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We can compare estimators based on theipasymptotic variances. The comphcatlon in comparing pt = @
Ay

two consistent estimators is that both converge tofthe true parameter as the sample size mcreases

Moreover, it usually happens (as in our example(4.9), that they converge at the same rate - —that is, in both \

cases, the asymptotic variance of the two estimatGts are of the same order, such as O( Ifn) In such a J‘; = al

situation, we can sometimes compare the asymptotic variances for the same » to resolve the ranking. The £ F i

least absolute deviations estimator as an alternative to least squares provides an example. » E:ﬂh ‘I.fm

Lk = ] Y
Exampie 4.5 Least Squares vs. Least Absolute Deviations _ﬁA Monte Carlo Study [ ( K5

We noted earlier (Section 4.2) that while it-enjoys several virtues, least squares is not the only > -
available estimator for the parameters of the linear regresson model. Least absolute deviations

(LAD) is an alternative. (The LAD estimator is consideréd in more detail jn Sec‘uon% .) The LAD

estimator is obtained as -

buap = the minimizer of Z 'b0 [, i
in contrast to thelinear least squares estimator,
b5 = the minimizer of ZL(«V{' ~xb, ).

Suppose the regression model is defined by _
LoD A ,-\:l 0 nan "
_y,' = ¥I'B + 8‘!, _‘__’,———'—/ ,

where the distribution of g; has condltlonal mean zero, constant variance o kand median zero as well
i the distribution is symmetric - and plim{1/n)X'e = : 0. That is, all the usual regression assumptions,
but with the normality assumptton replaced by symmetry of the distribution. Then, under our
assumptions, bys is a consistent and asymptotically normally distributed estimator with asymptotic
covariance matrix given in Theorem 4.4, which we will call csz_lf\. As Koenker and Bassett (1978,
1982}, Huber (1987), Rogers (1993),and Koenker (2005) have discussed, under these assumptions,
buap is also consistent. A good estimator of the asymptotic variance of buap would be (1/2)2[1/)‘(0)]?\
where f{0) is the density of € at its median, zero. This means that we can compare these two
estimators based on their asymptotic variances, The ratio of the asymptotic variance of the k’th
element of buap to the corresponding element of bis would be

qx = Varlbuo)/Var(bes) = (1/2)X(1/5))[1/f(0)%.

ifg actually did have a normal dlstrlbut!on with mean (and median) zero, then

-~ E
| L .'_.

fle) = (2mo?) exp(- 82/(202))

so fi0) = (2n?)™ and for this special case g, = m/2. Thus, if the disturbances are normatly
distributed, then LAD will be asymptotically less efficient by a factor of n/2 = 1.573.

The usefulness of the LAD estimator arises precisely in cases in which we cannot assume
normally distributed disturbances. Then, it becomes unclear which is the better estimator. it has
been found in a long body of research that the advantage of the LAD estimator is most likely to
appear in small samples when the distribution of £ has thicker tails than the normal that is, when
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./ "variation in repeated samples.” For this experiment, we will do this for R = 10, 50,and 100. The

Ix.-_q "‘3 LH -

outlying values of y; are more likely. As the sample size grows larger, one can expect the LS E—

estimator to regain its superiority. We will explore this aspect of the estimator in a small Monte
Carlo study. F4.1

Examples 2.6 and 3.4 note an intriguing feature of the fine art mar%At least in some settings,
large paintings sell for more at auction than small ones. Appendix Tabl

$10 000 up to as much as $33 million. A linear regression of the log of the price on a constant term,
the log of the surface area,and the aspe.c_t‘ ratio produces the results in the top line of Table 4.4 ,

i | This is the focal point of our analysis. In orderto study the different behaviors of the LS and LAD |

estimators, we will do the following Monte Carlo study”), We will draw without replacement 100
samples of R observations from the 430. For each of the 100 samples, we will compute by, and
bup,. We then compute the average of the 100 vectors and the sample variance of the 100
observations:®” The sampling variability of the 100 sets of results corresponds to the notion of

contains the sale prices,
- ‘widths,and heights of 430 Monet paintings. These paintings sold at auction for prices ranging from_ |

, (‘gu TCI g
o fudy '
._ﬁd{_l‘f
(hap- ish
'_.'.r-j- df
{]r m“ﬂf’f’
51 "i'-'.-.
hf"i”f‘

e

overall sample size is fairly large, so it is reasonable to take the full sample results as at least "

approximately the “true parameters,” —The standard errors reported for the full sample LAD
estimator are computed using bootstrappmg Briefly, the procedure is carried out by drawing 8 -

we used 8 = 100 - . samples of n (430) observations with replacement, from the full sample of n
observations. The estlmated variance of the LAD estimator is then obtained by computing the mean

squared deviation of these B estimates around the full sample LAD estimate t the mean of the B -

estimates). This procedure is discussed in detail in Section (ZREEAS |5,

If the assumptions underlying our regression model are correct, we should observe the -

following: |
(1) Since both estimators are consistent, the averages should resemble the mam results abeve
the more so as R.increases.
(zl).,As Rincreases, the sampling variance of the estimators should decline.
%4, (2) We should observe generally that the standard deviations of the LAD estimates are larger
than the corresponding values for the LS estimator.
1. (3) When R is small, the LAD estimator should compare more favorably to the LS estimator, but

as R gets larger, any advantage of the LS estimator should become apparent.

7 Being a Monte Carlo study that uses a random number generator, there is a question of replicability. The study

was done with NLOGIT and is replicable. The program can be found on the website for the text. The qualitative

results, if not the precise numerical values, can be reproduced with other programs that allow random sampling -

from a data set.

%

“# Note that the sample size R is not a negligible fraction of the population size, 430 for£ach replication. However,

this does not call for a finite population correction of the variances in Table(4.8) We are not computing the .
variance of a sample of R observations drawn from a population of 430 paintings. We are computing the variance .

of a sample of R statistics each computed from a different subsample of the full population. There are a bit less
than 107 different samples of 10 observations we can draw. The number of different samples of 50 or 100 is
essentially infinite.
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A kernel density estimate for the distribution of the least squares residuals appears in Figure 4.4,
There is a bit of skewness in the distribution, so a main assumption underlying our experiment lf_lf
may be violated to some degree. Results of the experiments are shown in Table 44€<?ﬁTe_for/ce/
of the asymptotic results can be seen most clearly in the column for the coefficient on IogArea.
The decline of the standard deviation as R increases is evidence of the consistency of both
estimators. In each pair of results (LS LAD), we can also see that the estimated standard
deviation of the LAD estimator is greater by a factor of about 1.2 to 1.4, which is also to be
expected. Based on the normal dlStI"ibUthl’l, we would have expected this ratio to be v1.573|=
1.254. =

