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larger than 7. Note w ppens/if n > T. In this case, the # x n matrix has rank 7,
750 it must be singular, and the FGLS estimator cannot be computed.
%ample 10.2, We aggregated states into n = 9 regions. It would not
ossible to fit a full-moede! for. n == 48 states with only T = 17 observations.
This result is a deficiency € data set, not the model. The population matrix, ¥ is
positive definite. But, iftRere are not enough observations, then the data setis too short

to obtain a positivé definite estimate of the matrix. : o : f

\\-‘O S%,S ;-em_g 2 EQUA-TIONS
IS —PANECDATAAPPECATIONS

Extensions of the SUR mode! to panel data applications have been made in two direc- _
tions. Several studies have layered the familiar random effects treatment of Section g~ n.s
on top of the generalized regression. An alternative treatment of the fixed and ran-

dom effects models as a form of seemingly unrelated regressions model suggested by
Chamberlain (1982, 1984) has provided some of the foundation of recent treatments of

dynamic panel data models, s ip Src-}-:w,-,_:n.g, 2 and I.€.3

Avery (1977) suggested a natural extension of the random effects model to multiple
equations,

I
Yij =Xy B + Euj + iy 4

where | indexes the equation, { indexes individuals, and r is the time index as before.
Eachequation canbe treated as a random effects model. In thisinstance, however, the ef-

ficient estimator when the equations are actually unrelated (that is, Cov[e;, n, st | X]= -

0 and Covlu; g, 1 | X] = 0) is equation by equation GLS as developed in Section %5~ }.5
not OLS. That is, without the cross-equation correlation, each equation constitutes a
random effects model. The cross-equation correlation takes the form

Eleu e | X] = o

and

Elw juir | X] =05

Observations remain uncorrelated across individuals, (&, ;, £5.,) and (i, te1) when
i # r. The “noise” terms, &y ; are also uncorrelated across time for all individuals and
across individuals. Correlation over time arises through the influence of the common
effect, which produces persistent random effects for the given individual, both within
the equation and across equations through 8 it Avery developed a two-step estimator
for the model. At the first step, as usual, estimates of the variance components are based
on OLS residuals. The second step is FGLS, Subsequent studies have added features to
the model. Magnus (1982) derived the log likelihood function for normally distributed
disturbances, the likelihood equations for the MLE, and a method of estimation. Verbon
(1980) added heteroscedasticity to the model.

There have also been a handful of applications, inciuding Howrey and Varian’s
(1984} analysis of electricity pricing and the impact of time of day rates, Brown et al’s
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&n o
(1983) treatment of a formfof the capital asset pricing model (CAPM), Sickles’s (1985)
analysis of airline costs, arfdWan et al’s (1992) development of a nonlinear panel data -
N e SUR model for agricultural output, gaéd : b
. . / .

— Example Demand for Electricity and Gas : ;

| ’ o{ 8 : Beierlein, Dunn, and MeConnen (1981) proposed a dynamic panel data SUR modet for de- ]
- mand for electricity and natural gas’in tha- northeastern L-{.I.S'. The central equation of the |
model is ’

In Q) = fo+ By In P_natural ;gas,,. j + B In P_electricity, ; + fa In"P fuel oily,; [
+ B4 Inper capita inc:on-vs_,.,_ ;tBsIn Queay + Wit,f
Wity = &+t + e : 4
= consuming sectors (natural gas, electricity) x {residential, comercial, industrial)
{ = state (New England plus New York, New Jersey, Pennsylvania)
t = year, 1957,...,1977.

Note that this model has both time and state random effects and a lagged dependent variable
in sach equation. M

e

10.3.2 THE RANDOM AND FIXED EFFECTS MODELS

The linear unobserved effects model is

(10-22)

iStently by ordinary
s~Regardless of & is modeled, there is auteCorrelation induced by
on, unobserved ¢,{50 the generalized regressiogsfiodel applies. The random
ed on the assumption E[wy/|X;] = o2l + oZii’, where
veloped the GLS and FGLS &stimators for this formulation as
robust estimation of the OLS<ovariance matrix. Among the impli-
elopment of Section 10.2.8 isthat this formulation of the disturbance
trix is more restrictive than cessary, given the information contained
e assumption that E[e; e} | X{] = oI assumes that the correlati
1§ equal for all pairs of observgtions, and arises solely through the
ion 10.2.8, we estimated the quivalent model with an unrestrietéd covariance
mTix, Efe;e} | X;] = ¥. The impMcation is that the random effects ¢featment includes

o restrictive assumptions, mgdn independence, Elc; |1 X;] = o, afid homoscedasticity,
E[e;e} | X;] = o2Ir. [We do péte, dropping the second assumptfon will cost us the iden-
tification of o2 as an estimable parameter. This makes se if the correlation across
periods ¢ and s can aris¢/from either their common u; gt from correlation of (g, &)
then there is no way f6r us separately to estimate a vériance for ; apart from the co-
variances of z;; and’s;..] It is useful to note, how er, that the panel data model can
be viewed and fgtmulated as a seemingly unrefated regressions model with common
coefficients ip-Which each period constitute. equation, Indeed, it is possible, albeit
unnecessary, to impose the restriction E[wiw] | X;] = o1 + oZif.
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or each local authority, this model implies

B+ Uy + 22w e + Vi

Yo =0

The authors use maximysrTikelihood to estimate the par.
the computations, they hote that the maximization can

ers of the modet. To simplify
one using a two-step procedure.

heterogeneity, o,

The dependent variabl
tures. The covariates
age mortgage rategNumbers of unemployment claims, empféyment, average house price,

n the models is the log of per capita m@ntal health expendi-

for the model with no spatial effect

tial models based on a chi-squa freedom) of twice the

roved “fit” could be due

tog likelihood value of 2.3, which bears this out. Megsdred against this value, the spatial
lag model seermns the-Preferred specification, whereagtie spatial autocorrelation model does
not add significantly to the log Fkelihood functicti compared to the basic random effects
model

