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6 Functional Form and Structural Change

6.1 Introduction

amlysis
This chapter will complete our fermed-devetopment of the linear regression model. We begin by

. examining different aspects of the functional form of the regression model. Many different types - - wl

* of functions are /inear by the definition in Section 2.3.1. By using different transformations’of the

dependent and independent variables, binary variables.and different arrangements of functions of
variables, a wide variety of models can be constructed that are all estimable by linear least
squares. Section 6.2 considers using binary variables to accommodate nonlinearities in the modei.
Section 6.3 broadens the class of models that are linear in the parameters..By using logarithms,
quadratic termss and interaction terms (products of variables), the regression model can
accommodate a wide variety of functional forms in the data. '

Section 6.4 examines the issue of specifying and testing for discrete change in the '

/;‘2‘;13@5@ that generates the data, under the heading of structural change, In a time

55

eries context, this relates to abrupt changes in the economic environment, such as major events
in financial (e.g., the world financial crisis of 2007-2009) or commodity markets (such as the
several upheavals in the oil market). In a cross section, we can modify the regression model to
account for discrete differences across groups such as different preference structures or market
experiences of men and women.
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examine the issue of gp€cifying and testing for change in the underlyihg model that
generates the data,amder the heading of structural change.

6.2 USING BINARY VARIABLES )

(1T r K
One of the most useful devices in regression analysis is the bmary, or dummy varlable.
A dummy variable takes the value one for some observations to indicate the pres-
ence of an effect or membership in a group and zero for the remaining observations.
Binary variables are a convenient means of building discrete shifts of the function into

a regression model.
5.4

6.2.1 BINARY VARIABLES IN REGRESSION /
a

Pummy variables are usually used in regression equations that also contain other quan-
titative variables. In the earnings equation in Example 445, we included a variable Kids
to indicate whether there were children in the household, under the assumption that for
many married women, this fact is a significant consideration in labor supply behavior.
The results shown in Example 6.1 appear to be consistent with this hypothesis.

== Example 6.1 Dumimy Variable in an Earnings Equation .

FE Table 6.1 following reproduces the estimated earnings equation in Example 437 The variable
R Kids is a dumimy variable, which equals one if there are children under 18 in the household and
=== zero otherwise. Since this is a semilog equatmn, the value of —0.35 for the coefficient is an
extremely large effect, one which suggests that all other things equal, the earnings of women
with children are nearly a third less than those without. This is a large difference, but one that
would certainly merit closer scrutiny. Whether this effect results from different labor market
effects that influence wages and not hours, or the reverse, remains to be seen. Second, having
chosen a nonrandomly selected sample of those with only positive eamings to begin with,

it is unclear whether the sampling mechanism has, itself, induced a bias in this cosfficient.

106"
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TABLE 6.1 - Estimated Famings Equation
In earnings = By + By age + Ps.age® + B education + Bs kids + &

- Sum of squared residuals: 599.4582

Standard etror of the regression; 1.19044

R? based 6n 428 observations 0.040995

Variable Cocfficient Standard Error ¢t Ratio
Constant 3.24009 1.7674 : 1.833
Age 0.20056 0.08386 2.392
Age? -0.0023147 0.00098688 —~2.345
Education 0.067472 0.025248 2.672

Kids -0.35119 0.14753 —2.380

€rs in many fields have studied the effects of treat-
nse. Examples include the effect of college on lifetime
in labor supply behavige-as in Example 6.1 in salary structures
0 pre- versus postregimeshifts in macroeconomic models, to name
se examples can all be formritlated in regression models involving a single
ariable: :

In recent applications, rese
ment on some kind of re
income, sex differen
in industries, a
but a few.
du

yi = Xfﬁ + 8d; + &

One of the important i

es in policy analysis concerns measuremefit of such treatment

Sectiprf 24.5.~
tis comtnon for researchers to includgadummy variable in a regressi
or something that applies only to a si
analyses, an occasional study inclyd€s a dummy variable that is,dhe only in a single
unusual year, such as the yeapof a major strike or a majorfolicy event. (See, for
example, the application to fffe German money demand fup€tion in Section 223501t
is easy to show (we consjeer this in the exercises) the vepy useful implication of this:

gl that takes the value one onlyAor one obsefvation has the effect of
ing that observation from computation pf'the least squares slopes and varlance
iaE6r (But not R-squared). ' ' o o
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Dummy variables are particularly useful in loglinear regressions. In a model of the form
Iny=p; + PBx + Pad + &,

the coefficient on the dummy variable, d, indicates a multiplicative shift of the function. The

. percentage change in E[y|x,d] asociated with the change in d is o it

e |

Efy|,d =1]- Ely|x.d = 0]
Ely|x,d =0]
— 100% { exp(B, +Byx +B3) Elexp(e)] - exp(B, -+ Bz.zc)E[em(e)]}
exp(B; + B,x) Elexp(e)]

%(AE[y| x,d]/Ad) = 100%{

=100%[exp(B,)—1].

Example 6.2 Valug of a Signature
4.8 71 Examplef4.12 dve explored the relationship between (log of) sale price and surface area for
./ ..

