
1

A Quick Start Introduction to

NLOGIT 5 and LIMDEP 10

2

© 1986 - 2012 Econometric Software, Inc. All rights reserved.

 This software product, including both the program code and the accompanying

documentation, is copyrighted by, and all rights are reserved by Econometric Software, Inc. No

part of this product, either the software or the documentation, may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means without prior written permission of

Econometric Software, Inc.

 LIMDEP
®

 and NLOGIT
®

are registered trademarks of Econometric Software, Inc. All

other brand and product names are trademarks or registered trademarks of their respective

companies.

Econometric Software, Inc.

15 Gloria Place

Plainview, NY 11803

USA

Tel: +1 516-938-5254

Fax: +1 516-938-2441

Email: sales@limdep.com

Websites: www.limdep.com and www.nlogit.com

Econometric Software, Australia

215 Excelsior Avenue

Castle Hill, NSW 2154

Australia

Tel: +61 (0)4-1843-3057

Fax: +61 (0)2-9899-6674

Email: hgroup@optusnet.com.au

http://www.limdep.com/
http://www.nlogit.com/
mailto:hgroup@optusnet.com.au

3

Contents

I. Introduction 5

II. The Desktop: Startup NLOGIT or LIMDEP 6

III. Operating NLOGIT and LIMDEP 7

 A. Data Files 7

 B. Operating with the Menus and Dialogs 7

 C. Using Commands and the Command Editor 12

IV. Stopping, Restarting and Data Sets 15

V. NLOGIT Commands 17

 A. Commands in the Command Editor 17

 B. Names 17

 C. Command Structure 17

VI. Some Essential Operations 19

 A. The Active Sample 19

 B. Missing Values 20

 C. Transformations 20

 D. Variable Lists in Model Commands 21

 1. Categorical Variables 21

 2. Interaction Terms 21

 E. Panel Data 23

 F. Robust covariance Matrices and Cluster Corrections 24

VII Econometric Models 26

 A. Essential Models: Estimation Commands 26

 1. Descriptive Statistics 26

 2. Scatter Plot 27

 3. Histogram 27

 4. Kernel Density Estimator 28

 5. Linear Regression 28

 6. Instrumental Variables – 2SLS 29

 7. Binary Choice 29

 8. Count Data 32

 9. Ordered Choice Models 33

 10. Stochastic Frontier and Data Envelopment Analysis 34

 B. Post Estimation Model Results 36

 1. Predictions 36

 2. Simulations 36

 3. Partial Effects 37

 4. Retained Results 40

 C. Panel Data Forms 41

 1. Fixed Effects Models 41

 2. Random Effects Models 43

 3. Random Parameters Models 43

 4. Latent Class Models 44

4

VIII. Multinomial Logit and Multinomial Choice 46

 A. Data 46

 B. Basic Multinomial Choice Models and Choice Substitution Elasticities 47

 C. Multinomial Choice Models 50

 1. Multinomial Probit Model 50

 2. Nested Logit Model 51

 3. Mixed (Random Parameters, RP) Logit Model and Willingness to Pay (WTP) 52

 D. Stated Choice (Panel) Data 53

 1. Random Parameters Model 54

 2. Error Components (Random Effects) Logit Model 55

 3. Latent Class Multinomial Logit Model 56

IX. Tools 57

 A. Scientific Calculator – The CALC Command 57

 B. Matrix Algebra 58

 C. Procedures 60

D. Bootstrapping 62

E. Displaying Results 64

 E. WALD, SIMULATE and Standard Errors for Nonlinear Functions 65

 1. The WALD Command 65

 2. The SIMULATE Command 66

3. WALD or SIMULATE - Which Should You Use? 66

5

I. Introduction

This short getting started guide will show you how to operate NLOGIT and LIMDEP. The manuals for NLOGIT and

LIMDEP are several thousand pages long, and document hundreds of models, estimators, and other program

procedures. This guide will show you how to operate the program and use it to do some of the most common

calculations. The program’s interface uses the same basic forms for most of the functions it performs. Based on

what we do here, you will be able to construct command streams to do complex analyses using many of the features

of the program.

The two programs operate exactly the same way, with the same command set and user interface. NLOGIT 5 is in

fact, LIMDEP 10 plus one (extremely large) command set. This short manual will show how to operate both

programs. For convenience, the discussion will assume you are using NLOGIT, but everything noted applies equally

to LIMDEP as well. A short discussion in Section VIII will introduce the specific difference between NLOGIT and

LIMDEP.

6

II. The Desktop: Startup NLOGIT or LIMDEP

Your program is installed on your computer and you are ready to begin. There is an icon for NLOGIT 5 or LIMDEP

10 on your desktop, and the program is included in your startup menu. Launch your program.

When you first start the program your desktop will look as in Figure 1. (LIMDEP and NLOGIT use the same

desktop and functionality. You can see which program you are using by the name that appears at the upper left

corner of the desktop. Notice for our discussion here, we are using NLOGIT 5. Operation of the two programs is

identical. (The only difference between them is the (large) set of multinomial choice models that are supported in

NLOGIT and not in LIMDEP.) We note two small differences that may appear between our desktop in Figure 1 and

yours. First, the setting ‘U:38888 Rows: 38888’ appears at the top of the window at the left of our desktop. This is a

setting that we (you) can make that relates to how large a data set you want your program to be able to store. A

different value will appear the first time you launch the program. Second, the small editing window we call the

‘command bar’ that we have indicated with a red arrow in Figure 1 may not be present on your desktop. You can

install this as follows: click ToolsOptionsView – note the Tools menu item is above the tip of the red arrow –

then click in the check box next to ‘Display Command Bar’ and finally, click OK. This setting is fixed until you

change it. Finally, your row of buttons may be above your command bar, not below it. You can move this around

the screen as you like.)

The window that is open at the left of the desktop is called the ‘Project Window.’ There is a large amount of

functionality operated from this window, as will be clear shortly.

Figure 1. Initial Desktop

A Tip: NLOGIT uses a standard statistical package style, three window mode of operation. The first window you

will see is the ‘Project’ window. A project consists of the data you are analyzing and the results of your

computations, such as estimates of coefficients, other matrices you might have computed, and so on. As we’ll see

shortly, this window contains an inventory of the things you have computed – the inventory will grow as you

manipulate your data. You should never close the project window. Nearly all of the program functions operate only

when a project is active. You know that a project is active when the project window is present and open. (You can

minimize it with the left sizing button, . But, do not close it with the red button, .)

7

III. Operating NLOGIT and LIMDEP

NLOGIT provides both menu/dialog boxes and a command language that you can use to operate the program. All of

the basic functions of the program can be operated with either. However, many of the more complex operations,

including most of the involved models, are accessed only through the command language. We will take a quick

look at both of these now.

A. Data Files

You will use NLOGIT to analyze data. To get started, we’ll note a couple things about data. The data you use will

have to come from somewhere – probably a public data source, or in a file that you obtained from some external

source. (You can create data within NLOGIT, for example, by using the random number generators, but you will

rarely do this exclusively. Usually, created data are added to existing data sets.) Data files come in many forms.

NLOGIT can read many different kinds of files, and with modern interchange programs such as Stat Transfer, you

can convert files from many more sources that might be foreign to NLOGIT to a form that NLOGIT is comfortable

with. These issues are discussed in the manual. The most common generic file type used by contemporary

researchers is the ‘CSV’ format. A CSV file (i.e., ‘comma separated values’ format) has a line of variable names at

the top and rows of data below them, with values separated by commas, such as the data set in Figure 2 below.

Figure 2 show the data in a small demonstration file that we will use named IncomeData.csv. (In Figure 2, we are

viewing the contents of IncomeData.csv in NLOGIT’s text editor, which we’ll discuss below.)

Figure 2. A CSV File

B. Operating with the Menus and Dialogs

We’ll start by importing the data in IncomeData.csv into the program so that we can analyze them. Select

ProjectImportVariables… as shown in Figure 3. This will open a Windows Explorer as shown in Figure 4 that

you can use to navigate to your file. Make your way to where the file is installed on your computer. On your

computer, this should be in the C:\NLOGIT5 or C:\LIMDEP10 folder. It may be in some other folder depending on

how you installed this tutorial on your computer. Select IncomeData.csv in the menu.

8

Figure 3. Desktop Project Menu for Importing a CSV File

Figure 4. Windows Explorer

After you click Open, the data file will be imported into NLOGIT’s work area and will be ready for you to analyze

them. Note in the project window in Figure 1, within the window, in the ‘Data’ area, the first item (folder) is

‘Variables.’ There is nothing at the left of the title, however. After you import your data, the Variables folder will

indicate that it contains data, as shown in Figure 5. Note the + next to the folder name.

Figure 5. Variables Folder in Project Window

The project window will now indicate that there are 14 Rows of data – that is the number of observations in the data

file that we just read. If you click the + box at the left of Variables to open the folder, the list of variables that have

been read will be displayed, as shown in Figure 6. This is our active data set. You can visit the actual data by

activating the data editor. The button that will open the data editor is indicated by the red arrow in Figure 6. The

spreadsheet style data editor is shown in Figure 7. You can enter and replace data in the editor. After you examine

the data editor, you can minimize it or close it. (Closing the data editor only hides the display – it does nothing to

the active data set.)

9

Figure 6. Active Data Set.

Figure 7. Data Editor.

