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compact procedure can be constructed. [See, e.g., Cameron and Miller (2015).] The 
pseudo-log-likelihood function is

	 ln L = a
S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1
 ln f(yics � xics, U),	 (14-80)

where there are S strata, s = 1, c, S, Cs clusters in stratum s, c = 1, c, Cs and Ncs 
individual observations in cluster c in stratum s, i = 1, c, Ncs. We emphasize, this is 
not the true log likelihood for the sample; the assumed clustering and stratification of 
the data imply that observations are correlated. Let

 gics =
0 ln f(yics � xics, U)

0U
, gcs = a

Ncs

i = 1
gics, gs = a

Cs

c = 1
gcs,

 Gs = ¢ a
Cs

c = 1
gcsgcs

= ≤ -
1
Cs

gsgs
=,  G = a

S

s = 1
Gs,

 H = a
S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1

02 ln f(yics � xics, U)

0U0U′
= a

S

s = 1
 a

Cs

c = 1
 a

Ncs

i = 1
Hics.	 (14-81)

Then, the corrected covariance matrix for the pseudo-MLE would be

	 est.asy.Var[Un] = [-Hn ]-1[Gn ][-Hn ]-1	 (14-82)

For a linear model estimated using least squares, we would use gics = (eics/s
2)xics and 

Hics = (1/s2)xicsxics
= . The appearances of s2 would cancel out in the final result. One last 

consideration concerns some finite population corrections. The terms in G might be 
weighted by a factor ws = (1 - Cs/C*) if stratum s consists of a finite set of C* clusters 
of which Cs is a significant proportion, times the within cluster correction, Cs/(Cs - 1), 
that appears in (11-4), and finally, times (n - 1)/(n - K), where n is the full sample size 
and K is the number of parameters estimated.

14.14.4    RANDOM EFFECTS IN NONLINEAR MODELS: MLE USING QUADRATURE

Example 14.13 describes a nonlinear model for panel data, the geometric regression model,

 Prob[Yit = yit � xit] = uit(1 - uit)
yit, yit = 0, 1, c, i = 1, c, n, t = 1, c, Ti,

 uit = 1/(1 + lit), lit = exp(xit
=B).  

As noted, this is a panel data model, although as stated, it has none of the features we 
have used for the panel data in the linear case. It is a regression model,

E[yit � xit] = lit,

which implies that

yit = lit + eit.

This is simply a tautology that defines the deviation of yit from its conditional mean. It 
might seem natural at this point to introduce a common fixed or random effect, as we 
did earlier in the linear case, as in

yit = lit + eit + ci.
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However, the difficulty in this specification is that whereas eit is defined residually just as 
the difference between yit and its mean, ci is a freely varying random variable. Without 
extremely complex constraints on how ci varies, the model as stated cannot prevent yit 
from being negative. When building the specification for a nonlinear model, greater 
care must be taken to preserve the internal consistency of the specification. A frequent 
approach in index function models such as this one is to introduce the common effect 
in the conditional mean function. The random effects geometric regression model, for 
example, might appear

 Prob[Yit = yit � xit] = uit(1 - uit)
yit, yit = 0, 1, c; i = 1, c, n, t = 1, c, Ti,

 uit = 1/(1 + lit), lit = exp(xit
=B + ui),

f(ui) = the specification of the distribution of random effects over individuals.

By this specification, it is now appropriate to state the model specification as

Prob[Yit = yit, � xit, ui] = uit(1 - uit)
yi t.

That is, our statement of the probability is now conditioned on both the observed data 
and the unobserved random effect. The random common effect can then vary freely and 
the inherent characteristics of the model are preserved.

Two questions now arise:

●● How does one obtain maximum likelihood estimates of the parameters of the 
model? We will pursue that question now.

●● If we ignore the individual heterogeneity and simply estimate the pooled model, will 
we obtain consistent estimators of the model parameters? The answer is sometimes, 
but usually not. The favorable cases are the simple loglinear models such as the 
geometric and Poisson models that we consider in this chapter. The unfavorable 
cases are most of the other common applications in the literature, including, notably, 
models for binary choice, censored regressions, two-part models, sample selection, 
and, generally, nonlinear models that do not have simple exponential means.40

We will now develop a maximum likelihood estimator for a nonlinear random 
effects model. To set up the methodology for applications later in the book, we will do 
this in a generic specification, then return to the specific application of the geometric 
regression model in Example 14.13. Assume, then, that the panel data model defines the 
probability distribution of a random variable, yit, conditioned on a data vector, xit, and 
an unobserved common random effect, ui. As always, there are Ti observations in the 
group, and the data on xit and now ui are assumed to be strictly exogenously determined. 
Our model for one individual is, then,

p(yit � xit, ui) = f(yit � xit, ui, U),

where p(yit � xit, ui) indicates that we are defining a conditional density while f(yit � xit, ui, u) 
defines the functional form and emphasizes the vector of parameters to be estimated. 
We are also going to assume that, but for the common ui, observations within a group 
would be independent—the dependence of observations in the group arises through the 

40Note: This is the crucial issue in the consideration of robust covariance matrix estimation in Section 14.8. See, as 
well, Freedman (2006).

M14_GREE1366_08_SE_C14.indd   614 2/23/17   1:20 PM



	 CHAPTER 14  ✦  Maximum Likelihood Estimation	 615

presence of the common ui. The joint density of the Ti observations on yit given ui under 
these assumptions would be

p(yi1, yi2, c, yi,Ti
� Xi, ui) = q

Ti

t = 1
f(yit � xit, ui, U),

because conditioned on ui, the observations are independent. But because ui is part of the 
observation on the group, to construct the log likelihood, we will require the joint density,

p(yi1, yi2, c, yi,Ti
, ui, � Xi) = JqTi

t = 1
f(yit, � xit, ui, U) R f(ui).

The likelihood function is the joint density for the observed random variables. Because 
ui is an unobserved random effect, to construct the likelihood function, we will then have 
to integrate it out of the joint density. Thus,

p(yi1, yi2, c, yi,Ti
� Xi) = Lui

JqTi

t = 1
f(yit � xit, ui, U) R f(ui)dui.

The contribution to the log-likelihood function of group i is, then,

ln Li = ln L
ui 

JqTi

t = 1
f(yit � xit, ui, U) R f(ui)dui.

There are two practical problems to be solved to implement this estimator. First, it 
will be rare that the integral will exist in closed form. (It does when the density of yit is 
normal with linear conditional mean and the random effect is normal, because, as we 
have seen, this is the random effects linear model.) As such, the practical complication 
that arises is how the integrals are to be computed. Second, it remains to specify the 
distribution of ui over which the integration is taken. The distribution of the common 
effect is part of the model specification. Several approaches for this model have now 
appeared in the literature. The one we will develop here extends the random effects 
model with normally distributed effects that we have analyzed in the previous section. 
The technique is Butler and Moffitt’s method (1982). It was originally proposed for 
extending the random effects model to a binary choice setting (see Chapter 17), but, 
as we shall see presently, it is straightforward to extend it to a wide range of other 
models. The computations center on a technique for approximating integrals known as 
Gauss–Hermite quadrature.

We assume that ui is normally distributed with mean zero and variance su
2. Thus,

f(ui) =
122psu

2
 exp¢ -

ui
2

2su
2 ≤.

With this assumption, the ith term in the log likelihood is

ln Li = lnL
∞

-∞
JqTi

t = 1
f(yit � xit, ui, U) R 122psu

2
 exp¢ -

ui
2

2su
2 ≤dui.

To put this function in a form that will be convenient for us later, we now let 
wi = ui/(su22) so that ui = su22wi = fwi and the Jacobian of the transformation 
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from ui to wi is dui = fdwi. Now, we make the change of variable in the integral to 
produce the function

ln Li = ln 
12pL

∞

-∞
JqTi

t = 1
f(yit � xit, fwi, U) R  exp (-wi

2)dwi.

For the moment, let

g(wi) = q
Ti

t = 1
f(yit � xit, fwi, U).

Then, the function we are manipulating is

ln Li = ln 
12pL

∞

-∞
g(wi) exp (-wi

2)dwi.

The payoff to all this manipulation is that integrals of this form can be computed very 
accurately by Gauss–Hermite quadrature. Gauss–Hermite quadrature replaces the 
integration with a weighted sum of the functions evaluated at a specific set of points. 
For the general case, this is

L
∞

-∞
g(wi) exp (-wi

2)dwi ≈ a
H

h = 1
zhg(vh),

where zh is the weight and vh is the node. Tables of the nodes and weights are found 
in popular sources such as Abramovitz and Stegun (1971). For example, the nodes and 
weights for a four-point quadrature are

 vh = {0.52464762327529002 and {1.6506801238857849,

 zh = 0.80491409000549996  and 0.081312835447250001.

In practice, it is common to use eight or more points, up to a practical limit of about 96. 
Assembling all of the parts, we obtain the approximation to the contribution to the log 
likelihood,

ln Li = ln 
12p

 a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, U) R .

