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In principle, H; is rejected if it is found that 7= - # by a conventional F test, whereas Hy
is re;ected if it is found that ﬂ = 0. There are two problems with this approach. First,
8 remains a mixture of parts of B and ¥,and it is not established by the F test that either

“of these parts is zero. Hence, this test does not really distinguish between Hy and Hy;

it distinguishes between H and a hybrid medel. Second, this compound model may
have an extremely large number of regréssors. In a time-series setting, the problem of
collinearity may be severe.

Consider an alternative approach. If Hp is correct, then y will, apart from the ran-
dom disturbance g, be fully explained by X. Suppose we then attempt to estimate y
by regression of y on Z. Whatever set of parameters is estimated by this regression,
say, ¢, if Hy is correct, then we should estimate exactly the same coefficient vector if we
were to regress Xg on Z, since &g is random noise under Hy. Because # must be esti-
mated, suppose that we use Xb instead and compute ¢g. A test of the proposmon that
Model 0 “encompasses” Model 1 would be a test of the hypothesis that £[c — ¢} = 0.
It is straightforward to show [see Davidson and MacKinnon (2004, pp. 6712672)] that
the test can be carried out by using a standard F test to test the hypothesis that Y11= {0
in the augmented regression,

y=X8 -5-2171 + &1,

where Z, is the variables in Z that are not in X, (Of course, a line of manipulation
reveals that Z and Z; are the same, so the tests are also.)

cX.73
58 COMPREHENSIVE APPROACH—THE J TEST

The underpinnings of the comprehensive approach are tied to the density function as
the characterization of the data generating process. Let_fo(y; | data, §;) be the assumed
density under Model 0 and define the alternative likewise as fi (v | data, B1). Then, a
comprehensive model which subsumes both of these is

[foy: | data, Bo)]' [ fi (i | data, B:)]*
Jrange of y LRoOyi | data, BOT*[fi (i | data, BV dy;’

Estimation of the comprehensive model followed by a test of A = 0 or 1 is used to assess

fe(yi | data, By,.81) =

/7> the validity of Model 0 or 1, respectively>"

The J test proposed by Davidson and MacKinnon (1981) can be shown [see Pesaran
and Weeks (2001)] to be an application of this principle to the linear regression model.
Their suggested alternative to the preceding compound model is

= (1 =X +A(Zy) +e.

In this model, a test of A = 0 would be a test against H;. The problem is that A cannot
be separately estimated in this model; it would amount to a redundant scaling of the
regression coefficients. Davidson and MacKinnon’s J test consists of estlmatmg b4 by
a least squares regression of y on Z followed by a least squares regression of y on X
and Zy, the fitted values in the first regression. A valid test, at least asymptotically,
of Hy is to test Hy : A = 0. If Hy is true, then plim A = 0. Asymptotically, the ratio
A/se(R) (i.e., the usual f ratio) is distributed as standard normal and may be referred to

A l ’ESilva {2001) presents an application to the choice of probit or logit model for binary choice.

i §—33‘
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the standard table to carry out the test. Unfortunately, in testing fHy versus H; and vice
versa, all four possibilities (reject both, neither, or either one of the two hypotheses)
could occur. This issue, however, is 4 finite sample problem. Davidson and MacKinnon
show that as n — oo, if Hy is tfue, then the probability that & will differ significantly
from approaches L

Example 22 N Test for a Consumption Function .
Gaver and Geisel (1974) propose two forms of a consumption function:

Ho:Cr = B1+ B+ BaVios + 20
and
HiiCo=p + r2¥r 4 v3Cir + 10

The first model states that consumption respefids to changes in income over two periods,
whereas the second states that the effecty0f changes in income on consumption persist
for many periods. Quarterly data on g gate U.S. real consumption and real disposable
income are given in Appendix Table F5¢) Here we apply the J test to these data and the two
proposed specifications. First, the two models are estimated separately {using observations
1850.2 through 2000.4). The least squares regression of C on a constant, Y, lagged Y, and
the fitted values from the second model produces an estimate of A of 1.0145 with a ¢ ratio
of 62.861. Thus, H, should be rejected in favor of Hy. But reversing the roles of Hg and Hy,

we obtain an estimate of » of —10.677 with a t ratio of —7.188. Thus, H, Is rejected as well ™ ’ 7-

INFORMATION CRITERION

Vuokg’s (1989} approach t\lesting nonnested models\s also based on the likelihood
ratio skqtistic.® The logic of theest is similar to that which teptivates the likelihood ratio

of the distur-
not be the

(Vls Y2, 0? Y3, wz)’
bances, &y, and &4,.

were using
simply LR =
likelihood esti

. i
éKd\jB\{u’ntb




- - process; the test attempts to ascertain which of two competing models is closer to the truth..

