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Endogeneity and Instrumental Variable Estimation

8.1 INTRODUCTION

*. -~ The assumption that x; and g; are uncorrelated in the linear regression model,

y:':,?ig"_ﬁ"'t‘f‘_f, e (8-1) |

has been crucial in the development thus far. But, there are many applications in which this
assumption is untenable. Examples include models of treatment effects suth as that in Example

~ 6.5, models that contain variables that are measured with error, dynamic models Jinvolving

expectations,and a large variety of common situations that involve variables that are unobserved s
or for other reasons are omitted from the equation. Without the assumption that the disturbances
and the regressors are uncorrelated, none of the proofs of consistency or unbiasedness of the least
squares estimator that were obtained in Chapter 4 will remain valid, so the least squares estimator
loses its appeal. This chapter will develop an estimation method that arises in situations such as
these. '

It is convenient to partition x in (8-1) into two sets of variables, x, and x,, with the
assumption that x, is not correlated with € and .-"2.-{.?’, or may be, (that-may-be part of the empirical
investigation). We are assuming that x, is exogenous in the model — see assumption A.3 in the

. statement of the linear regression model in Section 2.3. Tt will follow that}_z is, by this definition,
~!“endogenous in the model. How does endogeneity arise? Example 8.1 suggests some common
settings. :

Example 8.1 Models with Endogenous Right Hand Side Variables
The following models and settings will appear at various points in this book.
Omitted Variables: In Example 4.2, we examined an equation for gasoline
consumption of the form ‘

InG = B1 + BzInPrice + Bslnincome + ¢.

is
InG = By + BalnPrice + wy

where w = Bslnincome + £. Linear regression of InG on a constant and InPrice does not
consistently estimate (84,82) if InPrice is correlated with w. It surely will be in aggregate

. time series data. The omitted variable reappears in the equation in the disturbance, -

' causing omitted variable bias in the ieast squares estimatcr of the misspecified equation. |
Endogenous Treatment Effects: Kreuger and Dale (1999) examined the effect of
attendance at an elite college on lifetime earnings. The regrassion model with a*treatment
effect’ dummy variable, T,which equals one for those who attended an elite college and

zero otherwise, appears as
fny = __x__';_i +8T + ¢,

Least squares regression of a measure of earnings, Iny, on x and T attempts to produce an
estimate of 3, the impact of the freatment. It seems inavitable, however, that some
unobserved determinants of lifetime earnings, such as ambition, inherent abilities,
persistence, and so on would also determine whether the individual had an opportunity to
attend an elite college. If so, then the least squares estimate of & will inappropriately
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attribute the effect to the treatment, rather than to these underlying factors. Least squares
will not consistentiy estimate 3, ultimately because of the correlation between T and &.

In order to quantify definitively the impact of attendance at an elite college on the
individuals who did so, the researcher would have to conduct an impossible experiment.
Individuals in the sample would have to be observed twice, once having attended the elite
college and a second time (in a second lifetime) without having done so. Whether
comparing individuals who attended elite colleges. to other individuals who did not
“adequately measures the effect of the treatment on the treated individuals is the subject
of a vast current literature. -See, e:g., Imbens and Wooldridge (2009) for a survey.

Simultaneous Equations: in an equilibrium model of price and output determination
in a market, there would be equations for both supply and demand. For example, a model

of output and price determination in a product market might appear
{Demand) Quantityp = oo + aqPrice + ozlncome + ED
{Supply) Quanlitys = Bo + B1Price + BalnputPrice + e,
(Equilibrium)  Quantity, = Quantitys.

Consider attempting to estimate the parameters of the demand equation by regression of a
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time series of equilibrium quantities on equilibrium prices and incomes. The equilibrium
price is determined by the equation of the two quantities. By imposing the equilibrium |

condition, we can solve for Price = (o - Po + azlncome - BalnputPrice + gp - eg)(By - o).
The implication is that Price is correlated with e, + if an external shock causes gp to
change, that induces a shift in the demand curve and ultimately causes a new equilibrium
price. Least squares regression of quantity on price and income does not estimate the
parameters of the demand equation consistently. This'feedback! between ep and Price in
this model produces simultaneous equations bias in the least squares estimator,~ [,

Dynamic Panel Data Models: In Chapter 11, we will examine a random effects
dynamic model of the form yr = xuf8 + yyiit + & + u; where u; contains the time;invariant
unohserved features of individ'uai._i. Clearly in this case, the regressor Yie-1 Is correlated with
the disturbance, (&; +u;) ~ the unobserved heterogeneity is present in y; in every period. In
Chapter 13, we will examine a mode! for municipal expenditure of the form S, = F(Si-1p.. )1 H
& The disturbant__:es_ are assumed to be freely correlated across periods, so both Si-1 and
a,-'l are correlated with ¢,,,. It follows that they are correlated with each other, which means
that this model, even without time persistent effects, does not satisfy the assumptions of
the linear regression model. The regressors and disturbances are correlated.