430 sales of Monet paintings. Regression results from the example are included in Table
6.2..below. The results suggest a strong relationship between area and price — the
coefficient is 1.33372 indicating a highly elastic relationship and the t ratio of 14.70
suggests the relationship is highly significant. A variable (effect) that is clearly left out of
the model is the effect of the artist's signature on the sale price. Of the 430 sales in the
sample, 77 are for unsigned paintings. The results at the right of Table 6.2 include a
dummy variable for whether the painting is signed or not. The results show an extremely
strong effect. The regression results imply that

E[Pricelbt(Area;Aspect,Signature) =
exp(;9.64#1.35InArea - .08AspectRatio + 1.23 Signature + .993%2] oY

{See Section 4.6.) Compﬁfihg this result for a painting of the same area and aspect ratio,
we find the model predicts that the signature effect would be

100%x(AE[Price}/Price) = 100%{exp(1.2$) - 1] = 2

The effect of a signature on an otherwise similar painting is to more than double the price.
The estimated standard error for the signature coefficient is 0.1253. Using the delta et §

method estimated standard error for [exp(bs)<1] of the square root of
&xp(bs)]*%.1253°, which is 0.4285. For the percentage difference of 2 %, we have an

Y; A ‘f I} estimated'standard error of 42-85%. 9./ 3%

Superficially, it is possible that the size effect we observed earlier could be explained by
the presence of the signature. If the artist tended on average to sign only the larger
paintings, then we would have an explanation for the counterintuitive effect of size. {This
would be an example of the effect of multicollinearity of a sort.) Fora regression with a
continuous variable and a dummy variable, we can easily confirm or refute this proposition.
The average size for the 77 sales of unsigned paintings is 1228.69 square inches. The
average size of the other 353 is 940.812 square inches. There does seem to be a
substantial systematic difference between signed and unsigned paintings, but it goes in the
other direction. We are left with significant findings of both a size and a signature effect in
the auction prices of Monet paintings. Aspect Ratio, however, appears still to be
inconsequential. ,ﬂz eHvre_

There is one remaining aspact of this sample for us to explore. These 430 sales involved
only 387 different paintings, Several sales involved repeat sales of the same painting. The
assumption that observations are independent draws is violated, at least for some of them.
We will examine this form of “clustering” in Chapter #in our treatment of panel data.

1



TABLE 6.2 Estimated Eguations for Log Price

"V in price = B, + B lnArea '+' B, aspect

ratiol+ f; signaturel+

Mean of log Price .33274 (I
Number of observations 430 =
Sum of squared residuals 519.17235 ! 420.16787
. Btandard error 1.10266 i 0.99313
- R>squared © 0.33620 ; 0.46279
adjusted R-squared 0.33309 [ 0.45900
Standard . - ) | Standard
Variable Coefficient Error | Coefficient Error i
Constant ~8.42653 0.61183 -13.77 | --9.64028 .56422 ~17.09
ILn area 1.33372 0.05072 14.70 | 1.34935 .08172 16.51
Aspect ratic -.16537 0.12753 -1.30 | ~0.07857 ¢ .1151% -0.68
Signature 0.000C0 0.00000 0.00 | 1.25541 .12530 10.02
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: 599.4582
Standard error of the #egression: 1,19044,

R? based bn 428 gHfervations 0.046695
Variable / Coefficient Stand, _ d Error t Ratio
Constant 3.24009 71674 1.833
Age 0.20056 0.08386 2.392
Age? —0.0023147 234

Edugation 0.067472
Kids —0.35119

0.025248
0.14753

§ include the effect of college on lifetime
ehavior as in Example 6.1 in salary structur,

ection 24.5.
It is common for researchers to include a dummy variable in a regression to account

for something that applies only to a single observation. For example, in time-series

analyses, an occasional study includes a dummy variable that is one only in a single

unusual year, such as the year of a major strike or a major policy eventﬁ%_)@rr_.z 3

example, the application to the German money demand function in Section 32857 TF

is easy to show (we consider this in the exercises) the very usefy] implication of this:

- Adummy variable that takes the value one only for one cbiservation has the effect of
‘delsting that-observation from computation of the least squares siopes and vetiance

~ estimator (but notR-squared). -

6.2.2 SEVERAL CATEGORIES

When there are several categories, a set of binary variables is necessary. Correcting

for seasonal factors in macroeconomic data is a common application. We could write a
consumption function for quarterly data as

Cr = b1+ Boxy + 81Dy + 82 Dpp + 8303 + ¢,
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where x, is disposable income. Note that only three of the four quarterly dummy vari-
ables are included in the model. If the fourth were included, then the four dummy

trap. Thus, to avoid the dumriy variable trap, we drop the dummy variable for the
fourth quarter. (Depending on the apphcation it might be preferable to have four sep-
arate dummy variables and drop the overall constant.)! Any of the four quarters (or
| 12 months) can be used as the base period. .o
The preceding is a means of deseasonalizing the data. Consider the alternative
tormulation:

= Bx: +61Dn + 82D + 83 D3 + 82D + &4, (6-1)

Using the results from mgﬁ partitioned regression, we know that the preceding
multiple regression is equivalent to first regressing C and x on the four dummy variables
and then using the residuals from these regressions in the subsequent regression of
deseasonalized consumption on deseasonalized income. Clearly, deseasonalizing in this
fashion prior to computing the simple regression of consumption on income produces
the same coefficient on income (and the same vector of residuals) as including the set
of dummy variables in the regression.

- variables would sum to one at every observation, which would reproduce the cony 7
<, stant term—a case of perfect multicollinearity. This is known as the dummy variable -

-1

6.2.3 SEVERAL GROUPINGS

several sets of dummy variables are needed is much the same as
ready considered, with one important exceptl . Consider a model of
statewide peT capita expenditure on education y as a functiefi of statewide per capita
income ¥/ Suppose that we have observations on all n =30 states for T’ = 10 years. A
regression model that allows the expected expenditfite to change over time as well as
acydss stateswonld be

Vi =+ B2y + & + 6 + & (6-2)

As before, it is necessary to dropane of the variables in each set of dummy variables

to avoid the dummy variable tfap. For our example, if a total of 50 stagt¢"dummies and

10 time dummies is retal , & problem of “perfect multicollinearity” remains; the sums

of the 50 state dum and the 10 time dummies are the sap€, that is, 1. One of the

variables in each pf'the sets (or the overall constant termind one of the variables in

one of the sy ust be omitted.
4

Exampje 6.8' Analysis of Covariance

The d8ta in Appendix Table F6.1 were used ipra study of efficiency in production of Airline

tvices in Greene (1897b). The alrline ingdstry has been a favorite subject of st

chmidt and Sickles (1984); Sickles, G d, and Johnson (1986)], partly because o

this rapidly changing market in a pegiid of deregulation and partly because of apyabundance

of large, high-quality data sets geffected by the (no longer existent) Civil Aeroputics Board.

