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MODELS FOR PANEL DATA

11.1 .INTRODUCTION T

Data sets that combine time series and cross sections are common in economics. The published statistics

of the OECD coritain numerous seties of écoriomic aggregates observed yearly-for many countries. The - ©

Penn World Tables [CIC (2010)] is a data bank that contains national income data on 188._countries-foi°
over 50 years. Recently construcied longitudinal ‘data sets conlain observations on thousands -of

individuals or families, each observed at several points in fime. Other empirical studies have examined A
time;series data on sets of firms, states, countries, or industries simultaneously. These data sets provide ="
rich sources of information about the economy. The analysis of pane! data allows the model builder to |

learn about economic processes while -accounting for both heterogeneity across individuals, firms; -

countries, ete. and for dynamic effects that are not visible in cross sections. Modeling in this context often |/

calls for complex stochastic specifications. In this chapter, we will survey the most commonly -used

techniques for time, series _':H‘cross section (e.g., cross country) and panel (e.g., longitudinal) data. The I

methods considered here provide extensions to most of the models we have examined in the preceding
chapters. Section 11.2 describes the specific features of panel data. Most of this analysis is focused on

individual data; rather than cross country aggregates. We will examine some aspects of aggrogate dave-.

modeling in Section 11.11. Sections 11.3, 11.4,and 11.5 consider in turn the three main approaches to
regression analysis with panel data, pooled regression, the fixed effects model and the random effects
model. Section 11.6 considers robust.estimation of covariance matrices for the panel data estimators,
including a general treatment of “cluster” effects. Sections 11.7 ~ 11.11 examine some specific
applications and extensions of panel data methods. Spatial autocorrelation is discussed in Section 11.7. -
In Section 11.8, we consider sources of endogeneity in the random effects model, including a model of
the sort considered in Chapter 8 with an endogenous right hand, side variable,jthen two approaches to
dynamic models. Section 11.9 builds the fixed and random effects models into nonlinear regression -
models. In Section 11.10, the random effects model is extended to the multiple equation systems
developed in Chapter 10. Finally, Section 11.11 examines random parameter models. The random
parameters approach is an extension of the fixed and random effects model in which the heterogeneity -
that the FE and RE models build into the constant terms <EMwmodels is extended to other parameters as
well, '

al /
fAyiay

Panel data methods are used throughout the remainder of this book. We will dévelop several -

extensions of the fixed and random effects models in Chapter 14, on maximum likelihood methods, and
in Chapter 15 where we will continue the development of random parameter models that is begun in
Section 11.11. Chapter 14 will also present methods for handling discrete distributions of random
parameters under the heading of latent class models. In Chapter 23; we will return to the models of
nonstationary panel data that are suggested in Section 11.8.4. The fixed and random effects approaches
will be used throughout the applications of discrete and limited dependent variables models in
microeconometrics in Chapters 17, 18,and 19.
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‘Q.Z PANEL DATA MODELS

.'(' T
Many recent studies have analyzed panel or longitudinal, data sets. Two very
famous ones-are the National Longitudinal Survey of Labor Market Experience (NLS,

| L) ) http {haww., bls.gov/nls/nlsdoc htm) and the Michigan Panel Study of Income Dynam-

ics (PSID, http://psidonline.isr.umich.edw/). In these data sets, very large cross sections,

* consisting of thousands of microunits, are followed through time, but the number of
periods is often quite small. The PSID, for example, is a study of roughly 6,000 fam-
ilies and 15,000 individuals who have been interviewed periodically from 1968 to the
», present. An ongoing study in the United Kingdom is the British Household Panel -
Survey (BHPS, htip://'www.iser.essex.ac.uk/ulsc/bhps/) which was begun in 1991 and is
now in itg J5th wave. The survey follows several thousand households (currently over
5,000) for several years, Many very rich data sets have recently been developed in the
area of health care and health economics, including the German Socioeconomic Panel
(GSOEP, http://dpls.dacc.wisc.edu/apdu/GSOEP/gsoep_cd_data.html) and the Medi- /1,
cal Expenditure Panel Survey (MEPS, http://www.meps.ahrg.gov/). Constructing long,
evenly spaced time series in contexts such as these would be prohibitively expensive,
but. for the purposes for which these data are typically used, it is unnecessary. Time

- )

effects are often viewed as “transitions” or discrete changes of state. The Current Pop- &

*ulafion | Survey (CPS, http://www.census.gov/cps/), for example, is a monthly survey of
about 50,000 households that interviews households menthly for four months, waits for
eight months, then reinterviews. This two-wave, rotating panel format allows analysis of
short-term changes as well as a more general analysis of the U.S. national labor market.
They are typically modeled as specific to the period in which they occur and are not

180"
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CHAPTER 9 4+ Models for Panel Data 181

carried across periods within a cross-sectional unit?* Panel data sets are more oriented
toward cross-section analyses; they are wide but typically short. Heterogeneity across
units is an integrat partdeeed often the central focus—of the analysis.

The analysis of panel or longitudinal data is the subject of one of the most active
and innovative bodies of literature in econometrics;? partly because panel data provide
such a rich environment for the development of estimation techniques and theoretical
results. In more practical terms, however, researchers have been able to use time-series
cross-sectional data to examine issues that could not be studied in eithér cross-sectional
or time-series settings alone. Two examples are as follows.

1. In a widely cited study of labor supply, Ben-Porath (1973) observes that at
a certain point in time, in a cohort of women, 50 percent may appear to be
working, It is ambiguous whether this finding implies that, in this cohort, one;
half of the women on average will be working or that the same one-half will be
working in every petiod. These have very different implications for policy and
for the interpretation of any statistical results. Cross-sectional data alone will
not shed any light on the question.

2. A long-standing problem in the analysis of production functions has been
the inability to separate economies of scale and technological change: Cross;,
sectional data provide information only about the former, whereas time-series
data muddie the two effects, with no prospect of separation, It is common,

for example, to assume constant returns to scale so as to reveal the technical
change# Of course, this practice assumes away the problem. A panel of data on
costs or output for a number of firms each observed over several years can pro-
vide estimates of both the rate of technological change (as time progresses) and
economies of scale (for the sample of different sized firms at each point in time).

Recent applications have allowed researchers to study the impact of health policy
changes [e.g., Riphahn] et al s./(2003) analysis of reforms in German public health
insurance regulations] and more generally the dynamics of labor market behavior. In
principle, the methods of Chapters 6 and 20 can be applied to longitudinal data sets.
In the typical panel, however, there are a |large number of cross-sectional units and

2.1 1%

AFormal time-seties modeling for panel data is briefly examined in Section A

\2The panel data literature rivals the received research on unit roots and cointegration in econometrics in
its rate of growth. A compendium of the earliest literature is Maddafa (1993). Book-length surveys on the
econometrics of panel data include Hsiao (2003}, Dielman (1989), Matyas and Sevestre {1996), Raj and
_Baltagi (1992), Nerlove (2002), Arellano (2003), and Baltagi (2001, 2005). There are also lengthy surveys
devoted to specific topics, such as limited dependent variable models [Hs:ao Lahiri, Lee, and Pesaran (1999)]
and semiparametric methods [Lee (1998)]. An extensive bibliography is given in Baltagi (2005).