¢

Figura-;;iﬁ"xe:nhl Blsrisity Estimiater for LeastSquares Hesidusls,, ] i

)
TABLE Estimated Equations for Art Prices Areo- j et
Gonstant Lo Sife Aspect Ratio "oNate |
- Standard Standard Standard b
Full Sample Mean Deviation Mean Deviation Mean Deviation
LS -8.42653 0.61184 1.33372 0.09072 -0.16537 0.12753
LAD -7.62436 0.89055 1.20404 0.13626 -0.21260 0.13628 i
R=10
LS -9.39384 5.82900 1.40481 1.00545 0.39446 2.14847
LAD -8.97714 10.24781 1.34197 1.48038 0.35842 3.04773
R=50
LS -8.73099 2.12135 1.36735 0.30025 -0.06594 0.52222
LAD -8.91671 2.51491 1.38489 0.35299 -0.06129 0.63205
R=100 .
‘LS --8.36163 1.32083 1.32758 0.17836 =-0.17357 0.28977
LLAD -8.05195 1.54190 1.27340 0.21808 --0.20700 0.29465
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4.4.6 MAXIMUM LIKELIHOOD ESTIMATION

We have motivated the least squares estimator in two ways: First, we obtained Theorem 4.1 which states
that the least squares estimator mimics the cocfficients in the minimum mean squared error predictor of y
in the joint distribution of y and x. Second, Theorem 4.2, the Gauss;Markov Theorem, states that the least - -
squares estimator is the minimum variance linear unbiased estimator of B under the assumptions of the: .. .. -
miodél. “Neither of these results relies on Assumption A6, normality of the distribution of . A natural™
question at this point would be, what is the role of this assumption? There are two. First, the assumption
of normality will produce the basis for détermining the appropriate endpoints for confidence intervals in
Sections 4.5 and 4.6. But, we found in Section 4.4.2 that-based on the central limit theorem, we could
base inference on the asymptotic normal distribution of b, even if the disturbances were not normally
distributed. That would seem to make the normality assumptlon no longer necessary, which is largely
true,but for a second result.
] If the disturbances are normally distributed, then the least squares estimator is also the maxxmum
 likelihood estimator (MLE). We will examine maximum likelihood estimation in detail in Chapter /1‘3/'/?'
so we will describe it only briefly at this point. The end result is that by virtue of being an MLE, least
squares is asymptotically efficient among consistent and asympiotically normally distributed estimators. (7. |
This is a large sample counterpart to the Gauss!Markov theorem (known formally as the Cramer—Rao il
bound). What the two theorems have in common is that they identify the least squares estimator as the
most efficient estimator in the assumed class of estimators. They differ in the class of estimators
assumed:

Gauss-Markov: Linear and unbiased estimators;
ML: " Based on normally distributed disiurbances,
consistent and asymptotically normally distributed estimators..

These are not “nested.” Notice, for example that the MLE result does not require unbi_asedness or
~ linearity. Gauss‘Markov does not require normality or consistency. The Gauss-Markov Theorem is a

" finite sample- result while the Cramér:Rao bound is an asymptotic (large; sample) property. The
important aspect of the development concerns the efficiency property. Efﬁc;ency, in turn, relates to the
question of how best to use the sample data for statistical inference. In general, it i is difficult to establish
that an estimator is efficient without bemg specific about the candidates. The Gauss -Markov theorem is a
powerful result for the linear regression model. However, it has no counterpart in any other modeling
context, so once we leave the linear model, we will require different tools for comparing estimators. The
principle of maximum likelihood allows the analyst to assert asymptotic efficiency for the estimator, but
only for the specific distribution assumed. Example 4.6 establishes that b is the MLE in the regression
model with normalty distributed disturbances. Example 4.7 then considers a case in which the regression
disturbances are not normally distributed and, consequently, b is less efficient than the MLE.
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Example 4.6 MLE with Normaliy Distributed Disturbances -
With normally distributed disturbances, y;|x; is normally distributed with mean x,IB and variance %,
so the density of y; I_;_t, is

exp “l(yj x B)Z m
e Sk - [Jz | | |
: TEO' 1 oo

The log likelihood for a sample of n indebeﬁdéht'obser_vations is equal to the log of the joint density
of the observed random variables. For a random sample, the joint density would be the product, so
the log likelihood, given the data, which is written InL(B]y,X) would be the sum of the logs of the

densities. ThIS would be (after a bit of manipulation}) ,O""
" In,L(BIy,X) (n/Z)[Ino + In2m + (1/0 )—Z(v. X I3) 1. :
S
! The values of 3 and o’ that maximize this function are the maximum likelihood estimators of B and

o’. As we will explore further in Chapter ﬁaﬂ #@-eqmﬂcn-ﬁzam the functions of the data
that maximize this function with respect to B and o’ are the least squares coefficient vector, b, and

the mean squared residual, ¢’e/n. Once again, we leave for Chapter 1§/a derivation {6 the folfowmg )
result, — ‘T of

Asy.Var[ﬁWJ} = “E[0"InL/0BOBT" = GEIXK) "] % f;wploﬂ'"“”; (en d exactly)

ﬁﬂ'hich is exactly what appears in SectionEST’ Thig'shows that the least squares estimator is the
maximum likelihood estimator. it is consistent, normally distributed, and, under the assumption of
normality, by virtue of Theorem,-‘fg)@, asymptotically efficient.
. é
It is important to note that the properties of an MLE depend on the specific distribution assumed
for the observed random variable. If some nonnormal distribution is specified for € and it emerges that b
is not the MLE, then least squares may not be efficient. The following case-illustrates.

e

|'I ! I,\"'-.f-\\-l.ll_-' I:
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72 PART | + The Linear Regression Model

[ In Chapter 16, we yill show that if the dispiTbalices Fre Ty HiETibed, then

’
[.’( 7 Exampl; 3 The Gamma Regression Model
-

Greene (1980a) considers estimation in a regression model with an asymimetrically distributed
disturbancs, ’

y = (a+a+P) +_5’ﬁ + (g — cr\/_ﬁ) ="+ X8+,
where ¢ has the gamma distribution in Section B.4.5 [see (B-39)] and o = +/P/x is the
standard deviation of the disturbance. In this model, the covariance matrix of the least squares

estimator of the slope coefficients (not including the constant term) is,-

Asy.Varlb | X] = az(ﬁﬁljlor)‘() -,
[t | whereas for the maximum likelihood estimator (which is not the least squares ¢=.-stimator)\,"""‘H
Asy. VarBu ]~ [1 — (2/P)Jo* (X M°X) "

But for the asymmetry parameter, this resuit would be the same as for the least squares

estimator. We conclude that the estimator that accounts for the asymmetric disturbance
distribution is more efficient asymptotically. i

4.9.6 MORE GENERAL DATA G RATING PROCESSES

The asymptotic properties of
established under the foll

estimators in the classical regression
112 assumptions:

Al. Linearifpey; = xup + xnfz -+ -+ xigfr + 55
A2. Fullsunk: The n x K sample data matrix, X has
A3,

column rank,
wogeneiry of the independent variables: E[gfxn, xp0, ..., x; k] =0
Lj=1,...,n

Homeoscedasticity and nonautocorrel
Data generating mechanism-indepafident observations.