The originat data set consisted of 25 firms observed yearly for 15 years (1870 to 1984), a

“balanced panel.” Several.df the firms merged during this pericd and sevgfal others experi-

enced strikes, which reduced the number of compiete observations sybstantially. Omiiting

e these and others because of missing data on some of the variablesAgft a group of 10 full

1See Suits (1984) and Greene and Seaks (1991).

‘\\,‘—-——_h/

@ Sec_ € e (J?Xiadinc\ Greere and
Sealbs (197,



Example 6.3 Genre Effects on Movie Box Office Receipts
Table 4.8 in Example 4.12 presents the results of the regression of Iog of box office
receipts for 62 2009 movies on a number of variables including a set of dummy variables
for genre: Action, Comedy, Animated,or Horror. The left out category is “any of the
remaining 9 genres” in the standard set of 13 that is usually used in models such as this
one. The four coefficients are -.869, -.016, -.833, +.375, respectively. This suggests that-

_save for horror movies, these genres typically fare substantially worse at the box office than j.-t-fe':'f e

‘other types of movies. We note; the use of b directly to estimate the percentage change for
; the category, as we did in example 6.1 when we interpreted the coefficient of
W7 =35 on Kids as indicative of a 35% change in income, is an approximation that works well
when b is close to zero, but deteriorates as it gets far from zero. Thus, the value of -=869,4{i}
above does not translate to an 87% difference between Action movies and other movies.
Using the formula we used in Example 6.2, we find an estimated différence closer to lexp(=1rrinis
.869)- 1]orabout 58%; - et Z )
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dummy vari-
e four dummy
eproduce the con-
s the dummy variable
dummy variable for the
preferable to have four sep-
! Any of the four quarters (or

variables would sum to
‘stant term—a case of

the same coefficient grf income (and the same vector of residuals) as i
of dummy variablegin the regression.

cluding the set

those we have already considered, with one important exception. Consider 2 mode! of
statewide per capita expenditure on education y as a function of statewide per capita
income x. Suppose that we have observations on all = 50 states for T = 10 years. A
regression model that allows the expected expenditure to change over time as well as
across states-would be

Y=o + Bxi + 6 + 6 + & (6-2)

As before, it is necessary to drop one of the variables in each set of dummy variables
to avoid the dummy variable trap. For our example, if a total of 50 state dummies and
10 time dumimies is retained, a problem of “perfect multicollinearity” remains; the sums
of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the
variables in each of the sets (or the overall constant term and one of the variables in
one of the sets) must be omitted.

Example G.g Analysis of Covariance

The data in Appendix Table F6.1 were used in a study of efficiency in production of airline

200%a Services in (%The airline industry has been a favorite subject of study fe.g.,
/ Schmidt and Sickles (T984}; Sickles, Good, and Johnson (1986}, partly because of interest in

this rapidly changing market in a period of deregulation and partly because of an abundance

of large, high-quality data sets collected by the {no longer existent) Civi! Aeronautics Board.

The original data set consisted of 25 firms observed yearly for 15 years (1970 to 1984), a

“pbalanced panel.” Several of the firms merged during this period and several others experi-

enced strikes, which reduced the number of complete observations substantially. Omitting

these and others because of missing data ot some of the variables left a group of 10 full

@uit;/(wsyf andfGreefle hd ;éak{a@

t —
a 6.2.3 SEVERAL GROUPINGS
The case in which several sets of dummy variables are needed is much the same as
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FIGURE 6.1 Estimated Year Dummy Variable Coeffi:;ients_.

observations, from which we have selected six for the examples to foillow. We will fit a cost
equation of the form

INCie = 1+ B2In Qut + fa In® Qp.t + B4 In Per 1t + Bs Loadfactor; s

14 5
+ Z 8D + Zﬁjﬁ,t + et
- fi=1 i=1

The dummy variables are D, which is the year variable and F; ; which Is the firm variable. We
have dropped the last one in each group. The estimated model for the full specification is

iIn C_:,,t = 13.56 +- 0.8866 In Q; ; + 0.01261 In? Q. +0.1281In Pf,-,t - 0.8855LF!-;
-+ time effects - firm effects.

The year effects display a revealing pattern, as shown in Figure 6.1. This was a period of
rapidly rising fuel prices, so the cost effects are to be expected. Since one year dummy
variable is dropped, the effect shown is relative to this base year (1984).

We are interested in whether the firm effects, the time effects, both, or neither are sta-
tistically significant. Table resents the sums of squares from the four regressions. The
_E statistic for the hypothesig/that there are no firm-specific effects is 65.94, which is highly
significant. The statistic forithe time effects is only 2.61, which is larger than the critical value

6.3
TABLE- 6.2 £ tests for Firm and Year Effects
Model Sum of Squares Restrictions F Deg.Fr.
Full model 0.17257 0 —
Time effects only 1.03470 5 63,94 [5,66]
Firm effects only 0.26815 14 2.61 [14,66]
No effects 1.27492 19 22.19 [19,66]
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of 1.84, but perhaps less so than Figure 6.1 might have suggested. In the absence of the
year-specific dummy variables, the year-specific effects are probably largely absorbed by
the price of fuel. :

6.2.4 THRESHOLD EFFECTS AND CATEGORICAL VARIABLES

In most applications, we use dummy variabies to account for purely qualitative factors,
such as membership in a group, or to represent a particular time period. There are cases,
however, in which the dummy variable(s) represents levels of some underlying factor
that might have been measured directly if this were possible. For example, education
is a case in which we typically observe certain thresholds rather than, say, years of
education. Suppose, for example, that our interest is in a regression of the form

income = p; + B, age + effect of education + .

