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.  ESTIMATION FRAMEWORKS
IN ECONOMETRICS
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13,1 INTRODUCTION

This chapter begins our treatment of methods of estimation. Contemporary economet-
rics offers the practitioner a remarkable variety of estimation methods, ranging from
tightly parameterized likelihood-based technicues at one end to thinly stated nonpara-
metric methods that assume little more than mere association between variables at
the other, and a rich variety in between. Even the experienced researcher could be
forgiven for wondering how they should choose from this long menu. It is certainly
beyond our scope to answer this question here, but a few principles can be suggested.
Recent research has leaned when possible toward methods that require few {(or fewer)
possibly unwarranted or improper assumptions. This explains the ascendance of the
GMM estimator in situations where strong likelihood-based parameterizations can be
avoided and robust estimation can be done in the presence of heteroscedasticity and
serial correlation. (It is intriguing to observe that this is occurting at a time when ad-
vances in computation have helped bring about increased acceptance of very heavﬂy
parameterized Bayesian methods.) (ki
P As a general proposition, the progression from full to semi- to non—paramemc
LI estlmatlon relaxes strong assumptions, but at the cost of weakening the conclusions

‘that can be drawn from the data. As much as anywhere else, this is clear in the anal-

ysis of discrete choice models, which provide one of the most active literatures in the
| '} field. (A sampler appears in Chaptel A formal probit or logit model allows estima-
tion of probabilities, marginal effects, and a host of ancillary 1esu;ts. but at the cost of 7~
imposing the normal or logistic distribution on the data. Sennpar\z}memc and nonpara- et
metric estimators allow one to relax the restriction, but often provide, in return, only
ranges of probabilities, if that, and in many cases, preclude estimation of probabilities
or useful marginal effects. One does have the virtue of robustness in the conclusions,
however. [See, e.g., the symposium in Angrist (2001) for a spirited discussion on these
points]

Estimation properties is another arena in which the different approaches can be
compared. Within a class of estimators, one can define “the best” (most efficient) means
12 of using the data. (See Example @ for an application.) Sometimes comparisons

can be made across classes as well. For example, when they are estimating the same
parameters—this remains to be estabhshedmthe best parametric estimator will gener-
ally outperform the best semiparametric estimator. That is the value of the information,
of course. The other side of the comparison, however, is that the semiparametric esti-
mator will carty the day if the parametric model is misspecified in a fashion to which
the semiparametric estimator is robust {and the parametric model is not).
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WK ] - Schools of thought have entered this conversation for a long time. Proponents of
Baxgsnan estimation often took an almost theological viewpoint in their criticism of their
.. classical colleagu&c . [See, for example, Poirier (1995).] Contemporary practitioners are
" usually more plagmatlc than this. Bayesian estimation has gained currency as a set of _
technicues that can, in very many cases, _provide both elegant and tractable solutions” i/ T
to problems that have heretofore been out of reach. Thus, for example, the stmulation:——
! )" based estimation advocated in the many papers of Chib and Greenberg (e.g., 1996) have
plov;ded solutions to a vauety of computationally challenging pr oblems Arguments
/iy as to the methodological virtue of one approach or the other have rcecwed much less
\ | attention than before.
' Chapters 2 through 7 tgﬂ-ﬂﬁ» of this book have focused on the classical regres- 4
sion model and a particular estimator, least squares (linear and nonlinear). In this / (KT)
and the next four chapters, we will examine several general estimation strategies that,
are used in a wide variety of situations. This chapter will survey a few methods.in
( t.\ ) the three broad areas we have listed. Chaptey scusses the generalized method o
moments, which has emerged as the /centemlece of semiparametric estimation. Chap-
)1/ teribpresents the method of maximum’ hkehl:ood the broad platform for parametric, _. /5"
classical estimation in economefrics. Chaptel Ulscusses simulation-based estimation :
and bootstrapping. This is a recently developed body of techniques that have been
made feasible by advances in estimation technology and which has made quite straight-
forward many estimators which were previously only scarcely used because of the sheer
difficulty of the computations. Finally, Chapter J§ introduces the methods of Bayesian
econometrics.
The list of techniques presented here is far from complete. We have chosen z set
that constitute, the mainstream of econometrics. Certainly there are others that might
be considered. [See, for example, Mittelhammer, Judge, and Miller (2000) for a lengthy
catalog.] Virtually all of them are the subject of excellent monographs on the subject. In
this chapter we will present several applications, some from the literature, some home
. grown, to demonstrate the range of techniques that are current in econometric practice.
|22 We begin In Section T4:2 with parametric approaches, primarily maximum likelihood.
Because this is the subject of much of the remainder of this book, this section is brief.
Section d44.2)also introduces Bayesian estimation, which in its traditional form, is as - 12.2
heavily parameterized as maximum likelihood estimation. Section_14-%T5Gn semipara-
metric estimation. GMM estimation is the subject of all of Chapteglj)so itisonly /73
introduced here. The technique of least absolute deviations is presentéd hepe as well. A
range of applications from the recent literature is also surveyed. Sectionf14.4 desciibes ——— /2 }/
nonparametric estimation. The fundamental tool, the kernel density estimator is devel- i
oped, then applied to a problem in regression analysis. Two applications are presented
here as well. Being focused on application, this chapter will say very little about the

P

+!'The penetration of Baycsian econometrics could be overstated. Itis fairly well represcnted in current journals
such as the Journal of Econometrics, Journal of App!ied Econometrics, Journal of Business and Econoniic
Statistics, and so on. On the other hand, in the six major general treatments of econometries published in
2000, four (Hayashi, Ruud, Patterson, Davidson) do not mention Bayesian methods at all, a buffet of 32
¢ssays (Baltagi) devotes only onc to the subject, and the-one that displays any preference {Mittelhammer
ctal.) devotes ncarly 10 percent (70) of its pages to Bayesian cstimation, but all to the broad metatheory or
the linear regression model and none to the more elaborate applications that form the received applications
in the many journals in the ficld.
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statistical theory for )(thesc tcchmques—such as their asymptotic properties. (The
results are developed at length in the literature, of course.) We will turn to the subject

. of the properties of estimators briefly at the end of the chapter, in Section 14/5 then in

greater detail in Chaptel‘s)z'thmughjx’ 1

[ i
&.2 PARAMETRIC ESTIMATION AND INFERENCE

Parametric estimation departs frqm a full statement of the (lensnty or proba blhty model
that provides the data-generating mechamsm for a random variable of interest. For the
sorts of applications we have considered thus far, we mlght say that the joint density of
a scalar random variable, “y” and a random vector, “x” of interest can be specified by

12~
fGn % =gy |x B) x hx|8), @+1)

with unknown parameters 8 and 8. To continue the application that has occupied us

since Chapter 2, consider the inear regression model with normally distributed distur- A

bances. The assumption produces 2 full statement of the conditional density that is the
population from which an observation is drawn;

i3~ Nxi8, ol

All that remains for a full definition of the population is knowledge of the specific
values taken by the unknown but fired parameters. With those in hand, the conditional
probability distribution for y, is completely defined—mean, variance, probabilities of
certain events, and so on. (The marginal density for the conditioning variables is usually
not of particular interest.) Thus, the signature features of this modeling platform are
specifications of both the density and the features (pal ameters) of that density.

