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: MINIMUM DISTANCE
ESTIMATION AND THE
GENERALIZED METHOD

OF MOMENTS

e )

%1 lNTRODl._JCTION
T

The maximum hkehho-od estimator presented in Chapter &15 fully efficient among con-

sistent and asymptotlcally nor mally distributed estimators, in the ¢

ontext.of the specified

parametric model, The possible shortcoming in this result is that to attain that efficiency,
it is necessary to make possibly strong, restrictive assumptions about the distribution,

or data:generating process. The generalized method of moment

s {GMM) estimators

discussed in this chapter move away from parametric assumptions, toward estimators

that ave robust to some variations i the underlying data'generating process.
This chapter will present a number of fairly general results on parameter estimation.
We begin with perhaps the oldest formalized theory of estimation, the classical theory
of the method of moments. This body of results dates to the pioneering work of Fisher
(1925). The use of sample moments as the building blocks of estimating equations is
fundamental in econometrics. GMM is an extension of this technique that, as wiil be
clear shortly, encompasses nearly all the familiar estimators discussed in this book.
_W 2 will introduce the estimation framework with the method of moments. The

technique of minimum distance estimation is developed in Secnorﬁmm’—

discusses hypothesis

the GMM estimator are gpesented in Sectiop35.4. Sectiop 385 di i
testing based on moment equations. Major Applications, fhcluding dynamic panel data

models, are described in Section 1;5;.6. 3 /32

]
Example 1 Euler Equations and Life Cycle Consumption

One of the most oftenZcited applications of the GMM principle for

astimating economet-

ric models is Hall's (1978} permanent income model of consumption. The original form of

the model {with some small changes in notation) posits a hypothesi

s about the optimizing

behavior of a consumer over the life cycle. Consumers are hypothesized to act according to

the model:

Tl T ol
o T 1 .
Mﬂx'mize.l.;':[g (1 = )U(cm)lﬁf} subject tOE ( ! ) (Crae — Wear) = A
’ !‘=_U . _,

=0

The information available at time t is denoted @ so that £y denotes the expectation formed
at time f based on the information set Q. The maximand is the expeacted discounted siream
of future utifity from consumption from time ¢ until the end of life at time T. The individual's
subjective rate of time preference is 8 = 1/(1+8). The real rate of interest, r > § is assumed to
be constant. The utility function U(C[) is assumed to be strictly concave and time separable
(as shown in the model), One period’s consuimption is.c,. The intertemporal budget constraint
states that the present discounted excess of ¢; over earnings, w;, over the lifetime equals

428+
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total assets A, notincluding human capital. In this mode|, it is claimed that the only source of
uncertainty is w:. No assumption is made about the stochastic properties of w; except that
there exists an‘expected future earnings, Ei[w;... | . Successive values are hot assumed
to be independent and w; is not assumed to be stationary.

Hall's major “theorem” in the paper is the soiution fo the optimization problem, which
states o :

148,
T:_—;U {Ct).

For our purposes, the major conclusion of the paper is “Corollary 1" which states, “No in-
formation available in time ¢ apart from the level of consumption, ¢, helps pradict future
consumption, ¢4, in the sense of affecting the expected value of marginal utility. In particu-
lar, income or wealth in periods t or earlier are irrelevant once ¢, is known."” We can use this as
the basis of a model that can be placed in the GMM framework. To proceed, it is necessary
to assume a form of the utility function. A common (convenient) form of the utility function
is U{c;) =c}™/(1 — &), which is monotonic, U’ =¢® > 0 and conceve, U"/U/ = ~a /6 <0.
Inserting this form into the solution, rearranging the terms, and reparameterizing it for con-
vehience, we have

EdU (e} i) =

E [“ +r) (,%5) (5';7‘) - 1|s?.,:] = Ee[A(1 +1) Rk — 11R] =0,

where By = Cipq /6 BNA A = —a.

Hali assumed thatr was constant over time. Other applications of this medeling framework
ffor example, Hansen and Singlaton (1982)] have modifiad the framework so as to involve 2
forecasted interest rate, r+.1. How one proceeds from here depends on what is in the informa-
tion set. The unconditional mean does not identify the two parameters. The corollary states
that the only relevant information in the information set is ¢;. Given the form of the model, the
more natural instrument might be R;. This assumption exactly identifies the two parametersin
the modei: '

. £ [(ﬁﬁ +r) B~ 1) (é)] = [g] :

As stated, the model has no testable implications. These two moment equaticns would
exactly identify the two unknown parameters. Hall hypothesized several models involving
income and consumption which would overidentify and thus place restrictions on the mode.

\?
5.2 CONSISTENT ESTIMATION: THE METHOD
OF MOMENTS

Sample statistics such as the mean and variance can be treated as simple descriptive
measures. In our discussion of estimation in Appendix C, however, we argue that, in
general, sample statistics each have a counterpart in the population, for example, the
correspondence between the sample mean and the population expected value. The
natural (perhaps obvious) next step in the analysis is to use this analogy to justify using
the sample “moments” as estimators of these population parameters. What remains to
establish is whether this approach is the best, or even a good way to use the sample data

to infer the characteristics of the population.
x*i; 1~ The basis of the method of moments is as follows: In random sampling, under
~ generally benign assumptions, a sample statistic will converge in probability to some
constant. For example, with i.i.d. random sampling, % = (1/1) 3 1., y# will converge in
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mean square to the variance plus the square of the mean of the random variable, Y- This
constant will, in turn, be a function of the unknown parameters of the distribution. To
. estimate X parameters, 8y, . . ., fx, We can compute & K such statistics, %, . . . , filx, whose

) probabllrty limits are known functmns of the parameters. These K moments are equated

tothe K functlons, and the functions are inverted to express the parameters as functions
of the moments. The moments will be consistent by virtue of a law of large numbers
(Theorems D. 4——D 9). They will be asymptotically normally distributed by virtue of the

Lmdcbelg-—bevy Central Limit theorem (D.18). The derived parameter estimators will-

' inherit consistency by virtue of the Slutsky theorem (D.12) and asymptotic normality
by virtue of the delta method (Theorem D.21).
This section will develop this technique in some detail, partly to present it inits own
right and partly as a prelude to the discussion of the generalized method of moments,
or GMM, estimation technigque, which is treated in Section §.4.

%
N T8.2.1 RANDOM SAMPLING AND ESTIMATING THE PARAMETERS
OF DISTRIBUTIONS

Consider independent, identically distributed random sampling from a distribution
J(¥161,...,6x) with finite moments up to E[y 2X1. The Jrandom sample consists of
B obselvatlong_ﬁ, .. 3. The kth “raw” or uncentered moment is~ 7 >

il (7
1 "
m=13
By Theorem D.4,
E[my] = uy = E 4],
and N

Var|#g] = "Val[ :] =- (#Qk - u).
By convention. u) = E[w] = u. By the Khmchme theorem, D.5,
: K
plim 7 = pi = E [37].
Finally, by the Lindeberg':—fLevy Central Limit theorem,

oref d !
VAR~ 1) == N0, sy — 1]

In general. uj will be a function of the underlying parameters. By computing K
raw moments and equating them to these functions, we obtain K equations that can
(in principle) be solved to provide estimates of the K unknown parameters.

Example ‘3.2 Method of Moments Estimator for Niu.o?]
in random sampling from Nx, o2},

plim = 5™y = pim s = £y = 4

T =t

:ﬁ'ié -3 )

/.' .
(LT

|
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and
. . 1 n )
L _pllmﬁ ;yf = plimTy, = Verly] + ,fz —o? 4 2,

Equating the right- and left-hand sides of the probability limits gives moment estimators
s ‘-ﬁ; =¥,
and

2
1 1 2
nemomt=(33:0)-(3550) =350
Note that 52 is biased, although both estimators are consistent.

Although the moments based on powers of ypr ovide a natural source of information
about the parameters, other functions of the data may also be useful. Let n(-) be a
continuous and differentiable function not involving the sample size #, and let

= —ka(v), k=12,....K
These are also “moments” of the data. It follows from Theorem D.4 and the corollary,
(D-5), that

plim @ = E{pu(n)] = w1, .. ., ).