\3The distinction between these two effects figured prominently in the policy guestion of whether it was
appropriate to break up the AT&T Corporation in the 1980s and, ultimately, to allow competition in the
provlsnon of long-distance telephone service.

4In a classic study of this issue, Solow (1957) states: “From time series of AQ/ (O, wg, AK/K, wpand AL jL
or their discrete year-to-year analogues, we could estimate A A/ Aand thence A() itself. Actuafly an amdsing
thing happens here. Nothing has been said so far about returns to scale. But if all factor inputs are classified
either as X or L, then the available figures always show wg and wy, adding up to one. Since we have assumed
that factors are paid their margmal products, this amounts to assuming the hypothesis of Euler’s theorem.
The calculus being what it is, we might just as well assume the conclusion, namely, the F.is homogeneous of
degree one.”

1-3)
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only a few periods. Thus, the time-series methods discussed there may be somewhat
problematic. Recent work has generally concentrated on models better suited to these

.. short and wide data sets. The techniques are focused on cross-sectional variation, or

{ 1<' 7 individual effect iszor where Z; contains a constant term and a set of individual or group:

" heterogeneity. In this chapter, we shail examine in detail the most widely used models
and look briefly at some extensions. -

\\ ?‘2 1 GENERAL MODELING FRAMEWORK FOR ANALYZING
PANEL DATA'

The fundamental advantage of a panel data set over a cross section is that it will allow
the researcher great flexibility in modeling differences in behavior across individuals,
The basic framework for this discussion is a regression model of the form

Yie =X, B + 2 + &y (\ 1
=XiB +.ci+ e —

g _._'-

—. There are K regressors in Xi, not including a constant term. The hetetogenelty or.

spemﬁcvanables whlchmay be observed, such as race, sex, Iocation, ete, or unobserved, & ‘* == @
such as family. specific characteristics, individual heterogeneity in skill or preferences,
and so on, all of which are taken to be constant over time ¢, As it stands, this model is
a classical regression model, If 2 is observed for all individuals, then the entire model il
can be treated as an ordinary linear model and fit by least squares. The complications i
arise when <, is unobserved, which will be the case in most applications. Consider, for |1 ¥ [
example analyses of the effect of education and experience on earnings from which e T
“ability” - will. always be a missing and unobservable variable. In health care studies, '
for example, of usage of the health care system, “health” and “health care™ will be
- unobservabl¢ factors i the analysis.
bir . The main ob]ectzve of the analy51s will be consistent and efficient estimation of the
partlal effects, \ :

ﬁ 3E[.Vst 1x,,]/ax,,

Whether th.lS i§ posmble depends on the assumptions about the unobserved effects. We

- " begin with'a stnct exogenelty assumption for the independent variables,

Eley | %1, %2, ..., ] =

That is, the current d1sturbance is uncorrelated with the independent variables in every
period, past, present and future. The crucial aspect of the model concerns thg hetero-
geneity. A partlcularly convenient assumption would be mean independence; NT

Ele: | Xit, X2, ...] = a.

If the missing variable(s) are uncorrelated with the included variables, then, as we
shall see, they may be included in the disturbance of the model. This is the assumption
that underlies the random effects model, as we will explore below. It is, however,a |4
particularly strong assumpt10n—1t ‘would be unlikely in the labor market and health
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orevIg IN o
care examples mentioned abeve 'Ihe alternatlve would be
Elci X0, %0, .. ] = A% X2, .. )
, ] . = h(X;)."
This formulation is more general, but atthe same time, considerably more complicated,
the more so since it may require yet further assumptions about the nature of the function,

—

!Q 2,2 MODEL STRUCTURES

We will examine a vanety of d1fferent models for panel data. Broadly, they can be
arranged as foIlows

L. Pogled Regressmn' Ifz; contains only a constant term, then ordinary least squares
provides consistenit and efficient estimates of the common « and the slope vector 8,

2. Fixed Effects: If z; is unobserved, but correlated with Xir, then the least squares -

estimator of ﬁ is biased and inconsistent as a consequence of an omitted variable.
However, in this instance, the model

Y = uﬁ +‘1’z + Eirs

where o; =z, embodies all the observable effects and specifies an estimable condi-

‘tional mean ~This fixed effects approach takes a; to be a group-specific constant term

in the regression model. It should be noted that the term “fixed” as used here signifies
the correlation of ¢; and Xir, Dot that ¢; 1s nonstochastlc

3. Random Effects: If the unobserved individual heterogenelty, however formulated,
can be assumed to be uncorrelated with the included variables, then the model may be
formulated as : :

i =X, + Eldjel + {zie - Elgial} +6:c
_._uﬂ +a+uy + €it,

that is, as a linear regression model with a compound dlsturbance that may be con- { .x r

'-—\_,-"

sistently, albeit mefﬁmently, estimated by least squares. This random effects ‘approach
specifies that i; is a group-specific random element, similar to a,, except “that for each
group, there is but a single draw that enters the regression identically in each period.
Again, the crucial distinction between fixed and random effects is whether the unob-
served individual effect embodies elements that are correlated with the regressors in
the model, not whether these effects are stochastic or not. We will examine this basic
formulation, then consider an extension to a dynamic model.

4. Random Parameters: The random effects model can be viewed as a regression
model with a random constant term. With a sufficiently rich data set, we may extend
this idea to a model in which the other coefficients vary randomly across individuals as
well. The extension of the model might appear as

i =% (8 +hy) + (@ + 1) + £y,

where h; is a random vector that mduces the variation of the parameters across
individuals. This random parameters model was proposed quite early in this literature,

LY
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but has only fairly recently enjoyed widespread attention in several fields. It represents
~ a natural extension in which researchers broaden the amount of heterogeneity across
individuals while retaining some commonalities—the parameter vectors still share a
' common mean. Some recent applications have extended this yet another step by allow-
ing the mean value of the paramieter distribution to be person-specific, as in

Yie =X B+ Az +h) + @t u) few
where g; is a set of observable, person specific variables, and A is a matrix of parameters. (F
to be estimated. As we will examine La-trxthls hierarchical model is extremely versatile.
W in Chnp}er‘ I+ -
.2.3 EXTENSIONS

The short list of model types provided earlier only begins to suggest the variety of

applications of panel data methods in econometrics. We will begin in this chapter tostudy -

some of the formulations and uses of linear models. The random and fixed effects models
and random parameters models have also been widely used in models of censoring,
binary, and other discrete choices, and models for event counts. We will examine all
of these in the chapters to follow. In some cases, such as the models for count data
8 _in Chapter. 25 the extension of randon and fixed effects models is straightforward, if
somewhat more comphcated computationally. In others, such asin binary choice models
in Chapter 23°and censoring models in Chapter 2¢; these panel data models have been

)4r used, but not before overcommg some significan methodologlcal and computational

obstacles.

