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10
SYSTEMS OF EQUATIONS

10.1 INTRODUCTION

There are many settings in which the single equation models of the previous chapters apply to a group of
related variables. In these contexts, it makes sense to consider the several models Jointly. Some examples
follow. S

1. Munnell’s (1990) mode! for output by the 48 continental US states is

In GSP;v= Bri+ Boy In peiy + Bai In Bowy,, + B, In water, + B, In wtil, +
Bei In empy + By, unemp, + ¢, . 1
* Taken one state at a time, this provides a set of 48 linear regression models, The application develops a
model in which the observations are correlated across time within a state. An important question
pursued here and in the applications in the next example is whether it is valid to assume that the -
coefficient vector is the same for all states (individuals) in the sample.

2. The capital asset pricing model of finance specifies that for a given security,
Tn —Fp =0yt fi; (t‘in_r — rﬁ) & p

where 7, is the return over period £ on security i, ry is the return on a risk-free security, ry, is the market
return, and f; is the security’s beta coefficient. The disturbances are obviously correlated across
securities. The knowledge that the return on security i exceeds the risk-free rate by a given amount
gives some information about the excess return of security j, at least for some ;°s. It will be useful to
estimate the equations jointly rather than i gnore this connection.

3. Pesaran and Smith ( 1995) proposed a dynamic model for wage determination in 38 UK industries. The
central equation is of the form

Y=o+ x_{r:r[-_”i + % Vi1 T €.

Nair-Reichert andWeinhold’s (2001) cross-country analysis of growth of developing countries takes
the same form. In both cases, each group (industry, country) could be analyzed separately. However,
the connections across groups and the interesting question of “poolability”that is, whether it is valid
to assume identical coeff':cients;:ris a central part of the analysis. The lagged dependent variable in
the model produces a substantial complication,
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4. In a model of production, the optimization conditions of economic theory imply that if a firm faces a
set of factor prices p, then its set of cost-minimizing factor demands for producing output O will be a
set of equations of the form x,, = Ju(Q, p). The empirical model is

n=hH0 p|o)+e,

2 =50 pl0)+e

WO e

where @ is a vector of parameters that are part of the technology and em represents errors in
optimization. Once again, the disturbances should be correlated. In addition, the same parameters of
the production technology will enter all the demand equations, so the set of equations haye cross:
equation restrictions. Estimating the equations separately will waste the information that the same set

of parameters appears in all the equations. |

B! fre

5. The essential form of a modet for equilibrium in a market is S I; 5 0K

Opemand = M + 0y Price + a3 Income + d'e + £pemana,
_QSzlppIy = Bl + ,32 Price + S'ﬁ + Esupplys
QEqu![fbrium = _QDemqnd = _QSupp!y:

where d and s are other variables that influence the equilibrium through their impact on the demand
and supply curves, respectively. This model differs from those suggested thus far because the
implication of the third equation is that Price is not exogenous in the equation system. The equations
of this model fit more appropriately in the instrumental variables framework developed in Chapter 8
than in the regression models developed in Chapters 1 to 7. The multiple equations framework
developed in this chapter provides additional results for estimating “simultaneous equations models”
such as this.

The multiple equations regression model developed in this chapter provides a modeling
framework that can be used in many different settings. The models of production and cost developed in
Section 10.5 provide the platform for the literature on empirical analysis of firm behavior. At the
macroeconomic level, the “vector autoregression models” used in Chapters 21123 are specific forms of
the seemingly unrelated regressions model of Section 10.2. The simultaneous equations model presented

This chapter will develop the essential theory for sets of related regression equations. Section
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in Section 10.6 lies behind the specification of the large variety of specifications considered in Chapter 8. — _% :
i i T U
By; et

10.2 examines the general model in which each equation has its own fixed set of parameters, and it |
examines efficient estimation techniques. Section 10.2.6 examines the i :

i i ing; the “pooled” model with identical coefficients in all equations.
Production and consumer demand models are a special case of the general model in which the equations
of the model obey an adding,up constraint that has important implications for specification and
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2 and M

estimation. Section 10.3 suggests extensions of the seemingly unrelated regression model to the

generalized regression models with heteroscedasticity and autocorrelation that are developed in Chapter
9. Section 10.4 broadens the seemingly unrelated regressions model to nonlinear systems of equations.
In Section 10.5, we examine a classic application of the seemingly unrelated regressions model that
illustrates the interesting features of the current genre of demand studies in the applied literature. The
seemingly unrelated regressions model is then extended to the translog specification, which forms the
 platform for most recent microeconomic studies of production and cost. Finally, Section 10.6 merges the

results of Chapter 8 on models with endogenous variables with the development in this chapter of |

multiple equation systems. In Section 10.6, we will develop simultaneous equations models. Thése_: are |
systems of equations that build on the seemingly unrelated regressions model to produce equation‘

{
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systems that include interrelationships among the dependent variables. The supp]y and demand model
suggested in the|Introduction, of equilibrium in which price and quantity in a market are jointly
determined, is an appllcatlon

10 2 THE SEEMINGLY UNRELATED REGRESSIONS MODEL ~ it

[l

cd
All the examples suggest@ in the, Introduction have a common multiple equation structure, which we
may write as -l

1= Xipr + 2,
Y2 =Xof + &,
N (10-1)

¥Yar = Xudbus + s 4

\ There are M equations and 7 observations in the sample of data used to estimate them.!” The second and
" third examples embody different types of constraints across equations and different structures of the @
disturbances, A basic set of principles will apply to them all, however?” The seemingly unrelated

"'\ regressions (SUR) model in (10-1) is

=X tg, 1= 1000M0, (10-2)

' The use of T is not meant to imply any necessary connection to time series. For instance, in the fourth example
-above the data might be crosstsectional.
?See the surveys by Srivastava and Dwivedi (1979), Srivastava and Giles (1987), and Fiebig (2001).


Bill
Sticky Note
bold seemingly unrelated regressions


% Greene-50558 book June 21, 2007 13:27

I o~y

CHAPTER 10 4+ Systems of Regression Equations 255
Define khe M TIx 4 veckor ob disdvrban ces,

‘M B o g=Eng sl

We assume strict exogel_léity c_)"f_ Xi, .
Ele |X1Xz Xyl =10
and homoscedasticity ) : J
Eleme, | X1, Xo, ..., Xpr] = Ol

P We assume that a total of T observations are used in estimating the parameters of
LY the M equatlons "Each equation involves K; regressors, for a total of K = Zl 1K,
4 We will require 7 > K;. The data are assumed to be well behaved, as described in
Section 4.9.1, and we shall not treat the issue separately here. For the present, we also
assume that disturbances are uncorrelated across observations, but correlated across
equations. Therefore,

Eleiejs |1 X1, Xo, .10, Xng] = 0y, if £ =5 and 0 otherwise.
The disturbance formulation is, therefore,
Eleig; | X1, Xa, ..., Xyl = oy7,

or

oul ol - ol

onl, onk - oud
Elee'| X0 X Xul=g= | . L ay

It will be ¢onveénient in the discussion below to have a term for the particular kind of
model in which the data matrices are group specific data sets on the same set of variables.
The Grunfeld model noted in the introduction is such a case. This special case of the [k
seemingly unrelated regressions model is a multivariate regression model In contrast,
the cost function model examined in Section 10.4.1 is not of this typerrit consists of
a cost function that involves output and prices and a set of cost share equations that
have only a set of constant terms. We emphasize, this is merely a convenient term for a
specific form of the SUR model, not a modification of the model itself.

