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Abstract

This note develops an encompassing model for two well known variants of the negative binomial model (the NB1 and NB2 forms). We
conclude with an application of the proposed model using the data employed in a recent health care study.
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1. Introduction

Models for count data have been prominent in many
branches of the recent applied literature, for example, in health
economics1, management (e.g., numbers of patents2) and
industrial organization (e.g., numbers of entrants to markets3).
The foundational building block in this modeling framework is
the Poisson regression model.4 But, because of its implicit
restriction on the distribution of observed counts – in the
Poisson model, the variance of the random variable is con-
strained to equal the mean – researchers generally employ
more general specifications such as the negative binomial (NB)
model which is the standard choice for a basic count data
model.5 There are two well known, nonnested forms of the
negative binomial model, denoted NB1 and NB2 in the
literature [see Cameron and Trivedi, (1986)]. Researchers have
typically chosen one form or the other (usually NB2), without
actually articulating a preference for either. We propose an
⁎ Tel.: +1 212 998 0876.
E-mail address: wgreene@stern.nyu.edu.
URL: http://www.stern.nyu.edu/~wgreene.

1 Contoyannis et al. (2004), Munkin and Trivedi (1999), Riphahn et al.
(RWN) (2003). See, as well, Cameron and Trivedi (2005).
2 Hausman et al. (1984) and Wang et al. (1998).
3 Asplund and Sandin (1999).
4 HHG (1984), Cameron and Trivedi (1986, 1998), and Winkelmann (2003).
5 The NB model is by far the most common specification. See Hilbe (2007).

The latent class (finite mixture) and random parameters forms have also been
employed. See, e.g., Wang et al. (1998).
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encompassing model that nests both of them parametrically
and allows a statistical test of the two functional forms against
a more general alternative.

The study is organized as follows: Section 2 will detail the
basic modeling frameworks for count data, the Poisson and NB
models. We then develop the NBP model to encompass NB1
and NB2. The model extensions are applied to the Riphahn et al.
(RWM) (2003) panel data on health care utilization in Section 3.
Some conclusions are drawn in Section 4.

2. Basic functional forms for count data models

The literature aboundswith alternativemodels for counts— see,
e.g., CT (1998) andWinkelmann (2003).However, the Poisson and
two forms of the negative binomial model overwhelmingly
dominate the received applications [see Hilbe (2007).].

2.1. The Poisson regression model

The canonical regression specification for a variable Y that is
a count of events is the Poisson regression,

Prob Y ¼ yijxi½ � ¼ exp �kið Þkyii
C 1þ yið Þ ;

ki ¼ exp aþ x Vibð Þ; yi ¼ 0; 1; ::: ; i ¼ 1; ::: ;N (2-1)

where xi is a vector of covariates and, i = 1,…, N, indexes the N
observations in a random sample [The regression model is
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developed in detail in a vast number of standard references
such as CT (1986, 1998, 2005), Winkelmann (2003) and Greene
(2008,in press)]. The signature features of the Poisson model are
its loglinear conditional mean function,

E yijxi½ � ¼ ki: (2-2)

and its equidispersion,

Var yijxi½ � ¼ ki: (2-3)

Since observed data will almost always display pronounced
overdispersion, analysts typically seek alternatives to the Poisson
model, such as the negative binomial model described below.
2.2. The standard negative binomial model

The negative binomial model is employed as a functional
form that relaxes the equidispersion restriction of the Poisson
model. A useful way to motivate the model is through the
introduction of latent heterogeneity in the conditional mean of
the Poisson model.6 Thus, we write

E yijxi; ei½ � ¼ exp aþ x Vi bþ eið Þ ¼ hiki; (2-4)

where hi= exp(εi) is assumed to have a one parameter gamma
distribution, G(θ,θ) with mean 1 and variance 1 / θ = κ;

f hið Þ ¼ hh exp �hhið Þhh�1
i

C hð Þ ; hi z 0; h N 0: (2-5)

After integrating hi out of the joint distribution, we obtain the
marginal negative binomial (NB) distribution,

Prob Y ¼ yijxi½ � ¼ C hþ yið Þrhi 1� rið Þyi
C 1þ yið ÞC hð Þ ;

yi ¼ 0; 1; :::; h N 0; ri ¼ h= hþ kið Þ: (2-6)

The latent heterogeneity induces overdispersion while preserv-
ing the conditional mean;

E yijxi½ � ¼ ki; (2-7)

