A
6;3.5 INTRINSICALLY LINEAR MODELS

The loglinear model il_lqs_t[ates an intermediate case of a nonlinear regression model. The
equation is intrinsically linear, however. By taking logs of ¥, = aXPe%,
we obtain '

lﬂ:}f}zlna+ﬁ2]nX,+§,-_' M/

n=hthxite

or

Although this equation is linear in most respects, something has changed in that it is no
longer linear in . Written in terms of §;, we obtain a fully linear model. But that may not  *
be the form of interest. Nothing is lost, of course, since f; is just In a. If §; can be

estimated, then an obvious estimator of & is suggested, & = exp(b,).

This fact leads us to a useful aspect of intrinsically linear models; they have an
“invariance property.” Using the nonlinear least squares procedure described in Seotion o Next
3%, we could estimate o and B, directly by minimizing the sum of squares function; c A ap e,

Minimize with respect to (a,82): S = X, (In¥,~lna-p,nX,) 2% /¢ __g).

This is a complicated mathematical problem because of the appearance the term Ing.
However, the equivalent linear least squares problem,

Minimize with respect to (BB S@18) = Xr, (3 -Bi-Px)’, Mg (6~9)

is simple to solve with the least squares estimator we have used up to this point. The
invariance feature that applies is that the two sets of results will be numerically identical;
we will get the identical result from estimating o using d from using exp(p;) from

(6 -.59 (747" By exploiting this result, we can broaden the definjon of linearity an?nclude
some additional cases that might otherwise be quite complex.

(6-9
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' or -~

LN " : Yi=pi+pxi+ &

Xlthough this equatl or(is linear in most respects, some
longer linear in ¢, MWritten in terms ‘of- -Br,.we obtain a
not be the forprof interest. Nothing is lost, of cour;
estimated _#en an obvious estimate of « is suggested.

jw'tact leads us to a second aspect of intensically llnear models. Maxiffium hke-
lihged estimators have an “invariance prop€rty.” In the classical normal regression
0del, the maximum likelihood estimatop0f o is the square root of thefnaximum like-
lihood estimator of o2. Under some copfitions, least squares estimatérs have the same
property. By exploiting this, we can b baden the definition of lineg#ty and include somg
7 ad\dltl(} A 3503 7 9 othe '-.| rrembls
il
“.'.1-
DEFINITION Af 1 Intrinsic Linearity
In the classical linear regression model, if the K parameters B, . ..., Bk can

be written as K one:to-one, possibly nonlinear functions of a set of K underlying
parameters 6y, 04, .. ., Bk, then the model is intrinsically linear in 0.

6.1

Example Intrinsically Linear Regression
In Section 3676.4, we will estimate, the parameters of the mode!

44

linear model. But that
3 ,81 18 just a. If ﬁ1

flyl8,x) = L‘?m;(-g-))-:i ye- e B0

maximum likelihood,In this model, E [v|x] = (8g) + px, which suggests another way

that we might estimate the two parameters. This function is an intrinsically linear regression
model, £ [y | x] = g1 + faX, in which g; = Bp and g = p. We can estimate the parameters by
least squares and then retfrieve the estimate of g using b, /b,. Because this value is a nonlinear
function of the estimated parameters, we use the delta method to estimate the standard error.
—-"'"—'——Uslng the data from that examplefthe least squares estimates of g, and 8, (with standard
A 'xj 9 wp 6] errors in parentheses) are ~4.1431'(23.734) and 2.4261 (1.5915). The estimated covariance
is —36.979. The estimate of g is —4.1431/2.4261 = —1.7077. We estimate the sampling

variance of § with

Ay 2
Est.Var{] = (%E) Varlpi] + (gé) Var[Q]+2( B)( B)Cov[m b

= 8.6889%,

\

Table 6% compares the least squares and maximum likelihood estimates of the parameters.

2 | The lower standard errors for the maximum likelihood estimates result from the inefficient
: {equal} welghting given to the observations by the least squares procedure. The gamma
distribution is highly skewed. In addition, we know from our results in Appendix C that this
distribution is an exponential family. We found for the gamma distribution that the sufficient
statistics for this density were X, and % In y;. The least squares estimator does not use the
second of these, whereas an efficient estimator will.

TN
'l |

q f/,c ojaatﬂ, Ri-e Qlre I n A’PPP” Cl!k -)_06/& FC-i,
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TABLE & Estimates of the - Rearession n a Gamma Model Least-Sguares
versus Maximum Likeliheod -
s , 0 g
| Estimate  Standard Error Estimate  Standard Error §
Least squares T - =1708 - 8.689 2.426 1.592
Maximum likelihood —4.719 7 7 25— - 3151 5. 0.'79 ‘I
2.395 —,

, then the underlyin
in terms of the par

ay be written

nd the point p =0 is
pvd(1 — 8 {-3InK —InLP} +¢

,63=U(1 _6)!
v=PF+ ba,

Ba = pvd(1 - 4),
p = PalB2 +

se the delta method to construct the

approximation to get to (6-1 0) We woul
ates of 8" = [y, 8, v, p]. The derivatives .

asymptotic covariance matrix for the esji

0 0

0 0
c— LI
ap 0 0
0
The estimated covariance Pl

= Bt (@)xi A fal0Vx2 + - T BB + &

ifion that the functions be
was required. For exam,

are intrinsical e to one (i.c.,

that the

eters be exactly identifi
Bxi1 + yxi2 + Byxia + &
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o versis Maximuf Likelihood

L s / o/
Eéfma'ré " Standard Erroy Estimate Smnd?(d Error

£ast squares —~1.708 8689 / 2426 592
Maximum likelihood —4.719 2403/ ° 3151, . 0.663

/

The emphasis in intrinsic lingarity is on “one to one.” If the conditions are met, then
the model can be estimated in terms of the functions . ..., B, and the underlying
. parameters derived after these are estimated. The one-to-one correspondence is an

(1 ~identification condition. If the condition is met, then the underlying parameters of the
: regression (9) are said to be exactly identified in terms of the parameters of the linear
¥ model 8. An excellent example is provided by Kmenta (1986, p. 515, and 1967).