Omitted Parameter Heterogeneity: Many cross country studies of economic growth
have the following structure (greatly si'm_plirfied for purposes of this example),

AlnYy = o + o + B, AII’IY“.'-; + By,

where AlnYj is the growth rate of country / in year t. [See, for example, Lee, Pasaran and -

Smith (1997).] Note that the coefficients in the model are country specific. What does least
squares regression of growth rates of income on a time trend and lagged growth rates
estimate? Rewrite the growth equation as_ .

o i+ OF+ BAINY ey [4 (o™ a) + (8;2 0} + (B;= B)AINYpy +
o +6t+ ]3 Aln_Y,-,f__1 + Wy

AlnYy

We assume that the:-""averagé”parameters, «, 8, and f,are meaningful fixed parameters to- |
be estimated. Does the least squares regression of AinY; on a constant, {, and AlnY;uq\ L
" estimate these parameters consistently? We might assume that the cross, country variation: ',

in the constant terms is purely random, and the time trends, §;,are driven by purely
exogenous factors. But, the differences across countries of the convergence parameters,
Bisare likely at least to be correlated with the growth in incomes in those countries, which

will induce a correfation between the lagged income growth and the term (B, - B) embedded
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in wy. If (B; - B) is random noise that is uncorrelated with Aln Yith, then (B; - BainY; will be
also. ]
Measurement Error. Ashenfelter and Krueger (1994), Ashenfelter and Zimmerman

(1997) and Bonjour et al. (2003) examined applications in which an earnings equation

Yiz = fiEducation; 1)) + &t " i
s 'specified for sibling pairs (twins) £ = 1, 2 for n families. Education is a variable that isl_ 7
inherently unmeasurable; years. of schooling is typically the best proxy variable available.
Consider, in a very simple model, attempting to estimate the parameters of

Ye = B1+ B2 Education, + g,
by a regression of Earnings; on a constant and Schooiingj, with

Schooling = Education; + ug,.
where u is the measurement error. By a simple substitution, we find

Ye = B4+ B2Schoolingy + wy.,
where wy = gy - Batly. Schooling is clearly correlated with w; = (e - Baty). The interpretation
is that at least some of the variation in Schooling is due to variation in the measurement
error, Uy Since schooling is correlated with wy, it is endogenous, and least squares is not a

suitable estimator of the earnings equation. As we will show later, in cases such as this
one, the misrneasurement of a reievant variable causes a particular form of inconsistency,

] attenuation bias, in the estimator of p,.

Nonrandom Sampling: In a model of the effect of a training program, an employment
program, or the labor supply behavior of a particular segment of the labor force, the sample
of abservations may have voluntarily selected themselves into the observed sample. The
Job Training Partnership Act (JTPA) was a job training program intended to provide
employment assistance to disadvantaged youth. Anderson et al. {1991) found that for a
sample that they examined, the program appeared to be administered most often to the
best qualified applicants. In an earnings equation estimated for such a nonrandom sample,
the implication is that the disturbances are not truly random. For the application just
described, for example, on average, the disturbances are unusually high compared to the
full population. Merely unusually high wouid not be a problem save for the general finding
that the explanation for the nonrandomnes; is found at least in part in the variables that
appear elsewhere in the model. This nonrandomness of the sample of the sample
translates to a form of omitted variable bias known as sample selection bias. [ " |

Attrition:  We can observe two closely related; important cases of nonrandom
sampling. In pane! data studies of firm performance, the firms still in the sample at the end
of the observation period are likely to be a subset of those present at the beginning — those
firms that perform badly,"fait”or drop out of the sample. Those that remain are unusual in
the same fashion as the|sample of JTPA participants. noted-above. In these cases, least |
squares regression of the performance variable on the covariates {whatever they are); |/
suffers from a form of selection bias known as survivorship _bias. In this case, the .~
distribution of outcomes, firm performances, for the survivors is systematically higher than
that for the population of firms as a whole. This produces a phenomenon known as
truncation bias. In clinical trials and other statistical analysis of health interventions,
subjects often drop out of the study for reasons related to the intervention, itself — for a
quality of life intervention such as a drug treatment for cancer, subjects may leave because
they recover and feel uninterested in returning for the exit interview, or they may pass away
or become incapacitated and be unable to return. In either case, the statistical analysis is
subject to attrition bias. The same phenomenon may impact the analysis of panel data in -
health econometrics studies. For example, Contoyannis, Jones, and Rice {2004) examined



self assessed health outcomes in a long panel data set extracted from the British
Household Panel Data survey. In each year of the study, a significant number of the
observations were absent from the next year's data set, with the result that the sample was
winnowed significantly from the beginning to the end of the study.

