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d'Liog Wage Bquations .
OLS GLS/RE LSDvV

AV-GLS HI/IV-GLS  |-.. 0

- e 00132 0.0133 0, 0.0217
(0.0011)*  (0.0017) 0042)  (0.0031)
To =0.0843 " . 00300 -0.0388  —(.0278 ~0.0388
(0.0412) 3) © (0.0460)  (0.0307) 0.0

Unemployed —0.0015 -0.0560 ~0.0559

Last Year ©(0.0295) -{0.0246) .
Time _ NR NR NR
x2 Experience 0.0241
{0.0045)
Unemployed —0.0560 !
{0.0279)
—0.0853 —(.0878 -0.0175
(0.0328) (0.0518) (0.0752) (0.0764)
0.0450 0.0374 0.1227 0.2240

(0.0191)  (0.0296)

Schooling 0.0669

{0.0033)
Constant NR NR
z;  Schooling
o, 0.32 0.192 0.160
2= /al/(02+ o) 0.632
Spec, Test [3] 20.2

*Estimated asymptotic standard errors are given in parentheses. /
PNR indicates that the coetficient estimate was not reported in the udy.

N\ — EFFICTIENT ESTTrmpTLoN oF
.2.3 =258 DYNAMIC PANEL DATA MODELS L THE

ANETARELLANO/BOND ESTIMATSRS

. Aleading con'temporary application of the methods of this chapter an-ERam=e i
KT “the dynamic panel data model, which we now write
e i e v

L Oyt
i =X+ 8Yia1 +&i + 8it.
Several applications are described in Example 9’.1@ basic assumptions of the model

are ) l 'o m
1. Strict exogeneity: Ele;, [Xi,ei] =0, e
2. Homoscedasticity: Elef X, 1] = o2,

3. Nonautocorrelation: Eleyeis | Xi, ¢1] = 0if ¢ # 8,

4, Uncorrelated observations: E[g;e s | X0, X ¢ },-] =0fori # jandforallf ands,
58 143 Clogh ! : !

where the rows of the T x K data matrix X; are x{,. We will not assume mean indepen-

Bl

dence. The “effects™ may be fixed or random, so 'we allow

(See Section8.2.1.) We will also assume a fixed number of periods, 7, for convenience.
The treatment here (and in the literature) can be modified to accommodate unbalanced
panels, but it is a bit inconvenient. (It involves the placement of zeros at various places
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in the data matrices defined below and, of course, changing the terminal indexes in
summations from 1to T.)
The presence of the lagged dependent variable in this model presents a considerable

| obstacle to estimation, Consider, first, the straightforward application of assumption

Al3in Section 12-2r The compound disturbance in the model is (c, + s,,) The correla-

tion between i,y and (¢; + &, ) is obv1ouslynonzero because yi,;-1 =X;,_48 + 8yi—2 +
Ci +Eir-1: 2 ‘

Covlyis—1, (¢ + )] = of +8 COVIye,:-z. @ +ea]

If Tis large and —1 < § < 1, then this covariance will be approximately 62/(1 — 8). The

large T assumption is not going to be met in most cases. But, because & will generally be i
positive, we can expect that this covariance will be at least larger than o2. The implication

is that both (pooled) OLS-and GLS in this model will be inconsistent. Unlike the case

for the static model (§ = 0), the fixed effects treatment does not solve the problem.

Taking group mean differences, we obtain

Vit = Fi = (Koo =Ko + 81 — Fi) + (Eir — ). ﬁ‘
As shown in Anderson and Hsiao (1981, 1982), ‘

Tr—1 T5 + 8T
Cov[(g-1 — i) (s = F] ~ ; ¢ (1) n @5

This result is O(U/T), which would generally be no problem if the asymptotics in our
mode] were with respect to increasing 7' But, in this panel data model, T is assumed to
be fixed and relatively small. For conventional values of T, say 5 to 15, the proportional
bias in estimation of § could be on the order of, say, 15 to 60 percent.

Neither OLS nor GLS are useful as estimators. There are, however, instrumental
variables available within the structure of the model. Anderson and Hsiao {1981, 1982)
proposed an approach based on first differences rather than differences from group
means,

Vit — Yir-1 = K — Xie-1) B+ 8 (Vi1 — Yir—2) + 6 — -1

For the first full observation, 95
I - &3_‘
Y3 — Yo = (X3 — Xn) B +8(v2 — yn) + &3 — &2, 12-3
the variable y;; (assuminginitial point ¢ = (is where our data generating process begins) .
satisfies the requirements, because &, is predetermined with respect to (g;3 —&;2). [That v

is, if we used only the data from periods 1 to 3 constructed as in (}2-32), then the
instrumental variables for (y;» — y;1) would be :Zi(3) where 2i3) = (¥1,1, Y21, . . - » Yu,1) TOT
the n observations.] For the next observation, ' '

Yia — Yi3 = (% — %i3) B + 8(¥i3 — yi2) + €ia — €3, ﬁ
variables yiz and (y,-z — vi1) are both available. I-t—t-hen_becmne.s_a.qnes&eg-mhet-her

Bl L=t et i

\I—Q,g

Based on the precedmg paragraph one rmght begm to suspect that thcre is, in fact,
rather than a paucity of instruments, a large surplus. In this limited development, we have
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achoice between differences and levels. Indeed, we could use both and, moreover, in any
period after the fourth, not only is y; available as an instrument, but so also is y;1, and so
oon, This is the essential observation behind the Arellano, Bover, and Bond (1991, 1995)