Exampile S.k CES Production Function
The constant elasticity of substitution production function may be written

o
nys=Iny — %In[BK""’i»ﬁ — 8}L"PT + k. (GAY
A Taylor series approximation to this function around the point p = 0 is
lny =Mty +v3inK +u(1—8)ink + pvé(1 =) {~3ln K - InLP} + &'

= Xy + PoXo + faXs + PaXs + &, (6'!‘(3)
where x1 =1, X = InK, x3 =L, X4 = ~F In*(K /L), and the transformations are
Bi=lny, Pa=ud, Ba=v(1-8), Ba=pus(1-29), ( l}f

y=eM d=f/(fetfa), ve=fokfa 0= FulBo+ fa)/(Bahs).

Estimates of 1, fa, 81, and 24 can be computed by least squares. The estimates of v, 5, 1, ‘
(" '2— and p obtained by theSecond row of (6r11Yare th me as those we would obtain had we é - ’ I
[ found the nonlinear least squares estlma es of (6-10)/directly. As nta Shows, ;

they are not the same as the nonline squares estimates off(6-@)tue to the use of the -
Taylor series approximation to get tof(6-10)¢ We would use the delta method to construct the . & —/
estimated asymptotic covariance matridyfor the estimates of 8’ = [, &, v, ¢]. The derivatives '

matrix is
-1}
e 0 (é ) 0 0
co B8 _ |0 Be/lBa+ ) —Baf(fe+ Bof 0
e ;}“ﬁ“ “lo 1 1 0

O ~BaBa/(B2Bs) —PoBef(PeBE) (B2 Ba)/(Pofa)
The estimated covariance matrix for § isf.") [(XX) 1€
Not all models of the form 7
Yi = B1(@)xis + 2@ xia + -+ Br(B)xin + & (6-13)

are intrinsically linear. Recall that the condition that the functions be one to one (i.e.,
that the parameters be exactly identified) was required. For example,

Yi =t fxi + yxin + Byvxs +e

TABLE & Estimates of the Aegression in‘a Gamma Madel: Least Sguares e T
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4 MODELING AND-TESTING

is nonlinear. The reason is that if we write it in the form of (6-12), we fail to account [
for the condition that g4 equals 5,83, which is a nonlinear restriction. In this model,
the three parameters a, 8, and y are ovendentlﬁed in terms of the four parameters

" B1, B2, B3, and B4. Unrestricted least squares estimates of f, fs, and B4 can be used to

obtain two estimates of each of the underlying parameters, and there is no assurance
that these will be the same. Mo Aeda Flrat are ned mFeinaic linean
are jreated 1~ Sl C"\a\o e~ .,

(o

FOR A STRUCTURAL BREAK

One of the more comimon applications of the F test is in tests of structural change.® In

analyze

we ex d 4.8. As Figure 6.5 following suggests, this

arkable fashion prior to the oil shock of 1973
¢ large jumps in price in 1973 and 1980 are clearly

same regression model woyld apply to both periods.

FIGURE yﬁ
i
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8This test is ofte eled a Chow test, | fercnc Chow
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if we write it in the form o (6-12), we fail to accoun
for thg/condition that 84 egdals B28s, which is a nonli restriction. In this mod
- e the three parameters o 4] and v are overidentified if terms of the four paramefers

. B2, B3, and 4. U stricted Jeast squares es es of B, B3, and B4 can be dfed to
obtain two estim ]

that these will

Aoy K [
6.4 MODELING AND TESTING . T hetal
FOR A STRUCTURAL BREAK ’g’ afrue
/0

i PP |
7NN o ahghn J’-‘-r- f‘"ﬁ“:‘
f % One of the more common applications of the Ftest is in tests of structural change# In KT t.*f'i'; v lre¥
- specifying a regression model, we assume that its assumptions apply to all the obser- SRR
vations in our sample, It is straightforward, however, to test the hypothesis that some (n h “‘»P‘ y
RN or all of the regression coefficients are different in different subsets of the data. To KT a a\'t-'.n h
e analyze a number of examples, we will revisit the data on the US. gasoline market that

2
L2 we examined in Examples 2.3(4.4, 47, and 4 As Figure 6.5 following suggests, this [ here '
‘f ,7, q 2 |marget behaved in prédictable, unremarkable fashion prior to the oil shock of 1973
4'1/ e 77 and was quite volatile thereafter. The large jumps in price in 1973 and 1980 are clearly _

— 'visible, as is the much greater variability in consumption®1t seems unlikely that the

/PNy same regression model would apply to both periods. 1]
I :

\
FIGURE 6.5 Gasoline Price and Per Capita Consumption,

1953-2004, : :
150

100}

2] SFEPI SNV I DR T U D B
0.250 0.300 0.350 0,400 0.450 0.500 0.550 (.600 0.650
G

10 T oo

- Y | B
Wsigis test is often labeled a Chow test, in reference 1o Chow (1960).

/w (The observed data wilt doubtless reveal similar distuption in 2006.
A
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6.4.1 DIFFERENT PARAMETER VECTORS

The gasoline consumption data span two very different periods. Up to 1973, fuel was ~ -. ..:"
- plentiful and world prices for gasoline had been stable or falling for at least two decades.

The embargo of 1973 marked a transition in this market, marked by shortages, rising

prices, and intermittent turmoil. It is possible that the entire relationship described by

our regression model changed in 1974. To test this as a hypothesis, we could proceed as

follows: Denote the first 21 years of the datainy and X as y; and X1 and the remaining

years asys and X». An unrestricted regression that allows the coefficients to be different

in the two periods is

W] _ X% 0][8], fe 4 ..
=00 1B o
Denoting the data matrices as y and X, we find that the unrestricted least squares
estimator is
- 'Xl 0 -1 ’yl H g
= (X'X 1Xl‘ — el i v Gl — | :|, 6-1
b=XX)" Xy [ 0 K'Z,XZ] B;ak b (6-1%)

which is {east squares applied to the two equations separately. Therefore, the total sum
of squared residuals from this regression will be the sum of the two residual sums of
squares from the two separate regressions:

e'e = eje1 +ere.