13

W
2.4 BAL.ANCED AND UNBALANCED PANELS

By way of preface to the analys1s to follow, we bote an important aspect of panel data
analysis. As suggested by the precedmg, a “panel” data set will consist of n sets of

observations on individuals to be denoted1 =1,...,n Ifeachindividual in the data set /] i

"\ is observed the saine number of times, usually denoted T,the datasetis a balanced panel.

An unbalanced panel data set is one in which 1nd1vy:|uals may be observed different

numbers of times. We will denote this 7;. A ﬁxed [ianel is one in which the same set

of individuals is observed for the duration of the study. The data sets we will examine

" in this chapter, while not all balanced, are fixed. A rotating panel is one in which the
cast of individuals changes from one period to the next. For example, Gonzalez and
Maloney (1999) examined self-employment decisions in Mexico using the National
Urban Employment Survey. This is a quarterly data set drawn from 1987 to 1993 in
which individuals are interviewed five times. Each quarter, one-fifth of the individuals
isrotated out of the data set. We will not treat rotating panels in this text. Some discussion
and numerous references may be found in Baltagi (2005).

The development to follow is structured so that the distinction between balanced
and unbalanced panels will entail nothing more than a trivial change in notatlonv
where for convenience we write T suggesting a balanced panel, merely changing T to
_I; generalizes the-results. We will note specifically when this is not the case, such as in
Breusch and Pagan’s (1980) LM statistic.

T
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is also the maximum i

In Chapter 16, we will
the least squares estima

< are normally distributed, then N
ikood estimator. Maximum likeli-

e (B-39)] and 0 = /P/i is th
variance matrix of the least squ

L]
estimator),’*

But for the asymmetry paraméter, this result would be the same 4s for the least squares
estimator. We conclude that the estimator that accounts for thé asymmetric disturbance
distribution is more efficight asymptotically.

| 2.6 5% ‘“’e‘“?‘g’[“‘“""’ Parl Dofa

The asymptotic properties of the estimators in the classical regression model were
established under the foIlowmg assumptions:

Linearity: yi = x;11 + xinbr + - + XigBg + &i.

Full rank: Then x K sampie data matrix, X, has full column rank.
Exogeneztv of the mdependem variables: F- {5, [Xj1, X2, ... %] =0
i,j=1,. -

\ . Ad, Homo.s:cedasncuy and nonautocorrelation.

oy A{S Data generatmg meclramsm mdependent observanons

The following are the cru01a1 Jesults needed For consistency of b, we need [d=2i3-and )
i Y :

plim(1/mX'X = plim Q, = Q, a positive definite matrix,
plim(1/m)X's = plim Fy = E[,] = 0

atrix produccs [a m the form of eviations from sample means. {See Sgbtion A.2.8.) Iff Greene’,
mogel, Pm 1 be greater i
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(For consistency of 52, we added a fairly weak assumption about the moments of the < b

_- disturbances.) To establish asymptotic normality, we withzaguize consistency and (257}
whith =" SR reqi red

U a, “ NJ0.0%Q]

With these in place, the désired characteristics are-then established by the 'me'tho_‘d_s‘_of

i LY pangd
Sections 4977 an 7 %20l 21y focus = || iz o
is not ne to reestabli ; ; | e o]ty
. | ¥, H A
E A R .. . o~ ‘T g her
Exceptions to the assumptions madechsss—are likely to arise in broSeitmpaiE | S Kl _ [
2 panel data set.'fhe sample will consist of multiple observations on each of many | || st S0
| e M

observational units. For example, a study might consist of a set of observations made | |1

at different points in time on a large number of families. In this case, the x’s will surely . —
be correlated across observations, at least within observational units. They might even
be the same for all the observations on a single family. also likgly o be a

t-hand sid# of the mo

The panel data set could be treated as follows. Assume for the moment that the
data consist of a fixed number of observations, say T, on a set of N families, so that the
total number of rows in X is # = NT. The matrix

—~ 12
,Qn = ;1- ZQI

i=)

in which n is all the observations in the sample, could be viewed as

© g-liylyogolvg
wen N - T e = Nl.:]'" 43

observations
for family i

where §, = average Q;; for family ;. We might then view the set of observations on the

Jithunit as if they were asingle observation and apply our convergence arguments to the

number of families increasing without bound. The point is that the conditions that are

needed to establish convergence will apply with respect to the number of observational
units. The number of observations taken for each observation unit might be fixed and
could be quite small,

e N — A —
ST O T e e W T T RS AR R

Th'\s ckae"t‘!r LJ'I“ contain Pe\q’l::vrtg [',"'-.Hc_ APYPLDPMCV\}
of ¥e properhec ot estimatois as was done. in Chapter 4.
We wilh fely o caclie~ resulds el Cka?"rt’r‘s 4, % anad

ond
focus \nstead o a variery of models and specit

Teottone,
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‘.3 THE POOLED REGRESSION MODEL T

L = ~We begin the analysis by assuming the simplest version of the model, the pooled quel,

y,,_cz+,xup+s,,,1__1 n,t_l,...,_T,

E[‘?Er_l_,_xll‘ Xi2, .. X;I}] =0, gz)
Varlsi | Xin X, - o Xin] = oF, LRSS i,
Cov[su,sjs Ix,l,xlz,.. x,T] 0if i £ jort#s. LT

(In the panel data context, this is also called the population averaged model under
the assumptmn that any latent heterogeneity has been averaged out.) In this form, if
the remaining assumptions of the classical model are met (zero conditional mean of
Eits homoscedasticity, independence across observations, i, and strict exogeneity of Xit),
then no further analysis beyond the results of Chapter 4 is needed. Ordinary least
squares is the efficient estimator and inference can reliably proceed along the lines
developed in Chapter 3.

\
\ \1.3.1 LEAST SQUARES ESTIMATION OF THE POOLED MODEL

The crux of the panel data analysis in this chapter is that the assumptions underlying
oidinary least squares estimation of the pooled model are unlikely to be met. The
question, then, is what can be expected of the estimator when the heterogeneity does
differ across individuals? The fixed effects case is obvious. As we will examine later,
omitting {or ignoring) the heterogeneity when the fixed effects model is appropriate
renders the least squares estimator inconsistent — sometlmes wildly so. In the random
effects case, in which the true model is

- e =6 +- xuﬂ + Eir,
where E[c; | X ;| = @, we can write the model
Yie = 1%, 8 + & + (6 — Ele: | Xi])

=a+x, 8+ e +u

=0+ X;rﬁ + er q (/‘u__"n
In this form, we can sec that the unobserved heterogeneity/induces %utoco-l:r_elatmn,
Elwiws] = o2 when t + A. As we explored in Chapter 87, we will revisit it in Chap-

—’_?}Q—me ordmary least squares estimator in the generahzed regressmn model may
O e

2 consistent, but the conventional estimator of its asymptotic variance is likely to
underestimate the true variance of the estimator.