The data on education might consist of the highest level of education attained, such
as high school (HS), undergraduate (B), master’s (M), or Ph.D. (P). An obviously
unsatisfactory way to proceed is to use a variable E that is ¢ for the first group, 1 for the
second, 2 for the third, and 3 for the fourth. That is, income = B + B age + BE + &.
The difficuity with this approach is that it assumes that the increment in income at each
threshold is the same; 83 is the difference between income with a Ph.D. and a master’s
and between a master’s and a bachelor’s degree. This is unlikely and unduly restricts
the regression. A more flexible model would use three (or four) binary variables, one
for each level of education. Thus, we would write
income=f +pProge+ g B+ M+8p P+ e

The correspondence between the coefficients and income for a given age is

- Highschool: E[income{age. HS] = 1 + B age.

" Bachelor’s:  E[income|age, B] = f1 + B, age + 8z,
Master’s: Elincome|age, M| = p1 + B> age + 8y,
Ph.D.: Elincome|age. Pl = p1 + pr age + dp.

The differences between, say, 8p and §3r and between 8y.and 85 are of interest. Obvi-
ously, these are simple to compute. An alternative way to formulate the equation that
reveals these differences directly is to redefine the dummy variables to be 1 if the indi-
vidual has the degree, rather than whether the degree is the highest degree obtained.
Thus, for someone with a Ph.D., all three binary variables are 1, and so on. By defining
the variables in this fashion, the regression is now

High school: E[income|age, HS| = B + B2 age,
Bachelor’s:  El[income|age, B] = fi + p» age + 85,
Master’s: Elincome|age, M| = f1 + B age + g+ 8,
Ph.D.: Elincome|age, Pl = py+ B age + 6__3 + 8y +8p.
Instead of the difference between a Ph.D. and the base case, in this model 3p is the

marginal value of the Ph.D. How equations with durnmy variables are formulated is a
matter of convenience. All the results can be obtained from a basic equation.
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6.2.5 Treatment Effects and Difference in Differences Regression

Rescarchers in many fields have studied the effect of a treatment on some kind of response.
Examples include the effect of going to college on lifetime income [Dale and Krueger (2002)],
the effect of cash transfers on child health [Gertler (2004)], the effect of participation in job
training programs on income [LaLonde (1986)] and pre- versus postregime shifts in _ e

* - macroeconomic models' [Mankiw (2006)], to name but a few. These examples can be formulated

in regression models involving a single dummy variable:

Yi zX:ﬂ +3éD;+ &,

where the shift parameter, 8, measures the impact of the treatment or the policy chdngc
(conditioned on x) on the sampled individuals. In the simplest case of a comparison of one group
to another,

yi=p + D+ e,

we will have &, = (¥| D, =0), that is, the average outcome of those who did not experience the
intervention, and b, = (¥| D, =1)— (¥ | D, =0), the difference in the means of the two groups. In

the Dale and Krueger (2002) study, the model compared the incomes of students who attended a__'
elite colleges to those who did not. When the analysis is of an intervention that occurs over time, '
such as Krueger’s (1999) analysis the Tennessee STAR experiment in which school performancy

" the treatment group can then be compared to the change for the controk group under the

measures were observed be and after a policy dictated¥€hange in class sizes, the treatment
dummy variable will be a period indicator, D, =0 in period 1 and | in period 2. The effect in B,
measures the change in the outcome variable, e.g., school performance, pre- to post-fitervention; |

b= -J%. _F;-;I;i}' G'Kflb'
The assumption that the treatment group does not change from period 1 to period 2 | — ' 1
weakens this comparison. A strategy for strengthening the result is to include in the sample a | l‘f'i* ¢ l.E gl
group of control observations that do not receive the treatment. The change in the outcome for ‘ e ; n
f-ent <

presumption that the difference is due to the intervention. An intriguing application of this- 5
strategy is often used in clinical trials for health interventions to accommodate the placebo effect:
The placebo “effect” is a controversial, but apparently tangible outcome in some clinical trials in @
which subjects “respond” to the treatment even when the treatment is a decoy intervention, such ¢, /41",

as a sugar or starch pill in a drug trial. [See Hrobjartsson and Peter C. Gotzsche, 2001]. A broad

template for assessment of the results of such a clinical trial is as follows: = The subjects who | ‘-'_-':l—[“-’—"' l:ﬂw

receive the placebo are the controls. The outcome variable — level of cholestrol for example -is | K5 0

measured at the baseline for both groups. The treatment group receives the drug; the control VoK G O @ iy h
Y

group receives the placebo, and the outcome variable is measured post treatment. The impact is nat o

measured by the difference in differences, Shap (sh

E= [(?gxﬂ ' treatment) - (?basel'me I treatmenr)] - [(?exil | Placebo) - (J_)baseﬁne ! placebo)] . {éf‘ilbb JIII} f'-f

The presumption is that the difference in differences measurement is robust to the placebo effect 7 | S hs 15.1']
if it exists. If there is no placebo effect, the result is even stronger (assuming there is a result). | ey i,"t"T'“'. o
. |
\ {) K -\.‘@,If
Hallos 7
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An increasingly common social science application of treatment effec%odels with
dummy variables is in the evaluation of the effects of discrete changes in policy. %A pioneering
application is the study of the Manpower Development and Training Act (MDTA) by Ashenfelter
and Card (1985). The simplest form of the model is one with a pre- and post treatment
observation on a group, where the outcome variable is y, with

~ yu = B+ Bl + BsDy+ BuTxDi+g, =12, (6 - 3) L
In this model, 7; is a dummy véfiable'fﬁat is zero in the pre- treatment period and one after the

treatment and D; equals one for those individuals who received the “treatment.” The change in
the outcome variable for the “treated” individuals will be -

GalDi= 1)~ ulDi=1) = (B + B2+ B3 + Ba) = (B1 + B3) = B2+ Pa.