5%}\ Specification Test

The tests considered so far have evaluated nested models. The presumption is that one of the two
models is correct. In Section 5.8, we broadened the range of models considered to allow two
nonnested models. It is not assumed that either mode! is necessarily the true data generating

‘Specification tests fall between these two approaches. The idea of a s pecnﬁcatlon test is to
consider a particular null model and alternatives that are not exp]1c1tly given in the form of
restrictions on the regression equation. A useful way to consider some spemficatmn tests is as if
the core model, y = XPiz is the null hypothesis and the alternative is a possibly unstated
generalization of that model. Ramsey’s (1969) RESET test is one such test which seeks to
uncover nonlinearities in the functional form. One (admittedly amblguous) way to frame the
analysis is

Hy,y=XB .8, .
H;: y = XP + higher order powers of x, and other terms + &, :

A straightforward approach would be to add squares, cubes, and cross products of the regressors
to the equation and test down to H; as a restriction on the larger model. Two complications are
that this approach might be too specific about the form of the alternative hypothesis and, second,
with a large number of variables in X, it could become unwieldy. Ramsey s proposed solution is
to add powers of x;'p to the regression using the least squares predlctlons — typically, one would
add the square and, perhaps the cube This would require a two,step estzmauon procedure, since
in order to add (x;° b)* and (x,'b)’, one needs the coefficients. The suggestion, then, is to fit the
null model first, using least squares. Then, for the second step, the squares (and cubes) of the
predicted values from this firstistep regression are added to the equation and it is refit with the
additional variables. A (large sample) Wald test is then used to test the hypothesis of the null
model.

As a general strategy, this sort of specification is designed to detect failures of the
assumptions of the niill model. The obvious virtue of such a test is that it provides much greater
generality than a simple test of restrictions such as whether a coefficient is zero, But, that
generality comes at considerable cost:

1. The test is nonconstructive. It gives no indication what the researcher should do next if the
null model is rejected. This is a general feature of specification tests. Rejection of the null
model does not imply any particular alternative.

2. Since the alternative hypothesis is unstated, it is unclear what the power of this test is against
any specific alternative.

3. For this specific test (perhaps not for some other specification tests we will examine later),
because x/b uses the same b for every observation, the observations are correlated, while
they are assumed to be uncorrelated in the original model. Because of the two, step nature of
the estimator, it is not clear what is the appropriate covariance matrix to use for the Wald test.
Two other complications emerge for this test. First, it is unclear what y converges to,
assuming it converges to anything. Second, variance of the difference between x;'b and x/ is
a function of x, so the second step regresswn mlgh’c be heteroscedastic. The 1mp110at10n is
that neither the size nor the power of this test allje ‘necessarily what might be expected.
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Example 5.9. Size of a RESET Test

To investigate the true size of the RESET test in a particular application, we carried out a
Monte Carlo experiment. The results in Table 4.6 give the following estimates of equation (5;
2): e /)

. InPrice = -8.42653 + 1.33372 InArea L 0.16537Aspect Ratio + e where sd{g) = 1.102686.

We take the estimated right hand side to.be our population. We generated 5,000 samples of
430 (the original sample size}), by reusing the regression coefficients and generating a new
sample of disturbances for each replication. Thus, with each replication, r, we have a new
sample of observations on InPrice;, where the regression part is as aboyé (reused) and a.new
set of disturbances is generated each time. With each sample, we computed the least
squares coefficient, then the predictions. We then recomputed the least squares regression @
while adding the square and cube of the prediction to the regression. Finally, with each | » S5~ s
sample, we computed the chi-squared statistic, and rejected the nu!t model if the chi-squared ng! K|
statistic is larger than 5.99, the 95" percentile of the chi squared distribution with two degrees T‘ 5 |I
of freedom.—The nominal size of this test is 0.05. Thus, in samples of 100, 500, 1000 and | "Nomnal
5000, we should reject the null nodel 5, 25, 50.and 250 times. In our experiment, the Size' nol
computed chi squared exceeded 5.99 8, 31, 65 and 259 times, respectively, which suggests | N o |[

that at least with sufficient replications, the test performs as might be expected. We then | 11 & "‘j”‘f"

investigated the power of the test by adding 0.1 times the square of In Area to the predictions. [isT
Itis not possible to deduce the exact power of the RESET test to detect this failure of the null
madel. In our experiment, with 1,000 replications, the null hypothesis is rejected 321 times.
We conciude that the procedure does appear have power to detect this failure of the modei
assumptions.
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5.10 MODEL BUILDING—A GENERAL TO SIMPLE STRATEGY

