Greene-50558

book

3.1

June 20,2007 2228 : G’r{/"dﬂe XS

3
LEAST SQUARES

-,.;-~=ﬁoo=~

INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the population
that underlies an observed sample of data. There are a number of different approaches
to estimation of the parameters of the model. For a variety of practical and theoretical
reasons that we will explore as we progress through the next several chapters, the
method of least squares has long been the most popular. Moreover, in most cases in
which some other estimation method is found to be preferable, least squares remains
the benchmark approach, and often, the preferred method ultimately amounts to a
modification of least squares. In this chapter, we begin the analysis of this important set
of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relation y; =x/ ﬁ + ¢ are the objects of
estimation. It is necessary to distinguish between populatlon guantities, such as Bandg;,
and sample estimates of them, denoted b and ¢;. The population: regressmn is I [v, | x,] =

X8, whereas our estimate of £[y; | x;] is denoted Neps

o

¢ T

A 3= b
The gl_igtll_:i_lél;jancg associated with the ith data point is
& =Y —XiB.
For any value of b, we shall estimate ¢; with the reflgual‘,
£ =y —Xb,
From the definitions,
i =XB+e =xb+e.

These equations are summarized for the two variable regression in Figure 3.1.
The pepulation quantity § is a vector of unknown parameters of the probability
distribution of y; whose values we hope to estimate with our sample data, ( Vi X)) i =

1,...,n This is a problem of statistical inference. It is instructive, however, to begin by =
f

consuiermg the purely algebraic problem of choosing a vector b so that the fitted line| |/ |
x'b is close to the data points. The measure of closeness constitutes a fitting criterion. e

20-L
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FIGURE 3.1 FPFopulation and Sample Regression:

Although numerous candidates have been suggested, the one used most frequently is

" Jeast squares:-
3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:

B n. /2
=" (v ~xbo?
i=1

i=t

G-1)

where b denotes the choice for the coefficient vector. In matrix terms, minimizing the
sum of squares in (3-1) requires us to choose by to

Minimizey, S(bo) = ghea = (y ~ Xbo)'(y ~ Xbo). (3-2)
Expanding this gives
£0¢0 =Yy —BoX'y — ¥ Xbo +boX Xbo @-3)
or i
Stho) = y'y — 2y'Xbo + by XXby.
The necessary condition for a minimum is
9%%?—) = —2X'y +2X'Xbg = 0* (3-9)

“'We have yet to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapter 4,

‘2.5‘:3 Qeegné'\»x A,Q Lor- éiscuss;m-. a -F ca\CU\US r‘cSuH"S

invelving makrices ana vectors,
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PART | 4+ The Linear Rggression Model

Let b be the solution. Then b satisfies the least squgreéjmrn_ml equations,
X'Xb = X’y (3-5)

If the inverse of X'X exists, which follows from the full column rank assumption (As-
sumption A2 in Section 2. 3), then the solution is

b= (XX Xy. , (3-6)
For this solution to minimize the sum of squares,

3*S(ho)

=2X'X

must be a positive definite matrix. Let ¢ = ¢/X’Xc¢ for some arbitrary nonzero vector ¢
Then '

¢
=vv= v?, where v = Xc.
T 5 1 Wy
i=1

Unless every element of ¥ is zero, g is positive. But if ¥ could be zero, then ¥ would be a
linear combination of the columns of X that equals 8, which contradicts the assumption
that X has full column rank. Since ¢ is arbitrary, q is positive for every nonzero ¢, which
establishes that 2X'Xis posmve definite. Therefore, if X has full column rank, then the
least squares solution,b is unique and minimizes the sum of squared residuals,

3.2.2 APPLICATION: AN INVESTMENT EQUATION

Toillustrate the computations in a muitiple regression, we consider an example based on
the macroec¢onomic data in Appendix Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI; and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, .. .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce |
the data matrices listed in Table 3.1. Consider first a regression of real investment on a
constant, the time trend, and real GNP, which correspond to x1, x, and x3. (For reasons

to be discussed in Chamhls is probably not a well-specified equation for these
macroeconomic variables. It will suffice for a simple numerical example, however.)
Inserting the specific variables of the example, we have

bn +bBELT +bBEG =41,

Ay Hae
NP and
op( beeo
gpelled ot
| PJ“E‘U'M»' )
l' ahofp., If
| no; ‘S‘J‘f[f

kﬁMhMm

bET + 0T +BETLG6 =5TY, 1 tinto (?"'39

G +_sziT;'Gf + b3EgG% = %:G; Y.

A solution can be obtained by first dividing the first equation by » and rearranging it to
obtain

bl =..V— bz_T—_bga-
= 0.20333 — b x 8 — b3 x 1.2873. 37


Bill
Sticky Note
I'll defer to your expertise. GNP and CPI are widely known and recognized terms, and are generally not spelled out.
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TABLE 3.1 Data Matrices

. Real _ Real Interest Inflation N
© = Investment Constant Trend GNP Rate Rare i
&) 2 L G) ®) &

0.161 1 L 1.058 516 4.40
0.172 1 ’ . 1088 5.87 515
0.158 1 3 1.086 5.95 537
0.173 1 4 1122 - 488 .. 4.99
0.195 1 3 1.186 4.50 4,16
0217 1 6 1254 6.44 - 575
0.199 1 7 1.246 7.83 8.82
y =0.163 X=1 8 1232 6.25 9.31
0195 T 9 1298 5.50 521
0.231 1 10 1.370 546 583
0.257 1 11 1.439 746 740
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1474 1177 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 3.99

Note: Subsequent results are based on these values, Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internaily.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:

bSi(T; — T + 535G —T)G: — G) = 5¢(T - TH(¥ - T,
bl — TG - G) + h%i(G — G)? = Ti(G; — G)(Y; - V).

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b and b; are

_ Tty Eigl - SigiyTitigs _ 1.6040(0.359609) — 0.066196(9.82)

(3-8)

L2 E_irfil_,:giz —(Zigt)? 280(0.359609) — (9.82)2 = —0.0171984,
Tigi i it — Ty Bitige  0.066196(280) — 1.6040(9.82)

by = i = = {.653723.