J_

",

s,
AR IR
B8 PARAMETER HETEROGENEITY

The treatment so far has essentially treated the stope parameters of the model as fixed
constants, and the intercept as varying randomly from group to group. An equivalent
formulation of the pooled, fixed, and random effects model is

i =@+ uw) + X, 8+ &t

where »; is a person- speciﬁc random variable with conditional variance zero in the

pooled model, positive in the others, and conditional mean dependent on X; in the

fixed effects model and constant in the random effects model. By any of these, the het-

erogeneity in the model shows up as variation in the constant terms in the regression

3‘ model. There is ample evidence in many studies,—we will examine two later—that sug-

gests that the other parameters in the model also vary across individuals, In the dynamic

niLy ~——mGdel we consider in Section 383, cross- country variation in the slope parameter in a
production function is the central focus of the analysis. This section will consider several

approaches to analyzmg parameter heterogenelty in panel data models. Fhe-mrodetwilt
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Nkl
981 THE RANDOM COEFFICIENTS MODEL.

c
Parameter heterogeneity across individuals or groups can @€ modeled as stochastic,  -. ..

: f t:H\\ _ variation. Tzl"lz)pose that we wnte i "~ 8 2_
3 & o m=Epte o=n
Elg;iXi] =90,
Eleig}1X,] = o2, | =

where T _93
Bi=fF+w (-4
and %;,{ |

. -
Elu; X,' = 0;
s | Xi] = (49

E{llillIt |Xj] =Jl:.

(Note that if only the constant term in 8 is random in this fashion and the other param-
eters are fixed as before, then this reproduces the random effects model we studied in
.S Section %:57) Assume for now that there is no autocorrelation or cross-section correla-
tion in Ei- We also assume for now that 7 > K, so that when desired, it is possible to
compute the linear regression of i on X for each gronp. Thus, the 8; that appliesto 2
particular cross-sectional umt is the outcome of a random PIOCESS with mean vector g

V) and covariance matrix, I‘ By inserting (9-48) into (3-47) and expanding the result, we S5 | L
o obtain a generalized regression model for each bIock of Observafions: \[ [2 Z:_?, 1)-§2
X;ﬁ'i'(?l +X!“l)s | J
$0

Pu = El(y: — Xif)(y; ~ Xif) |Xi] = olr + XiIX].

For the system as a whole, the disturbance covariance matrix is block diagonal, with
T x T diagonal block ;. We can write the GLS estimator as a matrix weighted average

of the group specific OLS estimators: o
. n 1)-86
8= (X’Q*I_X)ﬂlxﬂ_ly_ = ZWEP:‘; ©-50y
=1
where

W- (S5 (et rvortum) ™)

i=l1

b
2 }_, % "_G'Ihc most widely cited studies are Hildreth and Houck (1968), Swamy (1970, 1971, 1974), Hsiao (1975),
e d and Chow (1984). See also Breusch and Pagan (1979). Some recent discussions are Swamy and Tavlas (1995,
2001) and Hsiao (2003). The model bears some resemblance to the Bayesian approach of Chapter 18. But,
the similarity is only superficial, We are maintaining the classical approach to estimation throughout.
29/ @ 2 Swamy and Tavlas (2001) label this the “first-generation random coefficients model” (RCM). We will
examine the “second generation” (the current generation) of random coefficients models in the next section,



4 Greene-50558

book June 22, 2007 15:33

(11-12)

224 PART Il 4+ The Generalized Regression Mode!

Empirical implementation of this model requires an estimator of I'. One approach
[see, e.g., Swamy (1971)] is to use the empirical variance of the set of # least squares

. estimates, b; minus the average value of s7(X/X,) ™" - @y
G= ﬁ[Utﬂ:—'I)]_. [E:b:h: 7 45_5'] -/ MY (';'ggé
where R '
b= (/mTib; | -
and

V.l = 3,-2 (X:X,)_l . ’ :;r

This matrix may not be positive definite, however, in which case [as Baltagi (2005)
suggests], one might drop the second term.

A chi-squared test of the random coefficients model against the alternative of the
classical regression (no randomness of the coefficients) can be based on

C = Zi(h; — b)Y Vi (b — ba),
where
1171 —1
b= [E¥7] 2y

Under the null hypothesis of homogeneity, C has a limiting chi-squared distribution
with (n — 1) K degrees of freedom. The best linear unbiased individual predictors of the
group-specific coefficient vectors are matrix weighted averages of the GLS estimator,
B, and the group specific OLS estimates, b, * g2~

: Bi= QB+ Qb 87

where (9-52)
; A AV O @ ~11—1 -1
“_I Q' T {(1/’51 ))f{txl + G ] p '

Example 94 Random Coefficients Model

(.1 In Example $-&, we examined Munell’s production model for gross state product,
. P c
b =) Ingspy: = B1 + o INEZCAD); + Ba Inhwy,, + fa Inwaterss

+ s Inutily + s lnempy, + prunempy, +e, §i=1,...,48;t=1,...,17.

The panel consists of state level data for 17 years. The modet in Example Qfﬁnd Munnell’s)
provide no means for parameter heterogeneity save for the constant ter; e have rees- and

i are given in Table $. The chi-squared statistic for testing the
null hypothesis of parameter homogenelty is 25,556.26, with 7(47) = 329 degrees of freedom.
The critical value from the table is 372.298, so the hypothesis would be rejected.

