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TABLE 82 Coefficient Estimates in'SUR Model for Hospital Gosts
Coefficient on Variable in the Equation

_Equation __DISS7 __ DISSS DIS39 DIS90 DIS91
Bpst + vou Yo YD .8o 0,00 ¥b.o1
SURS7 1.76 0116 —0.0881 0.0570 —0.6617
YDu Boss + Vo VD39 VD5t . Yoo
SURSS 0.254 1.61 —0.0934 0.0610 —{.0514
¥D.87 ¥D,58 Boss + Yoo ¥D,%0 Yoo
SUR_.89 0.217 "0.0846 1.51 0.0454 —{.6253
Yo.8 ¥D.88 : Vb g9 £+ ¥ooe YD .51
SURY(. 0.179 0.08222 0.0295 1.57 0.0244
Y87 Yo .58 ¥D.80 0,50 Pp.a1 + Yoo
SUR91 0.153 (.0363 -0.0422 0.0813 1.70

v*The value repoited in the published paper is 8.22. The correct value is 0.0822. (Personai =~
communication from the author,) .

L~

ATIONS: \X

multivariate regression mode}” have been in the
rations, either cornmodity demnagads or factor demands

10.4 SYSTEMS OF DEMAND E
SINGULAR SYSTEMS

Most of the recent applications of
context of systems of dermand
- In studies of production.

Example 10.7 Storfe’s Expenditure System
Stone’s expenditur
income Y, and c

re P is a generalized (share-weight price index, »; is an income elasticity, and n; is
compensated price elasticity. We can#terpret this system as the demand equation in real
expenditure and real prices, The resu ng set of equations constitutes an econometric model
in the form of a set of seamingly upfelated regressions. In estimation, we must account for
a number of restrictions including homogeneity of degree cne in income, ;5 = 1, and
symmetry of the matrix of comyensated price elasticities, n; = 0y, where §; is the budget

share for good /.

Other examples incjdde the system of factor demands and factor cost shares from
production, which we/hall consider again later. In principle, each is merely a partic-
ular application of the model of the Section 10.2. But some special problems arise
in these settings. First, the parameters of the systems are generally constrained across
equations. That is, the unconstrained model is inconsistent with the underlying

o¥e 2l the mudtiple

%A very readable SUFVCY O estimation of systems of
(1980). The cxample diseTised here is taken from thes r
work cited therei eral survey. A counterpart fop
is Chamber. 88). More recent developarsiifs in the specification of g
d Segerson (1987), Brown and Walker (1995), and Fry, E

S 1o Stone’s (1954a
oduction function
ems of demand ¢ f

and McLaren (1
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, 7~ approach would suggest the spgcification

Ela i Xi] =%y 7
Andom effects model, we obtai
Yir = X8+ ¢ + 8 -

=X B+%y +eu P&~ Elc 1K) T (9-43)

Substituting this in th.

variables are already group
panel of Table 9.5 in Exa)

Is. One side benefit of the specification is that it provi
other convenienypproach to the Hausman test. As the model] is formulated

s such, a statistical test of the null hypothesis that y equals zero should

Nonzero .
alternative approach to the two methods suggested eaghifr.

provide

Random Effects
f the estimates in the lower
submatrix of the full covariance

Exaphple 8.8 Variable Addition Test for Fixed vers

ing the results in Exampie 9.8, we recovered the subvect
alf of Table 9.5 corresponding to p, and the correspondi
matrix. The test statistic is

H' = 7'[Est. Asy. Var (P15

The value of the test statistic is 297.17. The erffical value from the chi-squared table for nine
degrees of freedom s 14.07, so the null ypothesis of the random effects model is rejected.
We conclude as before that the fixed effects estimator is the preferred specification for this
model.

\\ .6 NONSPHERICAL DISTURBANCES AND ROBUST

COVARIANCE ESTIMATION

Because the models considered here are extensions of the classical regression model,

we can treat heteroscedasticily in the same way that we did in Chapter KTW

can compute the ordinary or feasible generalized least squares estimators and obtain
an appropriate robust covariance matrix estimator, or we can impose some structure on
the disturbance variances and use generalized least squares. In the panel data settings,

BOther analyses, e.g., Chambgflain {1982} and Wooldridgl (2002a), interpret the lineg#function as the pro-
Jection of ¢; on the group mens, rather than the condignal mean. The difference isAat we need not make
any particular assumptige§ about the conditionat n function while there alwayyéxists a linear projection.
The conditional meap/interpretation does imppef an additional assumption onAdhe model, but brings con-
siderable simplifigrfion. Several authors hayeanalyzed the extension of the phdel to projection on the full
set of individughGbservations rather thap#fic means. The additiona! generpHty provides the bases of scveral
istance [Chamberlain (1982)], GMM [Arcliano and Bover (1995)], and
ressions and three-stage least squafes [Wooldridge (2002a)].

75 including minimum
seemingly unrelate
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there is greater flexibility for the second of these without making strong assumptions
about the nature of the heteroscedasticity.
A\ 9/ 6.1 ROBUST ESTIMATION OF THE FIXED EFFECTS MODEL

As noted in Section !,3 2 ina panel dataset the correlation across observations within
a group is likely to be a more substantial influence on the estimated covariance matrix

of the least squares estimator than is heteroscedasticity. This is evident in the estimates.

in Tabled.1. In the fixed (or random) effects model, the intent of explicitly including the
“ ‘ common effect in the model is to account for the source of this correlation. However,
accounting for the common effect in the model does not remove heteroscedasticity it
centers the conditional mean properly. Here, we consider the straightforward extension
of White’s estimator to the fixed and random effects models.
In the fixed effects model, the full regressor matrix is Z = [X,D]. The White
heteroscedasticity consistent covariance matrix for OLSW that is, for the fixed effects
estimator—is the lower right block of the partitioned matrix

Est. Asy. Var(b,a] = (ZZ) "ZE'Z(Z'2)”,

where E is a diagonal matrix of least squares (fixed effects estimator) residuals. This
computation promises to be formidable, but fortunately, it works out very simply. The

-, White estimator for the slopes is obtained just by using the data in group mean deyviation—

=iyt = i’orm [See @F4) and @-17)] in the familiar computation of S [see ( and

50, the disturbance variance estimator 10 (F-17) is the counterpart tothe onein (8-2()_)_,__ q _,z_ >}

whlch we showed that after the appropnate scaling of § was a consistent estimator of

(h-s7)

q -6
q,2?

phm[l/(nT)] E;—1 >T 62 oj;. The implication is that we may still use (Q ) to \
I

estlmate the variances of the fixed effects.

