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4.7.2
does not appear in the model. In doingfso, one encounters the problems of specifi-
cation that we will discuss in Section(7.ZDIf the variable that is dropped actually be-
longs in the model (in the sense that its coefficient, 8, is not zera), then estimates
of the remaining coefficients will be biased, possibly severely so. On the other hand
overfitting---that is, trying to estimate a model that is too i.a'rge{ris a common error,
and dropping variables from an excessively specified model might have some virtue.
avealso been suggested. An ap STimes {

]

" [See Johnson and
intheformy = Xf +¢
€N ONe regresses y on some

l elasticity?) -

Using diagnostic tools td’detec't"'multicoilinearity could be viewed as an attempt
to distinguish a bad model from bad data. But, in fact, the problem only stems from
a prior opinion with which the data seem to be in conflict. A finding that supgests
multicollinearity is adversely affecting the estimates seems to suggest that but for this
effect, all the coefficients would be statistically significant and of the rightsign, Of course,
this situation need not be the case. If the data suggest that a variable is unimportant in
a model, then, the theory notwithstanding, the researcher ultimately has to decide how
strong the commitment is to that theory. Suggested “remedies” for multicollinearity
might well amount to attempts to force the theory on the data.

————
4.8.2 MISSING OBSERVYATIONS

It is common for data spt§ to have gaps, for a ¥riety of reasons. P haps the most
frequent occurrence ofAhis problem is in survey/data, in which respopdents may simply
fail to respond to the'questions. In a time s
do not exist at t

y common in health
y—rpossibly becaus

vations. Griliches/(1986) calls this the igngfable
case in Miat, for purposes of estimapon, if we are not ¢
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random, or
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4.7.2 PRETEST ESTIMATION
“ it

_eati¥d . . :
As a response to what appears to be a “mu]ticolhnggﬂ'ty problem,”a-ls often difficult to resist the

temptation to drop what appears to be an offending variable from the regression, if it seems to be the one
causing the problem. This “strategy” creates a subtle dilemma for the analyst. Consider the partitioned -

multiple regression
Y= XiBit X +e
If we regress y only on X, the estimator is biased';'_

E[biX1 = B "‘_._P1.2Pz-

The covariance matrix of this estimator is

Al

Var[bi|X] = o*(Xi’X))".

(Keep in mind, this variance is around the £[b/X], not around B,.) If B, is not actually zero, then in the
multiple regression ofy on (X1,Xo), the variance of b around Tis mean, B; would be

Var[b;,X] = UZ(Xl'Mz?,(l)"l
where AL '
Mo =2 X5(X,'Xz)" X0
or ' C e
Varb12X] = o’[X/X; * XXX Xo) X0 X0 T,

We compare the two covariance matrices

It is simpler to compare the inverses. [See result (A-120).]
Thus, ]

VarlbiXI™ - {VarlbuafXD ' = (1/6%) XXX Xo) X0’ X1,

which is a nonnegative definite matrix. The implication is that the variance of ¥, is not larger than the
variance of by, (since its inverse is at least as large). It follows that although b; is biased, its variance is
never larger than the variance of the unbiased estimator. In any realistic case (i.e,, if X1X; is not zero), in
fact it will be smaller, We get a useful comparison from a simple regression with two variables measured

. as deviations from their means. Then, Var[5|X] = o*/S|| where S = Z; (x,.1 - X )2 and Varlh; ,X]'5

c/[Su(14 AN where 713* is the squared correlation between x, and x;.

The result in the preceding paragraph poses a bit of a dilemma for applied researchers. The
situation arises frequently in the search for a model specification. Faced with a variable that a researcher
suspects should be in their model, but that is causing a problem of multicollinearity, the analyst faces a
choice of omitting the relevant variable or including it and estimating its (and all the other variables’)
coefficient imprecisely. This presents a choice between two estimators, b and b;,. In fact, what
researchers vsually do actually creates a third estimator. It is common to include the problem variable
-provisionally. If its ¢ ratio is sufficiently large, it is retained; otherwise it is discarded. This third estimator
is called a pretest estimator. What is known about pretest estimators is not encouraging. Certainly they
arc biased. How badly depends on the unknown parameters. Analytical results suggest that the pretest
estimator is the least precise of the three when the researcher is most likely to use it. [See Judge et al.
(1985).] The conclusion to be drawn is that as a general rule, the methodology leans away from
estimation strategies that include ad hoc remedies for multicollinearity. =
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4.7, PRINCIPAL COMPONENTS

A device that has been suggested for “reducing” multicollinearity [see, e.g., Gurmu, Rilstone, and Stern
(1999)] is to use a small number, say , of principal components constructed as linear combinations of .
the K original variables. [See Johnson and Wichern (2005, Chapter 8).] (The mechanics are illustrated in.

 Example4.9) The argument against using this approach is that if the original specification in the form y-.

L =XE+ € were correct, then it is unclear what one is estimating when one regresses Y on some small set of
linear combinations of the columns of X. For a set of L < K principal components, if we regressy onZ =
XCy to obtain d, it follows that E[d] = é = CoP: (The proof is considered in the exercises.) In an
economic context, if # has an interpretation, then it is unlikely that ¢ will. (E.g., how do we interpret the
price elasticity minus twice the income elasticity?) ‘ - ' '

This orthodox interpretation cautions the analyst about mechanical devices for coping with
multicollinearity that produce uninterpretable mixtures of the coefficients. But, there are also situations in
which the model is built on a platform that might well involve a mixture of some measured variables. For -
example, one might be interested in a regression model that contains “ability,” ambignously defined. As -
a measured counterpart, the analyst might have in hand standardized scores on a set of tests, none of
which individually has any particular meaning in the context of the model. In this case, a mixture of the-
measured test scores might serve as one’s preferred proxy for the underlying variable. The study in
Example 4.5 describes another natural example.

