i 7 “the model is inadequate.” This test pits the theory of the model against “some cther unstated

5 HYPOTHESIS TESTS AND MODEL SELECTION

5.1 INTRODUCTION

The linear regression model is used for three major purposes: estimation and prediction, which -
. - ‘were the subjects of the previous chapter and hypothesis testing. In this chapter,we will examine “&.
“some applications of hypothesis tests using the linear regression model. We begin with the
methodological and statistical- theory:  Some of this theory was developed in Chapter 4

(including the idea of a pivotal statistic in Section 4.5.1) and in Appendix C.7. In Section 5.2, we

will extend the methodology to hypothesis testing based on the regression model. After the theory

is developed, Sections 5.375.7 will examine some applications in regression modeling. * This

development will be concerned with the implications of restrictions on the parameters of the

model, such as whether a variable is “relevant’ (i.e., has a nonzero coefficient) or whether the

regression model itself is supported by the data (i.c., whether the data scem consistent with the
hypothesis that all of the coefficients are zero). We will 'be Iprimarily \concerned with line

restrictions in this discussion. We will turn to nonlinear restrictions near the end of thd
development in Section 5.7. Section 5.8 considers some broader types of hypotheses, such as G
choosing between two competing models, such as whether a linear or a loglinear model is better _&L‘ Kl
suited to the data. In each of the cases so far, the testing procedure attempts to resolve a U_'_f i ‘cf‘HG 0
competition between two theories for the data;'in Sections 5.215.7. between a narrow model and a 5{3‘_"3"{ ’IL .
broader one, and in, 5.8 between two arguably equal models. Section 5.9 illustrates a particular ~tost not
| sspecification test, which is essentially a test of a proposition such as “the model is correct” vs. :‘ﬁ QJ""T"F*
theory.” Finally, Section 5.10 presents some general principles and elements of a strategy of e o ]Jﬁ
model testing and selection. '

5.2 Hypothesis Testing Methodology
We begin the analysis with the regression model as a statement of a proposition,
J=XB+ _E: (5-1)
To consider a specific application, Example 4.6 depicted the auction prices of paintings
InPrice = B, + BainSize + BsdspectRatio + ¢. (5-2)

Some questions might be raised about the “model” in (5-2), fundamentally, about the variables. It

seems natural that fine art enthusiasts would be concerned about aspect ratio, which is an element

of the aesthetic quality of a painting. But, the idea that size should be an element of the price is

counterintuitive, particularly weighed against the surprisingly small sizes of some of the world’s

most iconic paintings such as the Mona Lisa (30” high and 21%wide) or Dali’s Persistence of

Memory (only 9.5 high and 13* wide). A skeptic might question the presence of InSize in the

equation, or, equivalently, the nonzero coefficient, B,. To settle the issue, the relevant empirical - @
question is whether the equation specified appears to be consistent with the data - be., the nal g
observed sale prices of paintings. In order to proceed, the obvious approach for the analyst would —
be to fit the regression ﬁrst;,_:;tﬁén examine the estimate of 3,. The “test” at this point, is whether ;{Ju; K

by in the least squares regression is zero or not. Recognizing that the least squares slope is a f ==

random variable that will never be exactly zero even if B really is, we would soften the question 03 pe
to be whether the sample estimate seems to be close enough to zero for us to conclude that its | duf | = !

population counterpart is actually zero, i.e., that the nonzero vaiue we observe is nothing more ‘o Feut?
I I
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than noise that is due to sampling variability. Remaining to be answered are questions including;"
How close to zero is close enough to reach this conclusion? What metric is to be used? How
certain can we be that we have reached the right conclusion? (Not absolutely, of course.) How
likely is it that our decision rule, whatever we choose, will lead us to the wrong conclusion? This
section will formalize these ideas. After developing the methodology in detail, we will construct
~ - anumber of numerical examples. -

5.2.1 Restrictions and Hypdt‘heses

T

The approach we will take is to formulate a hypothesus as a restriction on a model. Thus, in the |=

classical methodology considered here, the model is a ‘general statement and a hypothes1s is a
proposition that narrows that statement. In the art example in (5-2), the broader statement is (5-2)

while the narrower one is (5-2).with the additional statement that (3, = 0 - without comment on 3; ; ST
- ot Bs. We define the null hypothesls as the statement that narrows the model and the alternative'-

hypothesis as the broader one. In the example, the broader model aflows the equation to contain
both InSize and AspectRatzo G it admits the possibility that either coefficient might be zero but
does not insist upon it. The null hypothesis insists that B, = 0 while it also makes no comment
about 3, or 5. The formal notation used to frame this hypothesis would be

InPrice = B + B2InSize + BsAspectRatio + «,
H()Z |32 = O, (5"'3)
H1! Bg # 0.

Note that the null and alternative hypotheses, together, are exclusive and exhaustive. There is no
third possibility; either one or the other of them is true,-and not both.

The analysis from this point on will be to measure the null hypothesis against the data.
The data might persuade the econometrician to reject the null hypothesis. It would seem
appropriate at that point to to “accept” the alternative. However, in the interest of maintaining
flexibility in the methodology, that is, an openness to new information, the appropriate conclusion
here will be either to reject the null hypothesis or not to reject it. Not rejecting the null hypothesis
is not equivalent to “accepting” it - though the language might suggest so. By accepting the null
hypothesis, we would implicitly be closing off further investigation. Thus, the traditional,
classical methodology leaves open the possibility that further evidence might still change the
conclusion. Qur testing methodology will be constructed so as either to?

Reject Hy: The data are inconsistent with the hypothesis with a
reasonable degree of certainty.
Do not reject Hy: The data appear to be consistent with the null hypothesis.
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5.2.2 Nested Models

The general approach to testing a hypothesis is to formulate a statistical model that contains the r.*'l'- ..
hypothesis as a restriction on its parameters. A theory is said to have testable implications if it
implies some testable restrictions on the model. Consider, for example, a model of investment,_f,_,

© o Ind=pit Bt fibpt BilnY, + i+, (5-4)

which states that investors are sensitive to nominal interest rates, i, the rate of inflation, Ap,, (the
log of) real output, In¥, , and other factors that trend upward through time, embodied in the time
trend, 7. An alternative theory states that “investors care about real interest rates.” The alternative
model is

InZi=pi+ fali = Ap) + B Api + fa InY, + Bst + 5. (3-5) ‘ i

Although this new model does embody the theory, the equation still contains both nominal
interest and inflation. The theory has no testable implication for our model. But, consider the
stronger hypothesis, “investors care only about real interest rates.” The resulting equation,

In 1, = B+ Boli~ Ap) + By Y, + fst + &, (5-6)

is now restricted; in the context of (5-4), the implication is that 8, + f; = 0. The stronger
statement implies something specific about the parameters in the equation that may or may not be
supported by the empirical evidence.

The description of testable implications in the preceding paragraph suggests (correctly)
that testable restrictions will imply that only some of the possible models contained in the original
specification will be “valid that is, consistent with the theory. In the example given earlier, (5-4)
specifies a model in which there are five unrestricted parameters (£, fa, fs, fa, Bs). But, (5-6)
shows that only some values are consistent with the theory, that is, those for which $; = —8,. This

(1, 1ysubset of values is contained within the unrestricted set. In this way, the models are said to be

nested. Consider a different hypothesis, “investors do not care about inflation.” In this case, the
., Smaller set of coefficients is (81, £, 0, By, fs). Once again, the restrictions imply a valid
J“parameter space that is “smaller” (has fewer dimensions) than the unrestricted one. The general
result is that the hypothesis specified by the restricted model is contained within the unrestricted
model,

Now, consider an alternative pair of models: Modely: “Investors care only about
inflation”; Model;: “Investors care only about the nominal interest rate.” In this case, the two
parameter vectors are (5, 0, £, £, fs) by Model, and (B1, B2, 0, By, B5) by Model,. In this case, the
two specifications are both subsets of the unrestricted model, but neither model is obtained as a
restriction on the other.They have the_same number of parameters; they just contain different
variables. These two models are _pohflqs_tg(_l. For the present, we are concerned only with nested
models. Nonnested models are considered in Section 5.8.

5.2.3 Testing Procedures ;— Neyman}Pearson Methodology

In the example in (5-2), intuition suggests a testing approach based on measuring the data
against the hypothesis. The essential methodology suggested by the work of Neyman and
Pearson (1933) provides a reliable guide to testing hypotheses in the setting we are considering in
this chapter. Broadly, the analyst follows the logic: “what type of data will lead me to reject the
hypothesis?” Given the way the hypothesis is posed in Section 5.2.1, the question is equivalent to



(5-¢

asking what sorts of data will support the model. The data that one can observe are divided into a
rejection region and an acceptance region. The testing procedure will then be reduced 1o a
simple up or down examination of the statistical evidence. Once it is determined what the
rejection region is, if the observed data appear in that region, the null hypothesis is rejected. To

see how this operates in practice, consider, once again, the hypothesis about size in the art price | <y
~ -equation. Our test is of the hypothesis that B, equals zero. We will compute the least squares- j “”’:? (s 0y f
-'é‘lope._ We will decide in advance how far the estimate of 32 must be from zero to lead to rejection Lff“’ mﬁiﬂ_
of the null hypothesis. Once the rule is.laid out, the test, itself, is mechanical. In particular, for

this case, b, is “far” from zero if by > ;" or by.< B,". If either case occurs, the hypothesis is
rejected. The crucial element is that the rule is decided upon in advance.