The Eargmeter space for the palametnc model is the set of allowable values of
the parameters that satisfy some prior specification of the model. For example, in
the regression modet specified previously, the X regression slopes may take any real
value, but the variance must be a positive number. Therefore, the parameter space
for that model is {8, o?] € RE x R,. “Estimation” in this context consists of specify-
ing a criterion for lankmg the points in the parameter space, then choosing that point
(a point estimate} or a set of points (an interval estimate) that optimizes that criterion,
that is, has the best ranking. Thus, for example, we chose linear Ieast squares as one es-

tlmahon criterion for the linear model. “Inference™ in this setting is a process by whlch'

some regions of the (already spemﬁed) parameter space are deemed not to contain the
unknown parameters, though, in more practical terms, we typically define a criterion
and then, state that, by that criterion, certain regions are unlikely to contain the true
parameters. ’

i1
#.21 CLASSICAL LIKELIHOOD-BASED ESTIMATION
The most common (by far) class of parametric estimators used in econometrics is the

maximum likelihood estimators. The underlying philosophy of this class of estimators
is the idea of “sample information.” When the density of a sample of observations is
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completely specified, apart from the unknown parameters, then the joint denslty of
those observations (assuming they are mdependent) is the likelihood fuyct_lpn_ _“- <)

3 1z
Fy yy ey X1,%0, - - )-—Hf(w.xa,lﬁ.ﬁ) (342)

-, ] i=I

This function contains all the information available in the sample about the population

from which those observations were drawn. The strategy by which that information is

used in estimation constitutes the estimator.

The maximum ]ikelihuo@ estimater [Fisher (1925)] is the function of the data that
(as its name 1mp11cs) maximizes the likelihood function (or, because it is usually more
convenient, the log of the likelihood function). The motivation for this approach is
most easily visualized in the setting of a discrete random variable. In this case, the
likeiihood function gives the joint probability for the observed sample observations,
and the maximum likelihood estimator is the function of the sample information that
makes the observed data most probable (at least by that criterion ). Though the analogy is
most intuitively appealing for a discrete variable, it carries over to continuous variables

as well. Since this estimator is the subject of Chapter({6) Which 15 quite lengthy, we
will defer any formal discussion until then] and consider instead two applications to
illustrate the techniques and enderpinnings.

2
Example #4 1 The Linear Regressfon Modei
Least squares weighs negative and positive deviations equally and gives disproportionate
weight fo large deviations in the calculation. This property can be an advantage or a disad-
vantage, depending on the data‘generating process. For normally distributed disturbances,
this metheod is precisely the one needed to use the data most eﬁlciently If the data are
generated by a nermal distribution, then the log of the likelihood function is

-

InL = ——In2:r - -—Ina - —(y—x,&’) (y - X8).

You can easily show that least squares is the estimatar of cholce for this model. Max:mlzmg
the function means mlmmlzm% the exponent, which is done by least squares for 8. thenele/n
follows as the estimator for o ¥

If the appropriate dlstnbutlo is’deemed to be something other than normal—perhaps on
i i at the tails of the disturbance distribution are foo thick/-see

the basis of an observatio
D.and Section 1619.5.a—-then there are three ways one might proceed. First, aswe
ve observed, the consistency of least squares is robust to this failure of the specification, so

long as the condltlonal mean of the disturbances is still zero. Some correction to the standard
errors is necessary for proper inferences. Second, one might want to proceed to an estimator
with better finite sample properties, The least absolute deviations estimator discussed in
Sectio .2 Is a candidate. Finally, one might consider some other distribution which

/-—-’aﬁ'c'o'r'nmodates the observed discrepancy. For example, Ruud (2000) examines in some

detail a linear regression model with disturbances distributed according to the ¢ distribution
with v.degrees of freedom. As long as v is finite, this random variable will have a larger
variance than the normal. Which way should one proceed? The third approach is the least
appealing. Surely if the normal distribution is inappropriate, then it would be difficult to come
up with a plausible mechanism whereby the t distribution would not be. The LAD estimator

might well be preferable if the sample were small. If not, then least squares would probably -

rernain the estimator of choice, with some allowance for the fact that standard inference tools
would probably ba misleading. Cumrent practice is generally to adopt the first strategy.

\q.
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. Example j4.2 The Stochastic Frontier Model C—-Aﬂﬂ’, er
- {1~ ;7 The stochastic frontier model, discussed in detail in Sestion_tf:.9.58:a, is a regression-like

- % . model witha disturbance distribution that is asymmetric and distinctly nonnormal. {Seetiig-
- amEtGHyThe condmonal density for the dependent vanable in this model is

f{}’!,ﬁeﬂ""l)"—' \f?exp[ <Y 20;2)(,3)} ( Ay — : x',g))

This produces a log-likelihood function for the modal, 7

4) ot "Da\g\

T

Sectin /5.2, nt=-ning ~Zin% - 3 (g) +ZM ( m)

; ; 3 lly parametnc esttmators for thls model. The maximum likelihood -
= estimator is discussed i e Greene (2007) presents the following method of ——
- { .| 7" moments estimator: For the regressmn slopes, excluding the constant term, use least
b squares For the parameters «, o, and A, based on the second and third mements of the
least squares residuals and least squares constant, solve

m = a'f +[1-~- 2/:!]03,
me = (2/m)"2[1 — 4/xle;,
2 = a+(2/2)%, 13

i

where i = oy/0, and 6% = 02 + 52,
Both estimators are fully parametnc The maximum likelihood esti ris for the reasons
discussed earlier. The method of moments estimators (see Section 15/2) are a riate o /
for this distribution. Which is preferable’? As we will see in Chapter oth estimators are 5N
consistent and asymptotically normally distributed. By virtue of the Cramer;—Rao theorem, (hCW e
the maximum likelihood estimator has a smallsr asymptotic variance. Neither has any small
sample optimality properties. Thus, the only virtue of the method of moments estimator ia
that one can compute it with any standard regression/statistics computer package and a
hand calculator whereas the maximum likelihood estimator reqmres specialized sofiware
{only somewhat—lt is reasonably common).

1 4@ MODELING JOINT DISTRIBUTIONS WITH
COPULA FUNCTIONS

Specifying the likelihood function commits the analyst to a possibly strong assumption
about the distribution of the random variable of interest. The payoff of course, is the
stronger inferences that this permits. However, when there ar¢ more than one ran-
dom variable of interest, such as in a joint household decision on health care usage in
the example to follow, formulating the full likelihood involves specifying the marginal
distributions, which might be comfortable, and a full specification of the joint distri-
bution, which is likely to be less so. In the typical situation, the model might involve
two similar random variables and an ill-formed specification of correlation between :
them. Implicitly, this case involves specification of the marginal distributions. The joint /\ )
; distribution is an empirical necessity to allow the correlation to be nonzero. The copula '
(17 fumefion approach provides a mechanism that the researcher can use to steer around
this situation.
Trivedi and Zimmer (2007) suggest a variety of applications that fit this description:

¢ Financial institutions are often concerned with the prices of different, related
(dependent) assets. The typical multivariate normality assumption is problematic
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because of GARCH effects.(see Section %13) and thick tails in the distributions.
While specifying appropriate marginal distributions may be reasonably
straightforward, specifying the joint distribution i 1s anything but that. Klugman
and Parsa {2000} is an application.

¢ There are many microeconometric applications in which straightforward marginal
distributions cannot be readily combined into a natural joint distribution. The
bivariate event count model analyzed in Mur}iz_}md Trivedi (1999} and in the
next example is an application. ' > =T

part of a larger model. The likelihood function for the observed outcome involves
the joint distribution of a variable of interest, hours, wages, income, eter, and the
probability of observation. The typical application is based on a joint normal
distribution. Smith (2003, 2005) suggests some applications in which a flexible
copula representation is more appropriate. {In an intriguing early application of
copula modeling that was not labeled as such, since it greatly predates the
econometric literature, Lee (1983) modeled the outcome variable in a selectivity
model as normatl, the observation probability as logistic, and the connection
between them using what amounted to the “Gaussian” copula function shown
next.]

Although the antecedents in the statistics literature date to Sklar’s {1973) derivations,
the app]ications in econometrics and finance are quite recent, with most applications
appearing since 2000. [See the excellent survey by Tiivedi and Zimmer (2007) for an
extensive description.]

Consider a modeling ploblern in which the marginal cdfs of two random variables
can be fully specified as Fi(y|#) and F3(y2 ), where we condition on sample infor-
mation (data) and parameters denoted “e.” For the moment, assume these are con-
tinuous random variables that obey all the axioms of probability. The bivariate cdf is

Fia(y1, y2| ). A (bivariate) copula function (the results also extend to multivariate func-

tions) is a function C(u, us) defined over the unit square [(0 < 1) <1) x (0 < 42 < 1)]
that satisfies

(1) Cl, w) = uz and C(uy1, 1) = uy,
2y CO,u)=C;.0 =0,
(3) 8C(uy, up)/3uy = 0 and 3C (11, uz)/3uz 2> 0.