The Hermite approximation to the log-likelihood function is

	 ln L = a
n

i = 1
 ln 

12p
 a

H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, U) R .	 (14-83)

This function is now to be maximized with respect to U and f. Maximization is a complex 
problem. However, it has been automated in contemporary software for some models, 
notably the binary choice models mentioned earlier, and is in fact quite straightforward 
to implement in many other models as well. The first and second derivatives of the log-
likelihood function are correspondingly complex but still computable using quadrature. 
The estimate of su and an appropriate standard error are obtained from fn  using the 
result f = su22. The hypothesis of no cross-period correlation can be tested with a 
likelihood ratio test.
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Example 14.17    Random Effects Geometric Regression Model
We will use the preceding to construct a random effects model for the DocVis count variable 
analyzed in Example 14.10. Using (14-90), the approximate log-likelihood function will be

 ln LH = a
n

i = 1
ln 

12p
 a

H

 
h = 1

zhJqTi

t = 1
uit(1 - uit)yit R ,

 uit = 1/(1 + lit), lit = exp(xit
=B + fvh).

The derivatives of the log likelihood are approximated as well. The following is the general 
result—development is left as an exercise:

 
0 log L

0¢b
f
≤ = a

n

i = 1

1
Li

 
0 Li

0¢b
f
≤

 ≈ a
n

i = 1

d 12p
a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, B) R D a

Ti

t = 1

0 In f(yit � xit, fvh, B)

0¢b
f
≤ T tb 12p

a
H

h = 1
zhJqTi

t = 1
f(yit � xit, fvh, B) R r .

It remains only to specialize this to our geometric regression model. For this case, the density 
is given earlier. The missing components of the preceding derivatives are the partial derivatives 
with respect to B and f that were obtained in Section 14.14.4. The necessary result is

0 ln f(yit � xit, fvh, B)

0¢b
f
≤ = [uit(1 + yit) - 1]¢xit

vh
≤.

Maximum likelihood estimates of the parameters of the random effects geometric regression 
model are given in Example 14.13 with the fixed effects estimates for this model.

14.14.5    FIXED EFFECTS IN NONLINEAR MODELS: THE INCIDENTAL PARAMETERS PROBLEM

Using the same modeling framework that we used in the previous section, we now define 
a fixed effects model as an index function model with a group-specific constant term. As 
before, the model is the assumed density for a random variable,

p(yit � dit, xit) = f(yit �aidit + xit
=B),

where dit is a dummy variable that takes the value one in every period for individual i 
and zero otherwise. (In more involved models, such as the censored regression model 
we examine in Chapter 19, there might be other parameters, such as a variance. For now, 
it is convenient to omit them—the development can be extended to add them later.) For 
convenience, we have redefined xit to be the nonconstant variables in the model.41 The 

41In estimating a fixed effects linear regression model in Section 11.4, we found that it was not possible to analyze 
models with time-invariant variables. The same limitation applies in the nonlinear case, for essentially the same 
reasons. The time-invariant effects are absorbed in the constant term. In estimation, the columns of the derivatives 
matrix corresponding to time-invariant variables will be transformed to columns of zeros when we compute 
derivatives of the log-likelihood function.
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parameters to be estimated are the K elements of B and the n individual constant terms, 
ai. The log-likelihood function for the fixed effects model is

ln L = a
n

i = 1
a
Ti

t = 1
ln f(yit �ai + xit

=B),

where f(.) is the probability density function of the observed outcome, for example, the 
geometric regression model that we used in our previous example. It will be convenient to let

zit = ai + xit
=B so that p(yit � dit, xit) = f(yit � zit).

In the fixed effects linear regression case, we found that estimation of the parameters 
was made possible by a transformation of the data to deviations from group means that 
eliminated the person-specific constants from the equation. (See Section 11.4.1.) In a 
few cases of nonlinear models, it is also possible to eliminate the fixed effects from the 
likelihood function, although in general not by taking deviations from means. One example 
is the exponential regression model that is used in duration modeling, for example for 
lifetimes of electronic components and electrical equipment such as light bulbs,

f(yit �ai + xit
=B) = uit exp(-uityit), uit = exp(ai + xit

=B), yit Ú 0.

It will be convenient to write uit = gi exp(xit
=B) = gi∆it . We are exploiting the invariance 

property of the MLE—estimating gi = exp(ai) is the same as estimating ai. The log 
likelihood is

 ln L = a
n

i = 1
a
Ti

t = 1
 ln uit - uityit

 = a
n

i = 1
a
Ti

t = 1
ln(gi∆it) - (gi∆it)yit.

	 (14-84)

The MLE will be found by equating the n + K partial derivatives with respect to gi and 
B to zero. For each constant term,

0 ln L
0gi

= a
Ti

t = 1
¢ 1
gi

- ∆ityit≤.

Equating this to zero provides a solution for gi in terms of the data and B,

	 gi =
Ti

a Ti

t = 1∆ityit

.	 (14-85)

[Note the analogous result for the linear model in (11-16b).] Inserting this solution back 
in the log-likelihood function in (14-84), we obtain the concentrated log likelihood,

	 ln LC = a
n

i = 1
a
Ti

t = 1
C ln£ Ti∆it

a Ti

s = 1∆isyis

≥ - £ Ti∆it

a Ti

s = 1∆isyis

≥yitS ,	 (14-86)

which is now only a function of B. This function can now be maximized with respect 
to B alone. The MLEs for ai are then found as the logs of the results of (14-92). Note, 
once again, we have eliminated the constants from the estimation problem, but not by 
computing deviations from group means. That is specific to the linear model.
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The concentrated log likelihood is only obtainable in only a small handful of cases, 
including the linear model, the exponential model (as just shown), the Poisson regression 
model, and a few others. Lancaster (2000) lists some of these and discusses the underlying 
methodological issues. In most cases, if one desires to estimate the parameters of a fixed 
effects model, it will be necessary to actually compute the possibly huge number of 
constant terms, ai, at the same time as the main parameters, B. This has widely been 
viewed as a practical obstacle to estimation of this model because of the need to invert 
a potentially large second derivatives matrix, but this is a misconception.42 The likelihood 
equations for the general fixed effects, index function model are

 
0 ln L

0ai
= a

Ti

t = 1

0 ln f(yit � zit)

0zit
 
0zit

0ai
= a

Ti

t = 1
git = gi. = 0,

and

 
0 ln L

0B
= a

n

i = 1
a
Ti

t = 1

0 ln f(yit � zit)

0zit
 
0zit

0B
= a

n

i = 1
a
Ti

t = 1
gitxit = 0.

The second derivatives matrix is

 
02 ln L

0ai
2 = a

Ti

t = 1

02 ln f(yit � zit)

0zit
2 = a

Ti

t = 1
hit = hi. 6 0,

 
02 ln L
0B0ai

= a
Ti

t = 1
hitxit,

 
02 ln L
0B0B′

= a
n

i = 1
a
Ti

t = 1
hitxitxit

= = HBB′,

where HBB′ is a negative definite matrix. The likelihood equations are a large system, 
but the solution turns out to be surprisingly straightforward.43

By using the formula for the partitioned inverse, we find that the K * K submatrix 
of the inverse of the Hessian that corresponds to B, which would provide the asymptotic 
covariance matrix for the MLE, is

 HBB′ = b a
n

i = 1
JaTi

t = 1
hitxitxit

= -
1
hi.

¢ aTi

t = 1
hitxit≤ ¢ aTi

t = 1
hitxit

= ≤ R r -1

,

 = b a
n

i = 1
JaTi

t = 1
hit(xit - xi)(xit - xi)′ R r -1

, where xi = a Ti

t = 1hitxit

hi.

.

Note the striking similarity to the result we had in (11-4) for the fixed effects model in 
the linear case.44 By assembling the Hessian as a partitioned matrix for B and the full 
vector of constant terms, then using (A-66b) and the preceding definitions to isolate one 
diagonal element, we find

Haiai =
1
hi.

+ xi
=HBB′xi.

42See, for example, Maddala (1987), p. 317.
43See Greene (2004a).
44A similar result is noted briefly in Chamberlain (1984).
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Once again, the result has the same format as its counterpart in the linear model. In 
principle, the negatives of these would be the estimators of the asymptotic variances 
of the maximum likelihood estimators. (Asymptotic properties in this model are 
problematic, as we consider shortly.)

All of these can be computed quite easily once the parameter estimates are in hand, 
so that in fact, practical estimation of the model is not really the obstacle. [This must 
be qualified, however. Consider the likelihood equation for one of the constants in the 
geometric regression model. This would be

a
Ti

t = 1
[uit(1 + yit) - 1] = 0.

Suppose yit equals zero in every period for individual i. Then, the solution occurs where 
�i(uit - 1) = 0. But uit is between zero and one, so the sum must be negative and cannot 
equal zero. The likelihood equation has no solution with finite coefficients. Such groups 
would have to be removed from the sample to fit this model.]

