4 THE LEAST SQUARES ESTIMATOR

4.1 INTRODUCTION

Chapter 3 treated fitting the linear regression to the data by least squares as a purely algebralc.‘;f.' s

exercise. In this chapter, we will examine in detail least squares as an_ estlmator of the model parameters
of the linear regression model (defined-in thé-following Table 4.1). We begin in Section 4.2 by returning
to the question raised but not answered in Footnote 1; Chapter 3, that is, why should we use least squares?
We will then analyze the estimator in detail. There are other candidates for estimating f#. For example, we
might use the coefficients that minimize the sum of absolute values of the residuals. The question of
which estimator to choose is based on the statistical properties of the candidates, such as unbiasedness,

consistency, efficiency, and their samplmg distributions. Section 4.3 considers finite-sample propertles

such as unbiasedness, The finite-sample properties of the least squares estimator are independent of the

sample size. The linear model is one of relatively few settings in which definite statements can be made -

about the exact fi mte; sample properties of any estimator, In most cases, the only known properties are
those that apply to large samples. Here, we can only approximate finite-sample behavior by using what
we know about large-sample properties. Thus, in Section 4.4, we will examrne the Iarge—sample or
‘asymptotic properties of the least squares estimator of the regression model! KT

Discussions of the properties of an estimator are largely concerned with pmnt estnmat:on - that

is, in how to use the sample information as effectively as possnble to produce the best single estimate of

the model parameters. Interval' estlmatmn considered in Section 4.5, is concerned with computing .

estimates that make expllclt the uncertainty inherent in using randomly sampled data to estimate

population quantities. We will consider some applications of interval estimation of parameters and some
functions of parameters in Section 4.5. One of the most familiar applications of interval estimation is in

using the model to predict the dependent variable] and to provide a plausible range of uncertainty for that
prediction. Section 4.6 considers prediction and forecasting using the estimated regression model.

The analysis assumes that the data in hand correspond to the assumptions of the model. In Section
4.7, we consider several practical problems that arise in analyzing nonexperimental data. Assumption A2,
full rank of X, is taken as a given. As we noted in Section 2.3.2, when this assumption is not met, the
model is not estimable, regardless of the sample size. Multlcollmearlty the near failure of this
assumption in real world datayis examined in Sections 4.7.1 to 4.7.3. Missing data have the potential to
derail the entire analysis. The benign case in which missing values are simply manageable random gaps
in the data set is considered in Section 4.7.4. The more complicated case of nonrandomly missing data is
discussed in Chapter 18. Finally, the problem of badly measured data is examined in Section 4.7.5.

\*This discussion will use our results on asymptotic distributions. It may be helpful to review Appendix D before

proceeding to this material.
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TABLE 4.1 Assumptions of the ClassicalLinear Regression Model
s #
AL Linearity: y; = X1/ + Xi2fo + - - HBrxx\Nt &:.

* A2, Full rank: The n x K sample data matrix, X has full column rank.

A3. Exogeneity of the independent valziables:'E[e,- [ x50, Xj2. ... %x] =0, £, f=1,...,n
There is no correlation between the disturbances and the independent variabies.

A4. Homoscedasticity and nonautecorrelation: Each disturbance, &;, has the same finite
variance, o2, and is uncorrelated with every other disturbance, &; conditioned on x.

AS, Stochastic or nonstochastic data: (x;1, x0, ..., x5 i=1,..., 1
A6, Normal distribution: The disturbances are normally distributed.

eed, ;%éauth:?édowi the regzésion
airly quj servegOnly as g/useful départure

common applications,€uch as panel d

4.2 MOTIVATING LEAST SQUARES

]

Ease of computation is one reason that least squares is so popular. However, there are
several other justifications for this technique. First, least squares is a natural approach
to estimation, which makes explicit use of the structure of the model as laid out in the
assumptions. Second, even if the true model is not a linear regression, the regression
line fit by least squares is an optimal linear predictor for the dependent variable. Thus, it
enjoys a sort of robustness that other estimators do not. Finally, under the very specific
assumptions of the classical model, by one reasonable criterion, least squares will be
the most efficient use of the data. We will consider each of these in turn.

4.2.1 THE POPULATION ORTHOGONALITY CONDITIONS

Letx denote the vector of independent variables in the population regression model and
for the moment, based on assumption AS, the data may be stochastic or nonstochastic.

Iemsrotis discussiof will use our resylts on asymptot] distributions.}{may be helghul to revi Appendix
D before/proceeding/to this material.
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Assumption A3 states that the disturbances in the population are stochastically or-
thogonal to the independent variables in the model; that is, Efe | x] =0. It follows that

- Covlx, £] =0. Since (by the law of iterated expectationsy—Theorem B.1} E{Ele | x]} =

Ele]=0, we may write this as _,
EE, {xs] EERy -] =0
()3 "
FeEfxy] = B, @D

(The right-hand side is not a function of y so the expectation is taken only over x.) Now,
recall the least squares normal equations, X'y = X'Xb. Divide this by n and write it as

4 summation to obtain
E En Xy ] = 1 Eﬂ x;x; | b (4\.2)
nia il = ni iy 2o

Equation (4-1)is a population relationship. Equation (4-2} is a sample analog. Assuming
the conditions underlying the laws of large numbers presented in Appendix D are
met, the sums on the left-hand and right-hand sides of (4-2) are estimators of their
counterparts in (4-1). Thus, by using least squares, we are mimicking in the sample the

relationship in the population. We'll return to this approach to estimation in Chapters 14 ) 2.

and 1¥under the subject of GMM estimation.

4.2.2 MINIMUM MEAN SQUARED ERROR PREDICTOR P,

As an alternative approach, consider the problem of finding an optnnal lmear predictor
for y. Once again, ignore Assumption A6 and, in addition, drop Assumption A1 that
the conditional mean function, E [y | x} is linear. For the criterion, we will use the mean
squared error rule, so we seek the minimum mean squared error linear predictor of y,
which we’ll denote x'y. The expected squared error of this predictor is

MSE = E, B[y - xy .
This can be written as
MSE = Ey,!:{y = E[yix]}z + Ey,X{_E[J"K] _?"?}2-

We seek the y that minimizes this expectation. The first term is not a function of y, so
only the second term needs to be minimized. Note that this term is not a function of y,
so the outer expectation is actually superfluous. But, we will need it shortly, so we will
carry it for the present. The necessary condition is

DEE{EG D) - xpP) AEC D —'x"y]z}
ay ay
= “2E,E{x[EQ@ i ~xy]} 0.

