& Wherb Elg[x] =0 and Elyx] =x B If g[x is normally distributed, so that the distribution of g[x is

I'l. J“-:
q
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7.3 MEDIAN AND. QUANTILE REGRESSION

We maintain the essential assumptions of the linear regression model,

r=xB+e

also symmetric, then the median, Med{e!x] is also zero and Med[y|x] = x'B. Under these
\assumptions, least squares remains a natural choice for estimation of B. But, as we explored in
Example 4.5, least absolute dev1at10nsus a possible altérnative that might even be preferable in a
| small sample. Suppose however, that we depart from the second assumption directly. That is,
' the statement of the model is

Med[ylx] = x'B.

This result suggests a motivation for LAD in its own right, rather than as a robust (to outliers) | |
alternative to least squares:®” The conditional median of yix; might be an interesting function,
More generally, other quantlles of the distribution of y{x; might also be of interest. For example,
we might be interested in examining the various quantlles of the distribution of income or
spending. Quantile regression (rather than least squares) is used for this purpose. The (linear)
quantile regression model can be defined as

Q[ylx,q] = x'B, such that Prob[y < xPBy|x] = g, 0<g<l (_-; -3 59

The medlan regresswn would be defined for ¢ = %. Other focal points are the lower and upper
quartlles g =Y and q.= Y4, respectively. We will develop the median regression in detail in

. . . . . . [ |'|. E * P | 1l
Section 7.3.1, once again largely as an alternative estimator in the linear regression setting. I| mediafl
The quantile regression model is a richer specification than the linear model that we have epress! L
studied thus far, because the coefficients in #*¥ are indexed by . The model is nonparametric,~ f u1‘ i
1t requires a much less detailed specification of the distribution of yx. In the simplest linear ehon S
/i, model with fixed coefficient vector, B, the quantiles of ){x would be defined by variation of the | 1"
(| |constant term. The implication of the model is shown in Figure 7.4. For a fixed B and @_ o

conditioned on x, the value of o, + Bx.such that Prob(y < a, + Bx) is shown for g = 0.15, 0.5 and
0.9 in Figure 7.4. There is a value of ¢ o, for each quantile. In Section 7.3.2, we will examine the-
more general specification of the quantile regression model in which the entire coefficient vector
plays the role of @, in Figure 7.4.

a A n Example 4.5, we considered the possibility that in small samples with possibly thlck tailed

disturbance distributions, the LAD estimator might have smaller variance than least squares.
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3.1

_1ma'torrt-hat uses only
ut it will-be inferiot 10

E[x;(y» — x{B)] = 0. The estimagef is obtained by secking a parapetter estimator, b,
which mimics the population xeSult; (1/7) E;[x; (y; — xb)y] =0. se are, of course, the
normal equations for leasp€quares. Note that the estimator is gecified without benefit
of any distributional a; tion is the subject of Chap-
er further analysis until then.

{ ter 15, so we will

B

=ROT2r LEAST ABSOLUTE DEVIATIONS ESTIMATION

Least squares can be severely distorted by outlying observations. Recent applications
in microeconomics and financial economics involving thick-tailed disturbance distri-
butions, for example, are particularly likely to be affected by precisely these sorts of
observations. (Of course, in those applications in finance involving hundreds of thou-
sands of observations, which are becoming commonplace, this discussion is moot.) These
applications have led to the proposal of “robust” estimators that are unaffected by out-

% lying obser?ations\.l"ln this section, we will examine one of these, the least absolute

' deviations, or LAD estimator.

That least squares gives such large weight to large deviations from the regression
causes the results to be particularly sensitive to small numbers of atypical data points
when the sample size is small or moderate. The least absolute deviations {LAD) esti-
mator has been suggested as an alternative that remedies (at least to some degree) the
problem. The LAD estimator is the solution to the optimization problem,

Ming, |3 — x/hol.
i=1

The LAD estimator’s history predates least squares (which itself was proposed over
200 years ago). It has seen little use in econometrics, primarily for the same reason that
Gauss’s method (LS) supplanted LAD at its origination; LS is vastly easier to compute.
Moreover, in a more modern vein, its statistical properties are more firmly established
than LAD’s and samples are usually large enough that the small sample advantage of
LAD is not needed.

.Jo ‘iFor some apphications, see Taylor (1974), Amemiya (1985, pp. 70-80), Andrews (1974), Koenker and Bassett

(1978}, and a survey written at a very accessible level by Birkes and Dodge (1993). A somewhat more rigorous
treatment is given by Hardle (1990).

\ fos KT
i f“‘a,l“:-f',
o b sl """l[.:f.I
dey -cif}-ﬁ“_ﬂ .
( j_ﬂf}t}{illrm"lg
KT tn chap,
" here a8 ¢
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The LAD estimator is a special case of the quantile regression:

The LAD estimator estimates the piedian regression. That is, it is the solution to the

PI'Ob[yi S.Lx;ﬂ = .q. gvé"'f‘ :ré %.