1
EXAMPLE 4.8 Predicting Movie Success
Predicting the box office success of movies is a favorite exercise for econometricians. [See, e.g.,
LLs Litman {1983), Ravid (1999), De Vany {2003), De Vany and Walls (1999, 2002,2003), and Simonoff
and Sparrow (2000).| The traditional predicting equation takes the form ' !

4.12%

Box Office Receipts = f(Budget, Genre, MPAA Rating, Star Power, Sequel, etc.) + €.

Coefficients of determination on the order of 4 are fairly common. Notwithstanding the relative
power of such models; the common wisdom in Hollywood is “nobody knows.” There is tremendous

f .3. i % randomness in movie success, and few really believe they can forecast it with any reliability.gwlg
Versaci (2009) added a new element to the model, “internet buzz.” Internet buzz is vaguely defined
to be internet traffic and interest on familiar websites such, as RottenTomatoes.com, ImDB.com, [/(1]
Fandango.com,and traileraddict.com. None of these by themselves defines internet buzz. But,
collectively, activity on these websites, say 3 weeks before a movie’s opening:might be a useful
predictor of upcoming success. Versaci's data set (Table F4.3) contains data for 62 movies released
in 2009, including four internet buzz variables, all measured three weeks prior to the release of the -
movie:

buzz; = number of internet views of movie trailer at traileféddict.com; 5

buzz, = number of message board comments about the movie at ComingSoon.net)~ . -,
buzz, = total number of “can’t wait” (for release} plus “don’t care” votes at Fandango.com,’
buzz, = percentage of Fandango votes that are “can’t wait.” '

L

ﬂ( ,g | f—formccl

The assertion that “nobody knows” will be tested on a newly(April, 2010) Tutures exchange where investors can
place early bets on movie success (and producers can hedge their own bets). See http://www.cantorexchange.com/ |-
for discussion. The real money exchange was created by Cantor Fitzgerald after they purchased the popular culture
website Hollywood Stock Exchange. (M 17 h

)‘Inc.
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We have aggregated these into a single principal component as follows: We first computed the logs
of buzz, — buzz; to remove the scale effects. We then standardized the four variables, so 2, contains
the original variable minus its mean, z,, then divided by its standard deviation, s,. Let Z denote the

resulting 62x4 matrix (z1,2;,23,2;). Then V = (1/61)Z'Z is the sample correlation matrix. Let ¢, be the .
charactenstlc vector of V associated with the Iargest characteristic root. The first principal... .

"mmponent (the one that explains most of the variation of the four variables} is Zc,. (The roots are*:

2.4142, 0.7742, 0.4522, 0.3585 so the first principal component explains 2. 4142/4 or 60.3% % of the
variation. Table 4.8 shows the regression. results for the sample of 62 2009 mowes It appears that
internet buzz adds substantially to the predictive power of the regression. The R of the regression
nearly doubles, from .34 to .58 when Internet buzz is added to the model. As we will discuss in
Chapter 5, buzzis also a highly “significant” predictor of success.

TABLE 4.8 Regression Results for Movie Success

| Internet Buzz Model | Traditional Model [
=== e T I
e'a ! 22.30215 | 35.66514 |
R | .58883 [ V34247 |
Variable| Coefficient Std.Error t | Coefficient Std.Error t |
-------- l——*-———-**—-——-—~——-—-~~———--———\"—--—---——----“—-———-———-—-“————-|
Constant | 15.4002 64273 23.96 | 13.57¢68 .68825 19.73
ACTION| -.86932 . 29333 -2.96 | -.30682 . 34401 -.8¢%
CCMEDY | -.01le22 .25608 -.06 | -.03845 .32061 -.12
ANIMATED | ~.83324 .43022 -1.%4 | -.82032 .53869 -1.52 |
HORROR | . 37460 .37109 1.01 | 1.02644 .44008 2.33 |
G| .38440 .55315 .69 | 25242 . 69198 .36 |
PG| .53359 .29976 1.78 | .32970 .37243 .89 |
PG13| .21505 .2188% .98 | .07176 .27206 .26 |
LOGBUDGT | .26088 .18529 1.41 | .70914 .20812 3.41 ¢
SEQUEL | .27505 .27313 1.01 | .64368 . 33143 1.94 |
STARPOWR | .00433 .01285 .34 | .00648 .01608 .40 |
BUZZ | .42906 .07839 5.47 | {
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 to study expenditure patterns and if high-income individuals tended to withhold information about their -

43 Missing Values, Mfescomermeni=Eon® and Data Imputation

It is common for data sets to have gaps, for a variety of reasons. Perhaps the most frequent occurrence of

this problem is in survey data, in which respondents may simply fail to respond to the questions. In a time

series, the data may be missing because they do not exist at the frequency we wish to observe them; for

example, the model may specify monthly relationships, but some variables are observed only quarterly: In-"  ©

‘panel data sets, the gaps in the data may arise because of aftrition from the study. This is particularly

common in health and medical research, when individuals choose to leave the study_wf'i—possibly because of
the success or failure of the treatment that is being studied.