=.EyE__x{

Note that we have interchanged the operations of expectation and differentiation in
the middle step, since the range of integration is not a function of y. Finally, we have



| Greene-50558

book

46

June 20, 2007 22:24

PART | 4 The Linear Regression Model

the equivalent condition

By B[xE(y[x)] = E, EK[XX’]r

The left-hand side ofthlsresultls EEy[xE(y | x)] = Cov[x, E(y | )]+ E[x] E[E(y | x)] =

Covlx, y] + E[x]E[y] = ExEy[xy] (W'e‘have used Theorem B.2.) Therefore, the nec-
essary condition for finding the minimum MSE predictor is

BB - BBk “3)

This is the same as (4-1), which takes us to the least squares condition once again,
Assuming that these expectations exist, they would be estimated by the sums in
(4-2), which means that regardless of the form of the conditional mean, least squares
is an estimator of the coefficients of the minimum expected mean squared error lin-
ear predictor. We have yet to establish the conditions necessary for the if part of the
theorem, but this is an opportune time to make it explicit:

THEOREM 4.1 Minimum Mean Squared Error Predictor

If the data generating mechanism generating (X;, ¥;)i-1, . s such that the law of
large numbers applies to the estimators in (4-2) of the matrices in (4-1), then the
minimum expected squared error linear predictor of y; is estimated by the least
squares regression line.

4.2.3 MINIMUM VARIANCE LINEAR UNBIASED ESTIMATION

Finally, consider the problem of finding a linear unblased estimator. If we seck the one
that has smallest variance, we will be led once again to least squares. This proposition
will be proved in Section TSR MMAY¥, £ 2.5,

The preceding does not assert that no other competing estimator would ever be
preferable to least squares. We have restricted attention to linear estimators. The result
immediately-above precludes what might be an acceptably biased estimator. And, of
course, the assumptions of the model might themselves not be valid. Although AS and
A6 are ultimately of minor consequence, the failure of any of the first four assumptions
would make least squares much less attractive than we have suggested here.

IASED ESTIMATION




4-<)

4.3 FINITE SAMPLE PROPERTIES OF LEAST SQUARES

An “estimator” is a strategy, or formula for using the sample data that are drawn from a population. The
“properties” of that estimator are a description of how that estimator can be expected to behave when it is
applied to a sample of data. To consider an example, the concept of unbiasedness implies that “on =

average” an estimator (strategy) will correctly estimate the parameter in question; it will not-bel+ - -

' -'systematlcally too high or too low. It seems less than obvious how one could know this if they were only =
going to draw a single sample of data froin the population and analyze that one sample. The argument
adopted in classical econometrics is provided by the. samplmg propertles of the estimation strategy. A
conceptual experiment lies behind the description. One imagines “repeated sampling” from the
population and characterizes the behavior of the “sample of samples.” The underlying statistical theory of
the the estimator provides the basis of the description. Example 4.1 illustrates.

Example 4.1 The Sampling Distribution of a Least Squares Estimator
The following sampling experiment shows the nature of a sampling distribution and the implication of :
unbiasedness. We drew two samples of 10,000 random draws on variables w; and x; from the * .5
standard normal population {(mean zero, variance 1). We generated a set of &s equal to 0.5w;and £ = |
then y; = 0.5 + 0.5x;+ & . We take this to be our popuiation. We then drew 1000 random samples of =
100 observations on (y;,x;) from this population, and with each one, computed the least squares slope,

using at replication r, b, = [Z}Eg(x,-, -X, )y,-r:| [ (X - X, )21. The histogram in Figure 4.1 shows

the result of the experiment. Note that the distribution of slopes has a mean roughly equal to the “true -
value” of 0.5, and it has a substantial variance, reflecting the fact that the regression slope, like any
other statistic computed from the sample, is a random variable. The concept of unbiasedness relates -
to the central tendency of this distribution of values obtained in repeated sampling from the
population. The shape of the histogram also suggests the normal distribution of the estimator that we .
will show theoretically in Section 4.3.8 (The experiment should be replicable with any regression |
program that provides a random number generator and a means of drawing a random sample of .
observations from a master data set,)

FIGURE 4.1 Histogramtor Sampiad LeastSquares Regression Slopess
T il b — — — — — — — ——_—t ‘b, e . -‘ | —— | ==xeaween o _]
S L
o jﬂﬂ
T S T S TR T | ; EI i L i O T T T S O ] ‘r]-"_n--l- L ll T T
<300 357 &4 AT 529 586 ‘ 543 To0
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N - I the ejgivalent condition
EdxEly )] = B, Edxxy,

The left-handyide ofth1s result is L,\Ey[xE(y {x)]=Coylk, E(v|x)]+E X E]E(y|x]=
Cov[x, y] + E[NE[y] = EE,[xy]. (We have used Fheorem B.2.) Iherefore the nec-
essary condition 8y finding the minimum MSE predictoris -

LE[xyl = By [xx]y. {4-3}

This is the same as (4-1) which takes usAfo the least squares condition once again.
Assuming that these expgtations exist, they would be estimated by the sums in
(4-2), which means that regaxdless of fhe form of the conditional mean, least squares
is an estimator of the coefficiogts of the minimum expected mean squared error lin-
ear predictor. We have yet to eshgblish the conditions necessary for the if part of the
theorem, but this is an opportuné Nme to make it explicit:

” THEOREM 4.¥ 1§ ] i an Sopewed Looor Predicior :
" Ifthe data generating mechanism generding (x;, ¥idi=1...n i S0Ch that the law of '}
large numbers appflies to the estimators iN4-2} of the matrices in {4-1), then the
minifmum expecgd squared error linear prddictor of v; is estimated by the least

squares regresslon line. .

4.2.3 INIMUM VARIANCE LINEAR UNBIASED\ESTIMATION

Finally, gbnsider the problem of finding a linear unbiased estidgator, If we seek the one
that hgé smallest variance, we will be led once again to least sqdqres. This proposition
will B¢ proved in Section 4.4.
he preceding does not assert that no other competing estimatdy would ever b
pigferable to least squares. We have restricted attention to linear estimatgrs. The resulk
pamediately above precludes what might be an acceptably biased estima¥qr. And, pf
ourse, the assumptions of the model might themselves not be valid. Althougk AS afid
Ab are ultimately of minor comequcnce the failure of any of the first four agsuptidns
would make least-squsresmucir fess aTaCTivVE TR We have suggested here,

i

4.3 (
UNBIASED ESTIMATION

The least squares estimator is unbiased in every sample. To show this, write
b= XX)" X'y = (X'X)" X (XB+g) = f+ (XX) ' Xle. (4-4)
Now, take expectations, iterating over X;

Eb|X]=$8 + E[(X'X) ‘x£|x3
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o . EpiM=g (4-5)

Therefore, ) J
Ebl=Ex{E[b|X]} =l€z«£€]:,,ﬁ-' (‘f-é)-

squares estimator has expectation 8. Therefore, when we average this over the possible
values of X, we find the unconditional mean is § as well.