-

5.2.4 Size, Power.and Consistency of a Test

Since the testing procedure is determined in advance, and the estimated coefficient(s) in
the regression are random, there are two ways the Neyman:Pearson method can make an error.
To put this in a numerical context, the sample regression corresponding to (5-2) appears in Table
4.6. The estimate of the coefficient on InArea is 1.33372 with an estimated standard error of
0.09072. Suppose the rule to be used to test is decided arbitrarily (at this point L we will

formalize it shortly) to be: if b, is greater than +1.0 or less than =1.0, then we will reject the l’.:"-:--_';:._- b

hypothesis that the coefficient is zero (and conclude that art buyers really do care about the sizes

of paintings). So, based on this rule, we will, in fact, reject the hypothesis. However, since _]’.)2[;%]

a random variable, there are the following possible errors:

Type Lerror: B, =0, but we reject the hypothesis.

i
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The null hypothesis is incorrectly rejected. ' —1_-1-— ] =
Type Il error: B, # 0, but we do not reject the hypothesis, | i _T*.';_{ B “
The null hypothesis is incorrectly retained. | otthetest afe

(T

s e ) {;f 1 Er

The probability of a Type I etror is called the s_iz_e_.pk_ﬁie test. The size of a test is the probability.._' €% A

that the test will inforrectly reject the null hypothesis. As will emerge later, the analyst— \
~ determines this in advance. One minus the probability of a Type II error is called the power of a -

" test. The power of a test is the probability that it will correctly reject a false null hypoﬂixés{is'.‘ The
power of a test depends on the alternative. It is not under the control of the analyst. To consider
the example once again, we are going to reject the hypothesis if [bo > 1. If B, is actually 1.5,
based on the results we’ve seen, we are quite likely to find a value of b, that is greater than 1.0.
On the other hand, if 8, is only 0.3, then it does not appear likely that we will observe a sample
value greater than 1.0. Thus, again, the power of a test depends on the actual parameters that
underlie the data. The idea of power of a test relates to its ability to find what it is looking for.

A test procedure is qo,n_éisji.fég:t if its power goes to 1.0 as the sample size grows to
infinity. This quality is easy to see, again, in the context of a single parameter, such as the one
being considered here. Since least squares is consistent, it follows that as the sample size grows,
we will be able to learn the exact value of B2, so we will know if it is zero or not. Thus, for this
example, it is clear that as the sample size grows, we will know with certainty if we should reject
the hypothesis. For most of our work in this text, we can use the following guide: A testing
procedure about the parameters in a model is consistent if it is based on a consistent estimator of
those parameters. Since nearly all of our work in this book is based on consistent estimators and
save for the latter sections of this chapter, our tests will be about the parameters in nested models,
our tests will be consistent. b .
WAers |

¢ '-1{3;{':-. L5
\‘-\-‘-\_\_‘—\—\_

eons:s feend

.:x"i Yy


Bill
Sticky Note
add to KT list

Bill
Sticky Note
add to KT list


- “uncemfortably close to the boundary of the rejection region. Consider our example. If we have

5§25 A Methoddlogical Dilemma: Bayesian vs. Classical Testing

As we noted earlicr, the Neyman-Pearson testing methodology we will employ here is an all, or —
nothing proposition. We will detérmine the testing rule(s) in advance, gather the data, and either
reject or not reject the null hypothesis. There is no middle ground. This presents the researcher _
-with two uncomfortable dilemmas. First, the testing outcome, Te., the sample data might be. =X @
decided in advance to reject the null hypothesis if 5, > 1.00, and the sample value is 0.9999, it ﬁ.} fOK
will be difficult to resist the urge fo reject the.null hypothesis anyway, particularly if we entered | = el
the analysis with a strongly held belief that the null hypothesis is incorrect. (L.e., intuition || o S ”i;
notwithstanding, I am convinced that art buyers really do care. about size.) Second, the | ( wT ),
methodology we have laid out here has no way of incorporating other studies. To continue our "ﬂ toxt 7
example, if [ were the tenth analyst to study the art market, and the previous nine had decisively : = f
rejected the hypothesis that B, = 0, I will find it very difficult not to reject that hypothesis even if ——
my evidence suggests, based on my testing procedure, that I should.

This dilemma is built into the classical testing methodology. There is a middle ground.
The Bayesian methodology that we will discuss in Chapter 15 does not face this dilemma because
the Bayesian analj/"sﬁl'never reaches a firm conclusion. They merely update their priors. Thus, the
first case noted, in which the observed data are close to the boundary of the rejection region, the
analyst will merely be updating theil prior with somethat slightly less persuasive evidence than
might be hoped for. But, the methodology is comfortable with this. For the second instance, we
have a case in which there is a wealth of prior evidence in favor of rejecting Hy. It will take a
powerful tenth body of evidence to overturn the previous nine conclusions. The results of the
tenith study (the posterior results) will incorporate not only the current evidence, but the wealth of
prior data as well.

i
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5.3 TWO APPROACHES TO TESTING HYPOTHESES = xlfjk; [hs f'
R KT s nu
The general linear hypothesis is a set of Jrestrictions on the linear regression model, [k vid hd(‘

y=XB+g; st

" The restrictions are written

bt ot B =g B
rabr¥ o+t = g : -7

Fnfi ¥ rnfo + o trBi = qs.

The simplest case is a single restriction on one coefficient, such as

The more general case can be written in the matrix form,

R 9

Each row of R is the coefficients in one of the restrictions. Typically, R, will have only a few
rows and numerous zeros in each row. Some examples would be as follows:
1. One of the coefficients is zero, §;= 0,

_I__{=[OO---10'--O]andg_=O.
2. Two of the coefficients are equal, B, =4,
R=[00T1----1:--0] andic_ln=0.

3. A set of the coefficients sum to one, S+ f3+ By =1,
R=[01110--] and,_g= 1.

4. A subset of the coefficients are all zero, $1 =0, $,=0, and . = 0,

100 0 0 .
R=|0 100 - 0= 0] and g|0|.
0 01 0 0 0

5. Several linear restrictions, B+ =1, Ba+ fs=0, and Bs+ps=0,

011000 1
R=10 00 1 0 1| and gHo0|.
000011 0

6. All the coefficients in the model except the constant term are zero:

R=1[0:Ix] and q = 0.
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The matrix R has K columns to be conformable with B, Jrows for a total of J réstric’tions,
and full row rank, so J must be less than or equal to X, The rows of R must be linearly
independent. Although it does not violate the condition, the case of J = K must also be ruled out.

If the X coefficients satisfy J = K restrictions, then R is square and nonsingular and g = R'q.

. - There is no estimation or inference problem. The restriction Rf = g imposes J restrictions on K-

-otherwise free parameters. Hence, with the restrictions imposed, there are, in principle, only X ~—__:I
free parameters remaining. o B feliowing
We will want to extend the methods to nonlinear restrictions. In anexample below, the

(5-4

: 4 _q;; (7B

foo L) .- - - i [
hypothesis takes the form H,: B/ Bi= B/ Bn. The general nonlinear hypothesis involves a set ‘:{ | 18 hed
of J possibly nonlinear restrictions, ' i B ‘ . o : n eha P,
o5t
<P =g, (5-9) ke
where ¢(f3) is a set of J nonlinear functions of B. The linear hypothesis is a special case. The ;
counterpart to our requirements for the linear case are that, once again, J be strictly less than X,
and the matrix of derivatives,
— f - 14 Ly n
G(B) ae(B)/ 3[3 A (3-10) T II.F%,—L-Ii: L.: has
have full row rank. This means that the restrictions are functionally independent. In the linear T 1S ndl
case, G(B) is the matrix of constants, R, that we sw earlier and functional independence is 'ﬁ NMP
equivalent to linear independence. We will consider nonlinear restrictions in detail in Section | 'y

5.7. For the present, we will restict attention to the general linear hypothesis.
The hypothesis implied by the restrictions is written

(AL SR
Hy: RB-q=0,

We will consider two approaches to testing the hypothesis, Wald tests and fit based tests. The
hypothesis characterizes the popuiation. If the hypothesis is correct, then the sample statistics
should mimic that déscription. To continue our earlier example, the hypothesis states that a
certain coefficient in a regression model equals zero. If the hypothesis is correct, then the least
squares coefficient should be close to zero, at least within sampling variability. The tests will
proceed as follows:

unbiased and consistent estimator of B. “If the hypothesis is correct, then the sample

discrepancy, Rb — q,should be close to zero. For the example of a single coefficient, if the

hypothesis that B, equals zero is correct, then b, should be close to zero. The Wald test
measures how close Rb — q is to zero.

* Fit based tests: We obtain the best possible fit & highest R L by using least squares without
imposing the restrictions. We proved this in Chapter 3. We will show here that the sum of
squares will never decrcase when we impose the restrictions i except for an unlikely special
case, it will increase. For example, when we impose B; = 0 by leaving x; out of the model, we
should expect R to fall. The empirical device to use for testing the hypothesis will be a
measure of how much R falls when we impose the restrictions.