There are several possible cases to consider, depending on why the data are missing. The data
may be simply unavailable, for reasons unknown to the analyst and unrelated to the completeness or the
values of the other observations in the sample. This is the most benign situation. If this is the case, then
the complete observations in the sample constitute a usable data set, and the only issue is what possibly

helpful information could be salvaged from the incomplete observations. Griliches (1986) calls this the .

ignorable case in that, for purposes of estimation, if we are not concerned with efficiency, then we may .

simply delete the incomplete observations and ignore the problem. Rubin (1976, 1987) and Little and [ /1

[ cclt

Rubin (1987, 2002) label this case missing completely at random, or MCAR. A second case, which has
attracted a great deal of attention in the econometrics literature, is that in which the gaps in the data set are

not benign but are systematically related to the phenomenon being modeled. This case happens most often .~ s45 .

in surveys when the data are “self-selected” or “self-reported.”|§For example, if a survey were designed

income, then the gaps in the data set would represent more than just missing information. The clinical

trial case is another instance. In this (worst) case, the complete observations would be qualitatively -

different from a sample.taken at random from the full population. The missing data in this situation. are | ..
. termed not missing at random, or NMAR. We treat this second case in Chapter 18 with the subject of

‘sample selection, so we shall defer our discussion until later,

The intermediate case is that in which there is information about the missing data contained in the
complete observations that can, be used to improve inference about the model. The incomplete
observations in this missing at random (MAR) case are also ignorable, in the sense that unlike the

~'NMAR case, simply using the complete data does not induce any biases in the analysis, §6 long as the

W

underlying process that produces the missingness in the data does not share parameters with the model
that is being estimated, which seems likely. [See Allison (2002).] This case is unlikely, of course, if
missingness“is based on the values of the dependent variable in a regression. Ignoring the incomplete
observations when they are MAR but not MCAR, does ignore information that is in the sample and
therefore sacrifices some efficiency. Researchers have used a variety of data imputation methods to fill
gaps in data sets. The (by far) simplest case occurs when the gaps occur in the data on the regressors. For

the case of missing data on the regressors, it helps to consider the simple regression and multiple .
regression cases separately. In the first case, X has two columns: the column of 1s for the constant and Al
column with some blanks where the missing data would be if we had them. The zero-order method of

replacing each missing x with X based on the observed data results in no changes and is eqﬁivalent to
dropping the incomplete data.. (See Exercise 7 in Chapter 3.) However, the R* will be lower. An
alternative, modified zero-order regression fills the second column of X with zeros and adds a variable

“3‘( The vast surveys of Americans’ opinions about sex by Ann Landers (1984, passim) and Shere Hite (1987) constitute two
celebrated studies that were surcly tainted by a heavy dose of self-selection bias. The latter was pilloried in numerous

publications for purporting to represent the population at large instead of the opinions of those strongly enough inclined to
respond to the survey. The former was presented with much greater modesty.
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x that takes the value ¥ for missing observations and zero for complete ones™ We leave it as an exercise to
show that this is algebraically identical to simply filling the gaps with X. There also|is|the possibility of A
computing fitted values for the missing x’s by a regression of x on y in the complete data. The sampling
properties of the resulting estimafor arc largely unknown, but what evidence there is suggests that this is
/T not a beneficial way to proceed 4% T
[ - - These same methods can be used when there are multiple regressors. Once again, it is tempting fo.. -
- replace missing values of x; with simple means of complete observations or with the predictions from
linear regressions based on other variables in the model for which data are available when X is missing,
In most cases in this setting, a general characterization can be based on the principle that for any missing
observation, the “true” unobserved x;. is being replaced by an efroneous proxy that we might view as
Xy =Xy + Uy, that is, in the framework of measurement error. Generally, the, least squares estimator is

biased (and inconsistent) in the presence of measurement error such as this. (We will explore the issue in
/CE_QM) A question does remain: Is the bias likely to be reasonably small? As intuition should
suggest, it depends on two features of the data: (a) how good the prediction of x; is in the sense of how
¢ large the variance of the measurement error, uy, is compared to that of the actual data, xy, and (b) how -
large a proportion of the sample the analyst is filling,

The regression method replaces each missing value on an x; with a single prediction from a linear
regression of x, on other exogenous variables - in essence, replacing the missing x; with an estimate of it
based on the regression model. In a Bayesian setting, some applications that involve unobservable

7. variables (such as our example for a binary choice model in Chapter 17} use a technique called d@gt_a"

. "~augmentation to treat the unobserved data as unknown “parameters” to be estimated with the structural
parameters, such as B in our regression model. Building on this logic researchers, €.8., Rubin (1987) and 1| aof el
Allison (2002) have suggested taking a similar approach in classical estimation settings. The technique '
involves a data imputation step that is similar to what was suggested earlier, but with an extension that f_]_l.r; ( i_(l, @
recognizes the variability in the estimation of the regression model used to compute the predictions. To |43 % F.gl,lf
illustrate, we consider the case in which the independent variable, X is drawn in principle from a normal O f
population, so it is a continuously distributed variable with a mean, a variance, and a Jjoint distribution
with other variables in the model. Formally, an imputation step would involve the following calculations:

b1
|-.@r%_t-. o

Teat?

(1) Using as much information (complete data) as the sample will provide, linearly regress x; on
other variables in the model (and/or outside it, if other information is available), Z,, and
obtain the coefficient vector d, with associated asymptotic covariance matrix A; and
estimated disturbance variance s;°.

(2) For purposes of the imputation, we draw an observation from the estimated asymptotic normal
distribution of d,, that is dem = di + vi where‘:\ykl is a vector of random draws from the normal
distribution with mean zeto and covariance mafrix A,.

