draws for Simulations 
 
 The standard approach to simulation estimation is to use random draws from the specified 
distribution.  As suggested immediately above, good performance in this connection usually requires 
fairly large numbers of draws.  The drawback to this approach is that with large samples and large 
models, this entails a huge amount of computation and can be very time consuming.  A currently 
emerging literature has documented dramatic speed gains with no degradation in simulation 
performance through the use of a smaller number of Halton draws instead of a large number of 
random draws.  Some authors have found that a Halton sequence with a far small number of 
replications (as low as a tenth for a single parameter) is often as effective as a far larger number of 
random draws.  To use this approach, add 
 
   ; Halton 
 
to your model command.   
 
10.6 Model Estimates 
 
 Because of the numerous components of the model, the results for a random parameters model 
are somewhat more involved than for other specifications.  For an example, we use the command 
below, which specifies a fairly involved, heterogeneous RPL model with two error components. 
 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = gc,ttme,one 
   ; Effects: gc(air) 
   ; RPL = hinc 
   ; Pts = 25  
   ; Maxit = 100  
   ; Halton 
   ; Fcn = gc(n),ttme(n)  
   ; Correlated  
   ; ECM = (air,car),(train,bus) $ 
 
The initial display options for the model requested with ; Show are the same as in other cases.  The ; 
Describe and ; Crosstab are as well.  These were not requested below.  As usual, the estimates for 
the MNL model are given first.  These are used as starting values for the estimates.  Other 
parameters of the distributions of the random components are started at zeros. 
 
+---------------------------------------------+ 
| Start values obtained using MNL model       | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -199.9766     | 
| Number of parameters                  5     | 
| Info. Criterion: AIC =          1.95216     | 
|   Finite Sample: AIC =          1.95356     | 
| Info. Criterion: BIC =          2.03185     | 
| Info. Criterion:HQIC =          1.98438     | 
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| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .29526  .28389 | 
| Chi-squared[ 2]          =    167.56429     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01578374       .00438279    -3.601   .0003 
 TTME    |    -.09709052       .01043509    -9.304   .0000 
 A_AIR   |    5.77635901       .65591873     8.807   .0000 
 A_TRAIN |    3.92300113       .44199360     8.876   .0000 
 A_BUS   |    3.21073472       .44965283     7.140   .0000 
 
 Results from the random parameters logit model display the standard pattern, an initial box 
containing diagnostic statistics, followed by an indication of the size (R) and type (random or 
Halton) of the simulation, then the output for the model. In this model, there are likely to be many 
different components of the probability function, such as in the earlier example.  As shown in the 
sample output below, the results will contain the lowest level structural parameters, first the constant 
terms in the random parameters in the utility functions, then the nonrandom parameters, and, finally, 
the parameters of the underlying distribution. The final parameters shown are the scale factors for the 
underlying random terms in the parameters. The leading character matches your specification in the ; 
Fcn part of your command. The ‘s’ to follow indicates this is a diagonal element of Γ.  Finally, up to 
five characters of the original name are appended. 
 
+---------------------------------------------+ 
| Random Parms/Error Comps. Logit Model       | 
| Maximum Likelihood Estimates                | 
| Dependent variable                 MODE     | 
| Weighting variable                 None     | 
| Number of observations              210     | 
| Iterations completed                 36     | 
| Log likelihood function       -178.3248     | 
| Number of parameters                 12     | 
| Info. Criterion: AIC =          1.81262     | 
|   Finite Sample: AIC =          1.82016     | 
| Info. Criterion: BIC =          2.00388     | 
| Info. Criterion:HQIC =          1.88994     | 
| Restricted log likelihood     -291.1218     | 
| McFadden Pseudo R-squared      .3874565     | 
| Chi squared                    225.5941     | 
| Degrees of freedom                   12     | 
| Prob[ChiSqd > value] =         .0000000     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| No coefficients   -291.1218  .38746  .37556 | 
| Constants only    -283.7588  .37156  .35936 | 
| At start values   -199.9766  .10827  .09096 | 
| Response data are given as ind. choice.     | 
+---------------------------------------------+ 
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+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Random Parms/Error Comps. Logit Model       | 
| Replications for simulated probs. =  25     | 
| Halton sequences used for simulations       | 
| RPL model has correlated parameters         | 
| Hessian was not PD. Using BHHH estimator.   | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Random parameters in utility functions 
 GC      |    -.03344523       .02505267    -1.335   .1819 
 TTME    |    -.23084818       .08682355    -2.659   .0078 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    15.2077878      5.00957004     3.036   .0024 
 A_TRAIN |    12.7374035      4.54631279     2.802   .0051 
 A_BUS   |    11.4866808      4.49644235     2.555   .0106 
---------+Heterogeneity in mean, Parameter:Variable 
 GC:HIN  |    -.00048503       .00052537     -.923   .3559 
 TTME:HIN|    -.00098231       .00095140    -1.032   .3018 
---------+Diagonal values in Cholesky matrix, L. 
 NsGC    |     .01920669       .02520301      .762   .4460 
 NsTTME  |     .04635102       .04963601      .934   .3504 
---------+Below diagonal values in L matrix. V = L*Lt 
 TTME:GC |     .14938411       .06697675     2.230   .0257 
---------+Standard deviations of latent random effects 
 SigmaE01|    1.47749388      1.42144790     1.039   .2986 
 SigmaE02|    1.65809550      1.69694056      .977   .3285 
---------+Standard deviations of parameter distributions 
 sdGC    |     .01920669       .02520301      .762   .4460 
 sdTTME  |     .15640981       .06299625     2.483   .0130 
 
 Random Effects Logit Model 
 Appearance of Latent Random Effects in Utilities 
 Alternative   E01 E02 
+-------------+---+---+ 
|  AIR        | * |   | 
+-------------+---+---+ 
|  TRAIN      |   | * | 
+-------------+---+---+ 
|  BUS        |   | * | 
+-------------+---+---+ 
|  CAR        | * |   | 
+-------------+---+---+ 
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Parameter Matrix for Heterogeneity in Means. 
Matrix Delta    has  2 rows and  1 columns. 
         HINC 
        +-------------- 
GC      |    -.00049 
TTME    |    -.00098 
Correlation Matrix for Random Parameters 
         GC            TTME 
        +---------------------------- 
GC      |    1.00000       .95508 
TTME    |     .95508      1.00000 
Covariance Matrix for Random Parameters 
         GC            TTME 
        +---------------------------- 
GC      |     .00037       .00287 
TTME    |     .00287       .02446 
Cholesky Matrix for Random Parameters 
         GC            TTME 
        +---------------------------- 
GC      |     .01921    .0000000D+00 
TTME    |     .14938       .04635 
 
Note two important points about the estimated covariance matrix of the distribution of the random 
parameters: 
 

• If Γ is diagonal, then the diagonal elements are used to scale the random elements in the 
parameters.  However, these scale parameters are only the standard deviations of the random 
terms when these variables are normally distributed.  Otherwise, there is some specific scale 
parameter that must be added to the calculation. 

 
• If Γ is not diagonal, then Γ is not the covariance matrix of the random terms, and the 

diagonal elements of Γ are not the standard deviations even in the normal case.  In this 
instance, Γ is the Cholesky decomposition of the covariance matrix, which must be 
recovered from the estimates.  The results given will include this decomposition, as shown 
below for this application. 

 
Partial effects for the RPL model are computed in the same fashion as for other models, with one 
important exception.  As in other cases, the elasticities are computed by individual, and averaged to 
obtain the estimate.  However, in the RPL model, the individual specific estimates of the parameters 
described in the next section, not the population averages, are used to compute the estimates. 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.7700     .4918   | 
|       Choice=TRAIN              .8787    1.0465   | 
|       Choice=BUS                .9346    1.0685   | 
|       Choice=CAR                .6412    1.7282   | 
+---------------------------------------------------+ 
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 Results saved automatically by this estimator are the same as the other estimators in 
NLOGIT, i.e., 
 
 Matrices: b and varb 
 
 Scalars: logl, kreg, nreg 
   (Note that nreg is the number of individuals, not the number of rows of  
   data in the sample.) 
 
 Last Model: See Chapter 6 for discussion of how to recover previous results. 
 