A somewhat less general but useful simplification of this result can be obtained 1f we
assume that the dlsturbance variance is constant within the ith group. If E [e,, |Zi] =
then, witha panel of data, o is estimable by ele; / Tusing the Jeast squares residuals. The
center matrix in Est. Asy. Var[b a] may be replaced with )7, (e} € / TYZZ;. Whether this
estimatoris preferable is unclear. If the groupwise model is corréct, then it and the White
o estimator will estimate the same matrix. On the other hand, if the disturbance variances
W do vary within the groups, then this revised computation may be inappropriate.

Arellano {(1987) and Areliano and Bover (1995) have taken this analysis a step
further. If one takes the ith group as a whole, then we can treat the observations in

i =XiB +aiir + &

as a generalized regression model with disturbance covariance matrix §;. We saw in

9 Section 8.3.2 that a model this general, with no structure on §2, offered little hope for
estimation, robust or otherwise. But the problem is more manageable with a panel data
set where correlation across uniis can be assumed to be zero. As before, let X,., denote
the data in group mean deviation form. The counterpart to X'Q@X here is

By the same reasoning that we used to construct the White estimator in Chapter §, we
can consider estimating $2; with the sample of one, e;e]. As before, it is not consistent
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estimation of the individual Sz,ls that is at issue, but estimation of the sum. If n is large
enough, then we could argue that o E

1 ;
plim ——fX'SZX* —pllm—z SR 2:X,, e

.1 1. M—-
= plim ~ Z TR o

= plim ~ Z ( ZZ ”e‘lﬂ-‘*ﬂg;‘y) '

1\ z=1 t=1 s=1
- This is the extension of (9 3) to the fixed effects case.

A\Y -
§‘6.2 HETEROSCEDASTICITY iN THE RANDOM EFFECTS MODEL

Because the random effects model is a generalized regression model with a known
structure, OLS with a robust estimator of the asymptotic covariance matrix is not the
best use of the data. The GLS estimator is efficient whereas the OLS estimator is
not. If a perfectly general covariance structure is assumed, then one might simply use
Arellano’s estimator described in the preceding section with a single overall constant
term rather than a set of fixed effects. But, within the setting of the random effects
model, n; = &, + u;, allowing the disturbance variance to vary across groups would
seem to be a useful extension.

A series of papers, notably Mazodier and Trognon (1978), Baltagi and Griffin (1988),
and the recent monograph by Baltagi (2005, pp. 77_,79) suggest how one might allow
the group-specific component u; to be heteroscedastic. But, empirically, there is an
insurmountable problem with this approach. In the final analysis, all estimators of the
variance components must be based on sums of squared residuals, and, in particular,
an estimator of 3 would be estimated using a set of residuals from the distribution
of u;. However, the data contain only a single observation on u; repeated in each
observation in group i. So, the estimators presented, for example, in Baltagi (2001), use,
in effect, one residual in each case to estimate o%. What appears to be a mean squared
residual is only (1/T) Z, 1 8% = i}, The properties of this estimator are ambiguous,
but efficiency seems unlikely. T.he estimators do not converge to any population figure
as the sample size, even T, increases. [The counterpoint is made in Hsiao (2003, p. 56).]
Heteroscedasticity in the unique component, ¢; represents a more tractable modeling
possibility.  }}.€.%

In Section héﬁ‘ we introduced heterosoedast1c1ty into estimation of the random
effects model by allowmg the group sizes to vary. But the estimator there (and its
feasible counterpart in the next section) would be the same if, instead of §; = 1—
o/ (Ta +02)1/2, we were faced with

6 =1- S S
1'/03; -E—_,I__L';-'oﬁ

Therefore, for computing the appropriate feasible generalized least squares estimator,
once again we need only devise consistent estimators for the variance components and
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then apply the GLS transformation shown earlier. One possible way to proceed is as
follows: Because pooled OLS is still consistent, OLS provides a usable set of residuals.
- Using the OLS res1duals for the speaﬁc groups, we Would have, for each group,

- N Weie;
= a;, + u = II’F
The residuals from the dummy variable model are purged of the individual spemﬁc
effect, Uj, SO o2 ; may be consistently (in T) estimated with - - = !

e plsdunglsd
3 e el
Usi__ T

where ef# = y;, — x! b*® — g;. Combining terms, then,

1 Ga [ [ efispols plsduglsdy L
2 ef*le 2
= () - ()] - n @

i=1 =l
We can now compute the FGLS estimator as before.
2010
o
W\ ¥.6.3 AUTOCORRELATION IN PANEL DATA MODELS ggo‘(’ !
Serial correlation of regression disturbances will be considered in detail in ,16( 2_0 .

Rather than defer the topic in connection to panel data to Chapter 39 we will briefly

Inn m 1, “autocorrelation”;that is,

correlation across the observations in the groups in a panel--ls likely to be a substan-

tive feature of the model. Our treatment of the effect there, however, was meant to

accommodate autocorrelation in its broadest sense, that is, nonzero covariances across

observations in a group. The results there would apply equally to clustered observa-

- tions, as observed in Section §.3.3. An important element of that specification was that

with clustered data, there might be no obvious structure to the autocorrelation. When

the panel data set consists cxphcnly of groups of time series, and especially if the time

I.n series are relatively long as in Example 99, one might want to begin to invoke the more
detailed, structured time series models which are discussed in Chapter 347

20

/"—_———_f
9.7 EXTENSIONS OF TH

EFFECTS MODEL

(Section 9.5.5), provid uch of the empirical literaturg
(As we will explore A icati i the book, the fixed effects madel
has a significant ortcoming of its own.) Thig’section will describe a few cgmimon

to thejf distance from each other in/pace rather than time. Finally, wg will take a brief
look‘at dynamic panel data modgfs and nonstationary panels.