It is shown in Greene (2004a) that, in spite of the potentially large number of 
parameters in the model, Newton’s method can be used with the following iteration, 
which uses only the K * K matrix computed earlier and a few K * 1 vectors:

 Bn(s + 1) = Bn(s) - b a
n

i = 1
JaTi

t = 1
hit(xit - xi)(xit - xi)′ R r -1b a

n

i = 1
JaTi

t = 1
git(xit - xi) R r

 = Bn(s) + 
b
(s),

and

an l
(s + 1) = an l

(s) - [(gi./hi.) + xi
=
B

(s)].45

This is a large amount of computation involving many summations, but it is linear in the 
number of parameters and does not involve any n * n matrices.

In addition to the theoretical virtues and shortcomings (yet to be addressed) of this 
model, we note the practical aspect of estimation of what are possibly a huge number of 
parameters, n + K. In the fixed effects case, n is not limited, and could be in the thousands 
in a typical application. In Examples 14.15 and 14.16, n is 7,293. Two large applications 
of the method described here are Kingdon and Cassen’s (2007) study, in which they fit 
a fixed effects probit model with well over 140,000 dummy variable coefficients, and 
Fernandez-Val’s (2009) study, which analyzes a model with 500,000 groups.

The problems with the fixed effects estimator are statistical, not practical.46 The 
estimator relies on Ti increasing for the constant terms to be consistent—in essence, each 
ai is estimated with Ti observations. In this setting, not only is Ti fixed, it is also likely to 
be quite small. As such, the estimators of the constant terms are not consistent (not 
because they converge to something other than what they are trying to estimate, but 
because they do not converge at all). There is, as well, a small sample (small Ti) bias in 
the slope estimators. This is the incidental parameters problem.47 The source of the 

45Similar results appear in Prentice and Gloeckler (1978) who attribute it to Rao (1973) and Chamberlain (1980, 
1984).
46See Vytlacil, Aakvik, and Heckman (2005), Chamberlain (1980, 1984), Newey (1994), Bover and Arellano (1997), 
Chen (1998), and Fernandez-Val (2009) for some extensions of parametric and semiparametric forms of the 
binary choice models with fixed effects.
47See Neyman and Scott (1948) and Lancaster (2000).
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problem appears to arise from estimating n + K parameters with n multivariate 
observations—the number of parameters estimated grows with the sample size. The 
precise implication of the incidental parameters problem differs from one model to the 
next. In general, the slope estimators in the fixed effects model do converge to a parameter 
vector, but not to B. In the most familiar cases, binary choice models such as probit and 
logit, the small T bias in the coefficient estimators appears to be proportional (e.g., 100% 
when T = 2), and away from zero, and to diminish monotonically with T, becoming 
essentially negligible as T reaches 15 or 20. In other cases involving continuous variables, 
the slope coefficients appear not to be biased at all, but the impact is on variance and 
scale parameters. The linear fixed effects model noted in Footnote 12 in Chapter 11 is an 
example; the stochastic frontier model (Section 19.2) is another. Yet, in models for 
truncated variables (Section 19.2), the incidental parameters bias appears to affect both 
the slopes (biased toward zero) and the variance parameters (also attenuated). We will 
examine the incidental parameters problem in more detail in Section 15.5.2.

Example 14.18    Fixed and Random Effects Geometric Regression
Example 14.13 presents pooled estimates for a geometric regression model,

f(yit � xit) = uit(1 - uit)yit, uit = 1/(1 + lit), lit = exp(ci + xit
=B), yit = 0, 1, c.  

We will now reestimate the model under the assumptions of the random and fixed effects 
specifications. The methods of the preceding two sections are applied directly—no modification 
of the procedures was required. Table 14.15 presents the three sets of maximum likelihood 
estimates. The estimates vary considerably. The average group size is about five. This implies 
that the fixed effects estimator may well be subject to a small sample bias. Save for the 
coefficient on Kids, the fixed effects and random effects estimates are quite similar. On the 
other hand, the two panel models give similar results to the pooled model except for the Income 
coefficient. On this basis, it is difficult to see, based solely on the results, which should be 
the preferred model. The model is nonlinear to begin with, so the pooled model, which might 
otherwise be preferred on the basis of computational ease, now has no redeeming virtues. 
None of the three models is robust to misspecification. Unlike the linear model, in this and other 
nonlinear models, the fixed effects estimator is inconsistent when T is small in both random 
and fixed effects cases. The random effects estimator is consistent in the random effects 
model, but, as usual, not in the fixed effects model. The pooled estimator is inconsistent in both 
random and fixed effects cases (which calls into question the virtue of the robust covariance 
matrix). It might be tempting to use a Hausman specification test (see Section 11.5.5); however, 
the conditions that underlie the test are not met—unlike the linear model where the fixed effects 
estimator is consistent in both cases, here it is inconsistent in both cases. For better or worse, 
that leaves the analyst with the need to choose the model based on the underlying theory.

Pooled Random Effectsa Fixed Effects

Variable Estimate Std. Err.b Estimate Std. Err. Estimate Std. Err.

Constant 1.09189 0.10828 0.39936 0.09530
Age 0.01799 0.00130 0.02209 0.00122 0.04845 0.00351
Education -0.04725 0.00671 -0.04506 0.00626 -0.05434 0.03721
Income -0.46836 0.07265 -0.19569 0.06106 -0.18760 0.09134
Kids -0.15684 0.03055 -0.12434 0.02336 -0.00253 0.03687

aEstimated su = 0.95441.
bStandard errors corrected for clusters in the panel.

TABLE 14.15  Panel Data Estimates of a Geometric Regression for DOCVIS
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14.15	  LATENT CLASS AND FINITE MIXTURE MODELS

In this final application of maximum likelihood estimation, rather than explore a 
particular model, we will develop a technique that has been used in many different 
settings. The latent class modeling framework specifies that the distribution of the 
observed data is a mixture of a finite number of underlying populations. The model can 
be motivated in several ways:

●● In the classic application of the technique, the observed data are drawn from a 
mixture of distinct underlying populations. Consider, for example, a historical or 
fossilized record of the intersection (or collision) of two populations.48 The 
anthropological record consists of measurements on some variable that would differ 
imperfectly, but substantively, between the populations. However, the analyst has no 
definitive marker for which subpopulation an observation is drawn from. Given a 
sample of observations, they are interested in two statistical problems: (1) estimate 
the parameters of the underlying populations (models) and (2) classify the 
observations in hand as having originated in which population. The technique has 
seen a number of recent applications in health econometrics. For example, in a study 
of obesity, Greene, Harris, Hollingsworth, and Maitra (2008) speculated that their 
ordered choice model (see Chapter 19) might systematically vary in a sample that 
contained (it was believed) some individuals who have a genetic predisposition 
toward obesity and most that did not. In another application, Lambert (1992) studied 
the number of defective outcomes in a production process. When a “zero defectives” 
condition is observed, it could indicate either regime 1, “the process is under control,” 
or regime 2, “the process is not under control but just happens to produce a zero 
observation.”

●● In a narrower sense, one might view parameter heterogeneity in a population as a 
form of discrete mixing. We have modeled parameter heterogeneity using continuous 
distributions in Section 11.10. The “finite mixture” approach takes the distribution 
of parameters across individuals to be discrete. (Of course, this is another way to 
interpret the first point.)

●● The finite mixing approach is a means by which a distribution (model) can be 
constructed from a mixture of underlying distributions. Quandt and Ramsey’s 
mixture of normals model in Example 13.4 is a case in which a nonnormal 
distribution is created by mixing two normal distributions with different 
parameters.

14.15.1    A FINITE MIXTURE MODEL

To lay the foundation for the more fully developed model that follows, we revisit the 
mixture of normals model from Example 13.4. Consider a population that consists of a 
latent mixture of two underlying normal distributions. Neglecting for the moment that 
it is unknown which applies to a given individual, we have, for individual i, one of the 
following:

48The first application of these methods was Pearson’s (1894) analysis of 1,000 measures of the “forehead breadth 
to body length” of two intermingled species of crabs in the Bay of Naples.
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	  f(yi � classi = 1) = n[m1, s1
2] =

exp[-1
2 (yi - m1)

2/s1
2]

s122p
,

or� (14-87)

	  f(yi � classi = 2) = n[m2, s2
2] =

exp[-1
2 (yi - m2)

2/s2
2]

s222p
.