We assume that p(-) involves some of or all the paramcters of_ the distribution. With
K parameters to be estimated, the K moment equatlons,s T

m l(gls“'sg__l()z )

i _‘#2(01!“-19_1():0'

i:"i'x px @1, ..., 0k) =0

provide K equations in K unknowns, O,.... 0. If thc equations are continuous and
functlonally mdependent then method of, moments estimators can be obtained by solv-
ing the system of equations for (“ﬁ*'[

ék = é_k[’_ﬁl»---s’_”!(]-

Assuggested, there may be more than one set of moments that one can use for estimating
the paramet\eis, or there may be more moment equations available than are necessary.

Example 8.3 iInverse Gaussian (Wald) Distribution
The inverse Gaussian distribution is used to model survival times, or elapsed times from some
beginning time until some kind of transition takes place. The standard form of the density for
this random variable is

[ My — p)?
(.Y) 5 ya m[—w]. _){>0,A>0,,u>0.

The mean is ;2 while the variance is u2/2. The efficient maximum likelihood estimators of the
two parameters are based on (1/1) 2"_1 ¥ and (1/n) E?- (1 /y,) Because the mean and
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variance are simple functions of the underlying parameters, we can alsc use the samplemean
and sample variance as moment estimators of these functions. Thus, an alternative pair of
method of moments estimators for the parameters of the Wald distribution can be based on
(1/n) 0., and (1/n) 3", ¥*. The precise formulas for these two pairs of estimators is
left as an eﬁ:rcise. ==

Example \$.4 Mixtures of Normal Distributions
Quandt and Ramsey (1978) analyzed the problem of estimating the parameters of a mixture
of normal distributions. Suppose that each observation in a random sample is drawn from
one of two different normal distributions. The probability that the observation is drawn from
the first distribution, Nu4, o7], is A, and the probability that it is drawn from the second is
{1 — ). The density for the observed y is

) = AN[ur,0f] + (1= 2N [po.0f], 0= <1
R NUNPEL 2 1 S bl Y R P
(2::01'")1"2 (2:7022)”2

# Jhe sample mean and second through fifth central moments,

1 )
Me== (-9 k=2345

=1
provide five equations in five unknowns that can be solved (via a ninth-order polynomial) for

consistent estimators of the five parameters. Because ¥ converges in probability to Elvl=p,
the theorems given earlier for /T, as an estimator of .} apply as well to M as an estimator of

= Elly — i)
For the mixed normal distribution, the mean and variance are
- #=Ely) = ap + (1 - N pa,
and -
o =Varly] = 3o} +(1 — 2)of + 2001 - )t — pa)?,

which suggests how complicated the familiar method of moments is likely to bacome. An
alternative method of estimation proposed by the authors i¢ based on

Ee7] = agtrtoi2 4 (1 _ pyePet™iZ =

where t is any value not necessarily an integer. Quandt and Ramsey (1978) suggest choosing
five values of ¢ that are not too close togsther and using the statistics

1 a
LA D
n £

1o estimate the parameters. The moment equations are M, — A,{xt4, 2, o2,02,3) =0. They

label this procedure the method of moment generating functions. (See Section B.6 for

definition of the moment generating function.) — -

In most cases, method of moments estimators are not efficient. The exception is in
random sampling from exponential families of distributions,

[ 'K
\ ' }



v (3-5, | /’ 3-"6.'"-

o = X o B ST

l ‘Before proceeding, we note that this density is precisely the same as the finite mésstmre~
" mixture model described in Section 14.9.7.d. Maximum likelihood estimation of the
model using the method described there would be simpler than the method of moment

generating functions developed here.
|

lend o \wserl |
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DEFINITION P51  Exponential Family
An exponential (parametric) family of distributiops is one whose log-likelthood
is of the form T

In L(8 | data) = a(data) + b(@®) + Y c(data)s,(8).
k=1 B
where a(-), b(-), cx(), and sy (") are functions. The members of the “family” are
distinguished by the different parameter values.

If the log-likelihood function is of this form, then the functions ¢x(-) are called

e e "-*'s_gtj_tﬁ;;iep.t;stat_istigs‘::?’When sufficient statistics exist, method of moments estimator(s)

can be functions of them. In this case, the method of moments estimators will also
be the maximum likelihood estimators, so, of course, they will be efficient, at least
asymptotically. We emphasize, in this case, the probability distribution is fully specified.
Because the normal distribution is an exponential family with sufficient statistics i
and 7%, the estimators described in Example are tully efficient

maximum likelihood estimators.) The mixed normal distribution is not an exponential
family. We leave it as an exercise to show that the Wald distribution in Examgpl

an exponential family. You should be able to show that the sufficient statistics ate the
ones that are suggested in Example J,S?;as the bases for the MLEs of p and A.

Example 18.5 Gamma Distribution
The gamma distribution (see Section B.4.5) is

AD.
IN{~
The log-likelihood function for this distribution is

- Fy = AP, ¥20,P>0,1>0

1 1< 1<
7L =[PIn%— (B —aﬁrz;_y_,&(P—nﬁ;mM.

This function is an exponential family with a{data) =0, 5(6) =nfPin — InT(#)] and two suf-
ficient statistics, 23" ¥ and 2 Y7 Iny;. The method of moments estimators based on
A3 yand 1577 iny; would be the maximum likelhood estimators, But, we also have

i P/x
1] 2| | PRy
plim 5; Ny | | WP —Inx
: 1/% AP~ 1)

(The functions I'(£) and W{P) = dInT(P}/dP are discussed in Section E.2.3) Any two of
these can be used to estimate  and P, 4
\

¥Stuart and Ord (1989, pp. 1-29) give a discyssiBn of sufficient statistics and exponential familics of distribu-
tions. A result that we will use in Chapter@Jis that if the statistics, ce(data).are sufficient statistics, thon the
conditional density. fly, . ... ya lex(data), k=1, ..., X]is not a function of the parameters

\3.2
/3.3
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For the income data in Example C.1, the four moments listed eadier are
n
- (Fmy, 17, 1, 1y) =;1;Z [y,. ya.iny, H = [31.278, 1453.96, 3.22139, 0.050014].
! AP LT S "
e L M
The method of moments estimators of 8. = (P, 1) based on the six possible pairs of these
moments are as follows:

M, 2.05682,0.065759
M., 2.77198,0.0886230 2.60906,0.080475
./, 2.4108,0.0770702 2.26450,0.071304 3.03580, 0.1018202

The maximurn likelihood estimates are 8(77;, /7)) = (2.4106, 0.0770702).

\ 1$.2.2 ASYMPTOTIC PROPERTIES OF THE METHOD
OF MOMENTS ESTIMATOR

In a few cases, we can obtain the exact distribution of the method of moments estima-
tor. For example, in sampling from the normal distribution, & has mean y and vari-
ance o%/n and is normally distributed, while 62 has mean [(2 — 1)/s]o? and variance
[(n— D/n]*20* /{n — 1) and is exactly distributed as a multiple of a chi-squared vari-
ate with (n — 1) degrees of freedom. If sampling is not from the normal distribution,
the exact variance of the sample mean will stil be Var{y]/#, whereas an asymptotic
variance for the moment estimator of the population variance could be based on the
leading term in (D-27), in Example D, 10, but the precise distribution may be intractable,

There are cases in which no explicit expression is avaijable for the variance of
the underlying sample moment. For instance, in Example }54, the underlying sample
statistic is 13

- y f;é?!&:;z%ﬁ'

=it

| -

The exact variance of M, is known only if ¢ is an integer. But if sampling is random, and
if M, is a sample mean: we can estimate its variance with 1/ times the sample variance
of the observations on M;,. We can also construct an estimator of the covariance of M,
and M,: N =

11 & ————
Est. Asy. Cov{M,, M,] = P { S Z} [(e2— My)et™ — M, )]} -
A=
In general, when the moments are computed as
1&
Mp ke = ; Zn_i,_‘-{y;), k=1 .. oK,
: N _i=] &

where y; is an observation on a vector of variables, an appropriate estimator of the
asymptotic covariance matrix of By, = [ff.1, . .., #, k] can be computed using
i n Ry

1 1
—Fjx =~
n'e

1 n
{E Z [ (v — ;) meys) — m—)]} . Lk=1....K
d =1
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(One might divide the inner sum by 5 — 1 rather than #, Asymptotically it is the same.)
This estimator provides the asymptotic covariance matrix for the moments used in
computing the estimated parameters. Under the assumption of i.i.d. random sampling
from a distribution with finite moments, #F will converge in probability to the appropri-
ate covariance matrix of the normalized vector of moments, ® = Asy. Var[,/ﬁ it (0)].
Flnally under our assumptions of random sampling, although the precise disti ibution
is likely to be unknown, we can appeal to the Llndcbelg—Levy Cent:al Limit theorem
(D.18) to obtain an asymptotic approximation.