Since the data are ready to use, we will do some computations. From the desktop, select ModelLinear

ModelsRegression… as shown in Figure 8. This will open a dialog box (Figure 9) that we call a ‘Command

Builder.’ You’ll see why momentarily. We’ll build a regression command. First select the dependent variable

(INCOME) from the drop down menu as shown in Figure 9. The independent variables are chosen in the windows

below the dependent variable. Independent variables are selected by ‘selecting’ them in the right window, then

using ‘<<’ to move them to the left window, as shown in Figure 10. Select ONE, AGE and EDUC for our model.

A Tip: ONE is the constant term in the model. NLOGIT does not automatically place a constant term in any model.

It must be requested by including ONE (a program created variable) in the list of independent variables.

10

Figure 8. Model Menu

Figure 9. Command Builder: Dependent Variable

11

Figure 10. Command Builder: Independent Variables

After your model is specified in the command builder – note that there are other options on this page, and

two more tabs that promise still more options – press the ‘Run’ button at the lower right of the dialog box.

Run asks the program to compute the specified regression. A new window, the ‘Output Window’ opens

and displays your regression results. Note above the regression results, there is a line of green text. This

is the REGRESS command that was built by the command builder. This is the second window (the

data/project window is the first) noted as the three window format. The editing window discussed next is

the third.

Figure 11. Regression Results in Output Window

12

You have now launched the program, read a data set and computed a regression (without touching your

keyboard).Now, we will do the same operations using the NLOGIT’s command language. We’ll start a new session

to demonstrate this procedure. Like most other programs, you leave NLOGIT by using FileExit. The File menu is

where it always is in Windows programs, at the upper left of the desktop, and Exit is, as usual, at the bottom of the

menu. On your way out, you will be asked about saving the project, Untitled Project 1, and the output window,

Untitled Output 1. Click ‘NO’ both times and the program will close.

C. Using Commands and the Command Editor

We will now use NLOGIT’s command language to import the data and compute the regression. Commands are

issued by typing them in a text editing window and ‘submitting’ them to NLOGIT’s command processor.

Restart the program as before to produce the empty desktop as in Figure 1. Click File to open the menu as shown in

Figure 12. Select ‘New’ at the top of the menu, and the small dialog will open and offer to open a Text/Command

Document window or a Project. Select the Text/Command Document option. (You already have a project

open.)When you select the Text/Command Document option, the editing window shown in Figure 13 will open.

Figure 12. File Menu and New Dialog

This is the text editor. You can edit anything in it. (You can also have multiple text editing windows open at the

same time.) We will enter our commands in this window, then submit them to the command processor.

We want to do two operations right now, import our data file and compute a linear regression. We type the

commands in the editor. The two commands that we wish to carry out are ‘IMPORT’ and ‘REGRESS.’ We’ll say

more about the commands in a moment. First, type the string ‘import;file=’ in the first line of the window. Now,

it’s not sure exactly where the file is on your computer. If you know, you type the path to it after the equals sign.

File names are enclosed in double quotes. A $ character is used to end the instruction. (Always, all instructions.) If

you don’t know the path to the file, find it as follows: In the desktop menu, select InsertFile Path… and use the

Windows explorer to find your file (IncomeData.csv). This will place the file path in the line where you want it, and

you need only add the ending $ to complete the command. Press the Enter key. On the next line, type the

REGRESS command as shown. Note that it has some parts separated by semicolons and, as always, ends with a $.

13

A Tip: If you are using a desktop computer with a separate keyboard, use the alphabetic Enter key here. The Enter

key in the numeric keypad at the right of the keyboard is not the same when you are using NLOGIT. We’ll note why

shortly.

Figure 13. Text Editing Window

Figure 14. Text Editing Window

Now that your two commands are in the editing window, you can submit them. Highlight the two lines of text as if

you were about to copy them in an editor such as Microsoft Word. When the two lines are highlighted, press the

‘GO’ button that is noted by the red arrow in Figure 14. The output window will appear and will indicate that your

file was imported, and the regression was computed.

A Tip: Pressing the numeric keypad’s Enter key is the same as highlighting the one line that the cursor is in and

then clicking GO. This is how the two enter keys differ. You can always (and only) submit one line this way.

14

Figure 15. Commands Executed from Text Editor.

You are not limited to one or the other of these two modes of entering instructions. You can use either the command

editor or the menus and dialog boxes whenever you wish. In Figure 16, we have imported the data set using the

command editor, then run the regression with the command builder.

Figure 16. Using Both Commands and Dialog Boxes.

A Tip: Notice in Figure 11, the command builder has placed a copy of the command it created in the output

window. You can ‘copy’ this command in the output window, ‘paste’ it into the editing window, and submit it

again. This would be useful if you want to modify the command, for example by adding more independent

variables. (The command processor will ignore the leading ‘|->’ if you happen to include it in your copy of the

command.

15

IV. Stopping, Restarting and Data Sets

You should only import a data set once. When you exit the program, you are offered a chance to save your data (as

any modern program does). For NLOGIT, this is the project. The dialog in Figure 17 will appear when you select

FileExit. The project contains your active data set as well as a long list of other things you create as you operate

the program. You can save the project with any name (and at any time) with FileSave Project As... It will be

saved as an LPJ file – Windows recognizes this file extension. In Figure 18, we are saving the data in a work folder

as IncomeData.lpj. When the program is restarted, instead of importing the original data, we merely load the project.

The most recent 4 saved projects will appear in the File menu, In Figure 19, IncomeData.lpj appears in the File

menu, and can be selected to resume the analysis of the data. Note in the lower panel of Figure 19, the project file

name at the top of the desktop and at the top of the project window is IncomeData.lpj, rather than Untitled Project 1,

as it was before.

A Tip: The project will always be current. When you add variables, create new ones, for example by transforming

the raw data, the new variables are always saved in the project.

Another Tip: You can launch a project file from Windows Explorer – the same way that selecting a .docx file

launches Microsoft Word then imports the document.

A Third Tip: You can also save the text editor as a LIM file. The pair of files constitutes your entire working

session. You can resume a session exactly where you were when you exited by reloading these two files.

Figure 17. Saving the Project Upon Exit

Figure 18. Windows Explorer Saving a Project File

16

Figure 19. Reloading a Project from the File Menu

17

V. NLOGIT Commands

The menus and dialog boxes are helpful for operating the program. But, they are a bit inconvenient compared to the

command editor. Users generally quickly migrate to the command structure for most operations. With that in

mind, we will show the basic form of NLOGIT commands, and note some specific ones that you are certain to use.

Altogether, there are several hundred different commands and functions. You can operate a large fraction of the

program functionality with a few of the most important ones.

A. Commands in the Command Editor

There is a specific protocol for using the text editor to submit commands and a specific format for the commands,

themselves. In general, there are very few structures or restrictions. The command language is designed to be

convenient and self documenting. Instructions look like what they are requesting. For using the text editor:

 Case almost never matters. Notice in Figure 14, the verb in the REGRESS command is all in capital

letters whereas the rest of the command is a mix of caps and lower case. Case only matters for file names

and in the titles used for graphics and output tables that you construct (where you would want to use both

cases). Otherwise throughout the program, commands can any mix of lower case and upper case letters.

 Spacing only matters in titles and file names. Notice there are some spaces put in the REGRESS

command, for clarity. The spaces have no other meaning. In particular, lists of items are always delimited

by punctuation, usually commas, never by spaces. You can use spaces in commands anywhere you wish to

make them easier to read.

A Tip: You can copy commands out of documents such as Word files and paste them directly into the editor. Tab

characters will be treated like spaces. A warning, however, the Word dash character, –, is not the same as an ASCII

minus sign. You will generally have to change this manually.

 The number of lines used for a command is arbitrary. Line breaks are used for clarity and ease of

interpretation of commands. No special connector is needed to connect the lines of multiple line

commands. Some commands for complicated models have many parts, and breaking commands into

multiple lines is helpful for self documentation. For example,

 REGRESS ; LHS = income ; RHS = one,age,educ $

is exactly the same as

 REGRESS ; Lhs = income

 ; Rhs = one,age,educ

 $

B. Names

You will create many items, including variables, that have names. Names are limited to 8 characters. The first must

be a letter. Allowable characters are letters, digits and the underscore character. Since the program is not case

sensitive, different cases of letters do not create different variable names. Of course, since spaces have no meaning,

they may not appear in names (they are ignored) There are many types of names used in NLOGIT, including

variables, matrices, scalars, synonyms for lists of names, label lists, names used for model definitions, names for

output tables, and others. All obey the same conventions.

C. Command Structure

All commands are of the form

 VERB ; information ; information ; … $

18

Note the two commands in the text editor in Figure 14, IMPORT and REGRESS. There are altogether about 200

verbs that manage files, manipulate the data, fit models and do ancillary computations such as test hypotheses. The

common structure is as follows:

 Every command must begin on a new line

 Every command must end with a $ at the end of the last line.

 There is no restriction on how many lines may be used for a command

 There is no restriction on what may be included on specific lines.

 Commands may not have more than 10,000 nonblank characters. You will never come close to this

 limit.

You may have blank lines in your text editor even in the middle of the commands. Since you submit only the lines

you want executed, you may put any other text anywhere you wish in the editor. Explicit comment lines may be

inserted by beginning the text with a question mark. E.g.,

 ? This command computes a regression.

 REGRESS ; Lhs = income ; Rhs = one,age,educ $

A block of lines of text may be marked as comment. For example,

 /*

 The following commands carry out two regressions.

 The first uses x1.

 The second uses x1 and x2.