\! .
\ ¥.3.2 ROBUST COVARIANCE MATRIX ESTIMATION

Suppose we consider the model more generally than this. Stack the 7; observations for
individual i in a single equation,
X-! ﬁ + wl 3

where g now includes the constant term In this setting, there may be heteroscedastic-
ity across individuals. However, in a panel data set, the more substantive problem is -
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cross-observation correlation, or autocorrelation. In a longitudinal data set, the group

: of observations may all pertain to the same individual, so any latent effects left out of

= .~ . the model will carry across all periods. Suppose, then, we assume that the disturbance
' vector consists of &;; plus these omitted components. Then,

Varlw; X =o2ln + %
= Qf S
The ordinary least squares estimator of 8 is

b= XXXy

A =1 ‘
x| S
i=1 i=1

1

-1 H

pp. fo. - EB
i=t

[S: XX,
i=1

-1,
E .X{,WI
i=1

Consistency can be established along the lines developed in Chapter 4. The true asymp-
totic covariance matrix would take the form we saw for the generalized regression model

in gﬂ‘-lO),
q -1 12 -1
Asy. Var[b] = —phm [ ZX’X,} plim [E fowlw;xx,] plim [ ZX’ ]
- : “ = T
. lim -1~Zn:x'x- * plim Zx’sz X | plim Z
H .np CpR £=1“" - pq = i=1 P I i=1

This result provides the counterpart to (828). As before, the center matrix must be
estimated. In the same spirit as the White estimator, we can estimate this matrix with

n -1 H
Est. Asy. Var[b] = —[ Z ] [ Zx;;__vg_r'x] [’1—1 234_{_;}5_,-] )

o j=1

where W is the vector of 7; residuals for individual i. In fact, the logic of the White
estimator does carry over to this estimator. Note, however, this is not quite the same as
JB27). It is quite likely that the more important issue for appropriate estimation of the

9 asymptotic covariance matrix is the correlation across observations, not heteroscedas-
ticity. As such, it is quite likely that the White estimator in (%27) is not the solution to
the inference problem here. Example k.l shows this effect at wolk: qQ

Example !lQ‘ i‘ Wage Equation “
Cornwell and Rupert (1988} analyzed the returns to schooling in a (balanced} panel of 585
observations on heads of households. The sample data are drawn from years 1976-71982
from the “Non-Survey of Economic Opportunity” from the Panel Study of Income Dynamics.
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The estimating equation is

In Wage, = B1 + B2 Expir + o EXPfy + Ba Whsie + s Occye
. # BsInd; + B7 Southis + s SMSA; + So M S
-+ BroUniong + ,311 Ed) + pr2 Fem; + pis Bk + .

- where the variables are

Exp = years of full time work experience, 0 if not,

Wks = weeks worked, Q if not, =
Occ =1 if bluecollar occupation, 0 if not,

Ind =1 If the individual works in a manufacturing industry, 0 if not,

South = 1 if the individual resides in the south, 0 if not,
SMSA = 1 if the individual resides in an SMSA, 0 if net,

MS

=1 if the individual is married, 0 if not,

Union = 1if the individual wage is set by a union contract, 0 if not,

Ed = years of education,
Fem =1 if the individual is female, 0 if not,
Bik = 1if the individual is black, 0 if not.

Note that Ed, Fem, and Bik are tlmg-lnvariant See Appendix Table Ff.1 for the data source.
The main Interest of the study, beyond ‘comparing various estimation methods, is 811, the
return fo education. Ta .1 reports the least squares estimates based on the full sample
of 4,165 observations. [The authors do not report OLS estimates. However, they do report

(=)

— 1l

linear least squares estimates of the fixed effects model, which are simple least squares
using deviations from individual means. {See Section ¥ &) Tt was nct possible to match
their reported resuits for these or any of their other reported results. Because our purpose

is to compare the various estimators to each other, we have not attempted to resolve the

discrepancy.] The conventional OLS standard errors are given in the second column of results.
The third co}umn gives the robust standard errors computed using {3-3). For these data, the

computation’is

Est. Asy. Varp] = [

595

%}

x| ) > (e

I=1

Zz’-‘ﬂ‘i] ) -

NI

S '
‘TABLE fé"f' 1. Wage Equation Estimated by OLS™ 77~ !
Estimated ‘OLS Standard Panel Robust White Hetero.

Coefficient Cocfficiens Error Standard Error Consistent Std. Error
B1: Constant 5.2511 0.07129 0.1233 0.07435

B2 Exp 0.04010 0.002159 0.004067 0.002158
Bt Exp? —0.0006734 0.00004744 0.00009111 6.00004789
Ba: Wks 0.004216 0.001081 0.001538 0.001143
Bs: Occ —0.1400 0.01466 0.02718 0.01494 -
Be: Ind 0.04679 0.01179 0.02361 0.01199

Br: South —0.05564 0.01253 0.02610 0.01274

Ba: SMSA 0.1517 0.01207 0.02405 0.01208

Bo: MS 0.04845 0.02057 0.04085 0.02049

Bro: Union 0.09263 0.01280 0.02362 0.01233
Pu: Ed 0.05670 0.002613 0.005552 0.002726
Bra: Fem —0.3678 0.02510 0.04547 0.02310

Bus: Bl —0.1669 (.02204 0.04423 0.02075
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The robust standard errors are generally about twice the uncorrected ones. In contrast, the White
robust standard errors are almost the same as the uncorrected ones. This suggests that for this
‘model, ignoring the within group correlations does, indeed, substantially affect the inferences one
would draw. -

11.3.3 CLUSTERING AND STRATIFICATION

Many recent studies have analyzed survey data sets, such as the Current Population Survey (CPS). Survey - ..
data are often drawn in “clusters,” partly to reduce costs. For example, interviewers might visit all the .. . .
families in a particular block. In other cases, effects that resemble the common random effects in panel’™-

data treatments might arise naturally in the sampling setting. Consider, for example, a study of student
test scores across several states. Common effects-could arise at many levels in such a data set. Education
curriculum or funding policies in a state could cause a “state effect;) there could be school district effects,
school effects within districts, and even teacher effects within a particular school. Each of these is likely

to induce correlation across observations that resembles the random (or fixed) &ffécts we have identified.- /

above. One might be reluctant to assume that a tightly structured model such as the simple random effects
specification is at work. But, as we saw in Example 11.1, ignoring common effects can lead to serious
inference errors. The robust estimator suggested in Section 11.3.2 provides a useful approach.

For a two-level model, such as might arise in a sample of firms that are grouped by industry, or

students who share teachers in particular schools, a natural approach to this “clustering” would be the 7

robust common effects approach shown earlier. The resemblance of the now standard cluster estimator -

for a one, level model to the common effects pane!l model considered ,above is more than coincidental.
However, there is a difference in the data generating mechanism in that in this setting, the individuals in
the group are generally observed once, and their association, &e:, common effect, is likely to be less
clearly defined than in a panel such as the one analyzed in Example 11.1. A refinement to (11-3) is often
employed to account for small sample effects when the number of clusters is likely to be a significant
proportion of a finite total, such as the number of school districts in a state. A degrees of freedom

correction as shown in (11-4) is often employed for this purpose. The robust covariance matrix estimator |

would be

50wy 7G50 (e 2 Vs, 5 VIS xox T |
Est.Asy.Var[lt__?_]=[Zg=.l,Xg|Xg:| {'(_?_—T .g=l(zi=l..x_igw.ig)(Zi=l..1._1'gwig) }[ g=1-2(g2.(8:|

. (11-4)
. G 7 -l G G L. ~t G ¢ -
= [Z g=1 'XS-XE] [G -1 Z_gal(g-(ﬁw_g )(‘ngxé' ):' [Z_g:]'x_g-x_&] ?
Y
where G is the number of clusters in the sample and each cluster consists of 7, g = 1,{.../. /G

observations. [Note that this matrix is simply GAG-1) times the matrix in (11-3).] A further correction
(without obvious formal motivation) sometimes employed is a “degrees of freedom correction,”
Zghg/ [(Zgg) - K] .

