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The Wald statistic can be computed using only the unrestricted estimate. The LM statistic
| is . \3
LM = Lagrange multiplier :g; (co){Est. Asy. Vm‘_[_g; (,_@70)] }-?_gﬂ.g;nj, (18-16)

where
B1{e0) = 3 In Li(co)/Bg0,

that is, the first derivatives of the #nconsirained log-likelihood eomputed at the restricied
estimates. The term Est. Asy. Var{gi(co)] is the inverse of any of the usual estimators of
the asymptotic covariance matrix of the maximum likelihood estimators of the param-
eters, computed using the restricted estimates. The most convenient choice is usually
the BHHH estimator. The LM statistic is based on the restricted estimates.
Newey and West (1987b) have devised counterparts to these test statistics for the
GMM estimator. The Wald statistic is computed identically, using the results of GMM/ 3 - 5/
estimation rather than maximum likelihood:*® That is, in (514}, we would use the
unrestricted GMM estimator of . The appropriate asymptotic covariance matrix is

l (15712). The computation is exactly the same. The counterpart to the LR statistic is the

difference in the values of ng in §1¢13). It is necessary to use the same weighting
~~matrix, V. In bolh Testricted and unrestricted estimators. Because the unrestricted
estimator is consistent under both Hy and H,. a consistent, unrestricted estimator of #
is used to compute W. Label this $77 = {Asy.Var[v_/ﬁ_@ggl)]}_l. In each occurrence,
the subscript 1 indicates reference to the unrestricted estimator. Then ¢ is minimized
without restrictions to obtain g; and then subject to the restrictions to obtain gg. The

“EIN .'\. statisticis then (ngy—ng1 ):\} Because we are using the same W in both cases, this statistic

is necessarily nonnegative. (This is the statistic discussed in Section )5.5.1.)
Finally, the counterpart to the LM statistic would be } 2

LMoy = i1 (co) 87 ' G (60)] [Gi (oY $7'C1(e0)] ™ [Gi (e @7 i (g0)) -

The logic for this LM statistic is the same as that for the MLE. The derivatives of the . -
minimized criterion g in (1;-3) evaluated at the restricted estimator are

_ 3q A reny s
AT B1(¢0) = PPl 2€s1(co) @1 M(co)-
.0
The LM statistic, LM gy, is a Wald statistic for testing the hypothesis that this vector
equals zerc under the restrictions of the null hypothesis. From our earlier results, we
would have
Est. Asy. Var[g {f_.:g)] = %glfﬁﬂ)’..ﬁi’fl {Est. Asy. Var[/n Iﬁl’(_ge)]}@ft?; (o).

The estimated asymptotic variance of JE (o) is _.gih, 50

4 P
Est. Asy. Varfgi (co)] = ~Gi(co$7'Gi(eo).

198ee Burnside and Eichenbawmn (1996) for some small-sample results on this procedure. Newey and
McFadden (1994) have shown the asymptotic equivalence of the three procedures

MNewey and West label this test the D test.
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The Wald statistic would be
S Wald = g (gu)"{Es.t.'Asy. Var(g -(;99)]}_1’31 (¢o) - (\ﬁz}",')

= n 1 (e 7 Gi (60 {G1 (o) 871 (e} G (eoy 87 s o).

\? |
@6 GMVMM ESTIMATION OF ECOMOMETRIC
MODELS

The preceding has suggested that the GMM approach to estimation broadly encom-
passes most of the estimators we will encounter in this book. We have implicitly exam-
ined least squares and the general method of instrumental variables in the process. In
this section, we will formalize more specifically the GMM estimators for severalof the __ | K
estimators that appear in the earlier chapters. Section 1'53.1 examines the generalized
q regression model of Chapter(®. Section Qﬁz describes a relatively minor extension— ) 3

of the GMM/IV estimator to nonlinear regressions. Sections @.6.3 and @.6.4 describe 13 13
the GMM estimators for our models of systems of equations, the seemingly unrelated
regressions (SUR) mode] and models of simultaneous equations. In the latter, as we

. . __ did in Chapter I3 we consider both limited {single-equation) and full information

1¢ ~(multiple-equation) estimators. Finally, in Section [36.5, we develop one of the ma-
jor applications of GMM estimation, the Arellano-Bond-Bover estimator for dynamic
panei data models. & 13

\ 165.6.1 SINGLE-EQUATION LINEAR MODELS

It is useful to confine attention to the instrumental variables case, as it is fairly general
and we can easily specialize it to the simpler regression models if that is appropriate.

Thus, we depatt from the usunal linear model ( , but we no longer require t e
Elsi|xi] = 0. Instead, we adopt the instrumental{yariables formulation in . A
That is, our model is y C af’ r 8.

M =XBE
Elne] =9

for K variables in ¥; and for some set of L instrumental variables, z;, where L > K.
The earlier case of the generalized regression model arises if z; = x;, and the classical
regression form results if we add 2 = I as well, so this is a convenient encompassing

model framework.
CI In ChapterPon generalized least squares estimation, we considered two cases, first
one with a known £, then one with an unknown £ that must be estimated. In estimation

by the generalized method of moments, neither of these approaches is relevant because
we begin with much less (assumed) knowledge about the data generating process. We
will consider three cases:

¢  Classical regression: Var[g; | X, Z] = o2,
e Heteroscedasticity: Var[g; | X, Z] = o,
¢ Generalized modet: Coviey, & | X, Z] = 0%y,
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where Z, and X are the # x Land n x K observed data matrices. (We assume, as will often

be true, that ‘the fully general case will apply in a time-series setting. Hence the change

in the subscripts.} No speaf ic. dt.smbufum is assumed for the d:smrbances conditional or
unconditional, 1Y
The assumption E[z:£;] = 0 unplles the following ortlwgunallq' condition:

Covzi, e] =0. or Elzniy —x8]=9 T
By summing the terms, we find that this furtherimplies the p!_ipl__l]_alio_n_mtli'mént cquation,

1 2 13
El=% #(y - = E[M(8)] =0 15-18
L 2.-: (¥ ,_s.t:_ﬁ.)} ()] = (#5-18)

This relationship suggests how we might now proceed to estimate §. Note, in fact, that if

.2 = X;,then this is just the population counterpart to the least squares normal equations.

So, as a guide to estimation, this would return us to least squares. Suppose, we now
translate this populatmn expectation into a sample analog and use that as our guide for
estimation. That is, if the population relationship holds for the true parameter vector,

_B. suppose we attempt (o mimic this result with a sample counterpart, or empirical

moment equation,

Pl @ ) L r 7 . . )}
l; 3w — ) J - [}; Zgn;(ﬁ)] = () =9, {f5.19)
=l 7 = il

In the absence of other information about the data generating process, we can use the
empirical moment equation as the basis of our estimation strategy.

The empirical moment condition is L equations (the number of variablesinZ)in K
unknowns (the number of parameters we seek to estimate). There are three possﬂnhtles
to consider:”

3 35

)3

i. Underidentified: L < K. If there are fewer moment equations than there a;e_ly;/

rameters, then it will not be possible to find a solution to the equation system in (15-19)
With no other information, such as restrictions that would reduce the number of free
parameters. there is no need to proceed any further with this case,

For the identified cases, it is convenient to write (mw/—’ 3 .
. \ !
mi- (573) - (2%)8 b-20)

2. Exactly identified. If L = K, then you can easnly show {we leave it as an exercise)
that the single solution to our equation system is the familiar instrumental variables
estimator from Section 12.3.2, 4

g |
B=@X'Zy. a1

3. Overidentified. If L > K, then there is no unique solution to the equation system
fi(f) = 0. In this instance, we need to formulate some strategy to choose an est:matol
One intuitively appealing possibility which has served well thus far is “least squares.” In
this instance, that would mean choosing the estimator based on the criterion function

Ming g = m(A)T(A).
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J
We do keep in mind that we vj‘énly be able to minimize this at some positive value;
-19) in the overidentified case. Also, you can verify that
if we treat the exactly identified case as if it were overidentified, that is, use least squares
anyway, we will still obtain the I'V estimator shown in (}§-21) for the solution to case (2).