AS.

The following are the crucial results n
(4'24):

ed: For consistency of b, we need (4-

plim(1/mX'X Alim Q, = Q, a positive definite matri

plim(1/n)} = plim w,, = E[w,] = 0.

- )-zThe matrix M° produces data in the form of deviations from sample means. (See Section A.2.8.) In Greene’s
% model, P must be greater than 2, .
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* Another example that is somewhat similar to the model in Example 4.7 is the stochastic frontier model
developed in Chapter 1§, In these two cases in particular, the distribution of the disturbance is
asymmetric. The maximum likelihood estimators are computed in a way that specifically accounts for -
this while the least squares estimator treats observations above and below the regression line
symmetrically. That difference is the source of the asymptotic advantage of the MLE for these two -
- models.
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4.5 Interval Estimation

The objective of interval estimation is to present the best estimate of a parameter with an explicit
expression of the uncertainty attached to that estimate. A general approach, for estimation of a parameter
0, would be o

n

. 0 t+ sampling variability . 4-37) R
(We are assuming that the interval of interest would be symmetic around 8 .) Following the logic that the

range of the sampling variability should convey the degree of (un)certainty, we consider the logical
extremes. We can be absolutely (100%) certain that the true value of the parameter we are estimating lies

in the range 8 + 0. Of course, this is not particularly informative. At the other extreme, we should place _——

no certainty (0%) on the range 6 £0. The probability that our estimate precisely hits the true parameter Cpuin =
value should be considered zero. The point is to choose a value of ¢ — 0.05 or 0.01 is conventional - +/
such that we can attach the desired confidence (probability), 100(1- rx)%, to the interval in (4-37). We PEreEnT
consider how to find that range .then apply the procedure to three familiar problems, interval estimation
for one of the regressmn parameters, estlmatmg a function of the parameters and predicting the value of
the dependent variable in the regression using a specific setting of the independent variables. For this
purpose, we depart from assumption A6 that the disturbances are normally distributed. We will then relax
that assumption and rely instead on the asymptotic normality of the estimator.

4.51 Forming a Confidence Interval for a Coefficient

From(4-18), we have that b|X ~ J\f[i_i,sz(?{{__'X)']]. It follows that for any particular element of b, say &,

~ NP, 6°5%]
where $% denotes the kth diagonal element of (;g'}_{)'l. By standardizing the variable, we find
g =tube (4-38)
ol

has a standard normal distribution. Note that z; which is a function of ;, By, o2 and 5% nonetheless has a _
distribution that involves none of the model parameters or the data; z; is a plvotal statistic. Using our
conventional 95% confidence level, we know that Prob[-l 96 <z < <'1.96]. By a simple manipulation, we
find that a &MA

Prob {bk ~1.96Vc>S¥ [<B, <, +1.96 Gsz-k} = 0.95. (4-39)

Note that this is a statement about the probability that the random interval &, + the sampling variability
contains [3,, not the probability that By lies in the specified interval. If we wish to use some other level of
confidence, not 95%, then the 1.96 in (4-39) is replaced by the appropriate z . 2. (We are using the
notation z - o) to denote the value of z such that for the standard normal variable z, Prob[z < Z0- Dufz)] = 1
- /2. Thus, 25975 = 1.96, which corresponds to o = 0. 05) WS

We would have our desired confidence interval in (4-39), save for the complication that o’ is not
known, so the interval is not operational. It would seem natural to use s* from the regression. This is,
indeed, an appropriate approach. The quantity

(n- If)s e =( _ﬁ-) M(E] @-40)
G (o] 1) G
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is an idempotent quadratic form in a standard normal vector, (g/c). Therefore, it has a chi-squared
distribution with degrees of freedom equal to the rank(M) = trace(M) = n-K. (See Section B11.4 for the
proof of this result.) The chi-squared variable in (4-40) is independent of the standard normal variable in
(4 38) To prove thxs 1t suffices to show that

Wa)ertt)

is independent of (n— K)s*/c°. In Section B.11.7 (Theorem B. 12), we found that a sufficient condition for
the independence of a linear form Lx and an idempotent quadratic form x’Ax i 4 standard normal vector

X is that LA = 0. Letting &/c be the. X, we find that the requirement here would be that (XX) X’ M=0.1t
does, as seen in (3 15). The general result is central in the derivation of many test statistics in regression f @
analysis. s n{ L
: =T ﬁf{ﬂf I
L= ' 5""{- ,L IS
THEOREM 4.4 Independence of b and 5° oK

If & is normally distributed, then the least squares coefficient estimator b is sta-
tistically independent of the residual vector ¢ and therefore, all functions of e,
including s°.

||'|qui

(bk — ﬁkl)f{'v‘az_‘gkig " Z.Jf\‘ - ﬁ_ﬁ skl \(10 M 'Jlfl'r"""r-I

' -3 4-13 iy
VI — Kistjoljin— Ky V5-5% |t
_ g

Therefore, the ratio =

fe =

= O |
has a 7 distribution with (# — K} degrees of freedom.“l’Wa can use # to test hypotheses
or form confidence intervals about the individual elements of .~
The result in (4-41) differs from (4-38) in the use of _s2 instead of %, and in the pivotal
distribution, # with (# — K) degrees of freedom, rather than standard normal. It follows that a confidence
interval for (3, can be formed using

.’ :

Pr0b|:blc —40 -y n-k] VslSH <, < b, +t(1 w2 =K1V S ZSH{} =1-a, (4-42)

# L s
where {2 sk 18 the appropriate critical value from the ¢ distribution. Here, the distribution of the
pivotal statistic depends on the sample size through (» — K), but, once again, not on the parameters or the
data. The practical advantage of (4-42) is that it does not involve any unknown parameters. A confidence
interval for 3, can be based on (4-42)

¥ See (B-36) in Section B.4.2. It is the rationi of a standard normal variable to the square root of a Chl-
squared variable divided by its degrees of freedom.
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TABLE ) Hegresslon Resuits for a Demand Equation