Many further refinements for more complex samples —— consider the test scores example =— have
been suggested. For a detailed analysis, see Cameron and Trivedi (2005, Chapter 24). Several aspects of
the computation are discussed in Wooldridge (2003) as well. An important question arises concerning the
use of asymptotic distributional results in cases in which the number of clusters might be relatively small.
Angrist and Lavy (2002) find that the clustering correction after pooled OLS, as we have done in
Example 9.1, is not as helpful as might be hoped fori” (Though our correction with 595 clusters each of
size 7 would be “safe” by these standards!) But, the difficulty might arise, at least in part, from the use of
OLS in the presence of the common effects. Kezde (2001) and Bertrand, Dufflo, and Mullainathan
(2002) find more encouraging results when the correction is applied after estimation of the fixed effects
regression. Yet another complication arises when the groups are very large and the number of groups is
relatively small, for example when the panel consists of many large samples from a subset (ot even all) of
the U.S. states. Since the asymptotic theory we have used to this point assumes the opposite, the results
will be less reliable in this case. Donald and Lang (2007) find that this case gravitates toward analysis of
group means, rather than the individual data. Wooldridge (2003) provides results that help explain this
finding. Finally, there is a natural question as to whether the correction is even called for if one has used
a random effects, generalized least squares procedure (see Section 11.5)fellowing) to do the estimation at
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the first step. If the data generating mechanism were strictly consistant with the random effects model,
the. answer would clearly be negative. Under the view that the random effects specification is only an
approximation to the correlation across observations in a cluster, then there would remain “residual
correlation” that would be accommodated by the correction in (11-4) (or some GLS counterpart). (This
would call the specific random effects correction in Section 11.5 into question, however.) A similar
argument would motivate the correction after fitting the fixed effects model as well. We will pursue these
possibilities in Section 11.6.4 after we develop the fixed and random effects estimator in detail.

Example 11.2 Repeat Sales of Monet Paintings s
We examined in Examples 4.5, 4.10,and 6.2 the relatlonshlp between the sale price and the =

surface area of a sample of-430 sales of Monet paintings. In fact, these were not sales of 430
paintings. Many of them were repeat sales of the same painting at different points in time. The
sample actually contains 376 paintings. The numbers of sales per painting were one; 333, two: 34,
threg: 72 and four: 2. If the sale price of the painting is motivated at least partly by intrinsic features
of the" palntlng, then this would motivate a correction of the least squares standard errors as
"t suggested in (11-4). Table 11.2 displays the OLS regression results with the coventional and with
7 | the corrected standard errors. Even with the quite modest amount of grouping in the data, the
L impact of the correction, in the expected direction of larger standard errors, is evident.

TABLE 11.2 Sale Price Equation

Estimated OLS Standard Corrected
Variable Cocefficient Error Standard Error /), | .7
Constant -~9.7068 0.5661 0.6791 P
In Area 1.3473 0.0822 0.1030 [ Ve
Signature 1.3614 0.1251 ' 0.1281 N
In Aspect Ratio  —-0.0225 0.1479 0.1661

11.3.4 ROBUST ESTIMATION USING GROUP MEANS

The pooled regression model can be estimated using the sample means of the data. The implied regression
model is obtained by premultiplying each group by (1/7)i’ where i’ is a row vector of ones;

(/Diy, = /DX + (/)i
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or
=Ef+T | 5 b

Inthe transformed linear regresswn the disturbances continue to have zero conditional
means but heteroscedastic variances o?. = (1/ Tz)l'ﬂ,l With £, unspecified, this is a
heteroscedastic regression for which we would use the White estimator for approprlate
inference. Why might one want to use this estimator when the full data set is available?
If the classical assumptions are met, then it is straightforward to show that the asymp-
totic covariance matrix for the group means estimator is unambiguously larger, and the
answer would be that there is no benefit. But, failure of the classical assumptions is
what brought us to this point, and then the issue is less clear-cut. In the presence of un-
structured cluster effects the efficiency of least squares can be considerably diminished,
as we saw in the preceding example. The loss of information that occurs through the
averaging might be relatively small, though in principle, the disaggregated data should
still be better. e

We emphasize, using group mleans does not solve the problem that is addressed by
the fixed effects estimator. Consider the general model,

=X +cil Wi, @

where as before, ¢; is the latent effect If the mean independence assumption, E{c; | Xl
«, is not met, then, the effect will be transmitted to the group means as well. In this case, i r
Ele; [ X} = h(X;). A common specification is Mundlak’s (1978), '

4 1t
Elei | Xi] =X y. [ X e xfu~. ﬂ.

1

|
_nf:..:' —

(We will revisit this specification in Section 9.5.5.) Then, I ; 5 H ,
T Yu —ﬂ,,tﬁ +o+eu
=X B+X ¥ + [en + o — Elci | Xi]]
= KB+ E + e
where by construction, E[u; | X;] = 0. Taking means as before,
V. =%8+Xy +T
=X.B+y)+Hi.

The implication is that the group means estimator estimates not 8, but 8 + y. Averagmg
the observations in the group collects the entire set of effects, observed and latent, in

P the group means.
L .,l'{_';- i One consideration that remains, which, unfortunately, we cannot resolve analyti-
cally, is the possibility of measarement exror, If the regressors arec measured with error,

8.5 €1, as W T Secti 01@ the least squares estimator is inconsistent and, as
fisequence, efficiency is a moot point. In the panel data setting, if the measurement
A error is random, then using group means would work in the direction of averaging it

Q,m“ \nf out ~indeed, in this instance, assuming the benchmark case x; = x5, +uix, one could
show that the group means estimator would be consistent as _T_ — 0o while the OLS
estimator would not.
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\\ N
TABLE ' Wage Equation Estimated by OLS

OLS Estimated Panel Robust - Group Means White Robust

- Coefficient Coefficient Standard Error Estimates Standard Error
pr: Constant 52511 . 04233 5.1214 0.2078
Pa: Exp 0.04010 "~ 0.084067 0.03190 0.004597
Bs: Exp? —0.0006734 0.00009111 -0.0005656 0.0001020
By Whs 0.004216 0.001538 - 0.009189 0.003578
Bs: Occ -0.1400 0.02718 -0.1676 = 003338
B Ind 0.04679 0.02361 0.05792 0.02636
Br: South —0.05564 0.02610 ~0.05705 0.02660
Bs: SMSA 0.1517 0.02405 0.1758 0.02541
Bot MS 0.04845 0.04085 0.1148 0.04989
B0t Union 0.09263 0.02362 0.1091 0.02830
Bu: Ed 0.05670 0.005552 0.05144 0.005862
B Ferm_ - ~0.3678 0.04547 -0.3171 0.05105
P Blk —0.1669 0.04423 —0.1578 0.04352

WY

Example h.h Robust Estimators of the Wage Equation

)%gyshows the group means estimator of the wage equation shown in Example 9. 1 )
t

e original least squares estimates. in both cases, a robust estimator is used for the
covariance matrix of the estimator. it appears that similar results are obtained with the means.