For the overidentified case, the first-order conditions ar )
UMV =Ghmd )3
<oz (12 L) - o
e PR
We Ieave as exercise to show that the solution in both cases (2) and (3) is now
e .é=HX®K?XW%XZK£wW (18-23)

| 3
The estimator in (}5-23) is a hybrid that we have ngte/ncountered before, though if |
L = K, then it does reduce to the earlier one in (¥3-21). (In the overidentified case, |
JA’Z]) is notan 1V estimator, it is, as we have sought, a method of moments estimator,) |

(
\ 4 It remains to establish consistency and to obtain the asymptotic distribution and an

asymptotic covajiance matrix for the estimator. The intermediate results we need are
Assumptlons 1, 1%’2 and lr8’ 3 in Section )5 4.3:
/3

) Cnnvnrgt.nce of the mument-i. The sample moment converges in probability to its
populatlon counterpart, That is, m(g) — 0. Different circumstances will produce
different kinds of convergence, but we will require it in some form. For the
simplest cases, such as a model of heteroscedasticity, this will be convergence in
mean square. Certain time-series models that involve correlated observations will
necessitate some other form of convergence. But in any of the cases we considet,
we will require the general result: plim @(g8) =0

¢ Identification, The parameters are identified in tel ms of the moment equations.
Identification means, essentially, that a large enough sample will contain sufficient ,
information for us actually to estimate 8 consistently using the sample moments.
There are two conditions which must be met—an order condition, which we have
already assumed (L > K),and a rank comlltmn, which states that the moment
equations are not redundant. The rank condition implies the order condition, so
we need only formalize it:

. ld‘enthiﬁca_tion cundilion for GMM estimation: The_L x K matrix

Bm,
I(p) = E[G(B)] = plim G(B) = phmmﬁ— = plim , Z

must have row rank equal to K2 Because this requires L > K, this implies the
order condition. This assumption means that this derivative matrix converges in
probability to its expectation. Note that we have assumed, in addition, that the

2% require that the row rank be at least as large as K. There could be redundant, that is, functionally
dependent, moments, so long as there arc at least K that are functionally independent.

13-33)
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derivatives, like the moments themselves, obey. a law of large numbels-uthey
converge in probability to their expectations.

B Limiting Normal Distribution for the Sample Moments. The population moment

obeys a central limit theerem or some similar variant. Since we are studying a
generalized regression model, Lindeber g-Levy (D.18.) will be too narrow——the
observations will have different variances. Lindeberg-Feller (D.19.A) suffices in
the heteroscedasticity case, but in the general case, we will ultimately require
something more general. See Section E_;, 3

It will follow from Assumptions 1}1—1.5!3 (agam at this point we do this without
proof) that the GMM estimators that we ‘obtain are, in fact, consistent. By virtue of the
Stutsky theorem, we can transfer our limiting results to the empirical moment equations.

To obtain the asymptotic covariance matrix we will simply invoke the general result
for GMM estimators in Section J§.4.3. That is,

)

Asy. Var{f] = - [UTT LY {Asy. Varl A R@IEET] ™
For the particnlar model we are studying here,
m(g) = (1/n)( L'y — L' X8,
G(B) = A/mZX.
T'(8) = Qux (see Section $§.3.2).

(You should check in the preceding expression that the dimensions of the particular
matrices and the dimensions of the various products produce the correctly configured
matrix that we seek.) The remaining detail, which is the crucial one for the model we
are examining, is for us to determine

Y. = Asy. Var[/n “tﬁ“(ﬂ)]
Given the form of iﬁ(ﬁ).

h4 {z:,s,} = —iZa w,jz,t _azz 27

i=t f=1

for the most general case. Note that this is precisely the expression that appears in
(8-6), so the question that arose there arises here once again. That is, under what con-
ditions will this converge to a constant matrix? We take the discussion there as given.
The only remaining detail is how to estimate this matrix. The answer appears in Sec-
tion 8.2.3, where we pursued this same question in connection with robust estimation of
the asymptotic covariance matrix of the least squares estimator. To review then, what
we have achieved to this point is to provide a theoretical foundation for the instrumen-
tal variables estimator. As noted earlier, this specializes to the least squares estimator,
The estimatois of V for our three cases will be

e  Classical regression:

(e'e/ n) Z (e’e/n)

V=
o n =
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s  Heteroscedastic regression:

N 1& !3
- V== duz. (48:24)
X=3 H;

o  Generalized regression:

o 1
V ﬁ-:’_ [Z(’ l.zlr + Z ( {p + 1)) Z f’;e'r_g(lrf:_t + ?_‘_htz’)

tel t=£4]

We should observe that in each of thesc cases, we have actuaily used some information
about the structure of £, If it is known only that the terms in fi(8) are uncorrelated,
then there is a convenient estimator available,

ng (Bymi (Y,

that is, the natural, empirical variance estimator. Note that this is what is being used in
the heteroscedasticity case directly preceding.
Collecting all the terms so far, then, we have

V=

":.ﬂu

- Y e 4 o o pm n e A A 5
B Asy Varlf] = SGGCHI SR VEREHTHI 12

= (lXDHEXOI XDV DHZX)].

The preceding might seem to endow the least squares or method of moments esti-
mators with some degree of optimality, but that is not the case. We have only provided
them with a different statistical motivation (and established consistency). We now con-
sider the question of whether, because this is the generalized regression model, there is
some better {more efficient) means of using the data.

The class of minimum distance estimators for this model is defined by the solutions
to the criterion function

Miilg g = m(8)YWm(B),

where W is any positive definite weighting matrix, Based on the assumptions just made,

?M we can invoke Theonem ¥8.1 to obtain

Aoy Var [fun] = L [GwE] ' Twywa [Ewa]”

Note that our entire preceding analysis was of the simplest minimum distance estimator,
which has W=]. The obvious guestion now arises, if any W produces a consistent
estimator, is any W better than any other one, or is it simply albmaly? There is a firm
answer, for which we have to consider two cases separately:

¢  Exactly identified case. If L = Kithat is, if the number of moment conditions is
the same as the number of parameters being estimated, then W is irrelevant to the
solution, so on the basis of simplicity alone, the optimal W is 1,

s Overidentified ease. In this case, the “optimal” welghtmg matrix, that is, the W
that produces the most efficient estimator. is W = V‘“‘ The best weighting matrix

is the inverse of the asymptotic covariance of the moment vector. In this case,
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the MDE will be the GMM estimator with
" 1 .1
 Boun = [X'TV ZXN XDV (Z'y),
and . B

Asy. Var [@_QMM] = %[FV—IE]-I

n — ——___ FXZYTEX

We conclude this discussion by tying together what should seem to be a loose end,
The GMM estimator is computed as the solution to

Ming g = (Y {Asy. Varl JAm(8)]} ™ m(B),

which might suggest that the weighting matrix is a function of the thing we are trying to
estimate. The process of GMM estimation will have to proceed in two steps: Step 1isto
obtain an estimate of V: Step 2 will consist of using the inverse of this V as the weighting
matrix in computing the GMM estimator. The following is a common strategy:

v “Siap 1 Usa W = I ta nbtam a consistant estimator uf, ﬂ Than sstimate ‘L" wdh

=1 Z?x?

in the heterescedasticity case (i.e., the White estimator) or, for the more general case,
the Newexi\’r\fest estimator.

Step 2. Use Yy =;g:* to . compute the GMM estimator,

By this point, the observant reader should have noticed that in all of the preced-
ing, we have never actually encountered the two-stage least squares estimator that we
introduced in Section 12.3.3. To obtain this estimator, we must revert back to the clas-
sical, that is, homoscedastic, and nonautocorrelated disturbances case. In that instance,
the weighting matrix in Theorem 152 will be W = (Z’Z)~' and we will obtain the
appatrently missing result. 4 '

The GMM cstimator in the heteroscedastic regression model is produced by the
empirical moment equations 3

}

1¢ . Lorars _
= Xi(y ~XBoum) = —X2(Boum) =M (Bomu) =9. (-26)
& =1

The estimator is obtained by minimizing

q= W(ﬁ_GMM)wm(ﬁGMM)v

Hew ods
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where W is a positive definite weighting matrix. The optimal weighting matrix would be

_____ {Asy Var[/n (8 )}}

which is the inverse of

__ 1 ¢ 2
Asy, Var [,/fr_mgﬁ)] = Asy. Vai L/ﬁ Ex;q,] 1"332 - Za w,xtx =g Q
[See Sectioni/i.l .] The optimal weighting matrix would be [azﬁQj’]"l‘ But recall that this
minimization problem is an exactly identified case, so the weighting matrix is irrelevant
to the solution. You can see the result in the moment equation-_-that equation is simply
the normal equations for ordinary least squares. We can solve the moment equations
exactly, so there is no need for the weighting matrix. Regardless of the covariance matrix
of the moments, the GMM estimator for the heteroscedastic regression model is ordinary
least squares. We can use the results we have already obtained to find its asymptotic
covariance matrix. The implied estimator is the White estimator in (8-27). [Once again,
) 3 see Theorem{2.2.] The conclusion to be drawn at this point is that until we make some
specific assumptions about the variances, we do not have a more efficient estirnator than

least squares, but we do have to modify the estimated asymptotic covariance matrix.

