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This is the translog cost function. If §;; equals zero, then it reduces to the Cobb—DougIas
function we looked at earlier. The cost shares are gwen by

e dlnc

5= 3inpr = ﬁl +<511]11P1 +dpzlnp; +- -+61Mlan,
jy = e ﬁ+3 In \+5 Inps+ -+ &uln
g == 3 ln_pz =Mm+ominp +onlop 2M i PM, (10-37)
dlnc
Sy=———=Pu+émnp+Spinp +-- +3pyln pus.
~ dlnpy : .
The cost shares must sum to 1, which requires, X
Br+frt -+ pu=1
M
Z 85 =0 (column sums equal zero), (10-38)
{1
M
Zb‘;j =0 (rowsums equal zero).
4=
_ We will also impose the (theoretical) symmetry restriction, &; = §j.
CKT ) The system of share equations provides a seemingly unrelated regressions model
that can be used to estimate the parameters of the model:¥ To make the model opera-, ]
/N T tional, we must impose the restrictions in (10-38) and solve the problem of smgulanty —

| 34 _~ -of the disturbance covariance matrix of the share equations, The first is accomphshed

AT by dividing the first M — 1 prices by the Mth, thus eliminating the last term in each row

— and column of the parameter matrix. As in the Cobb—Douglas model, we obtain a non-
singular system by dropping the Mth share equatlon We compute maximum likelihood
estimates of the parameters to ensure invariance with respect to the choice of which
share equation we drop. For the translog cost function, the elasticities of substitution
are particularly simple to compute once the parameters have been estimated:

8¢ + 5i8 8i; +5i(s; — 1
91] = U_—""‘+ Lt . Bu= s 1(2 k ) (10-39)
Sis; S;
(1 '-I*-L , These elasticities will differ at every data point. It is common to compute them at some
\_ '~ central point such as the means of the data:3
lo. 3 Examplew A Cost Function for U.S. Manufacturing

A number of recent studies using the translog methodology have used a four-factor mode,
with capital K, labor L, energy £, and materials M, the factors of production. Among the first
studies to employ this methodology was Berndt and Wood’s (1975} estimation of a translog

+*®The cost function may beincluded, i desired, which will provide an estimate of Bo butisotherwise inessential,
Absent the assmmption of constant returns to scale, however, the cost function wilk contain parameters of
interest that do not appear in the share equations. As such, one would want to include it in the model. See
Christensen and Greene (1976} for an application.

‘3‘1They will also be highly nonlinear functions of the parameters and the data. A method of computing asymp-
Y totic standard errors for the estim: elasticities is presented in Anderson and Thursby (1986). Krinsky and
& Robb (1986, 1990) (see proposed their method as an alternative approach to this computation,

Seetion 5.3
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%
TABLE 10.% Parameter Estimates (standard errors in parentheses)
i _mm B 0.05682 (0.00131) Sxm . 002169  (0.00963) - gl e
' A BN ;13 0.25355 . (0.001987) 8ty - 0.07488 (0.00639) e
Bz 004383 - (0,00105) Sz —0.00321 (0.00275)
By 0.64589* - - 7(0.00299) 53 ~0.07169*  (0.00941)
Sk 0.02987 (0.00575) =~ LY 0.02938 (0.00741)
Sxr 00000221  (0.00367) S ~001797  (0.01075)
Sge  ~0.00820 (0.00406) Brtin 011134*.  (0.02239)

*Estimated indirectly using (10-38).~

cost function for the U.S. manufacturing sector. The three factor shares used to estimate the

model are
Sk = Bk + 8k In (%) tln (EM) + dkEe (-Ef:)
o= ﬁL+3KL!n(——)+8 |n(£M)+a (g;) |
sE—ﬂE+sKEln(§M)+aL ln(ﬁM)HE_E_ (gf? . Flg}l

Berndt and Wood's data are reproduced in Appendix Table(F10,2) Constrained FGLS esti-

=T mates of the parameters presented in Table 10", were obtained by constructing the “pooled
{ ' o | regression” in (10-19) with data matrices
| 0~
\ sK
y=8
SE {10-40)
i 00 |I'IP|(/PM inP /Py INPe/Py L) 4] 0
[N 0 0" InPy/Py 0 inP./Pw ImPeg/Py 0. |,
90i 0 0" mPW/Pwm 0 InP/Pu InPe/Py

.‘6’ = (B, br., f?E, 8K+ OkLs OkEs Les LE, BEE).

_ Estimates are then obtained using the two-step procedure in (10-7) and (10-9)32"The full set
L o of estimates are given in Table 10.5. The paramgters not estimated directly in (10-36) are
computed using (10-38). ‘-!

The implied estimates of the elasticities gF'substitution and demand for 1959 (the central

/ A year in the data) are derived in Table 10.X using the fitted cost shares and the estimated
LU hees  parameters in {10-39). The departure from the Cobb-Douglas model with unit elasticities is
ST /Y substantial. For example, the results suggest almost'no substitutability between energy and

[ - # | labor and some complementarity between capital and energy:%

“*2These estimates do not match those reported by Berndt and Wood. They used an iterative estimator whereas
ours is two steps FGLS. To purge their data of possible correfation with the disturbances, they first regressed
the prices on 10 exogenous macroccenomic variables, such as US. population, government purchases of labor
services, real exports of durable goods and US. tangible capital stock, and then based their analysis on the
fitted values, The estimates given here are, in general quite close to those given by Berndt and Wood. For
example, their estimates of the first five parameters are 0.0564, 0.2539, 0.0442, 0.6455, and 0.0254.

+3Berndt and Wood’s estimate of 6z, for 1959 is 0,64,
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;TABLE 10.%  Estimated Elasticities

. . Capital Labor Energy Materials ~ AR
- . _ Cost Shares for 1959 .
Fitted shares - . .0.05646 . 027454 0.04424 0.62476
Actual shares 0.06185 - -- -0.27303 0.04563 0.61948
Implied Elasticities of Substitution, 1959

Capital —7.34124 : .
Labor 1.0014 --1.64902
Energy —2.28422 0.73556 ~6.59124 :
Material 0.34994 0.58205 0.38512 —0.19702

areriats 3PS o.3g49y 31536 L

Implied Own Price Elasticities :

—0.41448 ~0.45274 —0.29161 —0.19702

‘\____“._______________
10.5 SUMMARY AND CONCLUSIONS

model is an application of the generalized regge§sion model introduced in Chapget 8.
The advantage of the SUR formulation is

ation GR model with an elabogate covariance struc-
hen we explicitly recognize itgfhtrinsic nature as a set
for estimation at this step

model is, in principle a single
ture, special problems aris
of equations linked by th€ir disturbances. The major res
is the feasible GLS estimator. In spite of its apparent plexity, we can estimate the
SUR model by 3 straightforward two-step GLS apgroach that is similar to the one
we used for mpdels with heteroscedasticity in Chéipter 8. We also extended the SUR
model to aytbeorrelation and heteroscedastici#f. Once again, the multiple equation na-
ture of th€ model complicates these applicgtfons. Maximum likelihood is an alternative
methed that is useful for systems of deprdnd equations. This chapter examined a num-
bep/of applications of the SUR mogel. Some panel data applications were presente
i Section 10.3. Section 10.4 presented one of the most common recent applicatichs
of the seemingly unrelated regréssions model, the estimation of demand systep€ One
of the signature features g#'this literature is the seamless transition fro e theo-
retical models of optimjeation of consumers and producers to the sets/6f empirical
demand equations derfved from Roy’s identity for consumers and Sh€phard’s lemma
for producers.