The restricted coefficient vector can be obtained in two ways. Formally, the restriction

B =B, is Rf = q, where R = [I: —I] and q = 0. The general result given earlier can
be applied directly. An easier way to proceed is to build the restriction directly into the
model. If the two coefficient vectors are the same, then (6—1&) may be written

Y1 X1 £1

d = + ; 1

[Yz] [Xz] £ [ﬁz}
and the restricted estimator can be obtained simply by stacking the data and estimating
a single regression. The residual sum of squares from this restricted regression, e e.,

then forms the basis for the test. The test statistic is then given in {5-6){ where J, the
number of restrictions, is the number of columns in X and the denomikator degrees of

freedom is ny + mpy — 2k.
(s-/&)
6.4.2 INSUFFICIENT OBSERVATIONS

In some circumstances, the data series are not long enough to estimate one or the
other of the separate regressions for a test of structural change. For example, one might
surmise that consumers took a year or two to adjust to the turmoil of the two oil price
shocks in 1973 and 1979, but that the market never actually fundamentally changed or
that it only changed temporarily. We might consider the same test as before, but now
only single out the four years 1974, 1975, 1980, and 1981 for special treatment. Because
there are six coefficients to estimate but only four observations, it is not possible to fit
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the two separate models. Fisher (1970) has shown that in such a circumstance, a valid .
way to proceed is as follows: |

-1. Estimate the regression, using the full data set, and compute the restricted sum of
squared residuals, eje;. . "]

2. Use the longer (adequate) subperiod (n; observations) to estimate the regression,
and compute the unrestricted sum of squares, ] e;. This latter computation is
done assuming that with only n; < K observations, we could obtain a perfect fit
and thus contribute zero to the sum of squares. i

3. The F statistic is then computed, using

! _ af .
F g my — K] = o —£180/7 (6-18 :
- ,elfl/(‘_nl - K) Mb i
/N Note that the numerator degrees of freedom is 7y, not K«‘( This test has been labeled
b the Chow predictive test because it is equivalent to extending the restricted model to
the shorter subperiod and basing the test on the prediction errors of the model in this

latter period.

6.4.3 CHANGE IN A SUBSET OF COEFFICIENTS

The general formulation previously suggested lends itself to many variations that allow
a wide range of possible tests. Some important particular cases are suggested by our
gasoline market data. One possible description of the market is that after the oil shock
of 1973, Americans simply reduced their consumption of gasoline by a fixed proporticn,
but other relationships in the market, such as the income elasticity, remained unchanged.
This case would translate to a simple shift downward of the loglinear regression model
or a reduction only in the constant term. Thus, the unrestricted equation has separate
coefficients in the two periods, while the restricted equation is a pooled regression with
separate constant terms. The regressor matrices for these two cases would be of the
form

i 0 W, 0.

0 i 0 Woos7s

D Ween ] . @

,-j -Wpost’ﬂ

and

(restricted) ._)ﬂ(@q = [

b

the observation falls.

The first two columns of Xy are dummy variables that indicate the subperiod in which '| D} i MDL'J
Another possibility is that the constant and one or more of the slope coefficients III\:}; weant

/= A changed, but the remaining parameters remained the same. The results in Table 6.K':|' X ].-_ " Erl'{ {i
' "l | suggest that the constant term and the price and income elasticities changed much ject Callv

more than the cross-price elasticities and the time trend. The Chow test for this type ﬁﬁ TR b1
of restriction looks very much like the one for the change in the constant term alone. heie G G0
Let Z denote the variables whose coefficients are believed to have changed, and let W Hert & 5 D

s l} 6-3 ‘.‘_f.

{ﬁ ﬁ )-EOne way to view this is that only ny < X coefficients are needed to obtain this perfect fit.

XY a
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denote the variables whose coefficients are thought to have remained constant, Then, e
the regressor matrix in the constrained regression would appear as

= floe e A W ot
4. 0. Apost .,Z.post Wpost

As before, the unrestricted coefficient vector is the combmatlon of the two separate
regressions. -

6.4.4 TESTS OF STRUCTURAL BREAK WITH
UNEQUAL VARIANCES ¥

An important assumption made in using the Chow test is that the disturbance variance
is the same in both {or all) regressions In the restricted model, if this is not true the
first sy elements of & have variance 01 , whereas the next s, have variance 02 , and so
on. The restricted model is, therefore, heteroscedastic, and our results for the classical
regression model no longer apply. As analyzed by Schmidt and Sickles (1977), Ohtani
and Toyoda (1985), and Toyoda and Ohtani (1986), it is quite likely that the actual
probability of a type I error will be larger than the significance level we have chosen.
(That is, we shall regard as large an I statistic that is actually less than the appropriate
but unknown critical value.) Precisely how severe this effect is going to be will depend
on the data and the extent to which the variances differ, in ways that are not likely to
be obvious.
If the sample size is reasonably large, then we have a test that is valid whether or
not the disturbance variances are the same. Suppose that §; and 62 are two consistent
’3 and asymEtot ly normally distributed estimators of a parameter based on indepen-
S ) dent samples¥Avith asymptotic covariance matrices Vi and V5. Then, under the null
R hypothesis that the true parameters are the same,

~

- 52 has mean 0 and asymptotic covariance matrix Y + V2.