1 of a Least Squares Estifrator——— —
g sampling expariment, which
a random number generator ang#t means of drawing a random sample of obgérva-

normal distribution {mean zero, to 0.5w; and
¥ =054 0.5% + . We tak
of 100 observations from {Ms populatL%gu, and with each one, compu
slope {using at replicatiph r, b, =[5, (x;r — %/} y,-r]/[g}iﬂ (xr
Figure 4.1 shows thg/result of the experiment. Note that the git

the least squares
2. The histogram in

ed from the sample, is a random
tral tendency of this distribution of

variable. The
j tion.

values obt

FIGURE 4.1 Histagramfor Samplad Ledst Squares Regression

100

By Assumption A3, the second term is 0, so S
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You m|ght have noticed that in this section; we have done the analysis conditioning on X
_— that is, conditioning on the entire sample, while in Section 4.2 we have conditioned y; on x;.
'(The sharp,eyed reader will have] also) noticed that in Table 4.1, in assumption A3, we have
conditioned E[s,l Jon x, thatis, on all / and j, which is, once again, on X, not just X;. In Section
4.2, we have suggested a way to view the least squares estimator in the context of the Jomt;"f
distribution of a random variable, y, and a random vector, x. Fonjpurpose of the discussion, thlsi_ﬂ’;" e
would be most appropriate if our data were going to be a cross section of independent -
observations. In this context, as shown.in Section 4.2.2, the least squares estimator emerges as
the sample counterpart to the slope vector of the minimum mean squared error predictor, ¥,
which is a feature of the population. In Section 4.3, we make a transition to an understanding
of the process that is generating our observed sample of data. The statement that E[b[X] B
best understood from a Bayesian perspective; for the data that we have observed, we can
expect certain behavior of the statistics that we compute, such as the least squares slope vector,
b. Much of the rest of this chapter, indeed much of the rest of this book, will examine the’
hehavior of statistics as we consider whether what we learn from them in a particular sample
can reasonably be extended to other samples if they were drawn under similar circumstances
from the same population, or whether what we learn from a sample can be inferred to the full
population. Thus, it is useful to think of the conditioning operation in E[b|X] in both of these
ways at the same time, from the purely statistical viewpoint of deducing the properties of an
estimator and from the methodological perspective of deciding how much can be learned about -
a broader population from a particular finite sample of data. '
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4.3.2 BIAS CAUSED BY OMISSION OF RELEVANT VARIABLES

The analysis has been based on the assumption that the correct specification of the regression model is
known to be )
y=XB+s (4-7). ,_

‘There ate numerous types of specification errors that one might make in constructing the regressioi-
model. The most common ones are the omission of relevant variables and the inclusion of superfluous '

\. ") (irrelevant) variables. - S

Suppose that a corrrectly specified regression model would be \
Y=Xi + Xoba 1 g, (4-8) |
where the two parts of X have X and X, columns, respectively. If we regress y on X, without including . |||

.X,, then the estimator is : : f

b= XXXy = B+ KX XX + (X)X (4-9) /

/
- & = ———— =.= r— "-f‘-'

_IE}'_G.' Wore {;‘rF 5
these three KT8 (s
in +he Chapler hstf, _
Add Fhem o the \h'&:‘f

ar maur k them for
l:éﬁh f L]cut;f@ Nee,
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Taking the expectation, we seg that unless X{X, =0 or §, = 0 b is biased. The well-
known result is the omltted variable formula'

L CEMbYX —_ﬁ1+P12ﬁza L7
where y_ / )
Piz2 = XXX X, . ] (7-5)"

Each column of the K; x K; matrix P12 is the column of slopes in the least squares
regression of the corresponding column of X on the columns of X;.

Example 7.1 Omitted Variables
If a demand equation is estimated without the relevant income
how the estimated price elasticity will be biased. Letting b be

able, then (7-4) shows
estimator, we obtain

Elb| price, income] = 8 +

where y is the income coefficient. In aggreggd data, it is unclear whether the missing co-
variance would be positive or negative. Thesign of the bias in b would be the same a2« this
covariance, however, because Var[pricg#and ¥ would be positive for a normal googSuch as
gasoline. (See Example 2.3.}
The gasoline market data w;
example. Figure 6.5 showe
the price index Pg, The
at the data in Appengh
Income/Pop, an
these data, h

ave examined in Examples 2.3 and 8.7 ppa¥ide a striking
imple plot of per capita gasoline consumptigh, G/Pop against
is considerably at odds with what one mighl expect. But a look
Table F2.2 shows clearly what is at work. Holding per capita income,
her prices constant, these data might well cafifarm to expectations. In
aver, income is persistently growing, and thegimgpie correlations between

and ijould become even less so as more regressors werp/added to the eguation.

7.2.2 PRETEST ESTIMATION

The variance of by is that of the third term in¢7-3), which is

Var[b; | X1 £ ¢2(X) X)L (7-6)
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Example 4.2 Omitted Variable '
If 2 demand equation is estimated without the relevant income variable, then (4-10) shows how the
estimated price elasticity will be biased. The gasoline market data we have examined in Example 2.3
provides a striking example. Letting b be the estimator, we obtain

+ Cov|price, income] . i
- Var[price]

Elblprice,income] = B

where y is the income coefficiént. In aggregate. data, it is unclear whether the missing covariance
would be positive or negative. The sign of the bias in b would be the same as this covariance,
however, because Var[price] and 7 would be positive for'a normal good such as gasoline. Figure 4.2
/it shows a simple plot of per capita gasoline consumption, G/Pop,against the price index PG. The plot
TP is considerably at odds with what one might expect. But a look at the data in Appendix Table F2.2

; shows clearly what is at work. Holding per capita income, Income/Pop, and other prices constant,
these data might well conform to expectations. In these data, however, income s persistently
growing, and the simple correlations between G/Pop and [ncome/Pop and between PG and
Income/Pop are 0.938 and 0.934, respectively, which are quite large. To see if the expected
relationship between price and consumption shows up, we will have to purge our data of the

intervening effect of income/Pop. To do so, we rely on the Frisch-Waugh resuit in Theorem 3.2. In =N
the simple regression of log of per capita gasoline consumption on a constant and the log of the price
index, the coefficient is 0.29904, which, as expected, has the “wrong” sign. In the multiple regression ‘ :

of the log of per capita gasoline consumption on a constgmt,t the log of the price index and the log of | i eﬁt:fff

. per capita income, the estimated price elasticity '(ﬁQ‘is £0.16949 and the estimated income elasticity, | . G[{l-ﬂﬂi-ﬁ
X, mis 0.96595. This conforms to expectations. The results are alsc broadly consistent with the | %Wl

widely observed result that in the U.S. market at least in this period (1953:2004), the main driver of | : [y s fod
changes in gasoline consumption was not changes in price, but the growth in income (output). —