Key Terms d Concepts

ation ¢ Feasible GLS « Homogeneity restriction

* Fixed effects « Identical explanatory
-Douglas model » Flexible functional fo variables

nstant returns to scale * Generalized regresgi * Identical regressors

ovariance structures model  model * Invariance

* Demand system ¢ Heteroscedasgiti * Kronecker product




10.6 SIMULTANEOUS EQUATIONS MODELS

|
IATE |

. SR
There is a qualitative difference between the market equilibrium model suggested in thel.i ntroduction, |'

Opemend = Q1 + &y Price + a3 Income tda+ EDemand;
Osupply = Pr+ Py Price +s'p+ Egupplys G | y
QEquih‘brr’um = Qpemaqd r QSupp!ys g ( | r (R

and the other examples considered thus far.’ :Thé:'ééémingly unrelated regression model,

— f - L B
Yim = Xim Bm + Eim, i

derives from a set of regression equations that are connected through the disturbances. The regressors, p -
are exogenous and vary autonomously for reasons that are not explained within the model. Thus, the »
coefficients are directly interpretable as partial effects and can be estimated by least squares or other -
methods that are based on the conditional mean functions, Elym{X;n] = x,»'B. In a model such as the
equilibrium model above, the relationships are explicit and neither of the two market equations is a
regression model. As a consequence, the partial equilibrium experiment of changing the price and
inducing a change in the equilibrium quantity so as to elicit an estimate of the price elasticity of demand,
a; (or supply elasticity, 3,) makes no sense. The model is of the Joint determination of quantity and price.
Price changes when the market equilibrium changes, but that is induced by changes in other factors, such
as changes in incomes or other variables that affect the supply function. (See Figure 8.1 for a graphical
treatment.)

As we saw in Example 8.4, least squares regression of observed equilibrium quantities on price
and the other factors will compute an ambiguous mixture of the supply and demand functions. The result
follows from the endogeneity of Price in either equation. “Simultaneous equations models,” arise in
settings such as this one, in which the set of equations are interdependent by design, Simultaneous
equations models will fit in the framework developed in Chapter 8, where we considered equations in
which some of the right, hand, side variables are endogenous, - that is, correlated with the disturbances.
The substantive differenceat this point is the source of the endogeneity. In our treatments in Chapter 8,
endogeneity arose, for example in the models of omitted variables, measurement error, or endogenous
treatment effects, essentially as an unintended deviation from the assumptions of the linear regression
model. In the simultaneous equations framework, endogeneity is a fundamental part of the specification.
This section will consider the issues of specification and estimation in systems of simultaneous equations.
We begin in Section 10.6.1 with a development of a general framework for the analysis and a statement of
some fundamental issues. Section 10.6.2 presents the simultaneous equations model as an extension of
the seemingly unrelated regressions model in Section 10.2. The ultimate objective of the analysis will be
to learn about the model coefficients, The issue of whether this is even possible is considered in Section
10.6.3, where we develop the issue of identification. Once the identification question is settled, methods
of estimation and inference are presented in Section 10.6.4 and 10.6.5.

10.6.1 SYSTEMS OF EQUATIONS
Consider a simplified version of theequlhbrlum model above,
demand equation: Qas = 04 P+ coxt+ gy,

supply equation: g5t =P pt &5
equilibrium condition: gy, =g¢,,=g,.
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k
e <— These equations are structurai equatmns in that they mgﬁ;;fed from theory and
[ 1'%\ each purports to describe a paltlculm aspect of the economy.® Because the modelis one (i e
. 3\ of the joint determination of price and quantity, they are labeled jointly dependent or = 7=
| endngenous vanab]es Income, x, is assumed to be determined outside of the model,
——which makes it exogenous. The disturbances are added to the usual textbook descuptlon
/|y to obtain an econometric model. All thieé equations are needed to determine the equi-
' librium price ‘and quantity, so the systetn is mterdependent. Finally, because an equlllb-
rium solution for price and quantity in terms of income and the disturbances is; indeed;
implied {unless a1 equals 81), the system is said to be a complete system of e_qna_tmns.
The completeness of the system requires that the number of equations equal the number of
endogenous varigbles. As a general rule, it is not possible to estimate all the parameters n
of incomplete systems (although it may be possible to estimate some of them). '
Suppose that interest centers on estimating the demand elasticity ¢r; . For simplicity,
assume that g4 and g, are well behaved, classical disturbances with

Elsas| %] = Efesc %] =0,
E[ef; | 1] = o,
£ [sf,,_lx_:] = "-_’_3»
Elsgesseln] =0.
All variables are mutually uncorrelated with observations at different time periods.
Price, quantity, and income are measured in logarithms in deviations from their sample =

means. Solving the equations for P and q in terms of x, g4, and g produces the reduced
form of the model

- =2 M7 Lt /0 -4l
- Bi—ar  Pr—mo -
ar X g ~ 1€
=ﬁ12_+ﬂ14 “=”2J_‘+."‘2- E i
Br—an B—ay -

{Note the role of the “completeness” requirement that ¢ not equal 8;.)

It follows that Cov|p, £4] = 03 / (B1—ay) and Cov[p, &;] = —o? { (B1—a1) soneither
the demand nor the supply equation satisfies the assumptions of the classical regression
model. The price elasticity of demand cannot be consistently estimated by least squares
regression of ¢ on.x and p. Thisresult is characteristic of simultaneous-equations models.
Because the endogenous variables are all correlated with the disturbances, the least

.+ squares estimators of the parameters of equations with endogenous variables on the
% right-hand side are inconsistent™ 3415
: Suppose that we have a sample of T observations on p, g, and x such that

plim(1 / T)¥'x = o2,

;

ﬂIhc distinction between structural and nonstructural models is sometimes drawn on this basis. See, for
- example, Cooley and LeRoy (1985).

W #This failure of least squares is sometimes labeled simultaneous equations bias.

a4
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%36
. Since lea:.s‘.t/ﬁual es is inconsistent, we might instead use an mslrumental varlable
My 7 estimator® The only variable in the system that is not correlated with the disturbances
o3 " is x. Consider, then, the IV_ estimator, ﬁl = q’_y_(_/_p’x This estimator has

qx/T o2Bren/ (B —a)
Px/ T olay/(Br—ap)
Evidently, the parameter of the supply curve can be estimated by using an instrumental

variable estimator. In the least squares regression of p on x, the pr edicted vahies are”

p (p'x / x’x)x. It follows that in the instramental variable regression the instrument is
P. That is,

plim £ = Piim = p1.

» g 4
Bt = P’l’ .

Because j'p = #'P, A1 is also the slope in a regression of g on these predicted values.

This interpretation defines the two-stage least squares estimator.

It would be desirable to use a similar device to estimate the parameters of the de-

mand equation, but unfortunately, we have exhausted the information in the sample. Not

only does least squares fail to estimate the demand equation, but without some further

.. assumptions, the sample contains no other information that can be used. This example
1) Tillustrates the problem.of identification alluded to in the introduction to this chepterz Sec€yo py
V A second example is ihe Iol]_\'mng simplE model of income determmnation.

e ]

lo -~
xample ¥9—+ A Smail Macroecono
Consider the model

Modei

consumption: ¢y = + o4 ¥ + @eCi—y + €41,

investment: 4t = fo + Birt + (¥ — yi-1) + 2,
- demand: Vi=¢+ii+g.