You can also save the probabilities and utilities as follows: 
 
 ; Prob   = saves the unconditional probabilities, based on individual parameters, 
 ; Utility  = saves the values of utility functions, based on individual parameters. 
 
This estimator will also save various matrices.  These are discussed in the next section. 
 
10.7 Individual Specific Estimates 
 
 If you include  
   ; Parameters 
 
in your RPLOGIT command, NLOGIT will create an n×K matrix named beta_i that contains in a 
row for each individual an estimate of the random parameters in E[βi|all data for individual i].  The 
model command, 
 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = mgc,ttme,one 
   ; RPL = hinc ; Pts = 15 ; Maxit = 10 ; Pds = 3 ; Parameters 
   ; Fcn = mgc(n) $ 
 
specifies one random parameter.  The sample in use has 210/3 = 70 individuals.  The matrix shown 
below contains the conditional estimates of the mean of the parameter on mgc.  (The additional 
matrix sdbeta_i, is explained below.) 
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Figure 10.6  Estimated Conditional Means and Standard Deviations 

 
The next section will describe how these matrices are computed. 
 
10.7.1 Computing Individual Specific Parameter Estimates 
 
 The random parameters model and the simulation based estimator used to estimate it allow 
the analyst to derive more information from the data than is usually available from models with fixed 
parameters.  In particular, the model specifies that 
 
   βi = β  +  ∆zi + Γ Ωi vi, 
 
where, for simplicity, if there are any, we include the alternative specific constants in βi, and where, 
if there are nonrandom parameters in the model, these are accommodated simply by having rows and 
columns of zeros in the appropriate places in Γ and Ωi.  There may also be rows of zeros in ∆ for 
parameters that have homogeneous means.  We are interested in learning as much as possible about 
βi and functions of βi from the data.  The unconditional mean of βi is 
 
   E[βi | zi]  = β  +  ∆zi. 
 
Absent any other information, this provides the template that one would use to form their best 
estimate of βi.  However, there is other information about individual i in the sample, namely the 
choices they made, yi and other information about their heterogeneity, hri.  Moreover, we may also 
have information about individual specific error components, Eim, specifically in the form of hei, the 
observed heterogeneity in the variation of the error components.  The following details a method of 
forming a conditional estimator, E[βi | all data on individual i]. 
 By using Bayes Theorem, we can form the joint distribution of βi and yi = (yi1,yi2,...,yit) as 
follows:  Denote the unconditional (marginal) distribution of βi|zi,hri as p(βi|zi,hri).  This distribution 
is implied by whatever is assumed about vi in the general model,  
 
   βi = β  +  ∆zi + Γ Ωi vi  
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where, if there is heteroscedasticity, ωik = σkexp[ωk′hri]. (Elements of βi might also be functions of 
the exponent of this expression for the lognormal and Weibull distributions.)  We can also form the 
conditional distribution of (yi|βi,xi,hei,Ei) based on the assumptions about vi and Ei = (Ei1,Ei2,...,EiM) 
in the conditional multinomial logit model, 
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(The conditional distribution is defined by the multinomial logit probabilities for the outcomes that 
have been assumed throughout.) We are looking ahead a bit here and treating the panel data case 
here rather than developing it separately later. Note as well that xi denotes the collection of data on 
attributes and characteristics that appear in the utility functions for all the choices and in all periods 
or choice situations.  Denote this implied conditional distribution as p(yi|αi,βi,xi,hei,Ei) where αi is 
the set of ASCs.  With these in hand, we will form p(βi|yi,xi,zi,hri,hei,Ei) as follows:   
 First, we will have to eliminate Ei from the conditional distribution of yi.  The unconditional 
distribution is 
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Note that the marginal distribution is actually known – it is the M-variate standard normal 
distribution.  Nonetheless, it will be more convenient to carry it through in generic form below. We 
now obtain the conditional density of βi using Bayes theorem: 
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Note that it is the joint density, p(βi,yi|xi,zi,hri,hfi) that appears in the fraction, the product of the 
conditional density times the marginal density.  Proceeding, we are interested in forming the 
conditional expectation, E(βi|yi,xi,zi,hri,hfi).  Since the preceding gives the conditional density, the 
conditional expectation is formed in the usual manner, 
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The reordering of terms to obtain the second expression is permissible because Ei and βi are 
independent.  Moreover, since they are independent, their joint distribution equals the product of the 
marginal distributions, so we may rewrite the preceding in a more useful form as 
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This would provide the basis of the conditional estimator.  Note that it is precisely the form of the 
posterior mean if this were a Bayesian application.   
 The integrals in the conditional mean for βi will not exist in closed form, so some other 
method must be used to do the integration.  Note, first, that in the expression above, the term 

( | , , , )y x he Ei i i i ip β is the contribution to the conditional likelihood function (not its log) of 
individual i, L(parameters | yi,xi,zi,hei,hri), and the integral is the unconditional likelihood.  Second, 
integration over the range of (βi,Ei) with weighting function equal to the joint marginal density of βi 
and Ei can be done by simulation.  The implication is that the preceding integrals can be 
approximated using the simulation method used to maximize the simulated likelihood.  Combining 
our results, we have the simulation based conditional estimator 
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The simulation over (βi,Ei) is actually a simulation over the structural random components, vi and Ei.  
The preceding shows how to do the simulation once the maximum likelihood estimates of the 
structural parameters, [β,∆,Γ,Ω,θ,γ], are in hand.  A final representation of the results is useful; 
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and ˆ ˆ ˆ( | , , , , , )y x he Ei ir i i irL β θ γ  is the likelihood function for individual i computed at the maximum 
simulated likelihood estimates of all the parameters, the individual’s own data, and the rth simulated 
draw on (vi,Ei) 
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 The preceding shows how NLOGIT simulates ‘estimates’ of βi.  These form the inputs for 
the computation of elasticities and partial effects.  There is a parameter vector computed for each 
individual in the sample.  If you include ; Parameters in the RPLOGIT command, NLOGIT creates 
the matrix named beta_i that contains these estimates.  In the preceding, any nonrandom parameter is 
simply identically reproduced.  As such, beta_i contains only the conditional means for the random 
parameters in the model. 
 Whether this estimator, 

1
ˆˆ ˆ( | , , , , )y x z he hr R

i i i i i i ir irr
E w

=
=∑β β  is an estimator of βi is subject 

to interpretation.  The vector βi is a draw from a distribution that has an unconditional mean, 
   E[βi|zi,hri]  =   β  +  ∆zi  
 
and a conditional mean 
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What we are computing here are estimates of the means of these distributions.  In principle, these are 
conditioned on the particular data sets associated with individual i, not individual i themselves as 
such.  To underscore the point, note that the computations would produce the same predictions for 
two individuals, say i and i′, if they have the same measured data, even though they would have 
different draws from the underlying population, (vi,Ei) and (vi′,Ei′).  So, the mean computed here is 
an estimate of the center of this distribution, not a formal estimator of βi as such. 
 We can take this a step further and examine the unconditional and conditional distributions.   
The variance of the unconditional distribution is 
 
   Var[βi|zi,hri]  =   ΓΩi

2Γ′  
 
for a particular element of βi, the variance is 
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For the conditional distribution, no such expression exists.  For a particular element of βi, 
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The second term is the square of the mean that was estimated earlier.  The first is the expected 
square, which can, like the mean, be estimated by simulation.  Combining the results already 
obtained, then, we have an estimator of the conditional variance, 
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The square root of this quantity provides an estimate, for individual i, for each random parameter, an 
estimate of the conditional standard deviation.  These diagonal elements appear in the matrix 
sdbeta_i. 
 We illustrate this with a model that includes most of the features described above: 
 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) 
   ; RPL = hinc 
   ; Fcn = gc(n),ttme(n) ; Correlated 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200 $ 
 
(Model results are omitted.)  The elements in the matrices are shown in Figure 10.7.  As shown 
there, there is a considerable amount of variation in the estimated conditional means. 