<

: - g : = : e =] o |
i Figlrs 4.2 Per Capita Gasoline Gensumption vs: Price 1853-2004:
— 125 - ; S S i j v -
.'r. -
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In this development, it is straightforward to deduce the directions of bias when there is a single
included variable and one omitted variable, It is important to note, however, that if more than one variable
is included, then the terms in the omitted variable formula inyolve multiple regression coefficients, which
themselves have the signs of partial, not simple, correlations/For example, in the demand equation of the
previous example, if the price of a closely related product had been included as well, then the simple -
correlation between price and income would be insufficient to determine the direction of the bias in-the - - -

7prlce elasticity. What would be required is the sign of the correlation between price and income net of the' -

effect of the other price. This requirement might not be obvious, and it would become even less so as
more regressors were added to the equatiori. ~ =~ .- -



Greene-S0558 - book  June 20,2007 2215 q"‘ / 3 ‘

P == INCLUSION OF IRREL.EVANT VARIABLES

* If the regression model is correctly given by (4 _‘ Z)
ae L y=Xifite N
‘3-8 & AL TS
and we estimate it as if were correct (i.e., we include some extra variables) then it

Imght seem that the same sorts of problems considered earlier would arise. In fact, this
case is not true. We can view the omission of a set of relevant variablés as equivalent to
imposing an incorrect rgstriction on @ In particular, omitting Xo is equivalent to in-
correcily estimating@ subject to the restriction 8, = 0. A=wTdiscowmad, ncorrectly
imposing a restriction produces a biased estimator. Another way to view this error is to ]
note that it amounts to incorporating incorrect information in our estimation. Suppose,
however, that our error is simply a failure to use some information that is correct.

The inclusion of the irrelevant variables X5 in the regression is equivalent to failing
to impose 8, =0 on in estimation. But is not incorrect; it simply fails to
incorporate £, = 0. Therefore, we do not need to prove formally that the least squares
estimator of § in is unbiased even given the restriction; we have already proved it.
‘We can assert on the basis of all our earlier results that Cd - 3 )

rwim= = 4] -

By the saffic reasoning, 52 is also pfBiased:
I Fl— ==

Then where is the problem? It would seem that one would generally want to “overfit”
the model. From a theoretical standpoint, the difficulty with this view is that the failure will Be
to use correct information is always costly. In this instance, the COSW
Wil show n |~ cision of the estimates. As weffiave shoWp), the covariance matrix in the short regression
Seedion 4. 344 (omitting Xz) is never larger than the covariance matrix for the estimator obtained in
the presence of the superﬂuous variable§®Consider(@gain th single-variable compar-
ENr 1son;mher— If x5 is highly correlated with xq, then incorrectly including #in the

R

("9 regression will greatly inflate the variance of the estimator. L of ﬁl Per

(7-11)

the past 20 years
ith an eye toward

_9- “There is no loss if X Xy = 0, which makes sense in terms of the information about X1 contained i in X5
(here, none). This sntuatlon is not likely to occur in practice, however.
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L/ 3 ",-745!/ THE VARIANCE OF THE LEAST SQUARES

4. 3.5 The .G'A"Sﬁrl'-‘

M AR KoV
THEOREM

=

r" @x+

ESTIMATOR ANMNP=FHE QAUSS=NARKOA
"I:EI:E-‘OEEM-——— _

If the regressors can be treated as nonstochastic, as they would be in an experlmental /. ;
situation in which the analyst chooses the values in X, then the sampling variance

of the least squares estimator can be derived by treating X as a matrix of constants. o‘:-l-a fnyn
Alternatively, we can allow X to be stochastic, do the analysw condItlonally on the ) C4.g ) %9
observed X, then consider averaging over X as we did in smg Cy. 5) w
(4-4) again, we have 4 )

b= X’X)“lx'(Xﬂ +e) =6+ (X'X)-lx' ((4-51

Since we can write b = B+ Ae, where A is (X'X)~ 1X’ b is a linear function of the N h
disturbances, which by the definition we will use makes it a linear estimator. |
have seen, the expected value of the second term in (4-5YiS 0. Therefore, regardless of f
the distribution of &, under our other assumptions, b is & Imear unbiased estimator of 8.

The covariance matrix of the least squares slope estimator is

Varlb | X] = E[(h -8 (b — ) |X]

/condiions” = E[XX) " Xee XXX ™ |X) .
= XXX Elee’ XXEXX)™ (4-16)
= XX X (@ DXED™
5 IEXD

Example 4.8 Sampling Variance in the Two-Variable Regression Model
Suppoese that X contains only a constant term (column of 1s) and a single regressor x. The
lower, right élement of gz(x’x) -1is

2

-
Z?:j (Xl' ""'7)2

Note, in particular, the denominator of the variance of b. The greater the variation in x, the

Varip|x] = Varfo - 81X =

| ' smaller this variance. For example, consider the problem of estimating the slopes of the two
11 4 regressions in Figure 4.&7 A more precise result will be obtained for the data in the right-hand

~ panef of the figure.

We will now obtam a general result for the class of linear unbiased estimators of 8, e
=Cybea T TEET ] : ~Whete C1s a K X it it X, Tr g ”
8 unblased they

E[Cy| ¥ =E[(CXp+fe)|X]=§

which impfes that CX = I, THere are many ciAndidates. For examp)e, consider using
just the ffst K (or, any K) ligtarly independght rows of X. Then C/£ [X;! : 0], where
X, is fhe inverse of the mafhix formed fromythe K rows of X. The fovariance matrix o
bo g be found by replacig (X'X) ™' X! withC in(4-5) the result if Var[bg | X] = 2C
No# let D = C — (X'X)/' X' s0 Dy = bg/ b. Then, \“\(f-/

Var[bf| X] = o2 [(D /(X'X)"'X)(D + X’




4-16)

THEOREM 4.2 (}auaﬁ—_Markm Theorem

In the clozsfrgtlinear regression model with regressor matrix X, the least squares
« estimator b is the minimum variance linear unbiased estimator of B. For any
- vector of constants w. the-minimism variance linear unbiased estimator of wgin
;_ the g3l regression model is w'b, where b is the least squares estimator. 4

i d

T L T N

Note that the theorem makes no use of Assumption A6, normality of the distribution of the
disturbances. Only Al to A4 are necessary. A direct approach to proving this important theorem *
would be to define the class of linear and unbiased estimators (b, = Cy such that E[b, [X] B) and
then find the member of that class that has the smallest variance. We will use an indirect method
instead. We have already established that b is a linear unbiased estimator. We will now consider
other linear unbiased estimators of [3,-'and show that any other such estimator has a larger variance.
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covariance matrix of the least squarg#’Sslope estimator is
Var[b | X] = - A - IX]
E[X'X) X ee’X(X'X) 1 1 X]
= (X'X)"' X E[ee’ | X]X(X" X

= (X'X) X (DX (X 3

=g (XX)" 1.