For the controls, this is . @ i
I fgz K
(2lDi=0) = (pulDi=0) = B1+B2) - (B = Ba \ u diill'.{-r{-:-:{b:rt{\'f’ )

i ] % MO
The difference in differences is o ‘,tﬁ:" fences
' L I"Jn’.‘uf 10, ﬂjh“ P

[QalDi = 1) = (alDi = )] L [(alDi = 0) — (yulD; = 0)] = Bu. hst

In the multiple regression of y; on a constant, 7, D and 7D, the least squares estimate of (3, will
equal the difference in the changes in the means, -

by= (3| D=1,Period 2)~(¥| D=1,Period 1)
~(¥1D =0, Period 2) (7| D=0, Period 1)

= Ay|treatment | — Ay|control.

= The regression is called a difference in differences estimator in reference to this result.
= . 1.4 s Surveys of literatures on treatment effects, including use of D-i-D estimators, are provided by Imbens and | ;I-:IU.I . T
X T Wooldridge (2009) and Millimet, Smith and Vytlacil (2008). 'Il i'-T:" I'I
| ] oo rurrﬂ'{ﬁ L
Lxfer ‘.,If'ﬂ'i‘:' i
nat (0
Chagpe | st

When the treatment is the result of a policy change or event that_occurs completely
outside the context of the study, the analysis is often termed a natural éxperiment. Card’s
W (1990) study of a major immigration into Miami in 1979 discussed in Example 6.5 is an-exemple.

.'foh. Gqu.ht
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Example 6.5 A Natural Experiment: The Mariel Boatlift
A sharp change in policy can constitute a natural experiment. An example studled by Card
(1990) is the Mariel boatlift from Cuba to Miami (May-September, 1980} which increased the
| | Miami labor force by 7%. The author examined the impact of this abrupt change in labor
"''| market conditions on wages and employment for non-immigrants. The maodel compared
Miami to a similar city, Los Angeles. Let i denote an individual and D denote the “treatment,” |
~ which for an individual would be equivalent to “lived in a city that experienced the -~ - 7
immigration.” For an individual in either Miami or Los Angeles, the outcome variable is - A

(Y) = 1 if they aré unemiployed and 0 if they are employed.

Let ¢ denote the city and let { denote the period, before (1979) or after (1981) the
immigration. Then, the unemployment rate in city ¢ at time f is E[y,q]c f] if there is no
immigration and it is Ey;1|c. ] if there is the immigration. These rates are assumed to be
constants. Then,

Elyjolc.] =Bet ve without the immigration,
Ely;jqlcf] =B+ v +8 with the immigration.

The effect of the immigration on the unemployment rate is measured by & The natural
experiment is that the immigration occurs in Miami and not in Los Angeles, but is not a result
of any action by the people in either city. Then,

ElyjM791= B,y + v, and  ELY;IMB1]=B, +v,+3 for Miami

EyiIL78] =B +v and Elyplu81} =8, + 7, for Los Angeles.
It is assumed that unemployment growth in the two cities would be the same if there were no
immigration. If neither city experienced the immigration, the change in the unemployment
rate would be 3

Ely; 0IM.811- Ely; gIM,79] ='[381 -B,, for Miami,

Ely; olL.811- Ely;olL.79] ' =B, —B,, forLos Angeles.

If both cities were exposed to migration

Ely; 1IM, 81} E[y, 1IM,79] = [3 —-B,,+& for Miami
E[y, 1L, 81] E[y,,1|L 78] = B {379 +0 for Los Angeles.

Only Miami experienced the migration (the “treatment). The difference in differences that
guantifies the result of the experlment is.. ;

{E[y,1|IVI 81] E[y, 1IM, 78]} — {E[y,OIL 81] - E[y,0|L 79} = .

The author examined changes in employment rates and wages in the two cities over several
years after the boatlift. The effects were surprisingly modest given the scale of the
experiment in Miami.



L /5

One of the important issues in policy analysis concerns measurement of such treatment
effects when the dummy variable results from an individual participation decision. In the clinical
trial example given earlier, the control observations (it is assumed) do not know they they are in
the control group. The treatment assignment is exogenous to the experiment. In contrast, in
Keueger and Dale’s study, the assignment to the treatment group, attended the elite college is

- completely voluntary and determined by the individual. A crucial aspect of the analysis in this -. ;"
" ¢ase’is to accommodate the almost certain outcome that the “treatment dummy” might be
measuring the latent motivation and initiative of the participants rather than the effect of the
_ program itself. That is the main appeal of the natural experiment approach — it more closely
I (possibly exactly) replicates the exogenous treatment assignment of a clinical trial B3 We wiM
 et@mnire Some of the se cases in Chaplers £and |8,

Ko
£ See Angrist and Krueger (2001) and Angrist and Pischke (2010) for discussions of this
approach.



" Greene-50558

book  June20,2007 2217 ' c - I ¢

112 PART | ¢ The Linear'Regression Model

= 22, To combine all th;/eq.uations, we use
incorhe = By + B age + y1d 61d1 age + yady + 52d2 age + ¢.

where f = 18 and £

This relatio
are B, B 4481, and B2 + 81 + 9 "To ake the functlon plecewnse continuousAve require
that the Segments join at the kn s—that is,

Batt = (B1 +»1) + (B + 818}

Br+yd+ Ba+ 815 = (B +wn + 1) + (Bt + &85y,

These are linear rgétrictions on the coefficients. Collectingferms, the first one is
n+&qtf=0 or p=-
(6-3), we obtain

1) + 8ach (age — 83) + .

Doing likewise for the second and inserting these i

income = B1 + Pz age + S1¢h (age

Congtrained least squares estimates are obtaifiable by multiple regression, using a £on-
staht and the variables

X) = dge,

¥ = age — 1§ if age > 18 and 0 otherwise,

and

x3 = age/ 22 if age = 22 and 0 otherwise.