A\ ¥3.5 ESTIMATION WITH FIRST DIFFERENCES

First differencing is another approach to estimation. Here, the intent would explicitly
be to transform latent heterogeneity out of the model. The base case would be

Yu =06+, "ﬂ + Eit,

which implies the first differences equation

Ayy = Aci + (Axy) B + Aey,
or

Ay = (Axi) 8 + Bit — Eig—1

s = (AXit) B + .

The advantage of the first .jdi_fgenence approach is that it removes the latent hetero-
geneity from the model whether the fixed or random effects model is appropriate. The
disadvantage is that the differencing also removes any time-invariant variables from the
model. In our example, we had three, Ed, Fem, and Blk. If the time-invariant variables
in the model are of no interest, then this is a robust approach that can estimate the
parameters of the time-varying variables consistently. Of course, this is not helpful for
the application in the example, because the impact of Ed on In Wage was the primary
object of the analysis. Note, as well, that the differencing procedure trades the CTOSs;
observation correlation in ¢; for a moving average (MA) disturbance, 1, = ¢;;, — &; ,..,1
The new dlsturbance__u;_,t is autocorrelated, though across only one petiod. Procedures
are available for using two-step feasible GLS for an MA disturbance (see Chapter 19).
Altematwely, this model is a natural candidate for OLS with the Newey, West robust
covariance estimator, since the right number of lags (one) is known. (See Section 2¢5.2.)

20

(-ts) |
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As a general observation, with a variety of approaches available, the first difference
estimator does not have much to recommend it, save for one very important application.
Many studies involve two period “panels,” a before and after treatment. In these cases,
as often as not, the phenomenon of interest may well-specifically be the change in the
outcome vanable—the “treatnient effect.” Consider the model

Y=o+ x:,ﬂ +9Su + it

where ¢ = 1,2 and §;; = 0in period 1 and 1 in period 2; 5, indicates & “freatment” that’

takes place between the two observations. The “treatment effect” would be
E[ij | (A}; = 0)] =@
which is precisely the constant term in the first difference regression,

Ay =0 + (A% B + .

' We will examine cases like these in detail in Section 245~ / g » 5

/9,.3.6 THE WITHIN- AND BETWEEN-GROUPS ESTIMATORS

We can formulate the pooled regression model in three ways. First, the original formu-
lation is

?&‘ - ._" O |
Vie =&+ X B + . ¢#-da) |

¥

In terms of the group means,
)?" =o +-.i:__§ + E:_-i.s

while in terms of deviations from the group means,

- w-Soe
’ it —¥i. = (% — %) B + 63 — Fi.. #=de)

el
[We are assuming there are no tlme-mvangpt/vanables, such as Ed in Example 9.1,in

 Xir. These would become all zeros in (#4c).) All three are classical regression models

WS

and in prirciple, all three could be estimated, at least consistently if not efficiently, by
ordinary least squares. [Note that (#24b) defines only n observations, the group means. ]
Consider then the matrices of sums of squares and cross products that would be used
in each case, where we focus only on estimation of §. In G‘Jsa), the moments would

accumulate variation about the overall means, 7 and X, and{we would use the total sums
of squares and cross products, W~5a
n T _ _ [T -
SPE =3 x — Bz — %) and SO = Z fou —Du-3.  FH
Wt i=1_t=1 ’ i=1 =1

For (Q=4c), because the data are in deviations already, the means of (y; —¥;.) and (x; —%;.)
are zero, The moment matrices are within.groups (i.e., variation around group means)
sums of squares and cross products, Ok

T
§iplikin, ZZ(xu ~ %) %) and SEAN — EZQ&: —X) (i — Vi)

: i=1 =1 _L=1 _t=1

b

¢!

(1)

S

]

Lk I'-.--'. Iy pEYIRY

\\ .-_..II .\_|:|l|' -'(.
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W- Bk
Finally, for (‘9/ 4b), the mean of group means is the overall mean. The moment matrices

_the group ‘means around the ovetall means;

E
Shameen = Z % - D —D. and Stoween = ZTC’; ~XF - '.
fual I=1
It is easy to verify that : 1 e

toial within between total within between
(Sopel = Syithin |- ghaweer and | Sioel - Suihin 1. gheween,

Therefore, there are three possible least squares estimators of 8 corresponding to
the decomposition. The least squares estimator is

btoml . [Stoml ,,Stxﬁfal stl!h!ﬂ +wsz;nvem] [§;u;mm + -.S_g;ium] ) (%6)

The w:thm-group; estimator is ' s
I!!wtxbm_ st1fh1n] -1 \S‘:t;tkm' I\ 5]

> Thisis the dummy variable estimator developed in Section 9.4.'An alternative estimator
lg"_i ! _“*would be the between -groups estlmator, a

- bbetwcen {Sbetwecu] -1 gbetween (3“8)

.-'"..r' =" '..'xy ‘ |]_
] .
This is the group means esnmator. This least squares estimator of (§mb) is based on the
n sets of groups means. (Note that we are assurmng that n is at least as large as K.) From
the preceding expressions (and familiar previous results)

Swuhm Qwithing, within and between __ Sberweer_ab!_)egween_ =

b XX h 5 A, 'L_ ¢ | ..
7, Inserting thege in (9-6) we see that the least squares estimator is a matnx welghted
= average of the within- and between-groups estimators:

vﬂtg_tal - th!@epwgfuﬂ _h.EQe!wem‘!/).b‘_ct_lgcm’ (5_9)
where
Evithin___ [§witkm + Sbcrween] "1wathm — Fetween
- $77 WO o~ .

The form of this result resembles the Bayesian estimator in the classical model discussed
in Chapter 18. The resemblance is more than passing; it can be shown [see, e.g., Judge
et al. (1985)] that

JFritin — [[Asy. Vafggwf‘&i")]-l + [Asy. Var(p?eveem |11 [Asy, Var (b2my -1,

which is essentially the same mixing result we have for the Bayesian estimator. In the
weighted average, the estimator with the smaller variance receives the greater weight.