Unlike the other cases we have examined in this chapter, the FGLS estimates are very
different from OLS in these estimates, in spite of the fact that both estimators are consistent
and the sample is fairly large. The underlying standard deviations are computed using G as
the covariance matrix. [For these data, subtracting the second matrix rendereq G not positive

1.4 ; timated the model using the Hildreth and Houck approach. The OLSFFeasible GLS ard
A

_ Zq/ﬁ Hee ﬁsiao (2003, pp. 144i":1 49),
|_Jz

i) o. |
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" 'Estimated Random Caefﬁc‘iéﬁ__t's Models X R ENTT _—
m -, Maximum Simulated -~ e
e Least Squares Feasible GLS Likelihood /
_ Standard Standard  Popn. Std.
Variable  Estimafe Error "~ Estimate . Error Deviation Estimate rTor
Constant 19260  0.05250 1.6533 1.08331 7.0782 0.03569
0.00882"

mpSap 03120 001109 009409 005152 03036

In h@ 0.05888 0.01541 (.1050 0.1736 1.1112
In water 01186  0.01236 0.07672  0.06743 0.4340 it
In wiil 0.00856 0.01235  -0.01489  0.09886 0.6322
in emp 0.5497  0.01554 0.9190 0.1044 0.6595 .

0.121)
unemp. ~0.00727 0.001384 —0.004706 0.002067 0.01266 —0.02318

{0.0308)
O 0.08542 0.2129 0.027
nL 853.1372 J

£ —t
LR definite, 5o in the table, the standard deviations are based on the estimates using only the 3 )]

1-26 ~rstTerm in (3-51).] The increase in the standard emrors is striking. This suggests that there is
considerable variation in the parameters across states. We have used (9-52]o compute the ——} -8}
_ estimates of the state speclfic coefficients. Figur shows a histogram for the coefficient
i nl-"’“- on private capital. As suggested, there is a W|de€ariation in the estimates.
N d '

\ .|--_ J ’!- ' .
FIGURE 91 Estimates of Cneﬁ;crenﬁon Private Capltal.

~0246 —-0147 0049 0049 0147 O 246 0.344 0.442 f
L bz 7
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11.11.2 A Hierarchical Linear Model .

Many researchers have employéd a two-step approach to estimate two,level models. In a common form of
the application, a panel data set is employed to estimate the model, T

._,.))ff =¥ffrpl_+ eff ] i= lr:‘I';':l;I_?I’; = lr:-l-:wl_zl

ﬁ‘_i;k =z_{'a_];+ Uik i= 1; {-I;r:_r}.‘ ’ F iy ||' o

ALY

_-Ass'iiming the panel is long enough, the first equation is estimated # times, once for each individual igjtheli""

. ) . . - . 4 )
the estimated coefficient on X in each regression forms an observation for the second,step regression'>”

, {(This is the approach we took in the previous Section; each a; is computed by a linear regression of

yit }F;]I)ILS;J_,; on a column of ones.) ‘

T Ly .:‘,-‘ L s ’ : |
5{:- **An extension of the model in which:yiﬂls heteroscedastic is developed at length in Saxenhouse (1976) and

revisited by Achen (2005).
.20 : .
Example 87F5 Fannie Mae’s Pass Through

Fannie Mae is the popular name for the Federal National Mortgage Corporation. Fannie Mae is the :. \

secondary provider for mortgage money for nearly all of the smali,and moderate, sized home
mortgages in the United States. Loans in the study described here are termed “small” if they are for
less than $100,000. A loan is termed a “‘conforming” in the language of the literature on this market
if (as of 2004), it was for no more than $333,700. A larger than conforming loan is called a “jumbo”
mortgage. Fannie Mae provides the capital for nearly all conforming loans and no nonconforming
loans. The question pursued in the study described here was whether the clearly observable
spread between the rates on jumbo loans and conforming loang reflects the cost of raising the
capital in the market. Fannie Mae is a “Government Sponsored Enterprice” (GSE). It was created
by the U.S. Congress, but it is not an arm of the government; it is a private corporation. In spite of,
or perhaps because of this ambigucus relationship to the govemment, apparentiy, capital markets
believe that there is some benefit to Fannie Mae in raising capital, Purchasers of the GSE's debt
securities seem to believe that the debt is implicitly backed by the government;;T this in spite of the
fact that Fannie Mae explicitly states otherwise in its publications. This emerges as a “funding
advantage” (GFA) estimated by the authors of the study of about 17 basis points (hundredths of

one percent). In a study of the residential mortgage market, Passmore (2005) and Passmore, .
Sherlund, and Burgess (2005) sought to determine whether this implicit subsity to the GSE was 5 U1

passed on to the mortgagees or was, instead, passed on to the stockholders. Their approach
utilitized a very large data set and a two-level, two-step estimation procedure. The first, step
equation estimated was a mortgage rate equation using a sample of roughly 1 million closed
mortgages. All were conventional 30-year fixed-rate loans closed between April 1997 and May
2003. The dependent variable of interest is the rate on the mortgage, RM; . The first level equation
is

RMjy = B1i+ B2, Jy + terms for "loan to value ratio,” "new home dummy variable,”
- ' “small mortgage"
+ terms for “fees charged” and whether the mortgage was originated
by a mortgage company'+|¢,.

The main variable of interest in this model is Jy, which is a dummy variable for whether the loan is a
jumbo mortgage. The “i." in this setting is a (state, time) pair for California, New Jersey, Maryland,
Virginia, and all other states, and months from April 1997 to May 2003. There were 370 groups in
total. The regression model was estimated for each group. At the second step, the coefficient of
interest is B, On overall average, the spread between jumbo and conforming loans at the time
was roughly 16 basis points. The seconddlevel equation is


Bill
Sticky Note
ok


"/. [ . :
B2 = ay + a,GFA; \__” ’_?{

+ O3 One-year treasury rate

+ a, ten-year treasure rate

+ U5 credit risk

+ ag prepayment risk

+ measures of maturity mismatch risk
+ quarter and state fixed effects

+ mortgage market capacity

+ mortgage market development

+ LJJ_,}

The result ultimately of interest is th"e__coefﬁcient on GFA, &2, which is interpreted as the fraction of
the GSE funding advantage that is passed through to the mortgage hoiders. Four different
estimates of a; were obtained, based on four different measures of corporate debt liquidity; the

estimated values were (&5,&%,&;,&;) =[(0.07, 0:31, 0.17, 0.10). .The four estimates were
s

inimum_distanc or (MDE). Let Qdenote the estimated 4 x 4
asymptotic covariance matrix for the estimators. Denote the distance vector

averaged using a minimum_distance estimator

a1 a2 ~3 ~ 4 !
..,S!:(az T 0y Gy =0, 0y —Qy, Oy ““2)‘5}"

