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Example #3782 Klein’'s Model | Y-
A widely used example of a simultaneous equations model of the economy is Klein's (1950)
Mode! . The model may be written

Ct =0+ ar1P + wProy +as (WP + WP) +581  (consumption), 7
= Bo+ PP+ BoProy + Pk +2g (investment), - o

- WP = 1w +nXe+ y?X ;-1 + 1A | + 3t (private wages),
Xy = Ci+1¢ + Gy B _ {equilibrium demand),
Po= X, =T, — WP " (private profits),
Kt =K 1 +1; (capital stock}.
The endogenous variables are each on the left-hand side of an equation and are labeled on the *

right. The exogenous variables are G, =government nonwage spending, T;=indirect business
taxes plus net exports, W/ =government wage bill, A |=time trend measured as years from
1931, and the constant term. There are also three predetermined variables: the lagged values
of the capital stock, priva%}oﬁts, and total demand. The model contains three behavioral
equations, an equilibrium dition and two accounting identities. This model provides an
excelient example of a small, dynamic model of the economy. It has also been widely used as a
test ground for simultaneous equations estimators. Klein estimated the parameters using yearly
data for 1921 to 1941. The data are listed in Appendix Table F10.2. Table 10.4 presents

O ) Iimite_(L and full information estimates for Klein's Mode! | based on the original data for 1920~ @ ——
1941745 ' e
Y- - Ao: Cheek
TABLE 183 Estimates of Klein's Modal | (Estimated Asymptotic Standard s n !} ﬂ_na
Erfors |n Parentheses) YR E ' : i-&.‘f ‘F‘Jl o
Limited Information Estimares Full Informarion Extimares ["{3 | &\ %] ; 3,
2SLS 3SL8 SN ! 7
C 166 0017 0216 0.810 164 0425 . 0.163 (.790 et
(1.32) (0.L18)7 (0.107)  (0.040) (1.30) (0.108)  (0.100)  (0.038)
i 203 0.150  0.6l6 ~0.158 282 —(.013 036 0193
: (7.54) (0.173)  (0.162)  (0.036) (6.79) (0.162)  (LIS3)  (0.033)
L 0.439 0147 0.130 1.8 0.400 0.181 0.150
(L15)  (0.036) (0.039)  (0.029) (112)  (D.032)  (0034)  (0.028)
LIML FIML
¢ 1l —0.222 039 0.823 18.3 —{.232 .388 0.802
(1.84) (0.202) (0.74)  (0.055) (2.49) (0312)  (0.217)  (0.036)
I 226 0075 0.680 —£.168 213 —0.801 LO52 —0.146
(9.24) (0.219)  (0.203)  (0.044) (7.04) (0491) (0,353 (0.30)
Wr. 1353 0.432 0151 0.132 379 0.234 0.285 0.235
(2.40) (0.137)  (DI3S)  (0.65) {1.80) (0.049)  (D.045)  (0.035)
OLS 13818
¢ 162 193 0.09% 0.796 166 0.Le3 0177 0.766
{1.30) {0,091y  (D.091) (0.040) (1.2 {0.006) (0.090) (0.035)
Il 0480 0333 0012 429 —0.356 Lot —0.260
(5.47) (0.097) (0.101)  (0.27) (10.6)  (0.260)  (0.249)  (0.051)
wr 150 0439 046 (L.130 2.62 1375 0.194 0.168
(1.27) (0.032) (0.037)  (6.032) {120y (0031 (0032 (0.029)

M The asymptotic covariance matrix for the LIML estimator will differ from that for the 2SLS
estimator in a finite sample because the estimator of oy that multiplies the inverse matrix will
differ and because in computing the matrix to be inverted, the value of “k” (see the equation after

(10-55) |is one for 2SLS and the smallest root in ( 10-54) for LIML. Asymptotically, £ equals one
and the estimators of o;; are equivalent.
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It might seem, in light of the entire discussion, that one of the structural estimators
described previously should always be preferred to ordinary least squares, which, alone among
the estimators considered here, is inconsistent. Unfortunately, the issue is not so clear. First, it is
often found that the OLS estimator is surprisingly close to the structural estimator. It can be
shown that at least in some cases, OLS has a smaller variance about its mean than does 2SLS =
|- about its mean, leading to the possibility that OLS might be more precise in a mean-squared-error - Vn.
|/ sense.”’ But this result must be tempered by the finding that the OLS standard errors are, in all He |
likelihood, not useful for inference ppirpose's..‘ff Nonetheless, OLS is a frequently used estimator. i
Obviously, this discussion is relevant only to finite samples. Asymptotically, 2SLS must
dominate OLS, and in a correctly specified model, any full information estimator must dominate
any limited information one. The finite sample properties are of crucial importance. Most of what
we know is asymptotic properties, but most applications are based on rather small.or moderately
sized samples.