We can test the hypothesis t
of the two restrictions §; s

t the slope of the function is consta
and 8y =

with the joint test

6.3 NONLINEARITY IN THE VARIABLES

It is useful at this point to write the linear regression model in a very general form: Let

Z = 21,2,...,2 be aset of Lindependent variables; let fi, f, .. fK be X linearly
independent functions of z; let g(y) be an observable function of BA and retain the usual
assumptions about the disturbance. The linear regression model is

s =Hf@+bh@+ -+Bxfx@ +e
=pfx1+bxa+- -+ Prxx +¢ (6-4)
=xB+e

By using logarithms, exponentials, reciprocals, transcendental functions, polynomials,
products, ratios, and so on, this “linear” model can be tailored to any number of
situations.

6.3.1 UNCTIONAL. FORMS

A copimonly ugfd form of regressighn model is the loglingdr model,

Iny=na+ Beln Xy +e=p5H
[3
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Income

Age
FIGURE 6.2 Spline Function.

6.3.1 Rrecewise Linear
SEEERE REGRESSION

If one is examining income data for a large cross section of individuals of varying ages

in a population, then certain patterns with regard to some age thresholds will be clearly

evident. In particular, throughout the range of values of age, income will be rising, but the

slope might change at some distinct milestones, for example, at age 18, when the typical

individual gsaduates from high school, and at age 22, when he or she graduates from

2 college. The time proﬁle of income for the typical individual in this population might

| S appear as in Flgure 6.2. Based on the discussion in the preceding paragraph, we could

L., & | fit such a regression model just by dividing the sample into three subsamples. However,

—— this would neglect the continuity of the proposed function. The result would appear

more like the dotted figure than the continuous function we had in mind. Restricted

: regression and what is known as a splme function can be used to achieve the desired
NN effect B Y f -

v The function we wish to estimate is

Elincome|age] = o® + % age if age < 18,
ol + Bl age if age > 18 and age < 22,
o? + B% age ifage > 22.
The threshold values, 18 and 22, are called knots. Let
dy =1 ifage=>tf,
=1 ifage=>1t],

L[ .’L? jAn important reference on this subject is Poirier (1974), An often-cited application appears in Garber and
% Poiricr (1974).



Greene-50558

book Jume 20, 2007 22:17 / L --, 8’

112 PART | 4+ The linear Regression Model

where ¢f = 18 and t; = 22. To combine all three equations, we use T

' Th:s relationship is the dashed function in Figure 6.2. The slopes in.the three scgments
are Bz, B2 + 81, and B, + &; + 8. To make the function p1ecew1se contmuous, we require
that the segments join at the knots—that is,

Bt Baff = (Br+y)+ B+
and
Br+yv)+Ba+80 =B+ v+ )+ B+ b+ &5
These are linear restrictions on the coefficients. Collecting terms, the first one is
n+dig =0 or y=-81.
Doing likewise for the second and inserting these in (6-3), we obtain
income = B1 + p; age + 81dy (age ~ 1)) + &uds (age — ) + .

Constrained least squares estimates are obtainable by multiple regression, using a con-
stant and the variabies

X1 = age,

x> = age — 18 if age > 18 and 0 otherwise,
and

x3 = age — 22 if age > 22 and 0 otherwise,

We can test the hypothesis that the slope of the function is constant with the joint test
of the two restrictions §; = 0 and §; = 0.

——

EW =K@ +hL@F +Brfk@ +e

= f1x1 + fax o+ Brxk e

products, ratios, and
situations.

6.3.1 FUMCTIONAL FORMS
only used form of regression model is the loglin

lny:lna+z,6kln)(k+s=
k

income = By + B age + yidy + 81dy age + yadh + S2dh age + &. wm - By
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where £f =18 and 5= 22. To combine all thyee equations, we use
stafit and the variables
if age > 18 and 0 otherwise,
and
x3 = age/~ 22 if age > 22 and 0 otherwise.
We can test the hypothesis that the slope of the function is constant‘with the joint test
of the two restrictions §; =
6.3 NLINEARITY THE VARIABL
is useful at this poi
Z=23.22,... a set of L independent
independent tions of z; let g(y) be an
/ assumptions-about the disturbance.
g =ph
, By using logari
products, ratios"and so on, this “linear” model can be tailored to any number of
situations. ~

2
6.3.3 FUNCTIONAL FORMS

A commonly used form of regression model is the l_o_glipejar I11i_odel,

Iny=lne+Y BlnX+e=p+Y funte
i k k
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In this model, the coefficients are elasticities: f Io N } .;,P )‘
i " 2 X ' ==
- BT e
- NdxE S\ Y N__—=

In the loglinear equation, measured chaiges are in proportional or percentage terms;
Bx measures the percentage change in y associated with a 1 percent change in x;. This
removes the units of measurement of the variables from consideration in using the
regression model. An alternative approach sometimes taken is to measure the variables
and associated changes in standard deviation units. If the data are “standardized” before
estimation using x}, = (xu — Xz)/sx and likewise for y, then the least squares regression
coefficients measure changes in standard deviation units rather than natural units or
percentage terms. (Note that the constant term disappears from this regression.) It is
not necessary actually to transtorm the data to produce these results, multiplying each
least squares coefficient by in the original regression by si/sy produces the same result.
A hybrid of the linear and loglinear models is the semilog equation

Iny=p5 +px+e. (6-6)

g2t
We used this form in the investment equation in Section 52,

nfi=p+ B0 — Ap) + BsAp; + faln X + st + &,

where the log of investment is modeled in the levels of the real interest rate, the price

level, and a time trend. In a semilog equation with a time trend such as this one,

. dlIn I/dt = Bs is the average rate of growth of /. The estimated value of —0.00566 in

g ‘Zuggests that over the full estimation period, after accounting for all other

- factors, the average rate of growth of investment was —0.566 percent per year.