There has been a shift in the general approach to model building in the past 20 years or so, partly
based on the results in the previous two sections. With an eye toward maintaining simplicity,
model builders would generally begin with a small specification and gradually build up the model

.ultimately of interest by adding variables. But, based on the preceding results, we can surmise - . o
: "that.just about any criterion that would be used to decide whether to add a variable to a current

specification would be tainted by the biases caused by the incomplete specification at the early
. steps. Omitting variables from the equation” seems generally to be the worse of the two errors.
Thus, the simple-to-general approach to model building has little to recommend it Building on
the work of Hendry [e.g., (1995)] and aided by advances in estimation hardware and software,
researchers are now more comfortable beginning their specification searches with large elaborate
models involving many variables and perhaps long and complex lag structures. The attractive

= strategy is then to adopt a general-to-simple, downward reduction of the model to the preferred

specification. (This approach has been completely automated in Hendry’s PCGets® computer
program. [See, e.g., Hendry and Kotzis (200133, Of course, this must be tempered by two related
considerations. In the “kitchen sink” regregsion, which contains' every variable that might
conceivably be relevant, the adoption of a fixed probability for the type I error, say, 5 percent,
ensures that in a big enough model, some variables will appear to be significant, even if “by. "
accident.” Second, the problems of pretest estimation and stepwise model building also pose
some risk of ultimately misspecifying the model. To cite one unfortunately common example, the
statistics involved often produce unexplainable lag structures in dynamic models with many lags

of the dependent or independent variables.
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S

Vuong’s general result for nonnested models (his
havior of the statistic

ﬁ(%_:’;l --

V=

; b =Jﬁ(ﬁ/sm), " = In 0~ In L,l (7-14)
9 e .

(where T = 20
alternative, Hy.

{0 | = MODEL SELECTION CRITERIA
L L]

The preceding discussion suggested some approaches to model selection based on
nonnested hypothesis tests. Fit measures and testing procedures based on the sum of
squared residuals, such as R? and the Cox test, are useful when interest centers on
the within-sample fit or within-sample prediction of the dependent variable, When the
model building is directed toward forecasting, within-sample measures are not neces-
sarily optimal. As we have seen,_J_R2 cannot fall when variables are added to a model,
so there is a built-in tendency to overfit the model. This criterion may point us away
from the best forecasting model, because adding variables to a model may increase the
variance of the forecast error (see Section $.6) despite the improved fit to the data. With
this thought in mind, the adjlsted R?,

Rl=1-

n—1 2 n—1 e'e
nogC RSt n—_K(ZLz(ye—?)z)’ F14)
has been suggested as a fit measure that appropriately penalizes the loss of degrees of
freedom that result from adding variables to the model. Note that R? may fall when
a variable is added to a model if the sum of squares does not fall fast enough. (The
applicable result appears in Theorem 3.7; R 2 does not rise when a variable is added to
a model uniess the ¢ ratio associated with that variable exceeds one in absolute value.)

S 4o
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The adjusted R? has been found to be a preferable fit measure for assessing the fit of

. forecasting models. [See Diebold (2003), who argues that the simpte R? has a downward
-~ . biasas a measure of the out-of-sample, one-step-ahead prediction error variance. |

' The adjusted R? penalizes the loss of degrees of freedom that occurs when a model

is expanded. There is, however, some guestion about whether the penalty is sufficiently

large to ensure that the criterion will necéssarily lead the analyst to the correct model

£-29

(assuming that it is among the ones considered) as the sample size increases. Two alter- /Tt [

native fit measures that have seen suggested are the Akaike Information Criterion, )
AIC(K) = s2(1 — R})eKin g—_rr)

and the Schwarz or Bayesian Infé}ﬁaﬁpn_Cﬂterion, 42
BIC(K) = 55(1 — R*nX/", (F18)