* Wald tests: The hypothesis states that RP — g equals 0. The least squares estimator, b, is an 7
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AN IMPORTANT ASSUMPTION o . i :
| To develop the test statistics in this seciion, we will assume normally distributed disturbances. As
- we saw in Chapter 4, with this assumption, we will be able fo obtain the exact distributions of the
| test statistics. In Section 5.6, we will consider the implications of relaxing this assumption and
|- develop an alternative set of results that allows us to proceed without i, s

AT
LY mm \ U KIS
5.4 Wald Tests Based on the Distance Measure \ 'FLm ol

= | E6H S
- 5]]1

ra T ] ! ‘ . SEL
The Wald test is the most commonly used procedure. It is often called a “‘si'ghificancie1 test.” The\ s
operating principle of the procedure is to fit the regression without the restrictions, then assess | . o

|
H e ¢
whether the results appear, within sampling variability, to agree with the hypothesis. ' R d ” i
.:I"I-;l:‘h‘ -i' O:J:r\ 4
5.4.1 Testing a Hypothesis about a Coefficient net 0

Chap.
The simplest case is a test of the value of a single coefficient. Consider, once again, our art \ e
market example in Section 5.2. The null hypothesis is -

Hy: B =By, ==
f __|'\£_|_ 1
where B,° is the hypothesized value of the coefficient, in this case, zero. The Wald distance of a
coefficient estimate from a hypothesized value is the linear distance, measured in standard
deviation units. Thus, for this case, the distance of p, from B_ko would be

1]
.Wk = —b._&.__Bff_ (5_11)

Jolst

As we saw in (4-38), in (which we called z; before) has a standard normal distribution assuming
that £[5,] = B:’. Note that if E[b,] is not equal to By, then W, still has a normal distribution but
the mean is not zero. In particular, if E[by] is [3151 which is different from ﬁko, then

1 _po
EwEb Yy = LeP 5-12)

(E.g., if the hypothesis is that B, = B;C_O =0, and B does not equal zero, then the expected of W,l=|

b NG SE will equal B;'cl/ Vols® » wWhich is not zero.) For purposes of using W, to test the
hypothesis, our interpretation is that if Bi does equal [3_;,0, then &, will be close to ﬁ_ko, with the
distance measured in standard error units, Therefore, the logic of the test, to this point, will be to
conclude that , is incorrect  should be rejected = if W is “large.”

Before we determine a benchmark for large, we note that the Wald measure suggested
here is not useable because o is not known. It was estimated by s°. Once again, invoking our

results from Chapter 4, if we compute W, using the sample estimate of ¢°, we obtain

.bk — Bg

t_k = W (5-13)


Bill
Sticky Note
add to KT list


i i, B Thea

Assuming that B; does indeed equal B;’, ie, “under the assumption of the null hypothesis,” then z, " S f (
has a ¢ distribution with #-K degrees of freedom. [See (4-41).] We can now construct the testing | 12 *[{ i
procedure. The test is carried out by determining in advance the desired confidence with which aut 1. :
we would like to draw the conclusionl_'—l the standard value is 95%. Based on (5-13), we can say f ) | :.
that e T o T 1

{ RS S i Wheyd S
Prob{-*a.ompiey < & < 0. amypary} i N TEE
where t*(l';';}zlj:'[an] is the appropriate value from the  table (in Appendix G of this book). By this
construction, finding a sample vilue of ¢ that falls outside this range is unlikely. Qur test
procedure states that it is so unlikely that we would conclude that it could not happen if the
hypothesis were correct, so the hypothesis must be incorrect. N
A common test is the hypothesis that a parameter equals zero  cquivalently, this is a test
of the relevance of a variable in the regression. To construct the test statistic, we set ﬁygo to zero in %] =

(5-13) to obtain the standard “¢ ratio,”

| B o

\ o<
4 = _b.k_ rq'f('m“ hd'll
Shi i ;C‘fi.ﬂ't(h

}LST

This statistic is reported in the regression results in several of our earlier examples, such as 4.10-
where the regression results for the model in (5-2) appear. This statistic is usually labeled the =

A ratio for the estimator 3,. If | b, i >t(]a/j}[',,;q: where 727 7x k) is the 100(1 — o/2)% percent”

critical value from the # distribution with (5 — K) degrees of freedom, then the null hypothesis that
the coefficient is zero is rejected and the coefficient (actually , the associated variable) is said to
be “statistically significant.” The value of 1.96, which would apply for the 95 percent significance
level in a large sample, is often used as a benchmark value when a table of critical values is not
immediately available. The ¢ ratio for the test of the hypothesis that a coefficient equals zero is a
standard part of the regression output of most computer programs,
Another view of the testing procedure is useful. Also based on (4-39) and (5-13), we
formed a confidence interval for P as by £ r* 5. We may view this interval as the set of plausible
values of By with a confidence level of 100(1:\0&)%, where we choose «, typically 5%. The Deqcent (]
confidence interval provides a convenient tool for testing a hypothesis about B, since we may
simply ask whether the hypothesized value, B is contained in this range of plausible vahyes.
Example 5.1 Art Appreciation S ,
Regression results for the model in {5-3) based on a sample of 430 sales of Monet
paintings appear in Table 4.6 in Example 4.10. The estimated coefficient on InArea is
1.33372 with an estimated standard error of 0.09072. The distance of the estimated o
coefficient from zero is 1.33372/0.09072 = 14.70. Since this is far larger than the 95% perCed] .
critical value of 1.96, we reject the hypothesis that B, equals zero; evidently buyers of '
_ Monet paintings do care about size. |n constrast, the coefficient on AspectRatio is
pusy —0.18537 with an estimated standard error of 0.12753, so the associated f ratio for the
T testofHpBs=0is only -1.30. Since this is well under 1.96, we conclude that art buyers
{(of Monet paintings) do not care about the aspect ratio of the paintings. As a final . o | @_
consideration, we examine another (equally bemusing) hypothesis, whether auction ' " Noa
prices are inelastic Ho:B, < 1 or elastic Hi:B: > 1 with respect to area. This is a one —. & ; One-
“sided test. Using our Neyman:Pearson guideline for formulating the test, we will reject
the nuli hypothesis if the estimated coefficient is sufficiently larger than 1.0 (and not if it is Tt
less than or equal to 1.0). To maintain a test of size 0.05, we will then place all gf the Fes not
area for the critical region (the rejection region) to the right of 1.0; the critical value from ‘] " {w.j\..&
the table is 1.645. The test statistic is (1.33372 — 1.0)/0.09072 = 3.679!> 1.645, Thus, - \: P
we will reject this null hypothesis as well. '. 55

|

Sed


Bill
Sticky Note
OK

Bill
Sticky Note
add to list

Bill
Sticky Note
add to KT list


Example 5.2 Earnings Equation

(510

Appendix Table F5.1 contains 753 observations used in Mroz's (1987) study of the labor
supply behavior of married women. We will use these data at several points below. Of the
753 individuals in the sample, 428 were participants in the formal labor market. For these
individuals, we will fit a semilog earnings equation of the form suggested in Example 2.2;

In earnings = B, + B, age + B; age” + B, education + Bs kids + ¢,

where earnings is hourly wage .times_hours worked, education is measured in years of
schooling, and kids is a binary variable which equails one if there are children under 18 in
the household. (See the data description in Appendix F for details.) Regression results are
shown in Table 5.1. There are 428 observations and 5 parameters, go the ¢ statistics have
(428 - 5) = 423 degrees of freedom. For 95 percent significance levels, the standard
normal value of 1.96 is appropriate when the degrees of freedom are this large. By this
measure, all variables are statistically significant and signs are consistent with
expectations. It will be interesting to investigate whether the effect of kids is on the wage or
hours, or both. We interpret the schooling variable to imply that an additional year of
schooling is associated with a 6.7 percent increase in earnings. The quadratic age profile
suggests that for a given education level and family size, earnings rise to the peak at
~b:A2bs) which is about 43 years of age, at which point they begin to decline. Some points
to note: (1) Our selection of only those individuals who had positive hours worked is not an
innocent sample selection mechanism. Since individuals chose whether or not to be in the
labor force, it is likely (almost certain) that earnings potential was a significant factor, along
with some other aspects we will consider in Chapter 18 |

- (2) The earnings equation is a mixture of a labor supply equation—hours worked by the
individua[;;and a labor demand outcomer-the wage is, presumably, ar accepted offer. As
such, it is unclear what the precise nature of this equation is. Presumably, it is a hash of the
equations of an elaborate structural equation system. (See Example 1.1 for discussion.)

TABLE 5.1 Regression Results for an Earnings Equation

Sum of squared residuals: 599.4582
Standard error of the regression: 1.19044
1{2 based on 428 observations 0.040995
Variable Coefficient  Standard Error t Ratio
Constant 3.24009 1.7674 1.833
Age 0.20056 0.08386 2.392
Agé? -0.0023147 0.00098688 ~2.345
Education 0.067472 0.025248 2.672
Kids —0.35119 0.14753 —2.380
Estimated Covariance Matrix Jor b (e — n = times 1074
Constant Age Ager Education Kids
3.12381
—0.14409 0.0070325

0.0016617  —8.23237e—5 9.73928e—7
—0.0092609 5.08549e—5 -4.96761e~7  0.00063729
0.026749 ~0.0026412 3.84102e-5 ~5.46193¢—5 0.021766
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reordered in whatever way is neéded, we may write

R =Rif; +Rof; = q.

* If the J columns of R; afe independent, then

(5-4)

The implicationd that although 8, is free to 4Ty, once 8, is determined, 8, is determined
by (5-4). Thug only the K —J elements of £, are free parameters in the restricted model.