(3) For each missing observation in x, that we wish to impute, we compute, Xim = diw'Zip'+ -
Stk Where sy, is ‘9’\5;{ divided by a random draw from the chi;squared distribution with e

degrees of freedom equalithe number of degrees of freedom in the imputation regression. Ay
e i | L' 3
1% [0) =5
P See Maddali (19772, p. 202, Tes!
i o \q)“‘Aﬁﬁ and Elashoff (1966, 1967) and Haitovsky (1968). Griliches (1986) considers a number of other possibilities. (i ( ]l 0 ]; o
' ¥ Qo
o I!
T
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At this point, the iteration is the same as considered earlier, where the missing values are(imputed using a
regression, albeit, a much more elaborate procedure. The regression is then computed using the
completeddata and the/imputed data for the missing observations, to produce coefficient vector by, and =
estimated covariance matrix, V,. This constitutes a single round. The technique of multiple impff_tatiqp’~f" =
involves repeating this set of steps M times. The estimators of the parameter vector and the appropriate ~

asymptotic covariance matrix are @1 :

= . il

AU Ty i ge— Ilr[f\lﬂ,ﬂ[-'{_lj‘}lf ;

..szzﬂzmdbf”’ -, Lf'lﬁj{ﬁt_xl_'['{jff‘:ﬂ'r’l r

. 1 —n 1 1 Mo, = vt naT L ane g
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Researchers differ on the effectiveness or appropriateness of multiple imputation.* When all is ,
said and done, the measurement error in the/imputed values remains. It takes very strong assumptions to
establish that the multiplicity of iterations will sufficc to average away the effect of this error. Very
elaborate techniques have been developed for the special case of joint normally distributed cross sections
of regressors such as',§ﬁggesteq,abow'e. However, the typical application to survey data involves gaps due
to nonresponse to qualitative questions with binary answers. The efficacy of the theory is much less well
developed for imputation of binary, ordered, count;or other qualitative variables.

The more manageable case is missing values of the dependent variable, y; . Once again, it must be -
the case that y, is at least M4R and that the mechanism that is determining presence in the sample does not
share parameters with the model itself. Assuming the data on x; are complete for all observations, one
might consider filling the gaps in the data on y, by a two-step procedure: (1) estimate f with b, using the
complete observations, X, and Yo then (2) fill the missing values, y,, with predictio}is, j’m =X, b.,and

Ve HaeC
recompute the coefficients. We leave as an exercise (Exercise 17) to show that the second step estimator
is exactly equal to the first. However, the variance estimator at the second step, ﬁ)rnust underestimate o”,
intuitively because we-are adding to the sample a set of observations that are fit perfectly. [See Cameron
and Trivedi (2005, Chapter 27).] So, this is not a beneficial ‘way to proceed. The flaw in the method
comes back to the device used to impute; the missing values for 3, Recent suggestions that appear to
provide some improvement involve using a randomized version, §,, =X_b, + €,, where € are random

draws from the (normal) population with zero mean and estimated variance
SZ[I____+ _}(m(XC'Xc)']_Xm']. (The estimated variance matrix corresponds to Xube + &,.) This defines an
iteration. After reestimating B with the augmented data, one can return to re-impute the augmented-data

with the new ﬁ_‘, then recompute b, and so on. The process would continue until the estimated parameter

vector stops changing. (A subtle point to be noted here: The same random draws should be used in each :
iteration. If not, there is no assurance that the iterations would ever converge.)

In general, not much is known about the properties of estimators based on using predicted values
to fill missing values of y. Those results we do have are largely from simulation studies based on a
particular data set or pattern of missing data. The results of these Monte Carlo studies are usually difficult
to gencralize. The overall conclusion seems to be that in a single-equation regression context, filling in
missing values of y leads to biases in the estimator which are difficult to quantify. The only reasonably
clear result is that imputations are more likely to be beneficial if the proportion of observations that are
being filled is smalll—lthe smaller the better.
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4.7.5 Measurement ErrorMMkﬁﬂA/la@gs

There are any number of cases in which observed data are imperfect measures of their theoretical
counterparts in the regression model. Examples include income, education, ability, health, “the interest
rate,” output, capital, and so on. Mismeasurement of the variables in a model will generally produce -
. adverse consequences for least squares estimation. Remedies are complicated and sometimes requirg. - - -
" 'héroic assumptions. In this section, we will provide a brief sketch of the issues. We defer to Section 8.5™
a more detailed discussion of the problem of measurement error, the most common solution (instrumental
variables estlmatlon) and some applications. = = .- .

It is convenient to distinguish between measurement etror in the dependent variable and
measurement error in the regressor(s). For the second case, it is also useful to consider the simple
regrcssmn case, then extend it to the multiple regression model. Consider a model to descnbe expected
income in a populatlon

*=xB+e (4-55)
where I* is the intended total income variable. Suppose the observed counterpart is I, earnings. How [/

relates to /* is unclear; it is common to assume that the measurement error is additive, so /= I* + w.
Inserting the expression for 7 into (4-55) gives

I=xBtre+w

= z('B + vy, (4:56)

which appears to be a slightly more complicated regression, but otherwise similar to what we started with.
As long as w and x are uncorrelated, that is the case. If w is a homoscedastic) zero mean error that is -
uncorrelated with, x then the only difference between (4-55) and (4-56) is that the disturbance variance in
{4-56) is O'w +o,° > o,2. Otherwise both are regressions and, evidently B can be estimated consistently
- by least squares in either case. The cost of the measurement error is in the precision of the estimator,
(rrnes) ¢\ _the asymptotlc variance of the estimator in (4-56) is (szln)[phm(X'X/n)] while it
' @n)[phm(X'X/n)] if B is estimated usmg (4-55). The measurement error also costs some fit. To see
this, note that the R2 in the sample regression in (4-55) is

R =1 - (ele/n)/(1*M'I*/n).