Under the null hypothesis, the Wald statistic,

2
=@ -y G+ V760, g ETD

{4 % has alimiting chi-squared distribution with K degrees of freedor:léj(test that the differ-
" | ence between the parameters is zero can be ‘based on this statisti tis straightforward
" to apply this to our test of common parameter vectors in our regressions. Large values

of the statistic lead us to reject the hypothesis.

In a small or moderately sized sample, the Wald test has the unfortunate property
that the probability of a type I error is persistently larger than the critical level we
use to carry it out. {That is, we shall too frequently reject the null hypothesis that the
parameters are the same in the subsamples.) We should be using a larger critical value.

Without the required independence, this test and several similar ones will fail completely, The problem
becomes a variant of the famous Behrensl'—Fisher problem.

M "Z/See Andrews and Fair (1988). The true size of this suggested test is uncertain. It depends on the nature of the
lft' alternative. If the variances are radically different, the assumed critical values might be somewhat unreliable.
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15

Ohtani and Kobayashi (1986) have devised a “bounds” test that gives a partial remedy
for the problem ¥(5" (KT

It has been observed that the size of the Wald fest may differ from what we have
assumed, and that the deviationi would be a function of the aliernative hypothesis. There
are two general settings in which a test of this sort might be of interest. For comparing
two possibly different populations}such as the labor supply equations for men versus
women—-not much more can be said about the suggested statistic in the absence of
specific information about the alternative hypothesis. But a great deal of work on this
type of statistic has been done in the time-series context. In this instance, the nature of
the alternative is rather more clearly defined.

Example 6.6 The World HealtlReport
The 2000 version of the World MealthOrganization’s (WHO) World Mealth Report contained a
major country-by-country inventory’of the world’s health care syglems. [World Health Organi-
zation (2000). See also hitp://wwal.who.int/whr/en/] The book documented years of researc
and thousands of pages of péterial. Among the most conffoversial and most publicly
bated (and excoriated) partgof the report was a single ch
of the delivery of health gdre by 191 countries—nearly af! of the world's population,
et al. {2000a,b). See, e4., Hiits (2000) for reporting inAhe popular press.} The stu
ined the efficiency offealth care delivery on two medsures: the standard one that is widely
studied, (disability afljusted) life expectancy (DALEY and an innovative new meagire created
by the authors thét was a composite of five outgbmes {COMP) and that accgéinted for effi-
ciency and faigfess in delivery. The regressionAtyle modeling, which was d
of a frontier pfiodel (see Section 14.6.3), retgted health care attainment to £vo major Inputs,
education And (per capita) health care exfenditure. The residuais wen analyzed to obtain
the couptry comparisons,

Thg/data in Appendix Table F6.2 were used by the researcherg/at WHO for the study.

ars 1993 to 1997. We have epfracted the 1997 data for

exampie.) The WHO data hayef been used by many researchgls in subsequent analyses,

ee, €.g., Hollingsworth and Wildman (2002), Gravelle et al {2002), and Greene (2004).]

The regresSion model used Jy the WHO contained DALE ¢f COMP on the left-hand side

and health care expenditu i i

roversial aspects of the study as the fact that the model aggrggated
countries of vagtly different characteristics. A secofid striking aspect of the results, syfgested
In Hilts (2000¥and documented in Greene (2004 was that, in fact, the “efficient” gguntries in
the study yére the 30 relatively wealthy OECD flembere, while the rest of the worl on average
fared muGh more poorly. We will pursue tit aspect here with respect to DALE. Analysis
F is left as an exercise. Table 6.6/prasents estimates of the regregéion models for
for the pooled sampie, the OFCD ghuntries, and the non-OECD cou ies, respectively.
perficially, there do not appear to b very large differences across thedivo subgroups. We
irst tested the joint significance of the additionat variables, income dfstribution {GIND, per
capita GDF, etc. For each group, the F statistic is [(eie. —e'e)/7)/l0'e/(n — 11)]. These F
statistics are shown in the last géw of the table. The critical valueg for F{7,1843 (all}, F[7,23]
{OECD), and F{7,154] (non-0 D) are 2.060, 2.442, and 2.070 espectively. We conciude
that the additional explanatofy variabies are significant contriutors to the fit for the nion-
OECD countries (and for a)f countries), but not for the OECDY countries. Finally, to conduct

——

¥ Sce also Kobayashi {1986). An alternative. somewhat more cumbersome Lest is proposed by Jayatissa (1977).
Further discussion is given in Thursby (1982),




LS the one suggested in Example 2.3, with the addition of a time trend:

Example 6.9 Structural Break in the Gasoline Market

The-previeus-Figure 6.5 shows a plot of prices and quantities in the U.S. gasocline market from
1953 to 2004. The first 21 points are the layer at the bottom of the figure and suggest an orderly
market. The remainder clearly reflect the subsequent turmoil in this market.

We will use the Chow tests described to examine this market. The model we will examine

| n{G/Pop); =B+ B2 In Jncome/Pop), + ﬁa INn PG+ B4 In PNCi+ Bsin PUC, + Bst + ¢ .

The three prices in the equation are for G, naw carSI and used cars. !ncome/Pop is per capita /;,,,

Income, and G/Pop is per capita gasoline consumption. The time trend is computed as t = Year= =
1952, so in the first period; { = 1. Regression results for four functional forms are shown in Table

6.7. Usmg the data for the entire sample, 1953 to 2004, and for the two subperiods, 1953 to 1973

and 1974 to 2004, we obtain the three estimated regressions in the first and last two columns.

The F statistic for testing the restriction that the coefficients in the two equations are the same is ¥

e bl 2

(0.101997 £(0.00202244 +0.007127899))/6
(0.00202244 +0.007127899)/(21+31-12)

F[6,40] = = 67.645,

The tabled critical value is 2.336, so, consistent with our expectations, we would reject the
hypothesis that the coefficient vectors are the same in the two periods. Using the full set of 52
observations to fit the model, the sum of squares is e¥'e* = 0.101997. When the n, = 4
observations for 1974, 1975, 1980, and 1981 are removed from the sample, the sum of squares
falls to e'e = 0.0973936. The F statistic is 0.496. Because the tabled critical value for F[4, 48-6]
is 2.594, we would not reject the hypothesis of stability. The conclusion to this point would be that
although something has surely changed in the market, the hypothesis of a temporary
disequilibrium seems not to be an adequate explanation.