 */

 REGRESS ; Lhs = y ; Rhs = one,x1 $

 REGRESS ; Lhs = y ; Rhs = one,x1,x2 $

This construction would seem to be of marginal usefulness. One way it would be helpful would be for having

documentation in command files that you can execute directly with the Run menu Shown in Figure 20.

Figure 20. Run Menu for Run File…

19

VI. Some Essential Operations

The following lists a handful of operations that will be part of most analyses.

A. The Active Sample

When you import a data set, the active sample is all the observations in the data set. Figure 21 shows the income

data we are examining in our demonstration. There are 14 observations in the data set. Note, the 14 rows are

numbered and there is a chevron (») in each row. The » indicates that the observation is in the ‘current sample.’

The active sample can be changed in several ways. Three commands, SAMPLE, REJECT andINCLUDE are used

specifically to change the sample.

 SAMPLE ; n1 – n2 $

sets the sample to be rows n1 to row n2. For example,

SAMPLE ; 4 – 12 $

in the example would select the observations shown in Figure 21b. Note the chevrons are now only present for the

active subset of the data. The excluded observations are not lost. But, any operation that manipulates the data set

operates only on these observations. The full sample is restored with

SAMPLE ; All $

Figure 21a Active Data Set Figure 21b. Active Data Subset

The two other commands used directly to change the sample are

 REJECT ; condition $ such as REJECT ; age > 60 $,

which removes observations from the active sample, whatever it happens to be, and

 INCLUDE ; condition $ such as INCLUDE ; female = 1 $

which adds observations to the current sample, whatever it happens to be. These commands can be applied to the

full data set, or no dat set, respectively, by including ;New. For example,

20

 INCLUDE ; New ; Female = 1 $

starts with no observations, then adds to the empty data set all observations in the full data set that have Female = 1.

A Tip: In many cases, you will want to fit a model using a subset of the active data set, but not wish actually to

change the active data set. A model command can do that automatically. For example,

 REGRESS ; If [age < 60] ; Lhs = income ; Rhs = one,age,educ $

B. Missing Values

The internal missing value code is -999. In the data editor, -999 will appear as a blank. In general, you must inform

NLOGIT what to do about missing values. In general, NLOGIT only acts on missing data when you ask it to do so.

If your sample contains missing values and you make no indication, the -999s will be treated as ordinary data. A

global command to tell the program to bypass missing values when it fits models is

 SKIP $

In the desktop, you can use ProjectSettingsExecution and check the box for skipping missing data. SKIP$ is a

fixed setting. It persists from model to model. You can turn it off with NOSKIP$ if you wish.

A Tip: NLOGIT contains a large package for multiple imputation of missing values.

C. Transformations

You will usually want to compute transformed variables. The command is

 CREATE ; variable = expression ; variable = expression ; … $

The left hand variable may be a new variable created from existing variable(s) or may be an existing variable, which

will be replaced. For example,

 CREATE ; logincm = log(income) ; agesq = age^2 / 100 $

A common calculation is creating dummy variables. There are many ways to do so. For example, two ways to

create the variable YOUNG equal to 1 if AGE is less than 25 and 0 otherwise would be

 CREATE ; young = age < 50 $

and

 CREATE ; if(age < 50)young = 1 $

Note that the log income variable uses a function, log(.). There are over 200 functions supported, including log, exp,

abs, min, and many special functions. All functions have 3 character names. NLOGIT contains 20 different random

number generators, such as Rnn(mean,standard deviation) which computes a random sample of observations from a

normal distribution with the indicated mean and standard deviation. Functions may appear in expressions. For

example, to create a sample of observations from the F distribution with 5 and 27 numerator and denominator

degrees of freedom, you might use

 CREATE ; fsample = (rnx(5)/5) / (rnx(27)/27) $ (But, this would be the same as Rnf(5,27).)

The seed for the generators is set using

 CALC ; ran(value) $

You will use this to be able to replicate your analyses that use random values.

21

D. Variable Lists in Model Commands

Model commands contain lists of variables. The lists can be extremely long – possibly hundreds of variables. There

are several shortcuts provided. The primary device is

 NAMELIST ; name = list of variables $

For example,

 NAMELIST ; x = one,age,educ,female $

 REGRESS ; Lhs = income ; Rhs = x $

Namelists provide a convenient shortcut for model commands. They also serve many other functions. One major

one is defining data matrices. For example, to compute ‘by hand’ the least squares coefficient vector that is reported

by REGRESS above, we could use

 MATRIX ; bols = <x’x> * x’income $

The construction <matrix> is NLOGIT’s syntax for computing the inverse of a matrix. Note that the namelist and

the variable become a data matrix and a data vector when used in a matrix command.

1. Categorical Variables

Categorical variables are often used in models in the form of a set of dummy variables with one of the dummy

variables being dropped as the ‘base case.’ In the example below, rather than use EDUC in years, we have used

RECODE to creat a category variable ED which is 0 when EDUC is 0-9, 1 when EDUC is 10-12, and 2 when

EDUC is 13-20. The regression would then use dummy variables for the second and third categories. A special

format, #name, is used for category variables. It is not necessary actually to compute the dummy variables. Note

the results in Figure 22, which reports how the variable #ED has been used in the regression.

Figure 22. Categorical Variable in Regression

2. Interaction Terms

A second common feature of models is ‘interaction terms.’ In the model results in Figure 23, we have included

education, female, and an interaction between education and female. Note that the command contains the

interaction. We do this rather than computing a product variable, say CREATE;EducFeml=Educ*Female$

22

A Tip: Namelists may contain interactions. For example,

NAMELIST ; EdFem= female,educ*female $

REGRESS ; Lhs = income ; Rhs = one,age,edfem $

Note that EdFem is not a variable. It is a list of three variables, one of which is a product of two variables. You can

also include the interaction terms directly in the model command, as shown in Figure 23.

Figure 23. Interaction Effect in a Model

It is possible as well to have interactions of categorical variables and other variables, as shown in Figure 24.

Although it is unlikely that you would need it, it is also possible to have interactions of categorical variables. The

procedure is described in the manual.

Figure 24. Interaction of Categorical Variable with Other Variable

A Tip: It is easy to create multicollinearity with category variables and interactions. In all cases, NLOGIT will do

its best to compute the regression you specify. NLOGIT will never, upon detecting multicollinearity, drop some

variables and fit some model that you did not specify that does not have a multicollinearity problem. Decisions

about model specification are made by you, not the program.

23

E. Panel Data

All panel data applications are handled the same way. To set up the procedures, you will prepare an indicator

variable that NLOGIT will use to manage the data handling. Our 14 observation,IncomeData file is a panel, as can

be seen from the ID variable in Figure 25. NLOGIT assumes that a panel data set contains some kind of identifier

variable such as ID in Figure 25. The ID variable does not have to be a sequential set of integers. It can be anything

(it need not even be integers), so long as it takes the same value for every observation in a group and it changes (up

or down) from one group to the next. To set up a panel,at the beginning of your session, use

 SETPANEL ; Group = the id variable ; Pds = name for a variable that NLOGIT will now create $

The Pds variable will contain in each row of a group the number of observations in the group. You may use any

name you wish. We usually use Ti. Figure 25 shows the results of

 SETPANEL ; Group = id ; Pds = Ti $

NOTE: SETPANEL should be issued immediately after the data are imported.

A Tip: This works the same way for balanced or unbalanced panels. You need not worry about unbalanced panels.

A Second Tip: If you have a balanced panel with Tperiods (whatever T is) and you don’t have an ID variable, you

can create one with

 CREATE ; MyID = Trn(T,0) $ For example, Trn(10,0)

A third Tip: If you have an unbalanced panel and you do not have an ID variable, you cannot use this data set as a

panel. You must create the ID variable somehow. NLOGIT cannot do it for you.

A Last Tip: The SETPANEL setting is not etched into the project. When you save the project, SETPANEL is not

saved. When you reload the project, you must reissue the SETPANEL command.

SETPANEL creates some internal settings as well. Most panel versions of models are requested by just adding

;PANEL to the model command. If you change the sample from what it was when you issued the SETPANEL

command, this will break the counter variable. Not to worry. When your command contains ; PANEL, NLOGIT

recreates the counter so that it matches the observations in the active sample. In our example, if we were to

REJECT;Age>62$, the count for group 3 would be incorrect – it would change from 4 to 3. SETPANEL takes

care of this as it processes your model commands.

Figure 25. Panel Data

24

After the panel data set is defined with SETPANEL, the panel data versions of most models are invoked just by

adding ;Panel to the command, as shown in Figure 26.

Figure 26. Panel Data Regression Command

The default linear panel data model produces quite a lot of results – it displays all three of the pooled model, fixed

effects and random effects estimates. The Figures 27 and 28 show the preliminary results and the fixed effects

results for our small data set. You can specialize the command with

 REGRESS ; Lhs = income ; Rhs = one,age,female ; Panel ; Fixed Effects $

and likewise for random effects. All of the panel data models in NLOGIT (there are about 50) provide several

versions (e.g., fixed vs. random effects) that are requested by adding ;Panel and an additional specification in the

model command.

Figure 27. Preliminary Report for Panel Data Model

F. Robust Covariance Matrices and Cluster Corrections

We mention this feature separately because it is so common in the contemporary literature. So called robust

covariance matrices for least squares and maximum likelihood estimators are requested by using

 ; Robust

in the model command.

A Tip: The ‘robust’ for the linear model in a cross section is the White estimator, which is requested (only for the

linear model) with ;Heteroscedasticity. For time series, the Newey-West estimator is requested with ;Pds=T

without ;Panel.