Sum of squared residuals: 0.120871

Standard error of the regression: 0.050712

R? based on-52 observations 0.958443

Variable Coefficiént - Standard Error t Ratio

Constant —21.21109 0.75322 —28.160

in_Pg ~0.021206 004377 00485 O 485
In Income/ Pop 1.095874 0.07771 14,102

In B, —0.373612 0.15707 —2.379

In P, 0.02003 0.10330 0.194

4.8
Example Confidence Interval for the Iincorme Elasticity of Demand

for Gasoline L2 end ¥
Using the gasoline market data discussed in Examplg , we estimated the following demand
equation using the 52 observations:

In{G/Pop) = p1 + B2 In Pa + Ba InlIncome/Pop) + Ba In Fre + s In Py +e.
Least squares estimates of the model parameters with standard errors and ¢ ratios are given

t distribution with n — K = 52 - 5 == 47 degrees of freedom. The 95 percent critical value
is 2.012. Therefore a 85 percent confidence interval for 83 is 1.095874 £+ 2.012 (0.07771)|=
0.9395,1.2522].

o are interesied in whether the ae

Ho:Ba<1 versus Hq. B3

Al

thg the t distribution with 47
o conclude that the data

s 1.678, which is greater than 1.23

consistent with the
hypothesis that the income elastici

¢ = w'bis normally distributed with mean %macﬂm XXy w,|

oprgfpn, - (20 shlg applicysPn.

H-#0
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4.5.2 Confidence Intervals Based on Large Samples

If the disturbances are not normally distributed, then the development in the previous section, which
departs from this assurnption, is not useable But, the large sample results in Section 4.4 provide an
alternative approach. Based on the development that we used to obtain Theorem 4.4 and (4-35), we have -
that the limiting distribution of the statistic .

f Vb, —B)

\/‘Qkk -

is standard normal, where QQ = [phm(X'X/n)] and Qk" is the kth d‘agonal element of Q Based on the
Slutsky theorem (D.16), we may replace o® with a consistent estimator, &2 and obtain a statistic with the
same limiting distribution. And, of course, we estimate Q with (X'an) This gives us precisely (4-41),
which states that under the assumptions in Section 4.4, the “¢” statistic in (4-41) converges to standard
normal even if the disturbances are not normally distributed. The implication would be that to employ the
asymptotic distribution of b, we should use (4-42) to compute the confidence intetval, but use the critical
values from the standard normal table (e.g., 1.96) rather than from the ¢ distribution. In practical terms, if
the degrees of freedom in (4-42) are moderately large, say greater than 100, then the ¢ distribution will be
indistinguishable from the standard normal, and this large sample result would apply in any event, For .
smaller sample sizes, however, in the interest of conservatism, one might be advised to use the critical
values from the ¢ table rather the standard normal, even in the absence of the normality assumption. In |
the appncatlon in Example 4.8, based on a sample of 52 observations, we formed a confidence interval for
the income elasticity of demand using the critical value of 2.012 from the ¢ table with 47 degrees of :
freedom. If we chose to base the interval on the asymptotic normal distribution, rather than the standard

‘]| normal, we would use the 95% critical value of 1.96. One might think this is a bit optimistic, however,

and retain the value 2.012, again, in the interest of conservatism.



Example 4.9 Confidence Interval Based on the Asymptotic Distribution
in Example 4.4, we analyzed a dynamic form of the demand equation for gasoline,

IN(G/Pop); = B + thnPGt + BsIn({Income/Pop) + 4 ¥ In(GIPOP)M + St- AT .I.""-':"'--::- y

- " In_this model, the long.run price and income elasticities are 9p = B2/(1—~/) and 9. By/(1iyys.

We computed estimates of these two nonlinear functions using the least squares and the
delta method, Theorem "4.5. . The .point estimates were <0.411358 and 0.970522,
respectively. The estimated asymptotic standard errors were 0.152296 and 0.162386. In
order to form confidence intervals for 6 and 6, we would generally use the asymptotic
distribution, not the finite sample distribution. Thus, the two confidence intervals are

é_P= ~0.411358 £ 1.96 (0. 152296) = [-0. 709858, —0. 112858]
and

0, = 0.970523 + 1.96 (0. 162386) = [0. 652246, 1. 288800].

In a sample of 51 observations, one might argue that using the critical value for the limiting
normal distribution might be a bit optimistic. If so, using the critical value for the t
distribution with 51-6 = 45 degrees of freedom would give a slightly wider interval. For

example, for the the income elasticity the interval would be 0. 970523 + 2. 014 (0. 162386)

= [0. 643460, 1.297585]. We do note, this is a practical adiustment. The statistic based

on the asymptotic standard error does not actually have a ¢ distribution with 45 degrees of .
freedom,
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Y-

- e A .
TABLE 4.3 Regression Resuli€for a Demand Eqiation

Sum of squ'ared residuals: 0.120871

Standard error of the regresgi 0.050712

R based on 52 observgnés ¥ 0958443

Variable / Coefficient Standyf{ Error t Ratio

Constant —21.21109 A.75322 28160

—0.021206 0.04377 —0.0485
1.095874 0.07771 14.102

0.15707 -2.379
0.10330 0.19

[City of Demand

Least squares
in Table 4.3.

[0.9385,1.2522].

" We are interested in whether the defnand for gasoline is income inelastic. The hfpothesis
to be tested is that 8, is less than A, For a one-sided test, we adjust the crifiell region and
use the i, critical point from thedistribution. Values of the sample estimgat¢ that are greatly
inconsistent with the hypothgefs cast doubt on it. Consider testing the4lypothesis

Ho:Bs<1 versus Hy:ps=>1.
The appropriate test gfatistic is

1.095874 -1 _

b= 007771

hypothesis that the income elasticity is lesg'than one, so we do not reject the null hypothesis.

3 CONFIDENCE INTERVAL FOR A LINEAR COMBINATION
OF COEFFICIENTS: THE OAXACA DECOMPOSITION

With normally distributed disturbances, the least squares coefficient estimator, b, is
normally distributed with mean g8 and covariance matrix o2(X'X)~1. In Example 449
we showed how to use this result to form a confidence interval for one of the elements
of 8. By extending those results, we can show how to form:a confidence interval for a
linear function of the parameters. ‘Oaxacal (1973) and Blmder’s (1973) decomposmon
provides a frequently used apphcaﬂon{‘:mx"

Let w. denote a K x 1 vector of known constants. Then, the linear combination
¢ = w'bis normally distributed with mean y = w/f and variance 67 = w'[¢*(X'X)'}w,

w“ﬁee Bourgignon et al. (2002) for an extensive application.