 

 
Figure 10.7  Conditional Means and Standard Deviations 
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10.7.2 Examining the Distribution of the Parameters 
 
 The structural parameters often give a misleading picture of the parameters in a model.  
Consider the following modification of the model estimated in the previous section:  We are going to 
fit the model as above, but change the distribution of the random parameters from normal to Weibull.  
The Weibull model forces parameters to be positive, so we also reverse the signs on the two 
attributes in the model. 
 
 CREATE ; mgc = -gc ; mttme = -ttme $ 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) 
   ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200   
   ; Fcn = mgc(n),mttme(n) ; Correlated $ 
 MATRIX ; bn = beta_i ; sn = sdbeta_i $ 
 
The estimation and analysis is repeated with the Weibull distribution. 
 
   ; Fcn = mgc(w),ttme(w) ; Correlated $ 
 MATRIX ; bw = beta_i ; sw = sdbeta_i $ 
 
The unconditional values in the first column of the matrix in Figure 10.7 and the nonstochastic 
estimates for the MNL model should suggest the likely values of the two random parameters.  
However, it would be difficult to deduce this from the estimated structural parameters for the 
Weibull model, which are completely different.  The Weibull distribution, which involves the 
exponent of β + ∆zi + Γ Ωi vi, looks quite different from the normal. 
 
These are the basic MNL estimates, with both parameters fixed. 
 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 MGC     |     .01578374       .00438279     3.601   .0003 
 MTTME   |     .09709052       .01043509     9.304   .0000 
 A_AIR   |    5.77635901       .65591873     8.807   .0000 
 A_TRAIN |    3.92300113       .44199360     8.876   .0000 
 A_BUS   |    3.21073472       .44965283     7.140   .0000 
 
This is the same model, with two correlated normally distributed random parameters with 
heterogeneous means.  There are also two random error components in the model. 
 
---------+Random parameters in utility functions 
 MGC     |     .03170589       .01949180     1.627   .1038 
 MTTME   |     .13551247       .02907461     4.661   .0000 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    10.1292509      1.85832856     5.451   .0000 
 A_TRAIN |    8.20598683      1.73422590     4.732   .0000 
 A_BUS   |    7.19813304      1.91386320     3.761   .0002 
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---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |    .450634D-05      .00044082      .010   .9918 
 MTTM:HIN|     .00078233       .00056928     1.374   .1694 
---------+Diagonal values in Cholesky matrix, L. 
 NsMGC   |     .01138907       .02143530      .531   .5952 
 NsMTTME |     .06637718       .07932744      .837   .4027 
---------+Below diagonal values in L matrix. V = L*Lt 
 MTTM:MGC|     .05922416       .09092201      .651   .5148 
---------+Standard deviations of latent random effects 
 SigmaE01|    1.44001740      3.62060512      .398   .6908 
 SigmaE02|    1.70126558      2.89949978      .587   .5574 
---------+Standard deviations of parameter distributions 
 sdMGC   |     .01138907       .02143530      .531   .5952 
 sdMTTME |     .08895746       .02886146     3.082   .0021 
 
This is the same model once again, now with Weibull distributed parameters. 
 
---------+Random parameters in utility functions 
 MGC     |   -2.84950808       .77609997    -3.672   .0002 
 MTTME   |   -1.31927880      1.29537623    -1.018   .3085 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    10.1003905      1.80393746     5.599   .0000 
 A_TRAIN |    8.04274180      1.64404555     4.892   .0000 
 A_BUS   |    7.04388422      1.83042969     3.848   .0001 
---------+Heterogeneity in mean, Parameter:Variable 
 MGC:HIN |    -.00573905       .01801325     -.319   .7500 
 MTTM:HIN|     .00675433       .00355598     1.899   .0575 
---------+Diagonal values in Cholesky matrix, L. 
 WsMGC   |     .24147776       .37415604      .645   .5187 
 WsMTTME |     .00503652       .68300577      .007   .9941 
---------+Below diagonal values in L matrix. V = L*Lt 
 MTTM:MGC|    -.49268390       .11909663    -4.137   .0000 
---------+Standard deviations of latent random effects 
 SigmaE01|     .99017999      6.82984761      .145   .8847 
 SigmaE02|    2.08605480      3.40861849      .612   .5405 
---------+Standard deviations of parameter distributions 
 sdMGC   |     .24147776       .37415604      .645   .5187 
 sdMTTME |     .49270964       .12066246     4.083   .0000 
 
 The ASCs in the three models resemble one another, but the coefficients on the attributes are 
vastly different, and would seem to suggest very different models.  In fact, that is not the case, as we 
now examine.  In order to compare these sets of estimates, we propose to examine the estimated 
conditional means.  We will use two devices.  A direct approach is to examine the distribution of 
estimates of E[βi|*] across the observations in the sample.  The averages of the conditional means 
will estimate the population mean (averaged across zi as well).  The variances require a bit of 
manipulation, since as noted, the variance of the conditional means underestimates the overall 
variance (by the mean of the conditional variances).  We will also examine the distribution of 
conditional means in the sample with a kernel density estimator. 
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 First estimate the models.  The parameter estimates are shown above. 
 
 SAMPLE ; All $ 
 CREATE ; mgc = -gc ; mttme = -ttme $ 
 CLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs = mgc,mttme ; Rh2 = one $ 
 CALC        ; bgmnl = b(1) ; btmnl = b(2) $ 
 RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200  
   ; Fcn  = mgc(n),mttme(n) ; Correlated $ 
 MATRIX ; bn = beta_i ; sn = sdbeta_i $ 
 RPLOGIT ; Lhs = mode ; Choices = air,train,bus,car 
   ; Rhs  = mgc,mttme ; Rh2 = one 
   ; ECM = (air,car),(train,bus) ; RPL = hinc 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200  
   ; Fcn  = mgc(w),mttme(w) ; Correlated $ 
 MATRIX  ; bw = beta_i ; sw = sdbeta_i $ 
 
Now, move the matrices to the data area so we can examine them. 
 
 SAMPLE  ; 1 - 70 $ 
 CREATE  ; bgn = 0 ; btn = 0 ; bgw = 0 ; btw = 0 $ 
 CREATE  ; sgn = 0 ; stn = 0 ; sgw = 0  ; stw = 0  $ 
 NAMELIST    ; betan = bgn,btn  ; betaw = bgw,btw $ 
 NAMELIST ; sbetan = sgn,stn ; sbetaw = sgw,stw $ 
 CREATE  ; betan = bn $ 
 CREATE  ; betaw = bw  $ 
 CREATE  ; sbetan = sn   $ 
 CREATE  ; sbetaw = sw  $ 
 
Now compare the different estimates.  The results below show that the normal and Weibull 
coefficients are much more similar than the raw parameter estimates would suggest. We first 
estimate the population means by averaging the conditional means. 
 
 CALC   ; List ; bgmnl ; Xbr(bgn) ; Xbr(bgw) $ 
 CALC   ; List ; btmnl  ; Xbr(btn) ; Xbr(btw)$ 
 
These are the three estimates of E[βgc] 
 
 BGMNL   =       .015784 

 Result  =       .031987         (Normally distributed) 
 Result  =       .031688         (Weibull distributed) 
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These are the three estimates of E[βttme] 
  
 BTMNL   =       .097091 

 Result  =       .166242         (Normally distributed) 
 Result  =       .169459         (Weibull distributed) 
 
Are the correlations the same?  Note these are the correlations of the conditional means, not the 
correlations of the coefficients. 
 
 CALC   ; List ; Cor(bgn,btn) ; Cor(bgw,btw) $ 
  
 Result  =       .962738   (Two normally distributed parameters) 
 Result  =       .723847   (Two Weibull distributed parameters) 
 
What about the population standard deviations? The following estimate the standard deviations of 
the population marginal distribution of the two parameters.  Once again, the similarity is striking 
given the quite large differences in the estimates of the structural parameters. 
 
 CREATE  ; vbgn = sgn^2 ; vbtn = stn^2 ; vbgw = sgw^2 ; vbtw = stw^2 $ 
 CALC   ; List  ; sdbgn = Sqr(xbr(vbgn) + Var(bgn))  
    ; sdbgw = Sqr(xbr(vbgw) + Var(bgw)) 
    ; sdbtn = Sqr(xbr(vbtn) + Var(btn)) 
    ; sdbtw = Sqr(xbr(vbtw) + Var(btw)) $ 
  
 SDBGN   =       .011456 
 SDBGW   =       .009629 
 SDBTN   =       .089567 
 SDBTW   =       .088368 
 
A final comparison is based on the kernel density estimators for the distributions of the conditional 
means.  Only the two for βgc are shown. 
 