(There is no degrees of freedom correction in s, 2 ) Both measures improve (decline) as
R? increases (decreases), but, everything ¢clse constant degrade as the model size in-
creases. Like R 2, these measures place a premium on achieving a given fit with a smaller
number of parameters per observation, K/n. Logs are usually more convenient; the
measures reported by most software are

-Y3
AICK) = In (ene) + % (1)
Klnn -9y

BIC(K) = In (ene) + (7=20)

[
Both prediction criteria have their virtues, and neither has an obvious advantage over
the other. [See Diebold (2003).] The Schwarz eriterion, with its heavier penalty for
degrees of freedom lost, will lean toward a simpler model. All else given, simplicity
does have some appeal.

<. ip.2
45 MODEL SELECTION

The preceding has laid out a number of choices for model selection, but, at the same

time, has posed some uncomfortable propositions. The pretest estimation aspects of
specification search are based on the model builder’s knowledge of “the truth” and the
consequences of failing to use that knowledge. While the cautions about blind search

for statistical significance are well taken, it does seem optimistic to assume that the
correct model is likely to be known with hard certainty at the outset of the analysis. The

—_ bias documented in/(7-4Yis well worth the modeler’s attention. But, in practical terms,
4-10 knowing anything about the magnitude presumes that we know what variables are in X3,
which need not be the case. While we can agree that the model builder will omit income

from a demand equation at their peril, we could also have some sympathy for the analyst

taced with finding the right specification for their forecasting mode! among dozens of
choices. The tests for nonnested models would seem to free the modeler from having

to claim that the specified set of models contain “the truth.” But, a moment’s thought
should suggest that the cost of this is the possibly deflated power of these procedures to
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point toward that truth, The J test may provide a sharp choice between two alternatives, e
but it neglects the third possibility, that both models are wrong. Vaong’s test does but,
- of course, it suffers from the fairly large inconclusive region, which is a symptom of its
relatively low power against many alternatives. The upshot of all of this is that there
remains much to be accomplished in the area of model selection. Recent commentary
has provided suggestions from two perspéctive, classical and Bayesian.

S Mt jo.3

TH-1  CLASSICAL MODEL SELECTION ‘ -
Hansen (2005) lists four shortcomings of the methodelogy we have considered here:

.(1)  parametric vision )
(2} assuming a true data generating process

“(3). evaluation based on fit

'(4) ignoring model uncertainty

All four of these aspects have framed the analysis of the preceding sections. Hansen’s
view is that the analysis considered here is too narrowyand stands in the way of progress
in model discovery.

All of the model selection procedures considered here are based on the likeli-
hood function, which requires a specific distributional assumption. Hansen argues for a
focus, instead, on semiparametric structures. For regression analysis, this points toward
generalized method of moments estimators. Casualties of this reorientation will be dis-
tributionally based test statistics such as the Cox and Vuong statistics, and even the
AIC and BIC measures, which are transformations of the likelihood function. How-
ever, alternatives have been proposed [e.g, by Hong, Preston, and Shum (2000)]. The
second criticism is one we have addressed. The assumed “true” model can be a straight-
jacket. Rather (he argues), we should view our specifications as approximations to the
underlying true data generating process;;-this greatly widens the specification search, to
one for a model which provides the best approximation. Of course, that now forces the
question of what is “best.” So far, we have focused on the likelihood function, which in
the classical regression can be viewed as an increasing function of R?. The author argues
for amore “focused” information criterion (FIC) that examines directly the parameters
of interest, rather than the fit of the model to the data. Each of these suggestions seeks to
improve the process of model selection based on familiar criteria, such as test statistics
based on fit measures and on characteristics of the model.

A (perhaps the) crucial issue remaining is uncertainty about the model itself. The
search for the correct model is likely to have the same kinds of impacts on statistical
inference as the search for a specification given the form of the model (see Sectiof; [#Z]. #3172 an c\ 4332 )
Unfortunately, incorporation of this kind of uncertainty in statistical inference proce-
dures remains an unsolved problem. Hansen suggests one potential route would be
the Bayesian model averaging methods discussed next although he does express some
skepticism about Bayesian methods in general.