Examplerd.2 Sampling Variance in e Two-Variable Regpéssion Model
e that X contains only a constant tgh (column of 1s) and a sip#ie regressor x. The
r righf element of ¢2(X'X) " is

0.2

Z?:1 (xi Ax)? -

Note, in particular, the den@finator of the variance of b/The greater the variatiopAh x, the
smaliler this variance. Fgrexample, consider the problgfh of estimating the slope#of the two
regressions in FigurgA.2. A more precise result will b€ obtained for the data inpfe right-hand
panel of the figurg

Var[bix] sNar[b— g |x] =

We wilhow obiain agenstalre ar-the class of hneg nhiaged estitnatars of 8

Let bo = Cy be another linear unbiased estimator of 8, where Cis a K x nmatrix. If by

is unblased then
' E[Cy|X] = E[(CX8 +Ce) | X] = 8,

which implies that €X = I There are many candidates. For example, consider using
]ust the first X (or, any K) linearly independent rows of X. Then C = [Xo .01, where
XO is the inverse of the matrix formed from the K rows Of X. The covariance matrix of
by can be found by replacing (X/X) " X! with Cin (4-8); the resultis Var[bg | X] = o2CC.
Now let D = C — (X"X)7'X’ s0 Dy = by — b. Then, ™~ J4

Varlbo | X] = o*[@ + X'X) XD+ XX X))
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FIGURE 4.¢ Effect of Increased Variation in x Given the Sams Gonditional and Overall
Variationiny.

We know that CX =1 = DX + (XX)1(X'X), so DX must equal 0. Therefore,
Var[b | X} = o2 (X'X) ' + ¢?DD’ = Varb | X] + o°DDY'.

Since a quadratic form in DD’ is 'DD'q = z'z > 0, the conditional covariance matrix
of by equals that of b plus a nonnegative definite matrix. Therefore, every quadratic
form in Var[bo | X] is larger than the correspondmg quadratlc form in Var[b | X], which

T 6S&ab\ml\es U'\e,

Cirst
result,

The proof of the second statement follows from the previous derivation, since the
variance of w/b is a quadratic form in Varfh | X], and likewise for any by, and proves that
eachindividual slope estimator bk isthe best linear unbiased estimator of Br. (Letwbe all
zeros except for a one in the kth position.) The theorem is much broader than this, how-
ever, since the result also applies to every other linear combination of the elements of 8.

q.’),.(o

4% THE IMPLICATIONS OF STOCHASTIC
REGRESSORS

'The preceding analysis is done conditionally on the observed data. A convenient method
of obtaining the unconditional statistical properties of b.is to obtain the desired re-
sults conditioned on X first, then find the unconditional result by “averaging” (e.g., by

f 1
AL ¥
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integrating over) the conditional distributions. The crux of the argument is that if we
can establish unbiasedness conditionally on an arbitrary X, then we can average over e
. X’s to obtain an unconditional result. We have already used this approach to show
the unconditional unblasedness of b in Section 4.3 so we now turn to the conditional
variance. : S t] e
The conditional variance of b is

Var[b | X] = az(zé%x)-l.
For the exact variance, we use the decomposition of variance of (B-69):
arlb] = Ex[Varfb | X]} + Varx[E [b| X]].
The second term is zero since E [b !;zi_] = ,6 for all_.'X, SO

Var[b] = Bx[0*(X'X) '] = o” Bx[X'X)'].
Our earlier conclusion is altered shghtly We must replace (X’X)“ with its expected
value to get the appropriate covariance matrix, which brings a subtle change in the
interpretation of these resuits. The unconditional variance of b can only be described
in terms of the average behavior of X, so to proceed further, it would be necessary to
make some assumptions about the variances and covariances of the regressors. We will
return to this subject in Section 4974/, 7

We showed in Section 4.4 that
lnear a.,cl 4.3%
“Ynbiased | - Var[b{ X] < Vai[by | X]

for any by # b and for the specific X in our sample. But if this inequality holds for every
particular X, then it must hold for

Var(b] = Ex[Var[b| X]I.

That is, if it holds for every particular X, then it must hold over the average value(s)
of X.
" The conclusion, therefore, is that the important results we have obtained thus far
for the least squares estimator, unbiasedness, and the Gauss-Markov theorem hold
whether or not we regard-X-as-sioshastia. Con -\-l en on e car ticvlar
Sample in hand o~ Lonsider, instead, Sampling broadly Srom he
POPU\Q{“I ;Dvs; .

THEOREM 4.3 Gauss—Markov Theorem (Concluded)

In the eossicat linear regression model, the least squares estimator b is the
minimum variance linear unbiased estimator of § whether X is stochastic or
nonstochastic, so long as the other assumptions of the model continue to hold.
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4[ 3"?— 4% ESTIMATING THE VARIANGE
OF THE LEAST SQUARES ESTIMATOR

If we wish to test hypotheses about g or to form confidence intervals, then we will require
a sample estnmate of the covariance matrix Var[b |X] = aHXX) L The population
parameter o remains to be estimated. Since o2 is the expected value of ¢ and ¢; is an
estimate of ¢;, by analogy,

1 &
0'2:— E ef
n_i:l

would seem to be a natural estimator. But the least squares residuals are imperfect &
estimates of their population counterparts; e; = Yi =2 ‘b = &; —x; (b~ ). The estimator i
is distorted (as might be expected) because g is not observed d1rectly The expected
square on the right-hand side involves a second term that might not have expected
value zero.

The least squares residuals are

& =My =M[Xp +¢e] =
asMX = 0. [See (3-15).] An estimator of o will be based on the sum of squared residuals:
£e=gMe.
The expected value of this quadratic form is ( lfﬁ/é’)
E[¢'e]X] = E[e'Me | X].

The scalar /Mg is a 1 x 1 matrix, so it is equal to its frace. By using the result on cyclic
permutations (A-94),

E[tr(e'Me) | X] = E[tr(Ms¢’) |X].
Since M is a function of X, the result is
tr(ME g6’ | X]) = tr(MoI) = o*tr(M).
The trace of M is
trfl, - XXX = I — e (XX XX] = tr(ly) — r(Ig) =n — K.
Therefore, -
E[eeiX] = (n—K?,

so the natural estimator is biased toward zero, although the bias becomes smaller as the
sample size increases. An unbiased estimator of o2 is 3
ele 9~/ ?’)
§2 = s (M
n—K
The estimator is unbiased unconditionally as well, since E [s%] = Ex {E [s? | X] } =

Ex[az] o?, The standard error of the regressnon is 5, the square root of s? W1th s
we can then compute

Est. Varlb | X] = s*(X’X) .
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Henceforth, we shall use the notation Est. Var[] to indicate a sample estimate of the

sampling variance of an estimator, The square root of the kth diagonal element of

.. this matrix, {[s2(X'X)~1]a}""*, is the standard error of the estimator by, which is often
" denoted simply “the standard error of b;.”