 KERNEL  ; Rhs = bgn ; Title = Kernel Density for E[b_gc|*,normal] 
   ; Endpoints = .01,.05 $ 
 KERNEL  ; Rhs = bgw ; Title = Kernel Density for E[b_gc|*,Weibull] 
   ; Endpoints = .01,.05 $ 
 KERNEL  ; Rhs = btn ; Title = Kernel Density for E[b_ttme|*,normal]$ 
 KERNEL  ; Rhs = btw ; Title = Kernel Density for E[b_ttme|*,Weibull]$ 
 
Based on the results obtained thus far, it seems that the impact of the Weibull specification is to 
increase the variance of the empirical distribution. 
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Figure 10.8  Kernel Densities for Parameter Distributions 

 
10.7.3 Conditional Confidence Intervals for Parameters 
 
 Finally, we consider an alternative approach to examining the distribution of parameters 
across individuals.  We have for each individual, an estimate of the mean of the conditional 
distribution of parameters from which their specific vector is drawn.  This is the estimate of E[βi|i] 
that is in row i of beta_i.  We also have an estimate of the standard deviation of this conditional 
distribution.  As a general result, an interval in a distribution for a continuous random variable 
defined by the mean plus and minus two standard deviations will encompass 95% or more of the 
mass of the distribution.  This enables us to form a sort of confidence interval for βi itself, 
conditioned on all the information known about the individual.  To roughly this level of confidence, 
the interval  
 
 E[βik|all information on individual i] + 2×SD[βik|all information on individual i] 
 
will contain the actual draw for individual i.  (The probability is somewhat reduced because we are 
using estimates of the structural parameters, not the true values.)  The centipede plot feature of 
PLOT allows us to produce this figure, as follows:  We plot the figure for βgc for the Weibull model: 
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 The commands are: 
 
 CREATE ; lowerbgc = bgw - 2*sgw ; upperbgc = bgw + 2*sgw $ 
 CREATE ; person = Trn(1,1) $ 
 CALC   ; meanbgw = Xbr(bgw) $ 
 CALC  ; highbgw = meanbgw + 2*sdbgw $ 
 CALC  ; lowbgw = meanbgw - 2*sdbgw $ 
 PLOT  ; Lhs = person ; Rhs = lowerbgc,upperbgc  
   ; Centipede 
   ; Title = Confidence Limits for b_gc for Weibull Model 
   ; Bars = meanbgw,highbgw,lowbgw 
   ; Endpoints = 0,75 $ 
 

 
Figure 10.9  Conditional and Unconditional Distributions of Parameters 

 
In the figure, each vertical ‘leg’ of the centipede plot shows the conditional confidence interval for 
βgc for that person.  The dot is the midpoint of the interval, which is the point estimate.  The center 
horizontal bar in the figure shows the mean of the conditional means, which estimates the population 
mean.  This was reported earlier as 0.031688.  The upper and lower horizontal bars show the overall 
mean plus and minus twice the estimated population standard deviation – this was reported earlier as 
0.009629.  Thus, the unconditional population range of variation is estimated to be about .01 to .05.  
Note that this is the range of variation in the kernel density estimates given in Figure 10.8.  Figure 
10.9 demonstrates clearly how the additional information for each individual is used to reduce the 
‘uncertainty’ about the individual specific estimates. 
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10.7.4 Willingness to Pay Estimates  
 
 The previous section showed how to estimate a function of the random (or nonrandom) 
parameters using the simulation method.  We estimated the conditional variance using a simulation 
based estimator of E[βi

2|all information on individual i].  Another useful function of the parameters 
in the model is the ‘willingness to pay function.’  This is typically measured using 
 
   WTP = attribute coefficient / income or price coefficient 
 
The random parameters logit model will compute and retain person specific WTP measures.  Use 
 

  ; WTP = name/name  
 
where names are either variable names if ; Rhs is used or parameter names if utility functions are 
specified directly.  In general, the WTP calculation will have an attribute level coefficient in the 
numerator and a cost or income measure in the denominator.  Parameters can be random or 
nonrandom.  This will create two matrices, wtp_i and sdwtp_i.  These are computed the same way 
that beta_i and sdbeta_i are computed, where wtp_i contains estimates of the conditional expectation 
of WTP and sdwtp_i contains estimates of the conditional standard deviation.  These matrices can be 
examined and analyzed in precisely the same way that beta_i was used earlier.  You may compute 
more than one WTP variable by adding additional ratios in the command separated by commas.  For 
example, 
 
   ; WTP  =  time/income, space/price 
 
 To illustrate, we use the Weibull model once again, with a small modification: 
 

RPLOGIT ; Lhs  = mode ; Choices = air,train,bus,car 
   ; Rhs  = mgc,mttme,hinca ; Rh2 = one 
   ; ECM = (air,car),(train,bus) 
   ; WTP = mttme/hinca 
   ; Fcn = mgc(w),mttme(w) ; Correlated 
   ; Parameters ; Halton ; Pds = 3 ; Pts = 200 $ 
 
The willingness to pay is computed as the ratio of the terminal time in minutes to the income 
variable, hinca – this equals income for the air alternative and zero otherwise.  The basic coefficient 
estimates are 
 
---------+Random parameters in utility functions 
 MGC     |   -3.10624315       .69007784    -4.501   .0000 
 MTTME   |   -1.22068334      1.01138340    -1.207   .2275 
---------+Nonrandom parameters in utility functions 
 HINCA   |     .02916424       .02180170     1.338   .1810 
 A_AIR   |    8.30401343      1.72839556     4.804   .0000 
 A_TRAIN |    7.44116617      1.45457284     5.116   .0000 
 A_BUS   |    6.50022714      1.60098502     4.060   .0000 
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As before, the structural parameters do not suggest what the implied parameters will look like.  For 
these data, the estimated WTP values for the first 10 individuals (copied from wtp_i) are 
 

8.048, 7.11862, 6.41581, 8.01403, 8.31522, 5.56074, 4.42096, 1.58768, 2.36362, 3.1795,  
 
The overall average computed by averaging the 70 values in the matrix is 5.23031.  This is in 
$/minute. 
 
10.8 Applications 
 
 The preceding sections contain numerous examples of the mixed logit model.  The 
applications below show a few of the most basic procedures.  This is a basic formulation with two 
random parameters and heterogeneity in the means as a function of household income. 
 

RPLOGIT  ; Lhs = mode  
; Choices = air,train,bus,car  
; Rhs = gc,ttme 
; Rh2 = one 
; RPL = hinc  
; Fcn = gc(n),ttme(n)  
; Effects: gc(air) $ 
 

+---------------------------------------------+ 
| Discrete choice and multinomial logit models| 
+---------------------------------------------+ 
+---------------------------------------------+ 
| Start values obtained using MNL model       | 
| Maximum Likelihood Estimates                | 
| Dependent variable               Choice     | 
| Number of observations              210     | 
| Log likelihood function       -199.9766     | 
| Info. Criterion: AIC =          1.95216     | 
|   Finite Sample: AIC =          1.95356     | 
| Info. Criterion: BIC =          2.03185     | 
| Info. Criterion:HQIC =          1.98438     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .29526  .28504 | 
| Chi-squared[ 2]          =    167.56429     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
 

+---------------------------------------------+ 
| Notes No coefficients=> P(i,j)=1/J(i).      | 
|       Constants only => P(i,j) uses ASCs    | 
|         only. N(j)/N if fixed choice set.   | 
|         N(j) = total sample frequency for j | 
|         N    = total sample frequency.      | 
|       These 2 models are simple MNL models. | 
|       R-sqrd = 1 - LogL(model)/logL(other)  | 
|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 
|         nJ   = sum over i, choice set sizes | 
+---------------------------------------------+ 
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+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01578374       .00438279    -3.601   .0003 
 TTME    |    -.09709052       .01043509    -9.304   .0000 
 A_AIR   |    5.77635901       .65591873     8.807   .0000 
 A_TRAIN |    3.92300113       .44199360     8.876   .0000 
 A_BUS   |    3.21073472       .44965283     7.140   .0000 
 