Example g-é.l Analysis of Covariance and the World Health
Organization Data 1
The decomposition of the total variation in Section #.3.6 extends to the linear regression
model the familiar “analysis of variance,” or ANOVA, that is often used to decompose the
variation in a variable in a clustered or stratified sample, or in a panel data set. One of
the useful features of panel data analysis as we are doing here is the ability to analyze the

" are the [between-groups sums of squares and cross products—that is, the variation of -
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n,

TABLE _%9’ * Analysis of Varlance for WHO Data on Heatth

3 Y Care Attamment .
= M- Vanable ' Withm-Gmups Varmnon Betwecn-Groups Vananon
( DALE - .. 5.645% 94.355%
coMr - T 0.150%- 99.850%
Expenditure 0.635% : 99.365%
Education 0.178% E 99.822%
between-groups variation (heterogeneity) to learn about the main regression relationships
and the within-groups variation to learn about dynamic effects. é /o
The World Health Organization data used in Example®.6)s an unbalanced panel data ,
set{;we used only one year of the data in Example(6.6. e 191 countries in the sample, G./ O

140 are observed in the full five years, one is obséfved four times, and 50 are observed

only once. The original WHO studies (2000a, 2000b) analyzed these data’' using the fixed j=5a
effects model developed in the next section. The estimator is that in (g=%2T, y 1o see "
that groups with one observation will fall out of the computation, because if ; = 1, then

the observation equals the group mean. These data have been used by many researchers

in similar panel data analyses. [See, e.g., Greene (2004¢) and several references.] Gravelle

et al. (2002a) have strongly criticized these analyses, arguing that the WHO data are much

more like a cross section than a panel data set.

From Exampie S.Q,!tge model used by the rasearchers at WHO was

In DALE; = oy + B4 In Health Expenditurey, + g, In Education;: + B3 In? Educatior + &1

Additional models were estimated using WHO's composite measure of heaith care attain-
ment, COMP. The analysis of variance for a variable x; is based on the decomposition

n

ZZ(XH—_)Z ZZ("”“’“) +me, -®2

- =1 = i=1 =1

Dividing bofh sides of the equation by the Ieﬁ{hand side produces the decomposition:
1 = Within-groups proportion -+ Between-groups proportion,
The first term on the right-hand side is the within-group variation that differentiates a panel

e Y data set from a cross section {or simply multaple observations on the same variable). Table 83— l[.y
{ : ) lists the decomposition of the variation in the variables used in the WHO studies.
e The results suggest the reasons for the authors’ concern about the data. For all but DAKE, CO/M P

virtually all the variation in the data is between groups;—;that is cross-sectional variation. As
the authars argue, these data are conly slightly different from a cross section.

\
$%.4 THE FIXED EFFECTS MODEL

The fixed effects model arises from the assumption that the omitted effects, c;, in the
general model,

Yir = uﬁ .6 + &,
are correlated with the mcluded vanables In a general form, -1

Elei | Xi] = h(Xy). (%16)
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Because the conditional mean is the same in every period, we can write the model as
}’LI = nﬂ or h(Xt) +éep+ [Cz k(x )]
= Xitﬂ o +entla= h(xa]

By construction, the bracketed term is uncorrelated with X, so we may absorb it in the
disturbance, and write the model as "

Wl Yit =.X,'-tﬁ +a + it ) y (J-‘I'l')' .

A further%umption (usually unstated) is that Var[c, | X;] is£Constant. With this as-

sumption, (3¥1) becomes a classical linear regression model /(We will reconsider the

homoscedasticity assumption shortly.) We emphasize, it is (8410) that signifies the “fixed

effects” model, not that any variable is “fixed” in this context and random elsewhere.

ey The fixed effects formulation 1mp11es that differences across groups can be captured in

['~"} - differences in the constant term:>"Each a is treated as an unknown parameter to be
| —= estimated.

Before proceeding, we note once again a major shortcommg of the fixed effects
approach. Any time invariant variables i in x;; wili mimic the individual specific constant
term. Consider the application of Examples 9'! and 9. We could write the fixed effects
formulation as o -3

In Wagei, = Xuﬂ + [ProEd; + pu Feiry + P2 Bl + ;] + £

The ﬁxed effects formulation of the model will absorb the last four terms in the regres-
sion in ¢;. The coefficients on the time-invariant variables cannot be estimated. This
lack of identification is the price of the robustness of the specification to unmeasured
correlation between the common effect and the exogenous variables.

#4141 LEAST SQUARES ESTIMATION

T Lety; and | Xi be the T observations for the ith unit, i be a T x 1 column of ones, and
i let &; be the associated 7 x 1 vector of disturbances® Then,

}'1 = '&,'ﬁ;- "f:l_‘iaj +‘f\€_f'

Collecting these terms gives

(X id A fer]  [a

» Xz s+ LRS! | | a2 L e
or I [ =13
Y=X & "dnl[ } @h12)

It is also possible to allow the slopes to vary across £, but this method introduces some rew methodological
issues, as well as considerable complexity. in the calculations. A study on the topic is Corawell and Schmidt
(1984).

“$The assumption of a fixed proup size, T, at this point is purely for convenience. As noted in Section ‘x.2.4,
the unbalanced case is a minor variation.

H

k f'_._
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where d; is a dummy variable indicating the ith unit. Let the nT x n matrix Di=| |
[d. @2, . d,,] Then, assemblmg all nT rows gives

-  y=XEPeke. T |

This model is usually referrcd to as the least squares dummy variable (LSDV) model - Sn A ha P e

(although the “least squares” part of the hamie refers to the technique usually used to ] 1 ef

estimate it, not to the model itself). L BV
This model is a classical regression model, s0 no new results are needed to analyze it:

If n is small enough, then the model can be estimated by ordinary least squares with X

regressors in X and n columns in 1), as a multiple regression with K + n parameters.

Of course, if # is thousands, as is typlcal then this model is likely to exceed the storage L

capacity of any computer. But, by using familiar results for a partitioned regression, we '

( ' .-t-. | canreduce the size of the computation” We write the least squares estimator of Bas
N — - -1 _ pywithi _
o h=[XMoX][XMny] <bmtr U
where 41

Mp =X-DOD)"D"

This amounts to a least squares regression using the transformed data X, = MpX and
Y« = Mpy. The structure of D is particularly convenient; its columns are orthogonal S0

MO 0 0 .. 0

e [

O M 0 0
o 0 0o - M

Each matrix on the diagonal is

- 1 s

0 _ Tz =4
- . &9
Premultiplying any T x 1 vector z; by M creates MY2; = 7; — Zi. (Note that the mean is

taken over only the T observations for unit i.) 'Iherefore the least squares regression of
_ Mpy on MpX is equivalent to a regression of [y;; — ¥.] on [x;, —%.], where 3, and X; are
/"M the scalar and K x 1 vector of means of y; and x;; over the T observations for group #:3”
\_® 7 The dummy variable coefficients can be recovered from the other normal equation in
the partitioned regression:
DPa+RXe=17y

or
a=[D'D]7'D'(y - Xb).
This implies that for each i, ]
a =y —Xb, #15)

.
“"See Theorem 3.3,
" #An interesting special case arises if 7 = 2. In the two-period case, you can show-—we leave it as an exercise—

that this least squares regression is done with n7/2 first difference observatlons, by regressing observation
(3i2 — y1) (and its negative) on (2 — Xi1) (and its negative).
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The appropriate estimator of the asymptotic covariance matrix for b is w7
Bst. Asy. Var[b] = s2[X'MpX] ! = s?[Spiin] ™, 516 o

" which uses the second moment matrix with x S NOW expressed as deviations from their
respective group means. The: dlsturbance vanance estimator 1s

2 _ it S O ~Xph —a)® _ (Mpy ~ MpXb) (Myy ~ MpXb) 3'17)
-~ nT-n—K nl’'—n—K ...
The irth residual used in this computation is
e =Y < Xiub 4 = Y = Xib— (7 —EB) = (v — 3i) — (K —Fe)'b:

Thus, the numerator in s? is exactly the sum of squared residuals using the least squares
slopes and the data in group mean deviation form, But, done in this fashion, one might
then use nT — X instead of nT — n — K for the denominator in computing s2, so a
correction would be necessary. For the individual effects,

W
Asy. Var[g;] = % +X. {Asy. Var[b]}X,., (918)

T
so a simple estimator based on s? can be computed.