The model contains an aytdregressive consumption function,
on interest and the growth in output, and an equitibrium cgridition. The model determines
the values of the threé endogenous variables ¢, /;, and y,/This model is a dynamic model.
In addition to the gxogenous variables r; and ¢y, It conlding two predetermined variables,
C_1 and yp_éfhese are obviously not exogenous, bift with regard to the cumrent values of

nvestment equation based

the endogendus variables, they may be rega having alreacly been determined. The
deciding fattor is whether or not they are uncoprélated with the current disturbances, whi
we might assume. The reduced form of this prodel is

Acy a1 — f2) + Poors + o1 it + aagh (1 — Ba)Ctor — o foyi-s + (1 — Po)en Hafh ez,
/f = oipfz + foll1 — 1) + Bi(1 — )i+ oGt + ctoBoCroy — Ba(1 ~ 1) Your + Bt
Ayt = ag+ fo + Bare + G + eaCr A — BoViy + &1 + &2,

where A =1 — w1 — 2. Noje' that the reduced form preserves the &

{1 —a1)er,

ilibrium condition.

3\9 e Section 1277,
8.3.
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The distinction between “exogenous” and “endogenous” variables in a model is a subtle and
sometimes controversial complication. It is the subject of a long literature. We have drawn the distinction
in a useful economic fashion at a few points in terms of whether a variable in the model could reasonably

be expected to vary “autonomously,” independently of the other variables in the model. Thus, in a model .
of supply and demand, the weather variable in a supply equation seems obviously to be exogenous in a |
pure sense to the determination of price and quantity, whereas the current price clearly is “endogenous™:. . -

by any reasonable construction. Unfortunately, this neat classification is of fairly limited use in
macroeconomics, where almost no variable can.be said to be truly exogenous in the fashion that most
observers would understand the term. To take a tommon example, the estimation of consumption
functions by ordinary least squares, as we did in some earlier examples, is usually treated as a respectable
enterprise, even though most macroeconomic models (including the examples given here) depait from a
consumption function in which income is exogenous. This departure has led analysts, for better or worse,
to draw the distinction largely on statistical grounds. The methodological development in the literature
has produced some consensus on this subject. As we shall see, the definitions formalize the economic
characterization we drew earlierWe will loosely sketch a few results here for purposes of our derivations
to follow. The interested reader is referred to the literature (and forewarned of some challenging reading).

(127 Engle, Hendry, and Richard (1983) define a set of variables x, in a parameterized model to be
weakly exogenous if the full model can be written in terms of a marginal probability distribution for x,
and a conditional distribution for yd%, such that estimation of the parameters of the conditional
distribution is no less efficient than estimation of the full set of parameters of the joint distribution. This
case will be true if none of the parameters in the conditional distribution appears in the marginal
distribution for x.. In the present context, we will need this sort of construction to derive reduced forms
the way we did previously. With reference to time-series applications (although the notion extends to
cross sections as well), variables x, are said to be p_r_g_(_l_e_t_e'r_'{;nitia_ad_ in the model if x, is independent of all
subsequent structural disturbances &, for s > 0. Variables that are predeterminéd in a model can be
treated, at least asymptotically, as if they were exogenous in the sense that consistent estimators can be
derived when they appear as regressors. We will use this result in Chapter 21, when we derive the
properties of regressions containing lagged values of the dependent variable. A related concept is

(K1 gr_'gn_ge'r (1969)-Sims (1977) causality. Granger causality (a kind of statistical feedback) is absent when

Ax) X1, ¥1) equals fix,|x.=1). The definition states that in the conditional distribution, lagged values of y,
‘add no information to explanation of movements of x; beyond that provided by lagged values of x, itself.
This concept is useful in the construction of forecasting models. Finally, if x, is weakly exogenous and if
¥e-1 does not Granger cause X, , then x, is strongly exogenous, /< [ = IR

ran

AU

el Tg""{-”@ﬂ,&

?' M3 Caysa

B o #",5;;.'1' |
Chae, | ot
e

‘Illu:g i


Bill
Sticky Note
add to KT list. Granger is capitalized


«’ Greenc-50558 - book  June 22,2007 2230 r / o _.3 1 ’

358 PARTII 4 Instrumental Variables and Simultaneous Equations Models [

\ Engle, Hendry, and Richard £1983) define a set of variables x; in a parameter-

written in terms of a
ution for y, | x, such that
of the conditional distribatiof is no less efficient than esti-
rameters.of the joint distributién. This case will be true if none
eals in the marginal distribution
t context, we will need this seft of construction to derive reduced

" estimation of the paramet
mation of the full set of p¢
of the parameters i
for x,. In the pre
forms the way

P i

etermined in the model if x, is independent
of all subsequent structural disturbances g, for s > 0. Variables that are predetepfiined

ultin Section 12.8.2 as well, wheft we derived the properties of regressiéns containing
agged values of the dependent ¥ariable.

A related concept is Granger causality. Granger causality (a ki
back) is absent when f(x, }&,.1, y,—1) equals F(x;|x,_1). The
the conditional distributigh, lagged values of y, add no infor
/| movements of x, beyopd that provided by lagged values of x, itself. This concept i
useful in the construgfion of forecasting models. Finally, ifx, is weakly exogenous an

if y;-1 does not Gragiger cause x,, then x, is strongly exefencus, -
-

of statistical feed-
nition states that in
tion to explanation of

H048 % T A GENERAL NOTATION FOR LINEAR SIMULTANEOUS
s J0.6.2 EQUATIONS MODELSA ‘56\1 J

' ) The s!rugtural form of the model is™ 3% 12

_ |J : -

| " Crnyutynye+ o+ vy + Bixn + - - + Brixix = 8,

N2 ' 1 ' ' YIZE 8
2y +ynye -+ o+ vy + Buxn + -+ Brakik = €n, 5' f

ViM¥i + Yamye + ot VaamYey + BisXa + oo + BrmXik = Em.

There are M equations and M endogenous variables, denoted yi, ..., yy. There are K
exogenous variables, xy, ..., xx, that may include predetermined values of y;, ..., Yu
/v 7, aswell. The first element of x, will usually be the constant, 1. Finally, .1, ..., & » are the
' structural disturbances. The subscript ¢ will be used to index observations, 7 = 1, ..., T.

6 #e will be restricting our attention to linear models jauboeriapter, Nﬂ_lllrl_llt_;.'ér_ systems occupy another strand

fv of litcrature in this area. Nonlinear systems bring forth numerous complications beyond those discussed here

and are beyond the scope of this text. Gallant (1987), Gallant and Holly {1980), Gallant and White (1988),
Davidson and MacKinnon (2004), and Wooldridge {2002a) provide further discussion.

3"-!' “¥or the present, it is convenient to ignore the special nature of lagged endogenous variables and treat them
the same as the strictly exogenous variables,
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In matrix terms, the system may be written

¥m Y - Yim

o va. yn oo v
Iy y2 - yule b

Y™t ¥M: o VMM

Pu Bz - Py
Ba Bn - Bm

+la x - xkle . =[e1 &2 - emls,
Bxi Bxz -+ Pxm

or
yT+ x’B = &}.

Each column of the parameter matrices is the vector of coefficients in a particular
equation, whereas each row applies to a specific endogenous variable.

The underlying theory will imply a number of restrictions on I' and B. One of the
variables in each equation is labeled the dependent variable so that its coefficient in the

model will be 1. Thus, there will be at least one “1” in each column of I'. This nm'mallza- =
" tion is not a substantive restriction. The relationship defined for a given equatlon will

be unchanged if every coefficient in the equation is multiplied by the same constant.
Choosing a “dependent variable™ simply removes this indeterminacy. If there are any
identities, then the corresponding columns of I and B will be completely known, and
there will be no disturbance for that equatlon Because not all variables appear in all
equations, some of the parameters will be zero. The theory may also impose other types
of restrictions on the parameter matrices. T

If I' is an upper triangular matrix, then the system is said to be tnaugular. In this
case, the model is of the form

¥ = fix) + &,
Y2 = f(yn, X)) + e,

Yem = fM(J’rl: Ye2o oo es W, M—ls.x!) + Er M-

The joint determination of the variables in this model is recurswe. The first is com-
pletely determined by the exogenous factors. Then, given the first, the second is likewise
determined, and so on.