Var yijxi½ � ¼ ki 1þ 1=hð Þki½ � ¼ ki 1þ jki½ � (2-8)
where κ = Var[hi].
Maximum likelihood estimation of the parameters of the NB

model (α,β,θ) is straightforward, as documented in, e.g., Greene
(2007). Inference proceeds along familiar lines. Inference about
the specification, specifically the presence of overdispersion, is
the subject of a lengthy literature, as documented, e.g., in CT
(1990, 1998, 2005) and Hilbe (2007).
6 This general approach is discussed at length by Gourieroux et al. (1984),
CT (1986, 1998), Winkelmann (2003) and HHG (1984).
2.3. The NB1 and NEGBIN P models

The negative binomial model in Eq. (2-6) was labeled the
NEGBIN 2 (NB2) model by CT (1986), in reference to the
appearance of the quadratic term for λi in the conditional var-
iance function:

Var yijxi½ � ¼ ki þ jk2i : ð2‐11Þ

CT (1986) suggested a reparameterization of the model,

Var yijxi½ � ¼ ki þ jk1i ¼ ki 1þ j½ �; ð2‐12Þ

and label the resulting specification NB1. The model is obtained
by replacing θ with θλi in Eq. (2-6). After simplification, we
obtain the density for NB1,

Prob Y ¼ yijxi½ � ¼ C hki þ yið Þqhki 1� qð Þyi
C yi þ 1ð ÞC hkið Þ ;

yi ¼ 0; 1; :::; q ¼ 1=1 1þ hð Þ:
ð2‐13Þ

The authors note in (1998) that other exponents would be
possible [see their p. 73 and (3.26)]. By replacing θ with θλi

2 − P,
we obtain the NEGBIN P, or NBP model,

Prob Y ¼ yijxi½ � ¼ C hk2�P
i þ yi

� �
shk

2�P
i

i 1� sið Þyi
C yi þ 1ð ÞC hk2�P

i

� � ;

yi ¼ 0; 1; :::;
si ¼ ki
ki þ hk2�P

i

: ð2‐14Þ

(The log likelihood function and its derivatives are given in
the Appendix.) The NB1 and NB2 models are the special cases
of P = 1 and P = 2. The conditional mean in this model is still
λi, while the conditional variance is

Var yijxi½ � ¼ ki 1þ 1=hð ÞkP�1
i

� �
: ð2‐15Þ

CT (1998) focus on the P = 1 and P = 2 forms, but do
suggest that the “generalized event count model” (see their
Section 4.4.1) does include the NEGBIN P as a special case
[CT (1986) also mention the possibly of this extension of the
model, but do not develop it at any length.]. The GEC model
[Winkelmann and Zimmermann (1991, 1995); King (1989)]
which does include NPP is sufficiently cumbersome to have
greatly restricted its general use. The NBP model achieves
somewhat less of the generality of the GEC model, but is
much simpler to implement.7 Although various authors have
suggested the possibility of exponents other than 1 and 2in
7 Winkelmann and Zimmermann (1995) develop a maximum likelihood
estimator for the equivalent of the NEGBIN P model, but their formulation adds
what appears to be a considerable yet unnecessary layer of difficulty to the
derivation. In applications, the direct MLE based on (2-14) appears to be quite
well behaved.