" estimators, which are based on the very large number of candidates for instrumental

variablesin this panel data model. To begin, with the model in first differences form, for

| _¥i3— Y2, variable y; is available. For yi4 — i3, yit and y; are both available; for y;s — 4,

we have yi1, ¥z, and ys, ete. Consider, as well, that we have not used the exogenous

- variables. With strictly exogenous regressors, not only are all lagged values of y;; for's

previous to £ — 1, but all values of x;, are also available as instruments, For example, for
Yi4 = Vi3, thecandidates are y;1, yiz and (%}, Xl . . ., X{7) for all T'periods. The number of

-~ candidates for instruments is, in fact, potentially huge. [See Ahn and Schmidt (1995) for
. averydetailed analysis.] If the exogenous variables are only predetermined, rather than

strictly exogenous, then only E[sy | X, Xie—1, - - -, Xu] = 0, and only vectors  X;5 from

- 1to £ —1 will be valid instruments in the d1fferenced equation that contains &;; — ;1.

{See Baltagi and Levin (1986) for an application.] This is hardly a limitation, given that
in the end, for a moderate sized model, we may be considering potentially hundreds or
thousands of instrumental variables for estimation of what is usually a small handful of
parameters. '

We now formulate the model in a more familiarform, so we can apply the instru-
mental variable estimator. In terms of the differenced data, the basic equation is

Vit = Yia-1 = (K1t = Xit-1) B + 8 (g1 — Yie2) + & — Eie-1,
| ¥
1-64
Ay:r (Axu) B+ 5(A){,:,;_1) + Agy, (B2-34)

where A is the first difference operator, Ag; = a; — @, for any time-series variable (or
vector) 4;. (F should be noted that a constant term and any time-invariant variables in

or

Xy, will fall out of the first differences. We will recover these below after we develop the

estimator for 8.) The parameters of the model to be estimated are § = (', 8y and o2.
For convenience, write the model as

o =K+ By
We are going to define an instrumental variable estimator along the lines of (#2«8) and

(¥2=9). Because our data set is a panel, the counterpart to &-9
¥-10
ZX = Z.;,‘; @2-35)
‘ N-b§T%
in the cross-section case would seem to be
n T n
ZX=D ) mky =) 2K @236
i=1_i=3 ==l 1 —6LA "
A_.YM , ii _ Ax, 4 Ay,-3 ‘

=
il

A}’@ AX iT Ay; T—
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where there are (T.— 2) observations (rows) and K + 1 columns in X;. There is a

A complication, however, in that the number of instruments we have defined may vary by

Sy !'-1‘(,6_ ~period, so the matrix computation in (¥2=36) appears to sum matrices of different sizes.

Consider an alternative approach. If we used onlythe first full observations defined

—Gq in (¥2-34), then the cfoss-section.version would apply, and the set of instruments Z in
(1-2-35-) w1th strictly exogenous variables would be the A x (I + KT) matrix

e _—
‘l - ﬁ'ﬁ' . yl,l’i§1,1’="x‘1|2, v .'ﬁ’}‘ k =
Vo1 X010 Ko s e xéT

Ly = . =,
Int Kot ¥nzo - BT 2-9
and the instrumental variable estimator of ( would be based on
Xi3—Xi2 Na-— M3 13— Nz
- "33 X5 )’24 Y23 N Y3 =Y
Ko = A Ol
-x-::'l_.?a X:, 2 Yna yn 3 Yr3 = Yn2

The subscript “(3)” indicates the first observation used for the left-hand side of the
equation. Neglecting the other observations, then, we could use these data to form
the IV estimator in (12-8), which we label for the moment 81y Now, repeat the

g ‘”‘1 construction using the next (fourth) observation as the first, and, again, using only a
single year of the panel. The data matrices are now

(%14~ K3 N3~ Y2 Y14 — M3

R ®a4—Xo3 JN3—2| Y4 — 23
X = ; : ey = : ;and

| X74 —Xn3 Y3 — Yn2 Y4~ Yn3 -G+
- , (239
N Y2 ¥ K2 BT ' @

+
VLY X1 K2 KT

' | AP "

\ J er dio LA .
| KT 1S DE I
and we have asecond I'V estimator, 81y, also based on nobservations, but,now,2 + KT ‘ '

instruments. And so on. 7/¢¥ .
We now need to reconcile the 7—2 estimators of § thatfve have constructed, f1v ),

dvw, - ... Frvery. We faced this problem in Section where we examined Cham-
 berlain’s formulation of the fixed effects model. The minimum distance estimator sug-___ Jj. \D
gested there and used in Carey’s (1997) study of hospital costs in Example 186 provides
a means of efficiently “averaging” the multiple estimators of the parameter vector. We 13
7+ will (as promised) return to the MDE in Chapter }5. For the present, we.¢o T11S1der &/
* " instead, Arellano and Bond’s (1991) {and Arellano and Bover’s (1995)] agp:mm to e
this problem “We will collect the full set of estimators in a counterpart to (; an L "5,-,‘“3
1-9-2‘1‘) First, combine the sets of instruments in a single matrix, Z, where for each
- individual, we obtain the (7 —2) x Lmatrix Z;. The definition of the rows of Z; depend
-S54 on whether the regressors are assumed to be strictly exogenous or predetermined. For

! '
LIl Y2 Xn 1 ¥n20 - KuT
[ o
chap s
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strictly exogenous variables,