@__

T quantile regression when g = 0.5. Koenker aggrﬁassett (1978, 1982), Huber (1967), and \ 30! i T;
e \[ Rogers (1993) have analyzed this regression Their results suggest an estimator for the 'r'—‘:-' A [E’
lr"-, e asymptotic covariance matrix of the quantile regression estimator, - S . f:“-'-/-'--”' ol
[T = ore 5310
LI ESt. Asy. Val'ﬂ?q] — (X:X\)wlel:‘)lx(uxfx)—l' '{ =

where D is a diagonal matrix containing weights
g 1 1-g1?
di = | ——| if y; - x; B.is positive and ——-——J otherwise,
- {fm)] 4~ gbisp [f(O)

| and f(0) is the true density of the disturbances evaluated at 0.*[It remains to obtain an
——" estimate of f(0).] There is a useful symmetry in this result. Suppose that the true density
were normal with variance o2, Then the preceding would reduce to o2(wr/2) XXy,

‘/,5' which 1s the Testult we used 1 Examp te~eompare-estimates-af the median-ead
i i ituation of ran, ing. For more general cases, some other

empirical estimate of f(0) is going to be required. Nonparametric methods of den-

12 "I,‘ gity estimation are avallable [see Secﬁ@nd, €.g., Johnston and DiNardo (1997,
pp. 370-375)]. But for the small sample situations in which techniques such as this are

most desirable (our application below involves 25 observations), nonparametric kernel

density estimation of a single ordinate is optimistic; these are, after all, asymptotic

‘/- 5 results. But asymptotically, as suggested by Examp Im he results begin overwhelm-
ingly to favor least squares. For better or worse, a convenient estimator would be a

,f’['; [ kernel density estimator as described in Section 14.4.1..Looking ahead, the computa-
" tionwouldbe T

1.1 Li
i fo=23 k(3]

e = =1 =
"ol A R

where / is the bandwidth (to be discussed shortly), K[.]is a weighting, or kernel function

ande;, i =1, ..., nis the set of residuals, There are no hard and fast rules for choosing

A; one popular choice is that used by Stata (2006), A = .95/n"/5. The kernel function

is likewise discretionary, though it rarely matters much which one chooses; the logit

~~. kernel (see Table 14.2)iis a common choice.

( Wi ""The bootstrap method of inferring statistical properties is well suited for this
~ application. Since the efficacy of the bootstrap has been established for this purpose,

the search for a formula for standard errors of the LAD estimator is not really

V' A l jPoweIl (1984) has extended the LAD estimator to prodice a robust estimator for the case in which data on

p " the dependent varizble are censored, that is, when negative values of y; arc recorded as zero. See Example
< 14.7 for discussion and Melenberg and van Soest {1996) for an application. For some related results on other
T semiparametric approaches to regression, see Butler et al. (1990) and McDonald and White {1993).

l “Koenker suggests that for independent and identically distributed observations, one should replace ¢; with
= the constant g =q(l ~ g)/[ F(F~1gn]* = [.50/F O] for the median (LAD) estimator, This reduces the
expression to the true asymptotic covariance matrix, 2(X/X)~!. The one given is a sample estimator which

will behave the same in large samples. (Personal communication to the author.)
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i) i j-', i
necessary. The bootstrap estimator for the asymptotic covariance matrix can be com- \ g‘l“‘ i "
puted as follows: A0S, {.Lb,

Est.Var{_ll)@] = Z(bmp(r) = bLap)bran(r) — bLAD)

r=1 .-

where bpap is the LAD estimator and bm p(ryis the rth LAD estimate of Abasedon —

a sampic : of # observations, drawn with replacement, from the original data set.

Example ﬂ=4 LAD Estimation of a Cobb-Dougilas Pmduct;on Function
Zeliner and Revankar (1970} proposed a generalization ofthe Cobb-DougIas production func-
tion that allows economies of scale to vary with output. Their statewide data on Y =value
added {output), K =capital, L =labor, and N fTr of establishments in the trans- I

portation industry are given in Appenciix Table/f14:1) For this application, estimates of the F ’_].,’2_
Cobb-Douglas production function,

I(Yi/N) = B1 + B In(K, /M) + Ba In(Ls /) + 81,

P are obtaind by least scquares and LAD. The standardized least squares residuals shown in
g 3 aS uggest that two observations {Florida and Kentucky) are outliers by the usual
\ T2z constru jon. The least squares coefficient vectors with and without these two observations

are (2.283, 0.279, 0.927) and (2.205, 0.261, 0.879), respectively, whi _rs_én_rwtm,e_aug—-—‘
... gestion that these two points do exart oonmderable influence. Table{14; s the LAD
|- 1% % estimates of the same parameters, with standard errors based on 500 bootstrap replica-
.+ | tions. The LAD estimates with and without these two observations are identical, 2o only
~——"  the former are presanted. Using the simple approximation of multiplying the corresponding
OLS standard error by {7/2) '/ =1.2533 produces a surprisingly close estimate of the boot-
strap estimated standard emors for the two slope parameters {0,102, 0.123) compared with
the bootstrap estimates of (0.124, 0.121). The second set of estimated standard errors are
based on Koenker's suggested estimator, .25//%(0) = 0.25/1.5467% = 0.104502. The band-
wiclth and kernel function are those suggested earlier. The results are surprisingly consistent

given the smalt sample size.

+.5
FIGURE #F1 Standardized Residuals for Production Funclion,
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1.9

TABLE =31
Least Squares i LAD

LS and LAD Estimates of-a Production Function

Standird . | Bootstrap Kernel Density
Coefficient Estimate  Error  tRatio  Estimate  Std. Error tRatio  Sid. Error t Ratio
Constant 2,293 0107 21.39% 2275 ' 0.202 11.246 0.183 12.374
Ar 0.279 0.081 3458 0.261 0.124 2.099 . 0.138 1.881 . .
B 0.927 0.098 9.431 0.927 0.121 7.637 0.169 5.498
Ye? 0.7814 0.7984 :
Zie| 3.3652 3.2541
=7
14.3.3 PARTIALLY LINEAR R ESSION