To formalize the remainder of this derivation, refer back to the moment equations,
which we will now write

Mpi(Br.62.....8) =0, k=1,... K

The subscript 2 indicates the dependence on a data set of # observations. We have also
combined the sample statistic (sum) and function of parametels, W, ..., 8k) in this
geneml form of the moment equation. Let G,,(e) be the K x K matrix whose kth row
is the vector of partial derivatives

Now, expand the set of solved moment equations around the true values of the param-
eters g in a linear Taylor series. The linear approximation is

B [@a(80)] + G, Bo)A — 80).

/3
VA —80) = —[G, (o)} VAl W,(00)]. (5°1)

(We have treated this ad an approximation because we are not dealing formally with the
higher orderterm in the Taylor series. We will make this explicit in the treatment of the
GMM estimator in Section The argument needed to characterize the large sample
behavior of the estimator, 0 is discussed in Appendix D. We have from Theorem D.18
(the Centlal Limit theolem) that /n m,(fo) has a limiting normal distribution with
mean vector @ and covariance matrix equal to ®. Assuming that the functions in the
moment equation are continuous and functionally independent, we can expect G, (@p)
to converge to a nonsingular matrix of constants, T (#p). Under general conditions, the
limiting distribution of the right-hand side of (}8-1) will be that of a linear function

Therefore, \/5 ’Lf

of a normally distributed vector. Jumping to the\conclusion, we expect the asymptotic

distribution of # to be normal with mean vecto Ao and covariance matrix (1/4) x
{-[F(@0)] '} @{~{I'(#0)] ! }. Thus, the asymptot covariance matrix for the method
of moments estimator may be estimated with 13
Est. Asy. Var [é} = }»[E:(é)!“,‘lﬁ,, @i
\3 p
Example @ 5 (Cont:nued)
Using the estimates 6( 1) = (2.4106, 0.0770702),

&[4 Psi®| _[-1207515 4058353
W= _y 1| T | 051241 12.97515] -

(3-9
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. [The function ¥ is &2 InI'(P)/dP? =(I'T" ~I"2)/T2. With P =2.4106, ['=1.250832, V=
= 0.658347, and ¥ =0.512408]:% The matrix F is the sample covariance matrix of y and Iny

4 {using 19 as the divisor), - ,
..F =W 5‘00.68 l‘/, gJ

T s 31 647796
The product is |

1[arc1al™  [0.38078  0.014608
n [G-F-'G} = [0.014605 0.00068747] '

For the maximum likelihood estimator, the estimate of the asymptotic covariance matrix
based on the expected (and actual) Hessian is

){[—H]“’ AT w1l josils 0.0163§

e op [—1A P2 T 10.0183¢ 0.00064654 1

The Hessian has the same elements as G because we chose 1o use the sufficient statistics -
for the moment estimators, so the moment equations that we differentiated are, apart from
a sign change, also the-derivatives of the log-likelihood. The estimates of the two variances
are 0.51203 and 0.00064654, respactively, which agrees reasonably well with the method of
moments estimates. The difference would be due to sampling variability in a finite sample
and the presence of F in the first variance estimator.

\ ¥:2.3 SUMMARY—THE METHOD OF MOMENTS

In the simplest cases, the method of moments is robust to differences in the specifica-

tion of the data generating process (DGP). A sample mean or variance ¢stimates its

population counterpart (assuming it exists), regardless of the underlying process. It is

this freedom from unnecessary distributional assumptions that has made this method ]
so popular in recent years. However, this comes at a cost. If more is known about the :
DGR its specific distribution for example, then the method of moments may not make l 3 - ?
use of all of the available information. Thus, in Example 5.3 Jthe Watural estimators

of the parameters of the distribution based on the sample mean and variance turn out

to be inefficient, The method of maximum likelihood, which remains the foundation of

much work in econometrics, is an alternative approach which utilizes this out of sample
information and is, therefore, more efficient.

%

\,1/5’.3 MINIMUM DISTANCE ESTIMATION @ )
‘ (K1) LAY foanTEn

The preceding analysis has considered exactly identified cases. In each example, there I y

were K parameters to estimate and we used K moments to estimate them. In Exam- | | & 5 )

ple 15.5, we examined the gamma distribution, a two-parameter family, and considered N

different pairs of moments that could be used to estimate the two parameters. (The most R Sl

efficient estimator for the parameters of this distribution will be based on (1/1)Z; ; and Eda e Nl De

(1/n)X; In y;. This does raise a general question: How should we proceed if we have ' !

more moments than we need? It would seem counterproductive to simply discard the

'%w' is the trigamma function. Values for I'(2), W{P), and tg.'(f) are tabulated in Abramovitz and Stegun
(1971). The values given were obtained using the IMSL computer program library,
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additional information. In this case, logically, the sample information provides more
than one estimate of the model parameters, and it is now necessary to reconcile those
competing estimators. =~ B 11,20

We have encountered thissituation in several earlier examples: In Example %13, in
Passmore’s (2005) study of Faninie Maé, we have four independent estimators of a single
parameter, & _,.wnh estimated asymptoticvariance Vi, j =1,...,4. Theestimators were
combined using a criterion function: 1.\ T)

(a&; —ot)

minimize with respectto a : g = Z v
i

jl

The solution to this minimization problem is

: 1/V, 4
GMDE =Zw17&i, Wj= g = 1,...,4andz_wj =1.
”-\2:3 j=1 o o Es:l(]/.ps) ]_=1' '

In forming the two-stag I squares estimator of the parameters in a dynamic panel
data model in Sectio ¢ obtained T — 2 instrumental variable estimators of
the parameter vector ¢ by folmmg different instruments for each period for - which we
had sufficient data, The T — 2 estimators of the same par: ameter vector are em,, The

. Areliano—Bond estimator of the singie parameter vecior in this setting is

: -1, T
= (Z .Wm) ( 2 Wm*?-.lvm)
=3 =3

T
. = Z Rdve,
- r=3

where
.w(r) = (Xfr)X(r))

and

T -1 K
Ry = (E W{n) Wpand > Ry =1

=3 =3
F 1116
Finally, Carey’s (1997) analysis of hospital costs that we examined in Example 195

involved a seemingly unrelated regressions model that produced multiple estimates.of
several of the model parameters. We will revisit this application in Example 13

A minimum dlstance estimator (MPE) is defined as follows: Let denote a
sample statistic based on r observations such that

plim#m,; = gi{fp).{=1,.... L,

where 8¢ is a vector of K < L parameters to be estimated. Artange these moments and
functions in L x I vectors m, and g(fy) and further assume that the statistics are jointly
asymptotically normally distributed with plim m,, = g(#) and Asy. Var[l,] = (1/a)®,

(13-n

13.6

&
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Define the criterion function
[lnf! g(ﬁ)]’w ['“n — g(,ﬂ )]

e
for a posmve definite welghtmg matrix, W. The minimum distance estimator is the
épEe that minimizes  q. Different choices of W will produce different estimators, but
the estimator has the following properties for any W:

\3
THEOREM A8.1 Asymptotic Distribution of the Minimum
Distance Estimator
Under the assumption that /i[m, — g(0p)) L N0, ®), the asymptotic properties
of the minimum distance estimator are as follows:

plim fvpe = fy,

p 1
Asy. Var [fupe] = D@0y Wo0I™ [T G0 WEWT @ol[L @0 WE @o)T™

_ly
kL
where
3g(AmpE)
I (fq) = plim G(GMDE) p]lm-—-—-——,
and

fmpE == N [!90, }—IV] .