5.3 TWO APPROACHES TO TESTING HYPOTHESES

othesis testing of the g#rt suggested in the preceding section can be approached
rom two viewpoints, Figst, having computed a set of parameter estimates, we can ask
whether the estimateg’Come reasonably close to satisfying the restrictions implied
the hypothesis. Mopé formally, we can ascertain whether the failure of the estimajes to

(as one might hope) within the framework of the linear ¢
pproaches are equivalent.

ression model, the two

AN IMPORTANT ASSUMPTION
To develop the test statistics in this section, we will assume normally distributed distur-
biances. As we sawin Chapter4, with this assupiption, we will be able to ebtain the exact
distributions of the test statistics. In the nigx{ section, we will consider the |mplications
of relaxing this assumption and develop an alternative set of results that allows us to

precesd without ik
/ R
£.4 ,2-8"— THE F STATISTIC AND THE LEAST SQUARES DISCREPANCY \ }j_y : |
We now consider testing a set of J linear restrictions stated in the null hypothesis \“ f wll !
Hy:RE—a=0 hy pefhests
against the alternative hypothesis, Clig 9@}{ | A
K
:RB - . j i
Hl .-'a.ﬁ ,_.-q %1‘! {1‘]“&? .-I'J_
ifi a linear restriction on the coefficj Vo v
R will have only a few rpw§ and numerous zeros in each row. S HE'l'.‘ P
as follows: LSO ¢
1. One e coefficients is zero, 8; = 0 \

R=[0 0 --- 10
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2. Two of the coefficients are equal, g = §;

6. All the coefficients in the yfodel except the constant term are zer
Section 4.7.4.]

¢[See (4-15) and

“[0 IK_1] and q= 0

Given the least squares estimator b, our interest centers on the dlscrepancy vector
Rb — q = m. It is unlikely that m will be exactly 0. The statistical questlon is whether
‘the deviation of m from Qcan be attributed to samplmg error or whetheritis 31gmﬁcant
Since b is normally distributed [see (448)] and m is a linear function of b, m is also :
normally distributed. If the null hypothesis is true then R —q = 0 and m has mean E]

e

vector 13 ===
: E[miX] = REb|X] - q = R — g =0. \ 0., KT
and covariance matrix {—:T:
Var[m| X] = Var[Rb — q| X] = R{ Varb | X|}R’ = c"R(X'X)"'R". "W ¢ H )
We can base a test of Hj on the Wald rcﬁf%i-iqn. Conditioned onb.:)g, we find: . i: :JJ{L L.‘:f f;
W= m'{Var[m | X]} " m. shap (i1
= ®Rb— @' [’REXRT ' ®b - 0) (sj) PRI
_ ®b -0 REX)R]'®o—g) e
o2
~ X1
: The statistic W has a chi-squared distribution with J degrees of freedom if the hypothesis
T is correct:l Intuitively, the larger m is-—that is, the worse the failure of least squares

to satisty the restrictions—the Iarger the chi-squared statistic. Therefore, a large ch1—
squared value will weigh against the hypothesis.

j_, j ﬁis calculation is an application of the “full rank quadratic form” of Section B.11.6. Note that although the
" chi-squared distribution is conditioned on X, it is also free of X,
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|
The chi—squared statistic in (5-!5% is not usable because of the unknown o2, By using
s? instead of o2 and dividing the result by J, we obtain a usable Fstatistic withJand n— K
degrees of freedom. Making the substitution in (5- ﬁ) dividing by J, and multiplying and
 dividing by n — K, we obtain - Iy
_ Wo? 2
=73

_ ((Rb —.q)’[.lt_.(x':gl.krl-lclib - .iv) G) (j—f) (f: :}fg) | (s-f;

_ ®Rb— @/[’RXX)'R" (Rb - /7

B [(n— K)s2/6?]/(n— K) '
If R@ = q, that is, if the null hypothesis is true, then Rb—q=Rb-RE=Rb-8)=
R(X’X) 1X'e. [See (4-4). ] LetC = [R(X'X)-la’] since

a

the numeratoiof F equals [(g/0)T(g/0)]/J where T = D'C~ 1I) The numerator is
W/J from (5 dis dlstnbuted as1/J timesa ch1-squared [71, as we showed earlier.
We found in (4-6))that 5% = e'e/(n — K)=¢'Me/(n — K) where M is an idempotent
aftix, Therefore, the denominator of F equals [(e/o)M(e/c)]/ (n K). This statistic
(‘/ -'/b) is distributed as 1/(n — K) times a chi-squared [n — K. {Sert4=+41 Therefore, the F
statistic is the ratio of two chi-squared variables each divided by its degrees of freedom.
Since M(g/o) and T(e/o) are both normaily distributed and their covariance TM is 0,
the vectors of the quadratic forms are independent. The numerator and denominator
of F are functions of independent random vectors and are therefore independent. This
completes the proof of the F distribution. [See (B-35).] Canceling the two appearances
of g% in (5 ﬁ'j leaves the Fstatistic for testing a linear hypothesis:

,5- _ 2wyl —
Pl n— Kix] = B2 {Rls (_Xé{.) IR} ®Rb-g) R

/b

For testing one linear restriction of the form

Hy:npr+np+ - +repr=1f=gq

Fsf (usuaily, some of the 7. will be zero), the F statistic is
(Zjrib q)
)"_I-EkrjrkEst Cov[b;, b
If the hypothesis is that the jth coefficient is equal to a particular value, then R has a
single row with a 1 in the ]th position and Os elsewhere, RGX'X) 1R’ is the jth dlagonal
element of the inverse matrix, and Rb — qis (&; — g). The ¥ statistic is then
(. i ‘?)2

Est. Var[b;]’

Consider an alternative approach. The sample estimate of 1’8 is

Fllln—K]=

Fl1,n—K] =

nbh+rb+--+ erK = _l'_'h =._q_‘.

( Y"?_ |
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1f 4 differs significantly from ¢, then we conclude that the sample data are not consistent
with the hypothesis. It is natural to base the test on
| 4-a “
5,
. se(@) A

We require an estimate of the standard error of §. Since § is a linear function of b and we
have an estimate of the covariance matrix of b, SZ(X’X)_ we can estimate the variance
of § with ¥

==

Est. Var[g | X] =f_r'{_s2{z€,’2fi)‘1lr-

The denominator of ¢ is the square root of this quantity. In words, ¢ is the distance in
standard error units between the hypothesized function of the true coefficients and the
same function of our estimates of them. If the hypothesis is true, then our estimates
should reflect that, at least within the range of sampling variability. Thus, if the absolute
value of the preceding ¢ ratio is larger than the appropriate critical value, then doubt is
cast on the hypothesis. )/ 1?7

There is a useful relationship between the statistics int (5-%) and (S-Q). We can write
the square of the ¢ statistic as

o_ @G- _@h-aEPEX I ab-a
T Varg—g1X) 1 :

it follows, therefore, that for testing a single restriction, the ¢ statistic is the square root
of the F statistic that would be used to test that hypothesis.

Example.5. Restricted Investment Equation
Section5.2/suggested a theory about the behavior of investors: that they care only about real

/ia{ fest rates. If investors were only interested in the real rate of interest, then equal increases
i

in interest rates and the rate of inflation would have no independent effect on investment.
The nuli hypothesis is J (e
Ho:po+ s =057 5)

Estimates of the parameters of equationd (5- 1)fand’(5-3} hsing 1950.1 t0 2000.4 quarterly data
on real investment, real GDP, an interest rate (the 30-day T-bill rate), and inflation measured
by the change in the log of the CPI given in Appendux Table F5.kare presented in Table 5 \
(One observation is lost in computing the change in the CP1.)

1
TABLE 5.% Estimated Investment Equaticns (Estimated standard errors in
parentheses)
By B; B3 B4 Bs
Model (5-) —9.135 —0.00860 0.00331 1.930 —0.00566
{1.366) {0.00319) (0.00234) {0.183) (0.00149)

5=008618, R?=0979753, e'e= 147052,
Est. Cov[by, by] = —3.718¢—6

Model (5-3) —7.907 —0.00443 0.00443 1.764 —0.00440
(1.201) (0.00227) (0.00227) (0.161) (0.00133)

5 =08670, R?=0.979405, e'e=149578

iy

.-/(H( m
[ «—§.2,2
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To form the appropriate test statistic, we require the standard error of § = b + b,
which is

‘2 se(§) = [0.003192 + 0.002342 + 2(—3.718 x 107%)]"/2 = 0.002866.

The t ratio for the test is therefare . .-

—0.00860 -+ 0.00331
L= 0.002866 - m 845.

Using the 95 percent critical value from £ [203-5] = 1.96 {the standard normal value), we
conclude that the sum of the two coefficients is not significantly different from zero, so the
hypothesis should not be rejected.
There will usuatly be mors than one way to formulate a restriction in a regression model. ¥
One convenient way to parameterize a constraint is to set it up in such a way that the standard
test statistics produced by the regression can be used without further computation to test the
hypothesis. In the preceding example, we could write the regression model as specified in
{5:-2). Then an equivalent way to test Hy would be to fit the investment equation with both the
/I’eal interest rate and the rate of inflation as regressors and to test our theory by simply testing
. the hypothesis that gs equals zero, using the standard ¢ statistic that is routinely computed.
@ When the regression is computed this way, by = —0.00529 and the estimated standard error
( is 0.00287, resulting in a f ratio of ~1,844(Y). (Exercise: Suppese that the nominal interest
rate, rather than the rate of inflation, were included as the extra regressor. What do you think
the coefficient and its standard error would be?)
Finally, consider a test of the joint hypothesis

fo+ B = 0 (investors consider the real interest rate),
B4 =1 {the marginal propensity to invest equals 1),
Bs = 0 ({there is no time trend).

Then,

- 01100 ¥] -0.0053
R=1i0 0 0 1 0}, q=|1 and Rb-q=| 0.9302],
00001 o LBk -0.0057
Inserting these values in F yields F =-109.84. The § percent critical value for F[3, 198] is
2.65. We conclude, therefore, that these daia are not consistent with the hypothesis. The / ?
result gives no indication as to which of the restrictions is most influential in the rejection
of the hypothesis. If the three restrictions are tested one at a time, the t statistics in (5—8’/
are —1.844, 5.076, and -3.803. Based on the individual test statistics, therefore, we would
expect both the second and third hypotheses to be rejected.