The proper functional form i
sue., We examined this in
dummy variables, logs,

e 2.4) is a well-known approach
ven with these approaches, the re-
€ assumption of functional form in the
in detail by Yatchew (1998, 2000}] is an-
odel in which one variable, ¥, is of particular

rest, and 1he funcnonal form respect to x is problematic. Write the model as

yi= flx) + 2B + &,

where the data arc assupad to be well behaved and, save for the functionalform, the
assumptions of the clagsical model are met. The function £(x;) remams Specified. As
stated, estimation My least squares is not feasible until f(x;) is spegificd. Suppose the

data were such-that they consisted of pairs of observations (yus¥,2), j = 1,...,n/2,
could be based on the

in which x;
simple trz

= x; within every pair. If so, then estimation
sformed model

mean, variance now 202, and remain
applies and least squares is actually eptimal. Indeed, with the csnmate of ﬂ, say, 8, in
d be estimated with y; — 2/ 8, (the estimate contains

the estimation error as well g5%;).’
The problem, of coursé, is that the enabling assumption is heroic, Dat

that the observations are sorted so that x; < x; < --- < x,. Sdppose, as well, that thi
variable is behaved in the sense that as the sample si#e increases, this sorted da
vector e tightly and uniformly fills the space witfiin which x; is assumed to varl.
Thenftuiiively, the difference is “almost” rightegnd becomes beiter as the sample sige

npic differencing of lﬁ:_dg_m_).\

*See Estes and Honoré (1995) who suggest this a
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7.3.2 QUANTILE REGRESSION MODELS

The quantile regression model is

Obixg] = gg_’pq such that Prob[y <x'B,|x] = ¢, 0 <g<l.

© = This is essentially a nonparametric specification. No assumption is made about the distribution of .
Y[x or about its conditional variance. The fact that g can vary continuously (strictly) between zero | T\OTE |
and one means that there are an infinite aumber of possible/*parameter vectors¥ It seems | Agsuihle |
reasonable to view the coefficients, which we might write B(g) less as ﬁxed‘*parameters,"as we | audles
do in the linear regression model, than loosely as features of the distribution, of yix. For example,
it is not likely to be meaningful to view B(.49) to be discretely different from B(.50) or to compute
‘precisely a particular difference such as B(5) . B(:3). On the other hand, the qualitative _
difference, or possibly the lack of a dlfference between ((.3) and B(.5) as displayed in our {2/ |quing
example below; may well be an interesting characteristic of the sample. :
The estimator, b, of 3, for a specific quantile is computed by minimizing the function

By 19.XK)=2 g 410 —XB, I+ Z,Ma Oy -xB, |

:Z}=1 g(yf —X:B‘? |q)

where

qé,, ife, | _>_ 0 ,
8, 9= (1-qle,, ife,, <] 760 =% 2Py

When g = 0.5, the estimator is the least absolute deviations estimator we examined in Example
4.5 and Section 7.3.1. Solving the minimization problem requires an iterative estimator. It can

<;

be set up as a Tinéar programming problem [See Keonker and D’Oray (1987).]
We cannot use the methods of Chapter 4 to determine the asymptot:c covariance matrix
of the estimator. But, the fact that the estimator is obtained by minimizing a sum does lead to a
set of results similar to those we obtained in Section 4.4 for least squares. [See Buchinsky
(1998) ] Assuming that the regressors are*well behaved;the quantile regresszon estimator of B,I @_ -
is consistent and asymptotically normally distribued with asymptotic covariance matrix - —)ll =
s

—~|

AsyVor.[b,]= 1 H'GH™ e Nl )
n ; .),
where t.-['x ;'“l I L 0
H = plim— Z f(le)xx === —
and
. g{l- "
G = plimZEZD Yy

} 37 #“Quantile regression is supported as a built in procedure in contemporary software such as
¥ Statas, SAS, and NLOGIT.
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This is the result we had earlier for the LAD estimator, now with quantile q instead of 0.5. As
before, computation is complicated by the need to compute the density of &, at zero. This will
require either an approximation of uncertain quality or a specification of the particular density,
which we have hoped to avoid. The usual approach, as before, is to use bootstrapping.

- Example 7.%3 Income Elasticity of Credit Card Expenditure ~ L
- Greene (1992,!2007) analyzed the default behavior and monthly expenditure behavior of a
large sample (13,444 observations} of credit card users. Among the results of interest in the
study was an estimate of the incorie.elasticity of the monthly expenditure. A conventional
regression approach might be based on

Qlin Spending|x,q] = B1g+ Bag In Income + B34 Age + B4 4 Dependents

3 _
The data in Appendix Table F7.4 contain these and numercus other covariates that might
explain spending;, we have chosen these three for this example only. The 13,444 '
observations in the data set are based on credit card applications. Of the full sample, 10,499
——. applications were approved and the next 12 months of spending and default behavior were
(N \ observed:19Spending is the average monthly expenditure in the twelve months after the

\_\" / account was initiated. Average monthly income and number of household dependents are
. among the demographic data in the application. Table 7.5 presents least squares estimates
T of the coefficients of the conditional mean function as well as full results for several

mr" quantiles:¥8” Standard errors are shown for the least squares and median (1 = 0.5) results.
ff' {\] % The results for the other quantiles are essentially the same. The least squares estimate of - =
| 1%/ 1.08344 is slightly and significantly greater than one & the estimated standard error is [ 11714
T 0.03212 so the _t. statistic is (1.08344-1)/.03212 = 2.60. This suggests an aspect of
consumption behavior that might not be surprising. However, the very large amount of o
variation over the range of quantiles might not have been expected. We might guess that at f“l‘
the highest levels of spending for any income level, there is (comparably so) some saturation

in the response of spending to changes in income. Ee e M RS
——"TFigure 7.8 displays the estimates of the income elasticity of expenditure for the range of t 1‘|j :

quantiles from 0.1 to 0.9, with the least squares estimate which would correspond to the fixed N ar(EeA .
b ; value at ail quantilgs shown in the center of the figure. Confidence limits shown in the figure ] —
7.8 are based on the asymptotic normality of the estimator. They are computed as the estimated [
— . income elasticity plus and minus 1.96 times the estimated standard error. Figure 7.6 shows /|
,-‘f'l (i % the implied quantile regressions for 9=.1,.3 .5, 7.and .9. The relatively large increase from
f v | the .1 quantile to the .3 suggests some skewness in the spending distribution. In broad
.~ terms, the results do seem to be largely consistent with our earlier result of the quantiles
largely being differentiated by shifts in the constant term, n spite of the seemingly large
change in the coefficient on Inincome in the results.