Proofs may be found in Malinvaud (1970) and Amemiya (1985). For our purposes, we
can note that the MDE is an extension of the method of moments presented in the
preceding section. One melicatlon is that the estimator is consistent for any W, but
the asymptotic covariance matrix is a function of W, This suggests that the choice of
W might be made with an eye toward the size of the covariance matrix and that there _
might be an optimal choice. That does indeed turn out to be the case. For minimum @ %
distance estimation, the weighting matrix that produces the smallest variance is ; \ =
2 K0 I |'j|u*.-
optimal weighting matrix: W* = [Asy. Var./n{fi, —:g(ﬁ,)}]_l .
| o™ =@ L
[See Hansen (1982) for discussion.] With this choice of W,
Asy. Var [Bypg] = [l‘(()u)’dr Irge] ™

which is the result we had earlier for the method of moments estimator.,


Bill
Sticky Note
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The solution to the MDE estimation problem is found by locating the Aypg such
that ' :
39

dfMDE
An important aspect of the MDE arises in the exactly identified case. If K equals L,
and if the functions g;(§) are functionally independent, that is, G(8) has full row rank,
K, then it is possible to solve the moment equations exactly. That is, the minimization
problem becomes one of simply solving the K moment equations, 711, ; = gy(flg) in the K
unknowns, @ype. This is the method of moments estimator examined in the preceding
section. In this instance, the weighting matrix, W, is irrelevant to the solution, because
the MDE will now satisfy the moment equations

[ gwMDE)] I/' T g

For the examples listed earlier, which are all for overldennﬁed cases, the minimum
distance estimators are defined by

=-"G(.9MDE)'W. [, — g@une)] =

~i

Vi 0 0 0 @1~ o)
gq= (tér — @) (@2 —a) (@3 —a) (G4 —a)) g ":)2 33 g gﬁ : ;;
0 0 0 ¥V, (@ ~ o)
for Passmore’s analysis of Fannie Mae, and
(ﬁb)gm) ses 0 - (brve — )
g={bvep -0 ... bymn—) : L : :
L (ﬁ?n’?m) (brver = 6)

for the Areil%mqi.—Bond estimator of the dynamic panel data model.

Example M 6 Minimum Distance Estimation of a Hospital
Cost Function [TH A
In Caray's (1 997) study of hospital costs in Example 1838; Chamberlain’s (1984) seemingly un-
related regressions approach to a panel data model produces five period-specific estimates
of a parameter vector, 8;. Some of the parameters are specific to the year while others (it is
hypothesized) are common to all five years. There are two specific parameters of interest, p
and Bg, that are allowed to vary by year, but are each estimated multiple times by the SUR
model. We focus on just these parameters. The model states

Yie = & + A + Bo DISu + Bos OUT i + &1,
where
| = B + Zryp: DISit + Tryo, OUTn + 1, t = 1987, ..., 1981,

DIS;; is patient discharges, and OUT), is outpatient visits. (We are changing Carey’s notation
slightly and suppressing parts of the model that are extraneous tc the development hare. The
terms A;; and B; contain those additional components.) The preceding model is estimated by
inserting the expression for «; in the main equation, then fitting an unrestricted seemingly un-
related regressions model by FGLS. There are five years of data, hence five sets of estimates.
Note, however, with respect to the discharge variable, DfS, although each equation provides
separate estimates of (yp,1, ..., (Aot + ¥ou): - .., ¥o.5}, a total of five parameter estimates
in each each equation {year), there are only 10, not 25 parameters to be estimated in total.
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15
TABLE &\5.1 a  Coefficlent Estimates for DIS in SUR Model for Hospital Costs

Coefficient on Variable in the Equation

Equation DIS87 DISSS DIsg9 . DIS%) DIs9t
SURS? Bopm+yowm - vowm YD YD ¥D.91
. 1.76° 0.116 —0.0881 0.0570 —0.0617
SURSS YDs1 Boss+ ¥pss Ypsv YD, Yoo
_ (.254 - 18] 00934 00616 - —0.0514
SURsy ¥psr VD Bpas + Ypao YD ¥p.o1
0.217 0.0846 1.51 0.0454 ~0.0253
SUR90 Y7 VD8 Yo Boso+rpm YDt
0.179 0.0822 0.0295 1.57 0.0244
SUR9T YDs7 Y8R YDse Y5 Bom + yoa
0.153 0.0363 =0.0422 0.0813 1.7¢
MDE B =1.50 B =158 B =154 B =157 8=163

y =0.219 y =00666 y=-00539 - y=006 p=-0.0213

\5
TABLE A\¥.1b * Cosfficient Estimates for OUT in' SUR.Model for Hospital Costs
Coefficient on Variable in the Equation

FEauiion OUTE7 QUTs8 QUTRY OUTIG oUTSI
SURS7 Bow +vos Yo.88 Yoo Yo, Yo
0.0139 0.00292 _ D.00157 0.000951 0.000678
SURsS You1 Boss + yoss Yo.89 ¥0.90 Yo
0.00347 0.0125 0.00501 0.00350 0.00503
SUR39 Yosr Y038 Bos +yom Y05 Yo
. 0.00118 0.00159 0.00832 - —0.00220 —0.00136
SUR90 " Yosm Y028 Yo,5 Bosw + Yom Yom
—0.00226 —0.00155 0.000461 0.00897 0.000450
SURYL " Yom YO58 Yo.8 Yo.90 Bos +vost
0.00278 0.60255 0.00233 0.00305 0.0105
MDE =00112 B=00099  L=00100 B=000915 g = 000793

¥ =000177 y=000408 y=~000011 y=-0.00073 1y =0.00267

\3

The parameters on QUT, are likewise overidentified. Table 8.1 reproduces the estimates in
Table 10.2 for the discharge coefficients and adds the estimates for the outpatient variable.

Looking at the tables we see that the SUR mode! provides four direct estimates of ¥D.87s
based on the 198871991 equations. It also implicitly provides four estimates of Bp.er Since
any of the four estimates of yp a7 from the last four equations can be subtracted from the
coefficient on DIS in the 1987 equation to estimate fp g;. There are 50 parameter estimates
of different functions of the 20 underlying parameters

8 = (Bt - - Boot)s (voers - -, o), (Boar - - - Bow), (Yo.7s -+ -» Yosu)s

and, therefore, 30 constraints to impose in finding a common, restricted estimator. An MDE
was used to reconcile the compating estimators,

Let 8; denote the 10 x 1 period-specific estimator of the modei parameters. Unlike the
other cases we have examined, the individual estimates here are not uncomrelated. In the
SUR model, the estimated asymptotic covariance matrix is the partitioned matrix given in

13 -4
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{10-7). For the estimators of two equations,
FIXXs e ... KX

- FUXX, &BXK Ko ... GBXXs .
Est. Asy. Cov [B:, Bs] = the t, s block of _ _ ' .