An alternative way to compute this statistic might be more convenient. Consider the
original arrangement, with all 52 observations. We now add to this regression four binary
variables, Y1974, Y1975, Y1980, and Y1981, Each of these takes the value one in the single year
indicated and zero in all 51 remaining years. We then compute the regression with the orlgmal six
variables and these four additional dummy variables, The sum of squared residuals in this
regression is 0.0973936 (precisely the same as when the four observations are deleted from the
sample;rsee Exercise 7 in Chapter 3), so the F statistic for testing the joint hypothesis that the
four coefficients are zero is '

||."':

(0. 101997 0 0973936)/4
0.0973936/(52 - 6 4)

once again. (See Section 6.4.2 for dlscussron of this test.}
The F statistic for testing the restriction that the coefficients in the two equataons are the
same apart from the constant term is based on the last three sets of results in the table

Fi4,42]= =0.496

(0.092082 -(0 00202244+0, 007127899))/5, _
(0.00202244 +0.007127899)/(21+ 31 12)

Fi5,40]= =172.5086.

The tabled critical value is 2.449, so this hypothesis is rejected as well. The data suggest that the
models for the two periods are systematically different, beyond a simple shift in the constant term.



(3%

The F ratio that results from estimating the model subject to the restriction that the two
automobile price elasticities and the coefficient on the time trend are unchanged is

(0.01441975 5(0.00202244 +0.007127899))/3
(0.00202244 +0.007127899)/(52 - 6 -6)

F[3,40]= =[7.678.
Iy _ P e ~. [ <1
- (The restricted regression is not shown.) The critical value from the F table is 2.839, so this
hypothesis is rejected as well. ‘Note; however, that this value is far smaller than those we
obtained previously. This fact suggests that the bulk of the difference in the models across the
two periods is, indeed, explained by the changes in. the constant and the price and income
elasticities. . s

The test statistic in (6-1X) for the regression results in Table 6.4 gives a value of 502.34.
The 6 percent critical value from the chi-squared table for 6 degrees of freedom is 12.59. So, on 7/
the basis of the Wald test, we would once again reject the hypothesis that the same coefficient
vector applies in the two subperiods 1953 to 1973 and 1974 to 2004, We should note that the A
Wald statistic is valid only in large samples, and our samples of 21 and 31 observations hardly
meet that standard. We have tested the hypothesis that the regression model for the gasoline
market changed in 1973, and on the basis of the F test {(Chow test) we strongly rejected the
hypothesis of model stability,

TABLE 6.7 Gasoline Consumption Functions

Coefficienis 19532004 Pooled Preshock Postshoek
Constamt —36.6787 —24.9009 —22.1647

Constant 248167 [~ - 15.3283
in Income/Pop 1.6250 [.4562 W 8482 0.3739
in PG ~{1.{5392 ~(.1132 ~0.03227 {11240
In PNC ~{).08343 (1. 1044 6988 —0.001146
In PLC —(1L08467 —[1L08646 ~[}1.2005 —0.02167
Year — (L1393 —0.008232 {01006 (0.004492
R? - {L9a49 {1.9643 {.9975 {19529
Staaclard error B K1) (0.04524 G.01161 {1.6168Y

Sum of squares (L1997 0.092082 (0L00202244 (LOGT 127899
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Example 6.10 The World Health Report

The 2000 version of the World Health Organization’s (WHO) World Health Report contained a
major country-by-country inventory of the_ world’s health care systems. [World Health
, Organization (2000). See also http://www:who.int/whr/ien/.] The book documented years of

.| research and, thousands of pages of material. Among the most controversial and most publicly ot
.l -debated parts of the report was a single chapter that described a comparison of the defivery of "~ -

health care by 191 countries—nearly all of the world’s population. [Evans et al. (2000a,b). See,
e.g., Hilts (2000) for reporting in the poputar press.] The study examined the efficiency of health
care defivery on two measures: the standard one that is widely studied, (disability adjusted) life
expectancy (DALE), and an innovative new measure created by the authors that was a composite
of five outcomes (COMP) and that accounted for efficiency and faimess in delivery.. The
regression-style modeling, which was done in the setting of a frontier model (see Chapter 18),
related health care attainment to two major inputs, education and (per capita) health care
expenditure. The residuals were analyzed to obtain the country comparisons.j|,

The data in Appendix Table F6.3 were used by the researchers at,WHO for the study. i
(They used a panel of data for the years 1993 to 1997. We have extracted the 1997 data for this
example.) The WHO data have been used by many researchers in subsequent analyses. {See,
e.g., Hollingsworth and Wildman (2002), Gravelle et al. (2002), and Greene (2004).] The
regression model used by the WHO contained DALE or COMP on the left-hand side and health
care expenditure, education, and education squared on the right. Greene (2004) added a number
of additional variables such as per capita GDP, a measure of the distribution of income, and | /| 1, HS
World Bank measures of government effectiveness and democratization of the political structure. 1 - Dy been
Among the controversial aspects of the study was the fact that the model aggregated QECh i -

countries of vastly different characteristics. A second striking aspect of the results, suggested in | < P,t’f_ Jf"-’i '5-}”” )
Hilts (2000) and documented in Greene (2004), was that, in fact, the “efficient” countries in the [}.:--_'fmf L.I "'{
study were the 30 relatively wealthy OECDmembers, while the rest of the world on average fared I| naT, s pett s
much more poorly. We will pursue that aspect here with respect to DALE. Analysis of COMP is | % [iere.
left as an exercise. Table 6.8 presents estimates of the regression models for DALE for the
pooled sample, the OECD countries, and the non-OECD countries, respectively. Superficially,
there do not appear to be very large differences across the two subgroups. We first tested the ' _
joint significance of the additional variables, income distribution (GINI), per capita GDP,.ete. For At 2@ i ’@
each group, the F statistic is [(e*'e* ~ e'e) /7] / [e'e /(n - 11)]. These F statistics are shown inthe |~ A '_{."-'i-"'
last row of the table. The critical values for F[7,180] (all), F[7,19] (OECD), and F[7,150] (non- | e VA
OECD) are 2.061, 2.543, and 2.071, respectively. We conclude that the additional explanatory |43 !.\HJ

variables are significant contributors to the fit for the non- OECD countries {and for all countries), ot tete U
but not for the OECD countries. Finally, to conduct the structural change test of OECD vs. non- | 4% gt
OECD, we computed = T A tn TEA