Table 1
Variables in German health care data file

Variable Measurement Mean Standard deviation

ID Household identification, 1,…, 7293
YEAR Calendar year of the observation 1987.82 3.17087
YEAR1984 Dummy variable for 1984 observation .141770 .348820
YEAR1985 Dummy variable for 1984 observation .138842 .345788
YEAR1986 Dummy variable for 1984 observation .138769 .345712
YEAR1987 Dummy variable for 1984 observation .134158 .340828
YEAR1988 Dummy variable for 1984 observation .164056 .370333
YEAR1991 Dummy variable for 1984 observation .158823 .365518
YEAR1994 Dummy variable for 1984 observation .123582 .329110
AGE Age in years 43.5257 11.3302
AGESQ⁎⁎ Age squared /1000 2.02286 1.00408
FEMALE Female=1; male=0 .478775 .499558
MARRIED Married=1; else=0 .758618 .427929
HHKIDS Children under age 16 in the household=1; else=0 .402730 .490456
HHNINC⁎⁎⁎ Household nominal monthly net income, German marks /10,000 .352084 .176908
EDUC Years of schooling 11.3206 2.32489
WORKING Employed=1; else=0 .677048 .467613
BLUEC Blue collar employee=1; else=0 .243761 .429358
WHITEC White collar employee=1; else=0 .299605 .458093
SELF Self employed=1; else=0 .0621752 .241478
CIVIL Civil servant=1; else=0 .0746908 .262897
HAUPTS Highest schooling degree is Hauptschul=1; else=0 .624277 .484318
REALS Highest schooling degree is Realschul=1; else=0 .196809 .397594
FACHHS Highest schooling degree is Polytechnical=1; else=0 .0408402 .197924
ABITUR Highest schooling degree is Abitur=1; else=0 .117031 .321464
UNIV Highest schooling degree is university=1; else=0 .0719461 .258403
HSAT Health satisfaction, 0–10 6.78543 2.29372
NEWHSAT⁎,⁎⁎ Health satisfaction, 0–10 6.78566 2.29373
HANDDUM Handicapped=1; else=0 .214015 .410028
HANDPER Degree of handicap in pct, 0–100 7.01229 19.2646
DOCVIS Number of doctor visits in last three months 3.18352 5.68969
DOCTOR⁎⁎ 1 if DOCVISN0, 0 else 629108 .483052
HOSPVIS Number of hospital visits in last calendar year .138257 .884339
HOSPITAL⁎⁎ 1 of HOSPVISN0, 0 else .0876455 .282784
PUBLIC Insured in public health insurance=1; else=0 .885713 .318165
ADDON Insured by add-on insurance=1; else=0 .0188099 .135856

Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.
From Riphahn, R., A. Wambach and A. Million “Incentive effects in the demand for health care: a bivariate panel count data estimation,” Journal of Applied
Econometrics, 18, 4, 2003, pp. 387–405.
Notes: ⁎NEWHSAT=HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7.
⁎⁎Transformed variable not in raw data file.
⁎⁎⁎Divided by 1,000 rather than 10,000 by RWM. We used this scale to ease comparison of coefficients.
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Eq. (2-14), we have not found an empirical implementation
in the received literature. An application appears below.

For choosing statistically between NB1 and NB2, the models
are nonnested and essentially equivalently parameterized, so a
direct test is precluded. However, one possibility is the Vuong
(1989) test based on

V ¼
ffiffiffi
n

p
Pm

sm
;mi ¼ ln Li NB2ð Þ � ln Li NB1ð Þ: ð2‐16Þ

When the underlying conditions for its validity are met,
the Vuong test statistic has a limiting standard normal dis-
tribution. Large positive values would favor NB2. We have
found in applications that this statistic is rarely outside the
inconclusive region (− 1.96 to + 1.96) for this model. It may
be that NB1 and NB2 are not sufficiently different to enable a
distinction on this basis. Since the NBP model does nest
both of them, it provides a partial solution to the specifica-
tion problem. For example, in our application below, simple
likelihood ratio tests reject both the NB1 and NB2 null
hypotheses.

3. Application

In “Incentive Effects in the Demand for Health Care: A
Bivariate Panel Count Data Estimation,” Riphahn, Wambach
and Million (RWM) (2003) employed a part of the German
Socioeconomic Panel (GSOEP) data set to analyze two count
variables, DocVis, the number of doctor visits in the last three
months and HospVis, the number of hospital visits in the last
year. The authors employed a bivariate panel data (random
effects) Poisson model to study these two outcome variables. A
central focus of the investigation was the role of the choice of
private health insurance in the intensity of use of the health care

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/


Table 2
Specifications for the negative binomial model (t ratios in parentheses) a