4 2 & #&HF THE NORMALITY ASSUMPTION ARD

-

i2°3 iy s | |
To this point, pur-Specification and analysis of the regression model is semiparametric
. (see Sectio ). We have not used Assumption A6 (see Table 4.1), normality of &, ¥

| in any of our results. The assumption is useful for constructing statistics for <esting- Lorm 1hq
Coenfidence.| bypothesss Ind4-5) b is a linear function of the disturbance vector ¢, If we assume that

b
infervals )

,& has a multivglriate normal distribution, then we may use the results of Section B.10.2
and the meary'vector and covariance matrix derived eatlier to state that

48
Y-y bIX ~ N[g, o2 X'X)). (4:8)
This specifies a multivariate normal distribution, so each element of p | X is normally
- distributed: "t TN
Je foond evidence of 4his resvlt n 4{-—!‘1
Figoee 4.1 bi| X ~ N[, e2X'X)Gl- (4%

cxample 4.], . e . iy e , : .
" mel : 7 [he distribution of b is conditioned on X. The normal distribution of b in a finite sample is

a consequence of our specific assumption of normally distributed disturbances, Without

shes this assumption, and without some alternative specific assumption about the distribution
| paragroph of &, we will not be able to make any definite statement about the exact distribution
of b, conditional or otherwise. In an interesting result that we will explore at length in

“f-l'i ection'd.8) we will be able to obtain an approximate normal distribution for b, with

or without assuming normally distributed disturbances and whether the [ELressors are
stochastic or not.

FORMING AlLe

4.7.1

Let S*¥ be the kth diago
tioned on X,

/1f o2 were known, then statistic
fig s2 instead of o2, we can derj

*This result is proved in Section B.11.4.




y

4.4 LARGE SAMPLE PROPERTIES OF THE LEAST SQUARES ESTIMATOR

Using only assumptions A1 through A4 of the classical model listed in Table 4.1, we have established the

1. following exsct] finite, sample properties for the least squares estimators b, and__s2 of the unknown

parameters B and ¢°: v g

-2))

' [ | FER L

. Efb|X] =Z[b] =B = the least squares coefficient estimator is unbiased: ( ff e \ r@

o E[$’[X] = E[s] =’ ~ the disturbance variance estimator is unbiased;- Hag,m{mlj: iMT'

* Var[b)X] = ’(X'X)" and Var[b] = S”£[(X'X)"}; propernes

* Gauss ;- Markov t\hegrem: The MVLUE of w'B is w'b for any vector of constants, w. u@::} % h(:{f

' 5 T CET pT 0
For this basic model, it is,straightforward to derive the large-sample, or asyr_t_lptbti_'c properties of the\I map 1T [
least squares estimator. The normality assumption, A6, becomes inessential at this point, and will be 1 :.}.ff--
discarded save for discussions of maximum likelihood estimation in Section 4.4.6 and in Chapter,l:ﬁiff k a¥se
| .

4.4.1 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF B

Unbiasedness is a useful starting point for assessing the virtues of an estimator. It assures the analyst that
their estimator will not persistently miss its target, either systematically too high or too low. However, as

a guide to estimation strategy, it has two shortcomings. First, save for the least squares slope estimator .

we are discussing in this chapter, it is relatively rare for an econometric estimator to be unbiased. In
nearly all cases beyond the multiple regression model, the best one can hope for is that the estimator
improves in the sense suggested by unbiasedness as more information (data) is brought to bear on the
study. As such, we will need a broader set of tools to guide the econometric inquiry. Second, the

property of unbiasedness does not, in fact, imply that more information is better than less, in terms of

estimation of parameters. The sample means of random samples of 2, 100, and 10,000 are all unbiased
estimators of a population mean by this criterion all are equaily desirable. Logically, one would hope
that a larger sample is better than a smaller one in some sense that we are about to define (and, by
extension, an extremely large sample should be much better, or even perfect). The property of

S consistency improves on unbiasedness in both of these directions.
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1 To begin, we leave the data generating mechanism for X unspec1ﬁed X may be any
mixture of constants and random variables generated mdependentiy of the process
that generates g. We do make two crucial assumptions. The first is a modification of

Assumption AS in Table 4.1; !

new 4 (‘q?\o ASa. (x;,e)i=1,...,nis asequence of independent observations.
ra
e @ The second concerns the behavior of the data in large samples;
i 1.e
plim %)-5 = Q, apositive definite matrix, 4-21)
n»oo T

[We will return to (4- 2(1') shortly.] The least squares estimator may be written

sote (S2) (3. o

s 4

If Q! exists, then
plimb =8 + Q__lplim(?'%g-)

because the inverse is a continuous function of the original matrix. (We have invoked
Theorem 1D.14.) We require the probability limit of the last term. Let J
1 1 1 22
., 'Y = — 18 = — j = __ 4-

RE= D B =) W (4-23)

Then
plimb = g + Q! plim W.

From the exogeneity Assumption A3, we have E[w;] = X[E [w: | x:]] = Ex[x; E [ | % 1
=0, so the exact expectation is E[w] = 0. For any element in X; that is nO].'lStOChaStIC
the zero expectations follow from the marginal distribution of ¢;. We now consider the
variance. By (B-70), Var[w] = E{Var[w| X]] + Var[ E[W | X]]. The second term is zero
because E|g; lx,] = 0. To obtain the first, we use E [ee’ | X] = 0?1, 50

Var 1X) =BG 1X] = X Elee 10K, = (%) (52

nj\ n
- (5)=(5)

Therefore,
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1.
TABLE 4. Grenander Conditions for Well-Behaved Data

T s T G1. For each column of X, x;, if d%, = xxy, then lim, ..o, d2, == +co. Hence, x, does not

" degenerate to a sequence of zeros. Sums of squares will continue to grow as the sample size
increases. No variable will degenerate to a sequence of zeros.

G2 Lim,_oox}/d% = 0foralli = 1, ..., 7. This condition implies that no single observation
will ever dominate x;x;, and as » — oo, individual observations will become less important.
3. Let R, be the sample correlation matrix of the columns of X, excluding the constant term
if there is one. Then lim, ... R, = C, a positive definite matrix. This condition implies that the
full rank condition will always be met. We have already assumed that, X has full rank in a finite
sample, so this assumption ensures that the condition will never be violated.

The variance will collapse to zero if the expectation in parentheses is (or converges to)
a constant matrix, so that the leading scalar will dominate the product as # increases.
Assumption (421) should be sufficient. (Theoretically, the expectation could diverge
~ while the probability limit does not, but this case would not be relevant for practical

410 [ purposes.) It then follows that . —
it r’ - ;
Jim Var[#] =00 =0. (4-22) o &
Since the mean of W is identically zero and its variance converges to zero, W converges h"_ A E%ﬁ%
in mean square to zero, so plim W = 0. Therefore, o “!_‘5'(‘:’_11 >
plimg('?'ﬁF =9, @24 | Chap: IS

80

plimb = g8 +_Q_‘1 -0 -—_—_,8. bneapy (4-25)

This result establishes that under Assumptions Al-~A4/nd the additional assumption
! ~21), b is a consistent éstimator of § in the elassicat Tegression model.