. In all the cases listed in Example 8.1, the term*bias¥refers to the result that least squares
+ "(or other conventional modifications of least squares) is an inconsistent (persistently biased)
estimator of the coefficients of the model of interest. Though the source of the result differs
congiderably from setting to settmg, all ultimately trace back to endogeneity of some or all of the
right, hand, side variables and this, in turn, translates to correlation between the regressors and the
disturbances. These can be broadly viewed in terms of some specific offects:

» Omitted variables, either observed or unobserved,””
¢ Feedback effects,

¢ Dynamic effects,

¢ Endogenous sample design,

and so on. There are two general solutions to the problem of constructing a consistent estimator.
In some cases, a more detailed,” structural”specaﬁcatlon of the model can be developed. These
usually involve specifying additional equations that explain the correlation between x;and g ina
way that enables estimation of the full set of parameters of interest. We will develop a few of
these models in later chapters, including, for example, Chapter 18 where we consider Heckman’s
(1979) model of sample selection. The second approach, whichis becoming increasingly
common in contemporary research, is the method of mstrumental variables. The method of
instrumental variables is developed around the following estimation strategy: Suppose that in the
model of (8-1), the K variables X; maybe correlated with &, Suppose as well that there exists a set
of L variables JZi such that z; is correlated with xl,}but not with . We cannot estimate p
consistently by using the familiar least squares estimator. But, the assumed lack of correlation
between z; and ¢, implies a set of relationships that may allow us construct a consistent estimator
of B by using the assuffied relationships among z; x; , and &;.

This chapter will develop the method of instrumental variables as an extension of the
models and estimators that have been considered in Chapters 2-7. Section 8.2 will formalize the
model in a way that provides an estimation framework. The method of instrumental variables
(IV) estimation and two, stage least squares (2SLS) is developed in detail in Section 8.3. Two
tests of the model specxﬁcatlon are considered in Section 8.4. A particular application of the
estimation} measurement error, is developed in detail in Section 8.5. Section 8.6 will consider
nonlinear models and begin the development of the generalized method of moments (GMM)
estimator. The IV estimator is a powerful tool that underlies a great deal of contemporary .
empirical research. A shortcoming, the problem of weak instruments is considered in Section 8.7.
Finally, some observations about instrumental variables and the search for causal effects are
presented in Section 8.8,

This chapter will develop the fundamental results for IV estimation. The use of
instrumental variables will appear in many applications in the chapters to follow, including
mutiple equations models in Chapter 10, the panel data methods in Chapter 11;and in the
development of the generalized methed of moments in Chapter 13.
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gstimate § consistently by
¢ gtruct a consistent estimatg
by using the assumeg/relationships among z;, x;, apfl &;.

EATENDED
1 ASSUMPTIONS OF THE,MODEL
%~ A

Linear
The assumptions of the ei-a“-s%ma-} regression model, laid out in Chapters 2 and 4 are

A;,_l._ Linearity: y; = xnfh +x0fh + -+ xixPx + &
(is| A2. Full rank: The n x K sample data matrix, X;has full column rank

+ | A3, Exogeneity of the independent variables: Ele; lxj1, X2,y Xj] = 0, 4,
- j =1, ..., n. There is no correlation between the disturbances and the
~ independent variables.

A4. Homoscedasticity and nonautocorrelation: Each disturbance, &;, has the same
finite variance, o and is uncorrelated with every other disturbance, &,
conditiened on X.

_ AS Stochastic or nonstochastic data: (x;1, x;2,....5x)i=1,...,n

A6 Normal distribution: The disturbances are normally distributed.

We will maintain the important result that plim (X'X/n) = Qxx The basic assumptlons of
the regression model have changed, however. First, A3 (no correlation betweenxandg) (L
is, under our new assumptions,

AR Elsiix] =

We interpret Assumption AI3 to mean that the regressors now provide information
about the expectations of the disturbances. The important implication of AI3 is that the "=
disturbances and the regressors are now correlated. Assumption Al3 implies that L,

B, 2
Elxie] =y M
for some nonzero y. If the data are “well behaved,” then we can apply Theorem D.5
(Khinchine’s theorem) to assert that 9 2
-

plim (1/n)X'e = y. -3

Notice that the original model results if ; = 0. The implication of (1%3) is that the
regressors, X, are no longer exogenous. 2
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We now assume that there is an additional set of variables, Z that have two
properties:

" . 1. Exogeneity: They are uncorrelated with the disturbance.
2. Relevance: They are correlated with the independent variables, X.