FBIXLX, 5K, ... %X Xs

where 6% is the t,s element of £7". {We are extracting a submatrix of the relevant matrices
here since Carey's SUR model contained 26 other variables in each equation in addition to
the five periods of DIS and OUT). The 50 x 50 weighting matrix for the MDE is

Verer Vorss Versmo Nersa Voron -
Yeosr Vesss Vesse Veeoo Vesor s
W= Vs Veose Veow Vaoso Veor| = [V! ]
Noosr Vooes Moo Vooeo Voos
Voier Voreze Vores Voroo Vaoror

The vector of the quadratic form is a stack of five 10 x 1 vectors; the first is

Mg — Qar(8)
_ {»?g,’sr —{Boer+ vou) } {P¥e — voes} o {PTee — vou b s {B8lo0 — )’o.en} v {BEey — v}
{ﬁgw ~(Bom + Yo.sﬂ} s {ﬁ_?fss - }’o.sa} ' {?stg - ?D.m}: -{58790 - Vo.oo} . {)913_?91 “ Yo.%0

%

for the 1887 equation and likewise for the other four equations. The MDE criterion function
for this model is
1861 18,1 :
e PR
9= D W —aa] ¥ 1m, - g.0)].
=197 s=1907
Note, there are 50 estimated parameters from the SUR equations (those are listed in

Table 15.1) and 20 unknown parameters to be calibrated in the criterion function. The
reported minimum distance estimates are shown in the last row of each table.

18.4 THE GENERALIZED METHOD OF MOMENTS

(GMM) ESTIMATOR

A large proportion of the recent empirical work in econometrics, particularly in macro-
economics and finance, has employed GMM estimators. As we shall see, this broad class
of estimators, in fact, includes most of the estimators discussed elsewhere in this book.
The GMM estimation technique is an extension of the minimum distance technique
escribed in Section{3)3:¥ In the following, we will extend the generalized method of
moments to other models beyond the generalized linear regression, and we will fill in
some gaps in the derivation in Section }.2.

(3

*Formal presentation of the results required for thisanalysis are given by Hansen (1982); Hansen and Singleton

(1988); Chambertain (1987); Cumby, Huizinga, and Obstfeld (1983), Newey (1984, 1985a, 1985b); Davidson
and MacKinnon (1993); and Newey and McFadden (1994), Useful summaries of GMM estimation and other
developments in econometrics are provided by Pagan and Wickens (1989) and Matyas (1999). An application
of some of thesc techniques that contains useful summaries is Pagan and Vella {1989), Some further discussion
can be found in Davidson and MacKinnon (2004). Ruud (2000) provides many of the theoretical details.
Hayashi (2060) is another extensive treatment of estimation centered on GMM estimators.
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%
\ 5.4.1 ESTIMATION BASED ON ORTHOGONALITY CONDITIONS
Consider the least squares estimator of the parameters in the classical linear regression
§ model. An important assumptlon of the mode] is

Elxie)=E [ —xiB)] = 0.

The sample analog is

1 n. 1 n ‘
25 = 5 D n~xh) =

The estimator of 8 is the one that satisfies these moment equations, which are just the
normal equations for the least squares estimator. So, we see that the OLS estimator is
a method of moments estimator.

For the instrumental variables estimator of Chapter 42 we relied on a large sample
analog to the moment condition,

pli‘m( Z?,s,)mplim( Z?;(y,—x, )

fa=l

We resolved the problem of having more instruments than parameters by solving the

equations
-1
1
(xz)(5z2) (Gze)=ix3-= 12
n 1 " n" R =

where the columns of X are the fitted values in regressions on all the columns of Z (that
is, the projections of these columns of X into the column space of Z). (See Section 1-53—3
for further details.) 4
The nonlinear least squares estimator was defined similarly, although in this case,
the normal equat:ons are more complicated because the estimator is only 1mp11c1t The
population ort!mgonallty condition for the nonlinear regression model is £ [x, 8] =

-

A:7 " The cmpirical moment equation is

1 AL v |x:. 8] _
_H;(——ﬁaﬁ )("i‘E[‘ﬂ"e gh =0.

Maximum likelihood estimators are obtained by equatmg the derivatives of a log
likelihood to zero. The scaled log—i;kehhood function is

1
—InL==Y%1 X5, 8,
nln "E nf(.v 1%, )

=1
where f(.)is the density function and 4 is the parameter vector. For densities that satisfy
the legulamy conditions [see Chapter 16},

E[a In f(w [.x.-..,ff)]

% =2
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The maximum likelihood estimator is obtained by equating the sample analog to zero:

13InL 12'3; aln [ | _
oo ni a0 -

0.

(Dividing by # to make this result comparable to our earlier ones does not change the so-
Iution.) The upshot is that nearly all the estimators we have discussed and will encounter
later can be construed as method of moments estimators. {Manski’s (1992) treatment of
analog estimation provides some interesting extensions and methodological discourse. ]
As we extend this line of reasoning, it will emerge that most of the estimators |
defined in this book can be viewed as generalized method of moments estimators.

| e

15.4.2° GENERALIZING THE METHOD OF MOMENTS

The preceding examples all have a common aspect. In each case listed, save for the
general case of the instrumental variable estimator, there are exactly as many moment
equations as there are parameters to be estimated. Thus, each of these are exactly
identified cases. There will be a single solution to the moment equations, and at that
solution, the equations will be exactly satisfied But there are cases in which there,
are_mote moment equations than parameters, so the system is overdeterminey In

Examplc}sj, we defined four sample moments,
\ 1

1
5 o . v 2 n
E==D [.ww, , ‘,f,ln,w]
i=1 -
with probability limits P/, P(P+ 1)/32, 4/(P ~ 1), and ¢( ) — In A, respectively. Any
pair could be used to estimate the two parameters, but as shown in the earlier example,
the six pairs produce six somewhat different estimates of & = (P, A). \

In such a case, to use all the information in the sample itis necessary to devise a way
toreconcile the conflicting estimates that may emerge from the overdetermined system.
More generally, suppose that the model involves K parameters, 8 = (61,62,...,6k),
and that the theory provides a set of L > K moment conditions, )

Elmu (v % 21, )] = E[mi(@)] = O,

where y;, x;, and z; are variables that appear in the model and the subscript i on n(6)
indicates the dependence on (¥4, Xi,,2:)- Denote the corresponding sample means as

1 n 1 )
i ,X,Z,B_ = - s, A,'-‘ﬂ = — ) B
m(y, X, Z.8) n él: (v, Xi, 1/. ) e ;mﬂﬁ”')

Unless the equations are functionally dependent, the system of L equations in X un-
known parameters,

1.k
’Tﬁ'(ﬂ) = EZ””(}JH,.XI";__Z.{\ '9) =L01 != 1, ey L.

i=1

“That is, of course if there is any solution. In the regression model with muticollincarity, there are K param-
eters but fewer than K independent moment equations.
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pe— will not have a unique solution:? For convenience, the moment equations are defined ! .
N implicitly here as opposed to equalities of moments to functions as in SectionM

. -4+ will be necessary to reconcile the (i‘.) different sets of estimates that can be produced.

g One possibility is to minimize a criterion function, such as the sum of squares;®”
\_k. q= i =M()m(). (182

=

1t can be shown [see, e.g., Hansen (1982)] that under the assumptions we have made so
far, specifically that plim fii(#) = E[ifi(9)] =0, the minimizer of g in (15-2) ploduces a o=
consistent (albeit, as we shall see, possibly mefﬂaent) estimator of 8. ‘We can, in fact,

use as the criterion a weighted sum of squares,

LT where W, is any posmvc eﬁnlte matrix that may depend on the data but is not a
i function of 8, such as I in {13)2%, to produce a consistent estimator of 8 For example,
we might use a dlagonal matrix of weights if some information were available about the
importance (by some measure) of the different moments. We do make the additional
assumption that plim W, = a positive definite matrix, W.
By the same logic that makes generalized Jeast squares preferable to ordinary
least squaies, it should be beneficial to use a weighted criterion in which the weighis
are inversely proportional to the variances of the moments, Let W be a diagonal
matrix whose diagonal elements are the reciprocals of the variances of the individual
moments,
1 1
Asy. Var[\/r—m_y] - qb!;
(We have written it in this form to emphasize that the right-hand side involves the'
variance of a sample mean which is of order (1/n).) Then, a weighted least squares ~ —
estimator would minimize b
g=moye~'m@). ., @&3)
)
In general, the Lelements of il m are freely correlated. In (15-3), we have used a diagonal
W that ignores this correlation. To use generalized least squares, we would define the
full matrix, 3

- )
W = {Asy. Var[ J/n ]} ! =L @4
The estimators defined by choosing # to minimize

g =m(e’W,m@)

Wy =

«*1t may if L is greater than the sample size, 2. We assume that Lis strictly less than n. \6
~#This approach is one that Quandt and Ramsey (1978) suggested for the problem in Example }6’.4.