‘25‘.6-2 SINGLE-EQUATION NONLINEAR MODELS
Suppose that the theory specifies a relationship
Vi = h(x;, B) + &,

where g is a K x 1 parameter vector that we wish to estimate. This may not be a
regression relationship, because it is possible that

COV[&"f__,_hf.?‘i 5 ,ﬁ\}] # 0,
or even

Covle;, x;] # 0 for all i and j.

Consider, for example, a model that contains lagged dependent variables and autocor-
related disturbances. (See Sectiong?g.&) For the present, we assume that

P Ele1X1 £,
and
E[se'|X] =0’2 =T,

where ¥ is symmetric and positive definite but otherwise unrestricted. The disturbances
may be heteroscedastic and/or autocorrelated. But for the possibility of correlation be-
tween regressors and disturbances, this mode! would be a generalized, possibly non-
linear, regression model. Suppose that at each observation { we observe a vector of
L variables, z;, such that z; is uncorrelated with &. You will recoghize ¥; as a set of
msirumental variables. The assumptions thus far have implied a set of ouhogonallty
conditions, %

Elaal=9,
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which may be sufficient to identify (if L= K) or even overidentify (if L> K) the pa-
_rameters of the model. (Sec S.-_-c-h._ 8.32.4 ,>
For convenience, deﬁne .

KB =y ~hxi, B i=1....n,
and
Z = n x L matrix whose ith row is 7.

By a straightforward extension of our earlier results, we can produce a GMM estimator
of f. The sample moments will be

Tin(8) = —Zz.e(xu 8) = —Z eX. ).

i=l1

The minimum distance estimator will be the ,t§ that minimizes 3

=By Wi h) = (S1eck pa(Gzexd))  dam

for some choice of W that we have yet to determine. The criterion given earlier produces

the nonlinear instrumental variable estimator, If we use W= (Z'Zy"!, then we have 8
exactly the estimation criterion we used in SectiondZ.7, where we defined the nonlmear '
instrumental variables estimator. Appalently (@3-27) is more general, because we are___, 13
not limited to this choice of ¥¥. For any given choice of W, as long as there are enough
mthogonallty conditions to ldentlfy the parameters, estimation by minimizing g is, at

least in principle, a straightforward problem in nonlinear optimization. The optimal

choice of W.for this estimator is

Womm = {Asy. Var[ a1}~ 13
" -1 -1 (4&-28

For our model, this is

-1
[ ] 4 -1
i: ZZ COV[lfsiltjsj]] = [ ZZU}]?} ] = [_Z fz} .

i=1 j=1 i=l j=1

If we insert this result in (1,5;—27). we obtain the criterion for the GMM estimator:

qu[ (%)_9(?(,.)5-)'3] ( :z) K )z’qx ﬁ)]

There is a possibly difficult detail to be considered. The GMM estimator involves

1r 1 1" "

;q—__l’_EZ == ZZ 7:2;Covlsi, g5] = Z Z.g,:z’;COV[(,v,- — (%, BN, (v; — h(x;, BO)].
= _i=1 j=l : r..l__j=l )

The conditions under which such a double sum might converge to a positive definite

matrix are sketched in Sectiond$.2.2. Assuming that they do hold, estimation appears to

require that an estimate of # be in hand already, even though it isthe object of estimation.

9
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It may be that a consistent but inefficient estimator of # is available, Suppose for the
present that one is. If observations are uncorrelated, then the cross-observation terms
‘may be omitted, and what is 1equued is -

1Z’EZ = —Zz,v’V'u[(v,- —-h(x; 8]

f=1
We can use a counterpart to the White (1980) estimator discussed in Section 2.4.4 for
this case:
1%

1 (B . ]
So=~ g." (o =i, B (1#-29)
If the disturbances are autocorrelated but the process is stationary, then Newey and
West’s (19874) estimater is available (assuming that the autocorrelations are sufficiently
small at a reasonable lag, p):

2. 1%
8= [fots ZW(Z) Z eiei-e{2ti_y +2i-e8) =3 w@)Se, (18-30)
i i=t+1 =0 ‘

where

wi(l)=1- -—i—
r+1
The maximum lag length p must be determined in advance. We will require that
observations that are far apart in tlme—that is, for which |/ — €] is lalgel;mmust have
increasingly smaller covariances for us 10 establish the conver gence results that justify
OLS, GLS, and now GMM estimation. The choice of p is a reflection of how far back in
time one must go to consider the autocorrelation negligible for purposes of estimating
(1/11342’ ¥ Z. Current practice suggests using the smallest integer greater than or equal
ton

Still left open isAhe question of where the initial consistent estimator should be
obtained. One posgibility is to obtain an inefficient bus consistent GMM estimator by
using W = 1 in (K-27). That is, use a nonlinear (or linear, if the equation is linear)
instrumental variables estimator. This first-step estimator can then be used to construct
W, which, in turn, can then be used in the GMM estimator. Another possibility is that
B may be consistently estimable by some straightforward procedure other than GMM.
© Once the GMM estimator has been computed, its asymptotic covariance matrix
and asymptotic distribution can be estimated based on Theorem ¥8.2. Recall that

/3
Fa() =~ Z %51,

i-.l

which is a sum of [. x 1 vectors. The derivative, am, (8)/2 _g’, is a sum of L x K matrices,
SO '

n %
(.(ﬁ) Bm(ﬂ)/aﬂ = —ZG (B) = 2 [g;’} Jﬂi-:{l)
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In the model we are considering here,
L dn_ —0huB) .
SETAET
The derivatives are the pseudoregresébts in the linearized regression model that we
examined in Section ¥(.2.3. Using the notation defined there,

38,_' : 0
q\g = .,,_x-i k]
S0
Gy = 1 i Gi(8) = lzn: —7xY = —EZ'XO (4)12.32)
TRl L -n par g n = _~_r'f,-.:_:.|‘__ !1,,. A o

With this matrix in hand, the estimated asymptotic covariance matrix for the GMM
estimator is

| L
Est. Asy. Var]B] = [ﬁ(ﬁ)’(;ﬁ-Z-’iﬁZ) _’c?(ﬁ_)] = (X" )@ L2 ZXO

(18-33)

%
)7 )
{The two minus signs, a 1 /gzzfnd an 42, all fall ou!é the result.) 2
If the X thatappears in (15-33) were o1, the:z(fw‘:ise]y the asymp- 9
totic covariance matrix thatappears in Theorem P22 for linear models and Theorem ﬂ%’—‘
for nonlinear models. But there is an interesting distinction between this estimator and

the IV estimators discussed earlier. In the earlier cases, when there were more instru-

mental variables than parameters, we resolved the overidentification by specifically
choosing a Set of K instruments, the K projections of the columns of X or X’ into

the coluran space of Z. Here, in contrast, we do not attempt to resolve the overidenti-
fication; we simply use all the instruments and minimize the GMM criterion. Now, you

should be able to show that when X = o2l and we use this information, when all is said

and done, the same parameter estimates will be obtained. But, if we use a weighting

matrix that differs from W = (?'.'?/’_1)_1* then they are not.

%

#2.6.3 SEEMINGLY UNRELATED REGRESSION MODELS
In Section ¥f .5, we considered FGLS estimation of the equation system
)0 =mX 8+,
=X, B) + e,

=B X, )+

The development there extends backwards to the linear system as well. However, none
of the estimators considered are consistent if the pseudoregressors, x%,, or the actual
regressors, X, for the linear model, are correlated with the disturbances, gy, Suppose
we allow for this correlation both within and across equations. (If it is, in fact, absent,
then the GMM estimator developed here will remain consistent.) For simplicity in this
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section, we will denote observations with subscript  and equations with subscripts / and

J- Suppose, as well, that there are a set of instrumental variables, z,, such that 3

o] =0,1=1,....,Tandm=1,..., M. (15:34)

(We could allow a separate set of instrumental variables for each equation, but it would
needlessly complicate the presentation.)