5.3.2 THE RESTRICTED LEAST SQUARES ESTIMATOR

A different approach to hypothgkis testing focuses on the it of the regression. Reca

that the least squares vector bAvas chosen to minimize thg'sum of squared deviatiors,

examine the computation of the least squares/£stimator subject to a sef of restrictions.




(§=-7/¢

5.5 TESTING RESTRICTIONS USING THE FIT OF THE REGRESSION:

A different approach to hypothesis testing focuses on the fit of the regression. Recall that the least
squares vector b was chosen to minimize the sum of squared deviations, e’e. Since R equals 1)—!
' ee/yMoy and y'MOy is a constant that does not involve b, it follows that b is chosen to maximize - . il
R One ‘might ask whether c'hoosing some other value for the slopes of the regression leads to a - o
significant loss of fit. For example, in ‘the investment equatlon (3-4), one might be interested in
whether assuming the hypothesm (that investors care only about real 1nterest rates) leads to a
substantially worse fit than leaving the model unrestricted. To develop the test statistic, we first
examine the computation of the least squares estimator sub_]ect to a set of restrictions. We w1]l

then construct a test statistic that is based on comparing the st from the two regressions K8 |
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5.5, THE RESTRTICTED LEPST SEUARES ESTIMATOR

Suppose that we explicitly impose the restrictions of the general linear hypothesis
in the regression. The restricted least squares estimator is obtained as the solution to

9

Minimizen, S(ho) = (¥ —,.X.bo)':f)f —Xbg) subject to Rby = q.

A Lagrangean function for this problem can be written

. v .
L*(bo, ) = (y — Xbo) (y — Xby) + 22’ (Rbo — - ™ (5-39) 7
The solutions b, and 1, will satisfy the necessary conditions T '
L* '
T = ~2X/(3~ Xb) + 2R, = F
" ) 1
7, ~ 2R~ =

Dividing through by 2 and expanding terms produces the partitioned matrix equation

AR s

Assuming that the partitioned matrix in brackets is nonsingular, the restricted least
squares estimator is the upper part of the solution

d, = A‘ly. (5_% v

If, in addition, X'X is nonsingular, then explicit solutions for b, and A, may be obtained
by using the_fonnula for the partitioned inverse (A-74); xE

b, =b~ XX)"'RRX'X)"'R]'(Rb —q)
=b—Cm
and -1
A = [REXX)'RT'®RDb — ).

Greene and Seaks (1991) show that the covariance matrix for b, is simply o° times
the upper left block of A~1. Once again, in the usual case in Wthh X’ X is nonsingular,

13|

an explicit formulation may be obtained: ’ 14
Varlb, |X] = *XX) 7 - XD TRREDRTREXD. ¢ F)
Thus, | \?_\]I N -”;Uﬁ‘rw'-}
Varb, | X] = Var[b| X] - a nonnegative definite matrix. el
‘ {5 ( :] 1S

shows up in'(5-11):

“The general sofution ngen for d. may be usable even if X'X is singular. Suppose, for example, that XXis
4 x 4 with rank 3. Then X'X is singular. But if there is a'parametric restriction on 8, then the 5 x 5 matrix
in brackets may still have rank 5. This formulation and a number of related results are given in Greene and
Seaks (1991).
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One way to interpret this reduction in variance is as the value of the information con-
tained in the restrictions.
Note that the explicit solution for A, involves the discrepancy vector Rb — q. If the

' unrestricted least squares estimator satisfies the restriction, the Lagrangean multipliers

will equal zero and b, will equal b. Of course, this is unlikely. The constrained solution
b, is equal to the unconstrained solution b ph:r“ a term that accounts for the failure of

the unrestricted solution to satisfy the constramts
Minvs

5.8 2.

£=3+8 THE LOSS OF FIT FROM RESTRICTED LEAST SQUARES

To develop a test based on the restricted least squares estimator, we consider a single
coefficient ﬁrstl then turn to the general case of J linear restrictions. Consider the change
in the fit of a multiple regression when a variable z is added to a model that already
contains K — 1 variables, x. We showed in Section 3.5 (Theorem 3. 6@ (3-29) that the
effect on the fit would be given by }2_,

RXz = Rx +(1- Rx) ¥z (5-16)

where RZ, is the new R? after z is added, RZ is the original R? and 73, is the partial
correlation between y and z, controlling for X. So, as we knew, the fit improves (or, at
the least, does not deteriorate). In deriving the partial correlation coefficient between

_yand z in (3-22) we obtained the convenient result

S-18.

o_ B  Bu

TR -k 26

where #2 is the square of the ¢ ratio for testing the hypothesis thagthe coefﬁcient on zis
Zero in the multiple regression of y on X and z. If we solve (56} forr; 2 and (5-17) for
2 and then insert the first solution in the second then we obtain the result

o (B - RN st

(- R,)/(n-K)
We saw at the end of Section %3 that for a single restriction, such as 8, = 0,
Fll,n— K] =#[n- K],

which gives us our result. That is, in (5-183, we see that the squared ¢ statistic (i.e., the
F statistic) is computed using the change in the R?. By interpreting the preceding as
the result of removing z from the regression, we see that we have proved a result for the
case of testing whether a single slope is zero. But the preceding result is general. The test
statistic for a single linear restriction is the square of the ¢ ratioin ( y this const
tion, we see that for a single restriction, Fis a measure of the loss of ﬁt that results from
imposing that restriction, To obtain this result, we will proceed to the general case of
J linear restrictions, which will include one restriction as a special case.

The fit of the restricted least squares coefficients cannot be better than that of the
unrestricted solution. Let,.e:* equal y - Xh,. Then, using & familiar device,

& =y~ Xb—X(b, —b) =~ Xb. —b).
The new sum of squared deviations is

g8 = e+ (b, —bYX'X(b, ~ b) > ¢'e.

VF
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(The middle term in the expression involves X'e, which is zero.) The loss of fit is
€., — ¢'e = Rb — ¢/ [RX'X)"'R'”' Rb — q). om 2%

This expression appears in the numerator of the F statistic in (5-7). Inserting the
remaining parts, we obtain © - 7 .- .

ta ot i g
__F[J,n—K]z%. o (5-29) “

Finally, by dividing both numerator and denominator of F by %;(y; — ¥)?, we obtain the
general result: '

(R Ry B
FlJ.n-K]= (1~ R)/(n-K) o

This form has some intuitive appeal in that the difference in the fits of the two models is
directly incorporated in the test statistic. As an example of this approach consider the
—egadier joint test that all of the slopes in the model are zero. This is the overall Fratio £hg LL wil] be
discussed in Section . where B2 = 0. T
Of imposifig a set of exclusmn restnctlons such as Br = 0 for one or more coeffi-
: cients, the obvious approach is simply to omit the variables from the regression and base
.52 the test on the sums of squared residuals for the restricted and unrestricted regressions.
The F statistic for testmg the hypothesis that a subset, say §,, of the coefficients are
all zero is constructed using R = (0:1, g=0.and J = K) = the number of elements in
B,. The matrix R(X'X)~'R’ is the K, x K lower right block of the full inverse matrix.
‘Using our earlier results for partitioned inverses and the results of Section 3.3, we have

RXX)'R = XM Xp) ™

and

Q? Rb . | =by.
Inserting these in (5-19) gives the loss of fit that results when we drop a subset of the
variables from the regression:

’ L Rt
e.e —ee =mXM Xoh,.

The procedure for computing the appropriate F statistic amounts simply to comparing
the sums of squared deviations from the “short” and “long” regressions, which we saw

earlier. g'g

Examplie 5. Productio unction lI
P The data in Appendix Table F5.2/have been used in several studies of production func‘tlons‘1
fLN N Least squares regression of iog output (value added) on a constant and the logs of labor and
L AL capital produce the estimates of a Cobb;Douglas production function shown in Table 5.3. 3
o’ We will construct several hypothesis tests based on these results. A generalization of the
BT ) "f ’gThe data are statewide observations on SIC 33, the primary metals industry. They were originally constructed
e “ by Hildebrand and Liu (1937) and have subsequently been used by a number of authors, notably Aigner,
Lovell, and Schmidt (1977). The 28th data point used in the original study is incomplete; we have used only
the remaining 27,
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TABLE 5.3  Estimated Production Functions
Translog Cobb-Douglas -
- " Sum of squared residuals 0.67993 0.85163
Standard error of regression 0.17994 0.18837
R-squared i :0.95486 0.94346
Adjusted R-squared 0.94411 0.93875
Number of observations 27 27
Standard Standard
Variable Coefficient Error t Ratio Coefficient Error t Ratio
Constant 0.944196 2911 0.324 1171 0.3268 3.582
Inl 3.61364 1.548 2334 0.6030 0.1260 4.787 +
hK —1.89311 1.016 —1.863 0.3757 0.0853 4402
i’ L —0.96405 0.7074 ~1.363
% In’ K 0.08529 0.2926 0.291
InLxInK 0.31239 0.4389 0.712
Estimated Covariance Matrix for Translog (Cobb~Douglas) Coefficient Estimates
Constant InL InK im’L jim'Kk  ImLhkK
Constant 8.472
(0.1068)
InL —2.388 2.397
e (—0.01984) (0.01586)
lu K -0.3313 ~1.231 1.033
(0.00118%)  (—0.00961) {(0.00728)
1 ln L —0.08760 —0.6658 0.5231 0.5004
1 ln K ~0.2332 0.03477 0.02637 0.1467 0.08562
ln L ln K 0.3635 0.1831 ~0,2255 —0.2880  —0.1160 0.1927
\5-"

Ty Cobb'Douglas model is the translog model® which is

I

INY = Bi+p2InL +faInK + o (2P L) + Bs (3 IN*K) + BainLInK +&.