S
J
/ ;
!

)"f/ The expenditure data are taken from the credit card records while the income and demographic data ™ [V .
are taken from the applications. While it might be tempting to use, €4g., Powell's (1986a,b) censored |- * Lad il phec
quantile regression estimator to accommodate this large cluster of zeros for the dependent variable, this . _( 7{__ '— ——
approach would misspecify the modellf—. the “zerocs” represent nonexistent abservations, not missing | ?] 0 ﬂK BT
ones. A more detailed approach i~ the one used in the 1992 study - would model separately the vy WD

diyet | presence or absence of the observation on spending) then model spending conditionally on accaptance 5 :,:-.5 “ {ﬂmf

of the application. We will revisit this issue in Chapter 17 in the context of the sample selection model. X r i f

The income data are censored at 100,000 and 220 of the observations have expenditures that are filled o N 4
with $1 or less. We have not “cleaned” the data set for these aspects. The full 10,499 observations N -
have been used as they are in the criginal data set. |-—;£ -

. ~33
. |5 )"We would note, if (7900% is the statement of the model, then & does not follow that that the SR S
' conditional mean function is a linear regression. That would be an additional assurmption.
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Fable 7.5 Estimated Quantile Regression Models

Estimated Parameters
Quantile Constant Inlncome Age Dependents
0.1 -6.73560 1.403086 -.03081 -.04297
0.2 -4.31504 1.1691¢ ~-.02480 -.04630
0.3 -3.62455 1.12240 -,02133 -.04788
0.4 -2,98830 1.07109 -.01859 ~.04731
(Median) 0.5 :2.80376 1.07493 -.01659 -.04995
Std.Error {.24564) (.03223) {.00157} (.01080)
t -11.41 33.35 -10.7¢9 -4.63
Least Sguares -3.05581 1.08344 -.01736 -.04461
Std.Error (.23970) (.03212) {.00135) (.01092)
t -12.75 33.73 -12.88 -4.08
0.6 ~2.05467 1.00302  ~-.01478 -.04609
0.7 ~-1.63875 97101 -,011%0 -.03803
0.8 -.%4031 .91377 -.01126 -.02245
0.9 -.05218 .8393%6 -.00891 -.02009
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R AABLE 14, 1/ LS and:LAD E/umatss of a/érﬂductlon i—uncuz i i /

ea.sr Squares LAD

Stangard- . ' 3961'“"1? K/me! Density /
Coeffici Estimare ror Rarm Esmﬁtmf Srd. ,E(rror t Ratio S;f Error t Rgr{io

Con

el
Tle

nt 2.293 0107  21.39 2275 202 11,246
0.279 0.081 3,448 0.261 0124 2.099
0.927 0.008 9431 0.927 0,121 7.63
0.781 0.7984
3.3652 3.2541
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7, 7 T PARTIALLY LINEAR REGRESSION

The proper functional form in the linear regression is an important specification is-

sue, We examined this in detatl in Chapter 6. Some approaches, including the use of

dummy variables, logs, quadratics, and so on, were considered as means of capturing
nonlinearity. The translog model in particular (Example 2.4) is a well-known approach
to approximating an unknown nonlinear funciion. Even with these approaches, the re-
searcher might still be interested in relaxing the assumption of functional form, i
model. The partially linear model {analyzed in detail by Yatchew (1998, 2000)] is an-
other approach. Consider a regression model in which one variable, x, is of particular
interest, and the functional form with respect to x is problematic. Write the model as

vi = flx) +z8 + &,

where the data are assumed to be well behaved and, save for the functional form, the
assumptions of the classical model are met. The function f(x;) remains unspecified. As
stated, estimation by ieast squares is not feasible until f(x;) is specified. Suppose the
data were such that they consisted of pairs of observations (y;1. yj2), | = L..... n/2,
in which x;; = x;» within every pair. If so, then estimation o[ B could be based on the
simple transformed medel

:f = L, ..

Yia - yiv= Zp —2) B+ (g —ep), /2.

As long as observations are independent, the constructed disturbances, v; still have zero
mean, variance now 2o, and remain uncorrelated across pairs, so a classical model
applies and least squares is actually optimal. Indeed, with the estimate of 8, say. ﬁd in
hand, a noisy estimate of f(x,) could be estimated with y; — ,@d (the estimate conftains
the estimation error as well as ;) M@

The problem, of course, is that the enabling assumption is heroic. Data would not
behave in that fashion unless they were generaled experimentally. The logic of the
partially linear regression estimator is based on this observation nonetheless. Suppose
that the observations are sorted so that x; < x; < -+ < x,. Suppose, as well, that this
variable is well behaved in the sense that as the sample size increases, this sorted data
vector more tightly and uniformly fills the space within which x; is assumed to vary,
Then, intuitively, the difference is “almost” right, and becomes better as the sample size

pate’y

ce Estes and Honoré (1995) who suggest this approach (with simple differencing of the data).