These are propetties of bivariate cdfs for random variables 4; and 4, that are bounded
in the unit square. It follows that the copula function is a two-dimensional cdf defined
over the unit square that has one-dimensional marginal distributions that are standard
uniform in the unit interval [that is, property (1)]. To make profitable use of this re-
lationship, we note that the cdf of a random variable, Fi{y |e), is, itself, a umf01m1y

f2-¢

¢ In the linear self-selection model of Chapter ,24,/ the necessary joint distribution is |-

LA

distributed random variable. This is the fundamental probability transform_that we

use for generating random numbers. (See Section 1.2, ) In Sklar’s (1973) theorem, the
marginal cdfs play the roles of u; and 4. The theor¢m states that them emsts a copula
funetion, C(.,.) such that T4 ,,\ ___ W

Fo(y, y219) = C[Fi(n | »), Ba(y2]9)].

50 0rl,
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/%

If Fiz2(y, ya1e) = ClFi(n ), Fz(yz | #}] is continnous and if the marginal cdfs have
quantile {inverse) functlons F‘ () where 0 < u; < 1, then the copula function ¢can

be expressed as

FuOm 219 = Fu[F @ o), Fl @ )]
Z Prob{Us < 1, Us < o]
= C(-y']a IJZ)' .

- 1

Inwords, the theorem implies that the joint density can be written as the copula function
evaluated at the two cumulative probability functions.

Copuia functions allow the analyst to assemble joint distributions when only the
marginal distributions can be specified. To fill in the desired element of correlation
between the random variables, the copula function is written

Fra(y1, 21 @) = C[FR (1 10), 2l |e), 9],
where 8 is a “dependence parameter.” For continuous random variables, the joint pdf
is then the mixed partial derivative,
iz, y219) = co[Fi(n | e), Fa{y2]e), 0] 13-
= 32 CTR(y1 | o), Faly2|®), 6)/3m3n (43)
\7;1: =[8°C(., .0)/2 3B fity | #) folyz [ o).

A log-likelihood functioh can now be constructed using the logs of the right-hand sides of
“3). Taking logs of (}4-3) reveals the utility of the copula approach. The contribution
of the joint observation to the log likelihood is

n fiz(y1, y2 1) = [$*C(., ., 0)/0F18 Fa] +In fi(ys | ®) + In fo(yz| ).

Some of the common copula functions that have been used in applications are as follows:

Product:  Clug, u3,0] = uy x ap,

FGM: Cluy, u2,0] = urtna[1 + 0(1 — 1) (1 — w2)],

Gaussian:  Clu1, 43, 8] = ®2[d~1(1y), ©1(2), 6],

Clayton:  Cluy, 3, 8] = [u;® + u3® —~ 1]_1/ °
exp(8u; — Dexp@uaz — 1)

exp(d) -1

The product copula implies that the random variables are independent, because it im-
plies that the joint cdf is the product of the marginals. In the FGM (Fairlie, Gumbel,
Morgenstern) copula, it can be seen that = 0 implies the product copula, or indepen-
dence. The same result can be shown for the Clayton copula. In the Gaussian function,
the copula is the bivariate normal cdf if the marginals happen to be normal to begin
with. The essential point is that the marginals need not be normal to construct the copaia
function, so long as the marginal cdfs can be specified. (The dependence parameter is

not the correlation between the variables, Trivedi and Zimmer provide transformations
of @ that are closely related to correlations for each copula function listed.)

1
Frank: Cluy, u2,6] = g In [1 +
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The essence of the copula technique is that the researcher can specify and analyze
i ‘ the marginals and the copula functions separately. The likelihood function is obtained O
- R by formulating the cdfs [or the densities, because the differentiationin (143!wi11 reduce )7} e
* " the joint density to a convenient function of the marginal densities] and the copula.

Example 6.3 Joint Modeling of a Pair of Event Counts
The standard regression modeling approach for a rancdiom variable, y, that is a count of events
is the Poisson regression model, b )
ProblY = y |x] = exp{—1)37/y!, where . = exp(X'p), y = 0, .1,_. o
Mote intricate specifications use the negative binomial model {version 2, NB2),
iy Llrte) (a) N
Prqb[Y_yl?g"l"(a)l‘(}{-i-ﬂ itea Ata Y=01.. /7 '

where o is an overdispersion parameter. (See Chapter 25.) A satisfactory, appropriate spec-
ification for bivariate outcomes has been an ongoing topic of research. Early suggestions
ware based on a latent mixture model,

Y =Z+w,
Ye=2Z+ws,

where w; and w, have the Poisson or NB2 distributions spacHied eadier with conditional
means A, and A and 2 is taken to be an unobserved Poisson or NB variable. This formulation
induces correlation between the variables) butis unsatisfactory because that correlation must
be positive. In a natural application, vy, is doctor visite and v fs hospital visits. These could
be negatively correlated. Munkin and Trivedi (1889) specified the jointness in the conditional
mean functions, in the form of latent, common heterogeneity;

4 _ Aj= exp(x:,ﬁll + )

where ¢ is common to the two functions. Cameron et al. (2004) used a bivariate copula
approach to analyze Australian data on selfreported and actual physician visits (the latter )
mairntained by the Health Insurance Commission). They made two adjustments to thejmodel 'i" ettt
we developed. above. First, they adapted the basic copula formulation to these discrete .
random variables, Second, the variable of interest to them was not the actual or self-reported

count, but the difference. Both of these are straightforward modifications of the basic copula

model.

.. |'
[

"V
I3 SEMIPARAMETRIC ESTIMATION

Semiparametric estimation is based on fewer assumptions than parametric estimation.

In general, the distributional assumption is removed, and an estimator is devised from

certain more general characteristics of the population. Intuition suggests two (correct)
conclusions. First, the semiparametric estimator will be more robust than the parametric
estimator—it will retain its properties, notably consistency across a greater range of
specifications. Consider our most familiar example. The least squares slope estimator is
consistent whenever the data are well behaved and the disturbances and the regressors 1
are uncorrelated. This is even true for the frontier function in Example A2 which has | 2~
an asymmetric, nonnormal disturbance. But, second, this robustness comes at a cost.

The distributional assumption usually makes the preferred estimator more efficient

than a robust one. The best robust estimator in its class will usually be inferior to the
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parametric estimator when the assumption of the distribution is correct. Once again,
in the frontier function setting, least squares may be robust for the slopes, and it is
the most efficient estimator that uses only the orthogonality of the disturbances and

" the regressors, but it will be inferior to the maximum likelihood estimator when the

two-part normal distribution is the carrect assumption.

1%.3.1 GMM ESTIMATION IN ECONOMETRICS £ fr_
- | I

Recent applications in economics include many that base estimation on the methoﬂ of

6.5 moments. The generalized method of moments departs from a set of model based mo-

ment equatwns, E[mQy, x,, 8)] = 9, where the set of equations specifies a relationship
known to hold in the populatlon We used one of these in the preceding par. aglaph The
least squares estimator can be motivated by noting that the essential assumption is that
E[xi (3 —x}8)] = 0. The estimator is obtained by seeking a parameter estimator, b,
which mimics the popu]atlon result: (1/mE;{x; (3 — x/b)] = 0. These are, of course, the
normal equations for least squares, Note that the estimator is spec1ﬁed without benefit
of any distributional assumption. Method of moments estimation is the subject of Chap-
ter 15, so we will defer further analysis until then.