=’ il gl — (Zigit)? 280(0.359609) — (9.82)2 3

With these solutions in hand, the-iptereept can now be computed using (3-7); b=

~0.500639. 5

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this

;7 shows up in the regression computation. Denoting by “by,” the siope in the simpie,
: bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

¥ i Vi
s = oot = 0.184078. (3-9)

~i
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Now divide both the numerator and denominator in the expression for #; by T;/2 X g7
By manipulating it a bit and using the definition of the sample correlation between G
= and T,rg, = (5;8:4)%/(Tigf Lit?), and defining by, and by, likewise, we obtain

* bigg rf’j% - P20 0653723, (3-10)
Tgt Tt

differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable ¢ on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, by, = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is —0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which x; is a constant term is

y3b32

11
1 —r% (1D

by =

Itis clear from this expression that the magnitudes of b3 and by, can be quite different.
They need not even have the same sign.

(The notation “by.,” used on the left-hand sid¢ is interpreted to mean the slope in/ Wi
the regression of y on g “in the presence of 1.”) The slope in the multiple regression

As afinal observation,sofe what becomes of by, in (3-10¥1f rf,t equals zero. The first
term becomes b,,g, Teas the second becomes zerg~If G and T are not correlated,
the regression of T on G, by, AS zero.) Therefore, we conclude t

THEOREM 3.1
If the variables in am
then the multiple peGression slopes are the same as th
simple regressi

ogonal Regression

iple regression qre not correlated e, are orthogonal),

d p yd

lopes in the individua/ /

In practice, you will never actually compute a muitiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that mcludes—m addition to the constant, time trend, and GNP—a.n interest
rate and the rate of inflation, Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are

15.000 120,00 19310 111.79 99770 | 3.0500
120.000 1240.0 16430 10359 87560 | |b 26.004

19.310 16430 25218 14898 131.22 | |hj = | 3.9926) .
11179 10359  148.98 953.86 799.02 by 23.521

99770  875.60 13122  799.02 716.67 | |bs 20,732
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The solution is

b = (\}_{_’)_(_)‘12@’_{1 = (—0.50907, —0.01658, 0.67038, —0.002326, —0.00009401)". X A

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION

The normal equations are

XXb-Xy=-X(y—-Xb)=-Xe=0 - (3-12)
Hence, for every column x; of X, xke = 0. If the first column of X is a column of 1s, then
there are three implications. which ve
1. The least squares residuals sum to zero. This implication follows from xje = i'e = dencke é;, AN

2;‘8,‘ =0
2. The regression hyperplane passes through the point of means of the data. The first
normal equation implies that ¥ = X'b.
3. The mean of the fitted values from the regression equals the mean of the actual
values. This implication follows from point 1 because the fitted values are just
§=Xb.

Itis important to note that none of these results need hold if the regression does not
contain a constant term.
3.2.4 PROJECTION
The vector of least squares residuals is
&=y~ Xb. (3-13)
Inserting the result in (3-6) for b gives
o=y XXX Xy = I-XEX)X)y =My. (3-14)

The n x n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M’) and idempotent (M = M2) In view of
(3 13), we can interpret M as a matrix that produces the vector of least squares residuals

/< in the regression of y on X when it premultiplies any vector y. (It will be convenient
= later on to refer to this matrix as a “residoal maker.”) It follows that
MX = 0. (3-1%5)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to (2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
§ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX =0, these
two parts are orthogonal. Now, given (3-13),

J=y-e=0-My=XXX)"Xy="Py. (3-16)

The matrix P, which is also symmetric and 1dempotent isa prOJectlon matnx. Itisthe
matrix formed from X such that when a vector y is premultiplied by | P, the result is” K
the fitted values in the least squares regression of y on X. This is also the projection of
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the vector y into the column space of X. (See Sections A3.5 and A3.7.) By multiplying
it out, you will find that, like M, P is symmetric and idempotent. Given the earlier results,

it also follows that M and P are orthogonal;

- PM-MP—.

Finally, as might be expected from (3-15)

-

PX=X

o

As a consequence of (3-14) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

Y = Py + My = projection -+ residual.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

Yy=yPPy+yMMy
=¥§+ee

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

¢’e = yMMy = yMy =y'e = ¢'y,
ge=yy—bXXb=yy-WXy=yy-yXb.

FIGURE 3.2 Projection of y into the Column Space of %
2T i
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3.3 PARTITIONED REGRESSION AND
PARTIAL REGRESSION

" It is common to specify a muitiple regression model when, in fact, interest centers on
only one or asubset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the nio__del. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression). '

Suppose that the regression involves two sets of variablés,l?lil and Xz Thus,

y=Xf+e=Xi5 +X2ﬁz+5‘

What is the algebraic solution for bz‘? The normal equatlons are

(1) X’Xl X’Xz n X'y i
@) [ XQXZH z] {Xiy] (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for by. We first solve
(1) for by:

by = XX Xy - XX T X Xy = XiXn) X (y — Xobo). (3-18)

This solution states that b, is the set of coefficients in the regression of y on X;, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X{1X; = 0. Then, by = (Xlxl)*IX'lv, which is simply the coefficient
vector in the regression of y on X;. The general result, shich-we-have-fust-preved s is B‘Vﬂ n .n

the followmg theorem.

1
THEOREM 3,2’ Orthogonal Partitioned Regression
In the multiple linear least squares regression of y.on two sets of variables Xq and
Xo, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of yon Xy alone and y on X; alone.

“inseck next

XX XX "Xy — XX XX T X Xoby + X5 Xoby = Xoy.

insert next After collecting terms, the solution is

?;2; M’L: by = [X50 - X (KX XDXo) 7 (X5 - X (X Xn) X))y

5 .

>arastaph = M) (ML), (3-19)

frsp 4= The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of Xj.


Bill
Sticky Note
Appears in KT.
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Proof: The assumption of the theorem is that X,  X; =0 in the normal equations
in (3-17). Inserting this assumption into (3-18) produces the immediate solution
forb; = (X" X:)"'X," y and likewise for b,.