We will formalize these notions as we proceed, In the context of our model, variables
that have these two properties are instrumental variables. We assume the following:

AI7 [x:,%,8],i=1,..., 1 are aniid. sequence of random variables.
AISa. E[x,k] Qux it < 00, a finite constant, k=1, . K.
P AISb E[] = sz 1 < 00, a finite constant,/ =1, . .
P .A,l8c. Elzyxie] = th Ik < 00, a finite constant, [ = 1 L, k=1,....K.
A‘I9 Eleilz;) =

In [ater work in time series models, it will be important to relax assumpption AI'? Finite
means of z follows from Al8b. Using the same analysis as in Sectio @ e have

plim (1/m)Z'Z = 'Qy;, a finite, positive definite matrix (ygellxbehclved data),
plim (1/mZ'X = Qux, 2 finite, L x K matrix with rank K(relevance),
plim (1/mZ's = 0 (exogeneity).

In cur statement of the classical regression model, we have assumed thus far the special
case of 1 = 0; y = 0 follows. There is no need to dispense with Assumption AI7—1t
may well continue to be true—but in this special case, it becomes irrelevant.

4.4

5.2 125 ESTIMATION

For this more general model of (12-3)
squares. We will consider the impljeations for least squares, then const
estimator for 8 in this exten

lose most of the useful results we had for least
an alternative

LEAST SQUARES

s no longer unbiased,;

Eb|X] =8 + X)X’y # 8,
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For the present, we will assume that L = K — there are the same number of instrumental
variables as there are right hand side variables in the equation. Recall in the introduction and in .
Example 8.1, we partitioned x into x; a set of K exogenous variables and x,, a set of K, /-

endogenous variables on the right hand side of (8-1). In nearly all cases in practice, the*problem .\ A _'-' .

of endogeneity’*is attributable to one or a small number of variables in X. In the Kreuger and A
- Dale (1999) study of endogenous treatment effects in Example 8.1, we have a single endogenous -~- .~ 7

-~ variable in the equation, the treatment dummy variable, T, The implication for our formulation

here is that in such a case, the X variables x, will be among the instrumental variables in Z and
the K, remaining variables will be othér exogeneus variables that are not the same as X,. The
usual interpretation will be that these X; variables, z, jare the*“instruments for x;2" while the X
variables are instruments for themselves. To continue the example, the matrix Z for the
endogenous treatment effects model would contain the X; columns of X and an additional
instrumental variable, z, for the treatment dummy variable. In the simultaneous equations model
of supply .and demand, the endogenous right, hand, side variable is the x, = price while the 4
exogenous variables are (1,/ncome). One might suspect (correctly), that in this model, a set of
instrumental- variables would be z = ( 1. Income InputPrice). In terms of the underlying
relationships among the variables, this intuitive understanding will provide a reliable guide. For
reasons that will be clear shortly, however, it is necessary statistically to treat Z as the instruments
for X in its entirety. i

There is a second subtle point about the use of instrumental variables that will likewise be
more evident below. The “relevance condition” must actually be a statement of conditional
correlation. Consider, once again, the treatment effects example, and suppose that z is the
instrumental variable in question for the treatment dummy variable . The relevance condition as
stated implies that the correlation between z and (x,7) is nonzero. Formally, what will be
required is that the conditional correlation of z with 7]x be nonzero. One way to view this is in
terms of a projection; the instrumental variable z is relevant if the coefficient on z in the
regression of T on (x,z) is nonzero. Intuitively, z must provide information about the movement
of T'that is not provided by the x variables that are already in the model.

8.3 ESTIMATION *

For the general model of Section 8.2, we lose most of the useful results we had for least squares.
We will consider the implications for least squares, then construct an alternative e
estimator for £ in this extended model. '

8.3.1 LEAST SQUARES
The least squares estimator,lp_, is no longer unbiased;
E[bX] = B+ (XX)'Xn # B,

so the Gauss-Markov theorem no longer holds. The estimator is also inconsistent;
]

N .
plim b =B + plim (X—MXJ plim (%E] =B+ Q;('xy :éB (8-4)

(The asymptotic distribution is considered in the exercises). The inconsistency of least squares is
not confined to the coefficients on the endogenous variables. To see this, apply (8-4) to the
treatment effects example discussed earlier. In that case, all but the last variable in X are
uncorrelated with g, This means that o



3-9

0 0
. (X'e 0 0
plim T = . =] |
Tk Al : L

It folloWs that for this special casé, the fesult_, in (_8—4) is
plimb = B + yg x the last column of_Q,'.L_'x .