Under these assumptions, the nonlinear FGLS and ML estimators given earlier will
be inconsistent. But a relatively minor extension of the instrumental variables technique
developed for the single-¢quation case in Section }Z.4 can be used instead. The sample
analog to (IY-ZM) is

\3 1 & .
=2 ulw — iz =9, i=1.. M.
t=1

If we use this result for each equation in the systém, one at a timne, then we obtain exactly
the GMM estimator discussed in Section }£.6.2. But, in addition to the efficiency loss
that results fromnot imposing the cross-equation constraints in 8, we would also neglect

the correlation between the disturbances. Let
Z'é"&'»z , 9
“""Z g] I:["""‘I‘ e r'l"l”";l"l] . %-35)
YW i T b
The GMM criterion for estimatmn in this setting is
MM
a=3.3 I ~WX AV ZINESZIVIEG, -1y XK/ g
i=1 j=i : <
s ) (A5-36)
= 2.0 e BYZ/TIZ R Z T [Z2e (8)/T). 13
- l=] ]=] - "

where [Z'2;;Z/ T} denotes the ijth block of the inverse of the m. /lx with the ijth
block equal to Z'@;;Z/ T. (This matrix is laid out in full in Section }5.6.4.)
GMM estimation would proceed in several passes. To compute any of the variance

13-4

parameters, we will require an initial consistent estimator of 8. This step éa‘i-l;_b/edonc‘wit-h——— 3
equation-by-equation nonlinear instrumental variables-see Section ¥Z7 -although if

equations have parameters in common, then a choice must be made as to which to use.
At the next step, the familiar White or Newey-West technique is used to compute, block
by block, the matrix in (P$735). Because it is based on a consistent estimator of B (we

assume), this matrix need not be recomputed. Now, with this result in hand, an iterative
solution to the maximization problem in (#§-36) can be sought, for example, using the
methods of Appendix E. The first-order conditions are }3

M M
iy =23 Y (KO ZTIEW TV T =0

Note again that the blocks of the inverse matrix in the center are extracted from the
larger constructed matrix dfier inversion, [This brief discussion might understate the
complexity of the optimization probiem in (W-36), but that is inherent in the pro-
cedure.] At completion, the asymptotic coydriance matrix for the GMM estimator is

\ 3

A=t =1
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estimated with

- ) . .M " )

1 0 ’ ’ i
Yomm = T LZI: ;‘ [x? m) Z/ T|[Z w,,Z/ T [Z'X$ &/ T
\5

v€.6.4 SIMULTANEQUS EQUATIONS MODELS WITH _
HETEROSCEDASTICITY ’,0.;,:1 Qnd (0..5

The GMM estimator in Sectioh 16.1 Winm change of notation, precisely the
set of procedures we used in Sezctlonrﬁ 0 estimate the equations in a simultaneous
equations model. Using a GMM estimator, however, will allow us to generalize the
covariance structure for the disturbances. We assume that

V.I‘j'""r’8 +3.‘js _l":].,...,?.,

where 2y = [Y;, X;]. (We use the capital Y, to denote the L; included endogenous
variables. Note, as well, that to maintain consistency with Chapter(4, the Toles ©
symbols x and z are reversed here; X is now the vector of exogenous vauab!ea) We have
assumed that £, ; in the jth equation is neither heteroscedastic nor autocorrelated. There
is no need to impose those assumptions at this point. Autocorrelation in the context of a
simultanscus equations model is a substantia! complication, however, For the present,
we will consider the heteroscedastic case only.
The assumptions of the model provide the orthogonality conditions,

Elxiey) = E[x:(n; “,Tl;jﬁ_j)] =0,

If x; is taken to be the full set of exogenous variables in the model, then we obtain the
criterion for_the GMM estimator for the jth equation,

q= [-e(zu ;ﬂ'_x]w {Xe(?-&f)]

= (W7 (),

where

i) == ZX.(,\&, l,,& ;) and ‘WH = the GMM weighting matrix.
g r...l g

Once again, this is precisely the estimator defined in Section 1r5/6 1. H the disturbances
are assumed to be homoscedastic and nonautocorrelated, then the optimal weighting
matrix will be an estimator of the inverse of

W, = Asy. Var[/Tiii(3 )]

= phm[rz‘x,x,(v” z,,&;) ]

el

1
= plim - Z%fﬁ?ff-’-‘i-
pexl .

X'X
= plimo;; (--}-—-) .

}M’;

o o
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The constant g ;; is irrelevant to the solution. If we use (X/X)~! as the weighting matrix,

“then the GMM estimator that minimizes g is the 281§ estimator.

The extension that we cs_in— obtain. here is to allow for heteroscedasticity of un-
known form. There is no need to rederive the earlier result. If the disturbances are
heteroscedastic, then

1 o X2X
X% Wi o= th_?';“’ff,f,"gﬁ = pllm«--t;f.ﬂ———.

The weighting matrix can be estimated with White’s heteroscedasticity consistent
estimator-r—see ( -24)~-if a consistent estimator of 4; is in hand with which to com-
pute the residuals, One is, because 25LS ignoring the heteroscedasticity is consistent,
albeit inefficient. The conclusion then is that under these assumptions, there is away to
improve on 2SLS by adding another step. The name 35L5 is reserved for the systems es-
timator of this sort. When choosing between 2.5-stage least squares and Davidson and
MacKinnon’s suggested “heteroscedastic 2SLS,” or H28LS, we chose to opt for the
latter. The estimator is based on the initial two-stage least squares procedure, Thus,

Bimmsis = (25X (80,7 X217 2, X80, Xyi ]

where i )

T ~
So.jj = Z,?‘j.x} (i —#yds258)".

_r=1 J -
The asymptotic covariance matrix is estimated with

Est. Asy. Va;-[§ j,HlSLS] = LZ;X(SQ_} J')"I_X_’Z j-]_l.

Extensions of this estimator were suggested by Cragg (1983) and Cumby, Huizinga, and

Obstfeld (1983). o
The GMM estimator for a system of equations is described in Section ¥5.6.3. As
in the single-equation case, a minor change in notation produces the estimators for a

_ simultancous equations model. As before, we will consider the case of unknown het-

eroscedasticity only. The extension to autocorrelation is quite complicated. [See Cumby,
Huizinga, and Obstfeld (1983).] The orthogonality conditions defined in (163:34) are

E[xreq] = E[x:(yy; — ;8] =.9.
If we consider all the equations jointly, then we obtain the criterion for estimation of
all the model’s parameters,

M M
=33 [.‘«'(Z_n,_li‘_i)’_x] W [x'..e-{?’-‘s’)]
j=1 1=1 . :
M M
= i)' (W',
j=1 I=1

where

1
m(s;) = TI:ZX_:(){U “’:;5})’
|
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and
[E],; = block ji of the weightingﬁ_matrix,ﬂ‘l.

As before, we consider the opti'mﬁl weighting matrix obtained as the asymptotic covari-
ance matrix of the empirical moments, i(é;). These moments are stacked in a single
vector fi(§). Then, the j/th block of Asy. Var[/Tmm(8)] is

1 .
8.3 =th{72—:[§ﬁ§;(."r1 " 80V ~ .?:15_{)]} =p]m1( Zw,uxrx,)

t=1

If the disturbances are homoscedastic, then & ,1_0;[p11m(X’X/ T)} is produced.
Otherwise, we obtain a matrix of the form @ _.plxm[)QSZ 1%/ 1. Coliecting terms,
then, the criterion function for GMM estimation is

(X ~Zi80YT 7' [#n &2 - Bam - X'y ~ Znd0)]/ T

X2 ~Zof)l/T | 1 @2 S0 - Som [X(y2 — Zo82)l/ T
q m—

[X'(yar ~ Zaada)]/T] L®an @an -+ San)  UX'Gar— Zaddl/T

For implementation, ¢ j1 can be estimated with

d)ﬂ = = Ex;x,(\"{] l;,dj)(}’.rl T ’ﬁd’)’

.r_l

where d; is a consistent estimator of 6 ;- The two-stage least squares estimator is a
natural choice. For the chagonal blocks, this choice is the White estimator as usual. For
the off-diagonal blocks, it is a simple extension. With this result in hand, the first-order
conditions for GMM estimation are

22 (Z' ) »JJ[X’(W ZI3I)]

where _(il_‘-f'l is the jlth block in the inverse of the estimate of the center matrix in 4.
The solution is

].....