.fBGLS [Z =1 #% g g :I [Z =1 .,ga?.yg}

-5
11.6.4 CLUSTER (AND PANEL) ROBUST COVARIANCE MATRICES FOR FIXED AND
RANDOM EFFECTS ESTlMATORS

o
As suggested earlier, in situations in which cluster corrections are appropriate, there mlght remdua] ey
correlation within groups net-that is not fully accounted for by a generalized least squares estimator or a | - .'-" > ‘I,-~ .
fixed effects model. A counterpart to (11-4) for the fixed and random effects estimators is | IENERRLE
straightforward to construct based on results we have already obtained. || I ‘
For the fixed effects estimator, based on (11- 1‘3) and (11- i~9) we have

1 '&A‘.ll'}- 1K
| Tan
1

ks

b [T, zmmmwMﬂD;zwmmwMﬂ (mnu.u

where A(I)x, =X, —(1)x; is the deviation of x; from one tines the group mean vector. The motivation
for the “(1)” will be evident shortly. In the same fashion as (11-3), we will construct a robust covariance

matrix estimator using
- -1
S X (s (aa,) |
Budo bl o| B {2 (0m)s | {Z (g )
E t n T
S X (oo )(as,) |

This estimator is equivalent to (11-3) based on the data in deviations from their cluster meais. {With a
slight change in notation, it becomes a robust estimator for the covariance matrix of the fixed effects
estimator.) From (1 1-29) and (11 30), the GLS estimator of B for the random effects model is

(1‘1335

,:Z_il Z;:l .(A(e.'.g )-X_fg) (A(B.R )--’-‘_'_'3 )' ] " [2;1 27:1 (A(G_S 2__)& ig ) (A(Gg )y ig )]’

where 6, = 1—(0E / Jo? +_ng0',2{ ) . It follows that the estimator of the asymptotic covariance matrix

would be

r -1
Z5 2 (eam)(s0x) | «
sumratol |55, (0 G0m)a)[Th Goadaf s

-1
30 T (00m,)s05,) |

See, also, Cameron and Trivedi (2005, pp. 838!—_839).
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Example 11.11 Robust Standard Errors for Fixed and Random Effects Estimators || A
Table 11.7 presents the estimates of the fixed random effects models that appear in Tables | !
11.5 and 1 1.6. The correction of the standard errors results in a fairly substantial change in ToOE
the estimates. The effect is especially promounced in the random effects case, where the ‘ o m bet
estimated standard errors increase by a factor of five or more. . -\'_'* ! .. p-
L | 3
Table 11.11 Cluster Corrections for Fixed and Random Effects Estimators o l——
E Fixed Effects Random Effects A5 ™\
Variable  Estimate Std.Error Robust Estimate - Std.Error Robust [ 'y
Constant T 5.3455 0.04361 0.19866 | M A
Exp 0.1132 0.002471 0 00437 0.08906 0.002280 001276 | 5 ghy
Exp? -0.00042 0.000055 0.000089 --0.0007577 0.00005036  0.00031 e
Wks 0.00084 0.000600 0.00094 0.001066 0.0005939 0.00331.
Occ --0.02148 0.01378 0.02052 --0.1067 0.01269 0.05424
Ind 0.01921 0.01545 0.02450 ~0.016837 0.0131 0.053003
South -0.00186 0.03430 0.09648 -0.06899 0.02354 0.05984
SMSA --0.04247 0.01942 0.03185 ~-0.015830 0.01649 0.05421 y
MS --0.02973 0.01898 0.02902 --0,02398 0.01711 0.06984 '

Union 0.03278 0.01492 0.02708 0.03597 0.01367 0.05653
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H 7—— Vg SPATIAL AUTOCORRELATION W\l

“m- - . The nested random effects structure in Example‘&ﬂ'was motivated by an expectation
+  that effects of neighboring states would spill over into each other, creating a sort of
correlation across space, rather than across time as we have focused on thus far. The

o effect should be common in cross-region studies, such as in agriculture, urban economics,
' . and regional science. Recent studies of the ph'eq_omenon include Case’s (199_1) study -
v of expenditure patterns, Bell and Bockstael’s (2000) study of real, estate prices, and : 7

Baltagi and Li’s (2001) analysis of R&D spillovers. Models of spatial a autocorrelatlon
_ [see Anselin (1988, 2001) for the canonical reference], are constructed to formalize this
i notion.
A mode! with spatial autocorrelation can be formulated as follows: The regression

model takes the familiar panel structure,

=X Brentmi=1,... mt=1.. T

The common u; is the usual unit (e.g., country) effect. The correlation across space is
implied by the spatial autocorrelation structure

n
&y = A.Z_W@'é‘j; + v
= o]
I' K1 1

The scalar A is the spatial autoregression coefficient. The elements Wj; are spatial (or
configuity) weights that are assumed known. "The elements that appear in the sum above
are a row of the spatial weight or contiguity matrix, W so that for the n units, we have "~

L= AWe ¥, ¥ = ul.

- The structure of the model is embodied in the symmetric weight matrix, W. Consider
for an example counties or states arranged geographically on a2 grid or some linear
scale such as a line from one coast of the country to another. Typically W;; will equal
one for i, j pairs that are neighbors and zero otherwise. Alternatively, W;; may reflect
distances across space, so that W}; decreases with increases in |i — j|. This would be
similar to a temporal autocorrelation matrix. Assuming that |A} is less than one, and
that the elements of W are such that (I - AW) is nonsingular, we may write

& = (I” - A.W)‘I‘Vg,
so for the n observations at time ¢,
Jo =X+ @ - AW Ly +u,

We further assume that ; and v; have zero means, variances o and o2 and are indepen-
dent across countries and of each other. It follows that a generahzed regression model
applies to the n observations at time ¢;

Ely | X} =X.8,
Varly 1X,] = @ — AW 10 - W 0L, 9

At this point, estimation could proceed along the lines of Chapter @or the need
to estimate A. There is no natural residual based estimator of A. Recent treatments
of this model have added a normality assumption and employed maximum likelihood
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methods. [The log likelihood function for this model and numerous references appear :
in Baltagi (2005, p. 196). Extensive analysis of the estimation problem is given in Bell K =

_and Bockstael (2000).]