S./0.Y 78 BAYESIAN MODEL AVERAGING

If we have doubts as to which of two models is appropriate, then we might well be
convinced to concede that possibly neither one is really “the truth.” We have painted
ourselves into a corner with our “left or right” approach to testing. The Bayesian
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approach to this question would treat it as a problem of comparing the two hypotheses
rather than testing for the validity of one over the other. We enter our sampling exper-
iment with a set of prior probabilities about the relative merits of the two hypotheses,

* which is summarized in a “prior odds ratio,” Py = Prob[Hg} /Prob[ H]. After gathering

our data, we construct the Bayes factor, which summarizes the weight of the sample
evidence in favor of one model or the other. After the data have been analyzed, we
have our “posterior odds ratio,” Py | data = Bayes factor x Py. The upshot is that ex
post, neither model is discarded; we have merely revised our assessment of the compar-
ative likelihood of the two in the face of the sample data. Of course, this still leaves the
specification question open. Faced with a choice among models, how can we best use
the information we have? Recent work on Bayesian model averaging [Hoeting et al.
{1999)] has suggested an answer. - -

An application by Wright (2003} provides an interesting illustration. Recent
advances such as Bayesian VARs have improved the forecasting performance of econo-
metric models. Stock and Watson (2001, 2004) report that striking improvements in
predictive performance of international inflation can be obtained by averaging a large
number of forecasts from different models and sources. The result is remarkably con-
sistent across subperiods and countries. Two ideas are suggested by this outcome. First,
the idea of biending different models is very much in the spirit of Hansen’s fourth point.
Second, note that the focus of the improvement is not on the fit of the model (point 3), but
its predictive ability, Stock and Watson suggested that simple equal-weighted averaging,
while one could not readily explain why, seems to bring large improvements. Wright
proposed Bayesian model averaging as a means of making the choice of the weights for
the average more systematic and of gaining even greater predictive performance.

Leamer (1978) appears to be the first to propose Bayesian model averaging as a
means of combining models. The idea has been studied more recently by Min and Zellner
(1993) for cutput growth forecasting, Doppelhofer et al. (2000) for cross-country growth
regressions, Koop and Potter (2004) for macroeconomic forecasts, and others. Assume
that there are M models to be considered, indexed by m = 1, ..., M. For simplicity,
we will write the mth model in a simple form, fn(y|Z, 0p) where f () is the density,
yand.Z are the data, and @, is the parameter vector for model . Assume, as well, that
model m*} is the true model, unknown to the analyst. The analyst has priors 7, over
the probablhtles that model m is the correct model, so 7y, is the prior probability that
m = m*. The posterior probabilities for the models are

S5
M, = Prob(m = m* |y, Z) = i(y, 2, (721)
: i ¥, P(y.Zrm,
where P(y‘, Z| m) is the marginal likelihood for the mth model,
-9
PG.ZIm = [ P(y,Zi60 ) PO dm (222)
gl’l

while P(y, Z| 6. m) is the conditional {on 6y} likelihood for the mth model and P(6,,)
is the analyst’s prior over the parameters of the mth model. This provides an alternative
set of weights to the IT,, = 1/M suggested by Stock and Watson. Let Q_m_denote the

(5497
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Bayesian estimate (posterior mean) of the parameters of model m. (See Chapter.187)
Each model provides an appropriate posterior forecast density, f*(yiZ, 6;p, m). The
-, Bayesian model averaged forecast density would then be
7 L Ey M o S—" yq—
F=>fulzémn, (Z:23)
=t -
A point forecast would be a similarly weighted average of the forecasts from the indi-
vidual models,

Example Bayesian Averaging of Classical Estimates

Many researchers have expressed skepticism of Bayesian methods because of the apparent
arbitrariness of the specifications of prior densities over unknown parameters. In the Bayesian
model averaging setting, the analyst requires prior densities over not only the model prob-
abilities, m,, but also the model specific parameters, 8. In their application, Doppethofer,
Miller, and Sala-i-Martin {2000) were interested in the appropriate set of regressors to include
in a long-term macroeconomic (income) growth equation. With 32 candidates, M. for their
application was 2% (minus one if the zero regressors model is ignored), or roughly four bil-
lion, Forming this many priors would be optimistic in the extreme. The authors proposed a
novel method of weighting a large subset (roughly 21 million) of the 2% possible (classical)
least sguares regressions. The weights are formed using a Bayesian procedure; however,
the estimates that are weighted are the classical least squares estimates. While this saves
considerable computational effort, i still requires the computation of millions of least squares
coefficient vectors. [See Sala-i-Martin (1997).] The end resuit is a model with 12 independent
variables.