The large difference between the inconsistent OLS and the other es s suggests the i
bias discussed earlier.On the other hand, the incorrect sign on the LIML and F estimate of the '
coefficient on P and the even larger difference of the coefficient on P.; in the C equation are
striking. Assuming that the equation is properly specified, these anomalies would likewise be
attributed to finite sample variation, because LIML and 2SLS are asymptotically equivalent.

Intuition would suggest that systems methods, 3SLS and FIML, are to be preferred to
single-equation methods, 2SLS and LIML.. Indeed, if the advantage is so transparent, why would
one ever choose a single-equation estimator? The proper analogy is to the use of single-equation
OLS versus GLS in the SURE model of Section 10.2. An obvious practical consideration is the
computational simplicity of the single-equation methods. But the current state of available
software has eliminated this tage.

Although the systems’methods are asymptotically better, they have two problems. First,
any specification error in the structure of the model will be propagated throughout the system by
3SLS or FIML. The limited information estimators will, by and large, confine a problem to the
particular equation in which it appears. Second, in the same fashion as the SURE model, the
finite-sample variation of the estimated covariance matrix is transmitted throughout the system.

Thus, the finite-samplg variance of 3SLS may well be as large as or larger than that of 2SLS,

Although they are only single estimates, the results for Klein’s Model I give a striking example.

The upshot would appear to be that the advantage of the systems estimators in finite samples may
/7, be more modest than the asymptotic results would suggest. Monte Carlo studies of the issue have
L 11 | tended to reach the same conclusion %!

.I' il-/

**See Goldberger (1964, pp. 3591360).
H%

* Cragg (1967).

o See Cragg (1967) and the many related studies listed by Judge et al. (1985, pp. 646_}:653).
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estimator.’® The implicationSs that with norgally distriboted—disturbatee . ZSLS 15
fully efficient.

The k class of egstnators is defined
. [ Y~ kY Y}X:] 1 [Yj-y; —k jv;‘]
i -

We hate already consider#d three members of the clase’ OLS with & = 0, 2518 with
k=1, and,itcan be s n, LIML with &k = A,. {ThigAast result follows from (13-26).

ere have been y other k-class estimators d rived; Davidson and MacKinnef
(2004, pp. 537-53%4And 548-549) and Mariano (20 01) give discussion. It has been siwn
that all membgfS of the % class for which k cgdverges to 1 at a rate faster thap] [/
have the sapté asymptotic distribution as {1 of the 25LS estimator that wexamined
earlier. THese are largely of theoretical j terest, given the pervasive usg/of 2SLS or
ve for an important consideragon. The large sample propertig€ of all k-class
ators are the same, but the finj e-sample properties are possib very different.
vidson and MacKinnon (2004, Pp. 537-538 and 548-549) and MéTriano (1982, 2001)
uggest that some evidence favogr LIML when the sample size isgMmall or moderate and
the number of overidentifying/restrictions is relatively large.

the foliowiﬁg form

I, é,. b E58- TESTING IN THE PRESENCE OF WEAK INSTRUMENTS

lo~42

In Section , we introduced the pro of estimation and inference with instru-
mental variables in the presence of weak | struments. The first-stage regression method
of Staiger and Stock (1997) is often used to detect the condition, Other tests have also
been proposed, notably that of Hahn and Hausman (2002, 2003). Consider an equation
with a single endogenous variable on the right-hand side,

Vi=yy+xp+ e

Given the way the model has been developed, the placement of 1 on the left-hand side

of this equati on the right represents nothing more than a normalization of the
coetficient matrix I in (33-3). ieteenoimmine o ettty For the moment, label

' —

this the “forward""equation. If we renormalize the model in terms of Y2, we obtain the
completely equivalent equation )