'r/fl T
= [7757/007 -(69.74428 + 7378.598))/11
(69.74428 +7378.598)/(191:11;11)

g

_F{11,169 .=I0.637.

The 95 percent critical value for F[11,169] is 1.846. So, we do not reject the hypothesis that the |\ %
regression model is the same for the two groups of countries. The Wald statistic in (6@“@1[5‘3/
different story. The statistic is 35.221. The 95 percent critical value from the chi-squared table

with 11 degrees of freedom is 19.675. On this basis, we would reject the hypothesis that the two
coefficient vectors are the same.


Bill
Sticky Note
Don't spell it out. Widely recognized term as is.

Bill
Sticky Note
OK


TAELE 6.? Regression Results for Life Expactancy

All Countries OECTH Non-QECD
Constanl 25.237 38.734 42,728 49,328 20812 41,408
Health exp 0.00629 —0.08180 (L.00268 (.00114 0.00955 —0.00178
. Education 7.931 7.178 6177 5.156 7.0433 6.499
- » - Educationd”  —(.439 —~().426 —{).385 -{}.329 ~(.374 —~0.372
Gini coeff —17.333 -5.762 -21.349
Tropic =3200 - ~3.298 ~3.144
Pop. Dens, —0,255e—4 - 0.000167 ~(1.425¢e—4
Public exp ~0.0137 - --(0.00993 -(.00939
PCGDP (.000483 Q000108 0.000600
Demoeracy 1.629 —{).546 1.909
Govt, E5L o Py 0748 1.224 0,786
R? (.0824 0.7299 .6483 {0.7340 0.6133 (0.6651
Sud. Err. 6.984 6.565 1.8583 LY16 7.366 7.014
Sumofsg.  9121.795 TISTH2 0221064 (9.74428  8518.750 7378.508
N 191 30 161
GDPPop 660937 18199.07 444979
F test 4.524 (1.874 3.311
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observations hardly peet that standard. have tested the hy ofhesis that the regression
model for the gasoljhe market changed ¥ 1973, and on the bdsis of the F test (Chow test)

we strongly rejectel the hypothesis of godel stability.

6.4.5 PREDICTIVE TEST OF };0-6951_ STReTLITY

The hypothesis test defined in (6-1§) in Section 6.4.2 is equivalent to. 1 1.8, = g, in the -

“model” A
yo=xfi+e, t=1,...7
b m_;__z;_gzﬁ—s;, r=]‘i+1,...,_jq+15,

{Note that the disturbance variance is assumed to be the same in both subperiods.) An
alternative formulation of the model (the one used in the example) is

w = 0O

v

This formulation states that
W :;x;ﬁE +E!, r"_"“l’.',‘.'.!.ﬂ

ve=XBy+vi+e, =T+ LT+ B.

Because each y, is unrestricted, this alternative formulation states that the regression
model of the first 7} periods ceases to operate in the second subperiod (and, in fact, no
systematic model operates in the second subperiod). A test of the hypothesis y = 0 in
this framework would thus be a test of model stability. The least squares coefficients for
this regression can be found by using the formula for the partitioned inverse matrix

~1
(b) _ [Xx +X0Xo .xa] [Xy +zcasz

£ X, 1 Yz
XX —-X: XX [Xiyn + X'gsz
~XXXD™ I+ XX X)X 52

_ (‘3:)

= e
where by is the least squares slopes based on the first 77 observations and ¢ is y2 ~Xohby.
The covariance matrix for the full set of estimates is s* times the bracketed matrix.
The two subvectors of residuals in this regression are ey == y; — Xsb: and gy =y, —
(Xzby +Icz) = B, so the sum of squared residuals in @ast sguares regression is just

£1€1. This is the same sum of squares as appears in (6+13)) The degrees of freedom for

the denominatoris {7} + 13 — (K+ 1)1 = T — K as well, and the degrees of freedom for
the numerator is the number of elements in ¥ whichis 5. The restricted regression with
¥ = 0 is the pooled model, which is likewise the same as appears iy{6-15) ) This implies

(6-1¢)
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that the F statistic for testing the null hypothesis in this model is precisely that which

appeared earlier in (6—165), which suggests why the test is labeled the “predictive test.”