The minimum distance estimator is the value for a, that minimizes a0 'd . For this study, f) is a

diagonal matrix. It is straighforward to show that in this case, the MDE is

s U,
0’“2:2;:1 aé 24 1/“ :
’ 178,
ey ':,"t"n;'.{_ b '|_'fl."|.'it"{:r\7|

i

The final answer is roughly 16%. By impiication, then, the authors estimated that 84?/2 of the GSE
funding advantage was kept within the company or passed through to stockhoiders.
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for these Xarlables, 0.052374, 11,4719, 4n . , tvaly, With these values, the
mean vgdue for the education coefficientls approximately 0.0327. This | comparable, though
somewthat smaller, than the estimateg’for the pooled and random effécts model. Of course,
variation in this parameter across ti# sample individuals was the o fective of this specifica-
ity estimate for the 2,178 sampple individuals. The figure

B8 PARAMETER HETEROGENEITY AND DYNAMIC
PANEL DATA MODELS

The analysisw ilgs ?ne‘% V:gdv;tatic models and relatively straightforward estimation -
problems. We have seen as this section has progressed that parameter heterogeneity
introduces a fair degree of complexity to the treatment. Dynamic effects in the model,
with or without heterogeneity, also raise complex new issues in estimation and inference.
There are numerous cases in which dynamic effects and parameter heterogeneity coin-
cide in panel data models. This section will explore a few of the specifications and some
applications. The familiar estimation techniques (OLS, FGLS, etc.) are not effective
in these cases. The proposed solutions are developed in Chapter 42 where we presen
the technigue of instrumental variables and in Chapterl@f present the GMM
estimator and its application to dynamic panel data models, 13

Exampie &: Dynamic Paneol Data Models
The antecedent of much of the current research on panel data is Balestra and Nerlove's
(1966) study of the natural gas market. [See, also, Nerlove {2002, Chapter 2).] The modelis a
stock-flow description of the derived demand for fuel for gas using appliances. The central
equation is a model for total demand,

G{r =_G:*¢ +{1-r) G_f._t——h
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where Gy is current total demand. Current demand consists of new demand, Gj,, that is
created by additions to the stock of appliances plus old demand which is a proportion of
the prewous period’s demand, r being the depreciation rate for gas using app!lances New
demand is due to net increases in the stock of gas using appliances, which is modeled as

GM = o + BrPrice, “i"-ﬁa-APOp;f + ﬁaPOp“ -+ Bs Alncomey; + Bsincomey; + 8ity

where A is the first difference (change) operator AX, Xt — Xi—+. The reduced form of the
- modet is a dynamic equation, b

Gt = o + prPricer + B2AP0p;; + BsPop;; + Padincomes + Bsincomey; + y G, t~1 + &

The authors analyzed a panel of 36 states over a six-year period (1 957—»1 962). Both fixed
effects and random effects approaches were considered.

An equilibrium model for steady state growth has been used by numerous authors [e.g.,
Robertson and Symons (1992), Pesaran and Smith (1995), Les, Pesaran, and Smith (1997),
-Pesaran, Shin, and Smith (1999), Nerlove (2002) and Hsiao, Pesaran, and Tahmiscioglu (2002)]
for cross industry or country comparisons: Robertson and Symons modeled real wages in
13 OECD countries over the period 1958 to 1986 with a wage equation

W = oy + Pk +ﬁ2fAW9d9‘9n + W1 +an,

where W, is the real product wage for country { in year ¢, kn is the capital-labor ratio, and
wedge is the “tax and import price wedge.”

Lee, Pesaran, and Smith (1997) compared income growth across countries with a steady-
state income growth model of the form

In e =0 +9ff +J\.; In ¥4 + &it,

where§, = (1—A,)§, & is the technological growth rate for country/ and A isthe convergence
parameter. The rafe of convergence to a steady state is 1 — M.

Pesaran and Smlth (1995) analyzed employment in a panel of 38 UK industries observed
over 29 years, 1956«1 984. The main estimating equation was

In &t = o + But+ BaIn Yie + Bu Y1 + B In Vet ,B_:._,_In_;‘f_H
+ B IN Wig + BrIn Wi + 1 I0 61e1 + v N Ge2 + e,
where Yie is industry output, ?, is total (not average) output, and Wit is real wages. e

|.‘i.'

In the growth models, a quantity of interest is the longﬂrun mulnpher or long run

L) eelastmty Long-run effects are derived through the following conceptual experiment.

The essential feature of the models above is a dynamic equation of the form

Yo =+ Bx + Yy

Suppose at time ¢, ¥, is fixed from that point forward at ¥, The value of y, at that time
will then be o + X + yy;_1, given the previous value. If this process continues, and if
I¥] < 1, then eventually y; will reach an equilibrium at a value such that y; = y, ; = 3.
Ifso,theny y a+ﬁx+yy, from which we can deduce that ¥ = (¢ +¥)/(1 —y). E¥exiil,
e ir=Clrapter=3s The path to this equilibrium from
time ¢ mto the future is governed by the ad]ustment equatlon R 5k

¥ =¥ = -0yt b5 > L
The experiment, then, is to ask: What is the impact on the equilibrium of a change in the

input, X7 The result is 37/9% = /(1 — y). This is the long-run multiplier, or equi]ibrmm e

mn!t:pher in the model. In the Pesaran and Smith model|preceding, the inputs are in
logarithms, so the multipliers are long-run elasticities. For example, with two lags of
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In g;;"in Pesaran and Smith’s model, the ldng-mn effects for wages are