The contribution to the likelihood function is f(yi � classi = 1) for an individual in class 
1 and f(yi � class = 2) for an individual in class 2. Assume that there is a true proportion 
l = Prob(classi = 1) of individuals in the population that are in class 1, and (1 - l) in 
class 2. Then, the unconditional (marginal) density for individual i is

 f(yi) = lf(yi � classi = 1) + (1 - l)f(yi � classi = 2)

 = Eclasses f(yi � classi). 	 (14-88)

The parameters to be estimated are l, m1, m2, s1, and s2. Combining terms, the log 
likelihood for a sample of n individual observations would be

	 ln L = a
n

i = 1
ln¢l exp[-1

2 (yi - m1)
2/s1

2]

s122p
+

(1 - l) exp[-1
2 (yi - m2)

2/s2
2]

s222p
≤.	 (14-89)

This is the mixture density that we saw in Example 13.4. We suggested the method of 
moments as an estimator of the five parameters in that example. However, this appears 
to be a straightforward problem in maximum likelihood estimation.

Example 14.19    A Normal Mixture Model for Grade Point Averages
Appendix Table F14.1 contains a data set of 32 observations used by Spector and Mazzeo 
(1980) to study whether a new method of teaching economics, the Personalized System of 
Instruction (PSI), significantly influenced performance in later economics courses. Variables 
in the data set include

GPA = the student’s grade point average,
GRADE = dummy variable for whether the student’s grade in Intermediate Macroeconomics 
was higher than in the principles course,
PSI = dummy variable for whether the individual participated in the PSI,
TUCE = the student’s score on a pretest in economics.

We will use these data to develop a finite mixture normal model for the distribution of grade 
point averages.

We begin by computing maximum likelihood estimates of the parameters in (14-89). To 
estimate the parameters using an iterative method, it is necessary to devise a set of starting 
values. It might seem natural to use the simple values from a one-class model, y and sy, 
and a value such as 1/2 for l. However, the optimizer will immediately stop on these values, 
as the derivatives will be zero at this point. Rather, it is common to use some value near 
these—perturbing them slightly (a few percent), just to get the iterations started. Table 14.16 
contains the estimates for this two-class finite mixture model. The estimates for the one-class 
model are the sample mean and standard deviation of GPA. [Because these are the MLEs, 
sn 2 = (1/n)Σ i = 1

32 (GPAi - GPA)2.] The means and standard deviations of the two classes are 
noticeably different—the model appears to be revealing a distinct splitting of the data into two 
classes. (Whether two is the appropriate number of classes is considered in Section 14.15.5.) 
It is tempting at this point to identify the two classes with some other covariate, either in 
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624	 Part III  ✦   Estimation Methodology

the data set or not, such as PSI. However, at this point, there is no basis for doing so—the 
classes are “latent.” As the analysis continues, however, we will want to investigate whether 
any observed data help predict the class membership.

14.15.2    MODELING THE CLASS PROBABILITIES

The development thus far has assumed that the analyst has no information about class 
membership. Estimation of the prior probabilities (l in the preceding example) is part 
of the estimation problem. There may be some, albeit imperfect, information about class 
membership in the sample as well. For our earlier example of grade point averages, 
we also know the individual’s score on a test of economic literacy (TUCE). Use of 
this information might sharpen the estimates of the class probabilities. The mixture of 
normals distribution, for example, might be formulated

f(yi � zi) = §Prob(class = 1 � zi) exp [-1
2 (yi - m1)

2/s1
2]

s122p

+
[1 - Prob(class = 1 � zi)] exp [-1

2 (yi - m2)
2/s2

2]

s222p

¥,

where zi is the vector of variables that help explain the class probabilities. To make the 
mixture model amenable to estimation, it is necessary to parameterize the probabilities. The 
logit probability model is a common device. [See Section 17.2. For applications, see Greene 
(2005, Section 2.3.3) and references cited.] For the two-class case, this might appear as follows:

 Prob(class = 1 � zi) =
exp(zi

=U)

1 + exp(zi
=U)

,

 Prob(class = 2 � zi) = 1 - Prob(class = 1 � zi).	 (14-90)

(The more general J class case is shown in Section 14.15.6.) The log likelihood for the 
mixture of two normal densities becomes

	 ln L = a
n

i = 1
ln Li = a

n

i = 1
ln§ ¢ exp(zi

=U)

1 + exp(zi
=U)

≤  
exp[-1

2 (yi - m1)
2/s1

2]

s122p

+ ¢ 1
1 + exp(zi

=U)
≤  

exp[-1
2 (yi - m2)

2/s2
2]

s222p

¥.	 (14-91)

The log likelihood is now maximized with respect to m1, s1, m2, s2, and U. If zi contains 
a constant term and some other observed variables, then the earlier model returns 
if the coefficients on those other variables all equal zero. In this case, it follows that 

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

M 3.1172 0.08251 3.64187 0.3452 2.8894 0.2514
S 0.4594 0.04070 0.2524 0.2625 0.3218 0.1095
Probability 1.0000 0.0000 0.3028 0.3497 0.6972 0.3497
ln L -20.51274 -19.63654

TABLE 14.16  Estimated Normal Mixture Model
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l = ln[u/(1 - u)]. (This device is usually used to ensure that 0 6 l 6 1 in the earlier 
model.)

14.15.3    LATENT CLASS REGRESSION MODELS

To complete the construction of the latent class model, we note that the means (and, in 
principle, the variances) in the original model could be conditioned on observed data as well. 
For our normal mixture models, we might make the marginal mean, mj, a conditional mean,

mij = xi
=Bj.

In the data of Example 14.17, we also observe an indicator of whether the individual has 
participated in a special program designed to enhance the economics program (PSI). 
We might modify the model,

f(yi � classi = 1, PSIi) = N[mi1, s1
2] =

exp[-1
2 (yi - b1,1 - b2,1PSIi)

2/s1
2]

s122p
,

and similarly for f(yi � classi = 2, PSIi). The model is now a latent class linear regression 
model.

More generally, as we will see shortly, the latent class, or finite mixture model for a 
variable yi can be formulated as

f(yi � classi = j, xi) = hj(yi, xi, Gj),

where hj denotes the density conditioned on class j—indexed by j to indicate, for example, 
the jth parameter vector Gj = (Bj, sj) and so on. The marginal class probabilities are

Prob(classi = j � zi) = pj(j, zi, U).

The methodology can be applied to any model for yi. In the example in Section 14.15.6, 
we will model a binary dependent variable with a probit model. The methodology 
has been applied in many other settings, such as stochastic frontier models [Orea and 
Kumbhakar (2004), Greene (2004)], Poisson regression models [Wedel et al. (1993)], 
and a wide variety of count, discrete choice, and limited dependent variable models 
[McLachlan and Peel (2000), Greene (2007b)].

Example 14.20    Latent Class Regression Model for Grade Point Averages
Combining 14.15.2 and 14.15.3, we have a latent class model for grade point averages,

 f(GPAi � classi = j, PSIi) =
exp[-1

2 (yi - b1j - b2jPSIi)2/sj
2]

sj22p
, j = 1, 2,

 Prob(classi = 1 � TUCEi) =
exp(u1 + u2TUCEi)

1 + exp(u1 + u2TUCEi)
,

 Prob(classi = 2 � TUCEi) = 1 - Prob(class = 1 � TUCEi).

The log likelihood is now

ln L = a
n

i = 1
ln• ¢ exp(u1 + u2TUCEi)

1 + exp(u1 + u2TUCEi)
≤  

exp[-1
2 (yi - b1,1 - b2,1PSIi)2/s1

2]

s122p

+ ¢ 1
1 + exp(u1 + u2TUCEi)

≤  
exp[-1

2 (yi - b1,2 - b2,2PSIi)2/s2
2]

s222p

µ.

Maximum likelihood estimates of the parameters are given in Table 14.17.
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14.15.4    PREDICTING CLASS MEMBERSHIP AND Bi

The model in (14-91) now characterizes two random variables, yi, the outcome variable 
of interest, and classi, the indicator of which class the individual resides in. We have a 
joint distribution, f(yi, classi), which we are modeling in terms of the conditional density, 
f(yi � classi) in (14-87), and the marginal density of classi in (14-90). We have initially 
assumed the latter to be a simple Bernoulli distribution with Prob(classi = 1) = l, but 
then modified in the previous section to equal Prob(classi = 1 � zi) = Λ(zi

=U). These can 
be viewed as the prior probabilities in a Bayesian sense. If we wish to make a prediction 
as to which class the individual came from, using all the information that we have on that 
individual, then the prior probability is going to waste some information; it wastes the 
information on the observed outcome. The posterior, or conditional (on the remaining 
data) probability,

Prob(classi = 1 � zi yi) =
f(yi, class = 1 � zi)

f(yi)
,

will be based on more information than the marginal probabilities. We have the elements 
that we need to compute this conditional probability. Use Bayes’s theorem to write this as

Prob(classi = 1 � zi, yi)

=
f(yi � classi = 1, zi) Prob(classi = 1 � zi)

f(yi � classi = 1, zi) Prob(classi = 1 � zi) + f(yi � classi = 2, zi) Prob(classi = 2 � zi)
.