‘*There are a few results for unequal numbers of observations, such as Schmidt (1977), Baltagi, Garvin, and
Kerman {(1989), Conniffe (1985), Hwang (1990), and [m (1994). But, the case of fixed Lis the normin practioe

Th151 he test of “Agj Iem thayis the subject of Zeljher (1962 1963). (The bas resulis if pghameter
equalfty is incorrec assumcd) We wilyexamine this issue jA detail in Section 10.2
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10.2.1 GENERALIZED LEAST SQUARES

Each equation is, by itself, a classical regression. Thercfore, the parameters could be ~ ol
__estimated consistently, if not efficiently, one equation at a time by ordinary least squares.
The generallzed regressmn model apphes to the stacked model,

n 0BT [A] fe
V2 X, - 0 (8] le|

L= : || =XB+E (10-4)-
Y. S Xu] Bu| oM

M

Therefore, the efficient estimator is generalized least squaresX The model has a partic-
ularly convenient form. For the ¢th observation, the M x M covariance matrix of the
disturbances is

o o1z v Oy
oy On o Oay
P . , (10-5)
oM a’m e UMM
s0, in {10-3),
2=20I (10-6)
and

e'l=3"aL 5
Denoting the i ] th element of X! by 0¥/, we find that the GLS estimator is
= [X'2X]"'X'e"ly = [X'(Z7' @ DX]"'X' (T @ Dy. (10-7)
Expanding the !ﬁrq!_lléc-i_é_éf "pnfod_uc_ts produces

-1 M- _1jf
XX XXy - oKXy T | Kim UK
2wy 22wt My
A o X o X o o2 XIX 2j
._QF zXQ.._J le ' Lh M e 10. ’Xéy,_
Mlyt M2yt MMzt '
o XXy o XXy - o™X Xy MM
2 MED M M Z.f=1 C’-'}Kh!’j

The asymptotic covariance matrix for the GLS estimator is the bracketed inverse matrix
- - in (10-7). All the results of Chapter 8 for the generalized regressmn model extend to
{ %' )" this model (which has both heteroscedasticity and autocorrelation). "
This estimator is obviously different from ordinary least squares. At this point,
however, the equations are linked only by their dlsturbances—hence the name seem-
_ ingly unrelated regressions model—-so it is interesting to ask ]ust how much efficiency
o is gained by using generalized least squares instead of ordinary least squares. Zellner
(1962) and Dwivedi and Srivastava (1978) have analyzed some special cases in detail.

Y Fee Zellner (1962) and Telser (1964).

5
SCC— Aeerné.ljc get""iov- A_';.g.



- Greene-50558

book

June 21, 2007 13:27

CHAPTER 10 4 Systems of Regression Equations 257

1. I the equations are actually unrelatedw-that is,if o;; =0 fori # j—then there is

obviously no payoff to GLS estnnanon of the full set of equations. Indeed, full
_ GLS is equation by equation QLSS 7,

2. If the equations have identical explanatory variables—that is, if X; = X;— —then
OLS and GLS are identical, We will turn to this case in Section 10.2.24%

3. [If the regressors in one block of equanons are a subset of those in another, then
GLS brings no efficiency gain over OLS in estimation of the smaller set of
equations; thus, GLS and OLS are once again identical. We will look at an
application of this result in Section 2,6.5:3

21
In the more general case, with unrestricted correlation of the disturbances and
different regressors in the equations, the results are complicated and dependent on the
data, Two propositions that apply generally are as follows:

1. The greater is the correlation of the disturbances, the greater is the efficiency gain
accruing to GLS.

2, The less correlation there is between the X matrices, the greater is the gain in
efficiency in using GLS®”

10.2.2 SEEMINGLY UNRELATED RECRESSIONS A
WITH IDENTICAL REGRESSORS

The case of ldentlcal regressors is quite common, notably in the/capital asset pricing
model in empmcal ﬁnance—see the, Introduction and Chapter.20. In this special case,

generalized least squares is equwalent to equation by equation ordinary least squares.

Impose the assumption that X; = X; = X, so that X|X; X’X for alli and j in (10-7).

The inverse matrix on the nght-hand side now becomes [E ® X'X]™!, which, using
(A-76), equals [Z & (X'X)!]. Also on the right-hand side, each term X}y, equals X'y;,
which, in turn equals X'Xb;. With these results, after moving the common X'X out of
the summations on the right-hand side, we obtain

1] M
XX op®X - ouXX) 1] [ EB X5 ol
g [mEXT &N e o XX ) T oMy (10-8)
— gy -1 :
R X - B |y 5 o

“$Sce also Baltagt (1989) and Bartels and Fiebig (1992) for other cases in which OLS = GLS.

“An intriguing result, albeit probably of negligible practical significance, is that the result also applies if the
X’s are all nonsingular, and not necessarity identical, linear combinations of the same set of variables. The
formal result which is a coroltary of Kruskal’s theorem [see Davidson and MacKinnon (1993, p. 294)] is that
OLS and GLS will be the same if the X columns of X are a linear combination of exactly K characteristic
vectors of £2, By showmg the equahty of OLS and GLS here, we have verified the conditions of the corollary,
The general result is pursued in the exetcises. The intriguing result cited is now an obvious case.

"B The result was analyzed by Goldberger (1970) and later by Revankar (1974) and Conniffe (19824, b).
?See also Binkley (1982) and Binkiey and Nelson (1988).

?044
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258 PART Il + The Generalized Regression Model

Now, we isolate one of the subvectors, say the first, from, 8. After multiplication, the
moment matrices cancel, and we are left with on ki

- ﬂl—zf’l;ZU"h_{ =b; (Zal}oﬂ)+bz(20'1,a"2)+ +bM(Za1ja"M)
=1 .

i= 1 j=1

The terms in parentheses are the elements of the fistrowof X! = L s0 the end result
is §1 = by. For the remaining subvectors, which are obtained the same Way, ﬂ, b,  which
is the result we sought:%
To reiterate, the important result we have here is that in the SUR model when all
equations have the same regressors, the efficient estimator is single- equatlon ordinary g
least squares; OLS is the same as GLS. Also, the asymptotlc covariance matrix of §
for this case is given by the large inverse matrix in brackets in (10-8), which would be
estimated by

Est. ASY. COV[*B\,,ﬁJ] = c?ij(XTX)_l, Li=1...,M, wheremf}fj = 6’[} = %ejei
Except in some special cases, this general result is lost if there are any restrictions on
B, either within or across equations. We will examine one of those cases, the block of
zeros restriction, in Section 24.6.5.