.3.2 LEAST ABSOLUTE DEVIATIONS ESTIMATION

Leasngquares can be severely distorted by outlying observations. Recent applications
onomics and financial economics involving thick-tailed disturbance distri-
example, are particularty likely to be affected by precisely these sorts of
observationsNOf course, in those applications in finance involving hundreds of thou-
sands of observaliqns, which are becoming commonplace, this discussion is moot.) These
applications have let\{o the proposal of “robust” estimators that are unaffected by out-
lying observations.? Inthis section, we will examine one of these, the least absolute
deviations, or LAD estim

That least squares gives duch large weight to large deviations from the regression
causes the results to be particulanly sensitive to small numbers of atypical data points
when the sample size is small or mddgrate. The least absolute deviations (LAD) esti-
mator has been suggested as an alternatiye that remedies (at least to some degree) the
problem. The LAD estimator is the solutidn to the optimization problem,

n
Minbu Z ’J’i -
i=1

The LAD estimator’s history predates least squares (whidh itself was proposed over
200 years ago). It has seen little use in econometrics, primarily oy the same reason that
Gauss’s method (LS) supplanted LAD at its origination; LS is vast
Moreover, in a more modern vein, its statistical properties are more
than LAD’s and samples are usually large enough that the small sample ¥yantage of
LAD is not needed.

2For sowge applications, see Taylor (1974), Amemiya (198§, pp. 70-80), Andrews (1974), Koenker and Bassett
(1978), ahl a survey written at a very accessible level by BiNces and Dodge (1993). A somewhat more rigorous
given by Hardle (1990).
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12.3.2 MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

Empirical likelihood methods are suggested as a semiparametric alternative to maximum
likelihood. As we shall see shortly, the estimator is closely related to the GMM estimator. Let 7,
denote generically the probability that Yix; takes the realized value in the sample. Intultlon,. e o
-"'; suggests (correctly) that with no further information, m; will equal 1/n. The empirical hkellhood 7

,*'..l.
YT

functlon is ] _ i

EL:H'—I ™

The maximum empirical llkellhood estimator maximizes EL. Equ:valently, we max1mlze the
log of the empirical likelihood,

ELL=1%" In, .

p L=

As a maximization problem, this program lacks sufficient structure to admit a solution - the
solutions for m; are unbounded. If we impose the restrictions that T, are probabilities that sum to
one, we can use a Langragean formulation to solve the optimization problem

ELL = [,%Zil In 1:51 + h[l - Z'; nj] .

This slightly restricts the problem since with 0 < 7; < 1 and I, m; = 1, the solution suggested /
earlier becomes obvious. (There is nothing in the problem that differentiates the n,s so they must | /7]
all be equal to each other.) Inserting this result in the derivative with respect to any specific . -
produces the remaining result, A = 1.

The maximization problem becomes meaningful when we 1mpose a structure on the data.
To develop an example, we’ll recall Example 7.5, a nonlinear regression equation for Income for
the German Socioeconomic Panel data, where we specified

Elincome | Age, Sex, Education] = exp(x'B) = A(x,p).

For purpose of an example, assume that Education may be endogenous in this equation, but we
have available a set of instruments, z, say (dge, Health, Sex, MarketCondition). We have
assumed that there are more instruments (4) than included variables (3), so that the parameters
will be overidentified (and the example will be complicated enough to be interesting). (See
Sections 8.3.4 and 8.6.) The orthogonality conditions for nonlinear instrumental variable
estimation are that the disturbances be uncorrelated with the instrumental variables, so

E{ zi [Income, — h(qu)]} = Elmy(B)] =



Cz2-n)

The nonlinear least squares solution to this problem was developed in Example 8.10. A
GMM estimator will minimize with respect to B the criterion function

g=m (B)Am(B)

- where A is the chosen we1ght1ng matrix. Note that for our example, including the
constant term, there are 4 elements in B and % moment equations, so the parameters are
overidentified.

If we impose the restrictions unphed by our moment equauons on the empmcal
likelihood function, instead, we obtain the population moment condition - S

_ [Z_:;ln_i.z; (Inionl%_h(’_‘_{s,ﬁ)):l =

(The probabilities are population quantities, so this is the expected value.) This produces
the constrained empirical log likelihood

BLL=| 23 o, |+ 1= 32 |y [ 2, o —ht-?_‘;zl?_))]-

The function is now maximized with respect to m;, A, f (X elements) and v (L elements,
the number of instrumental variables.) At the solution, the values of 07 provide,
essentially, a set of weights. Cameron and Trivedi (2005, p. 205) provide a solution for
fi; in terms of (B,y) and show, once again, that A = 1. The concentrated ELL function

with these inserted provides a function of y and B that remains to be maximized.

The empirical likelihood estimator has the same asymptotic properties as the
GMM estimator. (This makes sense, given the resemblance of the estimation criteria -
ultimately, both are focused on the moment equations.) There is evidence that at least i m

some cases, the finite sample properties of the empirical likelihood estimator might be
better than GMM. A survey appears in Imbens (2002). One suggested modification of '
the procedure is to replace the core function in (1/7)Z;Inm; with the entropy measure/ 7 |

Entropy = (1/m)%; 7y Inm,,

(¥
The maxnmum _entropy estlmator is developed in Golan, Judge and Miller (1996) and
Golan (2009) '

|
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12.3.2 LEAST ABSOLUTE DEVIATIONS ESTIMATION AND
QUANTILE REGRESSION

Least squares can be severely distorted by outlying observations in a small sample. Recent

applications in microeconomics and financial economics involving thick-tailed disturbance

_ - distributions, for example, are particularly likely to be affected by precisely these sorts of

" obsetvations. (Of course, in those -applications in finance involving hundreds of thousands of
observations, which are becomi_ng‘cqmmonpl_ace, this discussicn is moot.) These applications
have led to the proposal of “robust” estimators that are unaffected by outlying observations. One

of these, the least absolute deviations, or LAD estimator discussed in Section 7.3.13 The EAD

estimator is also useful in its own right as an estimator of the conditional median function i in the
modified model

Med|yix] = ._}_'ﬁ.so-

That is, rather than providing a robust alternative to least squares as an estimator of the slopes of
Eyix], LAD is an estimator of a different feature of the population. This is essentially a
semiparametric specification in that it specifies only a particular feature of the distribution, it]s
median, but not the distribution itself. It also specifies that the conditional median be a linear
function of x. :

The median, in turn, is only one possible quantile of interest. If the model is extended to
other quantiles of the conditional distribution, we obtain

Ol¥x,q] = xB, such that Prob[y < rmeP‘i 3] = 4.0<g<1.

This is essentially a nonparametric specification. No assumption is made about the distribution of
Yx or about its conditional varlance The fact that g can vary contmuously (strictly) between zero
and one means that there are an infinite number of possible “parameter vectors: It seems
reasonable to view the coefficients, which we might write B(g) less as fixed “parameters;*'as we
do in the linear regression model, than loosely as features of the distribution of y|x. For example,
it is not likely to be meaningful to view B(.49) to be discretely different from B(. 50) or to compute
precisely a particular difference such as B(.5) < B(3). On the other hand the qualitative
difference, or possibly the lack of a difference, between B(.3) and B(.5) may well be an interesting

characteristic of the population. The quantile regressmn model is examined in Section 7.3.2.
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Yatchew's suggested sr:t;:féed kernel density estirdator for the relationship between average
cost and output is shown in Figure 14.2 with theAmsmoothed partial residuals. We find (as
did Chrisiensen and Greene in the eadier study] that in the relatively low ranges of output,
there is a fairly strong relationshi

r
)%3.4 KERNEL DENSITY METHODS

The kernel density estimator is an inherently nonparametric tool, so it fits more ap-
propriately into the next section. But some models that use kernel methods are not
completely nonparametric. The partially linear model in the preceding example is a
case in point. Many models retain an index function formalation, that is, build the spec-
ification around a linear function, x’8, which makes them at least semiparametric, but
nonetheless still avoid distributional assumptions by using kernel methods. Lewbel's
{2000) estimator for the binary choice model is another example.