-fj/o-_}A’
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r— The solution of the system of equations determining y, in terms of x; and g, is the gt
~5 K\ reduced form of the model, : ' :

- e mz o my
T i cam o m]|
yi=[xi x - xl . +l o vyl
TRl TK2 - MM
= X B[ 4 gr! |
=X+, P X
For this squtiofl to exist, the model must satisfy the gogflplefehgss il:qn_di__tion for simul-
taneous equations systems: I' must be nonsingular. : =
‘EXampre 133 Siructure and Reduced Form ﬁ
For the small medel in Example 15 Y =[c/ ¥, X =[1,r.g.c, Y11, an
—p
o} B2 1
= 0 T—a 1],
g B i
0
(1 — B2 + Borra) ar ap{1— Ba) —pacty
; dofl2 + Pol1 — ay) Be azfs —B1 -4} |,
o+ fy 1 o —fa

The structural disturbgrces are assumed to be randomly drawn from an M.
distribution with

sticity and autocorrelation.
occasionally be useful to assume that €, hasa tivariate normal distribution,
e shall postpone this assumption until it becomes necessary. It may be convenient
0 retain the identities without disturbances as seffarate equations. If so, then one way
to proceed with the stochastic specification is place rows and columns of zeros in th.

appropriate places in X. It follows that the peduced-form disturbances, v; = ¢/ T'!
Elv.|x, £ T Yo=0,

] =@ yErl =g,

This implies that

Z=T'Qr.




oy,

~ Example 10.4 Structure and Reduced Form in a Small Macroeconomic Model
Consider the model

consumption; ¢
investment: it
demand: Y

= o+ Oy + UaCpq + €y,
=Bo+ Pule + Bolyr— Yi1) + £,
=6 tht g .
‘The model contains an autoregressive consumption function based on output, yrand one lagged value, -
an investment equation based on interest, r;-and.the growth in output, and an equilibrium condition. The 1+
model determines the values of the three endogerious variables ¢, i, and y, This model is a dynamic -~ =
" model. In addition to the exogenous variables r, and government spending, g it contains two | ﬂ.’)ﬁ Ki
predetermined variables, ¢y and y.4. These are obviously not exogenous, but with. regard to the | =
current values of the endogenous variables, they may be regarded as having already been determined. "Pr'ﬁ. de=

The deciding factor is whether or not they are uncorrelated with the current disturbances, which we might /o r‘rﬁzf‘fﬁi
assume. The reduced form of this model is i e b les L
YANADIS .
Act = ao(1 — Bo} + Boors + a1 fure + aa@r + a2V — B2l Cro — e BoYiot + (1 — Bo)any + gz, o Hﬁ‘j”{j
, ' ' ] i ehaep.
Ait = apfy + Bol(1 — o) + Bi{1 — )t + Bagr + o2 faCeo — Bo(1 — o) Yot + Babry + (1 ~ o) e, i C ’} o
: [ Heve 0487
Ayt = &g + fo + Pilt + gt + @eCeq — BaYi1 + &1 + £re, e

'where A=1—ay — . Note that the reduced form preserves the equilibrium condition.

Denotey'=[c, 7, y], x'=[1, 1, g, c-1, y4], and

f—ag —fy U7
1 0 -t 0 -8 0 1-5 B
=10 1 - B=|0 0 -1 _17-12% @  1—ay 1],
-y —f 1 —ap 0 0 o B
Lo 8 0]
w1 = o+ fot) Bt all—fa)  ~fae
W ot ol o) Bl =) B2 afe ol —an)|.
a0 + By B 1 oy - B

where A = 1 —a; — B,. The completeness condition is that «; and Bz do not sum to one.

There is ambiguity in the interpretation of coefficients in a simultaneous equations model. The
effects in the structural form of the model would be labeled “causal,” in that they are derived directly from
the underlying theory. However, in order to trace through the effects of autonomous changes in the
variables in the model, it is necessary to work through the reduced form. For example, the interest rate
does not appear in the consumption function. But, that does not imply that changes in r; would not “cause”
changes in consumption, since changes in f; change investment, which impacts demand which, in turn,
does appear in the consumption function. Thus, we can see from the reduced form that Aci /AR = ayBqf A,
Similarly, the “experiment,” Ac;/ Ay, is meaningless without first determining what caused the change in y,
If the change were induced by a change in the interest rate, we would find
(Ac/ Ar) 1 (Ayed Ar) = (cuPe ! A)Y (B1/ A) = auy.
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= —x{BI ! +¢/T!
=xII+ v,

r this solution to exist, the’model must satisfy the completen
aneous equations systepfs: I must be nonsingular.

condition for simul-

Example 13.3
For the small mo

ructure and Reduced Form

| in Example 151, y' =[c,/, . X" = [14£, g,¢_4, y_1], and

-1

-1/, B= r'—=-—
4

ag(1~ B2+ 8 a1 B oy op(1 — B}

—;— cofiz + Bo Bi{1—ay) B 22 fo
B 1 o

where A =7 — gy 2. The completaness condition is that g and fz do not sum to one.

The structural disturbances are assumed to be randomly drawn from an M-variate
distribution with

Ele|x:]=0 and Eleg |x]=Z.
For the present, we assume that
E[el.sl‘; |_._xf!“xs] ——T_(__]! Vt! 5.

Later, we will drop this assumption to allow for heteroscedasticity and autocorrelation,
It will occasionally be useful to assume that g; has a multivariate normal distribution,
but we shall postpone this assumption until it becomes necessary, It may be convenient . @ T
to retain the identities without disturbances as separate equations. If so, then one way i T
to proceed with the stochastic specification is to place rows and columns of zeros in the H_ U lexm
appropriate places in Z. It follows that the reduced-form disturbances, v, = e'T ! have

E[v [x] = (Y0 =9, & 'Y t{{;_uﬁdw
E,[_Vg__"': le] = .(r--l)f.lzr—l = ﬂ / ‘F{:"I. Fim - i
; A ' desur b ANCES
Itrﬁ{“'itj IK_!- N
ai 50 /,

This implies that

% =I'0T. A
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The preceding formulation describes the model as it applies to an observation Lv’ x, ¢'];
at a particular point in time or in a cross section. In a sample of data. each joint obsel—

> vation will be one row in a data matrix.
R R S
Y x g=}f % £
Yr ,‘ K;T T
In terms of the full set of T observations, the structure is
XL +XB =K,

with

E[E|X]=0 and E[1/TEE|X]=EX

Under general conditions, we can strengthen this structure to

plim[(1/ T).E_]’];] =
An important assumption, comparable with the one made in Chapter 4 for the classical
regression model. is
¢ jo-12
plim(1/ T)_X’_X =Q, a finite positive definite matrix. (133}
We also assume that :
/oy

plim(1 / TIX'E = 0.

This assumption is what distinguishes the predetermined variables from the endogenous
variables. The reduced form is

Y=Xn+Y. whereV -_~__’l_§'.[‘". ([0 4{)

Combining the earlier results, we have

LS non+e mwqQ ¢
pim= (XY X Vi=| ou @ ¥
~ v 2 0 g

t

13.83 THE PROBLEM_.OF IDENTIFICATION

tion upon which
eory is consistent
ally equivalent and
unidentified®

ts Hsiao (1983).