W

H
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This general result canbe uscd for-example, for the sum of the coefficients or for a
difference. 0‘143)

Consider, then, Oaxaca’s s application. In a study of labor supply, separate wage
regressions are fit for samples of n,, men and ny women. The underlying regression
models are

, ,
Inwage, ; =X, ;iBm ttmi, i=1... . 704

and
Inwage,, =x'; 8 +er;, j=1,....n¢

The regressor vectors include sociodemographic variables, such as age, and human cap-
ital variables, such as education and experience. We are interested in comparing these
two regressions, particularly to see if they suggest wage discrimination. Oaxaca sug-
gested a comparison of the regression functions. For any two vectors of characteristics,

E[lnwage,, ;] — Ellnwage ] =X, 8m X By
/ :x:n.'ﬁm_ ;niﬁf“i'x;niﬂf"x}jﬂf

. y
'&’ni l"'-;* —-xm[(ﬁm—ﬂf)'i‘(x"” _xf_,l) ﬂf

The second term in this decomposition is identified with differences in human capital
that would explain wage differences naturally, assuming that labor markets respond
to these differences in ways that we would expect. The first term shows the differential
in log wages that is attributable to differences unexplainable by human capital; holding
these factors constant at x,, makes the first term attributable to other factors. Qaxaca
suggested that this decomposition be computed at the means of the two regressor vec-
tors, X, and X 1 and the least squares coefficient vectors, bm and by, If the regressions
contain constant terms, then this process will be equ1valent to analyzmg In y, — Iny;.
We are interested in forming a confidence interval for the first term, which will
require two applications of our result, We will treat the two vectors of sample means as
known vectors. Assuming that we have two independent sets of observations, our two
estimators, bm and b s, are independent with means 8, and 8 f and covariance matrices
m( ' Xm) ! and orz(X’ X /)7L. The covariance matrix of the dlfference is the sum of
these two matrices. We are formmg a confidence interval for X g_i_where_ﬂ by ~by.
The estimated covariance matrix is ’ i

2
Est. Var[d] = 5, X Xm) ™! + 53 XX @B gy

Now, we can apply the result above. We can also form a confidence interval for the
second term; just define w = X, — X, and apply the earlier result to w'b;.

E REGRESSION /

A question that j
significant. Tha

usually of interest is whegh®r the regression equation as g'whole is
test is a joint test of the hypotheses that all the coefficienty/except the
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4.6 PREDICTION AND FORECASTING Gile natin hﬂ_li;

Afier the estimation of the model parameters, a common use of regression modeling is for prediction of -
the dependent variable. We make a distinction between “prediction” and “forecasting,” most easily based
on the difference between cross section and time, series modeling. I_’l_'q_d"i__c'ti_oi_l (which would apply to" -
either case) involves using the regression model to compute fitted (predicted) values of the dependent ;- - -
variable, either within the sample or for observations outside the sample. The same set of results will™
apply to cross sections, panels.and time series. We consider these methods first. Forecasting, while
largely the same exercise, explicitly gives & role'to-“time™ and often involves lagged dependent variables
and disturbances that are correlated with their past values. This exercise uswally involves predicting
future outcomes. An important difference between predicting and forecasting (as defined here) is that for
predicting, we are usually examining a “scenario” of our own design. Thus, in the example below in
which we are predicting the prices of Monet paintings, we might be interested in predicting the price of a
hypothetical painting of a certain size and aspect ratio, or one that actually exists in the sample. In the
time, series context, we will often try to forecast an event such as real investment next year, not based on a ¥
hypothetical economy, but based on our best estimate of what economic conditions will be next year. We
will use the term ex_post r1_):1"édiction (or ex post forecast) for the cases in which the data used in the
regression equation to make the prediction are either observed or_constructed experimentally by the
analyst. This would be the first case considered here. An ex ante forecast (in the time,series context)
will be one that requires the analyst to forecast the independent variables first before it is possible to
forecast the dependent variable. In an exercise for this chapter, real investment is forecasted using a -
regression model that contains real GDP and the consumer price index. In order to forecast real
investment, we must first forecast real GDP and the price index. Ex ante forecasting is considered briefly
here and again in i z
Shaptey 20,
4.6.1 Prediction Intervals

Suppose that we wish to predict the value of _y° associated with a regressor vector x". The actual value
would be ‘
yO = ..-.xo_fﬁ + 80.

It follows from the Gauss_'—_Markov theorem that ( L/ i ﬁ‘ ﬁ

# = @B

¥

Fa A
UKoY

is the minimum variance linear unbiased estimator of E[*|x’] =x°/B. The prediction error is

L= - =0m-p L+

it . . .
The pred_i_(_:tio_n variance of this estimator is

VarlXx) = o+ Varl(b-px XK1= +x" [ XX . (9B

If the regression contains a constant term, then an equivalent expression is

K-1K-1

0 0 2 1 = v 0 = A f.
Varl'Xx'] = o [1+;+ZZ(J€?-&)(%—xk)(.Z-M z) } (tf-@‘)

=1 k=1
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where Z is the K-1 columns of X not including the constant, Z'M°Z is the matrix of sums of squares and
products for the columns of X in deviations from their means [see (3-21)] and the “jk” superscript
indicates the jk element of the inverse of the matrix. This result suggests that the width of a confidence
interval (i.e., a predlctlon interval) depends on the distance of the elements of x from the center of the
- data. Intu1t1vely, this idea makes sense; the farther the forecasted point is from the center of our
"\ experience, the greater is the degTee of uncertainty. Figure 4.5 shows the effect for the bivariate case..~
-Notethat the prediction variance is composed of three parts. The second and thlrd become progressively
smaller as we accumulate more data (i.e., a5 n increases). But, the first term, o’ is constant, which implies
that no matter how much data we have, we can never.predlct perfectly.
"

o e —

———
FIGURE % Prediction Intervalss

The gredlctlon variance can be estimated by using s s in place of ¢>. A confidence (prediction)
interval for y” would then be formed using

prediction interval = 7° + H0 i) inek] se( 0) B (4-48) _
P e | F e g
in ! ".-l_': T | it

where 1 _om)[x - gy is the apoproprlate critical value for 100(1%0)% s1gn1ﬁcance from the 7 table for nK
degrees of freedom and se(e") is the square root of the prediction variance. '
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4.6.2 Predicting y When the Regression Model Describes Log y

It is common to use the regression model to describe a function of the dependent variable, rather than the| ’Jl). [ Jr/
variable, itself. In Example 4.5 we model the sale prices of Monet paintings using spe (
U 4 1]

InPrice = By + Pylndrea + BsdspectRatio -+ s wooil fwt (1

= .l:"-‘ | ] ]-'I

' W,
(area is Wldth times height of the. pamtmg and aspect ratio is the height divided by the width). The log I-Iwi-][ i
~ form is convenient in that the coefficient provides the elasticity of the dependent variable with respect to —

the mdependent variable; Ee:, in this model, B, = 0E[InPrice|lndrea,AspectRatio]/findrea. However, the
equation in this form is less. interesting for prediction purposés than one that predicts the price, itself. The
natural approach for a predictor of the form

Iny* = x"b !
would be to use
P = eprxo-f b).