ZZ’ X'ley,
Sl [ZXUXZI ZXSXZy . ZXSUXZy ]|
Srowm | _ ...&xsi?ﬂxflx i ’224..@223('12 s ZEXSUX Ly ZZ&“’”»

§uomml |7, xw’x’zl z X‘i"WZX’Z’z AL G M
" 5_‘,1’ X(D’”fy
Lf=

The asympftotic covariance matrix for the estimator would be estimated with 7 times
the large inverse matrix in brackets,
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Several of the estimators we have already considered are special cases:

e If d)” ._crn(X’X/T) and d’f, =0 for Jj # 1, then 31 is 2SLS.

o I ¢ jt =1 for j # I, then 8 is H2SLS, the single-equation GMM estimator.
o Ifd= a,;(X’X/ 7). then 6; is 3SLS.

As before, the GMM estimator brings efficiency gains in the presence of heteroscedas- |

ticity. If the disturbances are homoscedastic, then it is asymptotically the same as 35LS,
[although in a finite samp]e it wﬂl differ numenc*tlly because § jt will not be 1clentlca1
to a,,(x X,)] €se

\’7 A€6.5 GMM ESTIMATION OF DYNAMIC PANEL DATA MODELS

Panel data are well suited for examining dynamic effects, as in the first-order model,
Yir =K;,ﬁ + 8y;,-1 +.Ci + &
= W;, 0 + o + Eir,

where the set of right-hand-side variables, w;, now includes the lagged dependent
variable, ¥; 1. Adding dynamics toa maodel in this fashion creates a major change inthe
interpretation of the equation. Without the lagged variable, the “independent variables”
represent the full set of information that produce observed outcome y;;. With the lagged
variable, we now have in the equation the entire history of the right-hand-side variables,
so that any measured influence is conditioned on this history: in this case, any impact
of x;, represents the effect of new information. Substantial complications arise in esti-
mation of such amodel. In both the fixed and random effects settings, the chfﬁculty isthat
the la gged dependent variable is correlated with the disturbance, even if it is assumed
that g; is not itself autocorrelated. For the moment, consider the fixed effects model
as an mdmm egressnon Wlth a lagged dependent valiable Wesconsidered-this-case
' p 3 2550 that is dependent across

is blased in finite samples, but it is consistent in Tz_ sub

e finite sample bias is of or: der1 /T.The same result applies hele but
the difference is that whereas before we obtained our large sample results by allowing
T to grow large, in this setting, T is assumed to be small and fixed, and large-sample
results are obtained with respect to # growing large, not 7. The fixed effects estimator
of § = [B. §] can be viewed as an average of /1 such estimators, Assume for now that
T > K + 1 where K is the number of vanables in . Then, from (R-l 33,

A= ZW’M“W, ZW’MD ] W

Fasl i

[ n 1-br g
D WMW, Z.wsmﬂw]

| Feml J Fi=1
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are w!, and MO is the 7 x T matrix that
14)]" Each gloup«spemﬁc estimator, d;,
is inconsistent, as it is biased-in finite samples and fts variance does not go to zero
as » increases. This matrix weighted average of # inconsistent estimators will also be
inconsistent. {This analysis is only heuristic. If 7 < K + 1, then the individual coefficient
vectors cannot be computed:'?)

The problem is more transparent in the random effects model. In the model

where the rows of the T x (K -+1) matrix W,

Yir =Xy B +8¥ig—1 + th + &, ya

the lagged dependent variable is correlated with the compound disturbance in the

maodel, since the same i; enters the eqnation for every observation in group 4. | et

Neither of these results renders the model inestimable, but they do make neces-
sary some technique other than our familiar LSDV or FGLS estlmatms. The geneml

approach, which has been developed in several stages in the literature;!* telies on in-

strumental variables estimators and, most recently [by Areliano and Bond (1991) and

e Arellano and Bover (1995)] on a GMM estimator. For example, in either the fixed or

random effects cases, the heterogeneity can be swept from the model by taking first
differences, which produces

Vie = Yip—1 = (i ~ Xire1 ¥ B + 30001 — Yig-2) + (81 — Eia-1)-

This model is still complicated by correlation between the lagged dependent variable
and the disturbance (and by its first-order moving average disturbance). But without the
group effects, there is a simple instrumental variables estimator available. Assuming that
the time series is long enough, one could use the lagged differences, (¥; ,_>—¥; 1), ot the
lagged levels, vy, and ¥ Vi3, 88 ONE OF two instrumental variables for (Vi1 = Yi1-2)-
(The other variables can serve as their own instru Thls isthe Andel son and Hsiao
estimator developed for this model in Section
treatment of this model is a standard application of the mstmmental var lables technique
% that we developed in Section1 “This illustrates the flavor of an instrumental
variable approach to estimation. But, as Arellano et al. and Ahn and Schmidt (1995)
have shown, there is still more information in the sampie that can be brought to bear
on estirnation, in the context of a GMM estimator, which we now consider.
We can extend the Hausman and Taylor (HT) formulation of the random effects
‘o include the lagged dependent variable:

it = 8%t + X1, By + X0 B2 H 20,001 + 202 + £ 4
='Wy + 6 + 44
= 8"Wir + i

J3Further discussion is given by Nickell (1981), Ridder and Wansbeck {1990), and Kiviet (1995).

“}*The model was first proposed in this form by Balestra and Nexfove (1966). See, for example, Anderson and
Hsiao (1981, 1982), Bhargava and Sargan (1983), Arellano (1989), Areflano and Bond (1991), Aretlanc and
Bover (1995), Ahn and Schunidt {1995}, and Nerlove (2003).

5 There is a question as to whether one should use differences or levels as instruments. Areflano (1989) and
Kiviet (1995) give evidence that the iatter is preferable.

g.L
= .
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where

7 . Wn'—'- [.!f{'.f—ls.x’!i_r! Xim Z’Ii*»z_IZ_i I

isnowa (1+ K1+ Ko+ Li+La)x1 vector. The terms in the equation are the same asin the
Hausman and Taylor model. Instrumental variablesestjmation of the model without the
jagged dependent variable is discussed in Section

by just including y;,—1 in Xz, we see that the HT approach extends to this setting as
well, essentially without modification, Arellano et al. suggest 2 GMM estimator and
show that efficiency gains are available by using a larger set of moment conditions. In
the previous treatment, we used a GMM estimator constructed as follows: The set of
moment conditions we used to formulate the instrumental variables were

Xiir X4t
Xoi w X2i

E Mo —wp| =£|17 A (e —ED| =0.
X1 Xl

This moment condition is used to produce the instrumental variable estimator. We conld
ignore the nonscalar variance of n;; and use simple instrumental variables at this point.
However, by accounting for the random effects formulation an  using the counterpar:
1o feasible GLS, we obtain the more efficient estimator in (12-209 As usual; this can be
done in two steps. The inefficient estimator is computed to obtain the residuals needed
to estimate the variance components, This is Hausman and Taylor’s steps 1 and 2. Steps
3 and 4 are the GMM estimator based on these estimated variance components.

Arellano et al. suggest that the preceding does not exploit all the information in
the sample. In simple terms, within the T observations in group i, we have not used the
fact that

X1
X I
E||%
Ay
Xii

(ms —7;)| =0 forsomes #¢.

Thus, for example, not only are disturbances at time  uncorrelated with these variables at
time ¢, arguably, they are uncorrelated with the same variables at time ¢ — 1, ¢ — 2, possi-
bly f +1,andsoon. In principle, the number of valid instruments is potentiaily enormous.
Suppose, for example, that the set of instruments listed above is strictly exogenous with
respect tony, in every period including current, lagged, and future, Then, there are a total
of [T(Ki+ Koy + La+ K1)] moment conditions for every observation. On this basis alone.
Consider, for example, a panel with two periods. We would have for the two periods.