and
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grows. [Yatchew (1997, 1998) goes more deeply into the underlying theory.} A theory
is also developed for a better differ enclng of groups of two or more observations. The

~ transformed observation is yg; = Em <0 U Vi_ Where Zm——ﬁ dyn = 0and Em—o d;;, =1

(The data are not separated into nonoverlapping groups for this transformation—we
merely used that device to motivate the Ltechnique.) The pair of weights for M = 1i: is ob-
v1ously +/03 0.5—this is just a scaling of “the simple difference. 1 —1. Yatchew [1998,
p. 697)] tabulates “optimal” differencing weights for M =1,...,/10. The values for
M =2 are (0.8090, —0.500, —0.3090) and for M = 3 are (0. 8582 ~(0,3832, —0.2809,
—0.1942). This estimator is shown to be cons;stent asymptotically normally distributed,
and have asymptotic covariance matrix V-l

Asy. Vm'[ﬁ“_;] = (1 + ZLM) —=E,[Varfz| x]}.

The matrix can be estimated using the sums of squares and cross products of the differ-
enced data. The residual variance is likewise computed with

n . A 2
22 _ __Z;_i_»ﬁ;}:’+1(-"£f-" —Z1iBd)
L n-— M .

Yatchew suggests that the partial residuals, y;; ——.;z;_,_ﬁd be smoothed with a kernel

\F

density estimator to provide an improved estimator of f(_x,-). g
&. I —

Exampie 5 +artially Ling&r Transiog Cost Functio
Is technique to an analysis of sedle effects in fHe costs of

a translog model (see Exampi® 2.4 and Sectio
ices, other characteristics gfthe utility and the vayid
number of customers in the system, C. We will out a similar analy

0 electricity supply data. THe data are given in Apf

are holding companies which are comprised of
on, there are several extrs .
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Example 7.11 Partially Linear Translog Cost Function

Yatchew (1998, 2000) applied this technique to an analysis of scale effects in the costs of
electricity supply. The cost function, following Nerlove (1963) and Christensen and Greene (1976):

was specified to be a translog model (see Example 2.4 and Section 10.5.2) involving labor and

capital input prices, other characteristics of the utility, and the variable of interest, the number of .
. - eustomers in the system, C. We will carry out a similar analysis using Christensen and Greene’s” .
1970 electricity supply data. The data are given in Appendix Table F4.4. (See Section 10.5.1 for
description of the data.) There are 158. observations in the data set, but the last 35 are holding
companies which are comprised of combinations of the others. In addition, there are several
extremely small New England utilities whose costs are clearly unrepresentative of the best

practice in the industry. We have done the analysis using firms 6123 in the data set. Variables in

the data set include Q~output, _C.='_total cost, and PK, PL, and PF|=unit cost measures for capital,

labor, and fuel, respectively. The parametric model specified is a restricted version of the
Christensen and Greene madel, :

InC= Bik + ol + Boq + Balq” /2) + s + &

where ¢ = In[CAQ % PF) ], k = In{PK/PF) , | = In(PL/PF) , and g = In Q. The partially linear model
substitutes Q) for the last three terms. The division by PF ensures that average cost is
homogeneous of degree one in the prices, a theoretical necessity. The estimated equations, with
estimated standard errors, are shown here,

(parametricy c.= =7.32/+ 0.069k | +0.241| - 0.569q_'+.0.057g"’/2 + g,
(0.333) (0.065) (0.069) (0.042) (0.006) s=0.13949

{partially linear) ¢, = 0.108ky + 0.163ly + f(q) + v
(0.076) (0.081) s = 0.16529
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) TABE S5 Kerpels for. Density Estimation”
Kernel /fﬁ-mula Kfz]
Epanechnikov /" 0.75(1 — §.2¢%)/2.236. 1z] <5, 0 else
Normal ¢(2) (normal dengity),
i A(D)[1 — Az)Afogistic density)

051 1z < else ‘ .0
0.75(1 31 + 2) if |z] <1, 0 else
14 cpe(2m2) if |2} <0.5. 0 else

1Az, (2] <1, 0else )
73— 82 + 81zl if iz <0.5.8(1 — 121%/3 31 0.5 < Iz} <470 else.

candidates have péen suggested, including the {long) fist in Table
is smooth, condhuous, symmetric, and equally attractive. The |
are defined 56 that the weight only asymptotically falls to zer
zero at spelific points, It has been observed that in constr
choice of kerne] function is rarely crucial, and is usuall
to thg/more difficult problem of choosing the bandwidih. (The logit and normal kernels
ar to be the default choice in many applicasi ns.)

The kernel density function is an estimafar, For any specific x, f(x) is a sample

4.2, Each of these
it and normal kernels
hereas the others fall to
ting a density estimator, the
inor in importance compared

;;_Zg(x;- | 2, ).
i=1

Because g(x; | z, k) is nonlineagswe should expect a bias in a finite sample. Tt | empting
(@ sample moments, but the analysis is morg omplicated
a function of #. Pagan and Ullah (1999) hayeexamined the
properties of kernel gétimators in detail and found that under o ain assumptions,
the estimator is copdistent and asymptotically normally distribuged but biased in finite
samples. The biggis a function of the bandwidth but for an appfopriate choice of £, the
bias does vaiigh asymptotically. As intuition might suggest fhe larger is the bandwidih,
the greatepA§ the bias, but at the same time, the smaller is (o variance. This might suggest
a scarchAor an optimal bandwidth, After a lengthy analysis of the subject, however, the
authors’ conclusion provides little guidance for fi ding one. One consideration does
segfn useful. For the proportion of observatio captured in the bin to converge to
ie corresponding area under the density, e width itself must shrink more slowly
than 1/x. Common applications typically M5e a bandwidth equal to some multiple of
n~H for this reason. Thus, the one we yséd earlier is # = 0.0 x s /03, To conclude the
illustration begun earlier, Figure 14.5 j7a logit-based kernel density estimator for the djs-
tribution of slope estimates for the/model estimated carlier, The resemblance to the

because the bandwidth |

hiStO Tam j i = ity Pree UI\EJ\r\':\-rd-

7.5 = NONPARAMETRIC REGRESSION
The regression {unction of a variable y on a single variable x is specified as
Y= t(x}+ &