“\
£.4.2 SMALL T ASYMPTOTICS

From I-¢16),_we find
(W Asy, Varlp] = o2[XMpX]

1 & -t
== {— E X EI\!‘.’X:]
no|n LM

Q

g

0_2 1 n T -1 \\
= [5 PIPILTES e ‘-35.-)'} (419

: L=t =1

-1

o2 |[.1&1 z - =

== [T; PIEDIE TR N n’s_f-.)’]
i=1 i=1
2 —_— .

= _Or'l_s [TSxx,i] !

Since least squares is unbiased in this model, the question of (mean square) consistency
turns on the covariance matrix. Does the matrix above converge to zero? It is necessary
to be specific about what is meant by convergence. In this setting, increasing sample
size refers to increasing #, that is, increasing the number of groups. The group size, T, is
assumed fixed. The leading scalar clearly vanishes with increasing #. The matrix in the
square brackets is 7 times the average over the n groups of the w1thmfgroups covariance
matrices of the variables in X;. So long as the data are well behaved, we can assume
that the bracketed matrix does not converge to a zero matrix (or a matrix with zeros on
the diagonal). On this basis, we can expect consistency of the least squares estimator. In
practical terms, this requires within-groups variation of the data. Notice that the result
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falls apart if there are time invariant variables in X;, because then there are zeros on the
diagonals of the bracketed matrix. This result also suggests the nature of the problem

) ,q—"‘—f'f'fﬁe WHO data in Example B-37as analyzed by Gravelle et al. (2002).

§

Now, consider the result in (#=18) for the asymptotic variance of g;. Assume that

e

b is consistent, as shown above: Then, with increasing #, the asymptotic variance of
_a, declines to a lower bound of 0'2/ T which does not converge to zero. The constant
term estimators in the fixed effects model are not consistent estimators of a;. They

are not inconsistent because they gravitate toward the wrong pararaeter. They. are so.

because their asymptotic variances do not converge to zero, even as the sample size

PVEADULS G
1 L

" I

ll'--ff’-f*

grows, It is easy to see why this is the case. From (%5}, we see that each g; 15 estimated
usmg only T observatmns—assume n were infinite, so that 8 were known. Because T
is not assumed to be increasing, we have the surprising result. The constant terms are
inconsistent unless T — oo, which is not part of the model.

}.4.3. TESTING THE SIGNIFICANCE OF THE GROUP EFFECTS

The ¢ ratio for a; can be used for a test of the hypothesis that «; equals zero. This
hypothesis about one specific group, however, is typically not useful for testing in this
regression context. If we are interested in differences across groups, then we can test the
hypothesis that the constant terms are all equal with an F test. Under the null hypothesis
of equality, the efficient estimator is pooled least squares. The F ratio used for this
test is

|I ‘ M

(Rlsov — Rbsoea) /(0= 1)

Fn—-1,nT—n—-K) (1 _RLSDV)/(‘"T o (!{20)
where LSQV indicates the dummy variable model and Pooled indicates the pooled
or restricted model with only a single overall constant term. Alternatively, the model
may have been estimated with an overall constant and n.— 1 dummy variables instead.
All other results (j.e., the least squares slopes, 52, R?) will be unchanged, but rather
than estimate o;, each dummy variable coefficient will now be an estimate of o; — a1
where group “1” is the omitted group. The F test that the coefficients on these n — 1
dummy variables are zero is identical to the one above. It is important to keep in mind,
however, that although the statistical results are the same, the interpretation of the
dummy variable coefficients in the two formulations is different.®”

A ﬂ’.4.4 FIXED TIME AND GROUP EFFECTS

The least squares dummy variable approach can be extended to include a time-specific
effect as well. One way to formulate the extended model is simply to add the time
effect, as in W2

Vit =X, B+ o + 5 + & (921}

This model is obtained from the preceding one by the inclusion of an additional
T — 1 dummy variables. (One of the time effects must be dropped to avoid perfect
colhneanty—the group effects and time effects both sum to one.) If the number of
variables is too large to handle by ordinary regression, then this model can also be

“IFor a discussion of the differences, see Suits (1984),
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T, //
/7Iu™  estimated by using the partitioned regression:*® There is an asymmetry in this formu-
1@ ) lation, however, since each of the group effects is a group-specific intercept, whereas O
- _—=the time effects are conttasts——that is, comparisons to a base period (the one that is ‘
[ =1 ) excluded). A symmetnc form of the model is e
yg; =,,_x,-_@_ﬂ_ + 1+ o+ 8+ e, (‘5\'21')

where a full » and T effects are included, but the testrictions
Se=3 40
! b
are imposed. Least squares estimates of the slopes in this model are obtained by regres- T
ston of I |
Yo =Y~ T =T +F 522)
on
K, = Xit, —-X; "Xt -I-X
where the period-specific and overall means are

n

~ 1 =
Fi=53 oy amd F= ZEM.
i=1 LY rar =1
and likewise for X, and X. The overali constant and the dummy variable coefficients can
then be recovered from the normal equations as

-  G=a=F- - & -Xb, (523)
b=d=F:-Y-F Db

The estimated asymptotic covariance matrix for b is computed using the sums of squares
and cross products of X, computed in (8:22) and 1
26
2= oy Yoy (e —Xih — m— a; — d)? @24)
aiT-m-1)-(T-1)-K-1

If one of n or T is small and the other is large, then it may be simpler just to treat the
smaller set as an ordinary set of variables and apply the previous results to the one;
way fixed effects model defined by the larger set. Although more general this model is
infrequently used in practice. There are two reasons. First, the cost in terms of degrees
of freedom is often not justified. Second, in those instances in which a model of the
timewise evolution of the disturbance is desired, a more general model than this simple
dummy variable formulation is usually used.

" The matrix algebra and the theoretical development of two-way effects in panel data models are complex.
See, for.example, Baltagi (2005), Forturately, the practical application is much simpier. The number of periods
analyzed in most panel data sets is rarely more than a handful. Because modern computer programs eniformly
allow dozens (or even hundreds) of regressors, almost any application involving a second fixed effect can be
handled just by literally including the second effect as a set of actual dummy variables.