As we shall analyze further in Chapter 10, this model differs from the Cobb —Douglas model
in that it relaxes the Cobb~Douglas's assumption of a unitary elasticity of Substitution. The
Cobb—Douglas model is obtained by the restriction 4 = s = fs = 0. The results for the
two regressions are given in Table 5.7, The F statistic for the hypothesis of a Cobb—DougIas
model is 3
(0.85163 — 0.67993) /3

0.67993/21
The critical value from the_F table is 3.07, so we would not reject the hypothesis that a
Cobb-Douglas model is appropriate.
The hypotheSIS of constant returns 1o scale is often tested in studies of production. This

hypothesis is equivalent to a restriction that the two coefficients of the Cobb-Dougias pro-
duction function sum to 1. For the preceding data,

(0.6030 + 0.3757 — 1)?
0.01586 + 0.00728 — 2(0.00961)

FB.21]= =1.768.

£N,24] = =0.1157,

5 /;Berndt and Christensen (1973). See Example 2.4 and Section 10.4.2 for discussion,

-
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which is substantially less than the 95 percent critical value of 4.26. We wouid not reject
the hypothesis; the data are consistent with the hypothesis of constant reiurns fo scale. The
equivalent test for the translog model would be £ + 83 =1 and 5 + fs5 + 28 = 0. The £
statistic with 2 and 21 degrees of freedom is 1.8891, which is less than the critical value of
3.47. Once again, the hypothesis.is not rejected.

: in most cases encolntered in practice, it is possible to incorporate fhe restrictions of
1l a hypothesis directly on the regression and estimate a restricted model."gor example, to
impose the constraint gz = 1 on the Cobb—DougIas model, we would write \\ 6

NY =g +10InL+psInK +¢

or (Zq

INY —InL =1+ fzInK +e.

Thus, the restricted model is estimated by regressing InY — In j on a constant and InK.

Some care is needed if this regression is to be used to compulg/an £ statistic. If the F statis-

tic is gamputed using the sum of squared residuals [see (5 , then no problem will arise.

If (5-21Yis used instead, however, then it may be necessalty to account for the restricted

ression having a different dependent variable from the unrestricted one. In the preced-
/ifg regression, the dependent variable in the unrestricted regression is InY, whereas in the
restricted regression, it is InY — In L. The R? from the restricted regression is only 0.26979,

2 o which would imply an F statistic of 285.96, whereas the correct value is 8.935. If we compute

the appropriate A7 using the correct denominator, however, then its value is 0.92006 and the
correct E value resulis.

Note that the coefficient on In K is negative in the translog model. We might conclude that
the estimated output elasticity with respect to capital now has the wrong sign. This conclusion
would be incorrect, however; in the transtog model, the capital elasticity of output is

ainy

W=ﬁs+ﬁ5|l‘lK+ﬁe|ﬁL-

if we insert the coefficient estimates and the mean values for In K and InL {not the logs of
the means)of 7.44592 and 5.7637, respectively, then the result is 0.5425, which is quite |n
line with ouf expectations and is fairly ciose to the value of 0.3757 obtained for the Cobb-,
Douglas modsl. The estimated standard error for this linear combination of the least squares
estimates is computed as the square root of

Est. Varlbs + bsINK + bgInL] = w/(Est. Varfb]) w,
where
w=(0,0,1,0,InK,InLy

and b js the full § x 1 least squares coefficient vector. This value is 0.1122, which is reasonably
close to the earlier estimate of 0.0853.

54 NONNORMAL DI
AND LARGE S

The distributions of th

.1, and chi-squared statistics {at we used in the previous section
rely on the assumptidn of normally i

istributed disturbances. Withoutthis assum

6. - iThis case is not true when the restrictions are nonlinear, We consider this issue in Chapterﬂ

b

¥
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5.5.3 TESTING THE SIGNIFICANCE OF THE REGRESSION

A question that is usually of interest is whether the regression equation as a whole is significant.

This test is a joint test of the hypotheses that all the coefficients except the constant term are zero.

If all the slopes are zero, then the multiple correlation coefficient, R, is zero as well, so we can

- - base a test of this hypothesis on the value of R*. The central result needed to carry out the testis.. - 2
‘given in (5-30). This is the special case with R.” = 0, so the F statistic, which is usually reported

with multiple regression results is

o RJIE-D |
SR SYIPmyoR e

If the hypothesis that £, = 0 (the part of £ not including the constant) is true and the disturbances
are normally distributed, then this statistic has an F distribution with X~1 and »— K degrees of
tfreedom. Large values of F give evidence against the validity of the hypothesis. Note that a large
F is induced by a large value of R*. The logic of the test is that the F statistic is a measure of the
loss of fit (namely, all of _R2 ) that results when we impose the restriction that all the slopes are
zero, I F is large, then the hypothesis is rejected.

Example 5.5 F Test for the Earnings Equation
. The F ratio for testing the hypothesis that the four slopes in the earnings equation in
Example 5.2 are all zero is .

0.040095/(5%1)  _
(1-0.040995)/(428-5)

F [4, 423] = 521,

which is far larger than the 95 percent critical value of 2.39. We conclude that the data are
inconsistent with the hypothesis that all the slopes in the earnings equation are zero. We
might have expected the preceding result, given the substantial ¢ ratios presented earlier.
But this case need not always be true. Examples can be constructed in which the individual
coefficients are statistically significant, while jointly they are not. This case can be regarded
as pathological, but the opposite one, in which none of the coefficients is significantly
different from zero while R° is highly significant, is relatively common. The problem is that
the interaction among the variables may serve to obscure their individual contribution to the
fit of the regression, whereas their joint effect may still be significant.
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5.5.4 Solving Out the Restrictions and a Caution About Using R?

In principle, one can usually solve out the restrictions imposed by a linear hypothesis.
Algebraically, we would begin by partitioning R into two groups of columns, one with Jand one
with K — J, so that the first set are linearly independent. (There are many ways to do so; any one
.will do for the present.) Then, with £ likewise partitioned and its elements reordered in whatever-. . IR
. way-is needed, we may write -

RE=Rifpi +Ropr=g.

If the J columns of R, are independent, then

A=R'[q ~Ropo]

This suggests that one might estimate the restricted model directly using a transformed equation,
rather than use the rather cumbersome restricted estimator shown in (5-23). A simple example
illustrates. Consider imposing constant returns to scale on a two input production function,

Iny = By + Balnx; + Bslnx, +e.

The hypothesis of linear homogeneity is B, + s =1 or s =1 — B,. Simply building the restriction
into the model produces

Iny = B; + Bl + (1 — Po)ly, + &
or
III_]_J = hlx; + Bl + Bz(lnxl — 1[13(72) +&.

One can obtain the restricted least squares estimates by linear regression of (Iny — Inx,) on a

constant and (Inx, — Inx,). However, the test statistic for the hypothesis cannot be tested using the |/ Pand
familiar result in (5-30), because the denominators in the two st are different. The statistic in =
(5-30) could even be negative. The appropriate approach would be to use the equivalent, but
appropriate computation based on the sum of squared residuals in (5-29). The general result from
this example, is that one must be careful in using (5-30)/that the dependent variable in the two
regressions must be the same. TR

i

{ g |
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5.6 Nonnormal Disturbances and Large, Sample Tests

We now consider the relation between the sample test statistics and the data in X. First, consider
the conventional ¢ statistic in (4-41) for testing Hy: pi= ﬁko,

: —B° _\
N0, 9. A

Conditional on X, it f, = B8 (e., under Hy), then # [X has a ¢ distribution with (n— X) degrees of
freedom. What interests us, however, is the marginal, that is, the unconditional distribution-of £
As we saw, b is only normally distributed conditionally on X; the marginal distribution may not
be normal because it depends on X (through the conditional variance). Similarly, because of the
presence of X, the denominator of the ¢ statistic is not the square root of a chi-squared variable x
divided by its degrees of freedom, again, except conditional on this X. But, because the

= | distributions of (&, — B 1/52(X_X) = X and [(n — K)sy/o 3 (X are still independent A0, 1] and
Pl K], respectively, which do not involve X, we have the surprising result that, regardless of
the distribution of X, or even of whether X is stochastic or nonstochastic, the marginal
distributions of ¢ is still £, even though the marginal distribution of 3, may be nonnormal. This
intriguing result follows because £ (¢ [X) is not a function of X. The same reasoning can be used to
deduce that the usual F ratio used for testing linear restrictions, discussed in the previous section,
is valid whether X is stochastic or not. This result is very powerful, The implication is that if the
disturbances are normally distributed, then we may carry out tesis and construct confidence
intervals for the parameters without making any changes in owr procedures, regardless of
whether the regressors are stochastic, nonstochastic, or some mix of the two.