. yll’x:l’ ki2s - X;)T O cre 0 _'h‘
= ] Y Yo xrjlxgzxir ey 0 , B
0 S R ol ‘ J’t,n)’f.zv-«-»yxr- x:l X2 ":T 1

and L = E,T:f(z +TK)y =T -2(T-1)/2 + (T 2)TK. For oniy predetermmed
variables, the matrix of instrumental variables is

Vi X5, 10802 0 e 0
7 = -0 Yo Yo KXo Xig - 0
= ' - ,

Q 0 yi,l’-)_’i,z""'sz—Z’ 11’xe2’-‘axlr

a3 n—es'l,

and L= (1 (K4+1D)+K) = [(T-20(T-1)/2](1 + K) + (T ~2) K. This construction

does prohferate instruments (moment conditions, as we will see in Chapter ¥y Tnthe | 13
application in Example #2-8; we have a small panel with only T = 7 periods, and we
T \i 7 fit a model with only K = 4 regressors in x;,, plus the lagged dependent variable. The
* strict exogeneity assumption produces a Z; matrix that is (5 x 135) for this case. With
only the assumption of predetermined xi, Z collapses slightly to (5 x 95). For purposes
of the illustration, we have used only the two previous observations on  Xis- This further

reduces the matrix to
PR AT xfz 0 e 0
7= 0 Yits Vi Xi2: Xy oo 0 ’
:0 0 e Y Yioe e ’J’a T—Z' i, T2 ¥’ -1 7

e

which, with T = 7 and X = 4, will be (5 x 55). [Baltagi (2005, Chapter 8) presents

some alternative configurations of Z; that allow for mixtures of strictly exogenous and

predetermined variables.] b= 3,1{3
Now, we can compute the two-stage least squares estimator in (#2-8) using our,

definitions of the data matrices Z;, X, , and,§; and (32-36). This will be
1 e il -'é-

r n 1 son B
b= KZXZ) (Z.z:,zi) (EZX)J
=1 i1 =1 "9

x[(Z}XZ) (ézzl) (gz)} | &;g?

The natural estimator of the asymptotic covariance matrix for the estimator would be, ..

n \-1/n 7 i ..'].O
Est. Asy. Var EIV = &2 X'Z, Z\Z; Z'X;
Ag e b WdiA
el i=1

o (a-40)

D)
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where = o
: 52 == E?:l 2:1;3.[(}&': — Yii—1) ~— (Xt —_,xi,_g—l):@ -,-Vg(yf_,_l - ,Vi,a-z)]z (M[ - T
= . - Ae T . . - _n(T—2) : + -
However, this variance-estimator is likely to understate the true asymptotic variance
because the observations are autocorrelated for one period; Because e — Yie-1) = E]

K+ (Eir — 6i,0-1) =X}, 0.+ iz,

COV['U_in U_i,r—l] = COV[U;:;. 1{i,x+1] = "092-

. . ) | -3}
Covariances at longer lags or leads are zero. In the differenced model, though the ! oy 1

disturbance covariance matrix is not crfl, it does take a particularly simple form. i o aaptle
&3 = &2 2 -1 0 ... 0 19 | 1= ave
&i4 — £i3 -1 2 -1 ... 0 i —-?L '||I O
Cov 8i_,5 — &4 = G’g ) -1 2 P 0 — aﬁgj‘ (H_“) N K
. T |
E,T — &iT-1/ 0 0 ... -1 2
= - /’_"\ \ 1_1‘

The implication is that the estimator in (+2-4F) estimates not o2 but 262, However,
_ simply dividing the estimator by two does not produce the correct asymptotic covariance
e matrix because the observations themselves are autocorrelated. As such, the matrix in g4

i - *1»0-—_7?2-40) is inappropriate. (We encountered this issue in Theorem 8T and in Sections 523, q )
843, and $3.27) An appropriate correction can be based on the counterpart to the White b

94,7 cstimator that we developed ineShmFERG in (8:3). For simplicity, let
-~

n n e ]
i=1 - i=1 i=1

i 3.2 é\=

n

Then, a robust covariance matrix that accounts for the autocorrelation would be

i=1 el

i=1

1-33 W12

n n -l sy n 1 s
A [(ZX,Z) (ZZZ) (szjz) (ZZZ) (EZX)] A
' o S A =1 /)
- ¢

33

[One could also replace the §; ¥} in (12-43) with 628, in (#2-42) because this is the known

expectation.] W& (o

It will be useful to digress brieﬂy and examine the estimator in (¥2=39). The compu-
tations are less formidable than it might appear. Note that the rows of Z; in ($2-38a,b,c)
are orthogonal. It follows that the matrix T M-687/

l_’(.
74 EF=>"77;
W-69 i=1

in (32-39) is block-diagonal with T — 2 blocks. The specific blocks in F are

.n-
r
F ="z,

i=1
= ZyZo,
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i for t = 3,..., T. Because the number of instruments is different in each penodf—see
=63 ( )—these blocks are of different sizes, say, (L, x L,). The same construction shows
©o - . that the matrix ¥ .+, X’Z, is actually a partitioned matrix of the form