. = - __———-ﬁ'—-—‘__-—-_--—-._-—-—-—
6.5 SUMMARY AND CONCLUSIONS

This chapter has discussed the functi form of the regression model. We examined
the use of dummy variables and
model. We then considered
nonlingar model could b
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Exercises

1. A regréssion model with K = 16 independent vaefables is fit using a panel

e pooled regression are shown below. Theshodel with the pooled data allows §

in every year.
1954 1955 1957 1958 1959 1960 All

er transformations to build ronlinearity into the

Observations 63 5 87 95 103 87 78 570
ee 104 3 206 144 199 308 211 1425

2. Reverse regression.
crimination in th

common method of analyzing statistical data to defect dis-
orkplace is to fit the regression

y=a+xf+yd+e,

(1)

cating either membershi
ard which it is suggested th

e of job as well as md1cators of the quakifications of the individual. The hypotl-
esis of interest is Hy:y >0 versus 7y <0. The regression seeks to answer the
question, “In a given job, are indjviduals in the class (d = 1) paid less than equally
qualified individuals not in therTlass (d = 0)7” Consider an alternative approgch.
Deo individuals in the class i the same job as others, and receiving the same wage,
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that the F statistic for tesfi g the null hypbthesis in this mod¢l is precisely that which .
appegted earlief in (6-15), which suggesty why the test is labgled the “predicive test.” -

Y

- 6.5 SUMMARY AND CONCLUSIONS

This chapter has discussed the functional form of the regression model. We examined
the use of dummy variables and other transformations to build nonlinearity into the
model. We then considered other nonlinear models in which the parameters of the
nontinear model could be recovered from estimates obtained for a linear regression. @
The final sections of the chapter described hypothesis tests designed to reveal whether

the assumed model had changed during the sample period, or was different for different
groups of observations.
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Exercises : —

1. A regression model with K = 16 independent variables is fit using a panel of
seven years of data. The sums of squares for the seven separate regressions and
the pooled regression are shown below. The model with the pooled data allows a
separate constant for each year. Test the hypothesis that the same coefficients apply
in every year.

1954 1955 1956 1957 1958 1959 1960 All @ L
1

Observations 65 55 87 95 103 87 78 570 I B v
ee 104 88 206 144 199 308 211 1425 | Loy k KaronSe
5

KHles. to

e I:".-Lf 1- g .

0 h{:n_iu. WERT
ol Roman,

Nere ol ?

2. Reverse regression. A common method of analyzing statistical data to detect dis-
crimination in the workplace is to fit the regression

y=a+xXf+yd+es, ()

where y is the wage rate and d is a dummy variable indicating either membership
(d = 1) or nonmembership (d = 0) in the class toward which it is suggested the
discrimination is directed. The regressors x include factors specific to the particular
type of job as well as indicators of the qualifications of the individual. The hypoth-
esis of interest is Hy:y =0 versus H, :v < 0. The regression sceks to answer the
question, “In a given job, are individuals in the class (d = 1) paid less than equally
qualified individuals not in the class (d = 0)?” Consider an alternative approach.
Do individuals in the class in the same job as others, and receiving the same wage,
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uniformly have higher qualifications? If so, this might also be viewed as a form of
discrimination. To analyze this question, Conway : and Roberts (1983) suggested the
following procedure:

1. Fit (1) by ordmary least squares. Denote the estimates a, b, and c.

2. Compute theset of quallﬁcauon indices,

q=a+Xb. )
Note the omission of ¢d from the fitted value. ‘ g
3. Regress g on a constant, y andl 51 The equation is
q = 0 + ﬁty*}" V*d + Es. (3)

The analysis suggests thatif y < 0, y,. > 0.
a. Prove that the theory notwithstanding, the least squares estimates ¢ and c, are
related by

_Gh—-»a-RY

Cy = m ) @

where

¥, = mean of y for observations with d = 1,
¥ = mean of y for all observations,
P = mean of d,

R? = coefficient of determination for (1),

r}, = squared correlation between y and d.
[Hint: The model contains a constant term. Thus, to simplify the algebra, assume
that all variables are measured as deviations from the overall sample means and
use a_partitioned regression to compute the coefficients in (3). Second, in (2),
use the resuit that based on the least squares results y = ai + Xb +cd + e, 50
4=y~ cd —e. From here on, we drop the constant term. Thus, in the regression
in (3) you are regressing [y — cd — ¢] ony and d.

b. Will the sample evidence necessarlly be consistent with the theory? [Hint: Sup-
pose that ¢ = 0.]

A symposium on the Conway and Roberts paper appeared in the Journal of Business

and Economic Statistics in April] 1983.

Reverse regression continued. This and the next exercise continue the analysis of

Exercise 2. In Exercise 2, interest centered on a particular dummy variable in which

the regressors were accurately measured. Here we consider the case in which the

crucial regressor in the model is measured with error. The paper by Kamlich and

Polachek (1982) is directed toward this issue.
Consider the simple errors in the variables model,

y=a+px"+e x=x"+tu,

where u and ¢ are uncorrelated and x is the erroneously measured, observed coun-
terpart to x*. .

a. Assume that x i, and ¢ are all normally distributed with means p*, 0, and 0,
variances o7, g, u, and o2, and zero covariances. Obtain the probability limits of

the least squares estimators of o and 8.
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b. As an alternative, consider regressing x on a constant and y, and then computing e
N " the reciprocal of the estimate. Obtain the probability limit of this estimator.
- & c. Do the “direct” and “reverse” estimators bound the true coefficient?

4. Reverse regression continued. Suppose that the model in Exercise 3 is extended to
y = Bx*+yd+ ¢, x =x*-F u. For convenience, we drop the constant term, Assume
that x*, &, and u are independent nofmally distributed with zero means. Suppose
that 4 is a random variable that takes the values one and zero with probabilities m
and 1 — 7 in the population and is independent of all other variables in the model:
To put this formulation in context, the preceding model (and variants of it) have
appeared in the literature on discrimination. We view y as a “wage” variable, x* as
“qualifications,” and x as some imperfect measure such as education. The dummy
variable d is membership (d =1) or nonmembership (d = 0) in some protected class.
The hypothesis of discrimination tarns cn ¥ < 0 versus y > 0.

a. What is the probability limit of ¢, the least squares estimator of y, in the least
squares regression of y on x and 4? [Hints: The independence of x* and d is
important. Also, plim d'd/n = Var[d] + E?[d] = n(1 ~ ) +x* = . This minor
modification does not affect the model substantively, but it greatly simplifies the
algebra.] Now suppose that x* and d are not independent. In particular, suppose
that E[x*|d = 1] = p! and E[x*|d = 0] = 0. Repeat the derivation with this
assumption,

b. Consider, instead, a regression of x on y and d. What is the probability limit of
the coefficient on 4 in this regression? Assume that x* and 4 are independent.

c. Suppose that x* and d are not independent, but y is, in fact, less than zero.
Assuming that both preceding equations still hold, what is estimated by
F|1d=1) — (F| d = 0)? What does this quantity estimate if y does equal zero?