A natural first step inthe analysis is a test for spatial effects. The standard procedure
for a cross section is Moran’s (1950) -T- statistic, which would be computed for each set
of residuals, et, using _

Y T Wy “B)en =8 - -(,,.,éf)

= :
(ks S W) S — 07

- 1
For a panel of T independent sets of observations, I = — Ef;l I; would use the full set

of information. A large sample approximation to the variance of the statistic under the
null hypothesis of no spatial autocorrelation is

v 1__!12 zz=1 Z"}=1 W2 +3 (E'-Tq Z‘E—l VVU) nzz—l (E}—I IJ‘ (\ \- S' é)
- T
. -1 (Th D WU)

The statistic I/ V will converge to standard normality under the null hypothesis and can
form the basis of the test. {The assumption of independence across time is likely to be
dubious at best, however.) Baltagi, Song, and Koh (2003) identify a variety of LM tests
based on the assumption of normality. Two that apply to cross section analysis [See Bell
and Bockstael (2000, p. 78)] are

__(gWe/s?y?
, Ll I (WW+ W?)
for spatial autocorrelation and
(e/Wy/s*)
LM(2) =
@ b’ X'WMWXb/s? 4 tr (W'W + W?2)

for spatially lagged dependent variables, where e is the vector of OLS residuals, s2
€e/njand M =1 - X(X'X)~1X'. [See Anselin and Hudak (1992).]

Anselin (1988) identifies several possible extensions of the spatial model to dynamic
regressions. A “pure space-recursive model” specifies that the autocorrelation pertains
to neighbors in the previous period:

Vi = V[Wﬂ—l]_i.'t-,ﬁ_tg.__‘l' Eit-

A “time-space recursive model” specifies dependence that is purely autoregressive with
respect to neighbors in the previous period:

Yit = pYi-1 + ¥ [W¥,. i +-,K§£§. + iz

A “time-space simultaneous” model specifies that the spatial dependence is with respect
to neighbors in the current period:

Yie = Q¥ie-1 + [AWy, L +X;, 8 + £5r.
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Finally, a “time-space dynamic model” specifies that autoregressmn depends on neigh-
bors in both the current and last period:

1y Yie = PYir1 + [A'WYt]t + }’IWY:-—I]* + x:tﬁ + £ir.,

Example S=M0 Spaﬁral Autocorrelatfon in Real Estate Sales
Bell and Bockstael analyzed the problem of odeling spatial autocorrelation in jarge samples.
This is likely to become an increasingly common problem with GIS (geographic information
systemn) data sets. The central problem is maximization of a likelihood function that involves a
sparse ratrix, (§ —A W) Direct approaches to the problem can encounter severe inaccuracies
in evaluation of the inverse and determinant. Kelejian and Prucha (1999} have developed a
moment-based estimator for A that helps to alleviate the problem. Once the estimate of A is in
hand, estimation of the spatiat autocorrelation model is done by FGLS. The authors applied
the method to analysis of a cross section of 1,000 residential sales in Anne Arundel County,
Marytand, from 1993 to 1896. The parcels sold all involved houses built within one year prior
to the sale. GIS software was used to measure attributes of interest.
The model is

InPrice = o + B+ In Assessed value (LIV)
+ fo In Lot size (LLT)
+ Ba In Distance in km to Washington, DC (LDC)
+ Ba In Distance in km to Baltimore (LBA)
+ B5% land surrounding parcel in publicly owned space 0=’OPN)
+ B:s% !and surrounding parcel in natural privately owned space (PNA )
+ B:% land surrounding parcel in intensively developed use (PDEV)
+ Bs% land surrounding parcel infow density residential use (PLOW)
+ o Public sewer service (1 if existing or planned, 0 if not) _(I5§EW)
+&. "

{Land surroynding the parcel is all parcels in the GIS data whose centroids are within
500 meters of the transacted parcel.) For the full model, the specification is

Y =XB+e
.-1,-8: . A.wls -t‘v'
The authors defined four contiguity matrices:

W1: W; = 1/distance between i and | if distance < 600 meters, 0 otherwise,
W2: W, = 1 if distance between i and j < 200 meters, 0 otherwise,
Wa: W; = 1 if distance between i and j < 400 meters, 0 otherwise,
W4: W;,_= 1 if distance between i and j < 600 meters, 0 othewise,

All contiguity matrices were row-standardized. That i, elements in each row are scaled so
that the row sums to one. One of the objectives of the study was to examine the impact
of row standardization on the estimation. It is done to improve the numerical stability of the
optimization process. Because the estimates depend numerically on the normalization, it is
not completely innocent.
Test statistics for spatial autocorrelation based on the OLS residuals are shown in Table 977
(These are taken from the authors’ Table 3.) The Moran statistics are distributed as standard
normal while the LM statistics are distributed as chi-squared with one degree of freedom.
All but the LM{2) statistic for W3 are larger than the 99% critical value from the respective
., table, so we would conclude that there is evidence of spatial autocorrelation. Estimates from
| some of the regressions are shown in Table 2.8 In the remaining results in the study, the

.10

11.1
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W
*ETABLE oF Tast Statistics for Spatial Autocorrefation”
] w1 W2 W3 w4
Moran’s,l. .. 189 9.67 - 13.66 6.88
LM(1) (4995 8493 156.48 36.46
LM(2) 740~ - 1722 233 742
D ‘
AABLE 9.8 Estimated Spatial Regression Models
- Spatial based Spatial based on
OLS FGLS* on WI ML WI Gen. Moments
Parameter Estimate Std.Err.  Estimate StdErm.  Estimate StdErr.  Estimate Sid Err
o 47332 0.2047 47380 02048 51277 02204 50648 02169
B 06926 0.0124 0.6924  0.0214 0.6537  0.0135 0.6638  0.0132
B 0.0079 0.0052 0.0078  0.0052 0.0002  0.0052 0.0020  0.0053
B —0.1494 0.0195 -0.1501 0.0195 01774 00245 —-0.1691 0.0230
B -0.0453 0.0114 —-0.0455 00114 -0.0169 0.0156 -0.0278 0.0143
Bs —0.0493 0.0408 -0.0484 0.0408 -0.0149 0.0414 00269 0.0413
Bs 0.0799  0.0177 00800  0.0177 0.058  0.0213 0.0644 00204
B 0.0677  0.0180 0.0680  0.0180 0.0253 0.0221 0.0394 00211
B —0.0166 00194 00168 00194 00374 0.0224 00313 00218
Bs -01187 00173 01192 00174 —0.0828 0.0180 -0.0939 0.0179
A — - — - 04582 0.0454 0.3517 —

“#The author reports using a heteroscedasticity model cr:? x f (Liyv;, LIVf). The functior_l_ f(.) is not identified.

authors find that the outcomes are somewhat sensitive to the specification of the spatial
weight matrik, but not particularly so to the method of estimating A.