There is no reason to expect that any of the elements of the last column of _Q;x will equal zero.

The implication is that even though only one of the variables in X is correlated with g, all of the
elements of b are inconsistent, not_just the estimator of the coefficient on the endogenous
variable. This effects is called smearing; the inconsistency due to the endogeneity of the one
variable is smeared across all of the least squares estimators.

8.3.2 THE INSTRUMENTAL VARIABLES ESTIMATOR

Because Efze;] = 0 and all terms have finite variances, it follows that

plim(z e) = plim [—Z—z}—jplim('—-—z XBJ =0,
) n n
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Therefore,

i (52) - i () 0m (5) - sm ()¢ 53

We. bave, QSSOHQC‘-Su-pp@se-thﬁt Z has the same number of variables as X. For example, suppose in cur
4t hat consumption function that x, = [1, ¥;] when z, = [1, ¥,_;]. We have assumed that the
rank of Z'X is K, so now Z'X is a square matrix. It follows that

’ -1 r 24 c i
[plim(ﬁ)] plim(‘—y) =g, ( ¥ -6)
n T n :
which leads us to the ir_lstrumental variable estimator,

(ZIX) -1 Zf

We have already proved that bw is consistent. We now turn to the asymptotlc dlstnbu-

| tion. We will use the same method as in Section 49:% First,
o 7252,
b — Z’
Vit =) = (H),[

which has the same llmltmg dlstnbutlon as Q1 [(1//mZ'e]. Our analysis of (1//m)Z'e
can be the same as that of (1/ f YX'e in Section 4.9.2, so it follows that

(2¢) 5 ¥0.0*Qal,

ZXN 1, - -
(B (Gre) - wonsoncay

This step completes the derivation for the next theorem.

e é:[a . U SRR 1 (e TR A T e B e e e R e e
THEOREM EZT  Asymptotic Distribution of the Instrumental
. . Variables Estimator ;
IfAssumptzonsAI A,Z Al3, A4, AS Al7, Al8alc, andAI9allkold for(yi. %, &, &), -
where z is a valid set of L = K instrumental variables, then the asymptotic distri-
bution of the instrumental variables estzmator by = (Z'X)~ 1Z'y is

by ~ N|B, — Q-‘Q;,z(r1

and

where Qﬁ" = plim(Z_’X/ n) and Q; = plim(Z'Z/ n). ﬁ

To estimate the asymptotlc covanance matrix, we will require an estimator of o2
The natural estimator is

21
6> = ~ > o~ xbv).
=

¥ '—{ - g
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A correction for degrees of freedom is superfluous, as all results here are asymptotic, Sk
- and 82 would not be unbiased in any event. (Nonetheless, it is standard practice in most '

software to make the degrees of freedom correction.) Write the vector of residuals as
¥ =Koy =y- XZX)"Zy.
Substitute y = X8 + ¢ and collect terms to obtain & = {I — X(Z'X)"'Z'Je. Now,

éf
52

- () (2 (32) () () +(2)(2) (%)

We found earlier that we could (after a bit of manipulation) apply the product result for
probability limits to obtain the probabmty limit of an expression such as this. Without £ /]
repeating the derivation, we find that 82 is a consistent estimator of o?, by virtue of

the first term. The second and third product terms converge to zero. To complete the
derivation, then, we will estimate Asy. Var[bry] with

vt - (S)(22) (28) (32} &7

=PZX) I EDHED) .

o

3|i

-

12.3.3 TWO-STAGE LEAST SQUARES

ables than X, then much of the
with rank K < L. and will,thus not

al every linear

suggests that one

pfstrumental

(12-8)

The estimator of the as§mptotic covariance matrix will he’d* times the bracketed matrix
in (12-8). The proofs of consistency and asymptotie’normality for this estimator are
exactly the same as before, because our proof was géneric for any valid set of instruments,
nd X qualifies. :
There are two reasons for using this e§fimator—one practical, one theoretical. If
hny column of X also appears in Z, then that column of X is reproduced exactly in

1

|
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8.3.3 MOTIVATING THE INSTRUMENTAL VARIABLES ESTIMATOR

In obtaining the IV estimator, we relied on the solutions to the equations in (8-5),
phim(Z'y/n) = plim(Z'X/n)