25

Figure 28. Results for Panel Data Model

The correction for clustering is applied in panel data sets (or clustered data sets that look like panels). All model

commands are modified the same way:

 ; Cluster = an identity variable such as ID in figures 29 and 30

or ; Cluster = a fixed cluster size if all clusters are the same size, e.g., ; Cluster = 5.

Figure 29. Cluster Correction in Regression

Figure 30. Results for Cluster Correction of Standard Errors for a Model

A Tip: ;Cluster is supported for every model that is estimated using least squares or maximum likelihood

estimation. It is not supported for quantile estimators or nonparametric estimators.

26

VII. Econometric Models

There are several hundred model specifications supported by NLOGIT. The set has roughly 70 basic forms such as

linear regression, Poisson, Logit, Tobit, and so on. Nearly all of the basic specifications support multiple variants

and extensions and about 50 also support several different panel data treatments. For example, Poisson also includes

5 forms of negative binomial models and several additional forms of count models, as well as fixed effects, random

effects, latent class and random parameters specifications. Probit is the basic binary choice model, but you can also

choose among 5 other forms including Logit, Arctangent, Weibull, Complementary log log, and some exotic forms

that few people have ever heard of but are useful for studying the behavior of binary choice estimators. The list

below will show the commands for some of the most common and familiar models. In each case, there are many

variants described in the manual. And, of course, there are the hundreds of additional models. All of the models

listed below are contained in both LIMDEP andNLOGIT. In each case there are many options that can be added to

the model command. The list below shows a few in each case.

In the discussions to follow, we will present some examples based on a larger, ‘real’ data set named HealthData.csv.

This is a subset of a larger data set from a health economics study by Riphahn, Wambach and Million that appeared

in the Journal of Applied Econometrics in 2003. The original panel data set contains 27,326 observations on 7,293

households. Our subset contains 2,039 observations on 550 households. The data are imported with the usual

command

IMPORT;File=”…HealthData.csv”$

The discussions below show the results of various commands that illustrate the models. There is a script file for you

to use to enter the commands by highlighting them one at a time. Use FileOpen… and navigate to HealthData.lim

to open the file in its own Text/Command window.

A. Essential Models: Estimation Commands

 These are some of the most commonly used models and data analysis tools:

1. Descriptive statistics

DSTAT ; Rhs = the list of variables $

Useful options ; Output = 2 requests a correlation matrix

 ; Str = categorical variable requests statistics by strata

 ; Quantiles requests order statistics for each variable

 ; Rhs = *requests results for all variables.

 Example: DSTAT ; Rhs = * $

Figure 31. Results for DSTAT

27

2. Scatter plot

 PLOT ; Lhs = variable on horizontal axis

 ; Rhs = variable(s) on vertical axis $

Useful options: ; Title=Up to 80 characters for title

 ; Vaxis=Up to 60 characters for vertical axis

 ; Grid to request background grid

 ; Fill to request lines to connect dots in plot

 ; Regression to display regression line of Rhs variable on Lhs variable

 Example: PLOT ;if[Income <= 1.25]

 ;Lhs=educ

 ;Rhs=income

 ;Title=Income vs. Education (Income Under 1.25)

 ;Grid ; Regression $

Figure 32. Scatter plot with Regression

3. Histogram

 HISTOGRAM ; Rhs = the variable $

 Useful options ; Title=up to 80 characters for title

 ; Group = a categorical variable that defines up to 5 groups

 Example: HISTOGRAM ; if[income <= 1.25] ; Rhs = hlthsat

 ; Title=Health Satisfaction by Gender

 ; Group = Female ; Labels=Male,Female $

Figure 33. Histogram for Two Groups

28

4. Kernel Density Estimator

KERNEL ; Rhs = list of variable(s) (up to 5) $

Useful options ; Normal – plots normal density with same mean and variance

 ; Title=up to 80 characters for title

Example: KERNEL ; if[income <= 1.25] ; Rhs = Income

 ; Title=Income by Gender

 ; Group = Female ; Labels=Male,Female $

Figure 34. Kernel Density Estimators

5. Linear Regression

REGRESS ; Lhs = dependent variable

 ; Rhs = independent variables (include constant term ONE on Rhs) $

Useful options ; Cluster = specification

 ; Heteroscedasticity to request White estimator

 ; Plot to request a plot of residuals

 ; Test: restrictions.

; Test:list of variables tests the hypothesis that the coefficients are all zero

 Example: REGRESS ; Lhs = income

; Rhs = one,age,educ,married,female,hhkids

; Cluster = id $

Figure 35. Linear Regression with Cluster Corrected Standard Errors

29

6. Instrumental Variables – 2SLS

2SLS ; Lhs = dependent variable ; Rhs = all right hand side variables

 ; Inst = list of all exogenous variables including all exogenous variables (and ONE)

 that are in the Rhs list plus any instrumental variables not in the model $

Useful options: ; Cluster

Example: 2SLS ; Lhs = income ; Rhs = one,age,educ,hlthsat

 ; Inst = one,age,educ,married,hhkids $

Figure 36. Two Stage Least Squares

7. Binary Choice

PROBIT or LOGIT ; Lhs = dependent variable

 ; Rhs = independent variables $

Useful options ; Hold requests results be retained for use by SELECTION in the next step

 Example: SETPANEL ; Group = id ; Pds = Ti $

PROBIT ; Lhs = doctor

 ; Rhs = one,age,educ,married,female,income

; Panel ; RandomEffects

 ; Test: income $

30

Figure 37. Random Effects Probit with Test of Restriction

31

 Example LOGIT ; Lhs = doctor

 ; Rhs = one,age,educ,married,female,income

 ; ROC $

Figure 38. LOGIT Model with Receiver Operating Curve

32

8. Count Data

POISSON ; Lhs = dependent variable

 ; Rhs = independent variables $

Useful options ; Exposure = exposure variable

NEGBIN ; same as Poisson for negative binomial model

Useful options ; Model = NB1 or NB2 or NBP

Example: NEGBIN ; Lhs = docvis ; Rhs = one,age,educ,married,income $

Figure 39. Negative Bonomial Model with Poisson Starting Values

33

9. Ordered Choice Models

ORDERED ; Lhs = dependent variable

or OPROBIT ; Rhs = independent variables $ (ONE must be the first Rhs variable)

Useful options ; LOGIT for ordered logit. Verb OLOGIT is the same as ORDERED;Logit.

 Example: ORDERED ; Lhs = hlthsat

 ; Rhs = one,age,educ,income,female

 ; Partials ; Full $

Figure 40. Estimated Ordered Probit Model

34

Figure 41. Full Partial Effects Analysis for Ordered Probit

10. Stochastic Frontier and Data Envelopment Analysis

FRONTIER ; Lhs = dependent variable

 ; Rhs = independent variables $ ONE must be first

Useful options ; Cost to fit cost frontier. Production is the default

 ; Techeff = varible to hold estimate of technical efficiency, firm specific

 ; Eff = variable to hold estimate of inefficiency, firm specific

 ; ALG = DEA requests data envelopment analysis.

 Example: This example uses a data set on production of Spanish Dairy farms.

NAMELIST ; x = one,x1,x2,x3,x4 $

REGRESS ; quietly ; Lhs=yit ; Rhs = x ; Res = ols $

35

KERNEL ; Rhs = ols

 ; Title=Evidence of Inefficiency in OLS Residuals $

FRONTIER ; Lhs = yit ; Rhs = x ; Techeff = eui $

KERNEL ; Rhs = eui

 ; Title=Estimated Efficiency Distribution for Dairy Farms $

Figure 42. Stochastic Frontier Efficiency Analysis

36

B. Post Estimation Model Results

After estimation of the model parameters, a variety of computations are used to analyze the model results. Two

common calculations are model predictions/simulations and partial effects. There are also standard results

computed with model results that are retained so that they can be used in later analyses

1. Predictions

Single equation models can create a new variable that is the predictions for the model using

 ; Keep = the new variable.

Models differ on what the prediction is. In most cases, it is the expected value of the dependent variable. For a few

models, it is also possible to retain residuals with

 ; Res = the new variable.

For most models, this is not a meaningful result, however. For probability models, such as PROBIT, LOGIT and

ORDERED, the predicted probability for the observed outcome is saved with

 ; Prob = the new variable.

2. Simulations

After estimation, model estimation programs store the results for two large processors to use, the simulator and the

partial effects program. These use separate post estimation commands. The simple command

 SIMULATE $

Produces the average prediction from the model, with an estimated standard error and confidence interval for the

mean simulation. Adding ;List to the SIMULATE command produces a listing of the predictions. Adding

;Keep=name to the command requests that a new variable that contains the simulated values be created in the data

set.

A Tip: If you have thousands of observations, it might not be a good idea to use ;List. If you are trying to produce

what looks like a huge list, the program will ask you if you are sure you want to do this.

Figure 43 shows estimation and simulation of a linear regression with an interaction term. The SIMULATE feature

accounts for the nonlinearities in the regression. A second example based on a binary choice model appears below

in Figure 44.

Figure 43. Regression Results and Simulation

37

3. Partial Effects

Partial effects are an essential part of model estimation. There are several issues to be considered in computing

partial effects for a nonlinear model:

 Partial effects are often (correctly) computed as scaled coefficients. However, differences can arise

between results computed by using the sample means of the data (PEA, or partial effects at averages) and

results computed by averaging the computations across the sample (APE, or average partial effects).