“7In principle, the weighting matrix can be a function of the parameters as weil. Sec Hansen, Heaton, and
Yaron (1996) for discussion. Whether this provides any benefit in termns of the asymptotic properties of the
estimator seems unlikely. The one payoff the authors do note is that certain estimators hecome invariant to the
sort of normalization that is discussed in Example 6.1, In practical terms, this is likely to be a consideration
only in a fairly small class of cases. | L‘
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13
are minimum distance estimators as defined in Section 1873. The general result is that
if W, is a positive definite matrix and if

plim@(@) =9, - /3

) then the minimum distance (genei'alizéd method ofMmoments, or GMM) estimator of
s 8 is consistent.} Because the OLS criterion in (}5-2) uses, L. this method produces a
AR ' consistent estimator, as does the weighted least squares estimator and the full GLS

' estimator, What remains to be decided is the best W to use. Intuition might suggest
(correctly) that the one defined in (15-4) would be optimal, once again basedon thelogic | 7'/
that motivates generalized least sqlfares. Thisresult is the now-celebrated one of Hansen : @
(1982). KT)  TE6M)
The asymptotic covariance matrix of this generalized method of mument_s'l;esﬁniator Ky Q
is . B
‘ 1$ Homanfd

r'e-rl-, 13-5)

1 1
Voum = ~[["'WI]™ = -
n n
where T is the matrix of derivatives with jth row equal to ; —
am;(8)
G

° and ® = Asy. Var[ /7 Ti]. Finally, by virtue of the central limit theorem applied to the
| | sampie moments and the Slutsky theorem applied to this manipulation, we can expect
the estimator to be asymptotically normally distributed. We will revisit the asymptotic 20

properties of the estimator in Section 15.4.3,

GMM Estimation the Parameters of a

Exarnple 157

and likewise for /L(P;2), Ma( P, 4), and My(P, 2). .

7 "®In the most general cases, a number of other subtle conditions must be met so as to assert consistency and the
ather preperties we discuss, For our purposes, the conditions given will suffice. Minimum distance estimators
are discussed in Malinvaud (1970}, Hansen (1982), and Amemiya {1985).

9We emphasize that this example is constracied only to illustrate the computation of a GMM estimator. The /

gamma model is fully specified by the likelihood function, and the MLE is fully efficient. We will examine
other cases that involve less detailed specifications later in this chapter.
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Example 13.7 GMM Estimation of a Nonlinear Regression Model
In Example 7.6, we examined a nonlinear regression model for income using the German
Socioeconomic Panel Data set. The regression model was

Income = h(1, Age, Education, Female, v) + &,

where h(.) is an exponential function of the variables. In the example, we used several
interaction terms. In this -application, we will simplify the conditional mean function
somewhat, and use S :

Income = exp(ys + v, Age + y; Education + v, Female) + ¢,
which, for convenience, we will write

Yi = expixiy)+e
=+ e
A
The sample consists of the 1988 wave of the panel, less two observations for which income
equals zero. The resulting sample contains 4481 observations. Descriptive statistics for the
sample data are given in Table 7.2.
We will first consider nonlinear least squares estimation of the parameters. The normal
equations for nonlinear least squares will be

(1/n) Z; [(y;i— w) px] = (1/n) Zi [ wX] =0

Note that the orthogonality condition involves the pseudoregressors, du oy = ,xf = pX; The
implied population moment equation is : : 4

El & (ux)] = 0.

Computation of the nonlinear least squares estimator is discussed in Section 7.2.6. The
estimator of the asymptotic covariance matrix is

. B =) [, N . n
Est.Asy.Var{fy ) =——‘(-L'1—z-—_~1_l:))_[zi=l (“’_fl.-t_i)(pix_i) :| , where [i, = exp(x§)s

A simple method of moments estimator might be constructed from the hypothesis that x;,
(not x7} is orthogonal to & Then, . j

1

Age,

gx] = El|g, ‘ : = 0
Hlex] = Els, Education,

Female, .

"2 We note that in this model, it is likely that Education is endogenous. It would be
straightforward to accommodate that in the GMM estimator. However, for purposes of a
straightforward numerical example, we will proceed assuming that Education is exogenous.
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implies four moment equations. The sample counterparts will be

_’;”k ()= 'TI;ZL(J’;‘ —W )X = Z =1 Sk

In order to compute the method of moments estimator, we will minimize the sum of squares,

FOORm =Y R

This is a nonlinear optimization problem that must be solved |terat|vely usmg the methods
described in Section E.3.

With the flrstl,lstep estimated parameters,jr ¢ in hand, the covariance matrix is estimated
using {13-5). :

. 1 , RV
& {44812 m,( )‘-‘7"( )}={mz4m(5??_‘f)(‘??_&)}
- 1 = g '

’G:{{4812i=1(8? ')( -y a) }

The asymptotic covariance matrix for the MOM estimator is computed using (13-5),

Est. fAsy Var[§yom]= I:GCD‘]G’}

Suppose we have in hand additional variables, Health Satisfaction and Marital Stafus,
such that although the conditional mean function remains as given above, we will use them to”
form a GMM estimator. This provudes two additional moment equations,

|: ( Health Satisfaction, H
Elg|-

Marital Status,

for a total of six moment equations for estimating the four parameters. We constuct the
generalized method of moments estimator as follows: The Initial step is the same as before,

except the sum of squared moments, m ('y)m('y) is summed over six rather than four terms.
We then construct

- _]__ 4481 n 4481 " P
_@-{44812_,. m, (§)m (7)} {443121( )(g,-._z._,-)}ﬂ

where now, z; in the second term is the six exogenous variables, rather than the original four
(including the constant term). Thus, <i> is now a 6r>§6 moment matrix. The optimal weighting

matrix for estimation (developed in the next section) is fD The GMM estimator is computed
by minimizing with respect to y ke

q = m'(y)®'m(y); |

The asymptotic covariance matrix is computed using (13-5) as it was for the simple method of
moments estimator.
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Table 13.2 presents four sets of estimates, nonlinear least squares, method of moments,
first step GMM.and and GMM using the opptimal weighting matrix. Two comparisons are
noted The method of moments), slightly different results from the nonlinear least squares
estimator. This is to be expected, since they are different criteria. Judging by the standard
errors, the GMM estimator seems to provide a very slight improvement over the nonlinear
least squares and method of moments estimators. The conclusion, though, would seem to be
that the two additionai moments (variables) do not provide very much additional information
for estimation of the parameters _ -

Table 13.2 Nonlinear Regression‘Estim‘ates
(Standard Errors in Parentheses)

Nonlinear Method of First Step

Estimate Least Squares Moments GMM GMM
|
Constant -1.69331 --1.62969 145551  -1.61192 '
(0.04408)  (0.04214) (0.10102)  (0.04163) \ .
Age - 0.00207 0.00178 --0.00028 0.00092 | ==
(0.00061) (0.00057) (0.00100)  (0.00056) Aens |
Education 0.04792 0.04861 0.03731 0.04647 —
(0.00247) (0.00262) (0.00518)  (0.00262)
Female .-0.00858 0.00070 —0.02205  --0.01517

(0.01373) (0.01384) (0.01445) (0.01357)
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(0.87682)

We will now examine the properties of the GMM estimator in some detail. Because the
GMM estimator includes other familiar estimators that we have already encountered,
including least squares (linear and nonlinear), and instrumental variables, these results
will extend to those cases. The discussion given here will only sketch the elements of
the formal proofs. The assumptions we make here are somewhat narrower than a fully
general treatment might allow: but they are broad enough to include the situations
likely to arise in practice. More detailed and rigorous treatments may be found in, for
example, Newey and McFadden (1994), White (2001), Hayashi (2000), Mittelhammer
et al. (2000), or Davidson (2000).
The GMM estimator is based on the set of population orthogonality conditions,

where we denote the true parameter vector by #y. The subscript / on the term on the
left-hand side indicates dependence on the observed data, (Yi» Xi, #i). Averaging this
over the sample observations produces the sample moment equation