. l L
Example '}gﬁ Semiparametric Estimatc inary Choice Models
The core binary choice model analyzed in Section £3.4/the probit model, is a fully parametric
specification. Under the assumptions of the model, maximum likelihood is the efficient {and
appropriate) estimator. However, as documented in a voluminous literature, the estimator of \ 'EJG
”~

g is fragile with respect to failures of the distributional assumption. We will examipe a few
semiparametric and nonparametric estimators in Sectio .6, /16 Tlustrate the nature of the
modeilng process, we consider an astimator recently sugdgrsted by Lewbel (2000). The probit

modal is based on the nomal distribution, with Prob[y = 1{x] = Prob[x’ 8 + £, > 0] where
& ~ NIO, 1]. The estimator of 8 under this specification will be inconsistent if the distribution is
not normal or if ¢, is heteroscedastic. Lewbel suggests the following: If (a) it can be assumed
that X contains a “special” variable, v;, whose coefficient has a known Stgn—-a method is
developed for determining the sign and (b) the density of & is independent of ‘this variable,

then a consistent estimator of g can be obtained by finear r regmss:on of [y —s{v))/ fly; ]x;)
on x; where s(v;) = 1ify; >0 ‘and 0 otherwise and Ty |>g) is a keme! density estimator
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of the density of v; | x;.. Lewbel's estimator is robust to heteroscedasticity and distribution.
A method is also suggested for estimating the distribution of ¢;. Note that Lewbel's estimator

_ is semiparametric. His under!ylng model is afunction of the parameters g, but the distribution

is unspecified.
14 - .
IJ/fS 5 COMPARING PARAMETFHC AND SEMIPARAMETRIC
ANALYSES

It is often of interest to compare the outcomes of parametric and sefniparametric mod-
els. As we have noted earlier, the strong assumptions of the fully parametricmodel come .
at a cost; the inferences from the model are only as robust as the underlying assump-
tions. Of course, the other side of that equation is that when the assumptions are met,
parametric models represent efficient strategies for analyzing the data. The alternative,
semiparametric approaches relax assumptions such as normality and homoscedasticity.
it is important to note that the model extensions to which semiparametric estimators
are typically robust render the more heavily parameterized estimators inconsistent, The
comparison is not just one of efficiency. As a consequence, comparison of parameter
estimates can be mlsleadmgp +the parametric and semiparametric estimators are often
estimating very different quantities.

Example ’4.-?“‘ A Modlel of Vacation Expendilures

Melenberg and van Soest (1986) analyzed the 1981 vacation expenditures of a sample of
1,143 Dutch famiilies. The important feature of the data that complicated the analysis was that
37 percent (423) of the families reported zero expenditures. A linear regression that ignores
this feature of the data would be heavily skewad toward underestimating the response of
expenditures to the covaria ch as total family expenditures (budget), family size, age,
or sducation. (See Section/24.3. The standard parametric approach to anafyzing data of this
sort is the “Tobit,” or génscrad, regression model:

- ¥ =Xp+e, 8 ~NO o’

{Maximum likelihood estimation of this modelis examined in detailin Section 26.3.) The model

rests on two strong assumptions, normality and homoscedasticity. Both assumptions can be

relaxed in a more elaborate parametric framework, but the authors found that test statistics

persistently rejected one or both of the assumptions even with the extended specifications.

An altternative approach that is robust to both is Powell’s (1984, 1986a, b} censored least

absolute deviations estimator, w%:%: more technicafly demanding computaticn based
3

on the LAD estimator in Section ot surprisingly, the parameter estimates produced
by the two approaches vary widely. The authors computed a variety of estimators of 8. A
useful exercise that they did not undertake would be to compare the partial effects from
the different models. This is a benchmark on which the differences between the different
estimators can sometimes be reconciled. In the Tobit model, BE[y; 1% /8%, = ¢(xfg /o)
(see Section . It is unclear how to compute the counterpart in the semiparametric model,
since the undsilying specification holds only that Med[e; | x:] = 0. (The authors report on the
Journal of Applied Econometrics data archive site that these data are proprietary. As such,
we were unable to extend the analysis to obtain estimates of partial effects.) This hlghllghts
a significant difficulty with the semiparametric approach to estimation. In a nonfinear model
such as this one, it is often the partial effects that are of interest, not the coefficients. But, one
of the byproducts of the more “robust” specification is that the partial effects are undefined.

In a second stage of the analysis, the authors decomposed their expenditure equation into
a “participation” equation that modeled probabilities for the binary outcome “expenditure =
0 or > 0" and a conditional expenditure equation for those with positive expenditure. {In
Chapter 25, wa will label this a “hurdle” model. See Multahy (1986)] For this step, the authors
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once again ysed a parameiric mﬁdei baged on the normal distribtition (he probit model-—see
Section fgﬁsand a semiparamstric model that ks robust to distribution and hetemscedastlctty

\ q’ ‘3 developed by Klgin and Spady {1993). As before, the coefficient estimates differ substantially.
However, in this instance, the specification tests are considerably more sympathetic to the

W which reproduces their Figure 2, compares the predicted
,f probabilities two models The dashed curve is the probrt model. Within the range
- of most of the data, the models give quite similar predictions. Once again, however, it is not
R possible to compare partial effects. The interesting outcome from this part of the analysis
. seems to be that the failure of the parametric specification resides more in the modeling of

the continuous expenditure variable than with the mode! that separates the two subsamples
based on zero or positive expenditures.

| 2~
“+t4.4 NONPARAMETRIC ESTIMATION

Researchers have long held reservations about the strong assumptions made in para-

metric modeis fit by maximum likelihood. The linear regression model with normatl

disturbances is a leading example. Splines, translog models, and polynomials all repre-

sent attempts to generalize the functional form. Nonetheless, questions remain about

how much generality can be obtained with such approximations. The techniques of non-

parametric estimation discard essentially all fixed assumptions about functional form

and distribution. Given their very limited structure, it follows that nonparametric spec-

ifications rarely provide very precise inferences. The benefit is that what information

3 is provided is extremely robust. The centerpiece of this set of techniques is the kernel

FENT density estimator that we have used in the preceding exarnp]es. We will examine some
"-__ u _el examples, then examine an application to a bivariate regression. 7.4

i

o "The set of literature in this area of econometrics is large and rapidly growing. Major references which provide

an applied and theoretical fovndation are Hirdle (1990), Pagan and Ullah (1999), and Li and Racine (2007},
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fV
'14.’.4.1 KERNEL DENSITY ESTIMATION

-, Sample statistics such as a mean, variance, and range give summary information about
the values that a random variable may take. But. they do not suffice to show the distribu-
tion of values that the random-variable takes, and these may be of interest as well. The
density of the variable is used for this purpose. A fully parametric approach to density
estimation begins with an assumption about the form of a distribution. Estimation of
the density is accomplished by estitnation of the parameters of the distribution. To take-
the canonical example, if we decide that a variable is generated by a normal distribution
with mean p and variance o2, then the density is fully characterized by these parameters.
It follows that i

fo = Sl o= L L 1(x—ﬁ)2
_f(;)—_f(xllu,ab)—&mem[—-2 3 .