Z‘f{;z, {szm X(4)Z(4) v anzm] ,
=1
where, again, the matrices are of different sizes; there are T — 2 rows 1n each but the
number of columns differs. Tt follows that the inverse matnx (E )”1 is aIsof
block-diagonal, and that the matrix quadratic form in (1 can be wrltten : &/
§ 1 (229 U-69
"o [ , B L. » 3
(Z-XE-Z‘) (ZZ:Z‘) (Z%LX*) = Z (Z‘En.%) (ZwZa) ™ (ZinXo)
i=1 ' =1 T Vi=1 =3 7 -
T
! B
= (X(@)?S‘.‘J.)
b
T
=3 Wo.
1=3
[see (/1.2-8) and the preceding result]. Continuing in this fashion, we find
/ n - I
(Zﬁ 1% ) (Z z!z,) (Z Zy: ) Z (oYm
¥-9 i=1 i=1
From (12-9), we can see that
ﬁ’ h{ (X X )) o1y :
Ay = (t ¢l
%70 o 0 Ol g
' = Wl -9

Combining the terms constructed thus far, we find that the estimator in (2239 can be
written in the form

r  \"/z
b = (Z-W@)) (ZW(I)..GIV(!))

£=3 =3
T
- ZE(:}QW(}) f
1=3
where

T -1 r
Ry = (Z YY(:}) Wiand ) Ry =1L
=3 =3

In words, we find that, as might be expected, the Arellano and Bond estimator of
the parameter vector is a matrix weighted average of the T — 2 period specific two-stage
least squares estimators, where the instruments used in each period may differ. Because
the estimator is an average of estimators, a question arises, is it an efficient average—are

the weights chosen to produce an efficient estimator? ’Fh*s-m-preetsely—the-quasﬂwﬁbat—
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; — R eng : : de Perhaps not
surpnsmgly, thc answer for thlS Q is no; there is a more ef.ﬁclent set of weights that can

* be constructed for this model. We will assemble them when we examine the generalized

method of moments estimatorin Chapter 15~ 13 | (4

There remains a loose end in the preceding. After (¥2-343, it was noted that this
treatment discards a constant term and any time,invariant variables that appear in the
model. The Hausman and Taylor (1981) approach developed in the preceding section
suggests a means by which the model could be completed to accommodate this possi-

bility. Expand the basic formulation to include the time-invariant effects, as M

Yit =Xy B+ 8y + 2 +,t‘;y +i + £ip,

where f; is the set of time-invariant variables and y is the parameter vector yet to
be estimated. This model is consistent with the entire preceding development, as the

t-6o

component & + f{y, would have fallen out of the differenced equation along with¢; at | (/'
the first step at (12-38). Having developed a consistent estimator for @ = (8, ), we gt Ak
now turn {o estimation of (e, p’Y. The residuals from the IV regression (¥2-39), |- ! ‘I e
} - é 752 e W [ Y
Wi =, ?F_,-;ﬁ v S_U_/)’i,r—l \ ? J I
are pointwise consistent estimators of
Wiy =& +ffy +Li + én.
'Thus, the group means of the residuals can form the basis of a second-step regression; g'
w,--oz+f e+ +n WH’?

where n; = (W;. — @;.) is the estimation error that converges to zero as @ converges
to 8. The nnphcatlon would seem to be that we can now linearly regress these group
mean residuals on a constant and the time, invariant variables f, to estimate o and
y. The flaw in the strategy, however, is that the initial assumptlons of the model do

‘not state that ¢ is uncorrelated with the other variables in the model, including the

implicit time invariant terms, f;. Therefore, least squares is not a usable estimator here
unless the random effects model is assumed, which we specifically sought to avoid at
the outset. Asin Hausman and Taylor’s treatment, there is a workable strategy if it can
be assumed that there are some variables in the model, including possibly some among
the f, as well as others among Xi: that are uncorrelated with ¢; and ;.. These are the

%1 and x; in the Hausman and Taylor estimator (see Step 2 in the development of the

precedmg section). Assuming that these variables are avallable—thls is an identification
assumption that must be added to the model-- ‘then we do have a usable instrumental
variable estimator, using as instruments the constant term (1), any variables in f; that
are uncorrelated with the latent effects or the disturbances (call this !’,1) and the group
means of any variables in Xir that are also exogenous. There must be enough of these

to provide a sufficiently large set of instruments to fit all the parameters in (W“ I

This is, once again, the same identification we saw in step 2 of the Hausman and Taylor
estimator, K;, the number of exogenous variables in x;, must be at least as large as
L, which is the number of endogenous variables in f, ‘With all this in place we then
have the instrumental variable estimator in which the dependent variable is Wi, the
right-hand-side variables are (1, f;), and the instrumental variables are (1, fi1, X1. b

Uiy
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\ There is yet another direction that we might extend this estimation method. In
‘ ’:" , we have implicitly allowed a more general covariance matrix to govern the
' generatlon of the disturbances ¢;; and computed a robust covariance matrix for the
' simple IV estimator. We could fake this a step further and look for a more efficient
estimator. As a library-of recent. studies have shown, panel data sets are rich in in- (15 |
formation that allows the analyst to sPecn'-y Inghly general models and to exploit the :
implied relationships among the variables to construct much more efficient generalized
-~ method of moments (GMM) estimators, [See, in particular, Arellano and Bover (1995)
Vi and Blundell and Bond (1998).] We will return to this development in Chapter 157

ii-15 Example"H&8 Dynamic Labor Supply Equation \3
In Example 28, we used instrumental variables fit a iabor supply equation, . 1
<€.5 s Wesyt = y1 + yoIn Wagey, + ys Ed; + s Uniong, + vs Fem; + ;. :