The denominator is Li (not ln Li) from (14-91). The numerator is the first term in 
Li. To continue our mixture of two normals example, the conditional (posterior) 
probability is

Prob(classi = 1 � zi, yi) =

¢ exp(zi
=U)

1 + exp(zi
=U)

≤  
exp[-1

2 (yi - m1)
2/s1

2]

s122p
Li

,

while the unconditional probability is in (14-90). The conditional probability for the 
second class is computed using the other two marginal densities in the numerator (or by 
subtraction from one). Note that the conditional probabilities are functions of the data 
even if the unconditional ones are not. To come to the problem suggested at the outset, 

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

b1 3.1011 0.1117 3.3928 0.1733 2.7926 0.04988
b2 0.03675 0.1689 -0.1074 0.2006 -0.5703 0.07553
s 0.4443 0.0003086 0.3812 0.09337 0.1119 0.04487
u1 0.0000 0.0000 -6.8392 3.07867 0.0000 0.0000
u2 0.0000 0.0000 0.3518 0.1601 0.0000 0.0000
P(class � TUCE) 1.0000 0.7063 0.2937
ln L -20.48752 -13.39966

TABLE 14.17  Estimated Latent Class Linear Regression Model for GPA
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then, the natural predictor of classi is the class associated with the largest estimated 
posterior probability.

In random parameter settings, we have also been interested in predicting E[Bi � yi, Xi]. 
There are two candidates for the latent class model. Having made the best guess as to 
which specific class an individual resides in, a natural estimator of bi would be the bj 
associated with that class. A preferable estimator that uses more information would be 
the posterior expected value,

En [Bi � yi, Xi, zi] = a
J

j = 1
pnij (�n , zi)Bnj.

Example 14.21    Predicting Class Probabilities
Table 14.18 lists the observations sorted by GPA. The predictions of class membership reflect 
what one might guess from the coefficients in the table of coefficients. Class 2 members on 
average have lower GPAs than in class 1. The listing in Table 14.18 shows this clustering. It 

GPA TUCE PSI CLASS P1 P1* P2 P2*

2.06 22 1 2 0.7109 0.0116 0.2891 0.9884
2.39 19 1 2 0.4612 0.0467 0.5388 0.9533
2.63 20 0 2 0.5489 0.1217 0.4511 0.8783
2.66 20 0 2 0.5489 0.1020 0.4511 0.8980
2.67 24 1 1 0.8325 0.9992 0.1675 0.0008
2.74 19 0 2 0.4612 0.0608 0.5388 0.9392
2.75 25 0 2 0.8760 0.3499 0.1240 0.6501
2.76 17 0 2 0.2975 0.0317 0.7025 0.9683
2.83 19 0 2 0.4612 0.0821 0.5388 0.9179
2.83 27 1 1 0.9345 1.0000 0.0655 0.0000
2.86 17 0 2 0.2975 0.0532 0.7025 0.9468
2.87 21 0 2 0.6336 0.2013 0.3664 0.7987
2.89 14 1 1 0.1285 1.0000 0.8715 0.0000
2.89 22 0 2 0.7109 0.3065 0.2891 0.6935
2.92 12 0 2 0.0680 0.0186 0.9320 0.9814
3.03 25 0 1 0.8760 0.9260 0.1240 0.0740
3.10 21 1 1 0.6336 1.0000 0.3664 0.0000
3.12 23 1 1 0.7775 1.0000 0.2225 0.0000
3.16 25 1 1 0.8760 1.0000 0.1240 0.0000
3.26 25 0 1 0.8760 0.9999 0.1240 0.0001
3.28 24 0 1 0.8325 0.9999 0.1675 0.0001
3.32 23 0 1 0.7775 1.0000 0.2225 0.0000
3.39 17 1 1 0.2975 1.0000 0.7025 0.0000
3.51 26 1 1 0.9094 1.0000 0.0906 0.0000
3.53 26 0 1 0.9094 1.0000 0.0906 0.0000
3.54 24 1 1 0.8325 1.0000 0.1675 0.0000
3.57 23 0 1 0.7775 1.0000 0.2225 0.0000
3.62 28 1 1 0.9530 1.0000 0.0470 0.0000
3.65 21 1 1 0.6336 1.0000 0.3664 0.0000
3.92 29 0 1 0.9665 1.0000 0.0335 0.0000
4.00 21 0 1 0.6336 1.0000 0.3664 0.0000
4.00 23 1 1 0.7775 1.0000 0.2225 0.0000

TABLE 14.18  Estimated Latent Class Probabilities
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also suggests how the latent class model is using the sample information. If the results in 
Table 14.16—just estimating the means, constant class probabilities—are used to produce 
the same table, when sorted, the highest 10 GPAs are in class 1 and the remainder are in class 
2. The more elaborate model is adding information on TUCE to the computation. A low TUCE 
score can push a high GPA individual into class 2. (Of course, this is largely what multiple 
linear regression does as well.)

14.15.5    DETERMINING THE NUMBER OF CLASSES

There is an unsolved inference issue remaining in the specification of the model. The 
number of classes has been taken as a known parameter—two in our main example thus 
far, three in the following application. Ideally, one would like to determine the appropriate 
number of classes statistically. However, J is not a parameter in the model. A likelihood 
ratio test, for example, will not provide a valid result. Consider the original model in 
Example 14.17. The model has two classes and five parameters in total. It would seem 
natural to test down to a one-class model that contains only the mean and variance using 
the LR test. However, the number of restrictions here is actually ambiguous. If m1 = m2 and 
s1 = s2, then the mixing probability is irrelevant—the two class densities are the same, and 
it is a one-class model. Thus, the number of restrictions needed to get from the two-class 
model to the one-class model is ambiguous. It is neither two nor three. One strategy that 
has been suggested is to test upward, adding classes until the marginal class insignificantly 
changes the log likelihood or one of the information criteria such as the AIC or BIC (see 
Section 14.6.5). Unfortunately, this approach is likewise problematic because the estimates 
from any specification that is too short are inconsistent. The alternative would be to test 
down from a specification known to be too large. Heckman and Singer (1984b) discuss 
this possibility and note that when the number of classes becomes larger than appropriate, 
the estimator should break down. In our Example 14.15, if we expand to four classes, the 
optimizer breaks down, and it is no longer possible to compute the estimates. A five-class 
model does produce estimates, but some are nonsensical. This does provide at least the 
directions to seek a viable strategy. The authoritative treatise on finite mixture models by 
McLachlan and Peel (2000, Chapter 6) contains extensive discussion of this issue.

14.15.6    A PANEL DATA APPLICATION

The latent class model is a useful framework for applications in panel data. The class 
probabilities partly play the role of common random effects, as we will now explore. 
The latent class model can be interpreted as a random parameters model with a discrete 
distribution of the parameters.

Suppose that Bj is generated from a discrete distribution with J outcomes, or classes, 
so that the distribution of Bj is over these classes. Thus, the model states that an individual 
belongs to one of the J latent classes, indexed by the parameter vector, but it is unknown 
from the sample data exactly which one. We will use the sample data to estimate the 
parameter vectors, the parameters of the underlying probability distribution and the 
probabilities of class membership. The corresponding model formulation is now

	 f(yit � xit, zi, 
, B1, B2, c, BJ) = a
J

j = 1
pij(zi, 
)f(yit � class = j, xit, Bj),	 (14-92)

where it remains to parameterize the class probabilities, pij, and the structural model, 
f(yit � class = j, xit, Bj). The parameter matrix, 
, contains the parameters of the discrete 

M14_GREE1366_08_SE_C14.indd   628 2/23/17   1:20 PM



	 CHAPTER 14  ✦  Maximum Likelihood Estimation	 629

probability distribution. It has J rows, one for each class, and M columns, for the 
M variables in zi. At a minimum, M = 1 and zi contains a constant term if the class 
probabilities are fixed parameters as in Example 14.17. Finally, to accommodate the 
panel data nature of the sampling situation, we suppose that conditioned on Bj, that is, on 
membership in class j, which is fixed over time, the observations on yit are independent. 
Therefore, for a group of Ti observations, the joint density is

f(yi1, yi2, c, yt,Ti
� class = j, xi1, xi2, c, xi,Ti

, Bj) = q
Ti

t = 1
f(yit � class = j, xit, Bj).

The log-likelihood function for a panel of data is

	 ln L = a
n

i = 1
lnJaJ

j = 1
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj) R .	 (14-93)

The class probabilities must be constrained be in (0,1) and to sum to 1. The approach 
that is usually used is to reparameterize them as a set of logit probabilities, as we did in 
the preceding examples. Then,

	 pij(zi, 
) =
exp(uij)

a J
j = 1exp(uij)

, j = 1, c, J, uij = zi
=Dj, uiJ = 0 (DJ = 0).	 (14-94)

(See Section 18.2.2 for development of this model for the set of probabilities.) Note 
the restriction on uij. This is an identification restriction. Without it, the same set of 
probabilities will arise if an arbitrary vector is added to every Dj. The resulting log 
likelihood is a continuous function of the parameters B1, c, BJ and D1, c, DJ. For 
all its apparent complexity, estimation of this model by direct maximization of the log 
likelihood is not especially difficult.49 The number of classes that can be identified is 
likely to be relatively small (on the order of 5 or 10 at most), however, which has been 
viewed as a drawback of the approach. In general, the more complex the model for 
yit, the more difficult it becomes to expand the number of classes. Also, as might be 
expected, the less rich the data set in terms of cross-group variation, the more difficult 
it is to estimate latent class models.