7.6 SUMMARY D CONCLUSIONS

tatement of the regression
eters by least squares—a
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5.11 SUMMARY AND CONCLUSIONS

This chapter has focused on two uses of the linear regression model, hypothesis testing and basic
prediction. The central result for testing hypotheses is the F statistic. The F ratio can be produced
in two equivalent ways; first, by measuring the extent to which the unrestricted least squares
-estimate differs from what a hypothesis would predict, and second, by measuring the loss of fit- g

+ that-results from assuming that a hypothesis is correct. We then extended the F statistic to more

general settings by examining “its large, sample properties, which allow us to discard the
assumption of normally distributed disturbances and by extending it to nonlinear restrictions.

This is the last of five chapters that we have devoted specifically to the methodology
surrounding the most heavily used tool in econometrics, the classical linear regression model.
We began in Chapter 2 with a statement of the regression model. Chapter 3 then described
computation of the parameters by least squares;—a purely algebraic exercise. Chapter 4
reinterpreted least squares as an estimator of an unknown parameter vector, and described the
finite sample and large, sample characteristics of the sampling distribution of the estimator.
Chapter 5 was devoted to building and sharpening the regression model, with statistical results for
testing hypotheses about the underlying population. In this chapter, we have examined some
broad issues related to model specification and selection of a model among a set of competing
alternatives, The concepts considered here are tied very closely to one of the pillars of the
paradigm of econometrics, that underlying the model is a theoretical construction, a set of true
behavioral relationships that constitute the model. Tt is only on this notion that the concepts of
‘bias and biased estimation and model selection make any sense-—"bias” as a concept can only be
described with respect to some underlying “model” against which an estimator can be said to be
biased. That is, there must be a yardstick. This concept is a central result in the analysis of
specification, where we considered the implications of underfitting (omitting variables) and
overfitting (including superfluous variables) the model. We concluded this chapter (and our
discussion of the classical linear regression model) with an examination of procedures that are
used to choose among competing model specifications.
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where Ay; = y;

Key Terms and Concepts

TV E .:' . o Alternative hypothesis 2y, __* Linear restrictions » Prediction variance
e + Distributed lag == » Nested models +» Restricted least squares
( . *Discrepancy vector + Nonnested models (1,7 (77,* Root mean squared error
“="" o Exclusion restrictions * Nonnormality SRR s Tistable implications
fseesy, # Ex post forecast »Null hypothesis * Theil U statistic
A +1ack of invariance + Parameter space o.Wald statistic

é 5\ : i ) . Lagrangc multiplier test MET o Prediction interval

(] _I':‘.xermses
= = ]

My @6 e HE 1. A multiple regression of y on a constant x; and x, produces the following results:
{ ~ 9 =4+0.4x; +0.9x,, R = 8/60, e/e = 520, .= 29,
29 0 0
XX=1]0 50 10
0 10 80

Test the hypothesis that the two slopes sum to 1.

2. Using the results in Exercise 1, test the hypothesis that the slope on x; is O by running
the restricted regression and comparing the two sums of squared deviations.

3. The regression model to be analyzed is.y = X8, + X28, + ¢, where X and X5
have Kj and K columns, respectively. The restriction isf, = 0.
a. Usin 5@ prove that the restricted estimator is suany [b1.. 0], where by, is

§~23 € least Squares coefficient vector in the regression of y, on X;.
b. Prove that if the restriction is 8, = §5 for a nonzero, f5, then the restricted
estimator of #; is by, = (X{X1)~ 1X1(v X;)ﬁz)

4. The expression for the restricted coefficient vector in (5-14) may be written in the
form b, =[I— CR}b.4 w, where w does not involve h. What is C? Show that the
covariance matrix of the restricted least squares estimator is
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and that this matrix may be written as
Varfb {X}{[Var(b| X)] ™" — R'[Var(Rb) | X] 'R} Var{b | X].

5. Prove the result that-the restricted least squares estimator never has a larger
covariance matrix than the unrestricted least squares estimator.

6. Prove the result that the R® associated with a restricted least squares estimator
is never larger than that associated with the unrestricted least squares estimator.
Conclude that imposing restrictions never improves the fit of the regression.