+---------------------------------------------+ 
| Random Parameters Logit Model               | 
| Dependent variable                 MODE     | 
| Number of observations              210     | 
| Log likelihood function       -182.9290     | 
| Number of parameters                  9     | 
| Info. Criterion: AIC =          1.82789     | 
|   Finite Sample: AIC =          1.83218     | 
| Info. Criterion: BIC =          1.97134     | 
| Info. Criterion:HQIC =          1.88589     | 
| Restricted log likelihood     -291.1218     | 
| McFadden Pseudo R-squared      .3716412     | 
| Chi squared                    216.3857     | 
| Degrees of freedom                    9     | 
| Prob[ChiSqd > value] =         .0000000     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| No coefficients   -291.1218  .37164  .36253 | 
| Constants only    -283.7588  .35534  .34599 | 
| At start values   -199.9766  .08525  .07199 | 
| Response data are given as ind. choice.     | 
| Replications for simulated probs. = 500     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Random parameters in utility functions 
 GC      |    -.01871422       .01712611    -1.093   .2745 
 TTME    |    -.17600015       .04467395    -3.940   .0001 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    11.0829925      2.37916582     4.658   .0000 
 A_TRAIN |    9.22867193      2.20639245     4.183   .0000 
 A_BUS   |    8.19884828      2.10499796     3.895   .0001 
---------+Heterogeneity in mean, Parameter:Variable 
 GC:HIN  |    -.00029029       .00036724     -.790   .4293 
 TTME:HIN|    -.00060674       .00061444     -.987   .3234 
---------+Derived standard deviations of parameter distributions 
 NsGC    |     .01364904       .02015496      .677   .4983 
 NsTTME  |     .11712864       .03885999     3.014   .0026 
 
Parameter Matrix for Heterogeneity in Means. 
 
Matrix Delta    has  2 rows and  1 columns. 
         HINC 
        +-------------- 
GC      |    -.00029 
TTME    |    -.00061 
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+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.8246     .4614   | 
|       Choice=TRAIN              .7617     .7464   | 
|       Choice=BUS               1.0439     .9282   | 
|       Choice=CAR                .2897     .6635   | 
+---------------------------------------------------+ 
 
 This is a two level hierarchical model.  There are no random parameters, but the coefficients 
on gc and ttme are modeled as linear functions of a constant and household income. 
 
 RPLOGIT ; Lhs  = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one 
   ; RPL = hinc 
   ; Fcn = gc(c),ttme(c) $ 
 
Normal exit from iterations. Exit status=0. 
+---------------------------------------------+ 
| Random Parameters Logit Model               | 
| Dependent variable                 MODE     | 
| Number of observations              210     | 
| Log likelihood function       -198.3960     | 
| Info. Criterion: AIC =          1.95615     | 
|   Finite Sample: AIC =          1.95879     | 
| Info. Criterion: BIC =          2.06772     | 
| Info. Criterion:HQIC =          2.00126     | 
| Restricted log likelihood     -291.1218     | 
| McFadden Pseudo R-squared      .3185122     | 
| Chi squared                    185.4517     | 
| Degrees of freedom                    7     | 
| Prob[ChiSqd > value] =         .0000000     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| No coefficients   -291.1218  .31851  .31086 | 
| Constants only    -283.7588  .30083  .29297 | 
| At start values   -199.9766  .00790 -.00324 | 
| Response data are given as ind. choice.     | 
| Replications for simulated probs. = 500     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Random parameters in utility functions 
 GC      |    -.01139658       .00920685    -1.238   .2158 
 TTME    |    -.08786478       .01174507    -7.481   .0000 
---------+Nonrandom parameters in utility functions 
 A_AIR   |    5.84415090       .65860452     8.874   .0000 
 A_TRAIN |    3.96545510       .44224936     8.967   .0000 
 A_BUS   |    3.25638033       .45029696     7.232   .0000 
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---------+Heterogeneity in mean, Parameter:Variable 
 GC:HIN  |    -.00010094       .00020965     -.481   .6302 
 TTME:HIN|    -.00028132       .00017922    -1.570   .1165 
---------+Derived standard deviations of parameter distributions 
 CsGC    |       .000000    ......(Fixed Parameter)....... 
 CsTTME  |       .000000    ......(Fixed Parameter)....... 
Parameter Matrix for Heterogeneity in Means. 
Matrix Delta    has  2 rows and  1 columns. 
         HINC 
        +-------------- 
GC      |    -.00010 
TTME    |    -.00028 
 
10.9 Panel Data 
 
 The random parameters model includes a treatment for panel data.  Two forms are 
accommodated.  For a simple clustering of Ti choice situations by the same individual, for  example, 
a stated preference survey in which several different scenarios are offered, then a random effects 
type of treatment might be appropriate.  For example, the sequencing of choices might be unknown.  
In this case, the usual random effects setup would apply 
 
   βit =  β  +  ∆zit  +  Γvi 
 
where ‘t’ indexes the multiple observations for individual ‘i.’  The connection to ‘time’ might not 
hold here, but we use the same index regardless.  Note that the heterogeneity in the mean may 
change from one observation to the next (or not, depending on your situation), but the random term, 
vi is the same for all observations.  As in all panel data situations in NLOGIT, the number of 
observations, Ti on individual i may vary by individual.  An alternative situation might arise when 
choice situations are observed in sequence, and there is a long enough lag between situations that the 
effect of the passage of time might be to allow preferences to evolve – consider, for example, cases 
in which habit persistence influences the choice (mode of travel to work), but new information enters 
the system.  In such a case, an autoregressive arrangement might be appropriate; 
 
   βit =  β  +  ∆zit  +  Γvit 

   vit =  Rvi,t-1  +  uit 
 
where R is a diagonal matrix of autocorrelation coefficients and uit constitutes the primitive 
randomness in the system. 
 The two situations are requested by first specifying the panel as usual with 
 
   ; Pds = Ti 
 
where Ti is either a fixed number of observations or a variable which gives the number of 
observations.  In this setting, the panel consists of groups of Ti sets of Ji observations.  In all cases, Ti 
tells the number of groups of data.  You may have a variable number of observations and a variable 
number of choices within a group or any of the other three possible combinations.  In our examples 
below, J = 4 – a fixed number of choices.  In one case,  Ti = 3, so in this case, there are 12 rows of 
data for each person.  In the other case, there are six observations in a group, so 24 rows of data per 
person.  If the number of observations in a group varies, so Ti is the name of a count variable, this 
count is repeated on every row of data within an observation, and for every observation in the group. 
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 The autoregressive model is requested by adding 
 
   ; AR1 
 
to the NLOGIT command.  You may also constrain the autoregressive model with 
 
   ; AR1 = list of values 
 
where the list may contain symbols for free parameters or specific numerical values, including zero 
if you do not wish for specific coefficients to evolve in this fashion. 
 To illustrate the panel data models, we will artificially treat our clogit data as if it were a 
panel.  (It is not.)  For the first model, we collect the observations in groups of three, and treat it as a 
random effects model.  For the second, we collect the observations in groups of six, and fit an AR1 
model to them.  Since these data are, in fact, a cross section, we should not expect much of the 
estimates. 
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Chapter 11: The Multinomial Probit Model 
 
11.1 Introduction 
 
In the multinomial probit (MNP) model, the individual’s choice among J alternatives is the one with 
maximum utility, where the utility functions are 
 
      Uji  =  β′xji  +  εji, 
 
where Uji  = utility of alternative j to individual i, 

xji   = union of all attributes that appear in all utility functions.  For some alternatives, 
  xi,tk may be zero by construction for some attribute k which does not enter their 
  utility function for alternative j, 

εji  =  unobserved heterogeneity for individual i and alternative j. 
 