 Partial effects for dummy variables should be computed as discrete differences in predicted values, not

scaled coefficients (though the latter is often a surprisingly good approximation to the former).

 When there are nonlinearities in the index function of the model, such as x = 0 + 1z + 2z
2
, the

program should compute a partial effect for z using the chain rule, not meaningless scaled coefficients for z

and separately for z
2
.

 When there are interactions in the index function model, such as x = 0 + 1Ed + 2Fem + 3EdFem,

the partial effects for Ed and Fem (or the interactions in general) should account for the interaction. There

is no separate partial effect for the product term.

 Partial effects for the components of categorical variables can be analyzed in terms of transitions from

one level to another, not always strictly between the categories and the base case.

NLOGIT’s partial effects estimator, accessed with the command PARTIALS, accounts for all of these aspects. The

basic command is

 PARTIALS ; Effects : variable $

More than one variable can be analyzed by separating the names with slashes (not commas). An example appears in

Figure 44. The model command is PROBIT;Lhs=doctor;Rhs=one,age,educ,female,married,female*educ$

Figure 44. Partial Effects for a PROBIT Model

Partial effects are computed by averaging across observations (average partial effects). Partial effects are computed

at sample means by using ;Means.

A Tip: In a very large sample, average partial effects can take a very long time to compute. Use ;Means.

There are several ways to analyze scenarios with the variables in the model. The next example illustrates.

Example: LOGIT ; Lhs = Doctor

; Rhs = one,age,educ,income,female,age*female $

SIMULATE ; Scenario : & age=25(2)65 ;plot(ci) $

PARTIALS ; Effects : age & age=25(2)65 ;plot(ci) $

38

Figure 45. Estimated Binary Logit Model and Simulation

39

Figure 46. Average Partial Effects over Scenario for Logit Model

40

4. Retained Results

The SIMULATE and PARTIALS instructions use the model estimates that are stored by the estimator. Several

other results are stored for later use. Matrices B and VARB (the variance of the estimator) are stored as accessible

matrices. The updated project window after the probit model in Figure 48 is estimated is shown in Figure 47. Note

the appearance of the coefficient vector, the covariance matrix and the scalar log likelihood.in Figre 30. The

commands in Figure 31 test the hypothesis that the coefficients in the probit model are all zero using a Wald

statistic. The statistic and the critical value from the chi squared table are shown in Figure 32.

Figure 47. Stored Matrix and Scalar Results

Figure 48. Matrix Manipulation

Figure 49. Using MATRIX and CALC to Carry Out a Test

41

C. Panel Data Forms

Nearly all of the models, such as REGRESS, PROBIT, LOGIT, POISSON, ORDERED, and so on. Generally, these

are fixed effects, random effects, random parameters, and latent class models. (The last two of these are also

useable with cross sections, but work well and naturally with panel data.) These have a variety of specifications and

options all described in the program documentation. We list the basic forms here.

Panel data analysis begins with the SETPANEL instruction described in Section VI.E. The data must be arranged

in contiguous blocks, by group. If your panel has 5,000 groups and 5 years of data on each group, the first 5 of the

25,000 rows of data are group 1, and so on. For the fixed and random effects models, the linear regression

specification is different from all the other nonlinear specifications.

1. Fixed Effects Models

NOGIT’s fixed effects estimators are, with the exception of the binary logit model, unconditional estimators. The

dummy variable coefficients are all computed. The limit on numbers of groups is hundreds of thousands. The

binary logit model may be fit by the conditional (Chamberlain) estimator or the unconditional (Greene) estimator.

The linear fixed effects regression is requested with

 REGRESS ; Lhs = … ; Rhs = … ; Panel ; FixedEffects $

The general form for nonlinear models is

 Model ; Lhs = … ; Rhs = … ; Panel ; FEM $

Two models must be estimated immediately prior in cross section form, FRONTIER and NEGBIN. E.g.,

 FRONTIER ; Lhs = … ; Rhs = … $

 FRONTIER ; Lhs = … ; Rhs = … ; Panel ; FEM $

The negative binomial looks the same. The other three panel data forms, random effects, random parameters and

latent class models for the stochastic frontier and negative binomial models are estimat3ed the same way. There are

also a large number of other panel data specification for the stochastic frontier model.

 There is a distinction for the logit model.

 LOGIT ; … ; Panel ; FEM $ is for the unconditional estimator

 LOGIT ; … ; Panel ; FIXED $ requests the conditional (Chamberlain) estimator.

42

Figure 50. Linear Fixed Effects Model

43

Figure 51. Fixed Effects Probit Model

2. Random Effects Models

Several models, including REGRESS, PROBIT, LOGIT, ORDERED, POISSON and NEGBIN support familiar

random effects forms. About 50 models provide a random parameters form, so all of those allow a random effects

model in the form of a random constant term model. For the first set, the form of the command is the same for the

linear and nonlinear models,

 Model ; Lhs = … ; Rhs = … ; Panel ; Random Effects $

3. Random Parameters Models

A random parameters model is defined by defining the model, then defining which parameters are random. The

model is estimated by maximum simulated likelihood. Some additional settings may be made to control the

simulation.

 Model ; Lhs = dependent variable

 ; Rhs = one,var1,var2,…,varK (list of variables, usually including one)

 ; RPM ; Panel

 ; Fcn = var(n), …,var(n) $

where ‘var’ is a name of a variable that appears in the Rhs list. The simulation can be based on random draws or

preferably on Halton sequences which produce better results. An example of a model with six regressors, two

random parameters, appears in Figure 35. In the example, the command is

PROBIT ; Lhs = doctor

; Rhs = one,age,educ,married,female,hhkids

 ; RPM ; Panel

 ; Fcn = one(n),female(n)

 ; Halton ; Draws = 50 $

To specify this as a simple random effects model, we would change the function definition to ;Fcn=one(n). In the

specifications above, the ‘(n)’ indicates a normally distributed parameter. There are 15 other distributions that can

be used. An important feature of the RP models is the conditional estimates of the random parameters, E[i|datai].

This is requested with ;Parameters and creates a matrix named BETA_I that can be further analyzed.

44

Figure 52. Random Parameters Model Command and Results

4. Latent Class Models

A latent class model is specified with

 Model ; Lhs = dependent variable

 ; Rhs = one,var1,var2,…,varK (list of variables, usually including one)

 ; LCM ; Panel

 ; Pts = number of classes $

There are a variety of forms of LC models. It is possible to impose constraints across classes to create many

different types of models.

 Example: LOGIT ; Lhs = Doctor

; Rhs = one,age,educ,income,female

 ; Panel ; LCM ; Pts = 2

 ; Parameters $

In the example, we fit a two class latent class binary logit model. The ;Parameters requests computation of a matrix

of conditional class probabilities. The estimated model, updated project window and 18 of the 550 rows of the

class probabilities matrix are displayed in Figure 53.

45

Figure 53. Latent Class Binary Logit Model

46

VIII. Multinomial Logit and Multinomial Choice

NLOGIT contains all of LIMDEP plus an additional set of model estimators and analysis tools for multinomial

choice models such as the multinomial logit and multinomial probit specifications. The canonical form of the model

is illustrated with this example that appears in our sample data set. A model for four models of travel, mode (Air,

Train, Bus, Car) defines the probability that an individual will choose one of the four. The underlying model is a

random utility specification for individual i and modes 1,…,J:

 Ui,mode = mode + timeTIMEi,mode + cost COSTi.mode + modeINCOMEi + i,mode

 Yi,mode = 1[Ui,mode> Uj,modej i] (Yi,mode equals 1 for the mode with maximum utility, 0 else.)

 i,mode ~ Type I extreme value, independent across i and mode.

The specification implies that

mode time i,mode cost i,mode mode i

i,mode

mode time i,mode cost i,mode mode imodes

exp(TIME COST INCOME)
Prob(Y 1)

exp(TIME COST INCOME)

This is the basic multinomial logit model. (Notice that the specification involves variables (TIME, COST) that vary

across choices and a variable (INCOME) that does not vary across the choices. It is not necessary to distinguish.

Mathematically, it is necessary to normalize the coefficients so that one of the mode parameters and one of the mode

parameters equals zero.) This is the basic model for multinomial choice. NLOGIT provides this model, a large

number of extensions of the specification, such as the multinomial probit and nested logit models, and a set of

analysis tools (similar to SIMULATE and PARTIALS).

A Tip: The CLOGIT command in LIMDEP is provided for the basic multinomial logit model. The extensions (as

well as CLOGIT) are provided by NLOGIT.

A. Data

The data for this part of the description of NLOGIT are contained in the CSV file, mnc.csv (‘mnc’ for ‘multinomial

choice’). To replicate the examples and learn how to fit the models, you should IMPORT this file. There is also a

project file provided, mnc.lpj, which you can LOAD directly. This data file contains 12,800 observations in two

data sets. The forst data set contains 12 variables (columns), the second contains 7 – they are arranged side by side

in 20 columns. The first 12 are 12,800 observations equal to 400 individuals times 8 repetitions (it is a panel) times

4 choices. The second data set contains 840 observations equal to 210 individuals times 4 choices in each

observation. The 840 observations appear in the first 840 rows of their part of the data set. The rows below them

(841-12800) contain missing values for these 8 variables. The shorter data set applies to the travel mode example

described above.

An Important Tip: When you enter the data for multinomial choice analysis, the IMPORT step does not account

for the internal structure of the data set. Our file, mnc.csv, is imported simply as 12,800 rows of data. Like a panel

data set, the internal structure of the data is accounted for when the data are used to fit a model.