Q = szB

The IV estimator is obtained by solvmg this set of K moment equatlons Since this is a set of X
equations in X unknowns, if sz exists, then there is an exact solution for |3 gwen in (8-6). The
corresponding moment equations if only X is used would be

plim(X"y/n) = plim(X'X/n_)ﬂ + plim(X'e/n) = plim(X"X/n)B Ty y
or

Qxy = QB+, E}

which is, without further restrictions, K equations in 2K unknowns. There are insufficient |
equations to solve this system for either B or 7. The further restrictions that would allow _}y KT
estimation of 8 would be y = 0; this is precisely the exogencity assumption A3, The lmphcatlon f ?( ( o 1[
is that the parameter vector § is not identified in terms of the moments of X and y alone - there eniir
does not exist a solution. But, it is identified in terms of the moments of Z X and Yy, plus the X f‘-gﬂ i }
restrictions imposed by the exogeneity assumption, and the relevance assumption that allows Lhape s
coimputation of byy. — e —
Consider these results in the context of a simplified model |

y = PBx + 87T +e.

In order for least squares consistently to estimate § (and [B), it is assumed that movements in T are
exogenous fo the modgl, so that covariation of y and T is explainable by the movement of T and
not by the movement of &. When.T and ¢ are correlated and & varies through some factor not in
- the equation, the movement of y will appear to be induced by variation in 7 when it is actually
induced by variation in & which is transmitted through 7. If T is exogenous, ie., not correlated |11 1%,
with &, then movements in & will not'*cause? movements in T (we use the term*“*cause? very.

loosely here) and will thus not be mistaken for exogenous variation in 7. The exogeneity 4_”, {)p"
assumption plays precisely this role. To summarize, then, in order for a regression model

.correctlyuto identify 8, it must be assumed that variation in 7 is not associated with variation in.e. | 1 S [”’ H oudt
If it is, then as seen in (8-4), variation in y comes about through an additional source, variationin- | "'

¢ that is transmitted through variation in 7. That is the influence of ¥ in (8-4). What is needed, +oil?

then, to identify § is movement in T that is definitely not induced by movement in . Enter the ‘——
instrumental variable, z. If z is an instrumental variable with cov(z,T) # 0 and cov(z,e) = 0, then
movement in z prov1des the variation that we need. If we can consider doing this exercise
experimentally, in order to measure the'*causal effect”of movement in T, we would change z,

then measure the per unit change in y associated with the change in T, knowing that the change in

T'was induced only by the change in z, not &, that is, (Ay/Az)/(AT/Az).
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Example 8.2 Instrumental Variable Analysis

Grootendorst (2007) and Deaton (1997) recount what appears to be the earliest apphcatlon of

the method of instrumental variables:
Although IV theory has been developed primarily by economists, the method originated in
epidemiology. IV was used to investigate the route of cholera transmission during the
London cholera epidemic of 1853-54. A scientist from that era, John Snow, hypothesized
that cholera was waterborne. To test this, he could have tested whether those who drank
purer water had lower risk of contracting cholera. In other words, he could have assessed
the correlation betweeri water.purity (x) and cholera incidence (y). Yet, as Deaton (1997)
notes, this would not have been convincing: *The people who drank impure water were
also more likely to be poor, and to live in an environment contaminated in many ways, not
least by the 'poison miasmas’ that were then thought to be the cayse of chaolera.” Snow
instead identified an instrument that was strongly correlated with water purity yet
uncorrelated with other determinants of cholera incidence, both observed and
uncbserved. This instrument was the identity of the company supplying households with
drinking water. At the time, Londoners received drinking water directly from the Thames
River. One company, the Lambeth water company, drew water at a point in the Thames
above the main sewage discharge; another, the Southwark and Vauxhall company, took
water below the discharge. Hence the instrument z was strongly correlated with water
purity x. The instrument was also uncorrelated with the unobserved determinants of
cholera incidence (y). According to Snow (1844, pp. 74-75), the households served by
the two companies were quite similar; indeed: “the mixing of the supply is of the most
intimate kind. The pipes of each Company go down all the streets, and into nearly all the
courts and alleys.|.|.|.The experiment, too, is on the grandest scale. No fewer than three
hundred thousand people of both sexes, of every age and occupation, and of every rank
and station, from gentlefoiks down to the very poor, were divided into two groups without
their choice, and in most cases, without their knowledge; one group supplied with water
containing the sewage of London, and amongst it, whatever might have come from the
cholera patients, the other group having water quite free from such impurity.”
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Example 8.3 Streams as Instruments
In Hoxby (2000), the author was interested in the effect of the amount of school ‘choice” in
a school "market” on educational achievement in the market. The equations of interest
were of the form