The probiem is that E[y|gg_°] is not equal to exp(E[ln_ng&_‘f]). The appropriate conditional mean function
would be '

Elexp(x’B + ")[x]

Elyx]
exp(x"B) Elexp(e”)x’}.

The second term is not exp(E[e Ix D=1in %eneral The precise result if & Ix is normally distributed with
mean zero and variance ¢~ is Efexp(e’ Ix] = exp(6*/2). (See Section B.4.4) The implication for °
normally distributed disturbances would be that an appropriate predictor for the conditional mean would

be

= xXp(x*“b +5%/2) > exp(xo‘b) ' (4-49)

I'I W 3‘ 'r.

which would seem to imply that the naive predlctor would systematically underpredict y. However, this/; (tim ;’
is not necessarily the appropriate interpretation of this result. The inequality implies that the naive
predictor will systematically underestimate the conditional mean function, not necessarily the realizations
of the variable, itself. The pertinent question is whether the conditional mean function is the desired
predictor for the exponent of the dependent variable in the log regression The conditional median might
be more interesting, particularly for a financial variable such as income, expenditure,or the price of a -
painting. If the distribution of the variable in the log regression is symmetrically distributed (as they are -
when the disturbances are normally distributed), then the exponent will be asymmetrically distributed
with a long tail in the positive direction, and the mean will exceed the median, possibly vastly so. In such
cases, the median is often a preferred estimator of the center of a distribution. For estimating the median,

rather then the mean, we would revert to the original naive predictor, _j)o = exp(_x{)--‘_,p_).

(U T
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Given the precedmg, we consider estimating E[exp(y)[x] if we wish to-avoid the normality
assumption, then it remains to determine what one should use for E[exp(e )|x 1. Duan (1983) suggested _____ -
the consistent estimator (assuming that the expectation is a constant, je., that the regression is ![ f Ju r%
homoscedastic), |

rl'u Y ]"5’

n 1 ¥ fIIU |.|L I & A ?
Elexp(e”) |X°]=H" ==D"" exp(e,), | (4-50) J L 0 rfﬂ
n—=

af]

= =

- ': |'-I |

where ¢ is a least Squares residual in the orlgma] log form regression. Then, Duan’s smearmg estlmatOr
for prediction of 3° is

e -

3° = B exp(x’‘b).

4.6.3 Prediction Interval for y When the Regression Model Describes log y ¢

We obtained a prediction interval in (4-48) for lnyilx__c__o in the loglineaf model Iny = x'B + g,

D ~Q | o 0 0f 0
[ln_J’L()WER»lnyUPPER:I = [x bt amm-x §e(_e )=_X bt ok Se(.e- )]

For a given choice of o, say, 0.05, these values give the .025 and .975 quantiles of the distribution of
In 0. If we wish specifically to estimate these quantiles of the distribution of y|x not lny[x then we .
would use;

A ~0 o ’ !
|:_yL_QWER3 .YUPPER] = {eXp [X b0 gk € (.e.o )} »CXp [linHb + t(l—a.f2),[r_1—K] 5€ (.‘?0 ):|} . (4-51)

This follows from the result that if Prob[iny < InL] = 1 ou’2 then Prob{y <L]= 1 ou’2 The result is that
the natural estimator is the right one for estimating the specific quantiles of the distribution of the original
variable. However, if the objective is to find an interval estimator for y[x that is as narrow as possible,
then this approach is not optimal. If the distribution of y is asymmetric, as it would be for a loglinear (i foy | )
model with normally distributed disturbances, then the naive interval estimator is longer than necessary. .
Figure 4.6 shows why. We suppose that (L;.U) in the figure is the prediction interval formed by (4-51).

- Then, the probabilities to the left of L and to the right of U each equal /2. Consider alternatives L, = 0

and U}, instead. As we have constructed the figure, area (probability) between Ly and L equals the area

between Uj and U. But, because the density is so much higher at L, the distance (0,U;), the dashed -

interval is Visibly shorter than that between (L ). The sum of the two tail probabilities is still equal toa, -

However while this is an 1mprovement it goes too far, as we now demonstrate.
Consider finding directly the shortest prediction interval. We treat this as an optimization -
problem:

Minimize (L,U)): /= U- L subjectto F{L)+ [1 —-F(U)] =

where F'is the CDF of the random variable y (not Iny). That is, we seek the shortest interval for which the
two tail probabilities sum to our desired a (usually 0.05). Formulate this as a Lagrangean problem, Ir - @ ;

of . 1
. I—] Ur fhieh

I1_.\,. hj

sk
|edf-g psp i

= hPfF
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Minimize (L,UA): I* = U—L+ & [FLy+ (1-F(U)) - al.
The solutions are found by equating the three partial derivatives to zero:

6I*/6L = -1 + ML) = 0, ,
8I¥ou = 1 - MU) =0, A
or*oh = FLy+[1-FU))-a =0,

i

where L) = F (L) and AU) = F '(U) are the derivtives of the(cdf, which are the densities of the random
variable at L and U, respectively. The third equation enforces the restriction that the two tail areas sum to(,,
o, but does not force them to be equal. By adding the first two equations, we find that A[{L)-AV)] =
which, if & is not zero, means that the solution is obtained by locating (L *,I/*) such that the tail areas sum
to a and the densities are equal. Looking again at Figure 4.6, we can see that the solution we would seek 1
is (L*,U*) where 0 <L* <L and U* < U, This is the shortest interval, and it is shorter than both [0, U] -
and [L,U]

This derivation would apply for any distribution, symmetric or otherwise. For a symmetric
distribution, however, we would obviously return to the symmetric interval in (4-51). It provides the
correct solution for when the distribution is asymmetric. In Bayesian analysis, the counterpart when we (7,

;= examine the distribution of a parameter conditioned on the data, is the highest posterior density
linterval. (See Section 16.4.2.) For practical application, this computation requires a specific assumption

for the distribution of ylx such as lognormal. Typically, we would use the smearing estimator

specifically to avoid the distributional assumption. There also is no simple formula to use to locate this

interval, even for the lognormal distribution. A crude grid search would probably be best, though the ©

computatlons are-each very simple. What this derivation does establish is that one can do substantially

" better than the naive interval estimator, for example using [0,;].

9.6

Flgura B9 Lognormei Distribufion for Prices of Mor tel Fainlings gy
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Example 4.10 Prlcmg Art
In Example 4.5, we suggested an intriguing feature of the market for Monet pamtlngs that larger 7

paintings sold at auction for more than than smaller ones. In this example, we will examine that
proposition empirically. Table F4.1 contains data on 430 auction prices for Monet paintings, with

data on the dimensions of the paintings and several other variables that we will examine in later
Figure 4.7 shows a histogram for the sample of sale prices (in SMillion). Figure 4. 8 e

.~ examples.
| shows a histogram for the Iogs of the prlces
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Results of the finear regression of InPrice on InArea (height times width} and Aspect Ratio (height
divided by width) are given in Table 4.6.