Estimation produces values for the structural parameters, (Bj, Dj), j = 1, c, J. 
With these in hand, we can compute the prior class probabilities, pij, using (14-94). For 
prediction purposes, we are also interested in the posterior (to the data) class 
probabilities, which we can compute using Bayes’ theorem [see (14-93)]. The conditional 
probability is

 Prob(class = j � observation i)

 =
f(observation i � class = j)Prob(class j)

a J
j = 1f(observation i � class = j) Prob(class j)

 

 =
f(yi1, yi2, c, yi,Ti

� xi1, xi2, c, xi,Ti
, Bj)pij(zj, 
)

a J
j = 1f(yi1, yi2, c, yi,Ti

� xi1, xi2, c, xi,Ti
, Bj)pij(zj, 
)

 = wij.�

(14-95)

49See Section E.3 and Greene (2001, 2007b). The EM algorithm discussed in Section E.3.7 is especially well suited 
for estimating the parameters of latent class models. See McLachlan and Peel (2000).

M14_GREE1366_08_SE_C14.indd   629 2/23/17   1:20 PM



630	 Part III  ✦   Estimation Methodology

The set of probabilities, wi = (wi1, wi2, c, wiJ), gives the posterior density over the 
distribution of values of B, that is, [B1, B2, c, BJ]. For a particular model and allowing 
for grouping within a panel data set, the posterior probability for class j is found as

 Prob(class = j � yi, Xi, zi) =
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj)

a
J

j = 1
pij(
, zi)q

Ti

t = 1
f(yit � class = j, xit, Bj)

 =
¢ exp(zi

=
j)

Σm = 1
J  exp(zi

=
m)
≤qTi

t = 1
f(yit � class = j, xit, Bj)

a
J

j = 1
¢ exp(zi

=
j)

Σm = 1
J  exp(zi

=
m)
≤qTi

t = 1
f(yit � class = m, xit, Bm)

.�

(14-96)

Example 14.22    A Latent Class Two-Part Model for Health Care Utilization
Jones and Bago D’Uva (2009) examined health care utilization in Europe using 8 waves of the 
ECHP panel data set. The variable of interest was numbers of visits to the physician. They 
examined two outcomes, visits to general practitioners and visits to specialists. The modeling 
framework was the latent class model in (14-92). The class-specific model was a two-part, 
negative binomial “hurdle” model for counts,

 Prob(yit = 0 � xit, B1j) =
1

1 + l1it,j
, l1it,j = exp(xit

=B1j)

 Prob(yit � yit 7 0, xit, B2j, aj) =
(ajl2it,j + 1)-1/aj Γ(yit + 1/aj)[1 + (l2it,j

-1 /aj)]-yit

Γ(1/aj)Γ(yit + 1)[1 - (ajl2it,j + 1)-1/aj]
,

 l2it,j = exp(xit
=B2j), aj 7 0. 

[This is their equation (2) with k = 0.] The first equation is a participation equation, for whether 
the number of doctor visits equals 0 or some positive value. The second equation is the 
intensity equation that predicts the number of visits, given that the number of visits is positive. 
The count model is a negative binomial model. This is an extension of the Poisson regression 
model. The Poisson model is a limiting case when aj S 0. The hurdle and count equations 
involve different coefficient vectors, B1 and B2, so that the determinants of care have different 
effects on the two stages. Interpretation of this model is complicated by the results that 
variables appear in both equations, and that the conditional mean function is complex. The 
simple conditional mean, if there were no hurdle effects, would be E[yit � xit] = l2it. However, 
with the hurdle effects,

E[yit � xit] = Prob(yit 7 0 � xit) * E[yit � yit 7 0, xit].

The authors examined the two components of this result separately. (The elasticity of 
the mean would be the sum of these two elasticities.) The mixture model involves two 
classes (as typical in this literature) A sampling of their results appears in Table 14.19 
below. (The results are extracted from their Table 8.) Note that separate tables are given 
for “Low Users” and “High Users.” The results in Section 14.15.4 are used to classify 
individuals into class 1 and class 2. It is then discovered that the average usage of those 
individuals classified as in class 1 is far lower than the average use of those in class 2.
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Example 14.23    Latent Class Models for Health Care Utilization
In Examples 7.6 and 11.21, we proposed an exponential regression model,

yit = DocVisit = exp(xit
=B) + eit,

for the variable DocVis, the number of visits to the doctor, in the German health care data. (See 
Example 11.20 for details.) The regression results for the specification,

xit = (1, Ageit, Educationit, Incomeit, Kidsit), 

are repeated (in parentheses) in Table 14.20 for convenience. The nonlinear least squares 
estimator is only semiparametric; it makes no assumption about the distribution of DocVisit 
or about eit. We do see striking increases in the standard errors when the “cluster robust” 
asymptotic covariance matrix is used. (The estimates are given in parentheses.) The analysis 
at this point assumes that the nonlinear least squares estimator remains consistent in the 
presence of the cross-observation correlation. Given the way the model is specified, that is, 
only in terms of the conditional mean function, this is probably reasonable. The extension 
would imply a nonlinear generalized regression as opposed to a nonlinear ordinary regression.

Low Users High Users

Country Coefficient Elasticity Coefficient Elasticity

Austria P(y 7 0) -0.051 -0.012 -0.109 -0.005
E[y � y 7 0] 0.012 0.009 0.039 0.035

Denmark P(y 7 0) 0.083 0.033 0.261 0.023

E[y � y 7 0] 0.042 0.021 -0.030 -0.024
The Netherlands P(y 7 0) 0.082 0.035 0.094 0.009

E[y � y 7 0] -0.037 -0.019 -0.085 -0.068

TABLE 14.19  Country-Specific Estimated Income Coefficients and Elasticities for GP Visits

TABLE 14.20  Panel Data Estimates of a Geometric Regression for DOCVis

Pooled Random Effectsa Fixed Effects

Variable Estimate Std. Err.b Estimate Std. Err. Estimate Std. Err.

Constant 1.09189
(0.98017)c

0.10828
(0.18137)

0.39936 0.09530

Age 0.01799
(0.01873)

0.00130
(0.00198)

0.02209 0.00122 0.04845 0.00351

Education -0.04725
(-0.03609)

0.00671
(0.01287)

-0.04506 0.00626 -0.05434 0.03721

Income -0.46836
(-0.59189)

0.07265
(0.12827)

-0.19569 0.06106
-0.18760

0.09134

Kids -0.15684
(-0.16930)

0.03055
(0.04882)

-0.12434 0.02336 -0.00253 0.03687

aEstimated su = 0.95441.
bStandard errors corrected for clusters in the panel.
cNonlinear least squares results in parentheses.
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In Example 14.13, we narrowed this model by assuming that the observations on doctor visits 
were generated by a geometric distribution,

f(yi � xi) = ui(1 - ui)
yi, ui = 1/(1 + li), li = exp(xi

=B), yi = 0, 1, c.

The conditional mean is still exp(xit
=B), but this specification adds the structure of a particular 

distribution for outcomes. The pooled model was estimated in Example 14.13. Examples 
14.17 and 14.18 added the panel data assumptions of random, then fixed effects, to the 
model. The model is now

f(yit � xit) = uit(1 - uit)
yit, uit = 1/(1 + lit), lit = exp(ci + xit

=B), yit = 0, 1, c.

The pooled, random effects and fixed effects estimates appear in Table 14.17. The pooled 
estimates, where the standard errors are corrected for the panel data grouping, are 
comparable to the nonlinear least squares estimates with the robust standard errors. The 
parameter estimates are similar—both are consistent and this is a very large sample. The 
smaller standard errors seen for the MLE are the product of the more detailed specification.
We will now relax the specification by assuming a two-class finite mixture model. We also 
specify that the class probabilities are functions of gender and marital status. For the latent 
class specification,

Prob(classi = 1 � zi) = Λ(u1 + u2Femalei + u3Marriedi).