-I X1

X2i1
X112
X2;2

L

(it ~7)| =06 and E (2 — ;)

How much useful information is brought to bear on estimation of the parameters
is uncertain, as it depends on the correlation of the instruments with the included

bn the HT estimator. Moreover,,
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: exogenous variables in the equation. The farther apart in time these sets of variables
Pt Sy ‘become the less information is likely to be present. (The literature on this subject con-
[N tains reference to “strong” versus “weak” instrumental variablesi) To proceed, as
| |b_/  noted, we can include the lagged dependent variable in xy;. This set of instrumental
' variables can be used to construct the estimator, actually whether the lagged variable
is present or not. We note, at this point, that on this basis, Hausman and Taylor’s es-
timator did not actually use all the information available in the sample. We now have
the elements of the Arellano et al. estimator in hand; what remains is essentially the
(unfortunately, fairly involved) algebra, which we now develop.

Let
Wi Jil
Wiz , Ji2
Wi= | 7| =the full set of rhs data for group i, and y; =
Wiz ¥

Note that W, isassumed tobe,a T'x (1 + Ky + Ko+ I4 + L.») matrix. Because there isa
lagged dependent variable in the model, it must be assumed that there are actually T +1
observations available on 3. To avoid a cumbersome, cluttered notation, we will leave
this distinction embedded in the notation for the moment. Later, when necessary, we
will make it explicit. It will reappear in the formuiation of the imstratientai variables. A
total of T observations wili be available for constructing the 1V estimators. We now form
a matrix of instrumental variables. [Different approaches to this have been considered
by Hausman and Taylor (1981). Arellano et al. (1991, 1995, 1999), Ahn and Schmidt
(1995) and Amemiya and MaCurdy (1986), among others.] We will form a matrix.V;,
consisting of T; — 1 rows constructed the same way for 7 — 1 observations and a final
row that will be different, as discussed later. {This is to exploit a useful algebraic result
discussed by Arellano and Bover (1995).] The matrix will be of the form

Y

vy ¥ .. 0

Vo o ¥ )2
vi=|. . . .- (18-39)

| 4 o

[4

The instrumental variable sets contained in v/, which have been suggested might include
the following from within the model: ’

Xip and Xi -1 (i.e.. current and one lag of all the time varying variables),
Xily oo on XiT (i.e.,all current, past and future values of all the time varying variables),
Xi1a- -+ Xit (e, all current and past values of all the time varying variables).

The time-invariant variables that are uncorrelated with u;, that is 2y;, are appended
at the end of the nonzero part of each of the first 7 — 1 rows. It may seem that in-
cluding x; in the instruments would be invalid. However, we will be converting the
disturbances to deviations from group means which are free of the latent effects;-that
is, this set of moment conditions will ultimately be converted to what appears in (1§-38).
While the variables are correlated with g; by construction, they are not correlatedjwith

16Gee West (2001). |3
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it ~i- The final row of ¥; is important to the construction. Two possibilities have been
' suggested :

w = [, Xul (pi'oduces th'e. Hausman and Taylor estimator),
a7 = [ Xy Xl - - Xzl (produces Amemiya and MaCurdy's estimator).

Note that the a variables are exogenous time-invariant variables, zy; and the exogenous
time-varying variables, either condensed into the single group mean or in the raw form,
with the full set of T observations.

To construct the estimator, we will require a transformation matrix, H, constructed
as follows. Let M®! denote the first T — 1 rows of MU, the matrix that creates deviations
from group means. Then,

|
H = I1 sy
T
Thus, H replaces the last row of M° with a row of 1/7.. The effect is as follows: if q is T
observations on a variable, then Hq produces q" in which the first, T — 1 observations

are converted to deviations from group means and the last observation is the group
mean. In particular, let the 7" x 1 column vector of disturbances

= [nins iz ooomir] = [(800 + ), (a2 + ), ., en + )]

then
ni—

Hy= .
i, 7L — N

7

We can now construct the moment conditions. With all this machinery in place, we |2~ |
have the result that appears in (15-40), that is o f

E[VHn]= Elg] =20.

It is useful to expand this for a particular case. Suppose T = 3 and we use as instruments
the current values in petiod 1, and the current and previous values in period 2 and the
Hausman and Taylor form for the invariant variables. Then the preceding is

[ (xlrl 0 ﬂ\
ﬂi‘fli _0 J)
0 X1 0 .

0 X 0| (1T \?
E o x| (2] =8 (=40
9 xm 0 i
O z; 0.
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This is the same as (1*5’-38)':1'7'_.’Ihe empirical moment condition that follows from this is
plimy > Vil > -
i= -

Jit — 8¥ip — Xy By X B2 ~ 1 — ¥t
Pliml f "VIH Y2 89— Xy — Xy — 2ty — 4%
= W Ul I3 . -y
n i
= fe=d .
YT — 8%, 11 -'___{i; 1T?_3.1 _..,?i§i T.ﬁz —._zi,-_qq_] ".J.!E_.«g-z
Write this as

1 i
plimH Zm, = plim fil =0,

i=1
The GMM estimator @ is then obtained by minimizing

with an appropriate choice of the weighting matrix, A. The optimal weighting matrix
will be the inverse of the asymptotic covariance matrix of /i iii. With a consistent
estimator of @ in hand, this can be estimated empirically using

-1 Il -l n
Est. Asy. Var[ /A ] = - 3 s = ~ 3V HA, i Y.
= =l = _i=l = ki

This is a robust estimator that allows an unrestricted 7 x 7 covariance matrix for the 7
disturbances, &;; -+ ;. But, we have assumed that this covariance matrix is the X defined
in (9-28) for the random effects model. To use this information we would, instead, use
the residuals in

=y, ~ Wi,
to estimate o2 and o and then X, which produces

1 & .
Est. Asy. Varl ] = ~ > VHEH'Y,.
=3 - £'=1 .
We now have the full set of results needed to compute the GMM estimaior. The solution
to the optimization problem of minimizing g with respect to the parameter vector 4 is

1 B -1 n
Bomy = (Z .w;_Hy_.-) (Z y;ﬁ'imj) (E Y?H.’!'Y,-)
NED! =l

=1

n n -l sn \ '5
9 (Z W?H‘_’.f) (2 z;.uti;nvs) (z.y:.u:_y:) . asan
E i=1 i=l i=1

The estimator of the asymptotic covariance matrix forr__ﬁGMM is the inverse matrix in
brackets.

11 some treatments [e.g., Blundell and Bond (1998)], an additional condition is assumed for the initial value,
3o, namely E[yo | exogenous data] = pg. This would add a row at the top of the matrix in (##-40) containing

{tvia — 102, 0,0). J 3
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The remaining loose end is how to obtain the consistent estimator of § to compute

X. Recall that the GMM estimator is consistent with any positive definite weighting

atnx A, in our pr ecedmg expression. Therefore, for an initial estimator, we could set
\ =1 and use the simple instrumental variables estimator,

() o] (o) ()

{=1 \i=l

It is morg mon tg proceed directly to the “two-stage least squares” estimator (see
Section@nd (2.8.2), which uses

.34 n.;z.j -1
(1ZV’H’HV) :
il 13

The estimator is, then, the one given earlier in (¥5°41) with E replaced by Ir. Either
estimator is a function of the sample data only and plovrdes the initial estimator we
need.

Ahn and Schmidt (among others) observed that the IV estimator proposed here,
as extensive as it is, still neglects quite a lot of information and is therefore (velatively)
inefficient, For example, in the first differenced model,

E[.V[S(Etff - Ef,i‘—-l)] zﬂ, § =0+---,! _"29 _I :29-- 'y T-

That is, the leve! of v is uncorrelated with the differences of disturbances that are at
least two periods subsequent:}¥(The differencing transformation, as the transformation
to deviatioms from group means, removes the individual effect.) The corresponding
moment equations that can enter the construction of a GMM estimator are

“E}’ir (¥ — Y- 1) - S(YI el = Yig—2) — (X ""x.l'f—-l)’ﬁ]
i=1
s=0,...,0-2, =2..T

Altogether, Ahn and Schmidt identify T(T — 1)/2 + T — 2 such equations that involve
mixtures of the levels and differences of the variables. The main conclusion that they
demonstrate is that in the dynamic model, there is a large amount of information to

be gleaned not only from the familiar relationships among the levels of the variables,
but also from the implied relationships between the levels and the first differences. The

issue of correlation between the transformed v, and the deviations of g; is discussed
in the papers cited. [As Ahn and Schmidt show, there are potentially huge numbers
of additional orthogonality conditions in this mode!l owing to the lelationship between
first diffarences and second moments. We do not consider those. The matrix V; could
be huge. Consider a modei with 10 time-varying right-hand-side variabies and suppose