2\
10.2.3 FEASIBLE GENERALIZED LEAST SQUARES

The preceding discussion assumes that ¥, is known, which, as usual, is unlikely to be the
case. FGLS estimators have been devised, however:} The least squares residuals may
be used (of course) to estimate consistently the elements of % with

N . Ll
' Gy =8y =5k (10-9)

The consistency of s;; follows from that of b; and b;: 12A degrees of freedom correc-
tion in the divisor is occasionally suggested. Two possibilities that are unbiased when
i=jare

fo-
s &85

20T [(T= K)(T — K7

Whether unbiasedness of the estimator of % used for FGLS is a virtue here is uncertain.

o Qg.e-f “13 .
and -35';‘ =7 max(K,, Kj). (10-10)

| The asymptotic properties of the feasible GLS estimator, g do'not rely on an unbiased

estimator of Z; only consistency is reqmred All our results from Chapters 8 and 9
for FGLS estimators extend to this model, with no modification. We shall use (10- 9N — _@_ '

— !j v e
'308ee Hashimoto and Ohtani (1990} for discussion of hypothesis testing in this case. E LL le
. WSee Zeliner (1962) and Zellner and Huang (1962). The FGLS estimator for this model is also labeled |If 1-"5'I r
¥ zellner’s efficient estimator, or ZEF, in reference to Zellner (1962) where it was introduced. 1 T._"t L L J i
. 12Perhaps surpnsmgly, if it is assumed that the density of ¢ is symmetric, as it would be with normality, then M adel
ub; is also unbiased. See Kakwani (1967). 1 sh f
Bgee, as well, Judge et al. (1985), Theil (1971), and Srivastava and Giles (1987). | “1'. nol 4n

(Fer i) lg‘
| &
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in what follows. With

Suu S o SiM S LR
s s - Som
- Y= - . (10-11)
Smi M2 o SMM

gional Output

| productivity model separate .
The OLS estimates are s i g, correlation matrix for the OLSsésiduals is
as follows:

0.6837 1.0000
—0.1736 —0.1873 1.0000
~0.0436 —0.1190 —0.5338 A1.0000
~0.1709 -0.3502 -0.3044 0.9339 1.0000

. —0.4376 0.1160 —0.1924 0.4745 0.3507 1.000G0
9 -0.1774 02312 0.6723 —O}Xgé 0.3124 0.1525 0.6845 1.0000

.2.8.) The correlationsAisted earlier suggest that

ing FGLS in terms gf efficiency of the estimator.

nsistent, but they neglect the cross equation

tially lower estimated s{andard errgrs for the FGLS results with each
nfirm that expectation.

correlation. The subst
equation appear to

10.2.4 TESTING HYPOTHESES

For testing a hypothesis about LB, a statistic analogousto the F ratioin multiple regression . ]

analysis is ;_éote\‘-, A over LL .

RE -~ BEEORT'RE—@L— 1010 s
s'ﬂ-ie/(MT K)

The computation requires the unknown . If we insert the FGLS estimate & based on
(10-9) and use the result that the denominator converges to one, then, in large samples,

FIJ, MT - K] =
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the statistic will behave the same as

F.—'-(Rﬁ g¥'[R Var[ 8R! (RB - .

This can be referred to t]1e standard_ F table. Because it uses the estimated X, even
with normally distributed disturbances, the F distribution is only valid approximately.
In general, the statistic F[J, n] converges to 1/J times a chi-squared [J] as n — o0.

(10-13)

Therefore, an alternative test statistic that has a limiting chi-squared distribution with

J degrees of freedom when the null hypothesis is true is

JF = R § - ¢/ [RVar{BIR' RS - @) 0-14)

This can be recognized as a Wal_d_"sﬁgﬁg'ﬁc that measures the distance between R and
_g. Both statistics are valid asymptotically, but (10-13) may perform better in a small or
“moderately sized sample:** Once again, the divisor used in computing a, ; may make a

difference, but there is no general rule. '

A hypothe31s of particular interest is the homogenelty restrlctlon of equal coefficient
vectors in the multivariate regression model. That case is fairly common in this setting,
The homogeneity restriction is that Bi=8 M i=1,.
(10-14), we would form the hypothesis as

Le -0 =11/8 — By
0 I .- 0 I —

ra—| * SR B2 | | BB =0, 10-15)
0 0 I -I| \Bu \By-1— By

This specifies a total of (M — 1) X restrictions on the KM x 1 parameter vector, Denote
the estimated asymptotic covariance for (8;, 8,) as V;. The bracketed matrix in (10-13)

would have typical block
[R Var[8IR )y = ¥is — Vine — Vo + Vo Y

This may be a considerable amount of computation. The test willlliﬁémpler if the model
has been fit by maximum likelithood, as we examine in Section

Examplie 10.3 Hypothesis Tests in thé
We used (10-14) to construct-test statistics for two hy| eses. The “pooling” restriction
for the multivariate re ion {same variables—no}r@cessarily the same data, as in

example) is formul

as

r this hypothesis, the R
our model with nine equa#
8(7) = 56 restrictions

critical value from 1 4.468. So, the hypothesi

, M- 1. Consistent with (10- 13);_

93. Pesaron and Yamngr\"q

(2008
rovide. ouv

alter native

""‘-‘S'}‘ -|—\na‘k
can be pgcd
when M s

lacqge: anad
T‘IC r‘e \G'I"VCJ

of homogeneity is rejected

'1#See judge et al. (1985, p. 476). The Wald statistic often performs poorly in the small sample sizes typical in
this area. Fiebig (2001, pp. 108-110) surveys a recent literature on methods of improving the power of testing
procedures in SUR models. ™

' Small.,
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—— 5

10.2 Y A SPECIFICATION TEST FOR THE SUR MODEL

It is of interest to assess statistically whether the off diagonal elements of ¥ are zero. If
50, then the efficient estimator for the full parameter vector, absent heteroscedastlc:lty or
autocorrelation, is equation by equation ordinary least squares. There is no standard test
for the general case of the SUR model unless the additional assumption of normality of

the disturbancesis imposed in (10-2) and (10-3). With normally distributed disturbances, /.~
the standard trio of tests, Wald, likelihood ratio, and Lagrange multiplier, can be used. -

For reasons we will turn to shortly, the Wald test is likely to be too cumbersome to apply.
With normally distributed disturbances, the likelihood ratio statistic for testing the null
hypothesm that the matrix ¥ in (10-5) is a diagonal matrix against the alternative that

% is simply an unrestricted positive definite matrix would be

Azg = T[n |So] — In|S1]], (10-16)

where 8 is the residual covariance matrix defined in (10-9) {without a degrees of
freedom correction). The residuals are computed using maximum likelihood estimates

of the parameters, not FGLS.™Under the null hypothesis, the model would be efficiently
estimated by individual equation OLS,s0

M
In|Sol = In (eje:/ T),
- i=1

where ¢; = y; — X;b;. The limiting distribution of the likelihood ratio statistic under the

null hypothesis would be chi-squared with M(M — 1}/2 degrees of freedom.
The likelihood ratio statistic requires the unrestricted MLE to compute the resid-
ual covariance matrix under the alternative, so it is can be cumbersome to compute.
A simpler alternative is the Lagrange multiplier statistic developed by Breusch and

Holt (1998).