To illustrate the computations of this section, we will extend this mode! as follows:

Whsye = g1In Wagey; + B2 Uniom: + 8 Occit + Pa EXpye + 8 Wksi 41
+o + v Edy + y2 Femy +.0 + &

(We have rearranged the variables and parameter names to conform to the notation in this
section.) We note, in theoretical terms, as suggested in the earlier example, it may not be
appropriate to treat In Wage, as uncorrelated with g or ¢;. However, we will be analyzing the
model in first differences. It may weli be appropriate to treat changes in wages as exogenous.
That would depend on the theoretical underpinnings of the model. We will treat the variable
as predetermined here, and proceed. There are two time-invariant variables in the mode,
Femy, which is clearly exogenous, and [Ed;, which might be endogenous. The identification .
requirement for estimation of (a, 14, y2) is met by the presence of three exogenous variables,
Uniony, Ocey, and Expy, (K =3 and Lz = 1),
The differgnced equation analyzed at the first step is

AWks); = ﬂ1 Aln Wage,, + ﬂzAUﬂ_lOﬂu + _BsAOCCn + ﬂ4AExp“ +8AWKS s 1 + &it. | &
- one M-69
FEN™ We estimated the parameters and the asymptotic covariance matrixaccording to { ) and ;
/ 12-43). For specuﬂcaﬂon of the instrumental variables, we used the previous observatio

N on x;;, as shown in the text.¥¥ Table presents the computations with several other . 12
- inconsistent estimators. % i\__m 1.9,
= The various estimates are quite far apaff. In the absencd of the common effects land

= autocorrelation of the disturbances), all five estlmators shown would be consistent. Given ﬂZé
the very wide disparities, one might suspect that common effects are an important feature of i
the data, The second standard errors given with the IV estimates are based on the uncorrected

atrix in ) with 62, in (12<4T) divided by two. We found the estimator to be quite volatile,

Il and, in fact produces mplausibie results. One possible explanation in this particular example
11 - &R, " isthat the instrumental variables we are using are dummy variables that have relatively little
variation over time.

o ~ 13
2—6 % This estimator and the GMM estimators in Chapter 28%re built into some contemporary computer programs,
N incloding NLOGIT and Stata. Many researchers use Gauss programs that are distributed by M. Arellano,
~ http:/fwrww.cemfies/% 7Earellano/#dpd, or program the calculations themselves using MatLab or R. We have
programmed the matrix computations directly for this application using the matrix package in NLOGIT.
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, with means fgx and

), T is diagonal. [In the
) A in (9-55).] The mod
was 'estl ated using a_ modmcatao of the Hildreth-Houck-S: amy method describe

88 NONSTATIONARY DATA AND PANEL DATA MODELS

Some of the discussion thus far (and to follow) focuses on “small T” statistical results.
Panels are taken to contain a fixed and small T observations on a large n individual
units. Recent research using cross-country data sets such as the Penn World Tables

L) (httpi//pwt.econ.upenn.edu/php_site/pwt_index.php), which now include data on nearly

200 countries for well over 50 years, have begun to analyze panels with T sufficiently
large that the time-series properties of the data become an important consideration. In

" particular, the recognition and accommodation of nonstationarity that is now astandard

O So o

part of single time-series analyses (as in Chapter22yare now seen fo be appropriate for
large scale cross-countrystudies, such as income growth studies based on the Penn World
Tables, cross-country studies of health care cxpendlturr-:,. and analyses of purchasing
power parity.

The analysis of long panels, such as in the growth and convergence literature, typ1—

‘ cally involves dynamic models, such as ’

Yir = @ + Viyie-t + Xy + . i

In singIe time-series analysis involving low-frequency macroeconomic flow data such
as income, consumption, investment, the current account deficit, ete;, it has iong been
recognized that estimated regression relations can be distorted by nonstationarity in the
data. What appear to be persistent and strong regression relationships can be entirely
spurious and due to underlying characteristics of the time-series processes rather than
actual connections among the variables. Hypothesis tests about long-run effects will
be considerably distorted by unit roots in the data. It has become evident that the
same influences, with the same deletarious effects, will be found in long panel data
sets, The panel data application is further complicated by the possible heterogeneity
of the parameters. The coefficients of interest in many cross-country studies are the

m enumeration appears in Baltagi (2005, Chapter 12).

3‘?, Anextensive.

lagged effects, such as y; i (9%66), and it is precisely here that the received results
on nonstationary data have revealed the problems of estimation and inference. Valid
tests for unit roots in panel data have been proposed in many studies. Three that are
frequently cited are Levin and Lin (1992), Im, Pesaran, and Shin (2003) and Maddala
and Wu (1999).