=Q0/n+x1B1/v)+e /vy
=0y + XA + v,

which we [i.e., Hahn and Hausman (2002)] label the “reverse equation,” In principle, for
estimation of y, it should make no difference which form we estimate; we can estimate
y directly in the first equation or indirectly through 1 /¢ in the second. However, in
practice, of all the k-class estimators listed in Section ich includes all the esii-
mators we have examined, only the LIML estimator is invariant to this renormalization;
certainly the 2SLS estimator is not. If we consider the forward 28LS estimator, 9, and
the reverse estimator, 1 /8, we should in principle obtain similar estimates, But there

Thif is proved by sfowing that both estnators arc members ofAhe “& class”™ of estnators, all of which have
thoame asymptoti covariance matrix ctails are given in Theit (1971) and Schodide (1976).
w o ———

[©.6.4
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is a bias in the 28LS estimator that becomes more pronounced as the instruments be-
. come weaker. The Hahn and Hausman test statistic is based on the difference between -~ .07
=~ these two estimators (carrected for the known bias of the 2818 estimator in this case).
[Research on this and other tests is ongoing, Hausman, Stock, and Yogo (2005) do re-
port rather disappointifig results for'the power of this test in the presence of irrelevant
instruments.) :
The problem of inference remains. The upshot of the development so far is that the
usual test statistics are likely to be unreliable. Some useful results have been obtained

for devising inference procedures that are more robust than the standard firstrorder g. /
asymptotics that we have employed (for example, in Theorem 127 and Sechion H@_\
Kleibergen (2002) has constructed a class of test statistics based on Anderson and - A 3

Rubin’s (1949, 1950) results that appears to offer some progress, An intriguing aspect

of this strand of research is that the Anderson and Rubin test was developed in their

1949 and 1950 studies and predates by several years the development of two-stage least
o squares by Theil (1953) and Basmann {1957). [See Stock and Trebbi (2003) fordiscussion

of the early development of the method of instrumental variables.] A lengthy description

of Kleibergen’s method and several extensions appears in the survey by Dufour (2003),

which we draw on here for a cursory look at the Anderson and Rubin statistic,

The simultaneous equations model in terms of equation 1 is written

3= XiBi+ Yayy + g1, lo-CY
Yo =XaIh + X{Mf + Vi, Sl

where ¥, is the n observations on the left-hand variable in the equation of interest, Y,
is the n observations on M, endogenous variables in this equation, y1 is the structural
parameter vector in this equation, and X is the Kj included exogenous variables in
equation 1. (SECTARIETEEY The second equation is the set of M, reduced form equa-
tions for the included endogenous variables that appear in equation 1, (Note that My
endogenous variables, ¥}, are excluded from equation 1.) The full set of exogenous
variables in the model is

X = [X.. Xi]

where X7 is the K} exogenous variables that are excluded from equation 1. (We are
changing Dufow’s notation slightly to conform to the conventions used in our devel-
opment of the model.) Note that the second equation represents the first stage of the
two-stage least squares procedure.

We are interested in inference about ;. We must first assume that the model is
identified. We will invoke the rank and order conditions as usual. The order condition is
that there must be at least as many excluded exogenous variables as there aye included
endogencus variables, which is that K} > M. GWith-the st the-preeedi T

o T .
prédiction for Yy
die resulting regressgr matrix to havefuli column
\_above must jinvolvea Fenough Yariables-thats
the rank condition fo be met, we must have

10 "

7] - iy =0,
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where x1 is the second part of the coefficient vector in the reduced form equation for

y1. that s,

Yi=Xom + Xirt + vh.

TesTeaasTCRR). For this result fo hold, _!_I‘lhmust have full column rank, K}. The
weak instruments problem is embodied in IF]. If this matrix has short rank, the param-
eter vector y; is not identified. The weak instruments problem arises.when I1{ is nearly
short ranked. The important aspect of that observation is that the weak instruments can
be characterized as an identification problem. '

Anderson and Rubin {1949, 1950) (AR) proposed a method of testing Hg: y1 = 9.
'The AR statistic is constructed as follows: Combining the two equations in (13-27), we
have

10-Gor Jo=Xa1 + Xi Iyt + X y1 +.81 + Viy1
Using (#3=2#) again, subtract Y, ,}_’(1} from both sides of this equation to abtain

Ju=Yird =X + Xqlpy + Xilliy: +81+ Y
— X! - Xilge] ~ Vip!
=Xi[81 + Mi(ys -] + X33 (2 — D] +e1 4+ Vi(p1 - »9)
= Xafi + X767 +w.
Under the null hypothesis, this equation reduces to
Y=Yy = X8 4w,

soatest of the null hypothesis can be carried out by testing the hypothesis that 87 equals
zero in the preceding partial reduced-form equation. Anderson and Rubin proposed a
simple F test,
[ = Xo) M (31 — Yord) = (y1 = Xurd) M - Y 1)) /K?