] 5’ “#Tn the SUR model of thls chapter, the MLE for normally distributed disturbances can be computed by

iterating the FGLS procedure, back and forth between (10 7} and (10-9) until the estimates are no longer
changing, We note, this prooedure produces the MLE when it converges, but it is not guaranteed to converge,
nor is it assured that there is a unique MLE. For our regional data set, the iterated FGLS procedure does not
converge after 1,000 iterations. The Oberhofer-Kmenta (1974) result implies that if the iteration converges,
it reaches the MLE. It does not guarantee that the iteration will converge, however, The problem with this
application may be the very small sample size, 17 observations. One wouid not normally use the technique
of maximum likelihood with a sample this small,
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Pagan (1980) which is

o s =T 2

- . =2 j=1 (10-17)

= (T/Z)Etmce(}l'R) - M},
where R is the sample correlation matrix of the M sets of T OLS residuals. This has the
same large sample distribution under the null hypothesis as the likelitood ratio statistic,’
but is obviously easier to compute, as it only requires the OLS residuals.

M i-1 — AT

We used (10-17) to isti equation model reported inTable 10.1.
The chi-square istic is215.87Pwith 9(8) /2-< 36 degrees offreedomM:caf value is

rresponding chi-squared
istic is@455.7 Jwith 48(47) /2= 1,128 degrees of freedom The critical value is 1,207.25

The third test statistic in the trio is the Wald statistic. In pnncxple the Wald statistic
for the SUR model would be computed using

W = &'[Asy. Var(6)] ¢,

where § is the M(M — 1)/2 length vector containing the estimates of the off-diagonal
(lower triangle) elements of %, and the asymptotic covariance matrix of the estimator
appears in the brackets, Under normality, the asymptotic covariance matrix contains the
corresponding elements of 2 ® /7. It would be possible to estimate the covariance
term more generally using a moment-based estimator. Because

‘ 8y == Z- €ie

is a mean of T observations, one might use the conventional estimator of its variance
and its covariance with &, which would be

1 . A
fim = 77— Z(ege,-, — i) (eeme — O1m)- (10-18)
=1

The modified Wald statistic would then be
W= ”[F]‘lé‘r

where the elements of F are the corresponding values in (10-18). This computation
is obviously more comphcated than the other two. However, it does have the virtue
that it does not require an assumption of normality of the disturbances in the model.
What would be required is (a) consistency of the estimators of 8; so that the we can
assert (b) consistency of the estimators of o;; and, finally, (c) asymptotic normality of
the estimators in (b) so that we can apply Theoremll&l three requirements should
be met in the SUR model with weli;behaved regressors.

Alternative approaches that have been suggested [see, e.g,, Johnson and Wichern
(2005, p. 424)] are based on the following general strategy: Under the alternative hy-
pothesis of an unrestricted X, the sample estimate of X will be $ — [6] as defined
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in (10-9). Under any restrictive null hypothesis, the estimator of X will be fig, a matrix
that by construction will be larger than 21 in the matrix sense defined in Appendix A.

 Statistics based on the “excess variation,” such as T()‘..g — %) are suggested for the

testing procedure. One of these is the likelihood ratio test in (10-16).

& .
10.2% THE POOLED MODEL m

If the variables in X are all the same and the coefficient vectors in (10-2) are assumed
all to be equal, the pooled model,

i =,?‘;tﬂ~ +&ir 1

resuits. This differs from the panel data treatment in Chapter 3;however, in that the
correlation across obsetvations is assumed to occur at time ¢, not within group i. (Of
course, by a minor rearrangement of the data, the same model results. However, the
interpretation differs, so we will maintain the distinction.) Collecting the T observations
for group i, we obtain

Yi=Xif +e
or, for all r groups,
i X1 &1
7 X & |
S VR S TR (10-19)
Y- X, En
where

: 10-20
) Eleie’ 1 X] = 049y, o

If £;; = I, then this is equivalent to the SUR model of (10-2) with identical coefficient
vectors. The generalized least squares estimator under this coyariance stractures model
assumption is

=X ®.\D‘1§rl[xwz Dyl

iiwqg}x} {ZZG"X’ } . (10-21)

i=1 fwl i=1 j=1

where o'l denotes the ijth element of £ ~*. The FGLS estimator can be computed using
(10-9), where.g; can either be computed using group—spec:lﬁc OLS residuals or it can be
a subvector of the pooled OLS residual vector usmg all nT observations.

There is an important consideration to note in feasible GLS estimation of this
model. The computation requires inversion of the matrix ¥ where the ijth element is
given by (10-9). This matrixisn xn. It is computed from the least squares residuals using

——Ze,e, E'E (Io-'Zl)

where e} is a 1 x n vector containing all n residuals for the n groups at time £, placed
as the ¢th row of the T x n matrix of residuals, E. The rank of this matrix cannot be

l1o~12

dsvor
e
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larger than 7. Note what happens if n > T. In this case, the n x n matrix has rank T,

- Consider Example@ We aggregated the 48 states into n = 9 regions. It would not
be possible to fit a full model for the n = 48 states with only T = 17 observations.
This result is a deficiency of the data set, not the model. The population matrix, ¥ is
positive definite. But, if there are not enough observations, then the data set is too short
to obtain a positive definite estimate of the matrix,

T

10.3 PANEL DATA APPLICATIONS

Extensions of the SUR mode} to pangf data applications have beep'made in two direc-
tions. Several studies have layered the familiar random effects tp€atment of Section 9.5
on top of the generalized regrgsSion. An alternative treatmefit of the fixed and ran-
dom effects models as a formpr'of seemingly unrelated regreSsions model suggested by
Chamberlain (1982, 1984) Jras provided some of the foundation of recent treatments of

10.3.1 RANDOM EFFECTS SUR MODE

Avery (1977) s i the random effects model to multipie
gquations,

as before.
Eacl(equation can be treated as a gdndom effects model. In this instance, ever, the ef-
ficient estimator when the equgtions are actually unrelated (that is, Cov{es m, 8111 | X] =

and Cov[u;m, #;1 | X] = 0)46 equation by equation GLS as develgped in Section 9.5,
not OLS. That is, withoutfhe cross-equation correlation, each guation constitutes a
random effects model. 'Phe cross-equation correlation takes th€ form

Elepjeuri X] =0y

ises through the influence of the/common
effects for the given individu

disturbances, the likelihood gquations for the MLE, and a megHod of estimation. Verbon
(1980) added heteroscedasticity to the model.
There have also bg€n a handful of applications, jrcluding Howrey and Varian’s

(1984) analysis of elegiricity pricing and the impact of time of day rates, Brown et al.’s .
V 7 I * |

n, so it must be singular, and the FGLS estimator cannot be computed. - i ot
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h Example 10.1 A Regtonal Productton Model for Public Capital ~ro 03"
2= d MunneliJ)§ (1990) szldy-et productwnty of public
capltal at the state Ievel The central equation of the analysis that we will extend here is a
Cobb~-Douglas production function,

In gspy = oy + Bi;In pcy + BarIn hwyi + Bs; In water; +
JBai In utily +-Bs, In empy + Bei unemp; + &y,

where the variables in the model measured for the Iower 48 U.S. states and years 1970-
1986, are

gsp = gross state product, !