There have been numerous empirical applications of time series methods for non-
stationary data in panel data settings, including Frankel and Rose’s (1996} and Pedroni’s
{2001) studies of purchasing power parity, Fleissig and Strauss (1997) on real wage sta-
tionarity, Culver and Papell (1997) on inflation, Wu (2000) on the current account bal-
ance, McCoskey and Selden (1998) on health care expenditure, Sala-i-Martin (1996) on
growth and convergence, McCoskey and Kao (1999) on urbanization and production,
and Coakely et al. (1996) on savings and investment. S
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A subtle probiem arises in Wsum useful for characterizing the properties . L
.. of estimators of the model in . The asymptotic results based on large n and large
'_T are not necessarily obtainable simultaneously, and great care is needed in deriving
7% the asymptotic behavior of useful statistics. Phillips and Moon (1999, 2000) are standard
references on the subject. - - 73
We will return to the topic of nonstationary data in Chapter3Z. This is an emerging
literature, most of which is well beyond the level of this text. We will rely on the seveiral
oy detailed received surveys, such as Bannerjee (1999), Smith (2000), and Baltagiand Kao
' (2000} to fill in the details. —

9.9 CONSISTENT ESTIMATION OF DYNAMIC

PANEL DATA MODELS

As prelude to the further developrhents of Chapters 12 and 13, we return to a homoge-

neous dynamic panel data mo
Vi = ¥Yir-1 + X, B+ ¢ + £y, 9-67)

where ¢; is, as in the prgdeding sections of this chapter, individual unmeasured hetepd-

geneity, that may or paly not be correlated with x;;. We consider methods of estimafion

for this model wher T is fixed and relatively small, and n may be large and incpéasing,
Pooled OL9As obviously inconsistent. Rewrite (9-67) as

Vit =¥ Yiao1 F X8+ wi. (9-68)

The distupbance in this pooled regression may be correlated with x;, Jut either way, it
is surelyCorrelated with y;,_;. By substitution,

CoV[yim, (¢ + gi)) = ol + yCovlyi,.a. (¢ ¥&:0)],

apd so on. By repeated substitution, it can be seen that fi l¥| < 1 and moderately
arge T, . :

Covlyii-1, (e + &:)] = a2pd — y). ~(9-69)

[t is useful to obtain this result from a different grection. If the stochastic process that
is generating (v, ¢;) is stationary, then Coviyi 1. ¢;] = Coviy; -3, ¢;], from which we
would obtain (9-69) directly. The assumptigr || < 1 would be required for stationarity.
We will return to this subject in Chaptefs 20 and 21.] Consequently, OLS and G

are inconsistent, The fixed effects apprbach does not solve the problem either. Taldng
deviations from individual means, wé have

Anderson and Hsiao (1981,4982) show that

’ . T-1)—-T
CovlOie /3.0 (81 — 1)) (1 iﬁ}’)z [( 7

T T(-y
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h.9 NuNLIHEn'%; i EDATAAE - \
2%2@553:' ON The extension of the panel data models o#=EHEptE"D to the nonlinear regression case '
Wy CAVLL is, perhaps surprisingly, not at all straightforward. Thus far, to accommodate the non-

DATA linear model, we have generally applied familiar results to the linearized regression. 11.3.3
This approach will carry forward to the case of clustered data. (See Section W
fortunately, this will not work with the standard panel data methods. The nonlinear
regression will be the first of numerous panel data applications that we will consider
in which the widsom of the linear regression model cannot be extended to the more
general framework.

11.X.1 A ROBUST COVARIANGE MATRIX FOR NONLINEAR
LEAST SQUARES P

oo The counterpart to (§-3) or (9°4) would mmpl{replace X; with X? where the rows are the
pseudoregressors for cluster i as defined in ($4-9) and «*” mdlcates that it is computed
using the nonlinear least squares estimates of the parameters.

V. Example Y8 Heatth Care Utilization
) The recent literature in health economics includes many studies of health care utilization. A
(4 ‘ . ; .
commaon measure of the dependent variable of interest is a count of the number of encounters
with the health care system, either through visits to a physician or to a hospital. These
counts of occurrences are usually studied with the Poisson regression model described in

y'The nonlinear regression model is’
ar . Ely 1] = exp(x;p).

. "
g"’e‘“’ A recent study in this genre is “Incentive Effects in the Demand for Health Care: A Bivariate
Pane} Count Data Estimation” by Riphahn, Wambach, and Million (2003). The authors were
interested in counts of physician visits and hospital visits. In this application, they were par-
ticularly interested in the impact that the presence of private insurance had on the utlilzatuon
counts of interest, i.e:, whether the data contain evidence of moral hazard. 'L' L ™
The raw data are publlshed on the Joumal of Applied Econometrics data archive wet;sete't ykt)
| The URL for the data file is hitp://qed.econ. queensu. ca/jae/2003—v18 4/riphahn- bach- 1
million/. The variables in the data file are listed in Appendix Table E34-f. The sample is an r :l' l
unbalanced panel of 7,293 households, the German Sociceconomic Panel data set. The
number of observations varies from one o seven (1,525; 1,079; 825; 926; 1,311; 1,000; 887}
with a total number of observations of 27,326. We will use these data in several examples
here and later in the book.
The following model uses a simple specification for the count of number of visits to the
physican in the observation year,

o 1=s

Xt = (1, agey, educy, incomey:, kids;)
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Utilization Equation

).f 9 TABLE 1 5 Nonlinear Least Squares Esfimatésofa ™

Begin NLSQ jterations. Linearized regression.