TABLE 4.6 Estimated Equation for Log Price

Mean of log Price .33274
Sum of squared residuals 519.17235 =it 1
Standard error of regression 1.,10266 ’ fad
R-squared I ) .33620
Adjusted R-squared _ _ .33309
Number of cbservationz ~ - - 7 . _ 430
Standard Mean
Variable Coefficient Error t " eof X
Constant -8.42653 .61183 -13.77 1.00000
LOGAREA 1.33372 .08072 14.70 6.68007
ASPECT -.16537 12753 -1,30 0.9%0759

Estimated Asymptotic Covariance Matrix

constant LogArea AspectRatio
Censtant .37434 -.05429 -.00974
LogArea -.05429 .00823 -.00075
AspectRatio -.00974 -.00075 .01le26

We consider using the regression model to predict the price of one of the paintings, a 1903 painting
of Charing Cross Bridge that sold for $3,522,500. The painting is 25.6” high and 31.9” wide. (Thisis " (Jr
observation 60 in the sample.))” The log area equals In{25.6x31.9) = 6.705198 and the aspect ratio
equals 25.6/31.9 = 0.802508. The prediction for the log of the price would be

InP|x’ = :8.42653+ 1.33372(6.705198) — 0.16537(0.802508) = 0.383636.
Note that the mean log price is 0.33274, so this painting is expected to be sell for roughly 5% more
than the average painting, based on its dimensions. The estimate of the prediction variance is
computed using {4-47); s, = 1.104027. The sample is large enough to use the critical value from the
standard normal table, 1.96, for a 95% confidence interval. A prediction interval for the log of the
price is therefore (pereenh) _

0.383636 + 1.96(1.104027) = [*1.780258, 2.547529].

[l bkt o

For predicting the price, the naive predictor would be exp(0.383636) = $1.476411M, which is far
under the actual sale price of $3.5225M. To compute the smearing estimator, we require the mean
of the exponents of the residuals, which is 1.813045. The revised point estimate for the price would -
thus be 1.813045x1.47641 = $2.660844M = this is better, but still fairly far off. This particular
painting seems to have sold for relatively more than history (the data) would have predicted. (uiloi?)
To compute an interval estimate for the price, we begin with the naive prediction by simply
exponentiating the lower and upper values for the log price, which gives a prediction interval for
95% confidence of [50.168595M, $12.77503M]. Using the method suggested in Section 4.6.3,
however, we are able to narrow this interval to [0.021261,9.027543], a range of $9M compared to
the range based on the simple calculation of $12.2M. The interval divides the .05 tail probability
into 0.00063 on the left and .04937 on the right. The search algorithm is outlined below. ¢+
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Grld Search Algorithm for Optimal Prediction lnterval [LO pO]
X’ ={1,log(25. 6x31 9),25.6/31.9);

0= expt®h), 3 = 5" +x" [ (XX Ix

Confidence interval for logP|x": [Lower,Upper] = [{1° 11.96 6'?,, 0° +1.96 62} I;

Naive confidence interval for Price |3_(_°: L1=exp{Lower) ; Ul=exp(Upper);
Initial value of L was .168595, LO = this value;

Grid search for optimal interval,'décrement by A = .005 (chosen ad hoc);
_Decrement LO and compute companion UO until densities match;

217 (*)LO = LO - A=newvalue of LO;

flLO) = [LO&‘; 21‘E:|_1 exp[—%((lnLO—ﬁo)/ég)zi‘;
F(LO) = ®((In{LO) - [i°)/ &) = left tail probability; "
UO = exp( 62, O [F(LO) + .95] + [i°) = next value of UO;

fluo) = [an_;’, 271:]_1 exp[—%((anO—ﬁo)/G;)z};

" 1IH(U0) = 1 O((In(UO) — i1°)/8°) = right tail probability;

Compare f{LO) to fiUO). If not ehual, return to (*). If equal, exit.

-
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4.6.4 Forecasting

The preceding,assumes that x° is known with certainty, ex post, or has been forecasted perfectly, ex ante.

If x° must, itself, be forecasted (an ex ante forecast), then the formula for the forecast variance in (4-XX) EE46

would have to be modified to incorporate the uncertainty in forecasting x°. This would be analogous to -~

the term o” in the prediction variance that accounts for the implicit prediction of ¢°, This will vastly = . -
" complicate the computation. Most authors view it as simply intractable. Beginning with Feldstein (1971),""

derivation of firm analytical results for thé correct forecast variance for this case remain to be derived - 74

except for simple special cases. The one qualitative result that seems certain is that (4-Xﬁm,

the true variance. McCullough (1996) presents an alternative approach to computing appropriate forecast

standard errors based on the method of bootstrapping. (See Chapter M) / [0 .

&r/{ious measures have been proposed for assessing the predictive accuracy of forecasting
models: ost of these measures are designed to evaluate ex post forecasts, that is, forecasts for which
the independent variables do not themselves have-to be forecasted. Two measures that are based on the

| 1 : = =7 i
) residuals from the forecasts are the root mean squared error, i B e \
. LA Wi
1 5 3 wstT Js.bq'-;’lf‘{,iﬁ.f
= 7 | Prean A nold I{_.l
{ :-._I__. \ ! ;p: o~ hﬁfﬁqﬂf
and the mean absolute error, fa TS M

Mo r B G | | wﬁw :

9

1 N
MAE;"TZ lJ’; — Y

-;".5:-_._._3-"_' 1= Limy _'\ 0y -
where »’ is the number of periods being forecasted. (Note that both of these, as well as the,measures,.
below, are backward looking in that they are computed using the observed data on the independent
variable.) These statistics have an obvious scaling problem s— multiplying values of the dependent
variable by any scalar multiplies the measure by that scalar as well. Several measures that are scale free

TiJ, are based on the Theil 7 statistic:™ (%~

W)Y (v.-3.)
Wy v

This measure is related to B but is not bounded by zero and one. Large values indicate a poor forecasting
performance. An alternative is to compute the measure in terms of the changes in y:

A/n)Y (by,~89,)

YW )2 (1nhas) -
where Ay, = ¥ — ¥ and Ay, =3,-¥,,, or, in percentage changes, Ay, = (. - Yerdyi and -
AP, =(P,—y..)/ y.. These measures will reflect the model’s ability to track turning points in the
data.