The numerator converges to o, while the denominator converges to the total variance of /* jwhich would
approach o,” + B'QB where Q = plim(X'X/n). Therefore,

plim R? = B'QB/[s. + B'QB).

The counterpart for (4-56), R, differs only in that o’ is replaced by 6.} > .2 in the denominator, It
follows that ;

-|""

plim R.’ ¢ plim B > 0.

This implies that the fit of the regression in (4-56) will, at least broadly in expectation, be inferior to that
in (4-55). {The preceding is an asymptotic approximation that might not hold in every finite sample.)

These results demonstrate the implications of measurement error in the dependent variable. We
note, in passing, that if the measurement error is not additive, if it is correlated with x, or if it has any
other features such as heteroscedasticity, then the preceding results are lost, and nothing in general can be
said about the consequence of the measurement error. Whether there is a “solution” is likewise vl
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ambiguous question. The precedmg.shows that the it would be better to have the uﬂderlymg variable if
possible. In the absence, would it be preferable to use a proxy? Unfortunately, 1 alreadyi isja proxy, so
unless there exists an available I’ which has smaller measurement error variance, we have reached an -
impasse. On the other hand, it does seem that the outcome is fairly benign. The sample does not contain
as much information as we might hope, but it does contain sufficient information consistently to estimate -

. B and to do appropriate statistical inference based on the information we do have. e
The more difficult case occurs when the measurement error appears in the 1ndependent"'_ '

variable(s). For 51mp1101ty, we retain the symbols I and I* for our observed and theoretical variables.
Consider a simple regression, -

y:[31+521!*+85 ’ o .

where y is the perfectly measured dependent variable and the same measurement equation, I = I* + w
applies now to the independent variable. Inserting J into the equation and rearranging a bit, we obtain

il

Bi+ B + (&-Baw) J
Br+ B + v (4-57)

Y

It appears that we have obtained (4-56) once again. Unfortunately, this is not the case, because Cov[Iyv]=
Cov[* +w, e -(B] = Bsz . Since the regressor in (4-57) is correlated with the disturbance, least
squares regression in this case is inconsistent. There is a bit more that can be derlved = this is pursued in -
Section 8.3, so we state it here without proof. In this case,

plim b, = By[o+’ / (64> + 6,7)]

where o.7 is the marginal variance of I*. The scale factor is less than one, so the least squares estimator is |
biased twoard zero. The larger.is the measurement error variance:the worse is the bias. (This is called

' least squares attenuatmn ) Now, suppose there are additional variables in the model;

y = XPBr+ [ufF +e

In this instance, almost no useful theoretical results are forthcoming. The following fairly general
conclusions can be drawnl.% once again, proofs are deferred to Section 8.5:

( l:j The least squares estimator of f3; is still biased toward zero.
(2), All the elements of the estimator of 3, are biased, in unknown directions, even though the
variables in x are not measured with error.

Solutions to the “measurement error problem” come in two forms. If there is outside mformatlon" e
on certain mode! parameters, then it is possible to deduce the scale factors (using the method of
moments) and undo the bias. For the obwous example, in (4-57), if Gw were known, then it would be
possible to deduce .2 from Var[[]=c." + &,” and thereby compute the necessary scale factor to undo the -
bias. This sort of information is generally not available. A second approach that has been used in many .
applications is the technique of instrumental variables. This is developed in detail for this setting in
Section 8.5. '
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4.7.6 Outliers and Influential Observations

Figure 4.9 shows a scatter plot of the data on sal¢ prices of Monet paintings that were used in Example
4.10. Two points have been highlighted. The one marked “I” and noted with the square overlay shows
the smallest painting in the data set. The circle marked “O” highlights a painting that fetched an =
~_unusually low price, at least in comparison to what the regression would have predicted. (It was notthe "
least costly painting in the sample; but, it was the one most poorly predicted by the regression.) Since ~.
least squares is based on squared dQVlatlons the estimator is likely to be strongly influenced by extreme
observations such as these, partlcularly if the sample is not very large.

An “influential observation” is one that is likely to have a substantial impact on the least squares
regression coefficient(s). For a simple regression such as the one shown in Figure 4.9, Belsley, Kuh and
Welsh (1980) defined an influence measure, for observation £,

— 2 v, 1
LI C ) (4-58) :
R Zj:l(xj_xn)

where x, and the summation in the denominator of the fraction are computed without this observation.

(The measure derives from the difference between b and b, where the latter is computed without the
particular observation. We will return to this shortly.) It is suggested that an observation should be noted
as influential if 4; > 2/n. The decision is whether to drop the observation or not. We should note, |
observations with high “leverage™ are arguably not “outliers” (which remains to be defined), because the .
analysis is conditional on x;. To underscore the ooint referring to Figure 4.9, this observation would be
marked even if it fell pre01sely on the regression llne + the source of the influence is the numerator of the
second term in /4, which is unrelated to the distance of the point from the line. In our example, the ~

“influential observation™ happens to be the result of Monet’s decision to paint a small painting. The point |
is that in the absence of an underlying theory that explains (and justifies) the extreme values of x,
eliminating such observations is an algebraic exercise that has the effect of forcing the regression line to
be fitted with the values of x; closest to the means.