¢ = (Ba + B}/ (L — v — yui)-

In this setting, in contrast to the precedmg treatments, the number of units, #,
is generally taken to be fixed; though often it will be fairly large. The Penn World
Tables (http:/pwt.econ.upenn. cdu!php..snt’e/pwt_mdex php) that provide the database
for many of these analyses now contain information on almost 200 countries for well
over 50 years, Asymptotic results for the estimators are with respeet to increasing 7,
though we will consider in general, cases in which T is small. Surprisingly, increasing T
and n at the same time need not simplify the derivations. We will revisit this issue in the
next section,

The parameter of interest in many studies is the average long-run effect, say ¢ =
(1/n)Z;¢y, in the Pesaran and Smith example. Because n is taken to be fixed, the

“parameter” §isa definable object of cstlmatlon——that is, with # fized, we can speak of
¢ as a parameter rather than as an estimator of a parameter. There are numerous ap-
proaches one might take. For estimation purposes, pooling, fixed effects, random effects,
group means, or separate regressions are all possibilities. (Unfortunately, nearly all are
inconsistent.) In addition, there is a choice to be made whether to compute the average
of long-run effects or compute the long-run effect from averages of the parameters. The
choice of the average of functions, ¢ versus the function of averages,

;15_ Z}=1 (Bﬁi‘f‘ B’h)

1— 23750 (Pu + P)
turns out to be of substance. For their UK industry study, Pesaran and Smith report
estiimates of —0.33 for ¢ and —0.45 for ¢*. (The authors do not express a preference for
one over the other.)

The development to this point is implicitly based on estimation of separate mod-
els for each unit (country, industry, etc.). There are also a variety of other estimation
strategies one might consider. We will assume for the moment that the data series are

ox =

stationary in the dimension of T. (See Chapter 2%) Thisisa transparently false assump-

tion, as revealed by a simple look at the trends in macroeconomic data, but maintaining

it for the moment allows us to proceed. We will reconsider it later. A
We consider the generic, dynamic panel data model, 1 - ? 2
Y =0 + BiXir + Vidie-1 + Eir- (9-63)

Assume that T is large enough that the individual regressions can be computed. In the
absence of autocorrelation in &, it has been shown [e.g., Griliches (1961), Maddala and
Rao (1973)] that the OLS estimator of ¥: 18 biased downward, but consistent in 7. Thus,
E[$; — ;] = 6/ T for some §;. The unphcatlon for the individual estimator of the longp
run multiplier, ¢, = ﬁ, /A—=v), is unclear in this case, however. The denominator is
overestimated. But it is not clear whether the estimator of B is overestimated or under-
estimated. It is true that whatever bias there is O(1/ T). For this application, 7'is fixed
and possibly quite small. The end result is that it is unlikely that the individual estimator
of ¢; is unbiased, and by construction, it is inconsistent, because 7 cannot be assumed to
be increasing, If that is the case, then ¢ is likewise inconsistent for ¢. We are averaging
n estimators, each of which has bias and variance that are O(1/T). The variance of the
mean is, therefore, O(1/nT) which goes to zero, but the bias remains O(1/T). It follows
that the average of the # means is not converging to ¢; it is converging to the average

23
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of whatever these biased estimators are estimating. The problem vanishes with large
T, but that is not relevant to the current context. However, in the Pesaran and Smith
study, T was 29, which is large enough that these effects are probably moderate. For
' Iacroeconomic cross-country.studies such as those based on the Penn World Tables,
the data series might be yet longer than this.
One might consider aggregating the data to improve the results. Smith and Pesaran
(1995) suggest an average based on country means. Averaging the observations over T,

in 8-63) produces . . 9/
l)-g9 77 N _ B _ - u-%9
: ¥ =i + Bi%;. + Vi¥o1: + & 9-64)

Alinear regression using the n observations would be inconsistent for two reasons: First, i
g, andy_, ; must be correlated. Second, because of the parameter heterogeneity, it isnot
clear without further assumptions what the OLS slopes estimate under the false assump-
tion that all coefficients are equal. But ¥, and ¥_1; differ by only the first and last obser-

vations; ¥_y ;' = 3, — (ir — yio)/ T = ¥, — [Ar(»)/ T]. Inserting this in 0-64j produces
. _ _ <- _ I.- -
Vi = o+ BF + 1, — n[Ar0)/ T +5 -89 ,

. . ' I -90
i Bi Vi = 4
= + X, ———[A T]+5; 9-65y
I-y 1-y- 1—}41 () e ¢

=&+ X +ulAr/ T+ 9o

We still seek to estimate ¢. The form in mmve the estimation problem,
since the regression suggested using the group means is still heterogeneous. If it could
be assumed that the individual long,run coefficients differ randomly from the averages
in the fashion of the random parameters model of the previous section, 50 §; = & + us
and likewise for the other parameters, then the model could be written

T =B +F5, + TIATW)/ T) 45, + (s + o, Fi + i [ AT D/ 1)
=3 +0% + T[Ar(YY T + % +wi.

At this point, the equation appears to be a heteroscedastic regression amenable to least

squares estimation, but for one loose end. Consistency follows if the terms [A r(y)/ T);

and &; are uncorrelated. Because the first is a rate of change and the second is in levels,

this should generally be the case. Another interpretation that serves the same purpose

is that the rates of change in [Ar(y)/ T}; should be uncorrelated with the levels in¥;,

in which case, the regression can be partitioned, and simple linear regression of the

country means of y;; on the country means of x;; and a constant produces consistent
estimates of ¢ and 3, ' '

Alternatively, consider a time-series approach. We average the observation in

- (9-63) across countries at each time period rather than across time withjn countries.