A

=BGy + xrkmBZ + XimPs + X Ba + By + Eion + € T
- lnEkm et B
where “ikm” denotes houséhold i in district k in market m, Ay is @ measure of achievement
and Eyn is per capita expenditures. The equation contains individual level data, district
means, and market means. The exogenous variables are intended to capture the different
sources of heterogeneity at all three levels of aggregation. (The compound disturbanhce,
which we will revisit when we examine panel data specifications in Chapter 10, is intended
to allow for random effects at all three levels as well.) Reasoning that the amount of choice
available to students, Cy, would be endogenous in this equation, the author sought a valid 9
instrumental variable that would “explain” (be correlated with) Cy, but uncorrelated with the
disturbances in the equation. In the U.S. market, to a large degree, school district
boundaries were set in the late 18th and through the 18th centuries, and handed down to
present-day administrators by historical precedent. in the formative years, the author noted,
district boundaries were set in response to natural travel barriers, such as rivers and
streams. It follows, as she notes, that “the number of districts in a given land area is an
increasing function of the number of natural barriers”;, hence, the number of streams in the
physical market area provides the needed instrumental variable. [The controversial topic of B
the study and the unconventional choice of instruments caught the attention of the popular /7| ,z/
press, for example, hitp.//gsppi.berkeley.edu/faculty/rothstein/hoxby/wsj.pdf, and academic et
observers including Rothstein (2004).] This study is an example of a “natural experiment’
as described in Angrist and Pischke (2009).
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Example 8.4 Instrumental Variable in Regression 2

The role of an instrumental variable in identifying parameters in regression models was
developed in Working’s (1926) classic application, adapted here for our market
equilibrium example in Example 8.1. Figure 8.1a displays the “observed data” for the
market equilibria in a market in which there are random disturbances {(e5,5p) @nd variation ¥
in demanders’ incomes and input prices faced by suppliers. The market equilibria in ]
Figure 8.1a are scattered about as the aggregates of all these effects. Figure 8.1b ~ -
suggests the underlying conditions of supply and demand that give rise to these
equilibria. Different outcomes in the supply equation corresponding to different values of
the input price and different income values on the demand. side produce nine regimes,
punctuated by the random variation induced by the disturbances. Given the ambiguous
mass of points, linear regression of quantity on price (and income}) is likely to produce a
result such as that shown by the heavy dotted line in Figure 8.1c. The slope of this
regression barely resembles the slope of the demand equations. Faced -with this
prospect, how is it possible to learn about the slope of the demand curve? The
experiment needed, shown in Figure 8.1d,would involve two elements: (1) hold Income
constant, so we can focus on the demand curve in a particular demand setting. That is
the function of multiple regression L Income is included as a conditioning variable in the
equation. (2) Now that we have focused on a particular set of demand outcomes, move
the supply curve so that the equilibria now trace out the demand function. That is the
function of the changing InputPrice, which is the instrumental variable that we need for
identification of the demand function(s) for this experiment.

!

Price
Frice

Quantity Quiantity
Flyure 8.1a Obszervadl Equililiria Figura 8,1h  Undeiiying Supply and Deinaril Functlons

Price
Price

Quantity Guantity
Figre 8.1c Restits of Linear Regression Figure 8,14 Mput Price as an Instruineital Variable

FIGURE 8.1 Identifying a Demand Curve with an Instrumental Variable;.,
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8.3.4 TWO-STAGE LEAST SQUARES

Thus far, we have assumed that the number of instrumental variables in Z is the same as the
number of variables (exogenous plus endogenous) in X. (In the typical application, the researcher
_provides the necessary instrumental variable for the single endogenous variable in their equation.)

B '-However,, it is possible that the data contain additional instruments. Recall the market
equilibrium application considered in Examples 8.1 and 8.4. Suppose this were an agricultural
market in which there are two exogénous conditions of supply, InputPrice and Rainfall. Then, the
equations of the model are :

b}

-

{Demand) Quantityp = o + ayPrice + azlncome + gp,
(Supply) Quantitys = Bo + B1Price + BalnputPrice + BsRainfall + gs,
(Equilibrium)  Quantityp = Quantitys. ;

Given the approach taken in Example 8.4, it would appear that the researcher could simply
choose either of the two exogenous variables (instruments) in the supply equation for purpose of
identifying the demand equation. (We will turn to the now apparent problem of how to identify
the supply equation in Section 8.4.2.) Intuition should suggest that simply choosing a subset of
the available instrumental variables would waste sample information it seems inevitable that it
will be preferable to use the full matrix Z, even when L > K. The method of two,stage least
squares solves the problem of how to use all the information in the sample when Z contains more
variables than are necessary to construct an instrumental variable estimator.