pc = public capital,

hwy = highway capital,

water = water utility capital,

utit = utility capital, I
p_cap = private capital, '
emp = employment ( fabor) ,

unemp = unempioyment rate.

in Example 9.9, we defined nine regions consisting of groups of the 48 states:

1. GF = Gulf =|AL, FL, LA, MS,

2. MW = Midwest =L, IN, KY, MI, MN, OH, W,
3. MA = Mid Atfantic = DE, MD, NJ, NY, PA, VA,
4. MT = Mountain =CQO, ID, MT, ND, Sb, WY,
5. NE = New England = CT, ME, MA, NH, R|, VT,
6. SO = South =GA, NC, SC, TN, WV,R

7. SW = Southwest = AZ, NV, NM, TX, UT,
8.CN = Central = AK, |IA KS, MO, NE, OK,
9. WC = West Coast = CA, OR, WA,

For our application’in this chapter, we will use the aggregated data to analyze a nine-region
(equation) model. Data on output, the capital stocks, and employment are aggregated simply
by summing the values for the individual states (before taking logarithms). The
unemployment rate for each region, m, at time t is determined by a weighted average of the
unemployment rates for the states in the region, where the weights are

Wy =empy/ Z;empy.

Then, the unempioyment rate for region m at time t is the following average of the
unemployment rates of the states () in region (m) at time £

unempy: = X; Wi (m) unempy (m) .
We initially estimated the nine equations of the regional productivity model separately by

OLS. The OLS estimates are shown in Tabie 10.1. The correlation matrix for the OLS
residuals is as follows:



N o-ls""

GF MW MA MT NE 18] SwW CN WC

GF 1.0000
MW 01036 1.0000
MA 0.3421 0.0634 1.0000 [ Rafea
R= MT 0.4243 06970 -0.0158 1.0000 f SN
: NE -0.5127 -0.2806 0.1915 -0.5372 1.0000 |- “{ )
SO 05897 04893 02329 0.3434 ~0.2411 1.0000 Fi{ 4

sSwW 0.3115 0.1320 ~ 0.6514  0.1301 =0.3220 0.2594 1.0000
CN 0.7958 03370 0.3904. 0.4957 --02980 0.8050 0.3465 1.0000
WC 0.2340 05654 02116 05736 -0.0576 0.2693 -0.0375 0.3818 1.0000

The values in R are large enough to suggest that there is substantial correlation of the
disturbances across regions. '

Table 10.1 also presents the FGLS estimates of the parameters of the SUR model for
regional output. These are computed in two steps, with the first, step OLS results producing the
estimate of £ for FGLS. (The pooled resuits that are also presented are discussed in Section
10.2.8.) The correlations listed earlier suggest that there is likely to be considerable benefit to
using FGLS in ferms of efficiency of the estimator. The individual equation OLS estimators are
consistent, but they neglect the cross,equation correlation. The substantially lower estimated
standard errors for the FGLS results with each equation appear to confirm that expectation.

We used (10-14) to construct test statistics for two hypotheses. We first tested the
hypothesis of constant returns to scale throughout the system. Constant returns to scale would
require that the coefficients on the inputs, B8, through S (four capital variables and the labor
variable) sum to 1.0. The 9x9(7) matrix, R, for (10-14) would have rows equal to

CImaley
, o) or or oo or o; or or o
( 1,1,1,0) | [} 0’ o oo 0' 0’

:0’5
—\

nmn

R
Ra
and so on. In (10-14), we would have g’ = (1,1,1,1,1,1,1,1,1). This hypothesis imposes hine

restrictions. The computed chi-squared is 102.305. The critical value is 16.919, so this hypothesis
is rejected as well. The-dlscrepancy vector for these results is

(RB -q)’ =(—0.64674,~0. 12883,0.96435,0.03930,0.06710,1.79472,2.30283,.12907,1.10534).

The distance is quite large for some regions, so the hypothesis of constant returns to scale (to the
extent it is meaningful at this level of aggregation) does appear to be inconsistent with the data
(results).

The poollng restriction for the muitivariate regression (same varlables—not necessarily
the same data, as in our example) is formulated as

Ho B1=B2=""-=Bu
H1: Not Ho.

For this hypothesis, the R matrix is shown in (10-15). The test statistic is.in (10-14). For our model
with nine equations and seven parameters in each, the null hypothesis imposes 8( 7) =
restrictions. The computed test statistic is 10,554.77, which is far larger than the critical value
from the table, 74.468. So, the hypothesis of homogeneity is rejected.

As noted in Section 10.2.7, we do not have a standard test of the specifi catlon of the
SUR model against the alternative hypothesis of uncorrelated disturbances for the general SUR
model without an assumnption of normality. The Breusch and Pagan (1980) Lagrange multiplier
test based on the correiation matrix does have some intuitive appeal. We used (10-17) to
compute the LM statistic for the 8, equation model reported in Table 10.1. For the correlation 1111¢
matrix shown earlier, the chr-squared statistic equals 102.305 with §( 9)2 = 36 degrees of
freedom. The critical value from the chi-squared table is 50.988, so the null hypothesis that the
seemingly unrelated regressions are actually unrelated is rejected. We conclude that the
disturbances in the regional model are not actually unrelated. The null hypothesis that o; = 0 for



lo~/g

all i # i is rejected. To investigate a bit further we repeated the test with the completely
dlsaggregated (statewide) data. The corresponding chl-squared statistic is 8399.41 with 48(47)2
= 1,128 degrees of freedom. The critical value is 1,207.25, so the null hypothesis is rejected at
the state level as well.
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10.3
27 SEEMINGLY UNRELATED GENERALIZED REGRESSION MODELS

In principle, the SUR meodel can accommodate heteroscedasticity as well as autocorrelation. Bartels
and Fiebig (1992) suggested the generalized SURmodel, Q = A[E®I]JA" where A is a block
diagonal matrix. Ideally, A is made a function of measured characteristics of the individual and a =~~~

- separate parameter vector, @, so that the model can be estimated in stages. In a first step, OLS " < '

residuals could be used to form a preliminary estimator of @, then the data are transformed to ava
homoscedasticity, leaving X and f to be estimated at subsequent steps using transformed data. One
application along these lines is the random’ parameters model of Fiebig, Bartels, and Aigner (1991);
(9-50) shows how the random parameters model induces heteroscedasticity. Another application is
Mandy and Martins-Fitho (1993), who specified ,(f) = z,,{t} @;. (The linear specification of a
variance does present some problems, as a megative value is not precluded.) Kumbhakar and
Heshmati (1996} proposed a cost and demand system that combined the translog model of Section
10.4.2 with the complete equation system in 10.4.1. In their application, only the cost equation was |,
specified to include a heteroscedastic disturbance.