The model structure is the geometric regression as before. Estimates of the parameters of the 
latent class model are shown in Table 14.21. See Section E3.7 for discussion of estimation 
methods.
Deb and Trivedi (2002) and Bago D’Uva and Jones (2009) suggested that a meaningful 
distinction between groups of health care system users would be between infrequent and 
frequent users. To investigate whether our latent class model is picking up this distinction in 
the data, we used (14-96) to predict the class memberships (class 1 or 2). We then linearly 
regressed DocVisit on a constant and a dummy variable for class 2. The results are

DocVisit = 5.8034 (0.0465) - 4.7801 (0.06282)Class2i + eit,

One Class Latent Class 1 Latent Class 2

Parameter Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

b1 1.0918 0.1082 1.6423 0.05351 -0.3344 0.09288
b2 0.0180 0.0013 0.01691 0.0007324 0.02649 0.001248
b3 -0.0473 0.0067 -0.04473 0.003451 -0.06502 0.005739
b4 -0.4687 0.0726 -0.4567 0.04688 0.01395 0.06964
b5 -0.1569 0.0306 -0.1177 0.01611 -0.1388 0.02738
u1 0.000 0.000 -0.4280 0.06938 0.0000 0.0000
u2 0.000 0.000 0.8255 0.06322 0.0000 0.0000
u3 0.000 0.000 -0.07829 0.07143 0.0000 0.0000
Prob � z 1.0000 0.47697 0.52303
ln L -61917.97 -58708.63

TABLE 14.21  Estimated Latent Class Geometric Regression Model for DocVis
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where estimated standard errors are in parentheses. The linear regression suggests that the 
class membership dummy variable is strongly segregating the observations into frequent and 
infrequent users. The information in the regression is summarized in the descriptive statistics 
in Table 14.22.
Finally, we did a specification search for the number of classes. Table 14.23 reports the 
log likelihoods and AICs for models with 1 to 8 classes. The lowest value of the AIC occurs 
with 7 classes, although the marginal improvement ends near to J = 4. The rightmost 8 
columns show the averages of the conditional probabilities, which equal the unconditional 
probabilities. Note that when J = 8, three of the classes (2, 5, and 6) have extremely small 
probabilities. This suggests that the model might be overspecified. We will see another 
indicator in the next section.

14.15.7    A SEMIPARAMETRIC RANDOM EFFECTS MODEL

Heckman and Singer (1984a,b) suggested a semiparametric maximum likelihood 
approach to modeling latent heterogeneity in a duration model  (Section 19.5) for 
unemployment spells. The methodology applies equally well to other settings, such as 
the one we are examining here. Their method can be applied as a finite mixture model 
in which only the constant term varies across classes. The log likelihood in this case 
would be

	 ln L = a
n

i = 1
 lna

J

j = 1
pj¢ qTi

t = 1
f(yit �aj + xit

=B)≤.	 (14-97)

Class Mean Standard Deviation

All, n = 27,326 3.18352 5.68979
Class 1, n = 12,349 5.80347 7.47579
Class 2, n = 14,977 1.02330 1.63076

TABLE 14.22  Descriptive Statistics for Doctor Visits

J ln L AIC P1 P2 P3 P4 P5 P6 P7 P8

1 -61917.77 1.23845 1.0000
2 -58708.48 1.17443 0.4770 0.5230
3 -58036.15 1.16114 0.2045 0.6052 0.1903
4 -57953.02 1.15944 0.1443 0.5594 0.2407 0.0601
5 -57866.34 1.15806 0.0708 0.0475 0.4107 0.3731 0.0979
6 -57829.96 1.15749 0.0475 0.0112 0.2790 0.1680 0.4380 0.0734
7 -57808.50 1.15723 0.0841 0.0809 0.0512 0.3738 0.0668 0.0666 0.2757
8 -57808.07 1.15738 0.0641 0.0038 0.4434 0.3102 0.0029 0.0002 0.1115 0.0640

TABLE 14.23  Specification Search for Number of Latent Classes
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50The multinomial distribution has interior boundaries at the midpoints between the estimated constants. The 
mass points have heights equal to the probabilities. The rectangles sum to slightly more than one—about 1.15. The 
figure is only a sketch of an implied approximation to the normal distribution in the parametric model.

This is a restricted form of (14-93). The specification is a random effects model in which 
the heterogeneity has a discrete, multinomial distribution with unconditional mixing 
probabilities.

Example 14.24    Semiparametric Random Effects Model
Estimates of a random effects geometric regression model are given in Table 14.17. The 
random effect (random constant term) is assumed to be normally distributed; the estimated 
standard deviation is 0.95441. Tables 14.24 and 14.25 present estimates of the semiparametric 
random effects model. The estimated constant terms and class probabilities are shown in 
Table 14.24. We fit mixture models for 2 through 7 classes. The AIC stopped falling at J = 7. 
The results for 6 and 7 are shown in the table. Note in the 7 class model, the estimated 
standard errors for the constants for classes 2 and 4 are essentially infinite—the values 
shown are the result of rounding error. As Heckman and Singer noted, this should be taken 
as evidence of overfitting the data. The remaining coefficients for the parametric parts of the 
model are shown in Table 14.25. The two approaches to fitting the random effects model 
produce similar results. The coefficients on the regressors and their estimated standard errors 
are very similar. The random effects in the normal model are estimated to have a mean of 
0.39936 and standard deviation of 0.95441. The multinomial distribution in the mixture model 
has estimated mean 0.27770 and standard deviation 1.2333. Figure 14.7 shows a comparison 
of the two estimated distributions.50

Class a Std. Err. P(class) a Std. Err. P(class)

1 -3.17815 0.28542 0.07394 -0.72948 0.16886 0.16825
2 -0.72948 0.15847 0.16825 1.23774 358561.2 0.04030
3 0.38886 0.11867 0.41734 0.38886 0.15112 0.41734
4 1.23774 0.12295 0.28452 1.23774 59175.41 0.24421
5 2.11958 0.28568 0.05183 2.11958 0.41549 0.05183
6 2.69846 0.98622 0.00412 2.69846 1.17124 0.00412
7 -3.17815 0.28863 0.07394

Table 14.24  Heckman and Singer Semiparametric Random Effects Model

Finite Mixture Model Normal Random Effects Model

Estimate Std. Err. Estimate Std. Err .

Constant anQ = 0.277697 0.39936 0.09530

Age 0.02136 0.00115 0.02209 0.00122
Educ. -0.03877 0.00607 -0.04506 0.00626
Income -0.23729 0.05972 -0.19569 0.06106
Kids -0.12611 0.02280 -0.12434 0.02336

sa = 1.23333 su = 0.95441

Table 14.25  Estimated Random Effects Exponential Count Data Model
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14.16    SUMMARY AND CONCLUSIONS

This chapter has presented the theory and several applications of maximum likelihood 
estimation, which is the most frequently used estimation technique in econometrics 
after least squares. The maximum likelihood estimators are consistent, asymptotically 
normally distributed, and efficient among estimators that have these properties. The 
drawback to the technique is that it requires a fully parametric, detailed specification 
of the data-generating process. As such, it is vulnerable to misspecification problems. 
Chapter 13 considered GMM estimation techniques that are less parametric, but more 
robust to variation in the underlying data-generating process. Together, ML and GMM 
estimation account for the large majority of empirical estimation in econometrics.

FIGURE 14.7    Estimated Distributions of Random Effects.
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Exercises

1.	 Assume that the distribution of x is f(x) = 1/u, 0 … x … u. In random sampling 
from this distribution, prove that the sample maximum is a consistent estimator  
of u. Note: You can prove that the maximum is the maximum likelihood estimator of u.  
But the usual properties do not apply here. Why not? (Hint: Attempt to verify that 
the expected first derivative of the log likelihood with respect to u is zero.)

2.	 In random sampling from the exponential distribution f(x) = (1/u)e-x/u, x Ú 0, 
u 7 0, find the maximum likelihood estimator of u and obtain the asymptotic 
distribution of this estimator.

3.	 Mixture distribution. Suppose that the joint distribution of the two random 
variables x and y is

f(x, y) =
ue-(b + u)y(by)x

x!
, b, u 7 0, y Ú 0, x = 0, 1, 2, c.

a.	 Find the maximum likelihood estimators of b and u and their asymptotic joint 
distribution.

b.	 Find the maximum likelihood estimator of u/(b + u) and its asymptotic 
distribution.

c.	 Prove that f(x) is of the form

f(x) = g(1 - g)x, x = 0, 1, 2, c,

and find the maximum likelihood estimator of g and its asymptotic distribution.
d.	 Prove that f(y � x) is of the form

f(y � x) =
le-ly(ly)x

x!
, y Ú 0, l 7 0.

Prove that f(y � x) integrates to 1. Find the maximum likelihood estimator of l 
and its asymptotic distribution. (Hint: In the conditional distribution, just carry 
the x’s along as constants.)

e.	 Prove that

f(y) = ue-uy, y Ú 0, u 7 0.

Find the maximum likelihood estimator of u and its asymptotic variance.
f.	 Prove that

f(x � y) =
e-by(by)x

x!
, x = 0, 1, 2, c, b 7 0.

Based on this distribution, what is the maximum likelihood estimator of b?