Data for multinomial choice modeling resemble a panel data set. The data set is arranged in blocks of data for each

person for each choice situation. Our examples both describe choices over 4 alternatives. The data are thus

arranged with a line of data for each alternative in the choice set for the person. This is indicated in Figure 54.

 A Tip: It is possible to work with choice data arranged on a single line – what some other programs call the ‘wide

form.’ This is extremely cumbersome and greatly limits the range of specifications and model sizes. NLOGIT does

provide a way to use these data, and to convert them to the more accommodating ‘long form.’

A Second Tip: NLOGIT allows the number of choices in the choice set to vary across individuals. Our first data set

is a choice experiment that has 8 choice situations for each person. NLOGIT also allows the number of choice

situations in a stated choice data set to vary across individuals.

47

Figure 54. Multinomial Choice Data

The data in Figure 54 are 210 observations on four travel modes, AIR, TRAIN, BUS, CAR in the respective 4 rows.

Notice that the first variable, MODE, is Yi,mode in our mathematical example. The first four individuals in the

sample all chose AIR, as the 4
th

 row equals one in each case. There are several variables that vary across the choices

– they are the attributes: TTME = terminal time (waiting time to begin the journey), INVC = in-vehicle cost, INVT

= in vehicle time, GC = a generalized cost measure. There are also two variables that do not vary across choices,

HINC = household income and PSIZE = party size These are characteristics of the person (traveler). It is not

necessary to expand choice invariant variables. This is done internally as part of the model specification.

B. Basic Multinomial Choice Model and Choice Substitution Elasticities

The essential command for a multinomial logit model is

 CLOGIT ; Choices = list of names for the choices

 ; Lhs = the choice variable

 ; Rhs = attributes that vary across the choices

 ; Rh2 = characteristics that do not vary across choices $

Figure 55 illustrates. Note, if you include ONE in your Rhs list, it is automatically moved to the Rh2 list. Models

can be specified with either or both Rhs or Rh2 variables. Neither is required. If you do not have an Rh2 list, but

you include ONE on your Rhs, the program creates an Rh2 list for you and puts ONE in it. This is not done for any

other variables.

Figure 55. Command for Basic Multinomial Logit Model

Figure 56 shows the estimation results for the commands in Figure 55. This is the standard form of the display for

the multinomial logit model. The next section lists some of the different choice models that can be specified.

Estimation of every choice model begins with a starting values step at which the basic multinomial logit model is fit.

48

Figure 56. Estimated Multinomial Logit Model

One of the major functions of the estimated choice model is to provide estimates of the impact of changes in

relevant variables on the substitution patterns among the alternatives. Choice elasticities are the common device for

this computation. The elasticity is defined as

E:Attribute(choice) = The effect on the probabilities of the choices when attribute in a particular choice

 Changes.

For example, E:cost(air) is the effect of changes in the cost of air on the probabilities of choosing the alternatives.

Each attribute in the model produces a full matrix of elasticities. Elasticities are requested with the specification:

 ; Effects: attribute (alternatives desired)

It is common to request the effect of a change in an attribute in all choices. The following example shows how to do

this. The ‘*’ means ‘all alternatives.’

NLOGIT ; Choices = air,train,bus,car

 ; Lhs = mode

 ; Rhs = invt, invc

 ; Rh2 = one, hinc

 ; Effects: invc(*) $

This produces the table shown in Figure 57. This is the effect of changes in INVC on the probabilities of all all

alternatives. If the specification had been invc(air,train), then only the first two rows of the table would be shown.

Figure 57. Estimated Choice Elasticities

49

The table of elasticities can be expanded to include much more information by adding

 ; Full

to the command. This produces the results such as shown in Figure 58.

Figure 58. Full Display of Results for Elasticities

50

C. Multinomial Choice Models

Most of the extensions of the multinomial logit model are requested by modifying the basic command. The

following will list a few of these by way of extending the example in Figures 55 and 56.

1. Multinomial Probit Model

The multinomial probit (MNP) model is an extension of the logit model. The MNP model allows some

heteroscedasticity across choices as well as correlation of the utility functions. This is the usual first extension of

the MNL model to relax the independence from irrelevant alternatives (IIA) assumptions. The model is requested

simply by adding ;MNP to the basic specification. Since it is a simulation based estimator, sometimes it is a good

idea to control the number of draws, as shown here.

NLOGIT ; Choices = air,train,bus,car

 ; Lhs = mode

 ; Rhs = invt, invc

 ; Rh2 = one, hinc

 ; MNP ; Draws = 5 ; Maxit = 5 $

(The command has used a very small number of draws and only 5 iterations. This estimator takes a very large

amount of time. The results below show the results with 10 draws and allowing it to reach convergence.)

Figure 59. Estimated Multinomial Probit Model

51

2. Nested Logit Model

NLOGIT allows up to 4 levels in a nested logit model. A nested logit model is specified simply by providing the

tree structure in the NLOGIT command.

NLOGIT ; Choices = air,train,bus,car

 ; Lhs = mode

 ; Rhs = invt, invc

 ; Rh2 = one, hinc

 ; Tree= Private(air,car), public(train,bus)$

Tables of elasticities for a nested logit model include a decomposition of the total effect of switching between

branches and substitution within a branch.

Figure 58. Estimated Nested Logit Model

Figure 59. Estimated Elasticities for a Nested Logit Model

52

3. Mixed (Random Parameters, RP) Logit Model and Willingness to Pay (WTP)

The mixed (random parameters) logit model is the platform for the most recent, advanced formulations of the

multinomial choice models in NLOGIT. The RP logit model is specified by providing the definition of the random

parameters and, if desired, controls for the simulations.

 Willingness to pay (WTP) is often measured in a choice model. The typical calculation is based on

 WTPattribute = attribute / income

Which measures the marginal utility of the attribute divided by the marginal utility of income. When income does

not appear in the model, often the negative of a cost coefficient is used as a proxy for the marginal utility of income.

When the model has fixed (nonrandom) coefficients, the WTP can be computed simply as the ratio of two

coefficients (with a calculator). When parameters are random, WTP will vary across individuals if either of the

components does. Figures 60 and 61 show estimation of a random parameters model and examination of the

estimates of WTP.

RPLOGIT ; Lhs=mode ; Choices=air,train,bus,car

; Rhs=invt,invc

; Rh2=one,hinc

; Pts=50 ; Halton

; Fcn=invt(n) ? This specifies a single random parameter.

 ? This can be expanded, e.g., invt(n), invc(n).

; Wtp=invt/invc ; Parameters $

 KERNEL ; Rhs=wtp_i

 ; Title=Estimated Distribution of WTP Across Sample $

Figure 60 Estimated Random Parameters Model

53

Figure 61 Sample Distribution of Expected Willingness to Pay

D. Stated Choice (Panel) Data

Stated choice experiments are analogous to panel data. The individuals in the sample are observed several times.

Our experimental data in mnc.csv consist of 400 individuals each observed making one of four choices, eight times.

There are 32 rows of data for each individual. The first individual is shown in Figure 62. For purposes of specifying

multinomial choice models that use this structure of the data, this panel has Pds = 8, not 32.

A Tip: Do not use SETPANEL to set up stated choice data. The count variable must be constructed appropriately

by you. If the number of repetitions is fixed, you will be able to use ;Pds=Nrep in your command. You will not

use ;Panel. In our models using these data, we will use ;Pds=8.

A Second Tip: These data are an ‘unlabeled’ choice set. The brands are distinguished only by their position in a list

of brands. It is diffucult to interpret substitution patterns in a model for choice with unlabeled alternatives.

Figure 62. Stated Choice Experiment Data

54

Stated choice data allow the specification of essentially panel data models. The random utility models are variations

on the general form

U(choice)i,t,mode = ixi,t,mode + i,t,mode + wi,mode

 i = + ui

The definition of i implies that the parameters are random across individuals, but constant across choice situations.

The random terms wi,mode are likewise constant across choice situations, and can be viewed as random effects. The

constancy of the random terms in the model allows observations to be correlated within the group, which is the

essential feature of panel data. (There are many variations on this model described in the manual.)

The stated choice data consist for each person of 8 repetitions on the choice of one of 3 brands or none of the above.

The attributes are ‘fashion,’ ‘quality,’ ‘price’ and ‘price
2
’. There are also two characteristics, gender coded as

male=1 and female=0 and age, coded as a category for three brackets, under 25, 25-39, 40+.

1. Random Parameters Model

Figures 63 – 65 show estimation of a random parameters model with one random coefficient.

Figure 63 Command for a Mixed Logit Model

Figure 64. Multinomial Logit Starting Values

55

Figure 65. Estimated Mixed Logit Model

2. Error Components (Random Effects) Logit Model

NLOGIT’s Error Components Logit (ECLOGIT) model is equivalent to a random effects model. It is also possible

to specify the logical equivalent of a nested logit model. The example below specifies a nested effects model in

which one branch contains the three brands and a second contains the outside alternative, none. Figure 66 shows

estimates of an error components model. Note how the error components are specified. The

(brand1,brand2,brand3) specifies that the same effect appears in all three utility functions.