-Tteration = 1; Sum of squares = 1014865.00; Gradient = 156281.794
Iteration = 2; Sum of squares. = 8995221.17; Gradient = 8131951.67
Iteration = 3; Sum of squares = 1757006.18; Gradient = 897066.012
Iteration = 4; Sum of squares = 930876.806; Gradient = 73036.2457
Iteration = 5; Sum of squares = 860068.332; Gradient = 2430,80472
Iteration = 6;. Sum of squares = 857614,333; Gradient = 12.8270683
{teration = 7; Sum of squares = 857600.927; Gradient = (.411851239E-01 .
Iteration = 8; Sum of squares = 857600.883; Gradient = 0.190628165E-03

" Iteration = 9; Sum of squares = 857600.883; Gradient = (.904650588E-06
Iteration = 10; Sum of squares = 857600.883; Gradient = 0.430441193E-08
TIteration = 11; Sum of squares = 857600.883; Gradient = 0.204875467E-10

Convergence achieved
Variable Estimate Srandard Error Robust Standard Error
Constant 0.9801 0.08927 401413, 0.125212
Age 0.01873 0.001053 481167 0,00 142
Education —-0.03613 0.005732 ~48688 © . 00"} 80
Income ~0.5911 0.07173 6HEEZ—pn . 09} 02
Kids —0.1692 0.02642 4 ~.02 230

13

151
Table 11-8details the nonlinear least squares iterations and the results. The convergence cri-
terion for the iterations is @ X°(X%X") X%e® < 10-. Although this requires 11 iterations, the
function actually reaches the minimum in seven: The estimates of the asymptotic standard
errors are computed using the conventional method, s2(X*X% ~! and then by the cluster cor-

rection in (8-4). The corrected standard errors are considerably larger, as might be expected

given that these are panel data set.
¢ ou
11.X.2 FIXED EFFECTS

The nonlinear panel data regression model would appear
Y =PXe, By + it =1,...,F,i=1,....n

Consider a model with latent heterogeneity, ¢;. An ambiguity immediately emerges;
how should heterogeneity enter the model. Building on the linear model, an additive
term might seem natural, as in

R
Yir_ =k(|_xz._;,~€) + ¢ + 8;‘;_,_{ = 1, R _?;, I = 1, - ,_?_?. (1’1‘32)

But we can see in the previous application that this is likely to be inappropriate. The
loglinear model of the previous section is constrained to ensure that E[ Yit | Xie]is positive. |

But an additive random term ¢; as in ( could subvert this; unless the range of ¢; |
_is restricted, the conditional mean could be negativeThe most common application of

nonlinear models is the index function model, =3¢

Yie = h(xf_,B +ci} + e .I

| j'”_.' il

1-23) |
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S L]
"l

This is the natural extension of the linear model, but only in the appearance of the con-
ditional mean. Neither the fixed effects nor the random effects model can be estimated

as they were in the linear casegi

Consider the ﬁxed effects. model first. We would write this as

y:t "".h.(,x_irﬁ_'l' a_!!) + Eits

where the parameters to be estimated are §and a;, =1, ..., n. Trapsforming the data

to deviations from group means does not remove the fixed effects from the model For
example, -

. ¥ )
1 & h --?-Q-
it =T =hEB o) — = 3 hK +a), 33

"'.- =1

which does not simplify things at all. Transforming the regressors to deviations is like-
wise pointless. To estimate the parameters, it is necessary to minimize the sum of squares
with respect to alln + K parameters simultaneously. Because the number of dummy
variable coefficients can be huge-~the preceding example is based on a data set with
7,293 groups;~-this can be a difficult or impractical computation. A method of maximiz-
ing a function (such as the negative of the sum of squares) that contains an unlimited

number of dummy variable coefficients is shown in Chapter 287As we will examine later
in the book, the difficulty with nonlinear models that contain large numbers of dummy
variable coefficients is not necessarily the practical one of computing the estimates.
That is generally a solvable problem. The difficulty with such models is an intriguing
phenomenon known as the mcldental parameters problem. In most (not all, as we shall
find) nonlinear panel data models that contain n dummy variable coefficients, such as
the one in (33-33), as a consequence of the fact that the number of parameters increases

I1-FF

with the nunjber of individuals in the sample, the estimator of 8 is biased and incon-

sistent, to a degree that is O(1/ T). Because T is only 7 or less in our application, this
would seem to be a case in point.

IR &
I+

Example Exponential Model with Fixed Effecits
The exponential model of the preceding example is actually one of a small handful of known

special cases in which it is possible to “condition” out the dummy variables. Consider the
sum of squared residuals,

n T
R
Si=5_ > lm—exp(xB+e)P.

=1 f=1

The first order condition for minimizing S, with respect to o is

n-38
30# Z Dt — exP(X:8 + ) ]exp(xi;8 + o) = (4-34)

1=1

Let y = exp(ey). Then, an equivalent necessary condition would be

Z [yie — 1 €x0(x;,8) [ 6xD(X; B)] =
t=1

' . 1)

II_,I ."FI K=
L]
\

i

— 17 &
'| H’L (KT

il " :,"‘.ll

|||':"l|.|:i“h:' Fi &k
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1 Red

-39

3

ar

] T
Yy eexp(X B =1 Y lexp(x,B)F.
=1 =1 -
Obviously, if we can soive the equation for 7, we can obtain ¢ = Iny. The preceding equation
can, indeed, be solved for y, at least conditionally. At the minimurn of the sum of squares, it
will be true that ' _ __l.‘ '
n-9g o Ty () R Tk s
" Y= T Tavrdet AV2 (#1-35)
\ l-'l: X Zt=1 [exp(.-x;fﬁ).] - .
We can now insert (11=35) into ( to eliminate «;. (This is a counterpart to taking devi-

ations from means In the linear case. As noted, this is possible only for a very few special !
models;-this happens to be one of them. The process is also known as “concentrating out”

|
the parameters y,. Note that at the solution, 5, is obtained as the slope in a regression with- |'( ._"_‘ ‘)
). o

out a constant term of y on 2 = exp(x;, 8} using T, observations.) The result in (

must hotd at the sglution. Thus, inserted in (11-34) restricts the search for 8 to those

values that satisfy the restrictions in"44-35}. The resulting sum of squares function is now

/ a function only of the data and 8, and can be minimized with respect to this vector of K.
parameters. With the estimate of 8 in hand, & can be estimated using the log of the resuit in

: (#4385} (which is positive by construction).