- The distributions of these statistics do follow from the normality assumption for g, but
they do not depend on X. Without the normality assumption, however,

"

-
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the exact distributions of these statistics depend on the data and the parameters and
are not F, f, and chi-squared. At least at first blush, it would seem that we need either
a new set of critical values for the tests or perhaps a new set of test statistics. In this

" section, we will examine results that will generalize the familiar procedures. These

large-sample results suggest that although the usual ¢ and F statistics are still usable,
in the more general case without the special assumption of normality, they are viewed
as approximations whose quality improves as the sample size increases. By using the
results of Section D.3 (on asymptotic distributions) and some large-sample results for
the least squares estimator, we can construct a set of usable inference procedures based
on already familiar computations. '

Assuming the data are well behaved, the asymptotic distribution of the least squares
coefficient estimator, b, is given by

. 3
b,‘i N[g, %ZQ_“l} where Q = plim(%)i(-). (5-3%

The interpretation is that, absent normality of &, as the sample size, n, grows, the normal
distribution becomes an increasingly better approximation to the true, though at this
point unknown, distribution of b. As n increases, the distribution of ~nb—B) converges
exactly to anormal distribution, which is how we obtain the ﬁmte,sample approximation;-
above. This result is based on the central limit theorem and does not require normally
distributed disturbances. The second result we will need concerns the estimator of o2:

plim 52 = 02, where 5* = ¢'e/(n — K).
With these in place, we can obtain some large-sample results for our test statistics that
suggest how to proceed in a finite sample with nonnormal disturbances.
The sample statistic for testing the hypothesis that one of the coefficients, S equals
a partlcular value, ,Bk is

il flebesi g of 4,

-1 p ¥ od
S2(XX/n) ANCy |
iliar result.) Under the null

(Note that two occurrences of +/n cancel to produce our f
hypothesis, with normally distributed d1sturbances 1 is epactly distributed as i with n~ K
degrees of freedom. [See Theorem 4.4; J The exact distribution
of this statistic is unknown, however, if g is not normall d1str1buted From the,results,
above, we find that the denominator of #; converges to cer e .Hence,iffy hasa hm1tmg
distribution, then it is the same as that of the statistic that has this latter quantity in the
denominator. That is, the large-sample distribution of f is the same as that of

f(bk—ﬁ)

Vo2 Qi

But g = (bx— E[Be])/ (Asy Var[bk])lj ? from the asymptotic normal distribution (under
the hypothes1s B = ﬂk) so it follows that 7; has a standard normal asymptotic distri-
bution, and this result is the large-sample distribution of our ¢ statistic. Thus, as a farge;
sample approximation, we will use the standard normal distribution to approximate
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the true distribution of the test statistic & and use the critical values from the standard
normal distribution for testing hypotheses.
The result in the preceding paragraph is valid only in large samples. For moderately

sized samples, it provides only a suggestion that the ¢ distribution may be a reasonable

approximation. The appropriate critical values only converge to those from the standard

normal, and generally from above, although we cannot be sure of this. In the interest

of conservatism-—that is, in controlling the probability of a type I error-one should
generally use the critical value from the ¢t distribution even in the absénce of normality.
Consider, for example, using the standard normal critical value of 1.96 for a two-tailed

test of a hypothesis based on 25 degrees of freedom. The nominal size of this test is

0.05. The actual size of the test, however, is the true, but unknown, probability that 3
|tx| > 1.96, which is 0.0612 if the [25] distribution is correct, and some other value if
the disturbances are not normally distributed. The end result is that the standard t-test
retains a large sample validity. Little can be said about the true size of a test based on
the ¢ distribution unless one makes some other equally narrow assumption about &, but
the ¢ distribution is generally used as a reliable approximation. '

We will use the same approach to analyze the F statistic for testing a set of J
linear restrictions. Step 1 will be to show that with normally distributed disturbances,
JF converges to a chi-squared variable as the sample size increases. We will then show
that this result is actually independent of the normality of the disturbances; it relieson '
the central limit theorem. Finally, we consider, as above, the appropriate critical values D= |° s
to use for this test statistic, which only has large sample validity.

The Fstatistic for testing the validity of J linear restrictions, R —g = 0, is given in
(5-6). With normally distributed disturbances and under the null hypothesis, the exact
distribution of this statisticis F[J. n — K]. To see how F behaves more generally, divide
the numerator and denominator in (5- ﬁ)— by o2 and rearrange the fraction slightly, so

®b—g) {R [ XX IRG " Ry -9 5L

E= J(s2/0%) (5-23)

Since plim s 52 = o2, and pim(X'X/n) = Q, the denominator of F conver%es to.f and
the bracketed term int the numerator w1|l behave the same as (cr2 /RRQ™ ence,
regardless of what this distribution is, if F has a limiting distribution, then it is the same
as the limiting distribution of

& 1 ! —lp—
W = 7 ®b - @' [RE"/HQ'RI™ Rb <9) (Sce Theorem
1 D63 >

= 7®b — g'{ Asy. Var[Rb - q]} " (Rb —@).

[ &
This expression is (1/J) times a Wald statistic, based on the asymptotic distribution. The
large-sample distribution of W* will be that of (1/J) times a chi-squared with J degrees
of freedom. It follows that with normally distributed disturbances, JF converges to a chi-
squared variate with J degrees of freedom. The proof is instructive. [See White (2001,
9.76).]



| Greene-50558

book

June 20, 2007 2222

CHAPTER 5 4+ Inference and Prediction 95

THEOREM 5.1 Limiting Distribution of the Wald Statistic
If /1 — 8) %> NI0,6?Q ] and if Hy : R — q =0 is true, then

W= Rb— @' (Rs* XX "R) R -9 = JF - x’[1].
Proof: SinceRisa m.atrix of constan;:s and Rﬁ =4q,
JER( - 8) = VA®Rb — @) <> NO,RQHRT. §)
For convenience, rwrit‘e this equatif;n as '
25 N[O, ). @

In Section A.6.11, we define the inverse square root of a positive definite matrix
P as another matrix, say X, such that T* = P, and denote T as P~'/2. Then, by
the same reasoning as in (1) and (2},

if 2% NOP], then P74 N[O.P/ZRR "] = N[O,1].  (3)

We now invoke Theorem D.21 for the limiting distribution of a function of a
random variable. The sum of squares of uncorrelated (i.e., independent) standard
normal variables is distributed as chi-squared. Thus, the limiting distribution of

@y @) = 2Pz 2. @
Reassembling the parts from before, we have shown that the limiting distribution
of

n®b ~ ¢ RE*Q™HRTRb ~ )

is chi-squared, with J degrees of freedom. Note the similarity of this result to the
results of Section B.I1.6. Finally, if

-1
plim 5* (%)\(’ X) =0’Q7!, )

then the statistic obtained by replacing 62Q~! by s*(X'X/n) 1 in (5) has the same
limiting distribution. The n’s cancel, and we are left with the same Wald statistic
we looked at before. This step completes the proof.

The appropriate critical values for the F test of the restrictions Rf —q=0 con-
verge from above to 1/J times those for a chi-squared test based on the Wald statistic
(see the Appendix tables). For example, for testing J = 5 restrictions, the critical value
from the chi-squared table (Appendix Table G.4) for 95 percent significance is 11.07. The
critical values from the F table (Appendix Table G.5) are 3.33 = 16.65/5 forn — K =10,
2.60=13.00/5forn — K =25,2.40=12.00/5 forn— K =50,2.31=11.55/5forn— K=
100, and 2.214 == 11.07/5 for large n — K. Thus, with normally distributed disturbances,
as n gets large, the Ftest can be carried out by referring JF to the critical values from
the chi-squared table.

.23 |
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The crucial result for our purposes here is that the distribution of the Wald statisticis
built up from the distribution of b, which is asymptotically normal even without normally
distributed disturbances. The 1mp11cat10n isthat an appropriate large sample test statistic
s chi-squared = JF. Once again, this implication relies on the central limit theorem, not
on normally distributed disturbances. Now, what is the appropriate approach for a small
or moderately sized sample? As we saw earlier, the critical values for the F distribution
converge from above to (1/J) times those for the preceding chi-squared distribution.
As before, one cannot say that this will always be true in every case for every possible
configuration of the data and parameters. Without some special configuration of the
data and parameters, however, one, can expect it to occur generally. The implication is
that absent some additional firm characterization of the model, the F statistic, with the
critical values from the F table, remains a conservative approach that becomes more
accurate as the sample size increases,
AT Exercise 7 at the end of this chapter suggests another approach to testing that has
. validity in large samples, a Lagrange multiplier test. The vector of Lagrange multipliers
/mKG@ is [REXX)IR]- 1(.3_11 q), that is, a multiple of the least squares discrepancy
Ector. In principle, a test of the hypothesis that A, equals zero should be equivalent to
/)_’5 a test of the null hypothesis. Since the leading matrix has full rank, this can only equal
zero if the discrepancy equals zero. A Wald test of the hypothesis that A, = 0 is indeed
a valid way to proceed. The large sample distribution of the Wald statistic would be
chi-squared with J degrees of freedom. (The procedure is considered in Exercise 7.) For
a set of exclusion restrictions, 8, = 0, there is a simple way to carry out this test. The
chi-squared statistic, in this case with K, degrees of freedom can be computed as nR? in
the regression of e, (the residuals in the short regression) on the full set of independent
variables.

5.5 TESTING NONLINEAR RESTRICTIONS

The preceding discussion has relied heavily on the linearity of the regression model.
When we analyze nonlinear functions of the parameters and nonlinear regression
models, most of these exact distributional results no longer hold.