•	Nonlinear least squares
•	Nonnested models
•	Oberhofer–Kmenta 

estimator
•	Outer product of gradients 

estimator (OPG)

•	Precision parameter
•	Pseudo-log-likelihood 

function
•	Pseudo-MLE
•	Quasi-MLE
•	Random effects

•	Regularity conditions
•	Score test
•	Score vector
•	Vuong test
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4.	 Suppose that x has the Weibull distribution

f(x) = abxb - 1e-axb

, x Ú 0, a, b 7 0.

a.	 Obtain the log-likelihood function for a random sample of n observations.
b.	 Obtain the likelihood equations for maximum likelihood estimation of a and b. 

Note that the first provides an explicit solution for a in terms of the data and b. But, 
after inserting this in the second, we obtain only an implicit solution for b. How 
would you obtain the maximum likelihood estimators?

c.	 Obtain the second derivatives matrix of the log likelihood with respect to a and 
b. The exact expectations of the elements involving b involve the derivatives 
of the gamma function and are quite messy analytically. Of course, your exact 
result provides an empirical estimator. How would you estimate the asymptotic 
covariance matrix for your estimators in part b?

d.	 Prove that ab Cov[ln x, xb] = 1. (Hint: The expected first derivatives of the  
log-likelihood function are zero.)

5.	 The following data were generated by the Weibull distribution of Exercise 4:

1. 3043 0.49254 1.2742 1.4019 0.32556 0.29965 0.26423
1. 0878 1.9461 0.47615 3.6454 0.15344 1.2357 0.96381
0. 33453 1.1227 2.0296 1.2797 0.96080 2.0070

a.	 Obtain the maximum likelihood estimates of a and b, and estimate the 
asymptotic covariance matrix for the estimates.

b.	 Carry out a Wald test of the hypothesis that b = 1.
c.	 Obtain the maximum likelihood estimate of a under the hypothesis that b = 1.
d.	 Using the results of parts a and c, carry out a likelihood ratio test of the hypothesis 

that b = 1.
e.	 Carry out a Lagrange multiplier test of the hypothesis that b = 1.

6.	 Limited Information Maximum Likelihood Estimation. Consider a bivariate 
distribution for x and y that is a function of two parameters, a and b. The joint 
density is f(x, y �a, b). We consider maximum likelihood estimation of the two 
parameters. The full information maximum likelihood estimator is the now 
familiar maximum likelihood estimator of the two parameters. Now, suppose that 
we can factor the joint distribution as done in Exercise 3, but in this case, we have 
f(x, y �a, b) = f(y � x, a, b)f(x �a). That is, the conditional density for y is a function 
of both parameters, but the marginal distribution for x involves only a.
a.	 Write down the general form for the log-likelihood function using the joint density.
b.	 Because the joint density equals the product of the conditional times the 

marginal, the log-likelihood function can be written equivalently in terms of the 
factored density. Write this down, in general terms.

c.	 The parameter a can be estimated by itself using only the data on x and the log 
likelihood formed using the marginal density for x. It can also be estimated with 
b by using the full log-likelihood function and data on both y and x. Show this.

d.	 Show that the first estimator in part c has a larger asymptotic variance than 
the second one. This is the difference between a limited information maximum 
likelihood estimator and a full information maximum likelihood estimator.

e.	 Show that if 02 ln f(y � x, a, b)/0a0b = 0, then the result in part d is no longer true.
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7.	 Show that the likelihood inequality in Theorem 14.3 holds for the Poisson distribution 
used in Section 14.3 by showing that E[(1/n) ln L(u � y)] is uniquely maximized at 
u = u0. (Hint: First show that the expectation is -u + u0 ln u - E0[ln yi].) Show 
that the likelihood inequality in Theorem 14.3 holds for the normal distribution.

8.	 For random sampling from the classical regression model in (14-3), reparameterize 
the likelihood function in terms of h = 1/s and D = (1/s)B. Find the maximum 
likelihood estimators of h and D and obtain the asymptotic covariance matrix of 
the estimators of these parameters.

9.	 Consider sampling from a multivariate normal distribution with mean vector 
M = (m1, m2, c, mM) and covariance matrix s2I. The log-likelihood function is

ln L =
-nM

2
 ln(2p) -

nM
2

 ln s2 -
1

2s2 a
n

i = 1
(yi - M)′(yi - M).

Show that the maximum likelihood estimators of the parameters are mnm = ym, and

sn ML
2 = a n

i = 1aM
m = 1(yim - ym)2

nM
=

1
M a

M

m = 1

1
n a

n

i = 1
(yim - ym)2 =

1
M a

M

m = 1
sn m

2 .

Derive the second derivatives matrix and show that the asymptotic covariance 
matrix for the maximum likelihood estimators isb -EJ 02 ln L

0U0U′
R r -1

= Js2I/n 0
0 2s4/(nM)

R .

Suppose that we wished to test the hypothesis that the means of the M distributions 
were all equal to a particular value m0. Show that the Wald statistic would be

W = (y - m0i)′¢sn 2

n
 I≤-1

(y - m0i) = ¢ n

s2 ≤(y - m0i)′(y - m0i),

where y is the vector of sample means.

Applications

1.	 Binary Choice. This application will be based on the health care data analyzed 
in Example 14.13 and several others. Details on obtaining the data are given in 
Appendix F Table 7.1. We consider analysis of a dependent variable, yit, that takes 
values 1 and 0 with probabilities F(xi

=B) and 1 - F(xi
=B), where F is a function that 

defines a probability. The dependent variable, yit, is constructed from the count 
variable DocVis, which is the number of visits to the doctor in the given year. 
Construct the binary variable

yit = 1 if DocVis 7 0, 0 otherwise.

We will build a model for the probability that yit equals one. The independent 
variables of interest will be

xit = (1, ageit, educit, femalet, marriedit, hsatit).
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a.	 According to the model, the theoretical density for yit is

f(yit � xit) = F(xit
=B) for yit = 1 and 1 - F(xit

=B) for yit = 0.

We will assume that a “logit model” (see Section 17.2) is appropriate, so that

F(xit
=B) = Λ(xit

=B) =
exp(xit

=B)

1 - exp(xit
=B)

.

Show that for the two outcomes, the probabilities may be combined into the 
density function

f(yit � xit) = g(yit, xit, B) = Λ[(2yit - 1)xit
=B].

Now, use this result to construct the log-likelihood function for a sample of data 
on (yit, xit). (Note: We will be ignoring the panel aspect of the data set. Build the 
model as if this were a cross section.)

b.	 Derive the likelihood equations for estimation of B.
c.	 Derive the second derivatives matrix of the log-likelihood function. (Hint: The 

following will prove useful in the derivation: dΛ(t)/dt = Λ(t)[1 - Λ(t)].)
d.	 Show how to use Newton’s method to estimate the parameters of the model.
e.	 Does the method of scoring differ from Newton’s method? Derive the negative 

of the expectation of the second derivatives matrix.
f.	 Obtain maximum likelihood estimates of the parameters for the data and 

variables noted. Report your results, estimates, standard errors, and so on, as 
well as the value of the log likelihood.

g.	 Test the hypothesis that the coefficients on female and marital status are zero. 
Show how to do the test using Wald, LM, and LR tests, and then carry out the 
tests.

h.	 Test the hypothesis that all the coefficients in the model save for the constant 
term are equal to zero.

2.	 The geometric distribution used in Examples 14.13, 14.17, 14.18, and 14.22 would 
not be the typical choice for modeling a count such as DocVis. The Poisson model 
suggested at the beginning of Section 14.11.1 would be the more natural choice (at 
least at the first step in an analysis). Redo the calculations in Exercises 14.13 and 
14.17 using a Poisson model rather than a geometric model. Do the results change 
very much? It is difficult to tell from the coefficient estimates. Compute the partial 
effects for the Poisson model and compare them to the partial effects shown in 
Table 14.11.

3.	 (This application will require an optimizer. Maximization of a user-supplied 
function is provided by commands in Stata, R, SAS, EViews or NLOGIT.) Use the 
following pseudo-code to generate a random sample of 1,000 observations on y 
from a mixed normals population:

Set the seed of the random number generator at any specific value.

Generate two sets of 1,000 random draws from normal populations 

with standard deviations 1. For the means, use 1 for y1 and 

5 for y2.

Generate a set of 1,000 random draws, c, from uniform(0,1) 

population.
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For each observation, if c < .3, y = y1; if c ≥ .3, use y = y2.

The log-likelihood function for the mixture of two normals is given in (14-89). (The 
first step sets the seed at a particular value so that you can replicate your calculation 
of the data sets.)
a.	 Find the values that maximize the log-likelihood function. As starting values, 

use the sample mean of y (the same value) and sample standard deviation of y 
(again, same value) and 0.5 for p.

b.	 You should have observed the iterations in part a never get started. Try again 
using 0.9y, .9sy, 1.1y, 1.1sy, and 0.5. This should be much more satisfactory.

c.	 Experiment with the estimator by generating y1 and y2 with more similar means, 
such as 1 and 3, or 1 and 2.
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