(3 =X )My - X)) /n - 6O

~ FIKt.n— K],

where My = [1 - X;(X{X))!X!] and M = [I — X(X’X)~!X]. This is the standard
F statistic for testing the hypothesis that the set of coefficients is zero in the classical
lincar regression. [See (5-26).] [Dufour (2003) shows how the statistic can be extended

to allow more general restrictions that aiso include 8;.]

There are several striking features of this approach, beyond the fact that it has
been available since 1949: (1) its distribution is free of the model parameters in finite
samples (assuming normality of the disturbances): (2} it is robust to the weak instruments
problem; (3) it is robust to the exclusion of other instruments: and (4) it is robust to
specification errors in the structural equations for Y1, the other variables in the equation.
There are some shortcomings as well, namely:.(1) the tests developed by this method
are only applied to the full parameter vector; (2) the power of the test may diminish as
more (and too many more) instrumental variables are added: (3)itrelies on a normality
assumption for the disturbances; and (4} there does not appear to be a counterpart for
nonlinear systems of equations.

o-¢g
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10.7 SUMMARY AND CONCLUSIONS

This chapter has surveyed the specification and estimation of multiple equations models. The SUR model
is an application of the generalized regression model introduced in Chapter 9. The advantage of the SUR.
formulation is the rich variety of behavioral models that fit into this framework. We began with
estimation and inference with the SUR model, treating it essentially as a generalized regression. Thez. -
“major difference between this set of results and the single equation model in Chapter 9 is practical, While
the SUR model is, in principle,a single equation GR model with an elaborate covariance structure, special
problems arise when we explicitly recognizé its intrinsic nature as a set of equations linked by their
disturbances. The major result for estimation at this step is the feasible GLS estimator. In spite of its
apparent complexity, we can estimate the SUR model by a straightforward two-step GLS approach that is
similar to the one we used for models with heteroscedasticity in Chapter 9. We also extended the SUR
mode] to autocorrelation and heteroscedasticity. Once again, the multiple equation nature of the model
complicates these applications. Section 10.4 presented a common applications of the seemingly unrelated *
regressions model, the estimation of demand systems, One of the signature features of this literature is the -
seamless transition from the theoretical models of optimization of consumers and producers to the sets of
empirical demand equations derived from Roy’s identity for consumers and Shephard’s lemma for
producers.

The multiple equations models surveyed in this chapter involve most of the issues that arise in
analysis of linear equations in econometrics. Before one embarks on the process of estimation, it is
necessary to establish that the sample data actually contain sufficient information to provide estimates of
the parameters in question. This is the question of identification. Identification involves both the
statistical properties of estimators and the role of theory in the specification of the model. Once
identification is established, there | are/ numerous ‘methods of estimation. We considered a number of
single-equation techniques, including least squares, instrumental variables, and maximum likelihood.
Fully efficient use of the sample data will require joint estimation of all the equations in the system. Once
again, there are several techniques_—these are extensions of the single, equation methods including three -
stage least squares, and full information maximum likelihood. In both frameworks, this is one of those
benign situations in which the computationally simplest estimator is generally the most efficient one,
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s Profection

Exercises

1. A sample of 100 observations produces the following sample data:

Jr=1, §=2,
}'i_!_l = 150,
Iyéyg = 550,
Vg2 = 260,
The underlying bivariate regression model is
W =n+er
Y2 = 1+ &3,

a. Compute the OLS estimate of u, and estimate the sampling variance of this
estimator,
b. Compute the FGLS estimate of i and the sampling variance of the estimator.
2. Consider estimation of the following two-equation model:

- n=p+e,
= pxte

A sample of 50 observations produces the following moment matrix:

1 »n »n x
1 50
y (150 500
y| 50 40 9

x |100 60 50 100

a. Write the explicit formula for the GLS estimator of [B1, B2]. What is the asymp-
totic covariance matrix of the estimator?

b. Derive the OLS estimator and its sampling variance in this model.

c. Obtain the OLS estimates of 8, and $;, and estimate the sampling covariance
matrix of the two estimates. Use n instead of (n — 1) as the divisor to compute
the estimates of the disturbance variances.

d. Compute the FGLS estimates of 8; and f; and the estimated sampling covariance
matrix.

e. Test the hypothesis that 8, = 1.



| Greene-50558

book

June 21, 2007 13:27

282 PART 1 4+ The Generalized Regression Modei

3. The model

n=pa +e,
_ »=Ffhnte
satisfies all the assumptions of the classical multivariate regression model. All vari-

ables have zero means. The following sample second-moment matrix is obtained
from a sample of 20 observations: :

-

Yy »n x x
n|20 6 4 3
» 6 10 3 6
xnl4 35 29

»|3 6 2 10

a. Compute the FGLS estimates of 8; and g,.

b. Test the hypothesis that 8; = 8.