. 0 —7  “Time-series settings that involve time trends, polynomial time series, and trending )
variables often pose cases in which the preceding assumptions are too restrictive. A |
- somewhat weaker set of assumptions about X that is broad enough to include most of
rar e SN A these is the Grenander conditions listed in Table #:8* “The conditions ensure that the
C 0 = data matrix is “well behaved” in large samples. The assumptions are very weak and

3 [ "7 ) likely to be satisfied by almost any data set encountged in practice® 4

4.2

SleJAHES B

To derive tjfe asymptotic distribfition of the least squgfes estimator, we shall use the

2 #udge et al. (1985, p. 162).

4. JWhite (2001) continues this line of analysis,


Bill
Sticky Note
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4.4.2 Asymptotic Normality of the Least Squares Estimator Wil
!
As a guide to estimation, consistency is an improvement over upbiasedness. Since we are in the process
of relaxing the more restrictive assumptions of the model, incliding A;6, normality of the disturbances,
we will also lose the normal distribution of the estimator that nablel us to form confidence intervals in "~
~ Sectionfd.7? It seems that the more general model we have built here has come at a cost. In this section,’ -
MH Tind that normality of the disturbances is not necessary for establishing the distributional results*
4{ 5| we need to allow statistical inference including confidence intervals and testing hypotheses. Under
. II generally reasonable assumptions ‘about thé process that generates the sample data, large sample
distributions will provide a reliable foundation for statistical inference in the regression model (and more
generally, as we develop more elaborate estimators later in the book).
To derive the asymptotic distribution of the least squares estimator, we shall use the results of
Section D.3. We will make use of some basic central limit theorems, so in addition to Assumption A3
(uncorrelatedness), we will assume that observations are independent. It follows from (4-21) that
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M

- VEp-p- (B2 (3)xe. w20

Sincetheinverse matrixisa contmuous funeuon of the original matrix, plim(X'X/m) ™! =
Q1. Therefore, if the limiting distribution of the random vector in (4-26) exists, then
that limiting distribution is the same as that of

[ R

Thus, we must establish the limiting distribution of

1 ) Y
—= | X'e = +/n(W - E[W]). (4-28)
 (G5)ws- itz £m)

_— where E[W] = 0. [See (4-28).] We can use the multivariate Lindeberg-Feller version of __ 2/
/ = the central limit theorem (D.19.A) to obtain the limiting distribution of ./AW. @Usmg o
[__ that formulation, W is the average of n independent random vectors w; = X;s:, With

means 0 and variances ] '
Varlxiei] = 62 E[xx] = 0°Q;. 4-29)
The variance of \/nw is
— 1 \
67Q, = ? (;)[gl L Q4O @-30)

As long as the sum is not dominated by any particular term and the regressors are well
behaved, which in this case means that (4-20) holds, .0
S —

Jim ng? =0’Q. (4-31)

Therefore, we may apply the Lmdeberg—-Feller central limit theorem to the vector /n W,
as we did in Section D.3 for the univariate case /nX. We now have the elements we
need for a formal result. I [x;¢;],i = 1, ..., n are independent vectors distributed with
mean @ and variance o2Q; < oo, and if (4;%'2 holds, then

(%)Xa -4, N[0,5%Q}. (4-32)

It then follows that _
o'z )Xe 5 M@0 00 ) @33

Combining terms, ’
Jib - B) 2 N, Q1. @-34)

‘,Z Note that the Lindeberg-Levy version does not apply because Var{w;] is not necessarily constant.
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Using the technique of Section D.3, we obtain the qs_yqi_iff_oﬁc distribution of b:

THEOREM 4.? Asymptotic Distribution of b with Independent

- - Observations
If {e;} are independently distributed with mean zero and finite variance o and xix
is such that the Grenander conditions are mer, then

2 0_2 1 ) . Fi
bEN [ﬁ ~q ] . @35)

In practlce it is necessary to estimate (1 /n)Q“TL with (X’X)“ and o? with e’e/(n — K).
If & is normally distributed, then@®esult] ISTITabIE 4.4, Section 4. Epholds i every
sample, so it holds asymptotically as well. The important implicafion of this derivation
;7. s that if the regressors are well behaved and observations are independent, then the
“ " asymptotic normality of the least squares estimator does not depend on normality of
the disturbances; it is a consequence of the central limit theorem. We will consider other,
more general cases in the sections to follow.

4.&3 CONSISTENCY OF s* AND THE ESTIMATOR OF Asy. Varib}

. Tocomplete the derivationo symptotj roperties of b, we will require an estimator
"N of Asy. Varlb] = (02/myQ 1 ¥ With (421}, it is sufﬁcient to restrict attention to s2, so
I+ the purpose here is to assess the con51stency of 52 as an estimator of o2, Expandmg

1
2

r
7= &

produces

’ ’ ry 1 ’
o e - e XXXK) K] = [2 - (f—’—‘) (-X-X) (-X—“)l
n—K ~k| n n 1 n

The leadmg constant clearly converges to 1. We can apply (4{21}, (4-24) (twice), and
the product rule for probahlllty limits (Theorem D.14) to asse that the second term in
the brackets converges to 0. That leaves

- 1&,

2 E:

g4 = — £y,
jVti—lf

This is a narrow case in which the random variables ¢? are independent with the same
finite mean o2, so not much is required to get the mean to converge almost surely to
o = E[£?]. By the Markov theorem (I).8), what is needed s for E[| ¢? |1*¢] to be finite,
s0 the minimal assumption thus far is that ¢; have finite moments up to slightly greater
than 2. Indeed, if we further assume that every ¢ has the same distribution, then by
the Khinchine theorem (D.5) or the corollary to D8, finite moments (of &) up to 2 is

20

@ ESe:e, McCallum (1973) for some useful commentary on deriving the asymptotic covariance matrix of the
' least squares estimator.

4-2¢,

resvié
C4 -1g
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| 4 |
sufficient. Mean square convergence would reqmre E [s“] e d)s < 0o. Then the terms in
the sum are independent, with mean % and variance ¢; —o'* So under fairly weak con-

- ditions, the first term in brackets converges in probability to o2, which gives our result,

- _._.phm_; =07,
and, by the product rule, o :
plims*X'X/m ™" =o?Q".
The appropriate estimator of the asymptotic covariance matrix of b is

Est. Asy. Var[b] = s2XIX) L

413144 ASYMPTOTIC DISTRIBUTION OF A FUNCTION OF b:
THE DELTA METHOD ANSTHEMETHOROEKRINSKY
ANDHOER

We can extend Theorem D.22 to functions of the least squares estimator. Let f(b) be
a set of J continuous, linear, or nonlinear and continuously differentiable functions of
the least squares estimator, and let

afb)

Bb' '
where Cis the J x K matrix whose jthrow is the vector of derivatives of the jth function
with respect to b. By the Slutsky theorem (D.12),

plim £(b) = K(6)

C) =

and

of(8)
o %

Using suswswatlinear Taylor series approach.«{see—Seet-Len-é—S} we expand this set of
functions in the approximation

f) =By +T x b~ ,6) + higher-order terms.

plim Cb) = =T.