No assumptions about distribution, homoscedasticity, serial correlation or, most impor-
tantly, functional form are made at the outset; u(x) may be quite nonlinear. Because
this is the conditional mean, the only substantive restriction would be that deviations



Greene-50358

book

I-9¢

June 21, 2007 15:30

CHAPTER 14 4+ Estimation ameworks in Econom ics 417

7.20

L2 VN R B R

oool - i
0.2 03

0.6

FIGURE 14.5 Hernel Bensil for by Coafficients,

from the conditional mean function are not a function of (correlated with) x. We have
already considered several possible strategies for allowing the conditional mean to be
nonlinear, including spline functions, polynomials, logs, dummy variables, and so on.
But, each of these is a “global” specification, The functional form is still the same for
all values of x. Here, we are interested in methods that do not assume any particular
functional ferm.
The simplest case to analyze would be one in which several (different) observations
on y; were made with each specific value of x;. Then, the conditional mean function
could be estimated naturally using the simple group means, The approach has two
shortcomings, however. Simply connecting the points of means, (x;, ¥ x;) does not
produce a smooth function. The method would still be asswning something specific
about the function between the points, which we seek to avoid. Second, this sort of data
arrangement is unlikely to arise except in an experimental situation. Given that data .
are not likely to be grouped, another possibility is a piecewise regression in whlch we J65
define “neighborhoods” of points around each x of interest and f garor a1 Y - L3, \
quadratic regression in each neighborhood. This returas s to the problem of continuity i s,a-\" on ™ '
that we noted earlier, but the method of splines’s actually designed specifically for this
purpose. Still, unless the number of neighborhoods is quite large, such a function is stifl
likely to be crude.
Smoothing techniques are designed to allow construction of an estimator of the
conditional mean function without making strong assumptions about the behavior of /7,
the function between the points. They retain the usefulness of the nearest neughbor S
concept, but use more elaborate schemes to produce smooth, well, behavcd functions.
The general class may be defined by a conditional mean estimating function

A}y = Zw,-(x* | X1, %, . X}y = Zwi(X* Igs)y,-,

i=1



_ - where a and b are the least squares constant and slope. For this function, you can show that

~ from x*. A number of smoothmg functlons have been suggested that are designed to produce a ‘ =

. neighborhood. The choice of bandwith is crucial, as we will explore in the,example, below, and is
(¢ | also a challenge. There is no single best choice. A common choice is Sllverman $ (1986) rule - —

of thumb, ||r f}jdr = @

~.any x. A variety of kernet functwns are ussed for this purpose. Two common choices are the
LS loglstlc kernel,

1-4%

where the weights sum to 1. The linear least squares regression line is such an estimator. The
predictor is

x*)=a+bx*. . -
=

Ao 1
1Ibﬁ;*~f (" iJr",h;

1 XX
W(x*lx)__ ((x )) I:_Lllrln('n Klln i1
.:[ X; . {: h'\f:{ﬁ ﬁ EC '>
fes ':i'::, | i
The problem with this particular weighting function, whlch we seek to avoid here, is that it allows |~ T rete -

every x; to be in the neighborhood of x*, but it does not reduce the weight of any x; when it is far | f ) K1s %]

better behaved regression function. [See Cleveland (1979) and Schimek (2000).] We will "”“‘5 f oy bet

consider two. ! 5 '||uﬂrrmﬂ1‘¢
The locally weighted smoothed regression estimator (“loess” or “lowess” depending on e of
your source) is based on explicitly defining a nelghborhood of points that is close to x*. This \ J_[ﬁumh nET

requlres the choice of a bandwidth, 4. The nelghborhood is the set of points for which |x* — x; |

is small. For example, the set of points that are within the range x* + 472 might constitute the “”' ¢ P‘G‘{}

hSilveman o g[mln(S,IOQR)] . "::LLI:I-S.{‘H Ff 1
: 1349 2 S'-‘ U{, [ r'ﬁaﬂ

{}\[ § E;Lﬂhfﬁ

']

where s is the sample standard deviation and JQR is the interquartile range (.75 quantile minus .25
quantile). A suitable weight is then required. Cleveland (1979) recommends the tricube weight,

- { p&—xﬂTT
L(x*|x,m=1- — ||

Combining terms, then the weight for the loess smoother is

w{x*x,/1) = 1(x, in the neighborhood) x Ti(x*[x,h).