J——Tn this case, we have
i "'8:8 1 & 1 18
) 37.:=a'-+;Zﬁ;&gr+;2)’&j{i_,g—1+;28_sg-
e i=1 = =1 = =1
Lety =13 yisothaty; =7+ (1 — 7) and §; = B+ (B; — B). Then,

y.=@+ Bft + ?Y—l,_t_“{“ [E__,_ + (B ~ 3)7:1 + (V; —VV_1.]
=u+ Bfr +¥ ¥+ &y + Wy,
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Unfortunately, the regressor, 7 y_, , is surely correlated with w ,;, so neither OLS or GLS
] will provide a consistent estimator for this model. (One might consider an instrumental
L =3 variable estimator, however, there is no natural instrument available in the model as
~ comstructed.) Another possibility is to pool the entire data set, possibly with random or
fixed effects for the conistant terms. Because pooling, even with country-specific constant @
terms, imposes homogeneity on the other parameters, the same problems we have just

observed persist. &-,6_5 L9 )

| 1,
Finally, returning to (9-63}, one might treat it as a formal random parameters model; || 1ty
oo | LR
Yie = @i+ BiXie + ViYii-1 + i, l-l -8*—51 L 7" £ e
o = o F U, | (e !
: L 63 |1
Bi=B+up, e
Vi =¥+l

The assumptions needed to formulate the model in this fashion are those of the previous
section. As Pesaran and Smith (1995) observe, this model can be estimated using the
“Swamy (1971)” estimator, which is the matrix weighted average of the least squares
1{}f,] ~—estimators discussed in Section &BT: The estimator requires that T be large enough
: to fit each country regression by least squares. That has been the case for the received
applications. Indeed, for the applications we have examined, both n and T are relatively ‘
large. 1f not, then one could still use the mixed models approach developed in Sectien Ci\ap%-e P e
“&X7. A compromise that appears to work well for panels with moderate sized nand T ]
] is the “mixed-fixed” model suggested in Hsiao (1986, 2003) and Weinhold (1999). The
dynamic model in (8-63¥is formulated as a partial fixed effects model,

12 Y = dy + BiXer + Vidia Yig—1 + €ie,
n-8g Bi = B +us,
where dj; is 8 dummy variable that equals one for country i in every period and zero
otherwise (j.e., the usual fixed effects approach). Note that d;; also appears with. y; 1.
As stated, the model has “fixed effects,” one random coefficient, and a total of 2z 41 co-

efficients to estimate, in addition to the two variance components, 52 and 62, The model
could be estimated inefficiently by using ordinary least squares,-the random coefficient

RN induces heteroscedasticity (see Section.9:8:1)+by using the Hildreth—!__-Houck—;_Swamy '
Btk approach, or wi € mixed linear model approach developed in Sesticn9-82 C ha P ler ) T.
i Example 9:31-9’ A Mixeanixed Growth Model for Developing Countries .

43 Weinhold (1996} and Nair,‘jF!eichert and Weinhold (2001) analyzed growth and development

AR 21 in a panel of 24 developing countries observed for 25 years, 1971:1995. The model they

empioyed was a variant of the mixed-fixed model proposed by Hsiao (1988, 2003). In their
specification,

GGDP); = o4y + y1cdtGGDP; 44
+ PuGGDL 1 + B GFDh ¢y + Py GEXP 41 + BalNFLi s + 81,

#¥

where
GGDP = Growth rate of gross domestic product,
GGDI = Growth rate of gross domaestic investment,
GFDI = Growth rate of foreign direct investment (inflows}),
GEXP = Growth rate of exports of goods and services,
INFL = Inflation rate.
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P ———
have at period ¢ = 3

. Yi3 = Yo = (X=X B + v (Y2 — yi1) + (i3 — €a). 9-72)

We could use y;; as the needed variable, because it is not correlated €3 — g;5. Continuing
in this fashion, we see thgtfors =3, 4,..-, T, y;,_ appears to saHsfy our requirements.
Alternatively, beginning from period 1 = 4, we can see that zf = (V-2 — yi—3) once
again satisfies our regirirements. This is Anderson and Hsig6’s (198]). result for instru-
mental variable egimation of the dynamic panel data médel. It now becomes a ques
tion of which apgproach, levels (y;,—,f = 3,..., T), op/differences (y;;—3 — yir3, t/=
4,...,T) is a preferable approach. Kiviet (1995) obtains results that suggest thaythe
estimator bafed on levels is more efficient.

fuller development of the assdmptions,
the agymptotic distribution of the estimator/and what to use for an asymppbtic covari-

trumental variables in Chapter 12.

i‘—-—__/_f
.12
30 SUMMARY AND CONCLUSIONS ‘
This ochoeter ' desm mie
The preceding has shown a few of the extensions of the classical model that can be effecte

obtained when panel data are available. In principle, any of the models we have ex-
amined before this chapter and all those we will consider later, in¢luding the multiple
equation models, can be extended in the same way. The main advantage, as we noted
at the outset, is that with panel data, one can formally modeffhe heterogeneity across
groups that(is)typical in microeconomic data.

ona

ore.

of heterogeneity can be
appeared at one level t differences in the varian

the coefficient vectors. We will ednsider this possibility in the
also examine some addition:
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» Equilibrivm multiptier ¢ Instrumental variable + Minimum distance estimator
¢ Error components model estimator » Mixed model
« First difference s Lagrange multiplier test * Mundlak’s approach
."I 'Ir-:l,'_ T = T Hawen I T2 s Ve N Ddg _!Ir~.l Kig |n € e |r g
| —= . (¥ { I |
' bt e e e | lwe@r o % [ I R 5 1 4=
I] 2 LGRS YL i v ? g oo [