BA useful survey of this iss
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10.6.3 THE PROBLEM OF IDENTIFICATION

Solving the identification problem logically precedes estimation. [t is a crucial element of the _F-_‘]\ ~
model specification step. The issue is whether there is any way to obtain estimates of the 05 M
parameters of the specified model. We have in hand a certain amount of information to use for .f—'f?'fh H'JTT_
Ainference about the underlying structure. If more than one-theory is consistent with the same ok D |

* “Hata,” then the theories are said to be observationally equivalent and there is no way of
distinguishing them. We have " already encountered this problem in Chapter 4, where we
examined the issue of multicollinearity. The “model,” '

T Chap

Ik |

1187,
G
consumption = B, + B,Wagelncome + B;NonWagelncorme + BsTotallncome +&, (10-46)- -

cannot be distinguished from the alternative model
consumption =, + y,Wagelncome + y;NonWagelncome + v, 7 ofallncome +w,  (10-47)

where 11 = By, 2 = Bta, 13 = Bata, y4 = Ps-a for some nonzero g, if the data consist only of
consumption and the two income values (and their sum). ‘However, if we know that if B4 equals
zero, then, as we saw in Chapter 4, y, must equal B, and vs must equal B;. The additional
information serves to rule out the alternative model. The notion of observational equivalence
relates to what can be learned from the avaijlable information, which consists of the sample data
and the restrictions that theory places on the equations of the model. In Chapter 8, where we
examined the instrumental variable estimator, we defined identification in terms of sufficient
moment equations. Indeed, Figure 8.1 is precisely an application of the principle of observational
equivalence. The case of measurement error that we examined in Section 8.5 is likewise about
identification. The sample regression coefficient, &, converges to a function of two underlying
parameters, B and o,%; plim & = j3 /[1+0,2/Q**] where O** = plim(x*'x*/r). With no further
information about ¢,°, we cannot infer B from the sample information, & and Q**‘_i._- by setting the
differential, db = 0, you can see that there are different pairs of B and o2 that pi'oduce the same
plim 5. -

A mathematical statement of the idea can be made in terms of the likelihood function,
which embodies the sample information. At this point, it helps to drop the statistical distinction
between ©y” and “x” and consider, in generic terms, the Jjoint probability distribution for the
observed data, p(Y. ,X10), given the model parameters. Two model structures are observationally
equivalent if

P2(Y,X[61) = p(Y,X|8,) for 0, # 0, for all realizations of (Y.X).

S A, ol il 29
' A structure is said to be unidentified if it is observationally equivalent to another structure.® (For
our preceding consumption example, as will usually be the case when a model is unidentified,
there are an infinite number of structures that are all equivalent to (10-46), one for each nonzero
value of @ in (10-47).

% See Hsiao (1983) for a survey of this issue.
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The general simultaneous equations model we have specified in (10-42) is not identified.
We have implicitly assumed that the marginal distribution of X can be separated from the

conditional distribution of Y|X. We can write the model as

- T
TV RS !

AYXIBE®) = p(YX,ILQ)p(X|®) with IT =:BI"' and Q = (T")'E(T)". TR
We assume that @ and (T’ ,I]ﬂ?-.,Z)-ha‘ve,n_c)__‘elgmqnts in common. But, let F be any nonsingular MxM
matrix and define B, = FB and I, = FT" and X, = F'LF (i.e., we just multiply the whole model by

_F). £F is not equal to an identity rﬁatrix; _Then_Bz,_r yand T, are a different B, I" and T that are

consistent with the same data, that is, with the same (Y,X) which imply (IT-and Q). This follows
because IT, = —B, I, = -B'T = IT and likewise for £,. To see how this will proceed from here,
consider that in each equation, there is one “dependent variable,” that is a variable whose
coefficient equals one. Therefore, one specific element of I' in every equation (column) equals
one. That rules out any matrix F which does not leave a one in that position inT,. Likewise, in
the market equilibrium case in Section 10.6.1, the coefficient on x in the supply equation is zero.
That means there is an element in one of the columns of B that equals zero. Any F that does not
preserve that zero restriction is invalid. Thus, certain restrictions that theory imposes on the
model rule out some of the alternative models. With enough restrictions, the only valid F matrix
will be F =1, and the model becomes identified.

The structural model consists of the equation system
Faaa Uy

3

yI'=xB + ¢

Each column in I and B are the parameters of a specific equation in the system. The sample
information consists of, at the first instance the data, (Y,X), and other nonsample information in
the form of restrictions on parameter matrices, such as the normalizations noted in the preceding
example. The sample data provide sample moments, X'X/n, X'Y/n and Y'Y/n. For purposes of
identification, which is.independent of issues of sample size, suppose we could observe as large a
sample as desired. Then, we could observe [from ( 10-45)]

plim(1/m)X'X = Q,

plim( 1/m)X'Y = plim( 1/mX'(XII + V) = QI

pIim(l/n)Y'l_Y = plim(l/n)(_)g'_l +’jV)'(JX~1‘I +V)= III_'Q_I_'I +0Q.
Therefore, T1, the matrix of reduced-form coefficients, is observable:

I = [plim(1/m)X"Y]" [plim(1/)X"Y]

This estimator is simply the equation-by-equation least squares regression of Y on X. Because IT
is observable, 2 is also:

= [plim(1/#)Y"Y] — [plim( I/n)}{'X] [plim(1/}1:)_()9\(')_{]‘l [plim( I/n_)fXI’Y_].

This result should be recognized as the matrix of least squares residual variances and covariances.
Therefore,

11 and €2 can be estimated consistently by least squares regression of Y on X.
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The information in hand, therefore, consists of I1, Q, and whatever other nonsample information
we have about the structure*®.. o
Thus, IT and Q are “observable.” Vimt—interesters—teF=-B* The ultimate question is
whether we can deduce I'B.Z from ILQ. A simple counting exercise immediately reveals that
the answer is no - there are M® parameters T, MQ\/{-I-EI)/Z in £ and KM in B to be deduced. The -
. sample data contain KM elements in IT and M(M#1)/2 elements in €. By simply counting ™ wi.
~ ‘equations and unknowns, we find that our data are insufficient by M pieces of information. We
have (in principle) used the sample information already, so these 3£ additional restrictions are
going to be provided by the theory of the model, A small example will help to fix ideas,

Example ?{?‘5 Identification T e -
Consider a market in which q is quantity of Q, p is price, and z is the price of Z, a related
good. We assume that z erters both the supply and demand equations. For example, Z
might be a crop that is purchased by consumers and that wili be grown by farmers instead
of Q if its price rises enough relative to p. Thus, we would expect oy = 0 and B < Q. So,

Qo = @g +eaip+mZ+eqg  (demand),
G = Po+ PP+ paz+es  (supply),
=q=dg (equilibrium).

The reduced form is

_atfo—aoBr Py —anpy o165 — (rpEy
a1 — By oy~ = oy — fy

Po—ao | B £y~ £y

oy~ B i @y “ﬁ1g+ oy~ By
With only four reduced-form coefficients and six structural parameters, it is obvious that there
will not be a complete solution for all six structural parameters in terms of the four reduced
parameters. Suppose, though, that it is known that 8 = 0 {farmers do not substitute the
alternative crop for this one). Then the solution for Bi i8 may / map. After a bit of manipulation,
we also obtain 8y = 7y — w721 / mae. The restriction identifies the supply parameters, But
this step is as far as we can go. i

go;ng, suppose that income x, rather than z, appears in the demand equatton. The revised
model is

=y -+ anZ + vy,

P == Ty 4 TozZ + Vp.

G = o+ a1 P+ X + 24,
q = fo+ PP+ ez + 52

The structure is now

1 1 [““0 —Pu
o A [~a1 -—&Jf“ X Zhy—er 0§ =gy gl
. [ _—

i
%8 We have not necessarily shown that this is g/f the information in the sample. In general, we observe the
conditional distribution Ayix:), which constitutes the likelihood for the reduced form. With normally
distributed disturbances, this distribution is 2 function of only IT and Q. With other distributions, other or
higher moments of the variables might provide additional information. See, for example, Goldberger (1964,
p- 311), Hausman (1983, pp. 402-403), and especially Reirsal (1950).