=1 Y
- | 1
L A -0

If the two sets of variables X, and X, are not orthogonal then the solution for b,
and b, found by (3-17) and (3-18) is more involved than just the simple
regressions in Theorem 3.1. The more general solution is given by the following

theorem, which appeared in the first volume of Econometrica::3’ :

A

THEOREM 3 z{’, E*mdl—Waugh (193%)-an{:|] {1963) Theorem

In the linear least squares regression of vector ¥ on two sets of variables, X, and
Xo. the subvector by, is the set of coefficients obtained when the residuals froma
regression of Y. on X alone are regressed on the set of residuals obtained when i
each column of Xa is regressed on X, o

3 \L‘The theorem, such as it was, appeared in the introduction to the paper, “The partial
) trend regression method can never, indeed, achieve anything which the individual trend

method cannot, because the two methods lead by definition to identically the same
results.” Thus, Frisch and Waugh were concerned with the {lack of) difference between

| aregression of a variable y on a time trend variable, t, and another variable, x,

| compared to the regression of a detrended yona detrended X, where detrendmg
meant computing the residuals of the respective variable on a constant and the time

| trend, t. A concise statement of the theorem, and its matrix formulation were added

'| Iater&\ by Lovell (1963)._ =

“Theote m 3.2, BN
* To prove thereswut: begin from equatlon (2) in (3 17}, which is

XoXib, + X0X,b, = X 2y

Now, insert the result for b, that appears in (3-18) into this result. This produces


Bill
Sticky Note
Appears in KT
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Thus, M1X2 is a matrix of residuals; each column of M; X; is a vector of residuals in the
- regression of the corresponding column of X; on the variables i in X;. By exploiting the
o B i fact that My, like I\ydempotent we can rewrite (3-19) as

S9m etz b, = (X3 X5 X3y, (320

where Qp d _
X;=MiX; and y*=My.

This result is fundamental in regression analysis.

THEOREM 32 Frisch= vau'gﬁ'((m;en (1963) Theore
7 In the linear least squarestegression of vector y on two sets of vari
regressio

. _‘}kwiﬁmu of X, is regressed on X;.
L -

This process is commonly calied partialmg out or nettmg out the effect of X;.,
/1 For this reason, the coefficients in a multiple regression are often called the partla!
L L0 regression coefficients. The application of this theorem to the computation of a smgle
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote

the coefficients b and c. '

o

2
COROLLARY 34.1 Individual Regression Coefficients
The coefficient onz in a multiple regression of y on W = |X, z] is computed as
c= (z'Mz) 1(z’My) = (z¥z*)" z*’ where z* and y* are the residual vectors from
least squares regressions of z and Yon X 2" = Mz and y* = My where M is
defined in (3-14). > =

Sy

\
f’cog'ﬁ' :Thisis AN Intermsof Example 2.2, we could obtain the coefficient on education in the multiple

- cakion ok / regression by first regressing earnings and education on age (or age and age squared)
2 ﬁp\ \ ea 3 in / and then using the residuals from these regressions in a simple regression. In a classic
preotem =° |~ application of this latter observation, Frisch and Waugh (1933) (who are credited with
dhich }& n s the result) noted that in a time-series setting, the same results were obtained whether

. a regression was fitted with a time-trend variable or the data were first “detrended” by
K oand K 2 \S$ 2. netting out the effect of time, as noted earlier, and using just the detrended data in a
- smlple regressmn
“AS an ap catlon of thefe results, consider thé case in which X; i¥i, a column g

in the firsf column of X, The solutlon for bg ip thlS case will then be the slopes il 2
regression yith a constantfierm 08 nifin.a repression-ofany variable z.04

3 szecall our earlier investment example,
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er F Pexd |
) If; 5 . @ [("iNli'z =7, the fitted values iz, and thg'residWals are z; — z\Q‘en we applithis to 7
| © i 9 e Y our 10us results we ﬁn followz

=5 .

COROLLARY 3.X2 Regression with a Constant Term

The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

[We used this result in (3-8).] Having obtained the coefficients on X3, how can we
recover the coefficients on X; (the constant term)? One way is to repeat the exercise
while reversing the roles of X; and X. But there is an easier way. We have already
solved for by. Therefore, we can use (3-18) in a solution for by. If X1 is just a column of
1s, then the first of these produces the familiar result

bi=y-%oby—--- —Xgbx l&}l’)"
e

[which is used in (3-7)]. e ——
lh?fr-l— N‘-ﬁ' —,> - I gy
rage RU: The K1

*=C/. | 3.4 PARTIAL REGRESSION AND PARTIAL AN
msp3-id CORRELATION GOEFFICIENTS portial

. Do . . ;’i—'g‘ essiof |

The use of multiple regression involves a conceptual experiment that we might not be |
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue | CO¢ ( E PRACIVE
Example 2.7, a regression equation relating earnings to age and education enables | WAY ¢L h‘\'ld
us to do the conceptual experiment of comparing the earnings of two individuals of | /T a1 mp 310,
the same age with different education levels, even if the sample contains no such pair | |- fere GL( sy

—. of individuals. It is this characteristic of the regression that is implied by the term i

i |~ partial regression coefficients. The way we obtain this result, as we have seen, is first {H m.q ok T(
part’ regh ¥ , )
to regress income and education on age and then to compute the residuals from this | * || :th ﬂc'%:{f‘
regression. By construction, age will not have any power in explaining variation in these \
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation refiects a direct
relationship rather than that both income and education tend, on average, to rise as| |/
individuals become older? To find out, we would use a partlal correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
controlling for the effect of age, is obtained as follows:

1 y* = the residuals in a regression of income on a constant and age.
2. = the residuals in a regressmn of education on a constant and age.
3 The partial correlation r . is the simple correlation between y, and z,.


Bill
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As an application of these results, consider the case in which X, is i, a constant term that is a column of 1s
in the first column of X. The solution for b, in this case will then be the slopes in a regression that

contains a constant term.
ing Theorem 3.2 the vector of residuals for any variable in X; in this case will be

K .-'_:-'r'

x = x - XXX Xk R
Y= x - i)k - ] > ;

= x -imix - (3-21

=X - ix ) L

= M'x.
(See Section A.5.4 where we have developed this result purely algebraically.) For this case,
then, the residuals are deviations from the sample mean. Therefore, each column of M;X; is the
original variable, now in the form of deviations from the mean. This general result is .
summarized in the following corollary.