\ Y 55ec Theil (1961) and Fair (1984).
{5* Theil (1961),,
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4.7 DATA PROBLEMS

The analysis to this point has assumed that the data in hand, X and y, are well measured and correspond to
the assumptions of the model in Table 2.1 and to the varlables described by the underlying theory. At this

- point, we consider several ways that “real,world,” observed nonexperimental data fail to meet the -
- .assumptjons. Failure of the assumptions generally has implications for the performance of the estlmators.j-_f'_"
‘of the modet parameters, - unfortunately, none of them good. The cases we will examne aret |

» Multicollinearity: Although the full rank assumption, A2, is met, it almost fails. (“Almost” is a
matter of degree, and sometimes a matter of niterpretation.) Multicollinearity leads to imprecision
in the estimator, though not to any systematic biases in estimation.

» Missing values: Gaps in X and/or y can be harmless. In many cases, the analyst can (and should)
snnply ignore them, and just use the complete data in the sample. In other cases, when the data are
missing for reasons that are related to the outcome being studied, ignoring the problem can lead to
inconsistency of the estimators. ¥

* Measurement error: Data often correspond only imperfectly to the theoretical construct that appears -
in the mode! ~ individual data on income and education are familiar examples. Measurement error
is never bemgn The least harmful case is measurement error in the dependent variable. In this
case, at least under probably reasonable assumptions, the implication is to degrade the fit of the
model to the data compared to the (unfortunately hypothetical) case in which the data are accurately
measured. Measurement error in the regressors is mahgnant — lt produces systematic biases in
estimation that are difficult to remedy.
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CHAPTER 4 4+ Statistical Properties of the Least Squares Estimator 59

[/ ‘? 1 Aﬂ:ir MULTICOLLINEARITY

The Gauss-Markov theorem states that among all linear unbiased estimators, the least
* squares estimator has the smallest variance. Although this result is useful, it does not
assure us that the least squares estimator has a small variance in any absolute sense.
Consider, for example, a model that contains two explanatory variables and a constant.

For either slope coefficient, . J
2 2 .- 51
Var[by | X] = ° a k=12 @1

(L) Yory (i — ) N (1—rd) Su’

If the two variables are perfectly correlated, then the variance is infinite. The case of
an exact linear relationship among the regressors is a serious failure of the assumptions
of the model, not of the data. The more common case is one in which the variables
are highly, but not perfectly, correlated. In this instance, the regression model retains
all its assumed properties, although potentially severe statistical problems arise. The
problem faced by applied researchers when regressors are highly, although not perfectly,
correlated include the following symptoms:

e Small changes in the data produce wide swings in the parameter estimates.

e (Coefficients may have very high standard errors and low significance levels even
though they are jointly significant and the R? for the regression is quite high.

e Coefficients may have the “wrong” sign or implausible magnitudes.

For convenience, define the data matrix, X, to contain a constant and X — 1 other
variables measured in deviations from their means. Let X denote the kth variable, and
let X denote all the other variables (including the constant term). Then, in the inverse
matrix, (X’X)1, the kth diagonal element is

T (aMwxe) ™ = [ — 3K (XpXw) " Xipxd

-1 J
, KXo (X Xoo) ™ Xipke )55?

N S
(- R)Se’

where RZ is the R? in the regression of x; on all the other variables. In the multiple
regression model, the variance of the kth least squares coefficient estimator is 62 times
this ratio. It then follows that the more highly correlated a variable is with the other
variables in the model (collectively), the greater its variance will be. In the most extreme
case, in which x, can be written as a linear combination of the other variables so that
_R% =1, the variance becomes infinite. The resuit

Var[b_k EX] = — (4

(1-Ry) 7 G — X

shows the three ingredients of the precision of the kth least squares coefficient estimator:

-1

e  Other things being equal, the greater the correlation of xi with the other
variables, the higher the variance will be, due to multicollinearity.
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s  Other things being equal, the greater the variation in x;, the lower the variance
will be. This result is shown in Figure 4 -
_e  Other things being equal, the better the overall fit of the regression, the lower the
variance will be. This result would follow from a lower value 5 &%, We have yet to
develop this implication, but it can be suggested by Figure y imagining the 7.
identical figure in the right panel but with all the points moved closer to the
regression line. -
Since nonexperimental data will never be orthogonal (B2 =0), to some extent
multicollinearity will always be present. When is multicollinearity a problem? That is,
when are the variances of our estimates so adversely affected by thisintercorrelation that -7
we should be “concerned”? Some computer packages report a variance inflation factor @ A _[ ﬂ N
(VIF), 1/(1 — R?), for each coefficient in a regression as a diagnostic statistic. As can H 'u ) ‘-'h
be seen, the VIF for a variable shows the increase in Var[bk | that can be attributable to ﬁ A 'ﬁ\'ﬂer ”{9
iy hmp

the fact that this variable is not orthogonal to the other vanables in the model. Another
measure that is specifically directed at X is the condltlon number of X'X, which is the
square root of the ratio of the largest characteristic root of X'X (after scaling each
column so that it has unit length) to the smallest. Values in excess of 20 are suggested
as indicative of a problem [Belsley, Kuh, and Welsch (1980)). (The condition number |,
for the Longley data of Example 4,6' is over 15,000!) R

q.1

Example Mult:collmeanty in the Longley Data
The data in Appendix Table F4.2 were assembied by J. Longley (1967) for the purpose of as-
sessing the accuracy of least squares computations by computer programs. (These data are
still widely used for that purpose.) The Longley data are notorious for severe multicollinearity.
Note, for example, the last year of the data set. The last observation does not appear to
ST & be unusual. But, the results in Table @.5)show the dramatic sffect of dropping this single
[ b observation from a regression of employngent on a constant and the other variables. The last
coefficient rises by 600 percent, and the third rises by 800 percent.

'lli',; Several strategies have been proposeﬁrﬁgzding and coping with multicollinear-
zty\ Under the view that a multicollinearity “problem” arises because of a shortage
of mformatmn one suggestion is to obtain more data. One might argue that if ana-
Iysts had such additional information available at the outset, they ought to have used
it before reaching this juncture. More information need not mean more observations,
however. The obvious practical remedy (and surely the most frequently used) is to
drop variables suspected of causing the problem from the regressmn——that is, to im-
pose on the regression an assumption, possibly erroneous, that the * problem variable

-2y

“FABLE 4}§ Longley Results: Dependent Variable is Employiment

1947-1961 Variance Inflation 19471962
Constant 1,459,415 1,169,087
Year —T121.156 143.4638 —576.464
GNP deflator —181.123 75.6716 —19.7681
GNP 0.0910678 132.467 0.0643940
Armed Forces —0.0749370 1.55319 —0.0101453

i ’ESce Hill and Adkins (2001) for a description of the standard set of tools for diagnosing collinearity.
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