The change in the linear regression coefficient vector in a multiple regression when an

observation is added to the sample is

Py =Ab= (X0 X)) % (2B (4-59)
? 1+x (.XE{)X(;‘)) X b ’

i

where b is computed with observation i in the sample, by, is computed without observation i,and X, does - _:
not include observation i. (See Exercise 6 in Chapter 3.) It is difficult to single out any parttcular feature .
of the observation that would drive this change. The influence measure,

] ! -1
h, = ?‘a‘(x_(f)x_(_i)) i
| Kk - (4-60)

- LSS e ) ) M)
=1 k=1

has been used to flag influential observations. (See, once again, Belsley, Kuh, and Welsh (1980) and ' [}/
Cook (1977).) In this instance, the selection criterion would be A; > 2(K-1)/n. Squared deviations of the
elements of x; from the means of the variables appear in Ay, so it is also Operating on the difference of, X;
from the center of the data. {See the expression for the forecast valriance in Section 4.6.1 for an
application.}
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In principle, an “outlier,” is an observation that appears to be outside the reach of the model,
perhaps because it arises from a different data generating process. Point “O” in Figure 4.9 appears to be
a candidate. Outliers could arise for several reasons. The simplest explanation would be actual data
errors. Assuming the data are not erroneous, it then remains to define what constitutes an outlier.
Unusual residuals are an obvious choice. But, since the distribution of the disturbances would anticipate -

| g ‘for a certain small percentage of extreme observations in any event, simply singling out observations with-. . -
© " large residuals is actually a dubious exercise. On the other hand, one might suspect that the outlying™

observations are actually generated by a different population. “Studentized” residuals are constructed
with this in mind by computmg the regression coefficients and the residual variance without observation J
for each observation in the sample then standardlzmg the modified residuals. The ith studenttzed o —
residual is (oo | :

_6(_i)= € / e:'ﬁ_ejz /(l_hﬁ) (LI - é l) - 5,1‘_1' J“{_l _J‘
(1—h;) n-1-K _ e f'-';(f y

""_:-.

where ¢ is the residual vector for the full sample, based on b, including ¢; the residual for observation /.
In principle, this residual has a ¢ distribution with n-1 K degrees of freedom (or a standard normal
. \ distribution asymptotically). Observations with large studentized residuals, ie., greater than 2.0, would
Lhett 14, be singled out as outliers. h
There are several complications that arise with isolating outlying observations in this fashion. .
First, there is no a priori assumption, which observations are from the alternative population, if this is the
view. From a theoretical point of view, this would suggest a skepticism about the model specification. If -
the sample contains a substantial proportion -of outliers, then the properties of the estimator based on the
reduced sample are difficult to derive. In our applicationsbelow, the procedure deletes 4.7% of the v el
)| sample (20 observations). Finally, it will usually occur that observations that were not outliers in the
original sample will become “outliers” when the original set of outliers is removed. It is unclear how one
should proceed at this point. (Using the Monet paintings data, the first round of studentizing the residuals
removes 20 observations. After 16 iterations, the sample size stabilizes at 316 of the original 430 - :
((en | observations, a reduction-of 26.5%.) Table 4.9 shows the original resnits (from Table 6) and the modified e
s | results with 20 outliers removed. Since 430 is a relatively large sample, the modest change in the results
[ 117 is to be expected.
\H It is difficult to draw a firm general conclusions from this exercise. It remains likely that in very .
small samples, some caution and close scrutiny of the data are called for. If it is suspected at the outset
that a process that.is prone to large observations is at work, it may be useful to consider a different
estimator altogether, such as least absolute deviations, or even a different model specification that
accounts for this possibility. For example, the idea that the sample may contain some observations that .
are generated by a different process lies behind the latent class model that is discussed in Chapters 14 and .
18. ‘
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Figure 4.9 Log Price vs. Log Area for Monet Paintings:,

TABLE 4.9 Estimated Eguations for Log Price

Number of observations

Mean of log Price

Sum of squared residuals
Standard error of regression
R-squared

Adjusted R-squared

430
0.33274
519,17235
1.10266
0.33620
0.33309

.-n=430 |

Variable . Cogff;ciént' )
=430 | n=gle s
Constant -8.42653 |-8.67356
LOGAREA 1.33372 | 1.36982
ASPECT -.16537 | -.14383

410
.36043
383.17982
0.57030
0.39170
0.38871
Error t
n=410 n=ﬂ30'| n=410
.57529 ~-13.77 | -15.08
108472 14.70 | 16.17
.11412  -3.30 | T -1.26
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4.8 SUMMARY AND CONCLUSIONS

This chapter has examined a set of properties of the least squares estimator that will apply in all samples,
including unbiasedness and efficiency among unbiased estimators, The formal assumptions of the linear
model are pivotal in the results of this chapter. All of them are likely to be violated in more general -
settings than the one considered here. For example, in most cases examined later in the book, the:s o
‘estimator has a possible bias, but that bias diminishes with increasing sample sizes. For purposes of =~
forming confidence intervals and testing hypotheses, the assumption of normality is narrow, so it was
necessary to extend the model to allow nonnormal disturbances. These and other “large,sample”
extensions of the linear model were considered in Section 4.4. The crucial results developed here were the
consistency of the estimator and a method of obtaining an appropriate covariance matrix and large sample
distribution that provides the basis for forming confidence intervals and testing hypotheses. Statistical
inference in the form of interval estimation for the model parameters and for values of the dependent
variable vt*er’tla considered in Sections 4.5 and 4.6. This development will continue in Chapter 5 where we
will consider hypothesis testing and model selection. ;