[ P v o A | |
@ . LR L Il.i ! 1 'y i 3 il [
| [ v X ey

WEEE N AR

Theorem 3.2 and Corollaries 3.2.1 and 3.2.2 produce a useful interpretation of the partitioned
regression when the model contains a constant term. According to Theorem 3.1, if the columns
of X are orthogonal, that is, x;'x,, = 0 for columns & and m, then the separate regression
coefficients in the regression of 'y on X when X = [‘xl,ﬁxz, \,Xg] are simply x;'y/x;'x,. When the
regressmn contains a constant term, we can compute the multiple regression coefficients by
regression of y in mean deviation form on the columns of X, also in deviations from their means.
In this instance, the “orthogonality” of the columns means that the sample covariances (and
correlations) of the variables are zero. The result is another theorem:

THEOREM 3.3 Orthogonal Regression ,
If the multiple regression of y on X contains a constant term and the variables in the
regress1on are uncorrelated, then the multiple regression slopes are the same as the slopes

in the individual simple regressions of y, onf a constant and each variable in turn.
Proof: The result follows from Theorems 3.1 and 3.2.
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This calculation might seem to require a formidable amount of computation. There
1s owever, a convenient shortcut. Once the multiple regression is computeg/the ¢ ratio

- I 2
*2 — o té
Tyz 12 + degrees of freedom

—_—

Let ¢ and u denote the coeffisient on z and/the vector of residuals in the multip

e

s

[

where (W'W) }{H, x411sthe (K + 1) (last) diggonal element of (W'W)~1. The partitioged
inverse formula in {A-74) can be gpplied to the matrix [X, z]'[X, z]. This matrix appgars
in (3-17), with X; = X and X =/. The result 1 the inverse matrix that appearsin (3]19)
and (3-20), which implies the first important rexult.

THEOREM 3 Diagonal Elements of the Inverse
of a Moment Matrix
IfW = [X, z}, they the last diagonal element of (WW ! is @Mz)™! = (z,z.)7Y,

wherez, = Mz ghd M = I - X(X'X)"1X".

(Note that thig’result generalizes the development in SectioR A.2.8 where X isjonly
the constant ferm.) If we now use Corollary 3.3.1 and Theorekp 3.4 for ¢, after jome
manipulatigh, we obtain
tz (z;y*)z _
Etln-K+D] @y + @) z.z) T2+ (w'w)

u=y—Xd—zc

d will not equal b = (X'X)~'X’y. (See Section 7.2.1.) Moreover unless ¢ =

m— ———




(3-1y )

2

#{pdges40 and 31 replacewith.
L

Y. This calculation might seem to require a formidable amount of computation. Using Corollary
3X.1, the two residual vectors in points 1t and 2/ are y. = My and 2+ = Mz where M = I — X(X'X)’ X! is
the residual maker defined in (3-14). We will assume that there is a constant term in X so that the vectors
' of remduals y* and z. have zero sample means. Then, the square of the partial correlation coefficient is - - -

thz_gm_ ."‘ B -
* ) - (s

% i
There is a convenient shortcut. Once the multiple regression is computed, the ¢ ratio in (&M
for testing the hypothesis that the coefficient equals zero (e.g., the last column of Tablé 4.,25 can be used
to compute 2

2
= L , (3-22)
t; +degrees of freedom

(KT

where the de%(eeg' _Qf fregdom is equal to n -~ (K'-I-.Il). The proof of this less than perfectly intuitive result
will be vseful to illustrate some results on partitioned regression. We will rely on two useful theorems

from Ieast squares algebra. The first isolates a particular diagonal element of a moment matrix such as
X'X
XX (Lhe invecse ok s

THEOREM 3.4 Diagonal Elements of the Inverse of a Moment Matrix
Let W.denote the partitioned matrix [X,z]  that is, the X columns of X plus an_
addltlonal column labeled z. The last dlagonal element of (W'W)" is (z'Mz)
(2 zt) where z. = Mz and M I-X(X'X) X,

Proof. This is an apphcatlon of the partitioned inverse formula in (A-74) where Ay,
=XX, An=X'z, Ay; =z Xﬁand Ay = z'z. Note that this theorem generalizes the
development in Section A.2.8, where X contains only a constant term, i,

We can use Theorem 3.4 to establish the result in (3-22). Let ¢ and u denote the coefficient on z and the
vector of residuals in the multiple regression of y on W = [X,z], respectively. Then, by definition, the
squared ¢ ratio in (3-22) is

2

[#
2=

[m} (W’ K+1,K+1

where (W’W);(l+1 ¢ 18 the (K+1) (last) diagonal element of (WwWy',

appears in (4-17). We are using only the algebraic result at this pomt) The theorem states that this
element of the matrix equals (z.'z-)". From Corollary 3 K 1, we also have that ¢* = [(z- "y )(zs! z.))>. For

convenience, let DF = n(K+1). Then,
Cminits

o AN AR )2 _(zy. )2 DF
(Wu/DF)/ziz.  (wWw)(zz.)

"l"\r\e. ‘o ra c\ke'k?c\ te "‘W\" '
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It follows that the result in (3-22) is equivalent to

(2y.)’ DF (zy.)’ 2
Lo w(Ez)  ew(zz) (ziy.)
GADF (zy)'DF o (#y) (2 +w(zz.) P
‘ u(ziz.) = (Ww(zz)

Divide numerator and denominator by (z.z.)(y.y.).to obtain

f (zye) /() (ye) _n

; > = — (3-23)
£HDF (zy.) /(22 ) (Vi )+ w(z.)/ (22) (yy:) 7 +@WATLY)

*
We will now use a second theorem to manipulate u u and complete the derivation. The result we need is .
given in Theorem 3.5.