The bandwidth is is essent1a1 in the results. A wider neighborhood will produce a __E__—
smoother function? But the wider neighborhood will track the data less closely than a narrower | i
one. A second possibility, similar to the least squares approach, is to allow the neighborhooed to | [f](;-r INese
be all points, but make the weighting function decline smoothly with the distance between x* and l 3 KTS nat

(n thap.
i'l.:._-ul.__.- l_ i‘hlj
KGe*pephy = A(w)[1-A(y)] where A(v) = exp(v)/[1 +exp(vy)], vi = (3 — x*)/hg -

and the Epanechnikov kernel,

K(x*xph) = 0.75 (1 - 0.2 )/ N5 if [v] < 5 and 0 otherwise.
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This produces the kernel weighted regression estimator,

no1 x —x*
Zf:l—EK|: hx :|yf .
n 1 x, —x* ’

which has become a standard tool in noﬁbaran'ietrjc_: analysis.

x| x ) =

Example 7.12 A Nonparametric Average Cost Functibn
In Example 7.11, we fit a partially linear regression for the relationship between average cost

G ) 2 "“x and output for electricity supply. Figures 7.8 and 7.9 show the less ambitious nonparametric

regressions .of average cost on output. The overall picture is the same as in the earlier
example. The kernel function is the logistic density in both cases. The function in Figure 7.8 4
uses a bandwidth of 2,000. Because this is a fairly large proportiea_of the range of variation of
output, the function is quite smooth. The regression in Figure@ses a bandwidth of only

200. The function tracks the data better, but at an obvious cost{ The example demonstrates

what we and others have noted often; the choice of bandwidth infthis exercise is crucial.

+.9
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3&

S99

FIGURE 2 Nonparametric Cost Function:

ldrt g
[ ——— I:E[AVgCostiQ}
- wmean AvaCost
12 - -
3 ‘
10k

E[AvgCost|Q]

R R S SR
0 5060 10000 15000 20000 25000
Qutput

|



|
i

Greene-50358

book

420 PART IV + Estimation Methodology

June 21,2007 15:30 9‘ - 6§

Data smoothing is essentially data driven. As with most nonparametric techaiques, Ty -

inference is not part of the analysis-—this body of results is largely descriptive. As can
be seen in the example, nonparametric regression can reveal interesting characteristics
of the data set. For the econometriéian, however, there are a few drawbacks. There is
no danger of misspecifying the conditional mean function, for example. But, the great
generality of the approach limits the ability to test-one’s specification or the underlying
theory. [See, for example, Blundell, Browning, and Crawford’s (2003) extensive study
of British expenditure patterns.] Most relationships are more complicated than a simple
conditional mean of one variable. In the example, just-given, some of the variation in
average cost relates to differences in factor prices (particularly fuel) and in load factors. '
Extensions of the fully nonparametric regression to more than one variable is feasible,

but very cumbersome. [See Hirdle (1990) and Li and Racine (2007).] A promising

approach is the partially linear model considered earlier.

4
Alml e ?

14.

5 PROPERTIES OF ESTIMATORS

The preceding has been concerned with mfethods of estimation. We have s veved a
variety of techniques that have appegréd in the applied literature. We bdve not yet
examined the statistical properties pf these estimators. Although, as npted earlier, we
will leave extensive analysis of (i€ asymptotic theory for more advaficed treatments,
it is appropriate to spend at lpdst some time on the fundamental #heoretical platform
which underlies these techpfQues.

14.5.1 STATISTI L PROPERTIES OF ESTIMATORS
Properties that wgMave considered are as follows:

¢ Unbiasetlpéss: This is a finite sample property #{at can be established in only a very
small nyfnber of cases. Strict unbiasedness
the Iiffear regression model. However, “sSymptotic unbiasedness” {whereby the
exptctation of an estimator convergeg’to the true parameter as the sample size
ows), might be of interest. [See, e, Pagan and Ullah (1999, Section 2.5.1 on the
subject of the kernel density esgifhator).] In most cases, however, discussions of

desirable property.

¢ Consistency: This is a myeh more important property. Econometricians afe rarely
willing to place much gfedence in an estimator for which consistengf cannot be
established.

*  Agymptoetic no ity: "This property forms the platform for most of the statistical
inference that j#’done with common estimators. When asymplotic normality can-

not be establghed, it sometimes becomes difficult to find gfethod of progressing
stimates (with caveats).
Howevef, most of the contemporary literature in macgbeconomics and time-series
1dedly not asymptotically nor-
maHly distributed. The implication is that this progerty takes its importance only in
ntext, not as an absolite virtue.
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9.8.2. If we assume that u; is no y distributed
o7, thcr‘i an analog to (9-57) for least

function, (11-37) would actually be the e
function. The random parameter vecto
stant term.]

o ¥¥& SUMMARY AND CONCLUSIONS
L4

In this chapter, we extended the regression model to a form that allows nonlinearity
in the parameters in the regression function. The results for interpretation, estimation,
and hypothesis testing are quite similar to those for the linear model. The two crucial
differences between the two models are, first, the more involved estimation procedures
needed for the nonlinear model and, second, the ambiguity of the interpretation of the
coefficients in the nonlinear model (because the derivatives of the regression are often

nonconstant, in contrast to those in the 11near model) Ftn-a-l-lyr'm-adéed—aﬂ-add-x-aenal-

Key Terms and Concepts

? o
* BoxCox transformation =5+ ¢ Jacobian “2. » Overidentifying restrictions
» Deelta method S Tinearized regression model » Pseudoregressors
» GMM estimator * Lagrange multiplier test (7"s Roy’s identity
+Identification condition ~ Logit model =, * Semiparametric
= Incidental parameters == e.Loglinear model = }'-'- Starting values

problem “*'1" » Nonlinear regression model  « Two-step estimation

+ Index function model | *Normalization * Wald test

[ » Indirect utility function “He Nonlinear least squares

L e [teration ¢ Orthogonality condition

Exercises

1. Describe how to obtain nonlinear least squares estimates of the parameters of the
model y = ax? + ¢.

2. Verify the following differential equation, which apphes to the Box-—Cox transfor-

mation;
dix(k} 1 N ; id;—lx(l) ?‘ 3‘1
T = (3) oG] (9
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Applications

Show that the limiting sequence for A = 0is 2 g
dix™ (o x)it! -
= drM T i1 (39

These results can be used to great advantage in deriving the actual second deriva-
tives of the log-likelihood function for'the Box—Cox model.