_T; is15. Then, there are 15 rows and roughly 15 x (10 x 135) or 2,250 columns, The Ahn

and Schmidt estimator, which involves potentially thousands of instruments in a model
containing only a handful of parameters, may become a bit impractical at this point. The

“}This is the approach suggested by Holtz-Eakin (1988) and Holtz-Eakin, Newey, and Rosen (1988),

(13-
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common approach is to use only a small subset of the available instrumental variables,
The order of the computation grows as the number of parameters times the square of 7]

The number of orthogonality conditions (instrumental variables) used to estimate
the parameters of the miodel is determined by the number of variables in ¥ir and a; in
(143-39). In most cases, the model is vastly overidentified—there are far more orthogo-
nality conditions than parameters. As usual in GMM estimation, a test of the over-
identifying restrictions ¢an be based on ¢, the estimation criterion. At its minimum, the
limiting distribution of ng is chi-squared with degrees of freedom equal to the number
of instrum?ntal variables in total minus (1 + K; + Ky + 1y + Ly

Example #%.70 GMM Estimation of a Dynamic Panel Data Mode/!
of Local Government Expenditures
Dahlberg and Johansson (2000) estimated a model for the local government expenditure of
several hundred municipalities in Sweden observed over the nine-year period t = 1979 to
1887. The equation of interest s

m m m
Su=attd BiSus+d viBu-s+ Y 4Guy+ 1 +en,
Je1 f=1 =1

fori=1,...,n=265 andt=m41,..., 9. We have changad their notation slightly to make
it more convenient) 5., A, and G;, are municipal spending, receipts (taxes and fees), and
central government grants, respectively. Analogous ecuations are specified for the current
values of F;: and G The appropriate lag length, m, is one of the features of interest to
be determined by the empirical study. The model contains a municipality specific effect, f,,
which is not specified as being either “fixed” or "random.” To eliminate the individual effect,
the model is converted to first differences, The resulting equation is

m m m
ASyt =M + Z BiAS,1—; + Z YIAR- + Z 81 AGrt—g + e,

f=1 . =1 j=1

or
Vi = X0 Ups,

where AS;; = 8, — S ; 1 and s0 on and Uy, = & — &,_,. This removes the group effect and
leaves the time effect. Because the time effect was unrestricted to begin with, Ao =2
remains an unrestricted time effect, which is treated as “fixed" and modeled with a time;
specific dummy variable. The maximum lag fength is set at m = 3. With nine years of data,
thie leaves usable observations from 1983 to 1987 for estimation, that is, t=m+2,...,0.
Similar equations were fit for R;; and G, ;. ]

The orthogonality conditions claimed by the authors are

E[S U] =ElRsud = ElG st =0, s=1,...,t—2.

The orthogonality conditions are stated in terms of the levels of the financial variables and |

the differences of the disturbances. The issue of this formulation as opposed to, for example,
E[AS)sAg,] = O (which is implied) is discussed by Ahn and Schmidt (1995). As we shall
see, this set of orthogonality conditions implies a total of 80 instrumental variables. The
authors use only the first of the three sets listed, which produces a total of 30. For the five
observations, using the formulation developed in Section 15.6.5, we have the following matrix

~4?This is true generally in GMM estimation. It was proposed for the dynamic panel data model by Bhargava

and Sargan (1983).
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of instrumental variables for the orthogonality conditions

“2 S s 0 0 O 0 O

o o 07 1983
Q. 0 Swi.ch O 0 O 0 0 01084
Z=] 0 0 0 0 Swwads 0 0 0O _ 0|1985

O 0 0 0 O 0 Sumw chk O 01986

o 0 o U | o 0 Susyo dyy] 1987
where the notation 8y_s indicates the range of years for that variable. For example, Sga_zg
denotes [S) 10e3, S 1962, S,1981,.5, 1980, 5,1070) and dyear denotes the year-specific dummy vari-
able. Counting columns in Z!we see that using oniy the lagged values of the dependent vari-
able and the time dummy variables, we have (3 + 1) (4 + 1) + (5 + 1) +(6 + 1) +{7 + 1) =30
instrumental variables. Using the lagged values of the other two variables in sach equation
would add 50 more, for a total of 80 if all the orthogonality conditions suggested earlier were
employed. Given the preceding construction, the orthogonality conditions are now

where_. W= [u_',,,ga?, u,,}gag.umm, U 1084, 4, 1983 '. The empirical moment equation is

g3 1187 1¢ itag 787
plim {_H 3 z___;_uf] = plim (8} =0.

=1

The parameters are vastly overidentified. Using only the lagged values of the depen-
dent variable in each of the three equations estimated, thers are 30 moment conditions and
14 parameters being estimated when m = 3, 11 when m = 2, 8 when m =1, and 5 when
m = 0. (As we do our estimation of each of these, we will retain the same matrix of instrumen-
tal variables in each case.) GMM estimation proceeds in two steps. In the first step, basic,
unweighted instrumental variables is computed using

-1

by = (g x,z;) (Z:?é z,) ) (,; 7—:"!) (Zn: x,z,) (Zn: Z:,Z«) i (ZZ, yf)

\i=1 et =1 1=1 =1

where
Y, =(AS;s ASas ASes ASm ASw),
and
ASge ASm ASw ARy ARsy ARw AGgp AGw AGyp 1 0 0 0 O
A__Sga ASyp A8z ARm A_Rag ARy AGg AGgp AGy 01 0 00
-,-x".z ASM ASas As,gg ARM ARgs ARm AG“ A_Ga:; AGg 0 G 1 0O
A_Sas A:S_a.; ASgs ARgs A_R34 ABBS A_Ggs A:_Gs.g AGgs 0 0 0 1 O
ASss ASes ASgs ARss ARss AR AGe AGes AGge 0 G 0 D 1

The second step begins with the computation of the new weighting matrix,

& = Est. Asy. Varl /7] = %Z;; bz,

= I=1 ~
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Afier multiplying and dividing by the implicit ( 1/n) in the outside matrices, we obtain the

estimator, _ .
\ . . -1 _n' -1
Pomn = [(EXZ«) (Z'z:_pf.qi,%.) (Z.Ei.x:,)}
f=1 -5 [ =1
. n -1 n
52) (Szowz) (Sa)
1 3 i=1 ’ .

The estimator of the asymplotic covariance matrix for the estimator is the inverse matrix in
square brackets in the first line of the resuit,

The primary focus of interest in the study was not the estimator itself, but the lag length and
whether certain lagged values of the independent variables appeared in each equation, These
restrictions would be tested by using the GMM criterion function, which in this formulation
would be {based on recomputing the residuals after GMM estimation)

Ng= (Z.u:.@) W(Zza) :
WJ=1 7 d=1

Note that the weighting matrix is not (necessarily) recomputed. For purposes of testing
hypotheses, the same weighting matrix should be used.

At this point, we will consider the appropriate lag length, m. The spacification can be re-
duced simply by redefining X to change the lag length. To test the specification, the weighting
matrix must be kept constant for all restricted versions (m = 2 and m = 1) of the modei.

The Dahiberg and Johansson data may be downloaded from the Journal of Applied Econo-

n n

= N

£

=]

W

i

metncs Weh site~see Appendix Table Fi%.1. The authors provide the summary statistics

r the raw data that are given in Table 18.3. The data used in the study and provided in
the internet solurce are nominal val edish Kroner, deflated by a municipality-specific

ice jndex then converted to per capita values, Descriptive statistics for the raw data appear
) 3 in Table 3B

.3:%° Equations were estimated for all three variables, with maximum lag lengths
of m=1, 2, and 3. (The authors did not provide the actual estimates.) Estimation is done
using the methods developed by Ahn and Schmidt (1995), Areliano and Bover (1995), and
Holtz-Eakin, Newey, and Rosen (1988), as described. The estimates of the first specification
provided are given in Table 5.4. 132 :

Table 15.5 contains estimates of the model parameters for each of the three equations,

; S \ 3 ~———"andTor the three lag lengths, as well as the value of the GMM criterion function for each model

estimated. The base case for each modei has m = 3. There are three restrictions implied by

\v3
TABLE VE.3  Descriptive Statistics for [5¢al Expenditure Data
Varfabie Mean Srd. Deviation Minimum Maximum
Spending  18478.51 3174.36 12225.68 3388325
Revenues  13422.56 3004.16 6228.54 29141.42
Granis 5236.03 1260.97 1570.64 12589.14

*2*The data provided on the W::b site and used in our computations were further transformed by dividing by
100,000. !
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2