¢. Compute the maximum likelihood estimates of the model parameters.
d. Use the likelihood ratio test to test the hypothesis in part b.

Prove that in the model

J1 =Xy 8 + 61,
Je =XoB: +82,

generalized least squares is equivalent to equation-by-equation ordinary least
squares if X; = Xo. Does your result hold if it is also known that 8, = 8,7
Consider the two-equation system

yo=fix1 + &1,
n=f+fhiate.

Assume that the disturbance variances and covariance are known. Now suppose
that the analyst of this model applies GLS but erroneously omits x3 from the second
equation. What effect does this specification error have on the consistency of the
estimator of 8,7
Consider the system
M =ua +ﬁ_-_x+£1’
=0 + &2

The disturbances are freely correlated. Prove that GLS applied to the system leads
to the OLS estimates of o and & but to a mixture of the least squares slopes in the
regressions of y; and y; on x as the estimator of 8. What is the mixture? To simplify
the algebra, assume (with no loss of generality) that % = 0.
For the model

n=a+px+e,

¥ =a + &,

Y3 =3 -+ &3,

assume that y + y;3 = 1 at every observation. Prove that the sample covariance
matrix of the least squares residuals from the three equations will be singular,
thereby precluding computation of the FGLS estimator. How could you proceed
in this case?

/o -67‘
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‘q. Consider the following two-equation model:

’

Jt
Y2

= yy2+ Bnxi + faxa + faxs + &,
= Y231 + Braxt + Bnx2 + Buxs + &2
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a. Verify that, as stated, neither equation is identified. :
b. Establish whether or not the following restrictions are sufficient to identify T
(or partially identify) the model:
(1) B =pn=0
(2) B2 =80 =0,
(3) m =0,
(4} i =pyand By, =0,
(5) o2 =0and g5 =0,
(6) 1 =0and o1 =0,
{7) Ba+pn=1,
(8) o2 =0.8=Pn=pn=pp=0
(9) 612=0,811 =B =By = P51 = Pn =0.
o he—rank—and-order-eomditionsAor [dennilication of the SeComng

.

Yoy w4

Al ox oxa ox L) B B Pu O [/=[a & &3 e

A .4 Obtain the reduced form for the model in Exercise \, under each of the assumptions
made in parts a and in parts bl and b9, g
) o 4 The following model is specified:

»n=ny+ Bux + e,
Y=y + Bnx; + foxs + €2,

All variables are measured as deviations from their means. The sample of 25
observations produces the following matrix of sums of squares and cross products:

n o» x xn x
vl 6 4 3 57
»le 10 3 6
xnl|l4 3 5 2
»n|3 6 2 10 8
x5 7 3 8 15]
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a. Estimate the two equations by OLS. R
I b. Estimate the palametel s of the two equations by 25LS. Also estimate the asymp-
totic covariance, matrix of the 258LS estimates.
¢. Obtain the LIML estimates of the parameters of the first equation.
d. Estimate the two equations by 3SLS.
e. Estimate the reduced form coefficient matrix by OLS and mdnectly by using
your structural estimates from part b. '
y\&" For the model

¥ =132+ Buxi + Baxa + €1, ' 4
¥ =y + Baxs -+ Paaxa + 82,

show that there are two restrictions on the reduced form coefﬁCIents Describe a
procedure for estimating the mod 'porating the restri

lein’s Model f was estimagéd. The 1elevant ubmatux of
—0.1899 —-0947F -—0.8991
A= . 0
-0.0g56 (40791 0.0952
K Is the model stable? £

P A Prove that
Yiey
plim - T) =@j =Ly

) 3 & Prove that an underidentified equation cannot be estimated by 2SLS,

—
W Application

least gjuares results, examine the gfphmic properties of the mgdel. Using the re
Segtion 13.9, determine if the dofinant root ¢
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Applications