Bill
Line

Bill
Line


Greene-50558 book June 21, 2007 13:24
\ — Al b .- E rel A | i
; i e TeligA S @0y ke Mg I 'I-'-'--"- { S \n Gkl e @
—— o ’ e wf o) i [— : .I.___.'- . f & I | P
e ':-'_ YRR LS | i rEATa iRl = E’-"r I I;-.“: Ter e 2_.__?'r'|"|-. "'# ‘_’II ll‘:l-' ) :J;-II“_"-:'
[ i & L r F S o L S -.--I- o J" L
St 1 ATl e KRR L Fi= e po R D .I'!:._;_': I -Las_._.T a_'a::-,;_.i....-.kflL?- Iy }JH.- i 13,8 .
L4 I 'I‘:-'-'rl s L I'I!I ':.'--l.-'-]ln..-I ji.|.- it - " !lf:':rhl H= i, .-.'r';':!.-:' !|I ! il&‘}}"‘l.lr"q II.L‘:'__I - Ii.
a4 kb ek i PR CHAPTER-9-+4-Models for Panel Data—247
fuie —5T e rlbiaionl,
Ve be + Nested random effects * Random parameters + Spatial lags
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- i TR » Parameter heterogeneit + Rotating panel e Strict exogeneit
b . - | B ¥ gp o £ ¥
&S - Partial effects  Simulated log-tikelihood - + Time invariant

* Pooled model
» Pooled regression
» Population averaged model

_ Simulation based estimation

* Small T asymptotics
» Spatial autocorrelation

» Two-step estimation
* Unbalanced panel
* Variable addition test

* Random coefficients model e« Spatial autoregression » Within groups
¢ Random effects coefficient :
Exercises

1. The following is a panel of data on investment (¥) and profit (x) for n = 3 firms

over T = 10 periods.

_i=1 i=2 i=3
t b X ¥ X y X
1 13.32 12.85 2030 22.93 8.85 8.65
2 26.30 25.69 17.47 17.96 19.60 16.55
3 2.62 548 931 9.16 387 1.47
4 14.94 13.79 18.01 18.73 24.19 24,91
5 15.80 15.41 763 11.31 3.95% 5.01
6 12.20 12.59 19.84 21.15 373 8.34
7 14.93 16.64 13.76 16.13 26.68 2270
8 29.82 26.45 10.00 11.61 11.49 836
9 2032 19.64 19.51 19.55 18.49 15.44
10 477 5.43 18.32 17.06 20.84 17.87

™

. Unbalanced design for random effects. Suppose that the random effects model of | o

. What are the probability limits of (1/#)LM, where LM is defined in (-9-@) under

a. Pool the data and compute the least squares regression coefficients of the model
it = o+ ﬁX_;r + &,
b. Estimate the fixed effects model of Mf;nd then test the hypothesis that the
constant term is the same for all three firms.

- -".I'

c. Estimate the random effects model of m carry out the Lagrang;—-—___""’ \-25
multiplier test of the hypothesis that the classical model without the common o @
effect applies. [ A =7 ]
d. Carry out Hausman’s specification test for the random versus the fixed effect Frad@S gl
model. v le. .t -,
. Suppose that the fixed effects model is formulated with an overall constant termand | © o 4 U TS,

_n—1dummy variables (dropping, say, the last one). Investigate the effect that this | [~ 4“1 (15
supposition has on the set of dummy variable coefficients and on the least squares |' |- (o Ve it
estimates of the slopes. = [

Hoey Wieve Wi

Section 9.5 is to be estimated with a panel in which the groups have different

numbers of observations. Let 7} be the number of observations in group i. £

a. Show that the pooled least squares estimator is unbiased and consistent despite 1 3; '
this complication. ' 4

b. Showthat the estimator in (-Qﬁﬁl;a’s;g onthe pooled least squares estimator of 8.
(or, for that matter, any consistent estimator of §) is a consistent estimator of a?.

Ha
-5

the null hypothesis that o} = 0 and under the alternative that o} # 07
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5. A two-way fixed effects model. Suppose that the fixed effects model is modified

to include a time-specific dummy variable as well as an individual-specific variable. -
- = . Then y;; = a; +y; +x}, 8+ ;. Atevery observation, the individual- and time-specific '
' dummy variables sum to 1, so there are some redundant coefficients. The discussion
Y *———”mws that one way toremove the redundancy is to include an overall
\\ v "‘l : e = T . s
constant and drop one of the time specific and one of the time-dummy variables.

The model is, thus, [t
Vi =i+ (g —a)+ G~y KX B +en

(Note that the respective time- or individual-specific variable is zero when ¢ or
_iequals one.) Ordinary least squares estimates of 8 are then obtained by regression
of yy —¥; =¥, +7 on x; —X; —X; +X. Then (o; —aq) and (¥ — »1) are estimated
using the expressions in (9-23) while m =5 — X b. Using the following data, estimate
the full set of coefficients for the least squares dummy variable model:

(=4

t=1 t=2 (=3 t=5 (=6 (=7 t=8 =9 =10

i=1

¥ 21.7 10.9 335 220 17.6 16.1 19.0 18.1 14,9 232

X1 26.4 173 238 17.6 26.2 211 17.5 229 229 149

X 5.79 2.60 8.36 5.50 526 1.03 311 4,87 3.79 7.24
i=2

¥ 218 21.0 338 18.0 122 30,0 21.7 24,9 219 23.4

X 19.6 22.8 278 14.0 114 16.0 28.8 168 118 18.6

X2 336 1.59 6.19 375 1.59 9.87 1.31 542 6.32 5.35
i=3

y 252 419 313 278 132 219 333 20.5 16.7 207

x 134 29.7 216 25.1 141 24.1 10.5 221 17.0 20.5

X 957 9.62 6.61 7.24 1.64 599 9.00 175 1.74 1.82

¥ 153 259 219 155 16.7 26.1 348 226 29.0 37.1

X1 142 18.0 299 14.1 184 201 21.6 274 285 28.6

X2 4.09 9.56 2,18 543 6.33 827 9.16 524 7.92 9.63

Test the hypotheses that (1) the “period” effects are all zero, (2) the “group” effects
are all zero, and (3) both period and group effects are zero. Use an Ftest in each case.
6. Two-way random effects model. We modify the random effects model by the addi-
tion of a time-specific disturbance. Thus,