). \3 Example% Spatial Lags in Health Expenditures

Moscone, Knapp, and Tosetti (2007) investigated the determinants of mental health expen-
diture over six years in 148 British local authorities using two forms of the spatial correlation
model to incorporate possible interaction among authorities as well as unobserved spatial
heterogeneity. The modeis estimated, in addition to pooled re regressmn and a random effects

e

model, were as follows. The first is a model with spatial lags: il ; J \

Ho =it oW H X+ e

where u is a 148 x 1 vector of random effects and ijs a 148 x 1 column of ones. For each
local authority,
Ye=n+ P(Wyt) +x}’:§ +Ui + e,

where wi is the ith row of the contuguuty matrix, W. Contiguities were defined in W as one
if the locality shared a border or vertex and zero otherwise. (The authors also experlmented

with other contiguity matrices based on “socnodemographlc" differences.} The second model |

estimated is of spatlal ervor. comrelation /< ™y

Y= ni+ X8 +u+te,
et = AWer + 3.

= A f
g ].p,i']?* &l
elrd

| .I
s [Ty
% i l:'.|ﬁ.'.'”|
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For each local authority, this model implies
o B = 5 - . . L Ye=nEX Bt +AZ Wy s + Vit

The authors use maximum likelihood to estimate the parameters of the model. To simpfify
the computations, they note that the-maximization can be done using a two-step procedure.
As we have seen in other applications, when @ in a generalized regrassion model is known, the
appropriate estimator is GLS. For both of these models, with known spatial autocorrslation
parameter, a GL.S transformation of the data produces a classical regression model.. [See .

11).] The method used is to iterate back and forth between simple OLS estimation of v B

G? and o2 and maximization of the “concentrated log likelihood” function which, given the other
estimates, Is a function of the spatial autocorrelation parameter, p or A, and the variance of
the heterogeneity, o7. ‘ ' 4

The dependent ‘variable in the models Is the log of per capita mental health expend|-
tures. The covariates are the percentage of males and of people under 20 in the area, aver-
age mortgage rates, numbers of unemployment claims, employment, average house price,
madian weekly wage, percent of single parent households, dummy variables for Labour
party or Liberal Democrat party authorities, and the density of population (“to control for
supply-side factors”). The estimated spatial autocorrelation cosfficients for the two models
are 0.1579 and 0.1220, both more than twice as large as the estimated standard error. Based
on the simple Wald tests, the hypothesis of no spatial correlation would be rejected. The log
likelinood values for the two spatlal models were +206.3 and +202.8, compared to —211.1
for the model with no spatfal effects or region effects, so the results sesm to favor the spa-
tial models based on a chi-squared test statistic (with one degree of freedom) of twice the
difference. However, there is an ambiguity in this result as the improved “fit” could be dus
to the region effects rather-than the spatial effects. A simple random effects model shows a
log likelihaod value of +202.3, which bears this out. Measured against this value, the spatial
lag model seems the preferred specification, whereas the spatial autocorrelation model does
not add significantly to the log likelihood function compared to the basic random effects
maodel. ‘ .

9.8 PARAMETER HETEROGE

where u; is g i 0 in the
pooled s , on X in the
fixed effects model and constant in the rafidom effects model. By agyof these, the het-

epegeneity in the model shows up agfariation in the constant s in the regression
model. There is ample evidence iwmany studies—we will exgrfline two later—that sug-
gests that the other parametersin the model also vary acrgs§ individuals. In the dynamic
model we consider in Sectigh 9.8.5, cross-country varjafion in the slope parameter in a
production function is th€ central focus of the analysfs. This section will consider several
approaches to analyzing parameter heterogeneiyf in panel data models. The model will
be extended to multiple equations in Section 10.3.
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TABLE 12.2° Noflinear 1848 rumental Variable Estimates

- Ing Least Squares -
© - Parameter Estintate . Estimate  ,  Standard Error
o 031 . 22,788
B 0.040291 0.01064
y 1.34738 0.1220
‘o 57.1681 —_
ee 650,369.805 —_
Example 2.6 Instrument i imates of the

The instrumental yariable estimates differ considerahly from the least squares estimates.
The differences carybe decelving, howeyer. Recall that the MPC in the model is Sy Y71, The
2000.4 value for D! that we examingd earlier was 6634.9. At this value, the instrumental
variables and least squares estimat of the MPC are 1.1543 with an estimated standard,

have led oné’to expect. We do tote that the IV estimate is considerably greater than the
estimate in the tinear modet, 0.9217 (and graater than one, which seems a bit implausible). k

Recent panel data applications have relied heavﬂy on the methods of instrumental | ,;":E {/ ! Term

variables ﬂrut-we-am—devebpm-g—heie We will develop this methodology in detail in | o |

Cha ter here we consider generalized method of moments (GMM) estimation. At e

] 13 this point, we can examine two major building blocks in this set of methods, Hausman | ¢ {1903
8 and Taylor’s (1981) estimator for the random effects model and Bhargava and Sargan’s b el F —_—
(1983) proposals for estimating a dynamic panel data model. These two tools play a AL
significant role in the GMM estimators of dynamic panel models in Chapter lé/p KA
1% - Hu's Chaf
'N_I | ] ..r

(.8.! Havsman Recall the original specification of the linear model for panel data in (21): H 51_ e

and Taylor's i =Xy B+ e @227
Iw,s-\—rume n "-oQ ‘The random effects model is based on the assumption that the unobserved person-
Variables specific effects, z;, are uncorrelated with the included variables, x;;. This assumption
Es ‘L—: m ato r is a major shortcoming of the model. However, the random effects treatment does

allow the model to contain observed time invariant characteristics, such as demographic
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Y iy )
characteristics, while the fixed effects model-does not—Tlf present, they are simply ab- | e N
sorbed into the fixed effects. Hausman and"raylor’s (1981) estimator for the random
- effects model suggests'a way to overcome the first of these while accommodatmg the
second. -
Their model is of the form

X1 +x§:zﬁz + z'u @t + 202 + e + i

where 8 = (81, ﬁz)’ and & = (@}, o). Inthis formulation, all individual effects denoted.
«~Zi_are observed. As before unobserved individual effects that are contained in zje.in

/_gééi‘) are contained in the person specific random termn, Uj. Hausman and Taylor define
e four sets of observed variables in the model:

}) "5'? X, is Kj variables that are time varying and uncorrelated with i;,
Zi is_I; variables that are time invariant and uncorrelated with u;,
X2i; 15 Kj variables that are time varying and are correlated with u;,
\Z2i 18 L, variables that are time invariant and are correlated with Bi.