E [ﬁin(@ﬁ)] = 0’

where

1 n
Wy (fo) = - ¥ m;(fo).
This moment is a set of L equations involving the K parameters, We will assume that
this expectation exists and that the sample counterpart converges to it. The definitions
are cast in terms of the population parameters and are indexed by the sample size.
To fix the ideas, consider, once again, the empirical moment equations that define the
instrumental variable estimator for a linear or nonlinear regression model,

\
Example ¥8.8 Empirical Moment Equation for instrumental Variables
For the IV estimator in the finear or nonlinear regression modsl, we assume

E [fin(8)] = £ {,‘—,Zam —hix, ﬂ)lJ =0.
i=1

There are L instrumental variables in z; and K parameters in 8. This statement defines L
moment ecuations, one for each instrumental variable.
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We make the following assumptions about the model and these empirical moments:

 ASSUMPTION )\ﬁ‘ll. Convergence of the Empirical Moments: The data generating
process is assumed to meet the conditions for a law of large numbers to apply, so
that we may assume that the empirical moments converge in probability 1o their

~ expectation. Appendix D lists several different laws o f large numbers that increase
in generality,. What is required for this assumption is that ;

_ 18
m, (o) = p z_{l}f(ﬁu) 2> 0.
= _f=l

__ The laws of large numbers that we examined in Appendix D accommodate cases of
(/T iindependent observations. Cases of dependent or correlated observations can be gath-
“—"ered under the Ergodic theorem (19.1). For this more general case, then, we would
assume that the sequence of observations m(#) constitutes a Jjointly (L x 1) stationary
and ergodic process. _ '

‘The empirical moments are assumed to be continuous and continuously differen-
tiable functions of the parameters. For our earlier example, this would mean that the
conditional mean function, h(x;, B) is a continuous function of 8 (although not neces-
sarily of x;), With continnity and differentiability, we will also be able to assume that
the derivatives of the moments,

y

)% 1%
convey/o a probability limit, say, plim G, (o) = G(8o). [See (J5-1), (J5°5), and The-
orem45.1.] For sets of independent observations, the continuity of the functions and
the derivatives will allow us to invoke the Slutsky theorem to obtain this result. For the
more general case of sequences of dependent observations, Theorem 19.2, Ergodicity
of Functions, will provide a counterpart to the Slutsky theorem for time,series data. In
sum, if the moments themselves obey a law of large numbers, then it is reasonable to
assume that the derivatives do as well.

- ASSUMPTION vﬁZ Identification: For any n> K, if and #2 are two different

. parameter vectors, then there exist data sets such that MWy (81) # M,(82). Formally,
in Section 14.5.3, identification is defined to imply that the probability limit of the

- GMM criterion function is uniquely minimized at the true parameters, fg.

\L
Assumption ¥.2 isa practicalprescription for identification. More formal condi-
tions are discussed in Section ¥.5.3. We have examined two violations of this crucial
assumption. In the linear regression model, one of the assumptions is full rank of the l l{‘ I
matrix of exogenous variables%—the absence of multicollinearity in X. In our discug.
_ -~ sion of the maximum likelihood estimator. we will encounter a case (Example Lb’l"ﬁﬁ/
e which a normalization is needed to identify the vector of parameters. [See Hansen et al.

AMiu(fa) 1= omy ()
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{1996) for dlscusswn of this case.] Both of these cases are included in this assumption.
The identification condltion has three important implications:

1.

Order l:ondlhon. The number of moment condifions is at least as large as the

" number of parameters; L.> K. This is necessary, but not sufficient for identification.

Rank condition. The L x K matrix of deri ivatives, G, (8) will have row rank
equal to K. (Again, note that the number of rows must equal or exceed the
number of columns.)

Unigueness, With the continuity assumption, the identification assumption
1mp11es that the parameter vector that satisfies the population moment condition
is unique. We know that at the true parameter vector, plim i, (fo) = 0. If 8, is any
parameter vector that satisfies this condition, then #; must equal Po.

\% y?
Assumptions 181 and }A.2 characterize the parameterization of the model.

Together they establish that the parameter vector will be estimable. We now make
the statistical assumption that will allow us to establish the properties of the GMM
estimator.

x>

: moments have a finite asympiotic covariance matrix, (1/n) ®, so that

3
ASSUMP'I’ION K3 Asymptotlc Dl_strlhntlon of Empnrlcal Mumeuts. We assume
that the empirical nioments obey a central limit theovem. This assumes that the

VAT, (o) <> N[0, @],

The underlying requirements on the data for this assumption to hold will vary

and will be eomplicated if the observations comprising the empirical moment are not
independent. For samples of independent observations, we assume the conditions un-
derlying the Lindeberg:Feller (D. 19) or Liapounov Central Limit theorem (D.20) will
suffice. For the more general case, it is once again necessary to make some assumptions
about the data. We have assumed that

If we can go a step further and assume that the functions ny (@) are an el godlc stationary
mamngale dlfl'erence series,

E[m;i00) | mi—1(@0), my_2(80)...] =6,
2.0 '|"r

then we can invoke Theorem }8.3, the Central Kimit Theorem for Martingale Difference
Series. It will generally be fairly compllcated to verify this assumption for nonlinear
models, so it will usually be assumed outright. On the other hand, the assumptions are
likely to be fairly benign in a typical apphcanon‘ For regression models, the assumption
takes the form

Elzelzi15 1,1 =04

which will often be part of the central structure of the model.
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With the assumptions in place, we have

' THEOREM 1§ 2 “Asymptotic Dwtrlbtm(m of the GMM Estimator
Under the preceding assumptions,

bmm <> 8o, 13
8 arni ™ Nl8o. Yoam), | %6)
where N gy is defined in Cg -3).

We will now sketch a proof of Theorem #472. The GMM estimator is obtained by
minimizing the criterion function ) 4

(fnw) = .mn (8)’Wnﬁn (_ﬂ),

where W, is the weighting matrix used. Consistency of the estimator that minimizes
this criterion can be established by the same logic that will be used for the maximum
likelihood estimator. 1t must first be established that ¢,(#) converges to a value go(@).
By our assumptions of strict continuity and Assumption 15.1, g»(#0) converges to 0.
{We couid appiy the Sluisky theorem to obtain this result.) We will assume that g (8)
converges togo(#) for other points in the parameter space as well. Because W, ispositive
definite, for any finite i, we know that

¥,
0 < gulBomm) < guBo). 7

Thatis, in the finite sample, éaMM actually minimizes the function, so the sample value of
the criterion isnot larger at HGMM than atany other value,mcludmg the frue parameters.
But, at the true Bmametel values, ¢,(fo) 50, So, if {£5-7) is true, then it must follow
that .(0¢1;MM) > 0 as well because of the identification assumption, 15 2. As n - oo,
‘mﬂ ) converge to the same limit. It must be the case, then, that asn — 00,
QQ.' m,,(ﬂGMM) - Tii,(f0), because the function is quadratic and W is positive definite. The
identification condition that we assumed eatlier now assures that as n—» oo, BGM s St

equal #¢. This establishes consistency of the estimator.
We will now sketch a proof of the asymptotic normality of the estimator: The ﬁ]'St-

a\c | order conditions for the GMM estimator are
3gulors) e s o | |
9(,»\"\“'\ | ‘i:;_ﬂ;;ﬂd_)_ = 2G, (0 oupt) W, W, (0 Garar) = 0. (A58)
GMM ’

(The leading 2 is iitelevant to the solution, so it will be dropped at this point.) The

~ orthogonality equations are assumed to be continuous and continuously differentiable.