Finally, we considered some practical problems that arise when data are less than perfect for the
estimation and analysis of the regression model, including multicollinearity, missing observations,
measurement errof,and outliers.
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Exercises \ e Methed of moments

(5)eSmearing es$, matorl
L Suppose that you have two mdependent unbiased estimators of the same parameter
g, say #1 and ,, with different variances v and v,. What linear combination 6=
¢161 +.¢285 is the minimum variance unbiased estimator of §7

2. Consider the simple regression y; =

= Bx; +&; where E[e | x]

=0and E[¢?|x] = o*

a. What is the minimum mean squared error linear estimator of 87 [Hint: Let the
estimator be (8 =¢y). Choose ¢ to minimize Var(8) + (E(8 — 8))°. The answer
is a function of the unknown parameters.|

b. For the estimator in part a, show that ratio of the mean squared error of 8 to
that of the ordinary least squares estimator b is

MSE[f]  <* . P
MSE[B] ~ 057 T = o2

Note that 1 is the square of the population analog to the “¢ ratio” for testing
the hypothesis that 8 = 0, which is given in (4-14). How do you interpret the
behavior of this ratio as r — o0?

. Suppose that the classical regression model applies, but that the true value of the

constant is zero. Compare the variance of the least squares slope estimator com-
puted without a constant term with that of the estimator computed with an unnec-
essary constant term,

. Suppose that the regression model is y; = o + $x; + &;, where the disturbances

g; have f(g;) = (1/A) exp(—e&;/A), & > 0. This model i is rather peculiar in that all
the disturbances are assumed to be nonnegative. Note that the disturbances have

Eleilx] = » and Var[e; | x;] = A%. Show that the least squares slope is unbiased
but that the intercept is biased.

. Prove that the least squares intercept estimator in the classical regression model is

the minimum variance linear unbiased estimator.
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6.

10.

11.

12.

13.

As a profit-maximizing monopolist, you face the demand curve Q = o+ P +2.In
the past, you have set the following prices and sold the accompanying quantities:

Q|3 3 7 610 15 16 13 9 15 9 15 12 18 21
P|181617121515 41311 6 8 100 7 7 7

Suppose that your marginal cost is 10. Based.on the least squares regression, com-
pute a 95 percent confidence interval for the expected value of the profit-maximizing
output.

The following sample moments for x = [1, x1, X, x3] were computed from 100 ob-
servations produced using a random number generator:

100 123 96 109 460

~ 123 252 125 189| o, |80

XX=196 15 167 16| XX~ |15 ¥y~ I
109 189 146 168 712

The true model underlying these datais y = x1 + x3 4+ x3 + &,

a. Compute the simple correlations among the regressors.

b. Compute the ordinary least squares coefficients in the regression of y on a con-
stant xj, x2, and x3. 2

¢. Compute the ordinary least squares coefficients in the regression of y on a con-
stant x; and x», on a constant x; and xs3, and on a constant x, and x3.

d. Compute the variance inflation factor associated with each variable.

e. The regressors are obviously collinear. Which is the problem variable?

Consider the multiple regression of y on K variables X and an additional variable z.

Prove that under the assumptions A1 through A6 of the classical regression model,

the true-variance of the least squares estimator of the slopes on X is larger when z

is included in the regression than when it is not. Does the same hold for the sample

estimate of this covariance matrix? Why or why not? Assume that X and z are

nonstochastic and that the coefficient on z is nonzero. '

For the classical normal regression model y = X8 + & with no constant term and

K regressors, assuming that the true value of § is zero, what is the exact expected

value of F[K,n— K} = (1’32/1'0/[(1 ~- R /(n— K)]?

Prove that E [pfh] B8+t Zk=l (1/Ax) where b is the ordinary least squares

estimator and A is a characteristic root of X’X.

For the classical normal regression model y = X§ +.€ with no constant term and

K regressors, what is plim F[K,n — K] = phrn Wﬁﬁ’ assuming that the true

value of 8 js zero?

Let ¢; be the ith residual in the ordinary least squares regression of y on X in the
classical regression model and let ¢; be the corresponding true disturbance. Prove
that plim{e; — ;) =

For the simple regression model y; = p + &, & ~ N[0, 0], prove that the sam-
ple mean is consistent and asymptotically normally distributed. Now consider the
alternative estimator fl = >, wiyi, w; = m Ei_ Note that >, w; = 1.

Prove that this is a consistent estimator of p and obtain its asymptotic variance.
[Hint: 3, i% = n(n + 1)(2n+ 1)/6.]

U
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thing/plimb = § = 8 4 Q~'y. Derive
shadv that b is ;ﬁmp tlcaJlV no

1§

establish génsistency of b? (Hint: th

AV E

ptotic normality;
Consider a data set consisting of n observations, n, complete and #,, incomplete
for which the dependent variable, y;, is missing. Data on the independent variables,

.Xi, are complete for all n observations, X, and X,,. We wish to use the data to

estimate the parameters of the linear regression modely = X8 + . Consider the
following the imputation strategy: Step 1: Linearly regress y. on X, and compute
b.. Step 2: Use X, to predict the missing y,, with X,;b.. Then regress the full sample
of observations, (v., Xub.), on the full sample of regressors, (Xc, Xm)

a. Show that the first and second step least squares coefficient vectors are identical.
b. Is the second step coefficient estimator unbiased?

c. Show that the sum of squared residnals is the same at both steps.

d. Show that the second step estimator of o? is biased downward.