The assumptions about the random terms in the model are

[ui LXngn'] = 0 though E[u,- I??‘Z.fim’@!] 40,

Var[u; | X1, 21 Xoir 22i] = o /
CUV[szz, i t§1as» 21 Xair, 323_] / <
Var[g; 4+ u; [X1ie, 21z, Kty zz;] =0? =02+, ,4, (7Q §’<
Corres; + s, i + ;| Xuie B, Xour, 2} = p = 02 /02, I 0
BREN

Note the crucial assumption that one can distinguish sets of variables x; and z, that are
uncorrelated with u; from x; and z; which are not. The likely presence ofx; and z, is what '
complicates specification and estimation of the random effects model in the first place. o 7 €
By construction, any OLS or GLS estimators of this model are inconsistent when | W
the model contains variables that are correlated with the random effects. Hausman and YA [.
Taylor have proposed an instrumental variables estimator that uses only the information i S
within the model (i.e., as already stated). The strategy for estimation is based on the
following loglc First, by taking deviations from group means, we find that 5.9

(xlu ‘qu: Y ﬂl + (Xm ,3,‘2;) ﬁz + Eir — (M

Both partsof which mmﬁ can be cons:stently estimated by least squares, in spite of the
correlation between x, and u. This is the familiar, fixed effects, least squares dummy
variable estlmator—the transformation to deviations from group means removes from
the model the part of the disturbance that is correlated with X5;;. Now, in the orig-
inal model, Hausman and Taylor show that the group mean deviations can be used
as (X3 + K3) instrumental variables for estimation of (ﬁ @) That is the implication
of ). Because z; is uncorrelated with the dlsturbances it can likewise serve as a

bl set of I; instrumental variables. That leaves a necessity for Lo instrumental variables. )
l1-58 The authors show that the group means for,x; can serve as these remaining instruments, @
and the model will be identified so long as K1 is greater than or equal to L. For identifi- (.
cation purposes, then, Ky must be at least as large as L, As usual, feas:ble GES is better _i = -
than OLS, and available. Likewise, FGLS is an improvement Over sunple mstrumental Frioe | &
variable estimation of the model, which is consistent but inefficient. | 7% L ' |
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| b
bl {We note in passing, we can contrast the four assumptlons with those made in Plumper and Troeger’s
(2007) FEVD formulation in Section 11.4.5 which, in the notation of this formulation, would be that X,;,
and Xa are time varying and both freely correlated with u; while Z1; and 7 are time invariant and are both o
uncorrelated with w:. For both formulations, (11-58) applies. The two approaches differ in the additional P
moment condmons Elvariable x (u; + a,,)] 0 that are used to 1dent1fy the parameters o, and g, "

I. ”
F- |y
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The authors propose the following set of steps for consistent and efficient
estimation:

* Step 1. Obtain the LSDV (fixed effects) estimator of § = (8. §;)' based on x; and x;.

The residual variance estimator from th:s step is a consistent estimator of 2.

Step 2. Form the within-groups resnduals ey from the LSDV regression at step 1.

Stack the group means of these residuals in a full, sampleﬂlength data vector, 'Ihus _

€, =8 = E,_l (Ve — bw), L= ,T,i=1,...,n (The md1v1dual constant term,

a;, is not mcluded in eu ) These group means are used as the dependent variable in
an instrumental variable regression on z; and Z with instrumental variables z; and x;.

(Note the identification requirement that Kj, the number of variables in xube at Jeast
as large as L, the number of variables in z,.) The time, invariant variables are each
repeated T times in the data matrices in this regressmn This provides a consistent
estimator of &.

Step 3. The residual variance in the regression in step 2 is a consistent estimator of
o*? = 62 + 02/ T. From this estimator and the estimator of o7 in step 1, we deduce an
estimator of o;f = 0*2 — g2/ T. We then form the weight for feasible GLS in this model
by forming the estimate of
§=1- —zﬁ
o +_§1"0‘2

Step 4. The final step is a weighted instrumental variable estimator. Let the full set of
variables in the model be

. Wi = (R Xoue P2 2)-

Collect these nT observations in the rows of data matrix W, The transformed variables
for GLS are, as before when we first fit the random effects model,

Wi =w, — 6%, and y;=y.— 05

where § denotes the sample estimate of §. The transformed data are collected in the
rows data matrix Y¥* and in column vector y*. Note in the case of the time,invariant
variables in w;;, the group mean is the ongnlal variable, and the transformation just
multiplies the variable by 1 — §. The instrumental variables are

Vi = [ur — K1Y, (s — %), 24 Xy |-

These are stacked in the rows of the nT x (Ky + Kz + Ly + K;) matrix V. Note
for the third and fourth sets of instruments, the time invariant variables and group
means are repeated for each member of the group. The mstrumental variable estimator
would be 6 L
gr an r ren—1 vrere -1 " ey —1 r*\“g-ﬁ -6:'.7
#. &)y = (WY YW @YY VL (29

X 2 5@ /gNote that the FGLS random effects estimator would be (87, &Vep = w_v:\,w ot Wy
I"\F_ L i A L .