Autocorrelation in the disturbances of regression models usually arises as a particular
feature of the time-series model. It is among the properties of the time series. (We will explore this
aspect of the model specification in detail in Chapter 20.) In the multiple equation models examined
in this chapter, the time-series properties of the data are usually not the main focus of the
investigation. The main advantage of the SUR specification is its treatment of the correlation across

i observations at a particular point in time. Frequently, panel data specifications, such as those in
¢hapter | examples 3 and 4 in the Introduction, can also be analyzed in the framework of the SUR model of
this chapter. In these cases, there may be persistent effects in the disturbances, but here, again, those
effects are often viewed as a consequence of the presence of latent, time invariant heterogeneity.
Nonetheless, because the multiple equations models examined in this chapter often do involve
moderately long time series, it is appropriate to deal at least somewhat more formally with
autocorrelation. Opinions differ on the appropriateness of “corrections” for autocorrelation. At one
extreme is Mizon (1995) who argues forcefully that autocorrelation arises as a consequence of a
remediable failure to include dynamic effects in the model. However, in a system of equations, the
analysis that leads to this conclusion is going to be far more complex than in a single equation
model}*® Suffice to say, the issue remains to be settled conclusively.

‘¥ Dynamic SUR models in the spirit of Mizon’s admonition were proposed by Anderson and Blundell
(1982). A few recent applications are Kiviet, Phillips, and Schipp (1995) and DesChamps (1998). However,
relatively little work has been done with dynamic SUR models. The VAR models in Section 21.6 are an
important group of applications, but they come from a different analytical framework. Likewise, the panel
data applications noted in the Introduction and in Section 9.8.5 wouid fit into the modeling framework we are .
developing here. However, in these applications, the regressions are “actually” unre]ated—the authors did not -
model the cross-unit correlation that is the central focus of this chapter. Related results may be found in
Guilkey and Schmidt (1973), Guilkey (1974), Berndt and Savin (1977), Moschino and Moro (1994),
McLaren (1994), and Holt (1998),
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1-504,403.17) /1 _ . 1.29.

The criti i$ 3.84, so the hypothesis is rejected.
i , the Wald statistic is based on the distance of from
he asymptotic t ratioc we computed in the exgriple:

_ (1244827 —1)2
0.012052

= 412.805.

= = 132267,
(1,536,321.881 / 204) 132.26
As expected, this statistic is Also larger than the critical value from the chi-squared

table.

L

Y 145 NONLINEAR SYSTEMS OF EQUATIONS .

/0.

7 T@ We now consider estimation of nonlinear systems of equations. The underlying theory
is essentially the same as that for linear systems. As such, most of the following will
describe practical aspects of estimation. Consider estimation of the parameters of the
equation system

i=m(3 X)+e,

Vo =h X , 1o
Y2 L 2(8.X) + & (12:23)

Yu = hy(B,X) + en.
[Note the analogy to (10-19).]

There are M equations in total, to be estimated with ¢ = 1,..., T observations.
There are K parameters in the model. No assumption is made that each equation has
“its own” parameter vector; we simply use some of or all the K elements in g8 in cach
equation. Likewise there is a set of T observations on each of P independent variables
Xpp =1, , some of or all that appear in each equation. For convenience, the
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1%

equations are written generically in terms of the full 8 and X. The disturbances are
assumed to have zero means and contemporaneous covariance matrix X. We will leave
the extension to autocorrelation for more advanced treatments.

In the multivariate regression model, if Z is known, then the generalized least
squares estimator of f§ is the véctor that minimizes the generalized sum of squares

7 ' _ 10
eBRe® =33 olly (8, X1y b X, (B1-24) R

i=1 j=1 }1 %

where g(B) is an MT x 1 vector of disturbances obtained by stacking the equati

2 =¥ @1, and ¢/ is the jjth element of £, [See (10-7).] As we did in Section {1.2, a
define the pseudoregressors as the derivatives of the h{g, X) functions with respect to f. »
That is, linearize each of the equations. Then the first-order condition for minimizing

this sum of squares is

101 M M iTe]
AR 5B ;; 3B _ ) ,\:1 A 2K Be; (B)] =9, (12-25)
where X?(8) is the 7 x K matrix of pseudoregressors from the linearization of the jth
mi. (See Sectioird1.2.3) If any of the parameters in § do not appear in the ith
equation, then the corresponding column of X?(8) will be a column of zeros.

This problem of estimation is doubly complex. In almost any circumstance, solution
will require an iteration using one of the methods discussed in Appendix E. Second, of
course, isthat ¥ isnot known and must be estimated. Remember that efficient estimation
in the multivariate regression model does not require an efficient estimator of X, only
a consistent one. Therefore, one approach would be to estimate the parameters of each
equation separately using nonlinear least squares. This method will be inefficient if any
of the equations share parameters, since that information will be ignored. But at this
step, consistency is the objective, not efficiency. The resulting residuals can then be used
to compute ’

1 10
S==zEE o (#-26)

The second step of FGLS is the solution of (}1-25), which will require an iterative

procedure once again and can be based on 8 instead of X, With well-behaved pseudore- o
gressors, this second-step estimator is fully efficient. Once again, the same the sed N .
for FGLS in the linear, single-equation case applies here ¥ Wﬁm‘ \3’
is obtained, the appropriate asymptotic covariance matrix is estimated with

M Mo -1 10
Bst. Asy. Var[$] = {Z Zs‘{;;?:(p)g(‘}(_p)J ) (B-27)

' i=1 j=1

ENfsitl'u:r the nonlinearity nor the multiple equation aspect of this model brings any new statistica! issues to
the fore. By stacking the equations, we see that this model is simply a variant of the nonlinear regression model
with the added complication of a nonscalar disturbance covariance matrix, which we analyzed in Chapter 8,
The new complications are primarily practical.
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There is a possible flaw in the strategy just outlined. It may not be possible to fit all
the equations individually by nonlinear least squares. It is conceivable that identification
-, of some of the parameters requires joint estimation of more than one equation. But as
 long as the full system identifies all parameters, there is a simple way out of this problem.
Recall that all we need for our first step is a consistent set of estimators of the elements 13
of 8. Itis easy to show that the preceding defines a GMM estimator (see Chapter 155 We
1O can use this result to devise an alternative, simple strategy. The weighting of the sums
of squares and cros§ products in (J4-24) by o produces an efficient estimator of 8.-
Any other weighting based on some positive definite A would produce consistent,
although inefficient, estimates. At this step, though, efficiency is secondary, so the choice
of A = Iis a convenient candidate. Thus, for our first step, we can find 8 to minimize 4

M M T
sBe®) = [y~ WG, XNy -8 X)) = 23 [y — (B, x) -

i=1 i=1 t=1

(This estimator is just pooled nonlinear least squares, where the regression function
varies across the sets of observations.) This step will produce the § we need to compute S.

11.6 TWO-STEP NONLINEAR LEAST

on a second set of
The model i

likelihood. We as-
¢, is consistent and
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.2 Coefficient Estimpates in SUR Model for Hospitat Cost: -
K - Cogfficient on Variabie in the Equation
DIS87 __~DIS8S. DIS89 DIS90 .~ DISI
voes O VD Ypa1
0.116 -0.0881 —0.0617
VD87 fp.ss + ¥pss ¥D,89’ 90 . Yoa
0.254 1.61 ~0.0934 0.0610 -0.0514
¥D,87 VD.88 YD.50 Yp.21
0.217 0.0846 0.0454 —0.0253
VD87 YD,88 Bp.ge + ¥p.so Yo, |
0.179 0.0822* 1.57 0.0244 i
YD.87 ¥D,38 ¥D,89 VD90 fps +
SUR91 0.153 0.036 ~(.0422 0.0813

communication from the autho

4The value reported in the publishedbaper is 8.22. The correct value is 0.0822. (Peyﬂa[

JO-5 o SYSTEMS OF DEMAND EQUATIONS: e @ =
SINGULAR SYSTEMS . 3
ﬁ{g; KT

!\S_

AL Most of the recent applications of the multivariate regression model*® have been in the ¢ _ f"‘ S

context of systems of demand equations, either commodity demands or factor demands |

in studies of praduct:on. 'ff"i' oe r;i ({5 HL\ .