Variable Poisson NB 1 NB 2 NB P

Constant 2.771 (28.85) 2.7760 (14.06) 3.1488 (13.74) 3.0500 (13.14)
AGE −0.02387 (−5.44) − .04768 (−5.61) −0.03983 (−4.07) − .04679 (−4.76)
AGESQ 0.3693 (7.45) .6340 (6.58) 0.5467 (4.77) 0.6373 (5.66)
HSAT −0.2253 (−104.1) − .1886 (−44.58) −0.2392 (−42.44) − .2279 (−46.17)
HANDDUM 0.06899 (4.09) .02292 (0.67) −0.02090 (−0.46) .01660 (0.41)
HANDPER 0.002858 (10.04) .004141 (7.33) 0.006614 (8.05) .005031 (7.30)
MARRIED 0.05831 (3.89) .1299 (4.50) 0.06582 (2.18) .1139 (3.55)
EDUC −0.02348 (−8.43) − .009550 (−1.80) −0.02623 (−4.59) − .01794 (−2.86)
HHNINC −0.2220 (−5.93) − .07878 (−1.13) −0.1917 (−2.48) − .1462 (−1.78)
HHKIDS −0.07598 (−5.75) − .07435 (−2.95) −0.08440 (−3.32) − .08672 (−3.10)
SELF −0.2110 (−8.98) − .2439 (−5.56) −0.2179 (−5.02) − .2628 (−5.42)
CIVIL 0.09144 (3.78) .02782 (0.60) 0.08411 (1.56) .05148 (0.93)
BLUEC 0.01779 (1.24) − .009478 (−0.35) .03706 (1.20) .005597 (0.17)
WORKING −0.05539 (−3.17) .01258 (0.37) −0.01545 (−0.38) − .001046(−0.20)
PUBLIC 0.1001 (4.27) .06067 (1.38) .09340 (1.83) .07823 (1.50)
ADDON 0.06655 (1.63) .1393 (1.72) 0.05506 (0.50) .1363 (1.34)
θ b Not estimated 0.2058 (62.08) 0.5707 (59.96) 0.3460 (36.47)
κ c 0.0000 (fixed) 4.8598 (62.08) 1.7522 (59.96) 2.8905 (36.47)
P 0.0000 (fixed) 1.0000 (fixed) 2.0000 (fixed) 1.4897 (64.96) d

In L −42774.7 −27410.0 −27480.4 −27306.1
a Estimated coefficients for year dummy variables, excluding year 1984, are not reported.
b θ=the estimated parameter for the log gamma (NB) model.
c κ=1/θ=Var[h] for log gamma model.
d Estimated standard error is 0.02293.
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system, i.e., whether the data contain evidence of moral hazard.
We will use these data to illustrate the model extensions
described above.8 The authors of this study presented estimates
for a Poisson-lognormal model and a bivariate Poisson model.

The RWM data set is an unbalanced panel of 7293 individual
families observed from one to seven times. The number of
observations varies from one to seven (1525, 1079, 825, 926,
1051, 1000, 887) with a total number of observations of 27,326.
The variables in the data file are listed in Table 1 with descriptive
statistics for the full sample. RWM estimated separate equations
for males and females and did not report any estimates based
on the pooled data. In the interest of brevity, we will restrict
attention to DocVis, the count of doctor visits, and demonstrate
the NBP model with only the subsample of males. Analysis of
the count of hospital visits is left for further research. [More
extensive analysis of the specification and empirical results
appear in Greene (2008a).]

The base case count model used by the authors included the
following variables in addition to the constant term:

xit ¼ ðAge; Agesq; HSat; Handdum; Handper; Married;

Educ; Hhninc; Hhkids; Self ; Civil; Bluec;

Working; Public; AddOnÞ
and a set of year effects,

t ¼ ðYEAR1985; YEAR1986; YEAR1987; YEAR1988;
YEAR1991; YEAR1994Þ:
8 The raw data are published and available for download on the Journal of
Applied Econometrics data archive website, The URL is given below Table 1.
The same specification was used for both DocVis and
HospVis. We will use their specification in our count models.
The estimated year effects are omitted from the reported results in
the paper.

Table 2 presents estimates of the parameters of the different
specifications of the negative binomial model. The base case
Poisson model corresponds to P = 0 in the encompassing NBP
specification. Based on the likelihood ratio tests, any of the
alternative specifications in the table, all of which nest the
Poisson, will dominate it. As suggested earlier, NB1 and NB2
produce similar results, but nonetheless, are manifestly dif-
ferent specifications. The log likelihood for NB1 is signifi-
cantly larger than that for NB2. However, as these two models
are not nested, the LR test is inappropriate. Using the Vuong
statistic in Eq. (2-16), we obtain a value of − 1.63 in favor of
NB1. In spite of the log likelihoods, this is in the inconclusive
region. As expected, NBP produces a greater likelihood than
either NB1 or NB2. Using a likelihood ratio statistic for testing
against NB1, we obtain a chi squared of 207.8 with one degree
of freedom. Thus, NB1 and, a fortiori, NB2 are rejected in
favor of NBP for these data. The estimated standard error for
the estimator of P for this model is 0.02293. The t (Wald) test
against the null hypothesis that P equals 1.0 gives a statistic of
21.33, which, once again, would decisively reject the NB1
specification.