SR &
The precedmgapreélants a mixed picture for the fixed effects model. In nonlinear

cases, two problems emerge that were not present earlier, the practical one of actually
computing the dummy variable parameters and the theoretical incidental parameters
problem that we have yet to investigate, but which promises to be a significant shortcom-
ing of the fixed effects model. We also note]we have focused on a particular form of the
model, the “single index” function, in which the conditional mean is a nonlinear func-
tion of a linear function. In more general cases, it may be unclear how the unobserved
heterogeneity should enter the regression function.

11.X.3 RANDOM EFFECTS

The random effects nonlinear model also presents complications both for specification

Lt

and for estimation. We might begin with a general model - 3_0
Yie =h(%i, B, w) + 6. +36)
The “random effects” assumption would be, as usual, mean independence,
Efu; | Xi]=0.
Unlike the linear model, the nonlinear regression cannot be consistently estimated b -'7'9 o
(nonlinear) least squares. In practical terms, we can see why in (H=SJ3 Inthe %>

linearized regression, the conditional mean at the expansion point 8° [see (H-5)] as 328
o ad

well as the pseudoregressors are both functions of the unobserved y;. This is true in the
general case (31=36)as well as the simpler case of a single index model,
___—-/

e
i = B+ 1) + i (h-21)
Thus, it is not possible to compute the iterations for nonlinear least squares. As in the
fixed effects case, neither deviations from group means nor first differences solves the
problem. Ignoring the problem-—that is, simply computing the nonlinear least squares
estimator without accounting for heterogeneity;—does not produce a consistent estima-
tor, for the same reasons. In general, the benign effect of latent heterogeneity (random
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effects) that we observe in the linear mode! only carries over to a very few nonlinear

models and, unfortunately, this is not one of them. e
\h approach that can be used, albeit af the cost © onal assumption, is the L

" simulation based estimator in Sectlon 9.87. If we assume that i; is normally distributed

with mean zero and varianice o2 the an analog to (9-57) for least squares would be

[ -8
(H-37)

function, (H=37) wodld actually be the extension g#{9-57) to a nonlinear regression
function. The rangém parameter vector there is spécialized here to a nonrandom con-
stant term.]

-3

—

11.8 SUMMARY AND CONCLUSION

In this chapter, we extended the regression el to a form that allows nonlinearity
in the parameters in the regression functio e results for interpretation, estimation,
and hypothesis testing are quite similar $6 those for the linear model, The two crucial
differences between the two models azé, first, the more involved estimation procedures
needed for the nonlinear mode! apd; second, the ambiguity of the ipt€rpretation of the

nonconstant, in contrast to thdse in the linear model). Finally;we added an additional
level of generality to thenodel. Two-step nonlinear least squares is suggested as a
method of allowing a ions of previously estimated
parameters. _

e Jacobian ¢ Overidentifying restrictions
. Pseudoregxess S

» Ideditification condition » Logit

cidental parameters
problem ¢ Nodilinear regression model
» Index function model « Mormalization
» Indirect utility function Nonlinear least squares

* [teration ¢ Orthogonality condition
xercises
—

1. Describe how $6 obtain nonlinear least squafes estimates of the parameters of the

model y = ax? +¢.
2. Verify the following differential equatign, which applies to the Box-Cox transfor-
mation:




(h-8F)

-\E__ . ':"'". =
The problem of computing partial effects in a random effects model such as (11- 81) is that when
Ely|xu] is given by (11 8—1 ),

OE[y, |, x,,B +u; ]
.6‘x

it-

[h (xrrﬂ :)]B

is a function of the unobservable . Two ways to proceed from Here are the fixed effects approach of the

- previous section and a random effects approach.. . The fixed effects approach is feasible, but may be
hindered by the incidental parameters problem noted earlier. A random effects approach might be
preferable, but comes at the price of assuming that x; and , are uncorrelated, which may be unreasonable.
Papke and Wooldridge (2008) examined several cases| and proposed the Mundlak approach of projecting
u; on the group means of Xir. The working speclﬁcatlon of the mode]l is then

E"‘D’ﬂl@‘_i;ni.iﬂ = h(?f}:ﬂ.+0t+§£9.+.v,-)- ' " i’ .
This leaves the practical problem of how to compute the estimates of the parameters and how to compute

the partial effects, Papke and Wooldridge (2008) suggest a useful result if it can be assumed that y; is
normally distributed with mean zero and variance o3°. In that case,

E[yil |-’.‘ir ’,i] :EV}E[J’H |..§_;'_;s§s vg] =b[-ﬁf_a=+2‘xng] h(xttB +O" +I_x v) .

1+a,

The implication is that nonlinear least squares regression will estimate the scaled coefficients, after which
the average partial effect can be estimated for a particular value of the covariates, Xg, with

Alxy)= %‘_Zl (%8, +6,[+%8,)B,.

They applied the technique to a case of test pass rates, which are a fraction bounded by zero and one.
Loudermilk (2007) is another application with an extension to a dynamic model.