& guatDons

&

R ¥ i rr'."._‘ |l
oL e s

Example 10.Y Stone’s Expenditure System
TN Stone's expenditure system?? based on a set of logarithmic commodity demand equations,
by income Y, and commodity prices p, is

M
Y =
- log g, = o + n; log (E) + E n;; fog (%),
- - I=1 *

where P is a generalized (share-weighted) price index, #; is an income elasticity, and 7}, is
a compensated price elasticity. We can interprat this system as the demand equation In real
expenditure and real prices. The resulting set of equations constitutes an econometric model
in the form of a set of seemingly unrelated regressions. In estimation, we must account for
a number of restrictions including homogeneity of degree one in income, ;57 = 1, and
symmetry of the matrix of compensated price elasticities, n; = ny;, where §; is the budget
share for good /.

Other examples include the system of factor demands and factor cost shares from
production, which we shall consider again later. In principle, each is merely a partic-
ular application of the model of the Section 10.2. But some special problems arise
in these settings. First, the parameters of the systems are generally constrained across
equations. That is, the unconstrained model is inconsistent with the underlying

*8Note the distinction between the multivariste or multiple-equation model discussed here and the multiple
regression model.

I2A very readable survey of the estimation of systems of commodity demands is Deaton and Muslibauer
(1980). The example discussed here is taken from their Chapter 3 and the references to Stone’s {1954a,b)
work cited therein. Deaton {1986) is another useful survey. A counterpart for production function modeling
is Chambers (1988). developments in the specification of systems of demand equations include
Chavez and Segersory(1987), Brown and Walker (1995), and Fry, Fry, and McLaren (1996).

Other
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theory:?® The numerous constraints in the system of demand equations presented ear-

lier give an example. A second intrinsic feature of many of these models is that the - il
- disturbance covariance matrix X is singutar/?"

5
10.4.1 COBB-DOUGLAS COST FUNCTION

RICHE

et Y S W T
_uu—:!-'l'l'-nvz.-‘ll =T

Consider a Cobb—Douglas production function,

Q= fo
i=1

Profit maximization with an exogenously determined cutput price calls for the firm to
maximize output for a given cost level C (or minimize costs for a given output Q). The
Lagrangean for the maximization problem is

LT

M
A= [+ MC-pw),
i=1"
where p is the vector of M factor prices. The necessary conditions for maximizing this
function are

A a.r;Q _ A ,
A Apy = 0 and BA—C px=0.

. The joint solution provides x;(Q, p) and A(C, p). The total cost of production is

—)_o@,}

M
szxx = Q

=1
The cost share allocated to the ith factor is
pixi @

M = =M
DoicA PiXi Dje G

- 8. (10-28)

The full model is%

M
nC=p+pmQ+> Alnp +e., (1029
i=1
S;=ﬁ_,'+85, i=1,...,M.

/iThis inconsistency does not imply that the theoretical restrictions are not testable or that the unrestricted
model cannot be estimated. Sometimes, the meaning of the model is ambiguous without the restrictions,
however. Statistically rejecting the restrictions implied by the theory, which were used to derive the econo-
metric model in the first place, can put us in a rather uncomfortable position. For example, in a study of utility
functions, Christensen, Jorgenson, and Lau (1975), after rejecting the cross-equation symmetry of a set of
commodity demands, stated, “With this conclusion we can terminate the test sequence, since these results
invalidate the theory of demand” (p. 380). See Silver and Ali (1989) for discussion of testing symmetry restric-
tions. The theory and the model may also conflict in other ways, For example, Stone’s loglinear expenditure
system in Example 10.7 does not conform to any theoretically valid ufility function. See Goldberger (1987).

HDenton (1978) examines several of these cases,

-#We leave as an exercise the derivation of g, which is a mixture of all the parameters, and ﬂq, which equals

1/ Znttyn.
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_ By construction, "%, ; = 1and 33, 5; = 1. (This i$ the cost function analysis begun “u N
A ‘ We will return to that application below.) The cost shares will also “meE LT
7 sum identically to one in the data. It therefore follows that "% & =0 at every data
point, so the system is sipgular. For the moment, ignore the cost function. Let the Mx1
disturbance vector from the shares be g=[e1, £2,..., £y]. Because &'i=0, where iisa
column of 1s, it follows that E[es’i| = 2‘.1 =0, which implies that ¥ is smgular Therefore,
the methods of the previous sections cannot be used here. (You shoyid verify that the
sample covariance matrix of the OLS residuals will also be singular.)

The solution to the singularity problem appears to be to drop one of the equations,
estimate the remamder and solve for the last parameter from the other M — 1. The
constraint 3, f; =1 states that the cost function must be homogeneous of degree one
in the prices, a theoretical necessity. If we impose the constraint

By=1~Bi =P~ — By, (10-30)

then the system is reduced to a nonsingular one:

In (—C—) =fo+8 InQ-I"MZ_:lﬂ'ln ('-E’;)—I—e @ -
P = {0 74 5 < i PM I3

ﬂa=.yj

Si=fite i=1.. M-1 | @ S r:wwu \

This system provides estimates of fg, f;, and Bi, ..., By—1. The last parameter is es- 1 nat m “Jﬂ ‘l*‘

-, timated using (10-30). It is immaterial which factor is chosen as the numeraire. Both ————
" FGLS and maximum likelihood, which can be obtamed by iterating FGLS or by di- ==

rect maximum likelihood estimation, are mvanant to which factor is chosen as the | - - o)

‘1% numeraire:® { }u 3 3 noud d
6 ¢ A tlove’s (1963) study of the electric power industry that we examined in Exam- E xoum vJe b B!

' ple rovides an application of the Cobb--Douglas cost function model. His ordinary sl E ,

least squares estimates of the parameters were listed in Examplé 6.3. Among the results }Zw-_ —

are (unfortunately) a negative capital coefficient in three of the six regressions. Nerlove
also found that the simple Cobb-Douglas model did not adequately account for the
relationship between output and average cost. Christensen and Greene (1976) further
analyzed the Nerlove data and augmented the data set with cost share data to estimate
'the complete demand system. Appendix Table 1sts Nerlove’s 145 observations
with Christensen and Greene’s cost share data. Cost is the total cost of generatlon in
millions of dollars, output is in millions of kilowatt-hours, the capital price is an index of
2 construction costs, the wage rate is in dollars per hour for production and maintenance,
/15 % the fuel price is an index of the cost per Btu of fuel purchased by the firms, and the data
| (1, h ' reflect the 1955 costs of production. The regression estimates are glven in Table 10.3, %
Least squares estimates of the Cobb-Douglas cost function are given in the first
column:?* The coefficient on capital is negative. Because §; = ;8 In O/3 In x;—that is,
a positive multiple of the output elasticity of the ith factor—this finding is troublmg

F6. 4

PThe invariance result is proved in Barten (1969). Some addltlonal results on the method are given by
NALTARY Revankar (1976), Deaton (1986), Powell (1969), and McGuire et al. (1968).