The general problem is that of testing a hypothesis that involves a nonlinear function
of the regression coefficients:

Ho:c(B) =

We shall look first at the case of a single restriction. The more general one, in which
c(#) = qis aset of restrictions, is a simple extension. The counterpart to the test statistic
we used earlier would be

33

(B — (5-2)

~ estimated standard error

or its square, which in the preceding were distributed as ¢{n — K] and F[1,n - K],
respectively. The discrepancy in the numerator presents no difficulty. Obtaining an
estimate of the sampling variance of c(ﬁ) -4, however, involves the variance of a
nonlinear function of ,8
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The results we need for this computation are presented in Sections 4'{4 B.10.3, and
D.3.1. A linear Taylor series approximation to ¢( ﬁ) around the true parameter vector

o !
: ,C(B)“'c(ﬁ)+( (;f))m—p). (5-12;

We must rely on consistency rather than unbiasedness here, since, in general, the ex-
pected value of a nonlinear function is not equal to the function of the expected value.
If phmﬁ ﬁ then we are justified in using c(ﬁ) as an estimate of ¢(#). (The rele-
vant result is the Slutsky theorem.) Assuming that our use of this approximation is
appropriate, the variance of the nonlinear function is approximately equal to the vari-
ance of the right-hand side, which is, then,

B

o (3B de(B) 528
Varfc(8)] ~ ( : ) Va [ﬁ]( ) (5-26)

98

The derivatives in the expression for the variance are functions of the unknown param-
eters. Since these are being estimated, we use our sample estimates in computing the
derivatives. To estimate the variance of the estimator, we can use 52 (X’X}‘1 Finally, we
rely on Theorem D.22 in Section 12.3.1 and use the standard normal distribution instead
of the ¢ distribution for the test statistic. Using g(ﬁ) to estimate g(ﬂ) = dc(B)/0B, we
can now test a hypothesis in the same fashion we did earlier.

Example 5. A Long-Run Marginal Propesnsity to Consume
A consumption function that has different short- and fong-run marginal propensities to con-
sume can be written in the form

_ NCi=c+8InY:+yInCes + 2,
whichisa dlstrlbuted Iag model. Inthis model, the short-run marginal propensaty to consume
(MPC) {elasticity, since the variables are in logs) is 8, and the long-run MPC is § = 8/(1 — ¥}.
Consider testing the hypothesis that § = 1.
Quarterly data on aggregate U.S. consumption and disposable personal income for the
years 1950 to 2000 are given in Appendix Table F5.‘|7:The sstimated equation based on these
data is

InC; = 0.003142 4+ 0.07495InY; +0.9246InC,_¢ +&, A*=0999712, s~ 0.00874
(0.01055) (0.02873)  (0.02859)

Estimated standard errors are shown in parentheses. We will also require Est. Asy. Covib, ¢] =
—.0008207. The estimate of the long-run MPC is d = b/{1 — ¢} = 0.07495/(1 — 0.9246) =
0.99403. Te compute the estimated variance of d, we will require

ad 1 ad b

The estimated asymptotic variance of d is

9=

Est. Asy. Varld] = gZEst. Asy. Var[b] + gZEst. Asy. Varlc] + 2g,g.Est. Asy. Cov[p, c]
= 13.2626% x 0.02873% + 13.1834° x 0.028592
+2(13.2626)( 13.1834)(—0.0008207) = 0.0002585.
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The square root is 0.016078. To test the hypothesis that the long-run MPC is greater than or
equal to 1, we would use

_ 0998 -1 _ 457181,
0160738
Because we are using a large sample approximation, we refer to a standard normal table
instead of the £ distribution. The hypothesis that y = 1 is not rejected.

You may have noticed that we could have tested this hypothesis with a linear restriction
instead; if§ = 1,then f =1 -y, 0or +y = 1. The estimate isq = b+¢c— 1 = —0.00045. The
estimated standard error of this linear function is [0.028732 + 0.028592 — 2(0.0008207)]"/2 =
0.00118. The t ratio for this test is —0.38135, which is almost the same as before. Since
the sample used here is fairly large, this is to be expected. However, there is nothing in the
computations that ensures this outcome. In a smaller sample, we might have obtained a
different answer. For example, using the last 11 years of the data, the { statistics for the two -
hypotheses are 7.652 and 5.681. The Wald test is not invariant to how the hypothesis is | |

(' AT formulated. In a borderline case, we could have reached a different conclusion. This lack of

/ ;nvarlance does not occur with the likelihood ratio or Lagrange multiplier tests discussed

in Chapter 16. On the other hand, both of these tests require an assumption of normality,

whereas the Wald statistic does not. This Illustrates one of the trade-offs between a more
detailed specification and the power of the test procedures that are implied.

s

The generalization to more than one function of the parameters proceeds along
similar lines. Let ¢(f8) be a set of J functions of the estimated parameter vector and let
the J x K matrix of derivatives of ¢(8) be

6

9e(B) -1

a8

G =

The estimaté of the asymptotic covariance matrix of these functions is

. o 2}
Est. Asy. Var[€] = G{Est. Asy. Var[§] }G’ (5-28)

The jth row of G is K derivatives of ¢; with respect to the K elements of, ﬂ For example,
the covariance matrix for estimates of the short- and long-run margmal propensities to
consume would be obtained using

G0 1 0
0 1/ ~y) B/A—yP

The statistic for testing the J hypotheses ¢(§) = q is

1 39
W= (¢~ g {Est. Asy. Var[g]} ¢ — g). (529)

In large samples, W has a chi-squared distribution with degrees of freedom equal to the
number of restrictions. Note that for a single restriction, this value is the square of the
statistic in (5:24).

33
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-

of Hendry |e.g., (1995}] and aided by advances in estimation hardware and software,
rescarchers are now more comfortable beginnin, T specification searcheg with large
elaborate models involving many variables perhapslong and complextag structures.
" The attractive strategy is-then to aclo general-to-simple, downwgrd reduction of the
model to the preferred specificatiofi, (This approach has been confpletely automated in
Hendry’s PCGets computeepfogram. [See, e.g., Hendry and Kotzis (2001).]). Of course,
this must be tempered-by two related considerations. Ipthe “kitchen sink” regression,

foisspecifying the model. To cite on unfortunate}y cgmfion example, the statistics
involved often produce unexplainable lag structurgs4f dynamic models with many lags
of the dependent or independent variables

CHOOSING BETWEEN NONNESTED MODELS

The classical testing procedures that we have been using{}ve been shown to be most
powerful for the types of hypotheses we have consideredi¥ Although use of these pro-
cedures is clearly desirable, the requirement that we express the hypotheses in the form
of restrictions on the model y = X8 +¢,

Hoy:RB8 =g
YEersus
f Hi:R #4q,

can be limiting. Two common exceptions are the general problem of determining which
of two possible sets of regressors is more appropriate and whether a linear or loglinear
model is more appropriate for a given analysis. For the present, we are interested in
comparing two competing linear models:

-39
Hy:y=Xp +20 (T‘Ha)
d
- ¢ -3%b
Hioy=Zx+a (Fb)

The classical procedures we have considered thus far provide no means of forming a
preference for one model or the other. The general problem of testing nonnested hy-
potheses such as these has attracted an impressive amount of attention in the theoretical
literature and has appeared in a wide variety of empirical applications™®-&

3’ figee, for example, Stuart and Ord (1989, Chap. 27).

\\__g'

urveys on this subject are White (1982a, 1983), Gourieroux and Monfort {1994), McAleer (1995),
and Pesaran and Weeks (2001). McAleer’s survey tabulates an array of applications, while Gourieroux and
Monfort focus on the underlying theory.
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chl
Iﬁ TESTING NONNESTED HYPOTHESES

A useful distinction between hypothesis testing as discussed in the preceding chapters

- and model selection as considered here will turn on the asymmetry between the null

and alternative hypotheses that is a part of the classical testing proceduré.? Because,
by construction, the classical procedures seek evidence in the sample to refute the
“null” hypothesis, how one frames the null can be crucial to the outcome. Fortunately,
the Neyman-Pearson methodology provides a prescription; the null is usually cast as
the narrowest model in the set under consideration. On the other hand, the classical
procedures never reach a sharp conclusion. Unless the significance level of the testing
procedure is made so high as to exclude all alternatives, there will always remain the
possibility of a Type 1 error. As such, the null hypothesis is never rejected with certainty,
but only with a prespecified degree of confidence. Model selection tests, in contrast,
give the competing hypotheses equal standing. There is no natural nuIl hypothesis.
However, the end of the process is a firm decisiong—in testing , oné of the
models will be rejected and the other will be retained; the analysis wﬂl then proceed in
the framework of that one model and not the other. Indeed, it cannot proceed until one
of the models is discarded. It is common, for example, in this new setting for the analyst
first to test with one model cast as the null, then with the other. Unfortunately, given
the way the tests are constructed, it can happen that both or neither model is rejected;
in either case, further analysis is clearly warranted. As we shall see, the science is a bit
inexact.

The earliest work on nonnested hypothesis testing, notably Cox (1961, 1962), was

5-32 |
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done in the framework of sample likelihoods and maximum likelihood procedures. /-
Recent developments have been structured around a common pillar labeled the en-

* compassing principle [Mizon and Richard (1986)]. In the large, the principle directs

attention to the question of whether a maintained model can explain the features of its
competitors-that is, whether the maintained model encompasses the alternative, Yet a
third approach is based on forming a comprehensive model that contains both competi-
tors as special cases. When possible, the test between models can be based, essentially,
on classical (-like) testing procedures. We will examine tests that exemplify all three
approaches.

i%E AN ENCOMPASSING MODEL

The encompassing approach is one in which the ability of one model to explain features
of another is tested. Model 0 “encompasses” Model 1 if the features of Model 1 can be
explained by Model 0, but the reverse is not tru#®Because Hy cannot be written as a
restriction on Hy, none of the procedures we have considered thus far is appropnate
One possibility is an artificial nesting of the two models. Let X be the set of variables in
X that are not in Z, define Z likewise with respect to X, and let W be the variables that
the models have in common. Then Hy and H1 could be combined in a “supermodel™

Y=XB+Zy +Wi+s.

q }See Granger and Pesaran (2000) for discussion.
/0 “#See Deaton (1982), Dastoor (1983), Gourieroux| et al. (1983, 1995) and, especially, Mizor and Richard

o

(1986).