THEOREM 3.5 Change in the Sum of Squares When a Variable is Added to a Regression
If e'e is the sum of squared residuals when y is regressed on X and u 'u is the sum of squared
residuals when y is regressed on X and z, then

u'n = e'e—c*(ziz.) <e'e, (3 '2‘9

where ¢ is the coefficient on z in the long regression of y on [X,z] and z. = Mz is the vector of
residuals when Zis regressed on X.

Proof: In the long regression of yon X and z, the vector of re31duals is u y —Xd —zc. Note
that unless X'z = 0, d will not equal b (X'X) X'y, (See Section (Z¥% .} Moreover, unless &=
0, u will not equal e =y—Xb. From Corollary 3 ;_1 c = (z'Tr) (z. y*)) From (3-18), we also

have that the coefﬁcleuts on X in this long regression are

d = XXXy -20) = b- (XX)'X'ze. 432
Inserting this expression for d in that for u gives

n=y-Xb+XX'X)y X'ze - =¢—Mic=e—1zc
Then

un = ¢e+c (z'n) - 2c(z'e)

But, ¢ = My =y« and z:'e = 2:"y» = c¢(z.'z+). Inserting this result in u’'u immediately above gives
the result in the theorem.

Returning to the derivation, then, e’e = y«'y« and ¢*(z+'z:) = (z:'y+)*/(z+'2+). Therefore,.
ge=y AV Zr Y+) \Z+ 2

wn yiy. —(zy.)} /72,
YeYe AAL

*2
_l_p:yz

Inserting this in the denominator of (3-23) produces the result we sought.
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where ¢ is the coefficient on z in/the long regression
[I — X(X'X)"'X")z is the vector of residyals when z is regressed on X.

Returning to our dcrivationAe that e’e = y.y, and c*(z'z.) = (Z.¥.)%/ #2z.). \
Therefore, (0’ =1_—r* Jt- -

Example 3.1 Partial Correlations

For the data in the application in Section 3.2.2, the simple correlations between invest-
ment and the regressors ry, and the partial correlations rJ, between investment and the four
regressors (given the other variables) are listed in Table 3.2. As is clear from the table, there is
no necessary retation between the simple and partial correlation coefficients. One thing worth
noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.

TABLE 3.2 Correlations.of investrment with Other Variables

Simple Partial

Correlation Correlation
Time 0.7496 —0.9360
GNP 0.8632 0.9680
Interest 0.5871 -0.5167

Inflation 0.4777 —0.0221
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3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

" The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression lime to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of p by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.

™, Flgure 3.3 shows three possible cases for a simple linear regression model. The measure

2 " of fit described here embodies both the fitting criterion and the covariation of y and x.

- Variation of the dependent variable is defined in terms of deviations from its mean,
(yi — ¥)- The total varlatlon in y is the sum of squared deviations:

___,—_
roB

SST = Z i = 7).

=

in terms of the regression equation, we may write the full set of observations as

y=Xbte=g+e A

FIGURE 3.3 Szmple Data,
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FIGURE 3.4 Decompositionof i,

For an individual observation, we have
yi=J;+e =xh+e.

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of y; will equal the mean of the actual values. Subtracting
y from both sides and using this result and result 2 in Section 3.2.3 gives

yi—¥=9%-Vtea=x-¥b+te.

LG Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
=% W | regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms in
this decomposition sum to zero, to quantify this fit, we use the sums of squares instead.
For the full set of observations, we have

(3‘2‘) QN\A_ quy==91%8b“+§di@

where M is the i x n idelnpotent matrix that transforms observations into deviations
from sample means. (See' Section A.2.8.) The column of M®X corresponding to the
constant term is zero, and, since the residuals already have mean zero, M’ = e. Then,
since eMX = ¢’X = 0, the total sum of squares is

YMy = VXMXb + ¢e.
Write this as total sum of squares = regression sum of squares + error sum of squares,
or

SST = SSR + SSE. (3-25)

(Note that this is preeisety~thte partitioning that appears at the end of Section 3.2.4.)
Same,
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We can now obtain a measure of how well the regression line fits the data by
using the
H' S SSR  b'X'M’Xb ee '
fficient of determination: e 3-26

The coefficient of determination is denoted _122. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always ¥, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R?=1,
ocours if the values of x and y all lie in the same hyperplane {on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of Y lic on a
vertical line, then R? has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute__R2 is also useful. First

BX'M°Xb = §'M'3,

but ¥ = Xb,y = § - e, M’e = e, and X'e =0, 50 y’MUy = vM y. Muitiply B> =
.Y'M"y/y’M"y §¢MOy/y Moy by 1 = V’Mﬂy/y’M"j‘r to obtain

Rt [Z0 =N — W

I 3-27
%i0n — VPTG — 7] &2

which is the'squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

Example 3.2 Fit of a Consumption Function

The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X, we have ¥ = 273.2727,X = 323.2727, S,, = 12,618.182, 5, = 12,300.182,
Sy = 8,423, 182‘ so §ST = 12,618.182, b = 8,423, 182/12 300.182 = 0. 6848014 S8R =
b?S,« = 5,768.2068, and SSE = SST — SSR = 6,849.975. Then R? = bZSxx/SST =
0.457135. As can be seen in Figure 2.1, this is a moderate fit, although it is not particu-
larly good for aggregate time-series data. On the other hand, it is ¢lear that not accounting
for the anomalous wartime data has degraded the fit of the model. This value is the R? for
the model indicated by the dotted line in the figure. By simply omitting the years 1942—-1 945
from the sample and doing these computations with the remaining seven observatlons——the
heavy solid line—we obtain an £? of 0.93697. Alternatively, by creating a variable WAR WhICh
equals 1 in the years 1942-1945 and zero otherwise and including this in the model, which
produces the model shown'by the two solid lines, the R? rises to 0.94639.

e

I
We can summarize the calculation of R2 in an analys1s of variance table, which

3k A might appear as shown in Table 3.3.