)o.5.;

1. Continuing the analysis of Section 10.51.2, we find that a translog cost function for

one output and three factor inputs that does not impose constant returns to scale is
InC =+ pilnpr + faln p + f31n p3 + 5113 In py + 612 1 py In s
+éi31npy In ps + 823 0 pr + 8 In pyIn py +33321n Ps
+¥alnQlnpi+yuln Qlnpy +yun Qln p;
+ B, Q0+ Bl In® Q + 5.
The factor share equations are
=p+éulnp +8aInp+dlnps+ v ln Q+ e,
SH=Fh+ipnp +énnp +énlnp;+ypln Q+e,
=f+éunp +dslnp +énlnp;+ysn Q+es.

[See Christensen and Greene (1976) for analysis of this model.]

a. The three factor shares must add identically to 1. What restrictions does this
requirement place on the model parameters?

b. Show that the adding-up condition in (10-38) can be imposed direcily on the
model by specifying the translog modelin (C/p3), (71/ps), and (p,/ ps) and drop-
ping the third share equation. (See Example }W that this reduces the

-6

number of free parameters in the model to 10.

c. Continuing part b, the model as specified with the symmetry and equality restric-
tions has 15 parameters. By imposing the constraints, you reduce this number to
10 in the estimating equations. How would you obtain estimates of the parame-
ters not estimated directly?

The remaining parts of this exercise will require specialized software. The E-Views,

TSP, Stata or LIMDEP, programs noted in the preface are four that could be used.

All estimation is to be done using the data used in Sectionititt /o, &, /

d. Estimate each of the three equations you obtained in part b by ordinary least
squares. Do the estimates appear to satisfy the cross-equation equality and sym-
metry restrictions implied by the theory?

e. Using THE data in Section 104T, estimate the full system of three equations (cost
and the two independent shares), imposing the symmetry and cross-equation
equality constraints.

f Using your parameter estimates, compute the estimates of the elasticities in
(10-39) at the means of the variables.

g Use a likelihood ratio statistic to test the joint hypothesis that Vei =0,
i = 1,2, 3. [Hint: Just drop the relevant variables from the model.]

/03

— /0, 2

The Grunfeld investment data in Appendix Table F:3-a7¢ 7 classic data set that

__have been used for decades to develop and demonstrate estimators for seemingly

73 @‘Scc Grunfeld (1958), Grunfeid and Griliches (1960}, and Boot and de Witt (1960).

unrelated regressions—“? Although somewhat dated at this juncture, they remain an
ideal application of the techniques presented in this chapter"s@he data consist of

7.1;

q 7 )rSec in particular, Zeflner (1962, 1963) and Zellner and Huang (1962),



/0-69
End

time series of 20 yearly observations on ten firms. The three variables are

;= gross investment,
Fit = market value of the firm at the end of the previous year,
Cy = value of the stock of plant and equipment at the end of the previous year.

“The fain equation in the studies noted is
L=y + foFy + BsCi+ 6>
a. Fitthe ten equations separately by ordinary least squares and report your results.

b. Use a Wald (Chow) test to test the “aggregation” restriction that the tén coefficient vectors are the
same.

¢. Use the seemmgly unrelated regressions (FGLS) estimator to reestimate the parameters of the model, -
once agam allowing the coefficients to differ across the fen equations. Now, use the pooled model

and, again, FGLS to estimate the constrained equation with equal parameter vectors, and test the
aggregation hypothesis.

d. Using the OLS residuals from the separate regression, use the LM statistic in (10-17) to test for the
presence of cross,equation correlation.

e. An alternative specification to the model in part ¢! that focuses on the variances rather than the means

is a groupwise heteroscedasticity model. For the current application, you can fit this model using (10- -

19), (10-20), and (10-21) while i 1rnposmg the much simpler model with ¢; = 0 when i # j. Do the
results of the pooled model differ in the three cases considered, simple OLS, groupwise
heteroscedasticity and full unrestricted covariances [which would be (10-20)] with Q. =17

3. The data in AppendixTable F5.2 may be used to estimate a small macroeconomic model. Use these
data to estimate the model in Example 10.4. Estimate the parameters of the two equations by two;
stage and three-stage least squares.

W) Note that the model specifies investment, a flow, as a finction of two stocks. This could be a theoretical
misspecification. It might be preferable to specify the model in terms of planned investment. But, 50 years after the
fact, we’ll take the specified model as it is,

lo