The coefficients in the semilog model are partial- or semi-elasticities; in (6-6), B, is

9 In y/3x. This is a natural form for models with dummy variables such as the earnings

equation in Examplé@'Ihe coetficient on Kids of —0.35 suggests that all else equal,

5.7 earnings are approximately 35 percent less when there are children in the household.

The quadratic earnings equation in Example 6.1 shows another use of nonlineari-

ties in the variables. Using the results in Example 6.1, we find that for a woman with

12 years of schooling and children in the household, the age-earnings profile appears as

in Figure 6.3. This figure suggests an important question in this framework. It is tempting

to conclude that Figure 6.3 shows the earnings trajectory of a person at different ages,

but that is not what the data provide. The model is based on a cross section, and what it

displays is the earnings of different people of different ages. How this profile relates to
: :ghe expected earnings path of one individual is a different, and complicated question. /1"
» ?’-3 I nderocyy n Another useful formulation of the regression model is one with interact?_on terms,

E g;-e ey For example, a model relating braking distance D to speed § and road wetness W might

be

D =p1+ P8+ BsW + BaSW + &,
In this model,

BEID} S, W]

3S $ﬁ2+ﬁ4W,
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FIGURE 6.3 Age-Bamings Profile.

r HE
|

which implies that the margmal effect of higher speed on brakmg distance is increased
when the road is wetter (assuming that 8, is positive). If it is desired to form confidence
intervals or test hypotheses about these marginal effects, then the necessary standard
erTor is computed from

IE[D|S, W]
Var («--—————38

and similarly for 3E[D| S, W1/dW. A value must be inserted for W. The sample mean
is a natural choice, but for some purposes, a specific value, such as an extreme value of
W in this example, might be preferred.

) = Var[B,] + W? Var[B,] + 2W Cov[B,, A,].

€.3.2 IDENTIFYIDNG NONLINEA

If the functional is not known #'priori, then there are a fgw approaches that may
help at least to jdentify any nonlingérity and provide some inférmation about it from the
sample. For g&ample, if the sus cted nonlmeanty is w1th Spect to a single regressor in

produced several innovations in microecgnometrics. it was among th

of statistical cost analysis. The theoretical development in N

1§t major application
&'s study was the first
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6.3.4 IDENTIFYING NONLINEARITY

If the functional form is not known a priori, then there are a few approaches that may help at least
to identify any nonlinearity and provide some information about it from the sample. For example,
if the suspected nonlinearity is with respect to a single regressor in the equation, then fitting a

. ~quadratic or cubic polynomial rather than a linear function may capture some of the nonlinearity,~ - s

By choosing several ranges for the regressor in question and allowing the slope of the function to
be different in each range, a piecewise linear approximation to the nonlinear function can be fit.

Example 6.6 Functional Form for a Nonlinear Cost Function

In a celebrated study of economies of scale in the U.S. electric power industry, Nerlove (1963)
analyzed the production costs of 145 American electricity generating companies. This study
produced several innovations in microeconometrics. It was among the first major applications of
statistical cost analysis. The theoretical development in Nerlove's study was the first to show how
the fundamental theory of duality between production and cost functions could be used to frame
an econometric model. Finally, Nerlove employed several useful techniques to sharpen his basic
model.

The focus of the paper was economies of scale, typically modeled as a characteristic of
the production function. He chose a Cobbeouglas function to model output as a function of
capital, K, labor, L, and fuel, F: g

Q - GOKQK LGL FGF eEl)

where Q is output and & embodies the unmeasured differences across firms. The economies of
scale parameter is r = ax + o, + ar . The value 1 indicates constant returns to scale. In this study,
Nerlove investigated the widely accepted assumption that producers in this industry enjoyed
substantial economies of scale. The production model is loglinear, so assuming that other
conditions of the classical regression mode! are met, the four parameters couid be estimated by
least squares. However, he argued that the three factors could not be treated as exogenous
variables. For a firm that optimizes by choosing its factors of production, the demand for fuel
would be F*= F¥Q, Pk, P, Pr) and likewise for labor and capital, so certainly the assumptions of
the classical model are violated.

In the regulatory framework in place at the time, state commissions set rates and firms
met the demand forthcoming at the regulated prices. Thus, it was argued that output (as well as
the factor prices) could be viewed as exogenous to the firm and, based on an argument by
Zeliner, Kmenta, and Dreze (1966), Nerlove argued that at equilibrium, the deviation of costs from
the long,run optimum would be independent of output. (This has a testable implication which we
will explore in Chapter 8.) Thus, the firm's objective was cost minimization subject to the
constraint of the production function. This can be formulated as a Lagrangean problem,

Mink,r P K+ P L+ Pe F + NQ - apK™ L FF),

The solution to this minimization problem is the three factor demands and the multiplier (which
measures marginal cost). Inserted back into total costs, this produces an (intrinsically linear)
loglinear cost function,

P_KK"'.PLL'l' PeF= C(Q,_EK, PL:PF)=rAQ1/rPKaK/r_PLa{JrPFm:/r eti{;

INC =01 +B,In Q+BxIn P+ B InP+ BrIn Pe +_u_;} (6-7)

or
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where B, = 14ax +a; +ar ) is now the parameter of interest and §; = a;/r, j= K, L, F."Thus, the
duality between production and cost functions has been used to derive the estlmatlng equation
from first principles.