I‘l r -
TR
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The reduced form is
(1o —aobi) /A {(fo—ao) /A

[t pl=0 x 2| —wBi/n —wr /A | +[n vl
ar1flaf A Baf A

. where A == (ay — 81). Every false structure has the same reduced form. But in the coefficient

ratrix, Y -
jl-ﬂll):fﬁ FBofor . aotra+ fo fzz]
B=BF = o f1q w2 fr .
I_ B fa1 B3 fa J
it _fi2 is not zero, then the imposter will have income appearing in the supply equation,

which our theory has ruled out. Likewise, if_f, is not zero, then 2 wil appear in the demand
equation, which is aiso ruled out by our theory. Thus, although all false structures have the

B

——,_same reduced form as the true one, the only one that is consistent with our theory (.e.,

[ F e

Jis admissible) and has coefficients of 1 on g in both equations (examine TF)is F = L. This
fransformation just produces the original structure.
The unique solutions for the structural parameters In terms of the reduced-form parame-

ters are now
Tyt T2y
ofg = Ty — qa| — },  Booms gy — | — |,
T3z ELdie]

T34 bet)
oy = v By = —
e oy
ot 31 T3 2
op e | — —— 1, By =gy | e — — ],
Tez  Map Mz e

The conclusion is that some equation systems are identified and others are not. The
formal mathematical eonditions under which an equation_system is identified turns on some
intricate results known as the rank and order conditions. [ |

The order condition is a simple counting rule. In the equation system context, the order
condition is that the number of exogenous variables that appear elsewhere in the equation system
must be at least as large as the number of endogenous variables in the equation. We used this

rule when we constructed the IV estimator in Chapter 8. In that setting, we required our model to

be at least “identified” by requiring that the number of instrumental variables not contained in X
be at least as large as the number of endogenous variables. The correspondence of that single
equation application with the condition defined here is that the rest of the equation system is,
essentially, the rest of the world (i.e., the source of the instrumental variables):3¥ A simple
sufficient order condition for an equation system is that each equation must contain “its own”

¢xogenous variable that does not appear elsewhere in the system.

. This invokes the perennial question (encountered repeatedly in the applications in Chapter 8), “where do

the instruments come from? See Section 8.8 for discussion.
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The order %giition is necessary for identification; tﬁ“q: rank cndition is sufficient. The

.~ The equation system in (10-42) in structura! form is yT = x'B +¢'. The reduced form is
7Y = xCGBT)+&' T =x'IT + v'. The way we are going to deduce the parameters in (T, B,E) is

from the reduced form parameters (IL£2). For a particular equation, say the jth, the solution is ,,, s
o1 contained in IIT' = ‘B, or for a particular equation, IIl; = :B; where I'; contains all the o
- . ‘coefficients in the jth equation that multiply endogenous variables. One of these coefficients will
" equal one, usually some will equal zero, and the remainder are the nonzero coefficients on
endogenous variables in the equation, Y, [these are denoted ¥y in (10-48) following]. Likewise, B;
contains the coefficients in equation j on all exogenous variables in the model + some of these
will be zero and the remainder will multiply variables in X, the exogenous variables that appear
in this equation [these are denoted B; in (10-48) following]. The empirical counterpart will be”

L ATTRAA 3 )

[plim(1/m)XX]" [plim(L/m)X'Y,] I} - B;=9.

e

“05WTesS

The rank condition insures that there is a unique solution to this set of equations. In practical
terms, the rank condition is difficult to establish in large equation systems. Practitioners typically
take it as a given. In small systems, such as the 2 or 3 equation systems that dominate
contemporary research, it is trivial. We have already used the rank condition in Chapter 8 where
it played a role in the “relevance” condition for instrumental variable estimation. In particular,
note aficr after the statement of the assumptions for instrumental variable estimation, we assumed
plim(1/7)Z’X is a matrix with rank K. (This condition is often labeled the “rank condition” in
contemporary applications. It not identical, but it is sufficient for the condition mentioned here.)

To add all this up, it is instructive to return to the order condition, We are trying to solve
a set of moment equations based on the relationship between the structural parameters and the
reduced form. The le information provides KA+ M(M+1)/2 items in IT and Q. We require
M additional restricfioris, imposed by the theor(%}ind the model. The restrictions come in the
form of normalizations, most commonly exclusion Testrictions, and other relationships among the
parameters, such as linear relationships, or specific values attached to coefficients.

The question of identification is a theoretical exercise. It arises in all econometric
setings in which the parameters of a model are to be deduced from the combination of sample
information and nonsample (theoretical) information, The crucial issue in each of these cases is
our ability (or lack of) to deduce the values of structural p ters uniquely from sample
information in terms of sample moments coupled with nonsample wrormation, mainly restrictions
on parameter values. The issue of identification is the subject of a lengthy literature including -
Working (1927) (which has been adapted to produce Figure 8.1), Gabrielsen (1978), Amemiya
(1985), Bekker and Wansbeek (2001), and continuing through the contemporary discussion of
natural experiments (Section 8.8 and Angrist and Pischke (2010}, with commientary).
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10.6.44Estimation and Inference

For purposes of estimation and inference, we write the specification of the simultaneous
equations model in the form that the researcher would typically formulate it;

P/ =XB + Yy + g - (10-48) Ve L

=Zd tE

where y; is the “dependent variable” in the equation, X; is the set of exogenous variables that e
appear in the jth equation 1 note that this is not all the variables in the model mand Z; = (X,Y)). | Ao
The full set of exogenous variables in the model, including X, and variables-that appear elsewhere | ijl - {’_:} e bs
in the model (including a constant term if any equation inchides one) is denoted X. For example, | =% | “
in the supply/demand model in Example 10.5, the full set of exogenous variables is X = (1,x,z),
while for the demand equation, Xpemamas = (1,x) and Xspp, = (1,2). Finally,.Y;, is the endogenous i
variables that appear on the right hand side of the_jth_equation. Once again, this is likely to be a [ f»} r TR
subset of the endogenous variables in the full model. In Example 10.5, Y, = (price) in both cases. we=
(1 {1y There are two approaches to estimation and inference for simulfaneous equations models. I‘}J dlad | @
_Limi__t\e_tj! information estimators are constructed for each equation individually. The approach is -“{ Pﬂ '\ ) ﬂlﬁ'H .
analogous to estimation of the seemingly unrelated regressions model in Section 10.2 by least | -
squares, one equation at a time. Full information estimators are used to estimate all equations m—
simultaneously. The counterpart for the seemingly unrelated regressions model is the feasible
generalized least squares estimator discussed in Section 10.2.3. The major difference to be
accommodated at this point is the endogeneity of Y;in (10-48).