Applications

1. In Application 1 in Chapter 3 and Application 1 in Chapter 5, we examined Koop
and Tobias’s data on wages, education, ability, and so on. We continue the analysis
here. (The source, location and configuration of the data are given in the earlier
application.) We consider the model

In Wage = B + B Educ + B3 Ability 4 4 Experience
+ Bs Mother’s education 4 Bs Father’s education + 7 Broken home
+ g Siblings + .

a. Compute the full regression by least squares and report your results. Based on
your results, what is the estimate of the marginal value, in $/hour, of an additional
vear of education, for someone who has 12 years of education when all other
variables are at their means and Broken home = (17

b. We are interested in possible nonlinearities in the effect of education on In Wage.
(Koop and Tobias focused on experience. As before, we are not attempting to
replicate their results.) A histogram of the education variable shows values from 9
to 20, a huge spike at 12 years (high school graduation) and, perhaps surprisingly,
a second at 15—intuition would bave anticipated it at 16. Consider aggregating
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the education variable into a set of dummy variables:
HS = 1if Educ < 12, 0 otherwise
__Col' = 1if Educ > 12 and Educ < 16, 0 otherwise
Grad = 1 i Educ > 16,0 otherwise.

Replace Educ in the model with (Col, Grad), making high school (HS) the
base category, and recompute the model. Report all results. How do the re-
sults change? Based on your results, what is the marginal value of a college
degreeV (This is actually the marginal value of having 16 years of educatlon—
in recent years, college graduation has tended to require somewhat more than
four years on average.) What is the marginal impact on In Wage of a graduate
degree?

. The aggregation in part b actually loses guite a bit of information. Another way

to introduce nonlinearity in education is through the function itself. Add Educ?
to the equation in part a and recompute the model. Again, report all results.
What changes are suggested? Test the hypothesis that the quadratic term in the
equation is not needed—ie., that its coefficient is zero. Based on your resuits,
sketch a profile of log wages as a function of education.

. One might suspect that the value of education is enhanced by greater ability, We

could examine this effect by introducing an interaction of the two variables in
the equation. Add the variable

Educ Ability = Educ x Ability

to the base model in part a. Now, what is the marginal value of an additional
year of education? The sample mean value of ability is 0.052374. Compute a
confidence interval for the marginal impact on In Wage of an additional year of
education for a person of average ability.

. Combine the models in ¢ and d. Add both Educ? and Educ.Ability to the base
model in part a and reestimate. As before, report all results and describe your
findings. If we define “low ability” as less than the mean and “high ability” as
greater than the mean, the sample averages are —0.798563 for the 7,864 low-
ability individuals in the sample and +0.717891 for the 10,055 high-ability indi-
viduals in the sample. Using the formulation in part c, with this new functional
form, sketch, describe, and compare the log wage profiles for low- and high
ability individuals.

(An extension of Application 1.) Here we consider whether different models as
specified in Application 1 would apply for individuals who reside in “Broken
homes.” Using the results in Sections 6.4.1 and 6.4.4, test the hypothesis that the
same model (not including the Broken home dummy variable) applies to both
groups of individuals, those with Broken home == 0 and with Broken home = 1.

In Solow’s classic {1957) study of technical change in the U.S. economy, he sug-
gests the following aggregate production function: g(t) = A@) flk(®)], where g(¢) is
aggregate output per work hour, A(f) is the aggregate capital labor ratio, and
A(?) is the technology index. Solow considered four static models,g/A = o + 8 ink,
g/A=o—B/k In{g/A) = a+ BInk, and In{g/ A) = o + B/ k. Solow’s data for the
years 1909 to 1949 are listed in Appendix Table FGQ(
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a. Use these data to estimate the o and 8 of the four functions listed above. (Note: -
Your results will not quite match Solow’s. See the next exercise for resolution of
- the discrepancy.)
' b. In the aforementioned study, Solow states:

A scatter of ¢/ A against k is shown in Chart 4. Considering the amount
of a priori doctoring which the raw figures have undergone, the fit is
remarkably tight. Except, that is, for the layer of points which are ob-
viously too high. These maverick observations relate to the seven last
years of the period, 19431949, From the way they lie almost exactly
paraliel to the main scatier, one is tempted to conclude that in 1943 the
aggregate production function simply shifted.

Compute a scatter diagram of g/ A against k£ and verify the result he notes above.
c. Estimate the four models you estimated in the previous problem including a
dummy variable for the years 1943 to 1949. How do your results change? (Note:
These results match those reported by Solow, although he did not report the
coefficient on the dummy variable.)
d. Solow went on to surmise that, in fact, the data were fundamentally different
in the years before 1943 than during and after. Use a Chow test to examine
the difference in the two subperiods using your four functional forms. Note that
with the dummy variable, you can do the test by introducing an interaction term
between the dummy and whichever function of k appears in the regression. Use 1
an_F test to test the hypothesis.
4, Data on the number of incidents of wave damage to a sample of ships, with the 6.,6?
type of ship and the period when it was constructed, are given in Tale
[ L are five types of ships and four different periods of construction. Use F tests and
N dummy variable regressions to test the hypothesis that there is no significant “ship
type effect” in the expected number of incidents. Now, use the same procedure to
test whether there is a significant “period effect.”

TABLE 6,'5{» Ship Damage Incidents

. Period Constructed
Ship Type 19601964 19651969 197041974 1975-1979
A 0 4 18 11
B 29 53 44 18
C 1 1 2 1
b 0 0 11 4
E 0 7 12 1

Source: Data from McCullagh and Nelder (1983, p. 137).