Exampile 3.3 Analysis of Variance for an Investment Eqguation
The analysis of variance table for the investment equation of Section 3.2.2 is given in
Table 3.4.
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TABLE 3.3 Analysis of Variance

Source Degrees of Freedom Mean Square
- Regression b’X’y ny:’ K — 1 (assuming a constant term)
Residual ee n-K 52
Total y’y ny o oa-—1. Sp/in—1) =52
Coefficient of R=1- e'e/(y'y — ny)

determination

TABLE 3.4 Analysis of Vardance for the Investment Equation

Source Degrees of Freedom Mean Square
Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.6011681

R? = 0.0159025/0.016353 = (.97245

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R? in analyzmg goodness of fit. The first

concerns the number of degrees of freedom used up in estimating the parameters. . See C 3-z22)

R? will never decrease when another variable is added to a regression equation. Equa—
tion (3-23) provides a convenient means for us to establish this result. Once again, we
are comparing a regression of y on X with sum of squared residuals ¢’e to a regressmn of

_yon X and an additional Varlable z, which produces sum of squared residuals u'u. Recall
the vectors of residuals z, = Mz and y, = My = e, which implies that e'e = (v *y*) Let

¢ be the coefficient on z in the longer regression. Then ¢ = (z,z,)™ 1(z,,y,.‘) and inserting
this in (3-2%) produces

4 .

(zfy )2 4 )

wu=¢e— m-—“(:;;;) =ge(l—rp7), (3-28)
where 1}, is the partial correlation between y and z, controlling for X. Now divide
through both sides of the equality by x’M" . From (3-26), wn/y'M°y is (1 — R ) for the
regression on X and z and ¢’ e/X’MOy is(l— R%) Rearranging the result produces the
following:

THEOREM 3.6 Change in R* When a Variable Is Added

to a Regression
Let R%, be the coefficient of determination in the regression of y on X and an
additional variable z, let R} be the same for the regression of y on X alone, and
letry, be the partml correlatzon between y and z, controlling for X. Then

RXZ =_RX + (1 - RX) ryz' (3-29)

| @03 Table 3.3, |
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~#This result comes at a cost, however, The parameter estimates become progressively less precise as we do
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Thus, the R? in the longer regression cannot be smaller. It is tempting to exploit

? tl%is result by just adding variables to the model; R? will continue to rise to its limit

NThe adjusted . R? (for degrees of freedom), which incorporates a penalty for these
results is computed as follows

SR eef/in—K) .
R‘Z P ol d
' YMly/(n— 1) (3-30)
For computational purposes, the connection between R? and '_1?'2 is”
= ~1
R2 =1 - n_. 1- R2 .
; n—K ( )

The adjusted R? may decline when a variable is added to the set of independent variables.
Indeed, R? may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R? will equal —1/(n — 2).
' ( Thus, the name “adjusted R-squared” is a bit misle admg—as can be seen in (3-30),

| R?is not actually computed as the square of any quantity.j Whether R? rises or falls

depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R2 When a Variable Is Added

to a Regression
In a multiple regression, R* will fall (rise) when the variable x is deleted from the
regression if the square of the f ratio associated with this variable is greater (less)
than 1. |

We have shown that R? will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X; is added to the regression is

L1212 = eje1 ~ bX;M; Xoh,,

where we use subscript 1 to indicate the regression based on X alone and 1,2 to indicate
the use of both X; and X,. The coefficient vector by is the coefficients on X, in the
multiple regressmn of y on X; and X;. [See (3-19) and (3-20) for definitions of b and
M, .] Therefore,

_gie oMo, e BXoMiXob

B2 = YMPy o yMYy

$0. We will pursue this result in Chapter 4.

AThis measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.

Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis.

~Z()
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which is greater than 1'\’2 unless b, equals zero. (M1X2 could not be zero unless X; was a
- linear function of X1, in whxch case the regressionon X1 anc_l X5 could not be computed )
= . This equation can be manipulated a bit further to obtain

JMiy b XoMi Xob,
¥MYy  yMy Py
But y'Miy = e; ey, so the first term in the product is 1 — R?. The second is the multlple

' correlatlon in the regression of Mly on M; X;, or the partlal correlation (after the effect
of X1 is removed) in the regression ofy on X,. Collecting terms, we have

Rio',z = R12 (1 = .Rlz)"_yz-l-

[This is the multivariate counterpart to (3-29).]

Therefore, it is possible to push R? as high as desired just by adding regressors.
This possibility motivates the use of the adjusted R? in (3-30), instead of R? as a
method of choosing among alternative models. Since R? mcorporates a penalty for
reducing the degrees of freedom while still reveahng an 1mprovement in fit, one pos-
sibility is to choose the specification that maximizes R°. It has been suggested that L
the adjusted R? does not penalize the loss of degrees of freedom heavily enough’" 6.7

- R—lz—Rz

43 Some alternatives that have been proposed for comparing models (which we index
L.  byj)are
52 n+ K; 2
R =1- 1- R
T I’L — Kj ( . )
which minimizes Amemiya’s {1985) predlctlon crltermn,
ele; . .
n— Kj n n 2 ﬁ‘
/RN and the Akaike and Bayesian information criteria which are givenin Heit?j and (%20} 5.

3.5.2 BR-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difﬁculty with R? concerns the constant term in the model. The proof that
0< R?<1 requires X to contain a column of 1s. If not, then (1) Mlese and
(2) . e'Mﬂx #.0, and the term 2¢’'M°Xb in yM%y = (MOXb + Mﬂe)'(MUXb + MP)
in the precedmg expansion will not drop out. Consequentily, when we compute

ee
Yy
the result is unpredictable. It will never be higher and can be far lower than the same

figure computed for the regression with a constant term included. It can even be negative.
Computer packages differ in their computation of __Rz. An alternative computation,

R*=1-

[

I)( ‘ jSee for example, Amemiya (1985, pp. 50—51)
% ‘SMost authors and computer programs report the logs of these prediction criteria.

,
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is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R? may be larger than 1. Some computer packages
- bypass these difficulties by reporting a third “R?,” the squared sample correlation be-
~ tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regréssion eontains a constant term, then, as we have seen,
all three computations give the same answer. Even if not, this last one will still produce
a value between zero and one. But, it is not a proportion of variation explained. On
the other hand, for the purpose of comparing models, this squared correlation might
well be a useful descriptive device. It is important for users of computer packages to be
aware of how the reported R? is computed. Indeed, some packages will give a warning
in the results when a regression is fit without a constant or by some technique other i
than linear least squares.