The multinomial logit model specifies that εji are draws from independent extreme value 
distributions (which induces the IIA condition).  In the multinomial probit model, we assume that εji 
are normally distributed with standard deviations Sdv[εji] = σj and correlations Cor[εji, εmi]  =  ρjm 
(the same for all individuals).  Observations are independent, so Cor[εji,εms ] = 0 if i is not equal to s, 
for all j and m.  A variation of the model allows the standard deviations and covariances to be scaled 
by a function of the data, which allows some heteroscedasticity across individuals. 

The correlations ρjm are restricted to -1 < ρjm < 1, but they are otherwise unrestricted save for 
a necessarily normalization.  The correlations in the last row of the correlation matrix must be fixed 
at zero.   The standard deviations are unrestricted with the exception of a normalization – two 
standard deviations are fixed at 1.0 – NLOGIT fixes the last two.  In principle, up to 20 alternatives 
may be in the model, but our experience thus far is that this model is extremely difficult to estimate, 
and will usually not be estimable with a completely free correlation matrix even with only five 
alternatives. The difficulty increases greatly with the number of alternatives.  (Imposition of 
constraints which may improve this situation is discussed below.) 
 This model may also be fit with panel data.  In this case, the utility function is modified as 
follows: 
      Uji,t  =  β′xjt,t  +  εji,t  +  vji,t, 
 
where ‘t’ indexes the periods or replications.  There are two formulations for vji,t,  
 
 Random effects   vji,t =  vji,s  (the same in all periods), 

 First order autoregressive vji,t   =  αj vji,t-1  +   aji,t. 
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11.2 Model Command 
 
This is a one level (nonnested) model.  The setup is identical to the multinomial logit model with one 
level. To request it, use 
 
         MNPROBIT  ; Lhs = ... ; Choices = ... 

               ; Rhs = ... or ; Model: U (...) =... / U (...) = ... all as usual 
  ; ... any other options  $ 

 
(The alternative model command used in earlier versions of NLOGIT, NLOGIT ; MNP is 
equivalent and may be used instead.)   

Options include 
 
                 ; Prob = name  to use for estimated probabilities 
                 ; Utility = name  to use for estimated utilities 
 
and the usual other options for output, technical output, elasticities, descriptive statistics, etc.  (See 
Chapters 6 and 7 for details.)  There are some special cases for this estimator:  
 

• The number of alternatives must be fixed – it may not vary across observations. 
• The choice set must be fixed.   
• Choice based sampling is not supported, though you can use ordinary weights. 
• Data may be individual, proportions, or frequencies. 

 
(The second derivatives matrix is not computed for this model, so it is not possible to compute a 
robust covariance matrix estimator.)  An additional option is 
 
 ; Pts = number of replications to compute multivariate normal probabilities 
 

The following features of NLOGIT are not available for this model: 
 

; Tree ...  This is not a nested logit model. 
; Ivb = name, ; Ivl = name, ; Ivt = name  No inclusive values are computed. 
; IIA = list    IIA is not testable here, since it is not imposed. 
; Cprob = name Conditional and unconditional probabilities are the same. 
; Ranks    This estimator may not be based on ranks data. 
; Scale ...    Data scaling is only for the nested logit model. 
 
The command builder may also be used for this model by selecting Model/Discrete 

Choice/Multinomial Probit, HEV, RPL.  The choice set and utility functions for the model are 
defined on the Main page and the MNP format of the model is selected on the Options page.  See 
Figures 11.1 and 11.2 for the setup of the model shown in the application below. 
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Figure 11.1  Main Page of Command Builder for the MNP model 

 

 
Figure 11.2  Options Page of Command Builder for the MNP model 
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11.3 An Application 
 
 The multinomial probit model based on the clogit data is estimated with the command 
 
 MNPROBIT ; Lhs = mode 
   ; Choices = air,train,bus,car 
   ; Rhs = gc,ttme 
   ; Rh2 = one,hinc 
   ; Effects: gc(air)  
   ; Pts  = 20 $ 
 
This is the model that was fit as an MNL model in Chapter 8.  We have now relaxed the equal 
variances assumption and replaced the extreme value distribution with a multivariate normal 
distribution.  The probabilities are computed with 20 replications, which is fairly small; we do this 
for purposes of a simple illustration.  Results are shown below.  The MNL model is fit first to obtain 
the starting values for the iterations.  The results for the MNP model are given next.  The two sets of 
results are merged in the display below. 
 
+---------------------------------------------+ 
| Discrete choice (multinomial logit) model   | 
| Dependent variable                 MODE     | 
| Log likelihood function       -189.5252     | 
| Info. Criterion: AIC =          1.88119     | 
|   Finite Sample: AIC =          1.88460     | 
| Info. Criterion: BIC =          2.00870     | 
| Info. Criterion:HQIC =          1.93274     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| Constants only    -283.7588  .33209  .31802 | 
| Chi-squared[ 5]          =    188.46723     | 
| Prob [ chi squared > value ] =   .00000     | 
| Response data are given as ind. choice.     | 
| Number of obs.=   210, skipped   0 bad obs. | 
+---------------------------------------------+ 
 
+---------------------------------------------+ 
| Multinomial Probit Model                    | 
| Log likelihood function       -189.8452     | 
| Info. Criterion: AIC =          1.93186     | 
|   Finite Sample: AIC =          1.94070     | 
| Info. Criterion: BIC =          2.13906     | 
| Info. Criterion:HQIC =          2.01562     | 
| Restricted log likelihood     -291.1218     | 
| McFadden Pseudo R-squared      .3478840     | 
| Chi squared                    202.5532     | 
| Degrees of freedom                   13     | 
| Prob[ChiSqd > value] =         .0000000     | 
| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 
| No coefficients   -291.1218  .34788  .33414 | 
| Constants only    -283.7588  .33096  .31687 | 
| At start values   -216.5343  .12326  .10478 | 
+---------------------------------------------+ 
 
These are the estimates for the multinomial logit model 
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+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
 GC      |    -.01092735       .00458775    -2.382   .0172 
 TTME    |    -.09546055       .01047320    -9.115   .0000 
 A_AIR   |    5.87481336       .80209034     7.324   .0000 
 AIR_HIN1|    -.00537349       .01152940     -.466   .6412 
 A_TRAIN |    5.54985728       .64042443     8.666   .0000 
 TRA_HIN2|    -.05656186       .01397335    -4.048   .0001 
 A_BUS   |    4.13028388       .67636278     6.107   .0000 
 BUS_HIN3|    -.02858418       .01544418    -1.851   .0642 
 

These are the estimates for the multinomial probit model 
 
+--------+--------------+----------------+--------+--------+ 
|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 
+--------+--------------+----------------+--------+--------+ 
---------+Attributes in the Utility Functions (beta) 
 GC      |    -.02333086       .00896463    -2.603   .0093 
 TTME    |    -.09131236       .03629673    -2.516   .0119 
 A_AIR   |    4.68057508      1.91530359     2.444   .0145 
 AIR_HIN1|     .00832932       .02520384      .330   .7410 
 A_TRAIN |    5.90782858      1.92699048     3.066   .0022 
 TRA_HIN2|    -.06016958       .02223662    -2.706   .0068 
 A_BUS   |    4.40097868      1.27339698     3.456   .0005 
 BUS_HIN3|    -.01884772       .01615587    -1.167   .2434 
---------+Std. Devs. of the Normal Distribution. 
 s[AIR]  |    2.85536857      1.29978748     2.197   .0280 
 s[TRAIN]|    1.96198515       .91344112     2.148   .0317 
 s[BUS]  |    1.00000000    ......(Fixed Parameter)....... 
 s[CAR]  |    1.00000000    ......(Fixed Parameter)....... 
---------+Correlations in the Normal Distribution 
 rAIR,TRA|     .12923578       .74351679      .174   .8620 
 rAIR,BUS|     .11759913       .92452141      .127   .8988 
 rTRA,BUS|     .61859572       .38300577     1.615   .1063 
 rAIR,CAR|       .000000    ......(Fixed Parameter)....... 
 rTRA,CAR|       .000000    ......(Fixed Parameter)....... 
 rBUS,CAR|       .000000    ......(Fixed Parameter)....... 
 

The table below compares the elasticities from the MNP model to the MNL model.  The MNL 
results appear first.  They are clearly similar, but the specification does make a difference. 
 