ECLOGIT ; LHS = Choice ; Choices = Brand1,Brand2,Brand3,None

 ; Rhs = asc4,fash,qual,price

 ; Rh2 = male

 ; Draws = 50 ; Halton ; Pds = 8

 ; Ecm=(brand1,brand2,brand3),(none)$

Figure 66. Estimated Error Components Logit Model

56

3. Latent Class Multinomial Logit Model

The data used in this set of examples are experimental, and are carefully generated by an underlying latent class

model in which the class probabilities depend on age and sex, and the choices depend on fashion, quality and price,

exactly as specified below. The results are shown in Figure 67.

LCLOGIT ; Lhs = Choice ; Choices = Brand1,Brand2,Brand3,None

 ; Rhs = asc4,fash,qual,price,pricesq

 ; Pds = 8

 ; Lcm = male,age25,age39 ; Pts = 3$

Figure 67. Estimated Latent Class Model

57

IX. Tools

NLOGIT provides a variety of tools that can be used with the model estimation commands or to create new

estimators or statistics.

A. Scientific Calculator – The CALC Command

NLOGIT’s scientific calculator is an important tool. In the following application we use it to compute the F ratio for

a Chow test, then look up the ‘p value’ for the test by computing a probability from the F distribtion. Note that the

named scalars computed with the CALC commands are added to the project, in the scalars list.

Figure 68. Chow Test Using Calculator

You can invoke the calculator with a CALC command that you put on your editing screen, such as CALC;1+1$,

then highlight and submit with GO, as usual.

A Tip: CALC is a programming tool. As such, you will not always want to see the results of CALC. The CALC

commands in the example above that pick up the sums of squares and the one that computes 1+1, do not display the

result. If you want to see the result of CALC, add the word ;List to the command, as in CALC;List;1+1$ and in

the commands above that compute the F statistic and the critical value.

The other way you can invoke the calculator is to use ToolsScalar Calculator to open a calculator window. This

would appear like the one below. When you use a calculator window, the results are always listed on the screen.

58

The example in Figure 69 computes two results, the sum of one and one and the rank of the covariance matrix for

the coefficients in the most recently computed regression.

Figure 69. Calculator Window

In addition to the full range of algebra, CALC provides approximately 100 functions, such as the familiar ones, log,

exp, abs, sqr, and so on, plus functions for looking up table values from the normal, t, F, and chi-squared

distributions, functions for computing integrals (probabilities) from these distrubutions, some matrix functions such

as rank and trace, and many other functions.

Any result that you calculate with CALC can be given a name, and used later in any other context that uses

numbers. Note, for example, in the example in Figure 68, the scalars that are the sums of squares are used in the

later command that computes the F statistic. All model commands, such as REGRESS, compute named results for

the calculator. You can see the full list of these under the heading ‘Scalars’ in the project window shown in Figure

47. After you use REGRESS to compute a regression, these additional results are computed and saved for you to

use later. Note, once again, the example in Figure 68. Each of the three REGRESS commands is followed by a

CALC command that uses the quantity SUMSQDEV. In each case, this value will equal the sum of squared

residuals from the previous regression. That is how we accumulate the three values that we need for the Chow test.

Other statistics, YBAR, LOGL, and so on, are also replaced with the appropriate values when you use REGRESS

or any other model command. The other model commands, such as PROBIT, also save some results, but in many

cases, not all of them. For example, PROBIT does not save a sum of squared deviations, but it does save LOGL and

KREG, which is the number of coefficients.

B. Matrix Algebra

The other major tool you will use is the matrix algebra calculator. NLOGIT provides a feature that will allow you to

do the full range of matrix algebra computations. To see how this works, here is a fairly simple application: The LM

statistic for testing the hypothesis that σi
2

= f(zi′γ) against the null hypothesis that i
2
 is constant in a classical

regression model is computed as LM = ½g′Z(Z′Z)
-1

Z′g where g is a vector of n observations on [ei
2
/(e′e/n) - 1] with

ei the least squares residual in the regression of y on X, and Z is the set of variables in the variance function. A

general set of instructions that could be used to compute this statistic are

NAMELIST ; x = the list of variables ; z = the list of variables $

REGRESS ; Quietly ; Lhs = y ; Rhs = x ; Res = e $

CREATE ; g = (e^2/(sumsqdev/n)-1) $

MATRIX ; list ; lm = .5 * g’z * <z’z> * z’g $

The NAMELIST command defines the matrices used. REGRESS (quietly) computes the residuals and calls them

e. (There is a matrix command that will do this as well.) CREATE uses the regression results to compute the n

observations on gi. Finally, MATRIX does the actual calculation. The MATRIX command works the same as

CALC, either in the editor screen or in its own Tools window.

There are only a few things you need to get started using NLOGIT’s matrix algebra program. The first is how to

define a data matrix, such as X in the example above. The columns of a data matrix are variables, so, as you can see

in the example, the NAMELIST command defines the columns of a data matrix. A single variable defines a data

matrix with one column (i.e., a data vector) – note the use of the variable g in the example.

59

 The rows of a data matrix are the observations in the current sample, whatever that happens to be at the

time. That means that all data matrices change when you change the sample. For example,

NAMELIST ; x=one,age,educ,income $ for our full healthcare data set defines a 23094 data matrix.

When it is followed by SAMPLE;1-500$, x becomes a 5004 matrix.

 Data matrices can share columns. For example, with the x just defined, we might also have a

NAMELIST;z= one,age,educ,income,married,hhkids $ Thus, x and z share four columns.

 In matrix algebra, the number 1 will represent a column of ones. Thus, if x is a variable, you could

compute its mean with MATRIX;List;Meanx=1/n*x’1$. In defining a data matrix, as we did above, you

may include ‘one’ to carry a column of ones.

There are many matrix operators. The major ones you need to know are

(1) +, -, * for the usual addition, subtraction, and multiplication.

 The program will always check conformability. Note, row and column vectors are different.

(2) ‘ (apostrophe) for transposition

(3) <.> for inversion

(4) [variable] for a diagonal matrix in a quadratic form.

The last of these allows you to compute a result that involves a possibly huge diagonal matrix. For example, in a

Poisson regression context, the asymptotic covariance matrix of the MLE is

 Asy.Var[b] = (XX)
-1

Where X is the nK data matrix and is a diagonal matrix with i = exp(xi) on the diagonal. If you have, say,

1,000,000 observations (you might), then is a 1,000,0001,000,000 matrix that save for the tiny percentage of

values that are on the diagonal, is a matrix of zeros. Obviously, you do not want to create in your computer’s

memory. But, the syntax above allows you to do that. The matrix result is actually

 Asy.Var[b] = [i i xi xi]
-1

which is never larger than KK. NLOGIT’s matrix syntax reveals this to the program. The matrix command would

be

 MATRIX ; AsyVarb = < x’ [lambdai] x > $

You could compute this with millions of observations.

When you compute a moment matrix, such as X′X, you need not both transpose and multiply. This would involve

having a copy of X that is the transpose of X. Again, this is a superfluous waste of space. The command X’X

means exactly what it looks like. The apostrophe is an operator that dictates how the result is to be computed.

In order to define a matrix with specific values in it, you use

MATRIX ; NAME = [row 1 / row 2 / ...] $

Within a row, values are separated by commas; rows are separated by slashes, and the whole thing is enclosed in

square brackets. An example appears below. If the matrix is symmetric, you can define the matrix by its lower

triangle – the first row has one element, the second has two elements, and so on.

In the same way that every model command creates some scalar results, every model command also creates at least

two matrices, one named B which is the coefficient vector estimated, and one called VARB which is the estimated

covariance matrix. You can use these in your matrix commands just like any other matrix. To compute the Poisson

covariance matrix in the example immediately above, you could use

60

 NAMELIST ; x = the list of variables $

 POISSON ; Lhs = y ; Rhs = x ; Keep = lambdai $

 MATRIX ; List ; AsyVarb = <x’[lambdai]x> ; varb $

The display would reveal that the matrix we computed, AsyVarb, and the internally computed matrix, varb, are

identical.

For another example, here is a way to compute the restricted least squares estimator,

b* = b - (X′X)
-1

R′[R(X′X)
-1

R′]
-1

(Rb - q).

For a specific example, suppose we regress y on a constant, x1, x2, and x3, then compute the coefficient vector subject

to the restrictions that b2 + b3 = 1 and b4 = 0. We will also compute the Wald statistic for testing this restriction,

W = (Rb-q)′[R s
2
(X′X)

-1
R′]

-1
(Rb-q).

Note that both examples use a shortcut for a quadratic form in an inverse.

NAMELIST ; x = one, x1, x2, x3 $

REGRESS ; Lhs = y ; Rhs = x $

MATRIX ; r = [0,1,1,0 / 0,0,0,1] ; q = [1/0] $

MATRIX ; m = r*b - q ; d = r* <x’x> * r’

; br = b - <x’x> * r’<d>m

; w = m’ <d> m $

In addition to the operators and standard features of matrix algebra, there are numerous functions that you might find

useful. These include ROOT(symmetric matrix), CXRT(any matrix) for complex roots, DTRM(matrix) for

determinant, SQRT(matrix) for square root and over 100 others.

C. Procedures

A procedure is a group of commands that you can collect and give a name to. To execute the commands in the

procedure, you simply use an EXECUTE command. To define a procedure, just place the group of commands in

your editor window between PROCEDURE$ and ENDPROCEDURE$ commands, then run the whole group of

them. They will not be carried out at that point; they are just stored and left ready for you to use later. For example,

the application above that computes a restricted regression and reports the results could be made into a procedure as

follows:

PROCEDURE $

REGRESS ; Lhs = y ; Rhs = X $

MATRIX ; r = [0,1,1,0 / 0,0,0,1] ; q = [1/0] $

MATRIX ; m = r*b - q ; d = r* <x’x> * r’

; br = b - <x’x> * r’<d>m

; w = m’ <d> m $

ENDPROCEDURE $

Now, to compute the estimator, we would define X, y, r, and q, then use the EXECUTE command;

NAMELIST ; X = the set of variables $

CREATE ; y = the dependent variable $

MATRIX ; r = the matrix of constraints

; q = the vector on the RHS of the constraints $

EXECUTE $

To use a different model, we’d just redefine X, y, R, and q, then execute again.