+2*Results based on Nerlove's full data set are given in Exampld6.3. values givenia

S NI e TP Mo v el ogr s eompeer. 6, (
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7

TABLE 10.% . Regression Estimates (standard errors in parentheses}

) - Ordinary Least Squares - Multivariate Regression
B —4.686 (0.885) —3.764 - (0.702) ~7.069 ~ (0.107) -5707  (0.165)
By 0721 {0.0174) 0.153 - - (0.0618) 0766  (0.0154) 0238  (0.0587)
Baa — 0.0505 (0.00536) - - 0.0451  (0.00508)
B ~0.00847 (0.191) 0.0739  (0.150) 0424  (0.00046) 0424  (0.00944)
B 0.594 (0.205) 0481  (0.161) 0.106  (0.00386) 0106  (0.00382)
Br 0.414 (0.0989) 0445  (0.0777) 0470  (0.0101) 0470 (0.0100)
K 0.9316 0.9581 — -

The third column presents the constrained FGLS estimates. To obtain the constrained
estimator, we set up the model in the form of the pooled SUR estimator in (10-19);

In(C/Pg) i an In(P,/By) InPy/Pp) g“ £c
y=1 s | =10 i 0 6 | Tl
b

.81 0 0 0 i

[There are 3(145) = 435 observations in the data matrices.] The estimator is then FGLS
as shown in {10-21). An additional column is added for the log quadratic model. Two
things (o note are the dramatically smaller standard errors and the now positive (and
reasonable) estimate of the capital coefficient. The estimates of economies of scale in
the basic Cobb—Douglas model are 1/8, = 1.39 (column 1) and 1.31 (column 3), which
suggest some increasing returns to scale. Nerlove, however, had found evidence that at
extremely large firm sizes, economies of scale diminished and eventually disappeared.
To account for this (essentially a classical U-shaped average cost curve), he appended a
quadratic term in log output in the cost function, The single equation and multivariate

regression estimates are given in the second and fourth sets of results.
The quadratic output term gives the cost function the expected U-shape. We can
determine the point where average cost reaches its minimum by equating 8 In C/31n Q
to 1. This is Q* = exp[(1 — B;)/(2B44)]- For the multivariate regression, this value is
O = 4665. About 85 percent of the firms in the sample had output less than this, so by
these estimates, most firms in the sample had not yet exhausted the available economies
5 " ofscale. Figure 10.1 shows predicted and actual average costs for the sample. (To obtain
| . | | a reasonable scale, the smallest one third of the firms are omitted from the figure.)
" Predicted average costs are computed at the sample averages of the input prices. The
figure does reveal that that beyond a quite small scale, the economies of scale, while

perhaps statistically significant, are economically quite small.

10.3\.2 FLEXIBLE FUNCTIONAL FORMS: THE TRANSLOG
COST FUNCTION

The literatures on production and cost and on utility and demand have evolved in several
directions. In the area of models of producer behavior, the classic paper by Arrow et al.
{1961) called into question the inherent restriction of the Cobb-Douglas model that
all elasticities of factor substitution are equal to 1. Researchers have since developed
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Fa
numerous flexible functions that allow substitution to be unrestricted (i.e., not even
constant).?* Similar strands of literature have appeared in the analysis of commodity
demands?¥ In this section, we examine in detail a model of production.

Suppose that productlon is characterized by a production function, Q= f(x). The
solution to the problem of minirizing the cost of producing a specified output rate given
a set of factor prices produces the cost-minimizing set of factor demands X = X; (Q P

The total cost of production is given by the cost function,

M
C=>3" px(Q.p) = C(Q.p) (10-31)

- fol
Fored -y

If there are _con__stal_ltf_ret_ilm;s to scale, then it can be shown that C = Qc(p) or
C/Q=cp),

where c(p) is the unit or average cost function.% #7'The cost-minimizing factor demands
are obtained by applying Shephard’ (1970) lemma, which states that if C((, p) gives
the minimum total cost of production, then the cost-minimizing set of factor demands

25See, in particular, Berndt and Christensen (1973). Two useful surveys of the topic are Jorgenson (1983) and
Diewert (1974).

26See, for example, Christensen, Jorgenson, and Lau (1975) and two surveys, Deaton and Muellhauer (1980)
and Deaton (1983). Berndt (1990) contains many useful results.

«#The Cobb-Douglas function of the previous section gives an illustration, The restriction of constant returns

to scale is fg =1, which is equivalent to C= Qc(p). Nerlove’s more general version of the cost function
allows nonconstant returns to scale, See Christensen and Greene (1976) and Diewert (1974) for some of the
formalities of the cost function and its relationship to the structure of preduction.
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is given by
| : ) . e 3C(Q, P) . Qac(p)
| S T-* api~

Alternatively, by dlfferenuatmg loganth{mcally, we obtain the cost-minimizing factor
cost shares:

(10-32)

_3lmC(Q, p),_p;x, R -
5= BT i = C (10-33)
With constant returns to scale, In C( _Q,ﬁp) = In Q +Inc(p), so
_ dlnc@p) (10-34)
aln p;

In many empirical studies, the objects of estimation are the elasticities of factor substi-
tution and the own price elasticities of demand, which are given by
- _c@/apdpp
17 (8c/8pi)(3c/3py)

and
M = 8;0y.

By suitably parameterizing the cost function (10-31) and the cost shares (10-34), we
obtain an M or M +1 equation econometric model that can be used to estimate these

/PN quantities® TR

P The transcendental logarithmic, or translog functlon is the most frequently used
" . flexible function in empirical work:?® By expanding In c(p) in a second-order Taylor
- series about the point In p =0, we obtain

Inc~ ﬂ+Z 1“ Io +l§§:<ﬂ)m-m- (10-35)
S pi) BPT dlpalnp) oo

where all derivatives are evaluated at the expansion point. If we treat these derivatives
as the coefficients, then the cost function becomes

ln__C =8+ hH ln_p1 +--- 4+ ﬁMlan + 511(% In2P1) + 812 lnpl h‘l_pg
+ 8 (3 0% ) + -+ + Saepa (3 107 pag). (10-36)

“28The cost functi’o_g\ is only one of several approaches to this study. See Jorgenson (1983) for a discussion.

2 .’-{ BSee Exampld@4JThe function was developed by Kmenta (1967) as a means of approximating the CES
production function and was introduced formally in a series of papers by Berndt, Christensen, Jorgenson,
and Lag, including Berndt and Christensen (1973) and Christensen et al. (1975). The literature has produced
something of a competition in the development of exotic functional forms, The translog function has remained
the most popular, however, and by one accountl iiuilkey, Lovell, and Sickles (1983) is the most reliable of

W several available alternatives. See also Examplq
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