A complication remains. The cost paramgters must sum to one; B« + B + Br = 1, s0
estimation must be done subject to this constraint® This restriction can be imposed by regressing
In{(C/Pr)ona constant In Q, In(PK /Pg), and ln(PL/PF) This flrst set of results appears at the top e

Imtlal estimates of the parameters of the cost function are shown in the top row of Table |- =

8%
8.3: The hypothesis of constant returns-to scale can be firmly rejected. The £ ratio is T_B ““%{L ¢
{0.721-1)0.0174 = -16.03, so we conclude that this estimate is significantly less than 1 or, by | T bt

implication, r is significantly greater than 1. Note that the coefficient on the capital price is ‘¥ Hmmr*
negative. In theory, this should equal aw/ | which (unless the marginal product of capital is ﬂ }p e
negative) should be positive. Nerlove attributed this to measurement error in the capital price | - e “_ o
variable. This seems plausible, but it carries with it the implication that the other coefficients are 2
mismeasured as well. [Christensen and Greene’s (1976) estimator of this model with these data
produced a positive estimate, See Section 10.4.2 ]

The striking pattern of the residuals shown in Figure 6.4 and some thought about thg/"}
implied form of the production function suggested that something was missing from the model® 17~
theory, the estimated model implies a continually declining average cost curve, which in turn
implies persistent economies of scale at all levels of output. This conflicts with the textbook notion
of a U-shaped average cost curve and appears implausible for the data. Note the three clusters of

residuals in the figure. Two approaches were used to aﬁitﬁ:l-the madel.
exten

':', ’{ Readers who attempt to replicate Nerlove’s study should note that he used common (base 10) logs in his

calculations, not natural logs. A practical tip: to convert a natural log to a common log, divide the former
by log,10 = 2.302585093. Also, however, although the first 145 rows of the data in Appendix Table F6.2
are accurately transcribed from the original study, the only regression listed in Table 6.3 that can be
reproduced with these data is the first one. The results for Groups 1 = 5 in the table have been recomputed
here and do not match Nerlove's results L1kew1se the results in Table 6.4 have been recomputed and do
not match the original study. T hat-th G

theothers canremains-apuzater

Cavi = .
clf’ X In the context of the.econometric model, the restriction has a testable implication by the definition in

[

¥

Chapter 5. But, the underlying economics require this restnctlon—lt was used in deriving the cost function.
Thus, it is unclear what is implied by a test of the restriction. Presumably, if the hypothesis of the
restriction is rejected, the analysis should stop at that point, since without the restriction, the cost function is
not a valid representation of the productlon function.We will encounter this conundrum again in another

form in Chapter 10. Fortunately, in this instance, the hypothesis is not rejected. (It is in the application in
Chapter 10.)

X A Durbin-Watson test of correlation among the residuals (see Section 20.7) revealed to the author a
substantial autocorrelation. Although normally used with time series data, the Durb1n~Watson statistic and
a test for “autocorrelation” can be a useful tool for determining the appropriate functional form in a Crosss
sectional model. To use this approach, it is necessary to sort the observations based on a variable of mterest

(output). Several clusters of residuals of the same sign suggested a need to reexamine the assumed
functional form,

b
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By sorting the gample into five groups®on the basis of output and fitting. separate
. regressions to each grofup, Nerlove fit a piecewise loglinear model. The results are given in the
12 lower rows of Table(6:3,/where the firms in the successive groups are progressively larger. The
| J results are persuasive that the (log)linear cost function is inadequate. The output coefficient that
- rises toward and then crosses 1.0 is consistent with a U-shaped cost curve as surmised earlier.
- A second approach was to expand the cost function to include a quadratic term in log_
_output. This approach corresponds to a much more general model and produced the results
| given in Table&: tAgaln a simple f test strongly suggests that increased generality is called for;
7 + 1= 0.05120.00054 = 9.44. The eutput elasticity in this quadratic model is B, +2y,, log Q. B There
| are ecor;]omles of scale when this value is les3 than 1 and constant returns to scale when it
equals one;, Using the two values given in the table (0.152 and 0.0052, respecttvely) we find that
this function does, indeed, produce a U-shaped average cost curve with minimum at InQ\=
{1-0. 152)/{2><0 051) = 8.31, or Q = 4079, which is roughly in the middle of the range of outputs for
Nerlove s sample of firms. = _
This study was updated by Christensen and Greene (1876). Using the same data but a

more elaborate (translog) functional form and by simultanecusly estimating the factor demands ff' TS,
and the cost function, they found results broadly similar to Nerlove’s. Their preferred functional | =
form did suggest that Nerlove’s generalized model! in Table 6.4 did somewhat underestimate the | | 3 =
range of outputs in which unit costs of production would continue to decline. They also redid the 1T 5.5
study using a sample of 123 firms from 1970/ and found similar results. In the latter sampie, L__——
however, it appeared that many firms had expanded rapidly enough to exhaust the available

economles of scale We w1|l rev151t the 1970 data set in a study of production costs m-E*amples-
-y TIRUL ; Chaplers toand I8,

The preceding example illustrates three useful tools in identifying and dealing with unspecified
nonlinearity: analysis of residuals, the use of piecewise linear regression, and the use of
pelynomials to approximate the unknown regression function.

Q > Nerlove inadvertently measured economles of scale from this function as 148, + 4 log (), where f; and
& are the coefficients or log  and log® Q. The correct expression would have been 1/[8 logC/@ Iog Q] =
118,+25 log Q1. This stip was periodically rediscovered in several later papers.
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— Figure 6.4 Residuals from Pradicted Costs,
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TABLE 6. Cobqu-_DougIas Cost Functions
{standard errors in parentheses)
logQ logPL—logPr logPg —log Py }_{_2
All firms 0.721 0.593 0007 0.932 \ Note
(0.0174) (0.205) (0.191) VLA LA
Group 1 0.400 _ 0.615 -0.081 0.513
Group 2 0.658 - 0.094 0.378 0.633 .
Group 3 0.938 0.402 0.250 0.573
Group 4 0.912 0.507 0.093 0.826
Group 5 1.044 0.603 -0.289 0.921

TABLE Sg Log-Quadratic Cost Function
{standard errors in parentheses)

logQ log 2 Q log P ~log Py logPx —log Pr _132
All firms 0.152 0.051 0.481 0.074 0.96
(0.062) (0.0054) (0.161) {0.150)
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