61

Since the commands for the procedure are just sitting on the screen waiting for us to Run them with a couple of

mouse clicks, this really has not gained us very much. There are several better reasons for using procedures. The

EXECUTE command can be made to request more than one run of the procedure, procedures can be written with

‘adjustable parameter lists,’ so that you can make them very general, and can change the procedure very easily.

Repetitions of procedures can be used to develop bootstrap estimators of sample statistics.

The following computes a Chow test of structural change based on an X matrix, a y variable, and a dummy variable,

d, which separates the sample into two subsets of interest. We’ll write this as a ‘subroutine’ with adjustable

parameters. Note that this routine does not actually report the results of the three least squares regressions. To add

this to the routine, the CALC commands which obtain sums of squares could be replaced with REGRESS ;Lhs = y

; Rhs = X $ then CALC ; ee = sumsqdev $ In this application, we have used a feature of PROC that allows it to

accept adjustable parameters.

/* Procedure to carry out a Chow test of structural change.

Inputs: X = namelist that contains full set of independent variables

y = dependent variable

d = dummy variable used to partition the sample

Outputs F = sample F statistic for the Chow test

*/ F95 = 95th percentile from the appropriate F table.

PROC = ChowTest(X,y,d) $

CALC ; k = Col(X) ; Nfull = N $

INCLUDE ; New ; D = 1 $

CALC ; ee1 = Ess(X,y) $

INCLUDE ; New ; D = 0 $

CALC ; ee0 = Ess(X,y) $

SAMPLE ; All $

CALC ; ee = Ess(X,y) $

CALC ; List

; F = ((ee-(ee1+ee0))/K) / (ee/(Nfull-2*K)) ; F95 = Ftb(.95,K, (Nfull-2*K)) $

ENDPROC $

Now, suppose we wished to carry out the test of whether the labor supply behaviors of men and women are the

same. The commands might appear as follows:

NAMELIST ; HoursEqn = One,Age,Exper,Kids $

EXECUTE ; Proc = ChowTest(HoursEqn,Hours,Sex) $

A Tip: The preceding illustrates a particular calculation using a procedure. The Chow test (or its maximum

likelihood equivalent for nonlinear models) can be carried out with a single command, such as

 REGRESS ; For[(test) female = *,0,1] ; Lhs = y ; Rhs = x $

One of the main uses of procedures is to carry out repetitions of instructions. The following example illustrates.

The next section extends this idea to bootstrapping estimators. The procedure in the example is applied in Figure

70.

62

 /* The data set consists of G groups. We wish to estimate a logit model of y on X

 for each group and arrange the coefficient vectors in the rows of a matrix named BG.

 There is a variable named GROUP that indexes the groups. We do not know G.

 That is to be determined.

*/

 NAMELIST ; x = the group of variables $

 CREATE ; y = the variable $

 CALC ; g = max(group) ; k = col(x) $ Learn g and k from the model setup.

 MATRIX ; bg = init(g,k,0.0) $ Matrix where where we will stack the coefficients

 PROCEDURE $

 LOGIT ; If[group = i] ; Quietly ; Lhs = y ; Rhs = x $

 MATRIX ; bg(i,*) = b’ $ Puts i’th coefficient vector in i’th row of matrix.

 ENDPROC $

 EXECUTE ; i = 1,g $ Executes for i = 1,2,…,g.

In the example below, ‘group’ is a random discrete uniform(1,10) variable, i.e., CREATE; group = rnd(10) $

Figure 70. Repeated Execution of a Procedure

D. Bootstrapping

You can use procedures to compute bootstrap results for any scalar or vector that you compute using data. This can

be a coefficient vector, a test statistic, or any other result that is computed using a sample of data. The general form

of the procedure is as follows:

 … any preliminary setup

 PROCEDURE $

 … compute the scalar with CALC or the vector with MATRIX.

 … This part of the procedure may contain as many commands and

 … calculations as needed. It needs only to produce the result to be

 … examine with a name, to be used later.

 ENDPROC $

 EXEC ; n = number of bootstrap replications ; Bootstrap = the name $

63

The procedure is actually executed n+1 times, first with the full original sample, then n times with the bootstrap

samples. In the following example, we compute the vector of partial effects in a Poisson regression and bootstrap a

covariance matrix. (Partial effects for a Poisson regression is a built in procedure in NLOGIT – we do this here just

to illustrate the method.)

 NAMELIST ; x = age,educ,income,hlthsat $

 PROCEDURE $

 POISSON ; quietly ; Lhs = docvis ; Rhs = x,one ; keep = lambdai $

 CALC ; apescale = xbr(lambdai) $

 MATRIX ; ape = apescale * b(1:4) $

 ENDPROC $

 EXEC ; n = 50 ; bootstrap = ape $

Figure 71. Results of Bootstrap Iterations

When you compute bootstrap replicates such as those shown in Figure 71, NLOGIT also creates a matrix named

BOOTSTRP that contains the actual replicates. Figure 72 shows part of the results for the experiment in Figure 71.

64

Figure 72. Saved Bootstrap Replicates

E. Displaying Results

NLOGIT provides several ways to display estimation results (and several formats, including export to Excel and

formatted tables that can be exported to editors such as Word). To produce a standard output table for a set of

estimates and the estimated covariance matrix, you need the estimates, the matrix, labels for the estimates (optional)

and, perhaps, a title. Figure 73 shows how to construct a DISPLAY command for our bootstrap results in Figure

71. The command is

 DISPLAY ; parameters = ape ? the name of the coefficient vector

 ; covariance = varb ? the name of the covariance matrix

 ; labels = x ? here, x provides a set of names, not the actual data

 ; title = Bootstrap … $? the desired title

Figure 73. Display of Esstimation Results

65

E. WALD, SIMULATE and Standard Errors for Nonlinear Functions

Two devices, WALD and SIMULATE are provided for computing functions of parameters and standard errors for

nonlinear functions. Both of them compute linear or nonlinear functions and standard errors usually using the delta

method. (The method of Krinsky and Robb is also available.) Functions can be any desired computation using a

parameter vector and the data.

1. The WALD Command

WALD is used for computing multiple functions and can be used to test hypotheses about functions of parameters.

To illustrate, we manipulate the average partial effects shown in Figures 71 and 73. The WALD command to

examine what is actually not a useful function would appear thusly:

WALD ; parameters = ape

; covariance = varb

; labels = ca,ce,ci,ch

; fn1=ca*exp(ca'x) + phi(ca) $

A Tip: In the function definition above, x is a namelist with 4 names that was defined above in part D,

x=age,educ,income,hlthsat. The parameter vector is (ca,ce,ci,ch). The construction ca’x uses the parameters

beginning with ca and x beginning with the first variable to compute the inner product. When one of the two

components is shorter than the other, the shorter list is used. Thus, ce’x = ce*age+ci*educ+ch*income. If we

defined z=age,educ, then ca’z would equal ca*age+ce*educ.

WALD requires the parameter vector, covariance matrix, labels, and up to 50 function definitions. As seen in the

top panel of Figure 74, WALD computes the function at the means of the data using the current sample, and uses the

delta method to compute standard errors and confidence intervals. By adding ;Average to the command, you can

request that the avarage function value be computed, rather than the functions at the averages. This appears in the

lower panel of Figure 74. WALD also computes the chi squared test of the null hypothesis that all of the functions

are jointly zero. Note, in Figure 74, there is one function – the Wald statistic in this case is the square of the z

statistic.

Figure 74. WALD Command for Analyzing Nonlinear Functions

66

2. The SIMULATE Command

The SIMULATE command shown in Section VII.B.2 can also be used to analyze functions of parameter estimates.

The base cases are give the same result as WALD, as shown in Figure 75 for this example – note the function

analyzed is the same as used in WALD.

SIMULATE ; parameters = ape ; covariance = varb

; labels = ca,ce,ci,ch

;function=ca*exp(ca'x) + phi(ca) $

Figure 75. Analyzing a Function with SIMULATE

SIMULATE computes the average function as opposed to WALD which computes the function at the means. As

noted, WALD will compute the average function if the command contains ;Average. SIMULATE will compute

the function at the means if the command contains ;Means.

3. WALD or SIMULATE - Which Should You Use?

For computing a function and appropriate standard errors, WALD and SIMULATE give the same answers. They

differ as follows:

 WALD can be used to compute the chi squared test statistic for testing the hypothesis that the functions

 are all zero (simultaneously)

 WALD can analyze up to 50 functions in the single command.

 SIMULATE has many options for analyzing scenarios and simulating a function over a variety of

 different settings of the variables in the equation.

 SIMULATE can plot function values as well as listing them.

An example of a more elaborate use of SIMULATE appears in Figure 76. The command is as follows:

SIMULATE ; parameters = ape ; covariance = varb

; labels = ca,ce,ci,ch

;function=ca*exp(ca'x) + phi(ca)

;scenario: & educ=12(1)20

;plot $

67

Figure 76. Analyzing a Scenario with SIMULATE