4. Conclusion

This study has developed the NBP encompassing form for
the negative binomial model and applied the techniques in an
analysis of a large sample of German households. The NBP
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variant of the negative binomial model is a convenient form
that provides a means of formalizing the specification choice.
Most received applications of the model have used the NB2
form. In a few other cases, such as HHG (1984), the NB1
model is used. In none of the cases, does the presentation
provide a formal means of preferring one or the other. The
NBP is an encompassing form that is simple to operationalize.
In the application here (and in others we have considered),
likelihood ratio tests suggest that the NBP form would
be preferred to both NB1 and NB2. The method developed
here was applied to the data set used in RWM (2003). Our
empirical results were largely similar to theirs. We find that
on the question of moral hazard – whether the presence of
insurance appears positively to influence demand for health
services – the apparent effect that shows up in the simple
models (e.g., a pooled Poisson model) almost completely
disappears when latent heterogeneity is formally introduced
into the model.

Since the NB1 and NB2 models are not nested, there is no
simple parametric test that one can employ to choose between
them. E.g., CT do not express a preference for either one or the
other in (1986) or (1998); they merely note the difference. They
do state “[T]he NB2 MLE [is] favored by econometricians and
the NB1 GLM [generalized linear model] [is] used extensively
by statisticians.” This appeal to the estimation algorithm appears
to be the closest to a preference for one or the other as appears in
the recent literature. On the other hand, the various references
to GEC and NBP models do suggest an attraction to a more
general specification than NB1 or NB2. Our results suggest that
at least in some applications, the NBP model is likely to be
preferable yet to either of the more restrictive negative binomial
models.

Appendix A. Log likelihood and gradient for NBP model

The NegBin P model is obtained by replacing θ in NB2,

Prob Y ¼ yijxið Þ ¼ C hþ yið Þ
C hð ÞC 1þ yið Þ r

h
i 1� rið Þyi ; ri ¼ h= hþ kið Þ;

ðA‐1Þ

with θλi
P− 2. For convenience, letQ = P − 2. Then, the density is

Prob Y ¼ yijxið Þ ¼
C hkQi þ yi
� �

C hkQi
� �

C 1þ yið Þ
hkQi

hkQi þ ki

 !hkQi
k

hkQi þ ki

 !yi

:

ðA‐2Þ

Derivatives of ln Li= ln Prob(Y = yi|xi) for the Negbin P model
are straightforward, albeit tedious. We obtain them by writing
the density as

ln Li ¼ ln C yi þ gið Þ � ln C gið Þ � ln C 1þ yið Þ þ gi ln ri þ yi ln

gi ¼ hkQi and wi ¼ gi= gi þ kið Þ: ðA‐3Þ

riÞ;

Then,

A ln Li=Aki ¼ W yi þ gið Þ �W gið Þ þ ln wi½ �Agi=Aki
þ gi=wi � yi= 1� wið Þ½ �Awi=Aki

A ln Li=Ah ¼ W yi þ gið Þ �W gið Þ þ ln wi½ �Agi=Ah
þ gi=wi � yi= 1� wið Þ½ �Awi=Ah

A ln Li=AQ ¼ W yi þ gið Þ �W gið Þ þ ln wi½ �Agi=AQ
þ gi=wi � yi= 1� wið Þ½ �Awi=AQ:

ðA‐4Þ
where Ψ (t) = dlnΓ(t) / dt. The inner parts are:

Agi=Aki ¼ hQkQ�1
i ¼ Q=kið Þgi

Agi=Ahi ¼ kQi ¼ 1=hð Þgi
Agi=AQ ¼ hkQi logki ¼ ln kigi
Awi=Aki ¼ Q� 1ð Þ=ki½ �wi 1� wið Þ
Awi=Ah ¼ 1=hð Þwi 1� wið Þ
Awi=AQ ¼ log kiwi 1� wið Þ ðA‐5Þ
Collecting terms, now, let

Ai ¼ W yi þ gið Þ �W gið Þ þ ln wi½ �;
Bi ¼ gi 1� wið Þ � yiwi½ �; ðA‐6Þ

to obtain

A ln Li=A
ki
h
Q

0
@

1
A ¼ Ai þ Bi½ �

Q=ki
1=h
log ki

0
@

1
A� Bi

1=ki
0
0

0
@

1
A:

ðA‐7Þ

The final element needed is ∂lnLi /∂β = (∂lnLi /∂λi)(∂λi /∂β)
where ∂lnLi /∂λi appears above and ∂λi /∂β = λixi. We use
these and the BHHH estimator to compute the maximum likeli-
hood estimates and their asymptotic standard errors for the NBP
model. Good starting values for the NBP iterative estimator are
the NB2 estimates of β and θ and P = 2 (Q = 0).
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