The equation system in (10-48) is precisély the model developed in Chapter 8. Least
squares will generally be unsuitable as it is inconsistent due to the correlation between Y, and g;.
The usual approach will be two stage least squares as developed in Sectl"o'n: 83210834, The
only difference between the case considered here and that in Chapter 8 is the source of the
instrumental variables. In our general model in Chapter 8, the source of the instruments remained
somewhat ambiguous; the overall rule was “outside the model.” In this setting, the instruments
come from elsewhere -in the model - that is, “not in the jth equation.” Thus, for estimating the
linear simultaneous equations model, the most common estimator is

" ~F A ~r
80 = L2, 2y, (lo- L;q)
= [Z/ XXX~ XL Z XX X)Xy,
where all columns ofxz.; are obtained as predictions in a regression of the corresponding

column of Z; on X. This equation also results in a useful simplification of the estimated
asymmptotic covariance matrix,

Est. Asy. Val'[s}‘!zgw] = (}jj [Z;i,]“l
It is important to note that oj; is estimated by |

¥ =Z8V vy ~ 285y ( O - 5‘0)
7 :

ajj =
using the original data, not Z i

Note the role of the order condition for identification in the two, stage least squares
estimator. 'Formally, the order condition requires that the number of exogenous variables that
appear elsewhere in the model (not in this equation) be at least as large as the number of
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endogenous variables that appear in this equation. The implication will be that we- are going to

predict Z; = (X,,¥)) using X = (X, X,*). In order for these predictions to be linearly independent,

there must beat least as many variables used to compute the predictions as there are variables

being predicted. Comparing (XY} to (X, X*), we see that there must be at least as many

variables in X;* as there are in Y, which is the order condition. The practical rule of thumb)] that ,

. .every equation have at least otie variable in it that does not appear in any other equation will - - LT

~ ‘guarantee this outcome. : -
Two,stage least squares is used nearly universally in estimation of simultaneous equation

models — for precisely the reasons outlined in Chapter 8. However, some applications (and some/T-]

theoretical treatments) have suggested that the limited information maximum likelihood

(LIML) estimator based on the normal distribution may have better properties. The technique

has also found recent use in the analysis of weak instruments that we consider in Section 10.6.5.

A full (lengthy) derivation of the log-likelihood is provided in Davidson and MacKinnon (2004).

We will proceed to the practical aspects of this estimator and refer the reader to this source for the 4

background formalities. A result that emerges from the derivation is that the LIML estimator has '

the same asymptotic distribution as the 2SLS estimator, and the latter does not rely on' an

assumption of normality. This raises the question why one would use the LIML technique given

the availability of the more robust (and computationally simpler) alternative. Small sample results

are sparse, but they would favor 2SLS as well. [See Phillips (1983).) One significant virtue of

LIML is its invariance to the normalization of the equation. Consider an example in a system of

equations,

¥ =yntyntafit b te.

An equivalent equation would be

W =01 + ys(ops/) + XU(=Pya) + X))
=N ¥ B bt E.

The parameters of the-second equation can be manipulated to produce those of the first, But, as
you can easily verify, the 2SLS estimator is not invariant to the normalization of the equation
28LS would produce numerically different answers. LIML would give the same numerical
solutions to both estimation problems suggested earlier. A second virtue is LIML’s better
performance in the presence of weak instruments.
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F-‘f'[L_ " The LIML, or Ieast Yyariance ratio estimator, can be computed as follows.”JLet
| I ~
] B - B - = s - ,0—5-1
where il ca

Y=y Yl

and

/o-SL
Ej = MY = [1-X,XX) XY, (#3-23) w

Each column of E‘} is & set of least squares residuals in the regression of the coire-
sponding column of Y“ on X;, that is, the exogenous variables that appear in the jth
equation. Thus, ‘W0 is the matrix of sums of squares and cross products of these residuals.

Define
| lo-53
W) =E'E) = X7 - XXX XY} (=2

That is, W} is defined like W? except that the regressions are on all the x’s in the model.
not just the ones in the jth equation. Let

A1 = smallest characteristic root of (W;)™ Wj. (B28

This matrix is asymmetric, but all its roots are real and greater than or equal to 1.
Depending on the available software, it may be more convenient to obtain the identical
smallest 1oot“of the symmetric matrix ) —(W1 y 2‘lfV‘](Wl) -1/2, Now partition W“

0r
9. W
into W"_ "‘vg' {) corresponding to [y },YJ} and partition | W1 likewise, Then
Wi
with these parts in hand,
lo-Cs
-1
P = [W); — AW ] (w) — aw)) )

and
B = [X}X}]_I}S(y! = Y1 iLoa)-

Note that 8, is estimated by a simple least squares regression. [See (3-18).] The asymp-
totic covariance matrix for the LIML estimator is identical to that for the 2SLS

‘f@ﬁ iﬂ least variance ratio estimator is derived in Johnston {1984). The LIML cstimator was derived by
Anderson and Rubin {1949, 1950), The LIML estimator lias, since its derivation by Anderson and Rubin in
1949 and 1950, been of largely theoretical interest only. The much simpler and equaily efficient two-stage least
squares estimator has stood as the estimator of choice. But LIML and the AR specification test have been
rediscovered and reinvigoiatcd with their use in the analysis of weak instruments. Sce Hahn and Hausman
(2002, 2003) and Sections {20 and #3-5:5.

3.} /06.¢
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estimator: ! The implication is that with normally distributed disturbances, 2SLS is
fully efficient. /77
The k class of estimators is defined by the following form

B, =pist {YJ"YJ A, Y;&}P’}y, RV, ] 1056
Pu) L 2% XX0 Xp

where V; and y; are the reduced form disturbances in (10-45). The feasible estimator is computed
using the residuals from the OLS regressions of Y, and .y, on X (not X;). We have already
considered three members of the class, OLS with £.= 0, 2SLS with £ = 1;and, it can beé shown,
LIML with &£ = ;. [This last result follows from (10-55).] There have been many other k-class
estimators derived; Davidson and MacKinnon (2004, pp. 5375538 and 548.549) and Mariano
(2001) give discussion. It has been shown that all members of the % class for which £ converges to
1 at a rate faster than 1/Vr have the same asymptotic distribution as that of the 2SLS estimator
that we examined earlier. These are largely of theoretical interest, given the pervasive use of
28LS or OLS, save for an important consideration. The large sample properties of all k-class

estimators are the same, but the finite-sample properties are possibly very different, Davidson and -

MacKinnon (2004, pp. 537-538 and 548:549) and Mariano (1982, 2001) suggest that some
evidence favors LIML when the sample size is small or moderate and the number of
overidentifying restrictions is relatively large.

b This is proved by showing that both estimators are members of the “k class” of estimators, all of which

have the same asymptotic covariance matrix. Details are given in Theil (1971) and Schmidt (1976).
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itr, analysis of problems
is one of the bedrock

road enough to include many gractical applications is the .
one analyzed by Kelej#én (1971), g

ecause of the nonlinearity, it maynot be possible to solve for the re
tions (assuming that they exist), i (x) = E[ f; 1 1X]. Kelejian shows t
baseddn a Taylor series approximation to/; j» using the linear terms, higher pgfvers, and
crogé-products of the variables in x, widl be consistent, The analysis of 25L% presented
eptlier then applies to the Z; consisjifig of [f; i & jr - X} [The alternative approach
0f using fitted values for y appears £0 be inconsistent. See Kelejian (197%) and Goldfeld
and Quandt (1968).]