One may be unwilling to make a parrow distributional agsumption about the density.
The usual approach in this case isso begin with.a hh:stug}ain as a descriptive device.
Consider an example. In Examples(]17 and in Greene {2004a), we estimate
a model that produces a conditional estimator of a slope vector for each of the 1.270
firms in our sample. We might be interested in the distribution of these estimators
across firms. In particular, the conditional estimates of the estimated slope on in sales
for the 1,270 firms have a sample mean of 0.3428, a standard deviation of 0.08919, a
minimum of 0.2361,and a maximum of 0.5664. This tells us little about the distribution
of values, though the fact that the mean is well below the midrange of 4013 might
Fi= Y suggest some skewness. The histogram in Figure J44Ts much more revealing. Based |
N Y e | = sples
FIGURE 124# 'Histogram for Estimated by, Cosfficlents.. :
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on what we see thus far, an assumption of normality might not be appropriate. The

L S P distribution seems to be bimodal. but certainly no particutar functional form seems o U

- natural.
The histogram is a. crude density estimator. The 1ectangles in the figure are called
bins. By construction, they are of equal width. (The parameters of the histogram are
the number of bins, the bin width, and the leftmost starting pomt Each is important
in the shape of the end result.) Because the frequency count.in the bins sums to the
sample size, by dividing each by i, we have a density estimator that satisfies an obvious
requirement for a density; it sums (integrates) to one. We can formalize this by laying
out the method by which the frequencies are obtained. Let x; be the midpoint of the
kth bin and let & be the width of the bin—we will shortly rename 4 to be the bandwidth
for the density estimator. The d;stancq to the left and right boundaries of the bins are
/2. The frequency count in each bin is the number of observations in the sample which
fall in'the range x; + k/2. Collecting terms, we have our “estimator”

1 frequency in bin, _ 1 1 h h
f(x) —-“'n';hf'l _.x:““§<_x]’ <_x+"2" ’

# width of bin,

where 1(statenent) denotes an indicator function which equals 1 if the statement is true
and 0 if it is false and bin, denotes the bin which has x as its midpoint. We see, then, that
the histogram is an estimator, at least in some respects, like other estimators we have
encountered. The event in the indicator can be rearranged to produce an equivalent
form

11 1 x—-—x 1

This form of the estimator simply counts the number of points that are within one half -
bin width of x;.

Albeit rather crude, this:-“naive” (its formal name in the llteratl.ue) estimator is in
the form of kernel denmiy{ésttmators that we have met at various points;

1& 1 [xi—x
__f(x) = g.h _r'_{[ 7 ] where K[z] =1[-1/2 < z < 1/2].
The naive estimator has several shortcomings. It is neither smooth nor continuous.
Its shape is partly determined by where the leftmost and rightmost terminals of the
histogram are set. (In constructing a histogram, one often choocses the bin width to be
a specified fraction of the sample range. If so, then the terminals of the lowest and
highest bins will equal the minimum and maximum values in the sample, and this will
partly determine the shape of the histogram. If. instead, the bin width is set irr espective
of the sample values, then this problem is resolved.) More importantly, the shape of
the histogram will be crucially dependent on the bandwidth itself. (Unfortunately, this
problem remains even with more sophisticated specifications.)

The crudencss of the weighting function in the estimator is easy to remedy.
Rosenblatt’s (1956) suggestion was to substitute for the naive estimator some other
weighting function which is continucus and which also integrates to one. A number of
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12./
TABLE 122 Kernels for. Density Estimation
Kernel " Formula K[z]
Epanechnikov  _ 0.75(1 =0.222)/2.236 if |z} <5, 0 else
Normal - “¢(2) (normal density),
Logit A1 — A(@)] (logistic density)
Uniform 0.5if Iz} <1, 0 else
Beta 0751 =1 + pif [zl <1, Delse !
Cosine 1+ cos(2r g if iz] <05, Gelse
Triangle b —|zl.if [z] =T,0else
Parzen 443 — 82 + 8|7 if |2 <0.5,8(1 - |2)*/3if05 < |z < 1, 0 else.

candidates have been suggested, including the (long) list in Table iﬂ::"" Each of these
is smooth, continnous, symmetric, and equally attractive. The logit and normal kernels
are defined so that the weight only asymptotically falls to zero whereas the others fall to
zero at specific points. It has been observed that in constructing a density estimator, the
choice of kernel function is rarely crucial, and is usually minor in importance compared
to the more difficult problem of choosing the bandwidth. (The logit and normal kernels
appear to be the default choice in many applications.)

The kernel density function is an estimator. For any specific x, f (x} is a sample
statistic,

3 1 £ )
J@==3 gtz h.
i=1

Because g(x; | z, k) is nonlinear, we should expect a bias in a finite sample. It is tempting
to apply our usual results for sample moments, but the analysis is more complicated
because the bandwidth is a function of #. Pagan and Ullah (1999) have examined the
properties of kernel estimators in detail and found that under certain assumptions,
the estimator is consistent and asymptotically normally distributed but biased in finite
samples. The bias is a function of the bandwidth but for an appr opriate choice of /1, the
bias does vanish asymptotically. As intuition mnght suggest, the larger is the bandwidth,

the greater is the bias, but at the same time, the smaller is the variance. This might suggest
a search for an optimal bandwidth. After a lengthy analysis of the subject, however, the
authors’ conclusion provides little guidance for finding one. One consideration does
seem useful. For the proportion of observations captured in the bin to converge to

. the corresponding area under the density, the width itself must shrink more slowly

than 1/n. Common applications typically use a bandwidth equal to some multiple of
4~Y5 for this reason, Thus, the one we used earlier is # = 0.9 x s/n'3, To conclude the

f

1llusn ation begun earlier, Figaredd.3)s a logit-based kernel density estimator for the dis-

tribution of slope estimates for the model estimated earlier. The resemblance to the

.',_z __’ g \

e,

histogram in Figure léas to be expected. L J2.2

14.4.2 NONPARAMETRIC REGRESSION

The regression function of a varjabte y on a single variablexis specified as

y=px) +e&
ticity, serial correlation
set; 12(x) may be quite nonlinear. Because
1d be that deviations

t distribution, homosc
form are made at the
nditional mean, the on)ySubstantive restriction

No assumptions a
tantly, functi
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rrelated with) x. We have
owing the conditional mean to be
s, logs, dummy variables, and so on.
. The functional form is still the same for
methods that do not assume any particular

from the conditional mean function are not a function
already considered several possible strategies for
nonlinear, including spline functions, polynomi
But, each of these is a “global” specificati
all values of x. Here, we are intereste
functional form.

The simplest case to anal
on ); were made with each-dpecific value of x;. Then, the
could be estimated natufally using the simple group means. The approach has two
shortcomings, howev€ér. Simply connecting the poipd€ of means, (x;, ¥]x;) does not
produce a smoogh” function. The method would sfill be assuming something specific

ould be one in which several (different) observations

ditional mean function

1

adratic regression in each nei rhood. This returns us to the problem of contj
that we noted earlier, but the

likely to be crude.
Smoothing techniques are designed to aliow construction of an estimator of the
conditional mean fifhction without making strong assumptigfs about the behavior of
the function bepfeen the points. They retain the usefuln€ss of the nearest neighbor .
concept, b e more elaborate schemes to produce.simooth, well behaved functions.
The gener#tclass may be defined by a conditionalsfiean estimating function
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FA.5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with methods of estimation. We have surveyed a
variety of techniques that have appeared in the applied literature, We have not yet
examined the statistical properties of these estimators. Although, as noted earlier, we
will leave extensive analysis of the asymptotic theory for miore advanced treatments,
it is appropriate to spend at least some time on the fundamental theoretical platform
which underlies these techniques.
>
/1’#5 1 STATISTICAL PROPERTIES OF ESTIMATORS

Properties that we have considered are as follows:

¢  Unbiasedness: Thisisa finite sample property that can be established in only a very
small number of cases. Strict unbiasedness is rarely of central importance outside
the linear regression model. However, “asymptotic unbiasedness™ (whereby the
expectation of an estimator converges to the true parameter as the sample size
grows), might be of interest. [See, e.g., Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density estimator).] In most cases, however, discussions of
asymptotic unbiasedness are actually directed toward consistency, which is a more
desirable property.

¢  Congistency: This is a much more important property. Econometricians are rarely
willing to place much credence in an estimator for which consistency cannot be
established.