3.5.3 COMPARING MODELS

The value of R? we obtained for the consumption function in Example 3.2 seems high
in an absolute sense. Is it? Unfortunately, there is no absolute basis for comparison.
In fact, in using aggregate time-series data, coefficients of determination this high are
routine. In terms of the values one normally encounters in cross sections, an R? of 0.5
is relatively high. Coefficients of determination in cross sections of individual data as
high as 0.2 are sometimes noteworthy. The point of this discussion is that whether a
regression line provides a good fit to a body of data depends on the setting,

Little can be said about the relative quality of fits of regression lines in different
contexts orin different data sets even if they are supposedly generated by the same data
generating mechanism. One must be careful, however, even in a single context, to be
sure to use the same basis for comparison for competing models. Usually, this concern
is about how the dependent variable is computed. For example, a perennial question
concerns wirether a linear or loglinear model fits the data better. Unfortunately, the
question cannot be answered with a direct comparison. An R? for the linear regression
model is different from an R? for the loglinear model. Variation in y is different from
variation in In y. The latter R? will typically be larger, but this does not imply that the
loglinear model is a better fit in some absolute sense.

It is worth emphasizing that R? is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi=a+,8(xf—y) +8l_'.

(The constant ¥ allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order, The interpretation of R? as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
values. It is always correct to write

Vi—-¥=0-YN+te

regardless of how j; is computed. Thus, one might use j; = exp(lnyl) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model
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contains a constant term. Thus, the cross-product term has been ignored in computing

R? for the loglinear model. Only in the case of least squares applied to a linear equation

.. with a constant term can R? be interpreted as the proportion of variation in y explained

* by variation in X. An analogous computation can be done without computing deviations

from means if the regressmn .does not contain a constant term. Other purely algebraic

artifacts will crop up in regressions withoiit a constant, however. For example, the value

of R? will change when the same constant is added to each observation on y, but it

is obvious that nothing fundamental has changed in the regression relationship. One

should be wary (even skeptical) in the calculation and interpretation of fit measures for
regressions without constant terms.

/-_? kY

(hé ot
ex 3,6 SUMMARY AND CONCLUSIONS
«O QQ; v This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to
@ ; l; 0 a set of points using the method of least squares. We considered the primary problem
first, using a data set of n observations on K variables. We then examined several aspects

of the solution, including the nature of the projection and residual maker matrices and
several useful algebraic results relating to the computation of the residuals and their
sum of squares. We also examined the difference between gross or simple regression
and correlation and multiple regression by defining “partial regression coefficients” and
“partial correlation coefficients.” The Frisch-Waugh-Lovell theorem (3.2) is a funda-
mental}y useful tool in regression analysis which enables us to obtain in closed form the
expression for a subvector of a vector of regression coefficients. We examined several as-
pects of the partitioned regression, including how the fit of the regression model changes
when variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.
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3.6 LINEARLY TRANSFORMED REGRESSION

nis
As a final application of the tools developed in-%he chapter, we examine a purely algebraic result that is
very useful for understanding the computation of linear regression models. In the regression of yonX,
suppose the columns of X are linearly transformed. Common applications would include changes in the
units of measurement, say by changing units of currency, hours to minutes, or distances in miles to - N
kilometers. Example 3.4 suggests a slightly more involved case Rl

Example 3.4 Art Apprec:atmn ’ :
Theory 1 of the determination of the auction pnces of Monet paintings holds that the price
is determined by the dimensions (width, W and height, H) of the painting,
InP Bi(1) + BAnW + BainH + ¢
Bix1 + PaXz + BaXs + & v

Theory 2 claims, instead, that art buyers are interested specifically in surface area and
aspect ratio,

NP = y4(1) + yon(WH) + yain(W/H) + ¢
Y1Z1 + y222 + y3Zs + UL

It is evident that z, = x4, z, = X; + X; and z; = X, — X3. In matrix terms, Z = XP where

The effect of a transformation on the linear regression of y on X compared to that of y on Z is given by
Theorem 3.8.8 2

THEOREM 3% Transformed variables

In the linear regression of y on, Z = XP where P is a nonsingular matrix that transforms the
columns of X, the coefficients will equal P b where b is the vector of coefficients in the linear
regression of y on X, and the R will be identical.

Proaf: The coefﬁments are

rrrrr

The vector of residuals is w = y Z(P b) =y - XPP"'b =y — Xb=e. Since the residuals are
identical, the numerator of 1- & is the same, and the denominator is unchanged. This
establishes the result.

This is a useful practical, algebraic result. For example, it simplifies the analysis in the first application
suggested changing the units of measurement. If an independent variable is scaled by a constant, . the
regression coefficient will be scaled by 1/p. There is no need to recompute the regression. '
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d. Prove that these two values uniquely minimize the sum of squares by showing
: that the diagonal elements of the second derivatives matrix of the sum of squares
- with respect to the parameters are both positive and that the determinant is
' 4n[(XCl, xP) —n3] = 4n{zl_1(x, — ¥)?], which is positive unless all values of

x are the same. - :

2. Change in the sum of squares. SuppoSe that b is the least squares coefficient vector
in the regression of y on X and that ¢ is any other X x 1 vector. Prove that the
difference in the two sums of squared residuals is ‘ - oy

(¥~ X&Y' (y — X©) — (y — Xb)'(y — Xb) = (¢ —b)X'X(c - b).
Prove that this difference is positive.

3. Linear fransformations of the data. Consider the least squares regression of y on
K variables (w1th a constant) X. Consider an alternative set of regressors Z = XP
where P is a nonsingular matrix. Thus, each column of Z is a mixture of some of
the columns of X, Prove that the residual vectors in the regressions of y on X and
y on Z are identical. What relevance does this have to the question of changing
the fit of a regression by changing the units of measurement of the independent
variables?

4. Partial Frisch and Waugh In the least squares regression of y on a constant and X,
to compute the regression coefficients on X, we can first transform yto deviations
from the mean ¥ and, likewise, transform each column of Xto deviations from the
respective column mean; second, regress the transformed y on the transformed X
without a constant. Do we get the same result if we only transform y" What if we
only transform X?