-6
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The instrumental variable estimator is consistent if the data are not weighted, that is,
if W rather than W* is used in the computation. But, this is inefficient, in the same
way that OLS is consistent but inefficient in estimation of the simpler random effects

" model. “J; - -

Example 27 The Returns to Schooling e

The economic returns to schooling have been a fréquent topic of study by econometricians.
The PSID and NLS data sets have provided a rich source of panel data for this effort. In wage
{or log wage) equations, it is clear that the economic benefits of schooling are correlated
with latent, unmeasured characteristics of the individual such as innate ability, intelligence,
drive, or perseverance. As such, there is little question that simple random effects models
based on pane! data will suffer from the effects noted earlier. The fixed effects model is the
obvious alternative, but these rich data sets contain many useful variables, such as race,
union membership, and marital status, which are generally time invariant. Worse yst, the
variable most of interest, years of schooling, is also time invariant. Hausman and Taylor
{1981) proposed the estimator described here as a solution to these probiems. The authors
studied the effact of schooling on (the log of) wages using a random sample from the PSID of
750 men aged 25455, observed in two years, 1968 and 1972, The two years were chosen so
as to minimize the effect of serlal correlation apart from the persistént unmeasured individual
effects. The variables used in their model weré as follows:

Experience = age—years of schooling—5,

Years of schooling, H

Bad Health = a dummy variable indicating general health,

Race = a duimimy variable indicating nonwhiite (70 of 750 observations),
Union = a dummy variable indicating union membership,

Unemployed = a dummy variable indicating previous year’s unemployment.

The model also included a constant term and a pericd indicator. [The coding of the latter
is not given, but any two distinct values, including O for 1968 and 1 for 1972, would produce
identical results. (Why?)]

The primary focus of the study is the coefficient on schooling in the log wage equation.
Because schiboling and, probably, Experience and Unemployed are correlated with the latent

(=657 |

effect, there is likely to be serious bias in conventional estimates of this equation. Table #2-% ) ;- M

reports some of their reported results. The OLS and random effects GLS results in the first
two columns provide the benchmark for the rest of the study. The schooling coefficient is
estimated at 0.0669, a value which the authors suspected was far too small. As we saw

earfier, even in the presence of correlation between measured and latent effects, in this | /.77 [/ S

model, the LSDV estimator provides a consistent estimator of the coefficients on the time

varying varfables. Therefore, we can use it in the Hausman specification test for correlation

between the included variables and the latent heterogensity. The calculations are shown in
i0n 9.5.4, result @-42). Because there are three variables remaining in the LSDV equation,

e chi-squared statistic has three degrees of freedom. The reported value of 20.2 is far larger |

than the 85 percent critical value of 7.81, so the results suggest that the random effects model

is misspecified. Ha
Hausman and Taylor proceeded to reestimate the log gage equation using their proposed
estimator. The fourth and fifth sets of results in Tabl $-present the instrumental variable
estimates. The specification test given with the fourth set of results suggests that the proce-

dure has produced the desired result. The hypothesis of the modified random effects model |

is now not rejected; the chi-squared value of 2.24 is much smaller than the critical value. The
schooling variable is treated as endogenous (correlated with L) in both cases. The difference
between the two Is the treatrment of Unemployed and Experiénce. In the preferred squation,
they are included in x, rather than X1. The end result of the exercise is, again, the coeffi-
cient on schooling, which has risen from 0.0669 in the worst specification (OLS) to 0.2169
in the last one, a difference of over 200 percent. As the authors note, at the same time, the
measured effect of race nearly vanishes.

)
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Wi TABLE 72 Estimated Log Wage Equations _ :
L e Tom Variables . OLS GLS/RE  LSDV _ HT/IV-GLS HI/IV-GLS -~ ..
" x  Experience . 0.m32 0.0133 0.0241 0.0217
_(00011)%  (0.0017y  (0.0042)  (0.0031)
Bad health -0.0843 - =0.0300 -0.0388  -0.0278 ~0.0388
: (0.0412) (0.0363)  (0.0460)  (0.0307) (0.0348)
Unemployed -0.0015 ~0.0402  --0.0560 ~0.0559
Last Year {0.0267) (0.0207)  (00295)  (0.0246) :
Time NR> NR NR NR NR
X, Experience 0.0241
” (0.0045) _
Unempioyed —0.0560 I
{0.0279) '
z; Race —0.0853 -0.0878 —0.0278 -0.0175
(0.0328) (0.0518) (0.0752) (0.0764)
Union - 0.0450 0.0374 0.1227 0.2240
(0.0191) (0.0296) (0.0473) (0.2863)
Schooling 0.0669 0.0676
(0.0033) {0.0052)
Constant NR NR NR NR NR
z; Schooling 0.1246 0.2169
s (0.0434) (0.0979)
G, 0.321 0.192 0.160 0.190 0.629
p=+Jai/(62+02) 0.632 0.661 0.817
Spec. Test [3] 202 2.24 0.00

“Hstimated asymptotic standard errors are given in parentheses.
PNR indicates that the coefficient estimate was not reported in the study.

WZ8.2 DYNAMIC PANEL DATA MODELS —THE ANDERSON/HSIAO
AND ARELLANO/BOMS ESTIMATORS

A leading contemporary appli€ation of the methods of this chapter and Chapter 9 is
the dynamic panel data el, which we now write

Yo =X B+8y1+c+e

L. ~Strict exogeneity:
Homoscedasticity:

3. Nonautocorrelation:

4. Uncorrelated observations:

where the rows of the T %
dence. The “effects” ma

panels, bupt is a bit inconvenient. (It fivolves the placement of#eros at various plades
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detaited received surveys, such as Bannerjee (1999), Smith (-2000) and Bal g1 and Kao
00) to fill in the details. _

I1.8.2 &5~ CONSISTENT ESTIMATION OF DYNAMIC Y
PANEL DATA MODELS . ANDERSON AND HSTAc's é'ST'ImgT.,R

(17 ‘oo

A prefide 16 the MiTther develoPMENTs Of-Clrapters$2-amd=13 WE rettitn tra homoge-
neous dynamic panel data model, _ " -Go
Yo = ¥Yir-1 'h’d:ﬁ +ei e 9-67) .

where ¢; is, as in the preceding sections of this chapter, individual unmeasured hetero-

geneity, that may or may not be correlated with x;,. We consider methods of estimation

for this model when T is fixed and relatively small, and n may be Imge and increasing.
Pooled OLS is obviously inconsistent. Rewrite (Q‘Q‘E,_ It @o

,Vtr-"'}’}’xt 1+,;;ﬁ+wu m

The disturbance in this pooled regression may be correlated with Kit» but either way, it
is surely correlated with y;,_1. By substitution,

Coviyis-1. (& + )] = 0 + yCovlyis—2, (6 + )],
and so on. By repeated substitution, it can be seen that for |y| < 1 and moderately ;
large T, '
: , n-c/
Covlyir, @ + a)] ® o5 /(1= p). dL69)