7. An alternative way to test the hypothesus R — q = 0is to use a Wald test of the
hypothesis that A. = 0, where , is defined in (5f) ‘Prove that

x? = AL {Est. Var[A,]} A, = (n — K) [e :* N 1]5

Note that the fraction in brackets is the ratio of two estimators of o2, By virtue
and the preceding discussion, we know that this ratio is greater than 1.
ally, prove that this test statistic is equivalent to JF, where J is the number of 5~ 16
; restrictions being tested and Fis the conventional 7 statistic given 1@%‘]}?/
5- 2 g the Lagrange multiplier test requires that the variance estimator be based on the
restricted sum of squares, not the unrestricted. Then, the test statistic would be
LM = nl/[(n — K)/ F + T]. See Godfrey (1988).

Use the test statistic defined in Exercise 7 to test the hypothesis in Exercise 1.
Prove that under the hypothesis that Rg = g, the estimator

© g0

> _ (3 —Xb)'(y — Xb,)
B n—K+J ’

Ky
*

where Jis the number of restrictions, is unbiased for o2.
10. Show that in the multiple regression of y on a constant, x; and x; while imposing
} : the restriction 81 + £z = 1leads to the regression of y—x; on a constant and x; —x;.
in N —

B 7_ Applications
A
Fra ~” e H% . 1. The application in Chapter 3 used 15 of the 17,919 observations in Koop and
Mg ' Tobias’s (2004) study of the relationship between wages and education, ability, and
3 family characteristics. (See Appendix Table F3.2.) We will use the full data set for

this exercise. The data may be downleaded from the Journal of Applied Economet-
rics data archive at http://www.econ.queensu.ca/jae/12004-v19.7/koop-tobias/. The
data file is in two parts. The first file contains the panel of 17,919 observations on
variables:

Column 1; Person id (ranging from 1 to 2,178},
Column 2; Education,

Column 3; Log of hourly wage,

Column 4; Potential experience,

Column 5; Time.trend.



T Greene-50558

book

June 20, 2007 22:22

104 PART | 4 The Linear Regression Model

Columns 2-5 contain time varying variables. The second part of the data set contains
time invariant vanables for the 2,178 households. These are:

Column 1; Ability,

Column 2; Mother’s education,

Column 3; Father’s education,

Column 4; Dummy variable for reszdence in a broken home,
Column 5; Number of siblings.

To create the data set for this exercise, it is necessary to merge these two data

files. The ith observation in the second file will be replicated 7; times for the set of

T, observations in the first file. The person id variable indicates which rows must

contain the data from the second file. (How this preparation is carried out will vary

from one computer package to another.) (Note: We are not attempting to replicate

Koop and Tobias’s results here——we are only employing their interesting data set.)

Let X4 = [constant, education, experience, ability} and let X, = [mother’s education,

father’s education, broken home, number of siblings}. o

a. Compute the full regression of log wage on X and X, and report ali results.

b. Use an F test to test the hypothesis that all coefficients except the constant tetm
are zero.

¢. Use an F statistic to test the joint hypothesis that the coefficients on the four
household variables in X; are zero.

d. Use a Wald test to carry out the test in part ¢,

The generalized Cobb;Douglas cost function examined in Application 2 in Chap-

ter 4 is a special case of the translog cost function,

InC = o 4 ﬁinQ+3kln_Pk+6;lnB+5flnP_f
- + duel3(n PO?] + dulk(n B)?] + ¢pr[3(In Pr)?]
+ ¢win BJ{ln B + di[ln Be][In Pr] + ¢i{ln Pi]{In Py]
+ y[3(n %]
+ OgilIn Qllin Bl + 6g{ln O[In A] + fgy[In Cl(In B] + &.

The theoretical requirement of lincar homogeneity in the factor prices imposes the
following restrictions:

Sk+&+8p=1 P+ P + drr =0 Gu+dn+dr="0
$rs+ o+ =0 QQK+HQJ+9Qf=O

Note that although the underlying theory requires it, the model can be estimated
(by least squares) without imposing the linear homogeneity restrictions. [Thus, one
could “test” the underlying theory by testing the validity of these restrictions. See
Christensen, Jorgenson, and Lau (1975).] We will repeat this exercise in part b.

A number of additional restrictions were explored in Christensen and Greene’s
(1976) study. The hypothesis of homotheticity of the production structure would
add the additional restrictions

for =0, Bg =0, 68gr=0.
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Homogeneity of the production structure adds the restriction ¥ = 0. The hypothesis
that all elasticities of substitution in the production structure are equal to —1 is
imposed by the six restrictions ¢;; = 0 for alli and j.