*  Asymptotic normality: This property forms the platform for most of the statistical
inference that is done with common estimators. When asymptotic normality can-
not be established, it sometimes becomes difficult to find a method of progressing
beyond simple presentation of the numerical values of estimates (with caveats).
However, most of the contemporary literature in macroeconomics and time-series
analysis is strongly focused on estimators that are decidedly not asymptotically nor-
mally distributed. The implication is that this property takes its importance only in
context, not as an absolute virtue.

e  Asymptotic efficiency: Efficiency can rarely be established in absolute terms.
Efficiency within a class often can, however. Thus, for example, a great deal can
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be said about the relative efficiency of maximum likelihood and GMM estimators
in the class of consistent and asymptotically normally distributed (CAN) estima-
‘tors, There are two important practical considerations in this setting. First, the
researcher will want to know that he or she has not made demonstrably suboptimal
use of the data. (The literature contains discussions of GMM estimation of fully
speaﬁed parametric probit miodels-—-GMM estimation in this context is unambigu-

ously inferior to maximum llkehhood) Thus, when possible, one would want to
avoid obviously inefficient estimators. On the other hand, it will usual]y be the case |

that the researcher is not choosing from a list of available estimators: he or she has
_ one athand, and quest10ns of leIatwe efﬁmency are moot.
1V

AAE.2 EXTBEMUM ESTIMATOFIS

3 T
An extrgmum estimator is one that is obtained as the optimizer of a criterion function
g(8 | data). Three that have occupied much of our effort thus far are

|-:'

o  Least squares: ;5 = Argmax [—(1/m) 3271 (v — h(xi. BLs)) 2,
e  Maximum likelihood: § 7 = Argmax[(1/m 35, In f(y | %, 9 ML)] and
GMM: éGMM == Argmaa[wm(data 0 cun) Wii(data, HGMM)]

(We have changed the sighs of the first and third only for convenience so that all three
may be cast as the same type of optimization problem.) The least squares and maximum
likelihood estimators are examples of M eshmators, which are defined by optimizing
over a sum of terms. Most of the familiar theoretical results developed here and in
othet treatises concern the behavior of extremum estimators. Several of the estimators
considered in this chapter are extremum estimators, but a few.—including the Bayesian
estimators, some of the semiparametric estimators, and all of the nonparametric
estimators——hre not. Nonetheless. we are interested in establishing the properties of
estimators in all these cases, whenever possible. The end result for the practitioner will
be the set of statistical properties that will allow him or her to draw with confidence
conclusions about the data‘generating process(es) that have motivated the analysis in
the first place.

Derivations of the behavior of extremum estimators are pursued at various levels
in the literature. (See, for example, any of the sources mentioned in Footnote 1 of this
chapter.) Amemiya (1985} and Davidson and MacKinnon (2004) are very accessible
treatments. Newey and McFadden (1994} is a rigorous analysis that provides a cuirent,
standard source. Our discussion at this point will only suggest the elements of the anal-
ysis. The reader is referred to one of these sources for detailed proofs and derivations.

¥

Fe 8 5.3 ASSUMPTIONS FOR ASYMPTOTIC PROPERTIES
OF EXTREMUM ESTIMATORS

Some broad results are needed in order to establish the asymptotic properties of the
classical (not Bayesian) conventional extremum estimators noted above.

1. The parameter space (see Section J’Z) must be convex and the parameter vector
that is the object of estimation must be a point in its interior. The first requirement
rules out ill-defined estimation problems such as estimating a parameter which
can only take one of a finite discrete set of values. Thus, searching for the date of
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- a structural break in a time-series model as if it were a conventional parameter
leads to a nonconvexity. Some proofs in this context are simplified by assuming ~ -t
that the pammetel space is compact. (A compact set is closed and bounded.)
However, assuming compactnessm usua]lylestnctwe so we will opt for the weaker
requirement. ‘ 2
2. The criterion function must be concave in the paiametem (See Section A.8.2.)
This assumption implies that with a given-data set, the objective function has
an interior optimum and that we can locate it. Criterion functions need not be
“globally concave™; they may have muitiple optima. But, if they are not at least
. “locally concave,” then we cannot speak meaningfully about optimization. One
would normally only encounter this problem in a badly structured model, but it is
possible to formulate a model in which the estimation criterion is monotonically
.| increasing or deméasing in a parameter. Such a model would produce a noncon-
/| - cave criterion function.t . The distinction between compactness and concavity in
I the precedmg condition is relevant at this point, If the criterion function is strictly
continuous in a compact parameter space, then it has a maximum in that set and
assuming concavity is not necessary. The problem for estimation, however, is that
this does not rule out having that maximum occur on the (assumed) boundary of
the parameter space. This case interferes with proofs of consistency and asymptotic
normality. The overall problem is solved by assuming that the criterion function
is concave in the neighborhooed of the true parameter vector.
Idenﬂﬁab:hty of the parameters. Any statement that begins with “the true param-
eters of the model, Bp are identified if .. .” is problematic because if the parameters
are “notidentified” then arguably. they are not rhe parameters of the (any) model.
(For example, there is no “true” parameter vector in the unidentified model of
Example 2.5.) A useful way to approach this question that avoids the ambiguity
of trving to define the true parameter vector first and then asking if it is identi-
fied (estimable) is as follows, where we borrow from Davidson and MacKinnon
(1993, p.-591): Consider the parameterized model, M, and the set of allowable
datargenerating processes for the model, u. Under a particular parameterization
p., let there be an assumed “true™ parameter vector, #(;2). Consider any parameter
vector @ in the parameter space, @, Define

b7
h

q;a(ﬂf-.-f_) = plimyqll(a ! d-.a'ta)‘

This function is the probability limit of the objective function under the assumed
parameterization u. If this probability limit exists (is a finite constant) and more-
over, if

Gule. ()] > gu(p, @) if8 #£08(p),

then, if the parameter space is compact, the parameter vector is identified by the
criterion function. We have not assumed compactness. For a convex parameter
) )
®In their Exercise 23 6, Griffiths, Hill, and Judge (1993), based (alas) on the first edition of this text, suggesta
probit model for statewide voting outcomes that includes dummy variables for region: Northeast, Southeast,
West, and Mountain. One would normally inchude three of the four dummy variables in the model, but
Griffiths et al. carefully dropped two of them because in addition to the dummy variable trap, the Southeast
variable is always zeyo when the dependent variable is zero, Inclusion of this variable produces a nonconcave
likelihood funcnon-'-thc parametet on this variable diverges. Analysis of a closely related case appearsas a
caveat on page 272 of Amemiya (1985).
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space, we would require the additional condition that there exist no sequences
without limit points #” such that g(u, #™) converges to g[u, 8 (i1}].

The approach taken here is to assume first that the model has some set of
parameters, The identifiability criterion states that assuming this is the case, the
probability limit of the eriterionris maximized at these parameters. This result rests
on convergence of the criterion function toa fmite value at any point in the interior
of the parameter space. Because the criterion function is a function of the data, this

convergence requires a statement of the properties of the data;-for example, well

behaved in some sense. Leaving that aside for the moment, interestingly, the results
to this point already establish the consistency of the M estimator. In what might
seem to be an extremely terse fashion, Amemiya (1985) defined identifiability
simply as “existence of a consistent estimator.” We see that identification and the
conditions for consistency of the M estimator are substantively the same.

This form of identification is necessary, in theory, to establish the consistency
arguments. In any but the simplest cases, however, it will be extremely difficult to
verify in practice. Fortunately, there are simpler ways to secure identification that
will appeal more to the intuition:

& For the least squares estimator, a sufficient condition for identification is that
any two different parameter vectors, @ and #, must be able to produce dif-
ferent values of the conditional mean function. This means that for any two
different parameter vectors, there must be an X;.that produces different val-
ues of the conditional mean function. You should verify that for the linear
model, this is the full rank assumption A.2. For the model in Example 2.5, we
have a regression in which x» = x3 + x4 In this case, any parameter vector
of the form (81, B2 — a, B3 + 4, s + a) produces the same conditional mean
as {B1. B2, B3, Ba) regardless of x;, so this model is not identified. The full rank
assumption is needed to preclude this problem. For nonlinear regressions, the
problem is much more complicated, and there is no simple generality. Example
11.2 shows a nonlinear regression model that is not identified and how the lack
of identification is remedied.

¢ For the maximum likelihood estimator, a condition similar to that for the re-
gression modelis needed. For any two parameter vectors, # 3 #y, it must be pos-
sible to produce different values of the density f(y; | x;, §) for some data vector
(¥, X:). Many econometric models that are fit by maximum likelihood are “in-
dex function” models that involve densities of the form f(y; | x;.8) = f(¥ Ix{ﬁ)
When this is the case, the same full rank assumption that applles to the regres-
sion model may be sufficient. (If there are no other parameters in the model,
then it will be sufficient.)