The higher-order terms become negligible in large samples if plim b = §. Then, the
asymptotic distribution of the function on the left-hand side is the same as that on the
right. Thus, the mean of the asymptotic distribution is phm f(b) = f(8), and the asymp-
totic covariance matrix is { '[Asy. Var(b— 8 )]1"’} which gives us the following theorem:

s
THEOREM 4.8 Asymptotic Distribution of a Function of b
If £(b) is a set of continuous and continuqusly differentiable functions of b
such that T = 3£(8)/88’ and if Theoremd.5 Holds, then q‘l.‘
2 y
1) & N [fgﬁ),_r (%Q‘l) r'] . 4-36)

In practice, the estimator of the asymptotic covariance matrix would be
Est. Asy. Var[f(h)] = C[s*X'X)']C.
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If any of the functions are nonlinear, then the property of unbiasedness that holds | y
for b may not carry over to f(b). Nonetheless, it follows from (4-25) that f(b) is a I, T E] 4
- consistent estimator ofﬁ__(_g), and the asymptotic covariance matrix is readily available. i !

Exampie 4.%X Nonlinear Functions of Parameters: The eﬂ:ﬁetho S ghsen f'l - {
A dynamic version of the demand for ‘gasoline model in Exampie ould be used to | ¢ il ,-'ﬂ-i” Eﬂ
separate the short, and fong, term impacts of changes In Income and prices. The model I AL L )
would be . Iy

In{G/Pop)s, = 1+ P2 In P+ Bs In(lncome/Pop),j fa “'.'.F_’nc.r

ce. PM and ~ tBsInFuc+y IN(G/Pop)r-1 + &1,

e T /’ Inthis model, the short run price and income elasticities are 8, and 3. Thelongrun elasticitles ]

[D are are o = B2 /(1 — ¥} and ¢35 = /(1 — y}, respectively. (See Section(20.3)for development .
. ?_ﬁ' SR eres of this model.) To estimate the long,run elasticities, we will estimate the Parameters by least
P cice in 2 v 5@ a sguares and then compute these two nonlinear functions of the estimates. We can use the

e @ N delta method to estimate the standard errors.
| Least squales. estimates of the model parameters W|th standard errors and t ratlos are

e\ g sbi . ;w?t run elasticatles are the estlmates gaven in the table. The two estlmated
ici e long, ruftElasticiesare f» = b/(1 — ¢) = —0.069532/(1 — 0.830971) = —0.411358 and
' - fz = 0.164047/(1 — 0.830971) = 0.970522. {Nete-hanclose-this-ostimateistothe-estimate-
- from-the-static-agquatien-im-Exermple-d4-: To compute the estimates of the standard errors,

g (o™ we need the partial derivatives of these functions with respect to the six parameters in the
model:

g, = 962/9" = 10,1/(1-7),0,0,0, B/(1 - y)?] = [0,5.91613, 0,0, 0, —2.43365],
94/ = 8¢s/38" = 10,0,1/(1—v),0,0, B3/(1 — ¥)*] = [0,0,5.91613,0,0,5.74174].

21.3

4>

TABLE 4/f Regression Results for a Demand Equation
Sum of squared residuals: 0.0127352
Standard error of the regression: 0.0168227
R? based on 37 observations 0.9951081
Variable 5/ Coefficient Standard Error t Ratio
Constant ~3.123195 0.99383 —3.136
InPg —0.069532 0843 5-0193 2  —4.720
In Income/ Pop 0.164047 0.699+0%85 02 2981
In P, —0.178397% 0157947055y 3335233
In £, 0.127009 0. -1-9339035‘7? 3.551
last period In G/ Pop 0.830971 0.04576 18.158
Estimated Covariance Matrix for b (e — rn = times 107%)
Constant InPs In(fncome/Pop) In P, InP, In(G/Pop),_,

0.99168

—0.0012088 0.00021705
~0.052602 1.62165e-5 0.0030279
0.0051016 —0.00021705  —0.00024708 0.0030440
0.0091672 —4.0551e-5 —0.00060624  —0.0016782  0.0012795
0.043915  —0.0001109 —0.0021881 0.00068116 8.5700le-5  0.0020943
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Using (4-36), we can now compute the estimates of the asymptotic variances for the two
estimated long run elasticities by computing g.Ts*(X'X) "]g, and g’ [s*(XX)"gs. The

results are 0.023194 and 0.0263692, respectively. The two asymptotic standard errors

© % are the square roots, 0.152296 and 0.162386.fWe can also fo
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TABLE 4.8 Simulation Resuits™

Parameter Estimate /St/d. Error.  Sample Mean  Sample 8td. Dev. .
B2 ' 0.04377 —0.069453 0.035074
B o 0.07771 0.16410 0.053602
0. 830971 0.04576 0.83083 0.044533
—0.41361 0.152296 - —0.449 0.19444
0.97527 0.162382 - 0.96313 0.18787

e with the two methods. It is diffiguft to draw a conclusion about the effectiveness
of the delta method based on the réceived results—it does seem at this juncture tha
the delta method remains an géfective device that can often be employed with a
calculator as opposed to thé much more computation intensive Krinsky angd-Robb
(1986) technique. Unfgetiinately, the results of any comparison will depend orf the data,
the model, and the fdnctions being computed. The amount of nonlineapity in the sense
of the complegity of the functions seems not to be the answer. Kefisky and Robb’s
case was mefivated by the extreme complexity of the translog efasticities. In another
study, Hdle (2006) examines a similarly complex problemyand finds that the delta
metpéd still appears to be the most accurate. For anothepfhow classic) application, see

ample 6.5.

ettt

4#5 ASYM PTOTIC EFFICIENCY

We have not established any large-sample counterpart to the Gauss-Markov theorem,
That is, it remains to establish whether the large- sample properties of the least squares
estimator are optimal by any measure. The Gauss—Markov theorem establishes finite
sample conditions under which least squares is optnnal The requirements that the
estimator be linear and unbiased limit the theorem’s generality, however. One of the
main purposes of the analysis in this chapter is to broaden the ciass of estimators in
the odel to those which might be biased, but which are consistent. Ultimately,
we shali also be interested in nonlinear estimators. These cases extend beyond the reach
of the Gauss-Markov theorem. To make any progress in this direction, we will require
an alternative estimation criterion.

DEFINITION 4.1 Asymptotic Efficiency

An estimator is asympiotically efficient if it is consistent, asympiotically normally
distributed, and has an asymptotic covariance matrix that is not larger than the
asymplotic covariance matrix of any other consistent, asymptotically normally
distributed estimator.