TABLE v$.4 Estimated Spending Equation

Variable " _ Estimase Standard Error t Ratio
Year 1983 . - ~D0036578 0.0002969 ~12.32
Year 1984 C 000049670 0.0004128 120
Year 1985 0.00038085 0.0003094 . 123
Year 1986 0.00031469 0.0003282 0.96
Year 1987 0.00086878 0.0001480 - - 5387
Spending (r— 1) 1.15493 0.34409 336
Revenues (1 — 1) —1.23801 0.36171 -342
Grants (1. —1) 0.016310 0.82419 0.02
Spending (i ~2) —{(.0376625 0.22676 -0.17
Revenues (t — 2) 0.0770075 0.27179 0.28
Grants (¢.— 2) 1.55379 0.75841 2.05
Spending (t —3) —0.56441 0.21796 —2.59
Revenues (t — 3) (1L64978 (.26930 241
Grants (z — 3) 1.78918 0.69297 2.58

each reduction in the lag length. The critical chi-squared value for three degrees of freedom
is 7.81 for 95 percent significance, so at this level, we find that the two-lavel model is just
barely accepted for the spending equation, but clearly appropriate for the other two.-‘;-the
difference betwesn the two criteria is 7.62. Conditioned on m = 2, unily the revenue model
rejects the restriction of m = 1. As a final test, we might ask whether the data suggest that
perhaps no lag structure at all is necessary, The GMM criterion value for the three equations
with only the time dummy variables are 46.840, 57.908, and 62.042, respectively. Therefore,
all three zero lag models are rejected.

Among the interests in this study were the appropriate critical values to use for the spec-
ification test of the moment restriction. With 16 degrees of freedom, the critical chi-squared
value for 95 percent significance is 26.3, which would suggest that the revenues squation is
misspecified. Using a bootstrap technique, the authors find that a more appropriate critical
value [eaves the speification intact. Finally, note that the three-ecuation model in the m=3
columns of Table 1_,?.5 imply a vector autoregression of the form

)"r =,\rl1}f_z—1 +I 2¥i-2 +If-‘§}'_'t—3 +_-_V_t_-

where y, =(AS;, AR, AG:)’. We will explore the properties and characteristics of equation
systems such as this in our discussion of time-series modeis in Chapter 21,

\3

TABLE ¥5.5 . Estimated Lag Equations for Spending, Revenue, and Grahts . - -

Expenditure Model Revenue Model Grant Model
m=3 m=2 m=1 m=3 m=2 m=1 M=3 m=2 m=1l
St 1.155 08742  0.5562 —0.1715 —03117 01242 —0.1675 ~0.1461 —0.1958
S~y 00377 02493 — 0.1621 —0.0773 — —-0.0303 —~0.0304 —
S-3  —(L56d4 — — 01772 — —_— —0.0955 —_ —
Ky —12380 —08745 05328 00176 0.1863 —D.0245 0.1578 01433 02343
R 0.0770 02776 — 00309 (.1368 — 0.0485 0.0175 —
Rz 06497 — — 0.0034 — — 0.0319 — -
Gy 00163 —04203 0.1275 —0.3683 05425 —-0.0808 ~0.2381 —0.2066 —0.05%59
Gi.o 1.5538 10.1866 — 27152 24621 — —-0.0492 —(.0804 —
Gz L7892 — — 0.0948 — — 0.0598 —_ —
T\ g 228287 304326 34.4986 305398 342590 33.2506 17.5810 20.5416 27.5927

-

.-/-.
/s
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\Y zgj SUMMARY AND GONCLUSIONS

The generalized method of moments provides an estimation framework that includes
least squares, nonlinear least squares, instrumentai variables, and maximum likelihood.,
and a general class of estimators that extends beyond these. But it is more than justa
theoretical umbrella. The GMM provides a method of formulating models and implied
estimators without making strong distributional assumptions. Hall’s model of household
consumption is a useful example that shows how the optimization conditions of an
underlying economic theory produce a set of distribution-free estimating equations. In
this chapter, we first examined the classical method of moments. GMM as an estimator
is an extension of this strategy that allows the analyst to use additional information
beyond that necessary to identify the model, in an optimal fashion. After defining and
establishing the properties of the estimator, we then turned to inference procedures. It
is convenient that the GMM procedure provides counterparts to the familiar trio of test
statistics: Wald, LM, and LR. In the final section, we specialized the GMM estimator
for linear and nonlinear equations and multiple-equation models. We then developed
an example that appears at many points in the recent applied literatare, the dynamic
panel data model with individual specific effects, and lagged values of the dependent
variable, 1

Key Terms and Concepts

» Analog estimation » Likelihood ratio statistic + Order condition
sArellano and Bover LM statis(ic ¢ Orthogonality conditions
estimator s Martingale difference series  » Overidentifying restrictions
2 Central limit theorem * Maximum likelihood s Overidentified cases
—eContrabmoments— estimator + Population moment
+ Criterion function » Mean value theorem equation
e Dynamic panel data model  « Mzathod of moment » Probability limit
+ Empirical moment equation ~ generating functions o Random sample
_* Ergodic theorem » Method of moments ¢ Rank condition
“"» Euler eguation +Method of moments + Slutsky thecrem
+ Exactly identified <o5e% estimators + Specification lest
“raExactly-defined-cases— e Minimum distance sSufficient statistic
¢ Exponential family estimator (MDE) # Taylor series
1.~» Generalized method of +-Moment equation +Uncentered moment
T moments » Newey:West estimator \=-Vectorautoregression—
¢ GMM estimator # Nonlinear instrumental * Wald statistic
v Hentificationr— variable eslimator + Weighted least squares
s Instrumental variables ¢ Oplimal weighting matrix » Weighting matrix
Exercises

1. For the normal distribution oy = a”‘(Z_)’()! JUA25) and g1 =0,k=0,1,.... Use
this result fo analyze the two estimators

Fiza g
\/ by o= and -,
Hl n_rrzﬂ b2 P 12

[ %)
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where ny = 3; 3 i1 (x; — XK. The following result will be useful:

Asy. CovlVnnmj. A= pisx— ik + JKuai ey — Jij-1 s =K1

Use the delta method to-obtain the asymptotic variances and covariance of these
two functions, assuming the data are drawn from a normal distribution with mean
p and variance o2, (Hint: Under the assumptions, the sample mean is a consistent

estimator of i, so for purposes of deriving asymptoticresults, the difference between

X and p may be ignoredl. As such, no generality is lost by assuming the mean is zero,
and proceeding from there.) Obtain Y, the 3 x 3 covariance matrix for the three
moments,then use the delta method to show that the covariance matrix for the two

estimators is
r_{8/2 O
= )

where } is the 2 x 3 matrix of derivatives. /3
Using the resuits in Example #5.7, estimate the asymptotic covariance matrix of

the method of moments estimators of P and A based on ] and #1}. [Note: You will
need to use the data in Example C.1 to estimate Y.}

Exponential Familics of Distributions. For each of the following distributions,
determine whether it is an expenential family by examining the log-likelihood func-
tion. Then, identify the sufficient statistics.

a. Normal distribution with mean p and variance 2.

b. The Weibull distribution in Exercise 4 in Chapter 367 ¥/

¢. The mixture distribution in Exercise 3 in Chapter 167 I’f

In the classical regression model with heteroscedasticity, which is more efficient,
ordinary least squares or GMM? Obtain the two estimators and their respective
asymptofic covariance matrices, then prove your assertion.

Consider the probit model analyzed in Chapter 237 The model states that for given
vector of independent variables,

Probly, = 1{x] = ®[x;8]. Prob[y; = OLx;] =1 - Proby =1|x;].
Consider a GMM estimator t.msed on the ;-esult that .-
El jxl = 2%8).
This suggests that we might base estimation on the orthogonality conditions
E[(y ~ 201 =0,

Construct a GMM estimator based on these results. Note that this is not the non-
linear least squares estimator, Expiain%what wotuld the orthogonality conditions
be for nonlinear least squares estimation of this model?

Consider GMM estimation of a regression model as shown at the beginning of
Example 158. Let ¥¥; be the optimal weighting matrix based on the moment
equations. Let W, be some other positive definite matrix. Compare the asymp-
totic covariance matrices of the two proposed estimators. Show conclusively that
the asymptotic covariance matrix of the estimator based on W) is not larger than
that based on W,.
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