1.

% ;
The data in Appendix table F5.¥present 27 statewide observations on value added :
(output), labor input (labor), and capital stock (capital) for SIC 33 (primary metals).
We are interested in determining whether a linear or loglinear production model
is more appropriate for these data. Use MacKinnon, White, and Davidson’s (1983)
Pg test to determine whether a linear or log:linear production model is preferred.
Using the Box—Cox transformation, we may specify an alternative to the Cobb;

Douglas model as "
I ’

(K* - 1) —1)
InY=w-+p5 . +ﬁ1( (’@ ﬂ‘#“‘ *fﬂu f'l'l-“

Using Zellner and Revankar’s data in Appendix Table ¥14.1 /estimate o, g, f;, and aoried Jlf
A by using the scanning method suggested in Section 11.3.2. (Do not forget to scale kel

Y, K, and L by the number of establishments.) Use (11-16), (11-12); and (11-13) to e Bk &{1 s
compute the appropriate asymptotic standard errors for your estimates. Compute lt i

the two output elasticities, 8 In Y/dIn X and 8ln Y/@In L, at the sample means of | I\ LAY pers:
K and L. (Hint; In ¥/8In K = KdIn Y/3K.) \ 5 ¥

For the model in Application 2, test the hypothesis that .. = 0 using a Wald test

and a Lagrange multiplier test. Note that the restricted model is the Cobb-Douglas |_ E] R==—
log;linear model. The LM test statistic is shown in (11-22). To carry out the test, you

will need to compute the elements of the fourth column of X °, the pseudoregressor

corresponding to A is B[y | x]/3A | A = 0. Result (11-39):will be useful.

The National Institute of Standards and Technology (NIST) has created a Web site

that contains a variety of estimation problems, with data sets, designed to test the 7,

accuracy of computer programs. (The URL is http://www.itl.nist.gov/div898/strds.) =
One of the five suites of test problems is a set of 27 nonlinear least squares prob-
lems, divided into three groups: easy, moderate, and difficult. We have chosen
one of them for this application. You might wish to try the others (perhaps to
see if the software you are using can solve the problems). This is the Misralc
problem (http/fwww.itl.nist.gov/div898/strd/nls/data/misralc.shtml). The nonlinear
regression model is

Yi=hx,p)+e
1

= £ (1 - —————,]Tm) + r?if. Y
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The data are as follows:

X X

10.07 77.6
J 1473 114.9
T 1 141.1

2393 1908

29.61 239.9

35.18 289.0 o o !

40.02 332.8

4482 378.4

50.76 4348

55.05 4773

61.01 536.8

66.40 593.1

7547 689.1

81.78 760.0

A-sy

313

For each problem posed, NIST also provides the “certified solution,” (i.e., the right

answer). For the Misralc problem, the solutions are as follows:

Estimare Estimated Standard Error
B 6.2642725809E + 02 4.6638326572E +00
B 2.0813627256E — 04 1.7728423155E —~ 06
ee 4.0966836971E (2
st =¢gle/(n—K) 5.8428615257E — 02

Finally, NIST provides two sets of starting values for the iterations, generally one set
that is “far” from the solution and a second that is “close” from the solution. For this
problemthe starting vatues provided are 8 = (500, 0.0001) and 82 = (600, 0.0002).
The exercise hereis to reproduce the NISTresults with yoursoftware, [For a detailed
analysis of the NIST nonlinear least squares benchmarks with several well-known

computer programs, see McCullough (1999).]
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5. InExample 7.1, the CES function is suggested as a model for production?_
% . -
1ny=1ny——1n[5_1<p+(1—5)LP}+a. (7-36)
0 . :

. -~ Example 6.8 suggested an indirect method of estimating the parameters of this model. The
function is linearized around p = 0, which produces an intrinsically linear approximation to

the function, -

Iny = B;+ By InK+BsInL+ B, {1/2 (InK - LnL)]] +¢

T W ".-"“__I Lo - .

where B; = Iny, B, = ¥v8. B3 = (1 - &) and By = pv8(1 - 8). " The approximation can be

estimated by linear least squares. Estimates of the structural parameters are found by

inverting the, four equations,abeve: An estimator of the asymptotic covariance matrix is

suggested using the delta method. The parameters of (7-36) can also be estimated directly
using nonlinear least squares and the results given earlier in this,Chapter.

Christensen and Greene’s (1976) data on U.S. electricity generation are given in
Appendix Table F4.4. The data file contains 158 observations. Using the first 123, fit the
CES production function, using capital and fuel as the two factors of production rather than
capital and labor. Compare the results obtained by the two approaches, and comment on why
the differences (which are substantial) arise.

s>

The following exercises require specialized software. The relevant techniques are
available in several packages that might be in use, such as SAS, Stata, or LIMDEP. The exercises
are suggested as departure points for explorations using a few of the many estimation techniques
listed in this chapter. .
Aot fre

ergc AR L)
subsen |“: 5
S — ‘\. " '/I

ol talies €

6. Using the gasoline market data in Appendix Table F2.2, use the partially linear regression. |
method in Section 7.4 to fit an equation of the form

ln_( G/ P Op) = ﬂ 1In(Income) +ﬁ21n-Pnew cars T ﬁBlnPused cars T b (lnP gaso.’r'ne) + 5‘.;1_

7. To continue the analysis in Question g, consider a nonparametric regression of G/Pop on the
price. Using the nonparametric estimation method in Section 7.5, fit the nonparametric
estimator using a range of bandwidth values to explore the effect of bandwidth,
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