We will use the data from the earlier application to test these restrictions. For
the purposes of this exercise, denote by B4, ..., fi5 the 15 parameters in the cost
function above in the order that they appear in the model, starting in the first line

and moving left to right and downward. . s~

a. Write out the R matrix and g vector i@that are needed to impose the
restriction of linear homogeneity in prices:

b. “Test” the theory of production using all 158 observations. Use an_F test to test

the restrictions oflinear homogeneity. Note, you can use the general form of the
F statistic in"(5-7)/to carry out the test. Christensen and Greene enforced the

//——hneﬂ%r-nﬁ geneity restrictions by building them into the model. You can do this
by dividing cost and the prices of capital and labor by the price of fuel. Terms

§-/b

with f subscripts fall out of the model, leaving an equation with ten parameters.
Compare the sums of squares for the two models to carry out the test. Of course,
the test may be carried out either way and will produce the same result.

c. Test the hypothesis homotheticity of the production structure under the assump-
tion of linear homogeneity in prices.

d. Test the hypothesis of the generalized Cobb-~Douglas cost function in Chap-
ter 4 against the more general translog model suggested here, once again (and
henceforth) assuming linear homogeneity in the prices.

e. The simple Cobb-Douglas function appears in the first ine of the model above.
Test the hypothesis of the Cobb-Douglas model against the alternative of the
full transiog model. '

f. Test the hypothesis of the generalized Cobb-Douglas model against the homo-
thetic translog model. -

g. Which of the several functional forms suggested here to you conclude is the most
appropriate for these data?

The gasoline consumption model suggested in part d of Application 1 in Chapter 4

may be written as

In(G/Pop) = + Brin Py + B In (Income/Pop) + Vac In By + Ve In Puc + yp In Py
+tyear + 8z1In _I_’d + &P+ 8InF +s

a. Carry out a test of the hypothesis that the three aggregate price indices are not
significant determinants of the demand for gasoline.
b. Consider the hypothesis that the microelasticities are a constant proportion of the
elasticity with respect to their corresponding aggregate. Thus, for some positive
# (presumably between 0 and 1), yuc = 084, Yuc = 884, ¥ = 68;. The first two
imply the simple linear restriction ¥, = .. By taking ratios, the first {or second)
and third imply the nonlinear restriction
e % o Ynels — Yuuba = 0.
Ypr ds
Describe in detail how you would test the validity of the restriction,
c. Using the gasoline market data in Table F2.2, test the two restrictions suggested
here, separately and jointly.
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(1. Supposethe true regress:on modei is given by ¢7227¥. The result in (¥4) shows that if

either Py ; is nonzero or §; is nonzero, then regression of y on X; alone produces a

biased and inconsistent estimator of #1. Suppose the objective is to forecast y, not to

estimate the parameters. Consider regression of y on X, alone to estimate 81 with

b: (which is biased). Is the forecast of y computed using X1by also biased? Assume

that E[X, | X;] is a linear function of X;. Discuss your findings generally. What are

the 1mphcat10ns for prediction when variables are omitted from a regression? ? 2
{2 Compare the mean squared errors of &y and by in Sectlon mfhstﬁfmﬁf’fq

ison depends on the data and the model parameters, but you can devise a compact

expression for the two quantities.) Examp Ve, 6.
{3 M@ME& loglikelihood function fort 1nearregress1on model with
normally distributed disturbances is shown in . Show that at the maximum

likelihood estimators of b for 8 and e'e/n for o?, the log likelihood is an increasing
functioh of & for the model. 5.7
| 4. Show that the model of the alternative hypothesis in Example FZcan be written

H: G=66+6Y + 93}:;_1 + 2954_21_’;_5 + &ir + stst__s.
5=2 5=1
As such, it does appear that Hy is a restriction on 4. However, because there are
an infinite number of constraints, this does not reduce the test fo a standard test
of restrictions. It does suggest the connections between the two formulations. (We
will revisit models of this sort in Chapter 20)
s W= 2|

Applications '*.;n;”[mknwei;
L |

-
‘f X The J test in Example 5???'7;5 carried out using more than 50 years of data. It is
optimistic to hope that the underlying structure of the ec y did not change in
50 years. Does the result of the test carried out in Example 7,2 persist if it is based on
data only from 1980 to 20007 Repeat the computation withfthis subset of the data.