Applicationé

1.

Data on U.S. gasoline consumption for the years 1953 to 2004 are given in Table F2.2.

Note, the consumption data appear as total expenditure. To obtain the per capita

quantity variable, divide GASEXP by GASP times Pop. The other variables do not

need transformation.

a. Compute the multiple regression of per capita consumption of gasoline on per
capita income, the price of gasoline, all the other prices and a time trend. Report
all results. Do the signs of the estimates agree with your expectations?

b. Test the hypothesis that at least in regard to demand for gasoline, consumers do
not differentiate between changes in the prices of new and used cars.

c. Estimate the own price elasticity of demand, the income elasticity, and the cross;
price elasticity with respect to changes in the price of public transportation. Do’
the computations at the 2004 point in the data.

d. Reestimate the regression in logarithms so that the coefficients are direct esti-
mates of the elasticities. (Do not use the log of the time trend.} How do your
estimates compare with the results in the previous question? Which specification
do you prefer?

e. Compute the simple correiations of the price variables. Would you conclude that
multicollinearity is a “problem” for the regression in part a or part d?



I’s 4% In (4-13), we find that when superfluous variables X, are added to the regression of y on X; the least

squares coefficient estimator is an unbiased estimator of the true parameter vector, P = B0,

Show that in this long regression, e'e/(n-K-K;) is also unbiased, as estimator of 6>, '
) V. Tn Section 4.7.% we consider regressi}lg y.on a set of principal components, rather than the original
data. For simplicity, assume that X does not contain a constant term, and that the K variables are
measured in deviations from the means and are “standardized” by dividing by the respective standard
deviations. We consider regression of ¥ on Z principal components, Z = XCp, where L < K. Let d
denote the coefficient vector. The regression model is y = XB + &. In the discussion, it is claimed
that Z[d] = C.'B, Prove the claim.

)1 V[ 1 Example 4.9 presents a regression model that is used to predict the auction prices of Monet paintings. +
The most expensive painting in the sample sold for $33.0135M (log = 17.3124). The height and
width of this painting were 35” and 39.4”, respectively. Use these data and the model to form
prediction intervals for the log of the pricé, then the price for this painting.



1 Greene-50558 book June 24, 2007 22:24

.30 |

CHAPTER 4 4+ Statistical Properties of the Least Squares Estimator 79

f. Notice that the price index for gasoline is normalized to 100 in 2000, whereas the
 En other price indices are anchored at 1983 (roughly). If you were to renormalize
e the indices so that they were all 100.00 in 2004, then how would the results of the
regression in part a change? How would the results of the regression in part d
change? U - I
g. This exercise is based on the modél that you estimated in part d. We are inter-
ested in investigating the change in the gasoline market that occurred in 1973.
First, compute the average values of log of per capita gasoline consumption in
the years 1953-1973 and 19742004 and report the values and the difference. If
we divide the sample into these two groups of observations, then we can decom-
pose the change in the expected value of the log of consumption into a change Y
attributable to change in the regressors and a change attributable to g change in | 5{ 'y
the model coefficients, as shown in Sectio@U sing the OaxacailBlinder ap- -5.3
proach described there, compute the decomposition by partitioning the sample
and computing separate regressions. Using your tesults, compute a confidence
interval for the part of the change that can be attributed to structural change in
the market, that is, change in the regression coefficients.
2. Christensen and Greene (1976) estimated a generalized Cobb-Douglas cost func-
tion for electricity generation of the form "

mC=a+pfQ+y[3nQ?| +&In A+ &I B +57ln Py e

Py, .Prand Py indicate unit prices of capital, labor, and fuel, respectively, Qis output
and Cis total cost. To conform to the underlying theory of production, it is necessary
to impose the restriction that the cost function be homogeneous of degree one in
the three prices. This is done with the restriction 8g +8; +87 = 1,018 =1 -8 - 4;.
Inserting this result in the cost function and rearranging produces the estimating
equation,

In(C/Py) = a + 1n Q+ v [5(n Q] + 8 In(F/ Py) + & In( B/ Pp) +&.

G. A Mﬂll?%?eraﬁzaﬁon was to produce a U-shaped average total cost
curve. [See Example®.3 for discussion of Nerlove’s (1963) predecessor to this study.]
We are interested in the e_l‘f_i_;:ire'ﬂ't scale, which is the output at which the cost curve
reaches its minimum. That is the point at which (3 InC/3In Q) g-g = lor F|=
exp{(1 — A)/v].
a. Data on 138 firms extracted from Christensen and Greene’s study are given in
Table @Jsing all 158 observations, compute the estimates of the parameters
_ intHe cost function and the estimate of the asymptotic covariance matrix.
= 4. Lf b. Note that the cost function does not provide a direct estimate of ;. Compute
this estimate from your regression results, and estimate the asymptotic standard
error. ane)
c. Compute an estimate of Q* using your regression results, then form a confidence
interval for the estimated efficient scale. '
d. Examine the raw data and determine where in the sample the efficient scale lies.
That is, determine how many firms in the sample have reached this scale, and
whether, in your opinion, this scale is large in refation to the sizes of firms in
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the sample. Christensen and Greene approached this question by computing the
proportion of total output in the sample that was produced by firms that had not
yet reached efficient scale. (Note; there is some double counting in the data set-
' more than 20 of the 1argest “firms” in the sample we are using for this exercise
are holding companies. and power pools that are aggregates of other firms in
the sample. We will ignore that complication for the purpose of our numerical
exercise.)

-