+---------------------------------------------------+ 
| Elasticity             averaged over observations.| 
| Attribute is GC       in choice AIR               | 
| Effects on probabilities of all choices in model: | 
| * = Direct Elasticity effect of the attribute.    | 
|                                  Mean    St.Dev   | 
| *     Choice=AIR               -.8019     .3834   | 
|       Choice=TRAIN              .3198     .3370   | 
|       Choice=BUS                .3198     .3370   | 
|       Choice=CAR                .3198     .3370   | 
+---------------------------------------------------+ 
| Effects on probabilities of all choices in model: | 
| *     Choice=AIR              -1.0453     .4797   | 
|       Choice=TRAIN              .3796     .3184   | 
|       Choice=BUS                .5557     .3826   | 
|       Choice=CAR                .4221     .2957   | 
+---------------------------------------------------+ 
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11.4 Testing IIA with a Multinomial Probit Model 
 

A multinomial probit model with all standard deviations equal to one and uncorrelated 
random terms specifies a model with the IIA property.  This means that you could test this property 
by using an LR or LM test of the assumption that all of the standard deviations in a model with 
uncorrelated disturbances are equal.  This parametric test is likely to be a more powerful test than 
the McFadden/Hausman test, first, because it is based on the Neyman-Pearson methodology and, 
second, because it will always use the entire sample.  You could do it as follows: 

 
CALC  ; Ran (seed for generator) $ 
MNPROBIT ; ... specify the choices and utility functions  
  ; Cor = 0 $ 
CALC  ; lu = logl $ 
CALC  ; Ran (same seed for generator) $ 
MNPROBIT ; ... specify the choices and utility functions 
  ; Sdv = 1  

; Cor = 0 $ 
CALC  ; lr = logl 
  ; List  

; lrstat = 2 * (lu - lr) $ 
 
We applied this procedure in passing in the preceding section. The log likelihoods for the three 
models estimated were 
 

Most restrictive:   σj = 1, ρjm = 0 Log likelihood = -195.5496 

Restrictive:  σj = 1  Log likelihood = -194.9204 

Unrestricted:    Log likelihood = -189.5252. 
 
In principle, a test of the first assumption as the null hypothesis against the alternative of the second 
is sufficient to reject IIA.  We found the chi squared to be 10.132 with two degrees of freedom.  The 
critical value is 5.99, so the hypothesis is rejected.  A test of the third model against the null of the 
first produced a chi squared of 12.048 with five degrees of freedom.  The critical value is 11.07, so 
once again the hypothesis is rejected.  Which test should be preferred is uncertain.  Under the null 
hypothesis, the estimated parameters in the second model are more precisely estimated, so this may 
favor it.  We are unaware of any other evidence on the question. 
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Chapter 12: Diagnostics and Error Messages 
 
12.1 Introduction 
 
 The following is a complete list of diagnostics that will be issued by NLOGIT.  Altogether, 
there are over 1,000 specific conditions that are picked up by the command translation and 
computation programs in LIMDEP and NLOGIT.  Those listed here are specific to NLOGIT.  The 
full set of diagnostics is given in Chapter R18 of the LIMDEP Reference Guide.  Nearly all of the 
error messages listed below identify problems in commands that you have provided for the command 
translator to parse and then to pass on to the computation programs. 
 Most diagnostics are self explanatory and will be obvious.  For example,  
 

82  ;LHS - variable in list is not in the variable names table. 
 
states that your Lhs variable in a model command does not exist.  No doubt this is due to a 
typographical error – the name is misspelled.  Other diagnostics are more complicated, and in many 
cases, it is not quite possible to be precise about the error.  Thus, in many cases, a diagnostic will say 
something like ‘the following string contains an unidentified name’ and a part of your command will 
be listed – the implication is that the error is somewhere in the listed string.  Finally, some 
diagnostics are based on information that is specific to a variable or an observation at the point at 
which it occurs.  In that case, the diagnostic may identify a particular observation or value.  In the 
listing below, we use the conventions: 
 
 <AAAAAAAA> indicates a variable name that will appear in the diagnostic, 
 <nnnnnnnnnnnn> indicates an integer value, often an observation number, that is given, 
 <xxxxxxxxxxxx> indicates a specific value that may be invalid, such as a ‘time’ that is 
    negative. 
 
The listing below contains the diagnostics and, in some cases, additional points that may help you to 
find and/or fix the problem.  The actual diagnostic you will see in your output window is shown in 
the Courier font, such as appears in diagnostic 82 above. 
 We note it should be extremely rare, but occasionally, an error message will occur for 
reasons that are not really related to the computation in progress.  (We cannot give an example – if 
we knew where it was, we would remove the source before it occurred.)  You will always know 
exactly what command produces a diagnostic – an echo of that command will appear directly above 
the error message in the output window.  So, if an absolutely unfathomable error message shows up, 
try simplifying the command that precedes it to its bare essentials, and by building it up, reveal the 
source of the problem. 
 Finally, there are the ‘program crashes.’  Obviously, we hope that these never occur, but they 
do.  The usual ones are division by zero and exponent overflow.  Once again, we cannot give specific 
warnings about these, since if we could, we would fix the problem.  If you do get one of these and 
you cannot get around it, please contact us at support@nlogit.com. 
 
  

mailto:support@nlogit.com�
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12.2 Discrete Choice (CLOGIT) and NLOGIT 
 
1000 FIML/NLogit is not enabled in this program. 
 
1001 Syntax problem in tree spec or expected ; or $ not found.    
 
1002 Model defines too many alternatives (more than 100).         
 
1003 A choice label appears more than once in the tree specification.      
 
1004 Number of observations not a multiple of # of alternatives.   

This is expected when you have a fixed choice set. 
 
1005 Problem reading labels, or weights for choice based sample.  
 
1006 Number of weights given does not match number of alternatives.  
 
1007 A choice based sampling weight given is not between zero and one. 
 
1008 The choice based sampling weights given do not sum to one. 
 
1009 Expected [ in limb specification was not found.              
 
1010 Expected ( in branch specification was not found.            
 
1011 A branch label appears more than once in the tree.           
 
1012 A choice label in a branch spec. is not in ;CHOICES list.     
 
1013 Branch specifications are not separated by commas.           
 
1014 One or more ;CHOICE labels does not appear in the tree.      
 
1015 One or more ;CHOICE labels appears more than once in tree.   
 
1016 The model must have either 1 or 3 LHS variables. Check spec.  
 
1017 Nested logit model must include ;MODEL:... or ;RHS spec.     

Found neither Model: nor RhS/Rh2.  
Your model specification is incomplete. 

 
1018 There is an unidentified variable name in the equation.      

In the ; Model: U (...) part of the command, one of your specified utility functions 
contains a variable name that is not in your data set. 

 
1019 Model specification exceeds an internal limit. See documentation.    
 RANK data can only be used for 1 level (nonnested) models. 

You have specified a nested logit model and requested rank data for the observed 
outcomes.  The nested logit model cannot be estimated with ranks data. 

 
1020 Not used specifically. May show up with a self explanatory 
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message. 
 
1021 Using Box-Cox function on a variable that equals 0? 
 
1022 Insufficient valid observations to fit a model. 
 
1023 Mismatch between current and last models.  

This occurs when you are using the ; Simulation = ... part of NLOGIT.  
 
1024 Failure estimating DISCRETE CHOICE model. 

Since this occurs during an attempt to compute the starting values for other models, if it 
fails here, it won’t succeed in the more complicated model. 

 
1025 Failed to fit model. See earlier diagnostic. 

This is a general diagnostic that precedes exit from the estimator.  An error condition has 
occurred, generally during estimation, not setup. 

 
1026 Singular VC may mean model is unidentified. Check tree.   

What looks like convergence of a nested logit model may actually be an unidentified 
model.  In this case, the covariance matrix will show up with at least one column of 
zeros.  Sometimes it is more subtle than this.  In a complicated model, the configuration 
of the tree may lead to nonidentification.  A common source is too many constant terms 
in the model. 

 
1027 Models - estimated variance matrix of estimates is singular.   

Non P.D. 2nd derivatives. Trying BHHH estimator instead. 
This is just a notice.  In almost all cases, the Hessian for a model that is not the simple 
MNL model will fail to be positive definite at the starting values.  This does not indicate 
any kind of problem. 