[It is useful to obtain this result from a different direction. If the stochastic process that
is generating (v, ;) is stationary, then Cov{yi—1, ¢;] = Cov[yis—2,¢;). from which we

would obtain ) directly. The assumption |y| < 1 would be required for stationarity.
i l-é / e Will return to this subject in Chapters 20-and-24.] Consequently, OLS and GLS 2] anl 22

are inconsistent. The fixed effects approach does not solve The problem eifher. Taking
deviations from individual means, we have

. iz = Vo= it =X B+ ¥ (Y1 — i) + (€2 — ).
Anderson and Hsiao (1981, 1982) show that

(R - ~a2 [(T-1
— Cov[(i —TFi), (e ~F)] T jy)2 [( )

—Ty+yT
T

oy

T —y)? [

1yt
1-y)- T ]
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This does converge to zero as T increases, but, again, we are cons1dermg cases in which
T is small or moderate, say S to 15, in which case, the bias in the OLS estimator could
be 15 percent to 60 percent. The implication is that the “within” transformation does

" not produce a consistent estimator.

It is easy to see that taking first dlfferences is likewise ineffective. The first d1ffer- -
ences of the observations are y ..Q Z.

= Yig1 = (Xir — Xz 1)ﬂ+y(v¢ 11 = Yie-2) + (i — Eig-1). &)

As before, the correlation between the last regressor and the disturbance persists, so
OLS or GLS based on first differences would also be inconsistent. There is another
approach. Write the regression in differenced form as i

Ay = Axffﬁ“F YAYir-1 + Aey
or, defining xj*l = [A._ng AXI‘_'!.*l]’ s;'} =’Asi, and @ = 1;,8’ ¥
yzr - xzr (’ + 81:
For the pooled sample, beginning with ¢ = 3, write this as
AP N AT X

The least squares estimator based on the first differenced data is
1 - 1
W XM *

=@ -+ [.—1_xﬂfxi:| - 1 xl-r o)
T (T~ 3y (n(T 3)*

Assuming that the inverse matrix in brackets converges to a posmve definite matrix
that remains o be shown - the inconsistency in this estimator arises because the vector
in parentheses does not converge to zero. The last element is phm,,_m[l /(T = 3))]
}LEDY _3(y, 11 — Yir-2) (€ir — &i,—1) which is not zero.

" Suppose theré were a variable & such that phm[l/(gi(T 3))]z*'s = 0 and
plim{1/(n(T — 3))]z*X* +# 0. Let Z = [AX.z*}; z}, replaces Ayi, 1 in x" By this
construction, it appears we have a consistent estimator. Consider

v =ZXY"Zy".
- (Z'X')_IZ'(X‘B +8l)
= 0 + (eru)—llt .
Then, after multlpiymg throughout by 1/(n(T — 3)) as before, we find

Plim frv = 9.+ plim{{1/((T — 3NZ'X"[x 0,
f,'_ \

The variable z* is an instrumental variable, and the estimator is an mstrumental

"vanable estimator (hence the subscript on the preceding estimator). Finding suitable,

valid: instruments, that is, variables that satisfy the necessary assumptions, for models in
which the right-hand variables are correlated with omitted factors is often challenging.
In this setting, there is a natural candldate m fact, there are several. From @-743, we

J)-(p?.
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have at period ¢ =3

oy

yi3 =iz = (Xis — X2)'B + ¥ (2 — yin) + (&3 — €2).

We could use y;; as the needed variable, because it is not correlated &i3 —é&i2. Continuing

in this fashion, we see that for#'= 3,4, . ., T, y;,— appears to satisfy our requirements.
Alternatively, beginning from period ¢ = 4, we can see that z;, = (y;,_2 — ¥i,1—3) once
again satisfies our requirements. This is Anderson and Hsiao's (1981) result for instru-
mental variable estimation of the dynamic panel data model. It now becomes a ques-
tion of which approach, levels (yi;.2,¢ = 3, ..., T), or differences ir-2 — Yiea t =

Arellare (f‘l‘SQJ W_

W Qa l’\d

F...T) is a preferable approach¥Kiviet (1995) obtaing results that suggest that the
estimator based on levels is more efficient.

(11-69)

/a8

‘Hhis applicgtion has sketched the mgtRGA BT IMStrImentsd variables. 1here arg/nu-
merous aspectg'yet to be considered, ingluding a fuller deve pment of the assumptions,
the asymptotic distribution of the esj#mator, and what toAse for an asymptoti
ance matriy'to allow inference. W¢/ will return to the development of the
instrumenfal variables in Chaptep/12,

L ¥ L4

4
9.10\ SUMMARY AND CONCLUSIONS

Key Terpis and Congépt

The pigceding has shown a few of the extensions of the cigssical model that can be
obtained| when panel data are\available. In principle, apy 0f the models we have ex-
amined bafore this chapter and all those we will copsider later, including the multiple
equation mdgels, can be extended\in the same dy. The main agdvantage, as we noted
at the outset, I§ that with panel data)\one cagarformally modelthe heterogeneity across
groups that is tygjcal in microecono data,

We will find inZ\Chapter 10 that t6some extent thi§ model of heterogeneity can be
mudeading. What might have appeared at\one lev€l to be differences in the variances
of thaxdisturbances acxpss gre
associated with the coeffjet #ill'eensider this possibility in the next chap-
ter. We also examihe\some additiprfal modéls for disturbance processes that #fise
naturally in a multiple equitions cofitext but are actually more general cases-6f some
of the models 3¢ looked at eqrli¢t, such as the modd] of groupwise heterpstedasticity.

-/\{j ustment equatio

» FixeY] effects

+ Fixed wane!

e Group eans

* Group mdans estimate

¢ Hausman shecification test

East squares dummy
variable estimator

¢ Long run elasticity

* Long run multiplier

* Longitudinal data sets

* Autocorrelation
* Balanced pane

* Between grodps
+ Cluster estimator

e Contigdity * Heterogeneiy * Matrix weighted average

* Contiguity matrix HierarchicatTinear model * Maximum simulated

¢ £ontrasts e Hierarghical niodel likelihood estimator

* Dynamic panel data e Indivfdual effect * Mean independence
model . umental variable * Measurement error

* Minimum distance estimator
* Mixed model
* Mundlak’s approach

Instrumental variable
estimator
* Lagrange multiplier test

* Equilibrium multiplier
¢ Error components model
» First difference

P