¢ For the GMM estimator, not much simplicity can be gained. A sufficient con-
dition for identification is that E[mi(data, #)] = 0 i{# # .

Behavior of the data has been discussed at various points in the preceding text.
The estimators are based on means of functions of observations. (You can see this
in all three of the preceding definitions, Derivatives of these criterion functions
will likewise be means of functions of observations.} Analysis of their large sample
behaviors will turn on determining conditions under which certain sample means
of functions of observations will be subject to laws of large numbers such as the
Khinchine (D.5) or Chebychev (D.6) theorems, and what must be assumed in order

12-23
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toassert that “root-a " times sample means of functions will obey central limit theo-
rems such as the Lindeberg—Feller (D.19) or Lyapounov (D.20) theorems for cross
= sections or the Martingale Difference Central Limit theorem for dependent obser-

vations (Theorem 19.3). Ultimately. this is the issue in establishing the statistical & 4/
properties. The convergerice. property claimed above must occur in the context of /
the data. These corniditions have been discussed in Secﬁons@aﬁm:

the heading of “well-behaved data.” At this point, we w1ll assume that the data %Z 2

are well behaved.

1

4‘@.5.4 ASYMPTOTIC PROPERTIES OF ESTIMATORS

With all this apparatus in place. the following are the standard results on asymptotic
properties of M estimators:

%
THEOREM .1 Consistency of M Estimators
If (a) the parameter space is convex and the true parameter vector is a point in
its interior, (b) the criterion function is concave, (c) the parameters are identified
by the criterion function, and (d) the dara ave well behaved, then the M estimator
converges in probability to the true parameter vector.

Proofs of consistency of M estimators rely on a fundamental€onvergence result
that, itself, rests on assumptions (a) through (d) in Theorem 141, We have assumed
identification. The fundamental device is the following: Because of its dependence on
the data, (8 | data) is a random variable. We assumed in (c) that plim (8 | data) = qo(#)
for any point in the parameter space. Assumption (c) states that the maximum of go(#)
oceurs at qu(ﬁu), s0 #o is the maximizer of the probability limit. By its definition, the
estimator ﬁ 16 the maximizer of q(f | data). Therefore, consistency requires the limit of
the maximizer, 9 be equal to the maximizer of the limit, #g. Our identification condition
establishes this. We will use this approach in somewhat greater detail in Section ¥674.5.a
where we establish consistency of the maximum likelihood estimator. 104

THEOREM h.Z Asymptotic Normality of M Estimators
If
@) 9 is a consisient estimaror of §o where 8¢ is a point in the interior of the
parameter space;
(i) q(@ |data) is concave and iwice continuously differeniiable in 8 in a neigh-
borhood of By;
i)  /n[dq(8,|data) /890]—>N[0 L3R
(iv) foranyin@, lim Py [1(32q(A | data)/36,96,) — Ainl(®)} > £] =0V & > 0
where Ay () IS a mntmuou.s finite valued function of 8;
(v} the matrix o f elements H(8) is nonsingular at §o, then

i@ — 02 N{0, [H-'(80)@H (9)]}.
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The proof of asymptotic normality is based on the mean value theorem from calculus
and a Taylor series expansion of the derivatives of the maximized criterion function

around the true parameter vector:

o ;
=0= ﬂﬂq(ﬂg;faté) + ] q;f; ; :ata) i~ o

The second derivative is evaluated at a point @ that is between # and Hg, that is, 9

wé + (1 — w)@y for some 0 < w < 1. Because we have assumed phm = . fp. we see that
the matrix in the second term on the right must be converging to H(fp). The assumptions
in the theorem can be combined to produce the claimed normal distribution. Formal
proof of this set of results appears in Newey and McFadden (1994). A somewhat more

(l2-20 |

detailed analysis based on this theorem appears in Section  where we establish /¢
the asymptotic normality of the maximum likelihood estlmatm 5/ r A

The preceding was restricted to M estimators, so it remains to establish counterparts
for the important GMM estimator. Consistency follows along the same lines used earlier,
but asymptotic normality is a bit more difficult to establish. We will return to this issue
in Chapte where, once again, we will sketch the formal results and refer the reader
to a source such as Newey and McFadden (1994) for rigorous derivation.

The preceding results are not straightforward in all estimation problems. For exam-
ple, the least absolute deviations (LAD) is not among the estimators noted earlier, but
itis an M estimator and it shares the results given here. The analysis is complicated be-
cause the criterion function is not continuously differentiable. Nonetheless, consistency
and asymptotic normality have been established. [See Koenker and Bassett (1982) and
Amemiya (1985, pp. 152:-154).] Some of the semiparametric and all of the nonparamet-
ric estimators noted require somewhat more intricate treatments. For example, Pagan
and Ullah (Secnon 2.5and 2. 6) are able to establish the familiar desirable properties for
the kernel density estlmatm fx*), but it requires a somewhat more involved analysis
of the function and the data than is necessary, say, for the linear regression or bino-
mial logit model. The interested reader can find many lengthy and detailed analyses
of asymptotic properties of estimators in, for example, Amemiya (1985), Newey and
McFadden (1994), Davidson and MacKinnon (2004) and Hayashi (2000). In practical
terms, it is rarely possible to verify the conditions for an estimation problem at hand,
and they are usually simply assumed. However., finding violations of the conditions
is sometimes more straightforward, and this is worth pursuing. For example, lack of
parametric identification can often be detected by analyzing the model itself.

1
14.5.5 TESTING HYPOTHESES

The preceding describes a set of resuits that (more or less) unifies the theoretical un-
derpinnings of three of the major classes of estimators in econometrics, least squares,
maximum likelihood, and GMM., A similar body of theory has been produced for the
familiar test statistics, Wald, likelihood ratio (LR), and Lagrange multiplier (LM). [See
Newey and McFadden {1994).] All of these have been laid out in practical terms else-
where in this text, so in the inferest of brevity, we will refer the interested reader to the
background sources listed for the technical details.
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14.6 SUMMARY AND CONCLUSIONS

. ‘This chapter has presented a short overview of estimation in econometrics. There are
© various ways to approach such a sur vey. The current literature can be broadly gr ouped
by three major types of astlmamis—palametuc semlpalametnc and nonparametric.
It has been suggested that the overall drift in the literature is from the first toward the
third of these, but on a closer look, we see that this is probably not the case. Maximum
likelikood is still the estimator of choice in many settings. New applications have been
found for the GMM estimator, but at the same time, new Bayesian and simulation
estimators, all fully parametric, are emerging at a rapid pace. Certainly, the range of

tools that can be applied in any setting is growing steadily.

Key Terms and Concepts _ . — S

« Bandwidth * Generalized method of » Nearest neighbor | Iseri
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Exercise anf:l Question (), maxutin .. koérm?:imm?lmc“a likeel;hand

1. Compare the fully parametric and semiparametric approaches to estimation of a
discrete choice model such as the multinomial logit model discussed in Chapter™®.
What are the benefits and costs of the semiparametric approach? ]

Applics tioyé/

- e - N N
~' ses require specifidsoftware. The relevant techniques are available
in several packages that might be'in use, sugh'as SAS, Stata, or LIMDE

are suggested as depaNure-points for exglorations using a few of the ' many estimation
techniques listed in this\hapter.

1. Using the gdsoline maket'data in Appendix TableF2.2, use the partially linear
regregsion method in Sestion 14.3.3 to fit an equétion of the form

In{G/Pop) = gnlIncoe) + Bln Py rrr.r’+ B3I Pused cars + g0 Pga

To continug-fhe analysis in Questjefi 1, consider a nonparametfic regression of
G/Pop onr'the price. Using the nefiparametric estimation method in Section 14.4.2,

fit the nonparametric estimpt6r uging a range of bandwidth values to explore the
effect of bandwidth.
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