 
1028 In ;SIMULATION=list of alts, a name is unknown. 
 
1029 Did not find closing ] in labels[list]. 
 
1030 Error in specification of list in ;Choices=...labels[list]. 
 
1031 List in ;Choices=...labels[list] must be 1 or NALT values. 
 
1032 Merging SP and RP data. Not possible with 1 line data setup. 

Merging SP and RP data requires LHS=choice,NALTi,ALTij form. 
Check :MERGERPSP(id=variable, type=variable) for an error. 

 
1033  Indiv. <nnnnnn> with ID= <nnnnn> has same ID as another individual. 
 This makes it impossible to merge the data sets. 
 
1034 Specification error. Scenario must begin with a colon. 
 
1035 Expected to find Scenario: specification = value. 
 
1036 Unbalanced parentheses in scenario specified. 
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1037 Choice given in scenario: attr(choice...) is not in the model. 
 
1038 Cannot identify attribute specified in scenario. 
 
1039 Value after = in scenario spec is > 20 characters. 
 
1040 Cannot identify RHS value in scenario spec. 
 
1041 Transformation asks for divide by zero. 
 
1042 Can only analyze 5 scenarios at a time. 
 
1043 Did not find any valid observations for simulation. 
 
1044 Expected to find ; LIST : name_x ( choices ). Not found. 
 
1045 Did not find matching ( or [ in <scenario specification is given>. 
 
1046 Cannot recognize the name  <AAAAAAAA>  in  <scenario specification is 

given>. 
 
1047 Same as 1046. 
 
1048 None of the attributes requested appear in the model. 
 
1049 Model has no free parameters among slopes! 

This occurs during an attempt to fit the MNL model to obtain starting values for a nested 
logit or some other model. 

 
1050 DISC with RANKS. Obs= <nnnnnn>. Alt= <nn>. Bad rank given = <nnnn>. 

DISC w/ RANKS. Incomplete set of ranks given for obs. <nnnnnn>. 
These are data problems with the coding of the Lhs variable. 

 
1051 Singular VC matrix trying to fit MNL model. 

When the MNL breaks down, it will be impossible to fit a more elaborate model such as 
a nested logit model. 

 
1052 You did not provide ;FCN=label(distn),... for RPL model.   
 
1053  Scaling option is not available with HEV, RPL, or MNP model. 
  Ranks data may not be used with HEV, RPL, or MNP model. 
  Nested models are not available with HEV, RPL, or MNP model. 
  Cannot keep cond. probs. or IVs with HEV, RPL, or MNP model. 
  Choice based sampling not useable in HEV, RPL, or MNP model. 
 
These diagnostics are produced by problems setting up the scaling option for mixed data sets. 
 
1054  Scaling option is not available with one line data setup. 
  Ranks data may not be used with one line data setup. 
  Choice set may not be variable with one line data setup. 
  One line data setup requires ;RHS and/or ;RH2 spec.      
  Nested models are not available with one line data setup. 
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  Cannot keep probabilities or IVs with one line data setup. 
 
1055 Did not find closing paren in ;SCALE(list) spec. 

The list of variables to be scaled has an error. 
Only 40 or fewer variables may be scaled. 
You are attempting to scale the LHS variable. 
The list of values given for SCALE grid is bad. 
Grid must = Lo,Hi,N or Lo,Hi,N,N2. Check spec. 
Grid must have Low > 0 and High > low. Check #s. 
Number of grid points must be 2,3,... up to 20. 

 
1056 Unidentified name in IIA list. Procedure omitted. 
 
1057 More than 5 names in IIA list. Limit is 5. 
 
1058 Size variables only available with (Nested) MNL. 
 
1059 Cannot locate size variable specified. 
 
1060 Model is too large: Number of betas up to 90.  

Model is too large: Number of alphas up to 30.  
Model is too large: Number of gammas up to 15.  
Model is too large: Number of thetas up to 10.  

 
1061 Number of RHS variables is not a multiple of # of choices. 
 This occurs when you are using a one line setup for your data. 
 
1062 Expected ;FIX=name[...]. Did not find [ or ]. 
 
1063 In ;FIX=name[...], name does not exist: <name is given>. 
 
1064 Error in fixed parameter given for <name is given>. 
 
1065 Wrong number of start values given. 

This occurs with nested logit and other models, not the random parameters logit model. 
 
1066 Command has both ;RHS and Model: U(alts). Inconsistent. 
 
1067 Syntax problem in ;USET:(names list)= list of values. 
 
1068 ;USET: list of parms contains an unrecognized name. 
 
1069 Warning, ;IUSET: # values not equal to # names. 
 
1070 Warning, ;IUSET: # values not equal to # names. 
 
1071 Spec for RPL model is label(type) or [type]. Type=N,C,or L. 
 
1072 Expected ,;$ in COR/SDV/HFN/REM/AR1=list not found. 
 
1073 Invalid value given for correl. or std.dev. in list. 
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1074 ;COR/SDV=list did not give enough values for matrix. 
 
1075 Error. Expected [ in ;EQC=list[value] not found. 

Error:Value in EQC=list[value] is not a correlation. 
Error. Unrecognized alt name in ;EQC=list[value]. 
Error:List needs more than 1 name in EQC=list[value]. 
Error. A name is repeated in ;EQC=list[value]. 

 
1076 Your model forces a free parameter equal to a fixed one. 
 
1077 Covariance heterogeneity model needs nonconstant variables. 
 
1078 Covariance heterogeneity model not available with HEV model. 

Covariance heterogeneity model is only for 2 level models.  
Covariance heterogeneity model needs 2 or more branches. 

 
1079 At least one variance in the HEV model must be fixed.   

In NLOGIT, in the heteroscedastic extreme value, you have specified the model so that 
all the variances are free. But, for identification, one of them must be fixed.  

 
1080 Multiple observation RPL/MNP data must be individual. 
 
1081 Mismatch of # indivs. and number implied by groups. 

WARNING   Halton method is limited to 25 random parameters. 
 
1082 Not used. 
 
1083 MODEL followed by a colon was expected, not found. 
 
1084 Expected equation specs. of form U(...) after MODEL. 
 
1085 Unidentified name found in <string is given>. 
 This occurs during translation of ; Model: U (...) specifications. 
 
1086 U(list) must define only choices,branches, or limbs. 
 
1087 An equals sign was not found where expected in utility  

function definition. 
 
1088 Mismatched [ or ( in parameter value specification. 
 
1089 Could not interpret string; expected to find number. 
 
1090 Expected to find ;IVSET:=defn. at this point.  
 
1091 Expected to find a list of names in parens in IVSET. 
 
1092 IVSET:( list ) ... Unidentified name appears in (list). 
 
1093 You have given a spec for an IV parm that is fixed at 1. 
 
1094 You have specified an IV parameter more than once. 



Chapter 12: Diagnostics and Error Messages  173 

 

 
1095 Count variable  <nnnnnn> at row <nnnnnn> equals <nnnn>. 

The peculiar value for the count variable has thrown off the counter that keeps track of 
where the estimator is in the data set. 

 
1096 Choice variable  <AAAAAAAA>  at row  <nnnnn>: Choice= <nnnnn>. 
 The most likely cause is a coding error.  Check for bad data. 
 
1097 Obs. <nnnnnn>: Choice set contains <nnnn> <nnnn> times. 

The choice variable for individual data has more than one 1.0 in it.  NLOGIT cannot 
determine which alternative is chosen. 

 
1098 Obs. <nnnnnn> alt. <nnn> is not an integer  nor a proportion. 
 
1099 Obs. <nnnnnn> responses should sum to 1.0. Sum is <xxxxxx>. 
 
1100 Cannot classify obs. <nnnnnn> as IND, PROPs, or  FREQs.  

Your data appear to be a mix of individual and frequency data.  This occurs when an 
individual’s Lhs variable data include zeros.  It then becomes difficult to determine what 
kind of data you have.  You can settle the question by including ; Frequencies in your 
command, if that is appropriate. 

 
1101 # of parms in < list > greater than # choices in U(list). 
 
1102 RANK data can only be used for 1 level (nonnested) models. 
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