[ 1~ Thisallows us to employ the mean yalue theorem as we expand the empirical moments
in a linear Taylor series around the true value, 8, \ A,

W aum) = Wnlfo) + G @ @ m — Bo), (13-9)

where 0 is a point between EGMM and the true parameters, #. Thus, for each element
Ay = wkéi,, omm + (1 — wp)o . for some wy such that 0 < wy < 1. Insert (J5-9) in (,lﬁ 8)
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to obtain \
:-_(.:n (E'GMM)',W ,,mu(ﬁu) +_ﬁn(§GMM)'Wnﬁ;;('§)(éGMM - fo) = 0. | ¢ ¢ _'-;'.1.":‘
Solve this equation for the estimation error and multiply by /7. This produces ¢ )

\/E(éGa‘WM - 00) = “[;G.n(éGMﬂ;f.)!w ﬁn (a-)]wlﬁn(éGMM),w V/Eﬁin (80)

Assuming that they have them, the quantities on the left- and right- hand sides have the
same limiting distributions. By the consistency of ﬂamm, we know that 0GMM and # both
converge to #p. By the strict continuity assumed, it must also be the case that

Gu® L G(bo) and G (B mm) <> G o).

We have also assumed that the weighting matrix, W,,, converges to a matrix of constants,
W. Collecting terms, we find that the limiting distribution of the vector on the left-hand ., .,
side must be the same as that on the right-hand side in (15-10), (3 |

V@G — 60) -'-; {[Gooy WG] Gihoy W}/ i, (fo). (1-10)

We now invoke Assumption #8.3. The matrix in curled brackets is a set of constants.
The last term has the normal limiting distribution given in Assumption 15.3. The mean
and variance of this limiting distribution are zero and @, respectively. Collecting terms,
we have the result in Theorem 8.2, where 12

Nouu = -[ﬁ(ﬂu)'wﬁ(ﬂa)]_l,(—?(00)'_?!‘3’“’_@(90)[g(ﬁo)"‘.\@{ﬁo)]“l- (33'-11)

The final resulti lS a function of the choice of weighting matrix, W. If the optimal welghtlng
matrix, W = @' is used, then the expression collapses to

1 — _
3 Nomsapina = [GEo)/ 1G] (mz)

Returning to (1‘§ 11), there is a specml case of interest. If we use least squares or
instrumental variables with W = [, then

Yomumu = —(C G)_lﬂ ‘I’G(G )_I

This equation prescibes essentially the White or NeWey-Wcrcf es‘nmator, which returns
us to our departure point and provides a neat symmetry to the GMM principle. We will
formalize this in Section #5.6.1.

13

15.5 TESTING HYPOTHESES IN THE GMM
FRAMEWORK

The estimation framework developed in the previous section provides the basis for a
convenient set of statistics for testing hypotheses. We will consider three groups of tests,
The first is a pair of statistics that is used for testing the validity of the restrictions that
produce the moment equations. The second is a trio of tests that correspond to the
familiar Wald, LM, and LR tests. The third is a class of tests based on the theoretical
underpinnings of the conditional moments that we used earlier to devise the GMM
estimator.
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D
\ 1%.5.1 TESTING THE VALIDITY OF THE MOMENT RESTRICTIONS
Inthe exactly identified cases we examined earlier (least squares, instrumental variables,
maximum likelihood), thé criterion for GMM estimation

g = M(9) Wiii(h)

would be exactly zero because we can find a set of estimates for which iii(4) is exactly
zero. Thus in the exactly identified case when there are the same number of moment
equations as there are parameters to estimate, the weighting matrix W is irrelevant to
the solution. But if the parameters are overidentified by the moment equations, then
these equations imply substantive restrictions. As such, if the hypothesis of the model
that led to the moment equations in the first place is incorrect, at least some of the
sample moment restrictions will be systematically violated. This conclusion provides

 the basis for a test of the overidentifying restrictions. By construction, when the optima!
weighting matrix is used,

nq = [/Am@Y] {Est. Asy. Val im@]} ™ [yimd)].
s0 71q is a Wald statistic. Therefore, under the hypothesis of the model,
ng -5 ¥ [L~ K].
(For the exactly identified case, there ave zero degrees of freedom and g = 0.)

Example {5.9 Overidentifying Restrictions

In Hall's consumption model, two orthogonality conditions noted in Example 8.1 exactly
identify the two parameters. But his analysis of the model suggests a way to test the specifi-
cation. The conclusion, “No information availabie in time ¢ apart from the level of consump-
tion, ¢, helps predict future consumption, cr.1, in the sense of affecting the expeacted value
of marginal utility. In particular, income or wealth in periods ¢ or eatliet are irelevant once
¢ is known” suggests how one might test the model. If lagged values of income (Y might
equal the ratio of cuirent income to the previous period’s income) are added to the set of
instruments, then the model is now overidentified by the orthogonality conditions;

1

R 0
E | (B +rmBh - 1) x | || = { 0} .
Yi-2

A simple test of the overidentifying restrictions would be suggestive of the validity of the
corollary. Rejecting the restrictions casts doubt on the original model. Hall's proposed tasts
to distinguish the life cycle-permanent income model from other thecries of consumption
involved adding two lags of income to the information set. Hansen and Singleton (1 0B2) op-
erated directly on this form of the model. Other studies, for example, Campbell and Mankiw's
(1988) as well as Hall's, used the model's implications to formulate more conventional instru-
mental variable regression models.

The preceding is a sp_eéiﬁi-.a'tidn test, not a test of parametric restrictions. However,
there is a symmetry between the moment restrictions and restrictions on the parameter
vector. Suppose # is subjected to_J restrictions (linear or nonlinear) which restrict
the number of free parameters from K to K — J. (That is, reduce the dimensiona lity of
the parameter space from K to K —~J.) The nature of the GMM estimation problem
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we have posed is not changed at all by the restrictions, The constrained problem may
be stated in terms of

qr = (0 Y WI(P r)-

Note that the weighting matrix, W, is unchanged. The precise nature of the solution
method may be changed=—the restrictions mandate a constrained optimization. How-
ever, the criterion is essentially unchanged. It follows then that

_pq_R—-d—; xz[_L —(K - )]

This result suggests a method of testing the restrictions, although the distribution theory
is not obvious. The weighted sum of squares with the restrictions imposed, ngg, must :

be larger than the weighted sum of squares obtained without the restrictions, ng. The @
difference is ' (%

Yot |-
(an-—nq)-uia‘xz{J]. (28-13) | [l X

The test is attributed to Newey and West (1987b). This provides one method of testing |
a set of restrictions. (The small-sample properties of this test will be the central focus | ¢ |
of the application discussed in Section 15.6.5.) We now consider several alternatives. | L= O

\’9 L

£5.5.2 GMM COUNTERPARTS TO THE WALD, LM, AND LR TESTS

Section \12.6 describes a trio of testing procedures that can be applied to a hypothesis
in the context of maximum likelihood estimation. To reiterate, let the hypothesis to
be tested be a set of J possibly nonlinear restrictions on K parameters @ in the form
Hy:r{@) =0. Let £ be the maximum likelihood estimates of § estimated without the
restrictions, and let ¢p denote the restricted maximum likelihood estimates, that is,
the estimates obtained while imposing the null hypothesis. The three statistics, which
are asymptotically equivalent, are obtained as follows:

LR = likelihood ratio = —2(In Iy — In {4},
where
In L; = log, likelihood function evaluated at ¢;, j=0,1.
The Ilikqlihﬁiid ratio statistic requires that both estimates be computed. The Wald statis-
ticis™ -
t ‘}
P W = Wald = [r())]' {Est. Asy. Var[r(g; N} [r(en). @5-14)
KT \: L
The Wald statistic is the distance measure for the degree to which the unrestricted esti-

mator fails to satisfy the restrictions. The usual estimator for the asymptotic covariance
matrix would be '
V2

Est. Asy. Var[r(¢))] = Ry {Est. Asy. Var[ei] }R], #&-15)
where

Ri =3r{c1)/8¢, (R isaJ x K matrix).
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