5. Resndual makers. What is the result of the matrix product MlM where M1 1s defined
in (3-19), and M is defined in (3-14)?

6. Adding an observatlon. A data set consists of » observations on X, and Yo The
least squares estimator based on these 7 observations is by = XX~ 1X,,y,,
Another observation, Xs and y,, becomes available. Prove that the least squares
estimator computed using this additional observation is

1
TR XXy

Dbans = bn iy (X:,Xn)_lxs (¥s -”X_';,b_n).
f..s } ’

Note that the last term is e;, the residual from the prediction of y; using the coeffi-
cients based on X, and b,. Conclude that the new data change the resuits of least
squares only if the new observation on y cannot be perfectly predicted using the
information already in hand.

7. Deleting an observation. A common strategy for handling a case in which an obser-
vation is missing data for one or more variables is to fill those missing variables with
0Os and add a variable to the model that takes the value 1 for that one observation
and 0 for all other observations. Show that this “strategy” is equivalent to discard-
ing the observation as regards the computation of b but it does have an effect on
RZ. Consider the special case in which X contains only a constant and one variable.
Show that replacing missing values of x with the mean of the complete observations
has the same effect as adding the new variable.
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8. Demand system estimation, Let Y denote total expenditure on consumer durables,
nondurables, and services and E;, E,, and E, are the expenditures on the three
. categories. As defined, Y = E; + E, + E;. Now, consider the expenditure system

By =ag+ ﬁdY+ Yaa P + VanFn + vas Fy + €4,
By = oy 4 ﬁnY‘l' Vnde + Vi B 4 Vs Fs + En,
},—:'ZS_ = O 4 B ¥ + Vsa Ly + Yon P +VssR9‘+€'s- )

Prove that if all equations are estimated by ordinary least squares, then the sum

of the expenditure coefficients will be 1 and the four other column sums in the

preceding mode! will be zero. g
9. Change in adJusted R?. Prove that the adjusted R? in (3-30) rises (falls) when

variable x is deleted from the regression if the square of the ¢ ratio on x; in the

multlple regression is less (greater) than 1.

10. Regression without a constant. Suppose that you estimate a multiple regression first
with, then without, a constant. Whether the R? is higher in the second case than
the first will depend in part on how it is computed Using the (relatively) standard
method R? =1 — (¢/e/y/M"y), which regression will have a higher R*?

11. Three variables, N, D, and Y, all have zero means and unit variances. A fourth
variable is C = N + D. In the regression of C on Y, the slope is 0.8. In the regression
of C on N, the slope is 0.5. In the regressmn of D on Y, the slope is 0.4. What is the
sum of squared residuals in the regression of C on D? There are 21 observations
and all moments are computed using 1/(n — 1) as the divisor.

12. Using the matrices of sums of squares and cross products immediately preceding
Section 3.2.3, compute the coefficients in the multiple regression of real investment
on a constant, real GNP and the interest rate. Compute R2.

13. Inthe December, 1969, American Economic Review (pp. 886-896), Nathaniel Leff
reports the following least squares regression results for a cross section study of the
effect of age composition on savings in 74 countries in 1964:

InS§/Y =7.3439 + 0.1596In Y/N + 0.0254In G — 1.3520In D; — 0.399C1n D,
InS/N = 27851 +1.14861n Y/N + 0.0265In G — 1.3438In Dy — 0.3%661n D,

where S/ Y = domestic savings ratio, §/N = per capita savings, Y/N = per capita
income, Dy = percentage of the population under 15, D, = percentage of the popu-
lation over 64, and G = growth rate of per capita income. Are these results correct?
Expla.m [See Goldberger (1973) and Leff (1973) for discussion. ]

Application

The data listed in Table 3.5 are extracted from Koop and Tobias’s (2004) study of
the relationship between wages and education, ability, and family characteristics. (See
Appendix Table F3.2.) Their data set is a panel of 2,178 individuals with a total 0£ 17,919
observations. Those-listed-below are the first year and the time invariant variables for
the first 15 individuals in the sample. The variables are defined in the article.
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TABLE 3.5 Subsample from Koop and Tobias Data /

. Mother’s  Father’s
Person Education Wage Expenence Ability  education education Siblings

1 13 .18 1 1.00 12 12 1
2 15 214 4 - 150 12 12 1
3 10 1.56 1 -0.36 12 12 1
4 12 1.85 1 0.26 12 10 4
5 15 241 2 0.30 1z 1z - 1
6 15 1.83 2 0.44 12 16 2
7 15 1.78 3 0.91 12 12 1
8 13 212 4 0.51 12 15 2
9 13 1.95 2 0.86 12 12 2
10 11 2.19 5 0.26 12 12 2
11 12 244 1 1.82 16 17 2
12 13 241 4 —1.30 13 12 5
13 12 2.07 3 ~0.63 12 12 4
14 12 220 6 —0.36 10 12 2
15 12 212 3 (.28 10 12 3

Let X; equal a constant, education, experience, and ability (the individual’s own charac-
tensncs) Let X, contain the mother’s education, the father’s education, and the number
of siblings (the household characteristics). Let y be the wage.

a.

b.

Compute the least squares regression coefficients in the regression of y on X1
Report the coefficients.

Compute the least squares regression coefficients in the regression of yonX; and
X. Report the coefficients.

Re gress each of the three variables in X, on alt of the variables in X;. These new
variables are X5. What are the sample means of these three variables? Explain the
finding,

Using (3-26), compute the R for the regression of y on Xy and X;. Repeat the
computation for the case in which the constant term is omitted from X;. What
happens to R*?

/23 '__
[hé 3

Compute the adjusted R? for the full regression including the constant term. Inter-

pret your result.

Referring to the result in part c, regress .y on X; and X5. How do your results
compare to the results of the regression of y on X4 and X,? The comparison you
are making is between the least squares coefficients when y is regressed on Xy and
M; X, and when y is regressed on X; and X;. Derive the result theoretically. (Your
numerical results should match the theory, of course.)