Inalinear model, if an equgtion fails the order condition, then it gannot be estimated
by 2SLS. This statement is got true of Kelejian's approach, howtver, because taking
higher powers of the regrgésors creates many more linearly ingépendent instrumental
variables. If an equatiop’in a linear model fails the rank copfition but not the order
condition, then the 2518 estimates can be computed in a fifiite sample but will fail y
exist asymptoticallyBecause XIT; will have short rank. U ortunately, to the extent y
Kelejian’s approgifnation never exactly equals the truefeduced form unless it h pens
to be the polypbmial in x (uniikely), this built-in

-

[0.6.5 T2% SYSTEM METHODS OF ESTIMATION

We may formulate the full system of equations as

w]l [Z 0 - 81[4] [
yz _ 0 Zz 0 52 L | (10-5‘9
vl Lo 0 zul Lo Lew
or
Y=Zé+e,

rl
A iya (1985 fop. 245-265), See.fis well, Wooldridde (20022, ch. 9.
LS for modgds that arc nonlinegf in the parametefs is discussed in Chaptfr 15 in connection withfGMM

L]
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where . - Jo-53 N o
E[e]X] =0, and Elee’|X]=T=2QL (13=38)

[See (108).] The least sqttaresééﬁmétpl,_
d = [Z’Z]]Z’y,

is equation-by-equation ordinary least squares and is inconsistent. But éven if ordinary

least squares were consistent, we know from our results for the seemingly unrelated

regressions mode] iscSkmyrtert® that it would be inefficient compared with an estimator

that makes use of the cross-equation correlations of the disturbances. For the first issue, g- ‘_Hs

we turn once again to an IV estimator. For the second, as we didin Chapter 30 W tse a2 F110wW (0,2, | 4
generalized least squares approach, Thus, assuming that the matrix of instrumental vari-

ables, W satisfies the requirements for an IV estimator, a consistent though inefficient

estimator would be

{0
b= (W2 Wy, 57

Analogous to the seemingly unrelated regressions model, a more efficient estimator
would be based on the generalized least squares principle,

. - —r /e-6o
$vors = [W(Z™! eDZ)1"'W(z ! @Dy, (1338)
or, where W; is the set of instrumental variables for the jth equation,
. f ’ -1 A il
oWy o Wiz, - o WW;%M z'fhil" S i
. IWTn  oPWiZa o oPMWizy || DX, 0wy,
Ov.GLS = S
v C W SMWZy o oMMWLZL| | TM GMyy
ThreéAtechniques are generally used for joint estimation of the e system of

equations: three-stage least squares, GMM, and full information maxi likelihood. \W/e ta} \\ _
Con S der khr‘ecﬁ s-\—agr_, lmsﬁ'

N 136 B RN T TAGE L L AST SOARES S?U ares )'\er'e.. . GMM an A
foragrap * Consider the IV estimator formed from ) FIML ore
0o 0] 4y -
A v Cuss
7r 0 vssed in

“1., Cha pYe rs \3

N Gnad 145

Ly

The IV estimator, ' r CSfec'}:iyc[a_
Sy = {_i’Z]"'I_?}_’i

is simply equation-by-equation 2SLS. We have already established the consistency of

2SL3. By analogy to the seemingly unrelated regressions model of Chapter I iowever, Sec f/or, /0,72
we would expect this estimator to be less efficient than a GLS estimator, A natural ’

candidate would be

W=7 = diag]X(X'X)"'X'Z, ..., XX'X)'X'Zy] =

=
'.o cas
N

Sasis = [Z’(z:_-1 ®_{),Z]“1_Z'(§“‘1 ® Dy.
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For this estimator to be a valid I'V estimator, we must establish that
1. .
plim =2/~ @ De = b,

which is M sets of equations,‘e'acti one of-the form

phm Za”le,_o : s
;—-1
Each is the sum of vectors all of which converge to zero, as we saw in the development
of the 25LS estimator. The second reqguirement, that

plim =2/ (5™ @ Z %0,

and that the matrix be nonsingular, can be established along the lines of its counterpart
for 2SLS. Identification of every equation by the rank condition is sufficient. [But, see
Mariano (2001) on the subject of “weak instruments.”]
Once again using the idempotency of I—M, we may also interpret this estimator
as a GLS estimator of the form :
lo~6 ¢

Assis = (257 e D272 (27 oDy (15:31)

W

The appropriate asymptotic covariance matrix for the estimator is Jo-§ 2
O -
Asy. Var[§zsis] = [Z (BT @ DZ] ™, (1333
where Z dlag{XII 1 X ;1. This matrix would be estimated with the bracketed inverse

a\.a.z\-

matrix in (334513

Usmg sample data, we find that Z may be estimated with Z The remaining difficulty
is to obtain an estimate of X. In estimation of the multivariate regression model, for .

efficient estimation, %z SEHOWER, any consistent estimator of & will

do. The designers of the 35LS method, Zellner and Theil (1962), suggest the natural I.:g. ]

choice arising out of the two-stage least estimates, The three-stage least squares (3SLS) -

I, P ] estimator is thus defined as follows:

1. Estimate II by ordinary least squares and compute Y for each equation.
2. Compute 8 ;.2sLs for each equation; then
(e — 28y, — 28 lo-63
‘711 [ Sy ' y j L i) (1333)

10-6/
3. Compute the GLS estimator according to ( and an estimate of the

asymptotic covariance matrix according to using Z and %.
ymp gto¢ g4 and; 1o-62

It is also possible to iterate the 3SLS computation. Unlike the seemingly unrelated

FENN regressions estirnator, however, this method does not provide the maximum likelihood
AT o estimator, nor does it improve the asymptotic efficiency.™ 4% 1"

) By showing that the 3SLS estimator satisfics the rcqulrements for an IV estimator,

we have established its consistency. The question of asymptotic efficiency remains. It can

Lf z' - A Jacobian term necded to maximize the log-likelihood is not treated by the 3SLS estimator. See Dhrymes
¥ (1973).
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4345
be shown that among all IV estimators that u)s.%(ythe sample information embodied
. inthe system, 3SLS is asymptotically efficient " For normally distributed disturbances, it

can also be shown that 3SLS has the same asymptotic distribution as the full information

maximum likelthood -éstimatoq'.‘ VRICI 15 asymptotically efficient among ajestimators.
TTET sfOrmatiop/natrix is possible, but we shal take a much
simpler route\by simply exploiting a hafidy result due to Hausman inAhe next section.

c-

13.6.2 FULL INFORMATIQK MAXIMUM LIKELIHOOIR

Because of their simplicity apd asymptotic efficiency, 2SLS #Ad 3SLS are used almost
exglusively (when ordinaryfeast squares is not used) for the’estimation of simultaneous
equadions models. Nongtheless, it is occasionally useful ¢ obtain maximum likelihood
estimatgs directly. Thgfall information maximum likelifood (FIML) estimator is based
on the eitjre systgrli of equations. With normally distributed disturbances, FIML is
efficient amdqg l estimators. (Like the LIML egfimator in Section 13.5.4, the FIML
estimator for [Mgar simultaneous equations mgdels stands somewhat apart from the
other maximdm likelihood applications develgped in Chapter 16. The practical interest
in the estipdator is ratker limited because thé 3SLS estimator is equally efficient, much
easier ty’compute, and ¥ges not impose 4 normality assumption. On the other hand,
like the LIML estimator, the FIML estjfhator presents a useful theoretical benchmarlks
As glch, it is more usetul to Prgsent it here, while the background theory for the ML
¢thodology can be found in Chapfer 16.)

The FIML estimator treats gl dquations and all parameters jointly. To fofmulate

the appropriate log-likelihood functiotywe begin with the reduced form,

Y=XN4V,

where each row of Yis assumed to be mWMjivariate normally /distributed, with
E{v; | X]= (0 and coydriance matrix, £ [v:v; | X] =9, The log-likelhood for this model
is precisely that of the seemingly unrelated regresons modef of Chapter 10. (See
Section 16.9.3.b,Y For the moment, we can ignore the relatip ship between the struc-
tural and redyced-form parameters. The log-likelihood fupftion is

InlL= wg{M In(2mr) + In| Q| A2 1WY],
whezg
1
ij"—'tf(y_ ! ,(Y"’XJ‘?),
and f

= =/jth column of II.

This function is to be maximized #gibject to all the restrictions imposed'by the strusure.
Make the substitutions Il = —EI' ! and 2 = (T"1YEr " so that =TE-. Thys,

In L= —é [Mlu(Zfr) + 1T Y ET +tr{%[f2"]f'(Y+ : l“"'l)’(Y+XBI““1)]H,

by "EiSce Schmidt (1976} for a proof of its efficicney relative to 28LS.