Yie =@ X8 + i + 1+,

where
Eley 1 X] = E{w|X] = E[w|X] =0,
Eleu; | X] = ElewolX] = Elum[X] =0 foralti, j1,s
Varlei | X] = 02, Cov[sy, 6;/X]=0 foralli, j,t,s
Var[y; | X] = of, Covlu;,u;[X]=0 foralli, j
Var{v, | X] = o2, Cov[w, us[X] =0 forallt,s.

v
Write out the full disturbance covariance matrix for a data set withn = 2and T = 2.
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A 51 _ X1 £1
ol = el 2
satisfies the groupwise heteroscedastic regression model of Section 882+ All vari-

ables have zero means. The followmg sample second-moment matrix is obtained
from a sample of 20 observations: :

7. The model

B

Mo o ox
w20 6 4 3
wi{6 10 3 6
x|4 3 5 2
»|3 6 2 10

a. Compute the two separate OLS estimates of 8, their sampling variances, the
estimates of ‘71 and 0'2 , and the R2 ’s in the two regressions.

. Carry out the Lagrange multiplier test of the hypothesis that o7 = o2.

. Compute the two-step FGLS estimate of 8 and an estimate of its sampling vari-
ance. Test the hypothesis that § equals 1.

d. Carry out the Wald test of equal disturbance vananoes

e. Compute the maximum likelihood estimates of 8, o}, and of by iterating the

FGLS estimates to convergence.
f. Carry out a likelihood ratio test of equal disturbance variances.

o o

. Suppose that in the groupwise heteroscedasticity model of Section 8.8.2, X is the

same for all i. What is the generalized least squares estimator of 7 How would you
compute the estimator if it were necessary to estimate o7?

9. ’Ihe followmg table presents a hypothetical panel of data

) i=1 1=2 i=3
t Y X ¥ X ¥ X
1 30.27 2431 3871 2835 37.03 21.16
2 - 35.59 28.47 29,74 27.38 43,82 26.76
3 17.90 23.74 11.29 12.74 37.12 2221
4 - 4490 2544 26.17 21.08 24.34 19.02
5 37.58 20.80 585 14.02 26.15 18.64
6 2315 10.55 29.01 2043 26.01 18.97
7 30.53 18.40 30.38 28.13 29.64 21.35
8 39.90 25.40 36.03 21.78 30.25 21.34
9 20.44 13.57 37.90 2565 2541 15.86
10 36.85 25.60 33.90 11.66 26.04 13.28

a. Estimate the groupwise heteroscedastic model of Section:82. Include an esti-
mate of the asymptotic variance of the slope estimator. Use a two-step procedure,
basing the FGLS estimator at the second step on residuals from the pooled least
squares regression.

b. Carry out the Wald and Lagrange multiplier tests of the hypothesis that the
.variances are all equal.

June 21,2007 1324 ; I I"/O ¢
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Applications
As usual, the applications below require econometric software. The computations can
* be done with any modern software package, so no specific program is recommended.

. <,

1. The data in Appendix Table F?{?: ere used by Grunfeld (1958) and dozens of
researchers since, including Zellner (1962, 1963) and Zeliner and Huang (1962), to
study different estimators for panel data and finear regression systems, The model
is an investment equation R

.II'I =|81+ﬂ2};}f +ﬁ3qt+€ih€ =1,“-,20,i = 11-"!10! [Seﬂ Kleiber (ZOfD)]

a"é I'H o
where | Z "e"c

Iy = real gross investment for firm i in year £,
Fj; = real value of the ﬁrmh',l—shares outstanding,

C’,-_t == real value of the capital stock.

For present purposes, this is a balanced panel data set.

a. Fit the pooled regression model.

b. Referring fo the results in part a, is there evidence of within groups correlation?
Compute the robust standard errors for your pooled OLS estimator and compare
them to the conventional ones.

¢. Compute the fixed effects estimator for these data, then, using an F test, test the
hypothesis that the constants for the 10 firms are all the same.

d. Use a Lagrange muitiplier statistic to test for the presence of common effects in
the data.

e. Compiite the one-way random effects estimator and report all estimation results.
Explain the difference between this specification and the one in part c.

f. Use a Hausman test to determine whether a fixed or random effects specification
is preferred for these data.

2. The datain Appendix Table F6.1 are an unbalanced panel on 25 U.S. airlines in the
pre-deregulation days of the 1970s and 1980s. The group sizes range from 2 to 15,
Data in the file are the following variables. (Variable names contained in the data
file are constructed to indicate the variable contents.)

Total cost,

Expenditures on Capital, Labor, Fuel, Materials, Property, and Equipment,
Price measures for the six inputs,

Quantity measures for the six inputs, ,
Output measured in revenue passenger miles, converted to an index number for

the airline,

Load factor = the average percentage capacity utilization of the airline’s fleet,
Stage = the average flight (stage) length in miles,

Points = the number of points served by the airline,

Year = the calendar year,

T = Year—1969,

TI = the number of observations for the airline, repeated for each year.
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Use these data to build a cost model for airline service. Allow for cross-airline
heterogeneity in the constants in the model. Use both random and fixed effects
specifications, and use available statistical tests to determine which is the preferred
model. An appropriate cost model to begin the analysis with would be
L
In costy = a; + Z Bi In Priceyi + y In Output;, + &;.
k=1

It is necessary to impose linear homogeneity in the input prices of fhie cost function,

which you would do by dividing five of the six prices and the total cost by the sixth
price (choose any one), then using In{cost/Fs) and In(B/Fs) in the regression. You
might also generalize the cost function by including a quadratic term in the log of
output in the function. A translog model would include the unique squares and
cross products of the input prices and products of log output with the logs of the
prices. The data include three additional factors that may influence costs, stage
length, load factor, and number of points served. Include them in your model, and
use the appropriate test statistic to test whether they are, indeed, relevant to the
determination of (log) total cost.