If Z contains more variables than X, then much of the preceding derivation is unusabie,
because Z'X will be Lx/K with rank X < L and will thus not have an inverse. The crucial result in
all the preceding is plim(Z'e/%) = 0. That is, every column of Z is asymptotically uncorrelated
with & That also means that every linear combination of the columns of Z is also uncorrelated
with g, which suggests that one approach would be to choose K linear combinations of the
columns of Z. Which to choose? One obvious possibility, discarded in the preceding paragraph, is
simply to choose X variables among the I, in Z. Discarding the information contained in the

“extra® L K columns will turn out to be inefficient. A better choice is the projection of the
columns of X in the column space of Z:

X-z@zzy'z%!

We will return shortly to the virtues of this choice. With this choice of instrumental variables, X
for Z, we have '

by = XXXy =[XZZZ) ZX" XLZZ) ' Ly . (3-9)

The estimator of the asymptotic covariance matrix will be &7 times the bracketed matrix in (8-9).
The proofs of consistency and asymptotic normality for this estimator are exactly the same as
before, because our proof was generic for any valid set of instruments, and, X qualifies.

There are two reasons for using this estimator-—one practical, one theoretical. If any
column of X also appears in Z, then that column of X is reproduced exactly in
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X This is easy to show. In the expression for X if the kth column in X is one of the
columns in Z, say the Ith, then the kth column in (Z'Z2)" 17X will be the {th column of

‘an L x Lidentity matrix. This result means that the kth column in X = Z(2/Z)~ Z/X

will be the /th column in Z, which is the kth column in X. This result is important and
useful. Consider what is probably the typlcal application. Suppose that the regression
contains K variables, only one of which, say, the kth, is correlated with the disturbances.
We have one or more instrumental variables in hand, as well as the other X —1 variables
that certainly qualify as instrumental variables in their own right. Theti what we would
use is Z = [Xw,Z1,22, ...}, where we indicate omlssmn of the kth variable by (k) in
the subscrlpt Another useful interpretation of X is that each column is the set of fitted
values when the corresponding column of X is regressed on all the columns of Z, which
is obvious from the definition. It also makes clear why each x; that appears in Z is
perfectly rephcated Every x; provides a perfect predictor for itself, without any help
from the remaining variables in Z. In the example, then, every column of X except the
one that is omitted from X, is rephcated exactly, whereas the one that is omitted is
replaced in X by the predicted values in the regression of this variable on all the z’s.

Of all the different linear combinations of Z that we might choose, X is the most
efficient in the sense that the asymptotic covariance matrix of an IV estimator based on
a linear combination ZF is smaller when ¥ = (Z'Z)~1Z/X than with any other F that
uses all L columns of Z; a fortiori, this result eliminates linear combinations obtained
by dropping any columns of Z. This important result was proved in a seminal paper by
Brundy and Jorgenson (197 1) [See, also, Wooldridge (2002a, pp- 96—-97) ]

We close this section with some practical considerations in the use of the instru-
mental variables estimator. By just multiplying out the matrices in the expression, you
can show that

v= XX "Xy Q ~ /0

: = (X'I-MpX) ' X' - M)y (12655
= (ﬁlﬁ)——lﬁl
because I — Mgz is 1dempotent Thus, when (and only when) X is the set of instruments,

the IV estimator is computed by least squares regression of y on X This conclusion
suggests (only logically; one need not actually do this in two steps), that bry can be

~. computed in two steps, first by computing X then by the least squares regression. For

thisteason, this is called the two-stage least squares (2SLS) estimator. We will revisit this
form of estimator at great length at several points later, particularly in our discussion
of simultaneous equations modelgs One should be carefu! of this approach, however,

in the computation of the asymptotic covariance matrix; 6% should not be based on X
The estimator

2 (y — XbryY (y — Xbry)
Sty = x

is inconsistent for o2, with or without a correction for degrees of freedom.

An obvious question is where one is likely to find a suitable set of instrumental
variables_In many time-series settings, lagged values of the variables in the model
provide natural candidates. In other cases, the answer is less than obvious. The asymp-
totic covariance matrix of the I'V estimator can be rather large if Z is not highly correlated
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with X; the elements of (Z'X) ! grow large. (See Section 12.9 on “weak” instruments.)
Unfortunately, there usually 1s not much choice in the selection of instrumental vari-
ables. The choice of Z.is often- ad hec." There is a bit of a dilemma in this result. It
would seem to suggest that the best choices of instruments are variables that are highly
correlated with X, But the more highly correlated a variable is with the problematic
columns of X, the less defensible the claim that thiese same variables .are uncorrelated
with the disturbances.

Example 12.2 Streams as Instrumenfs
in Hoxby (2000}, the author was interested itf the effect of the amount of scho
a school “market” on educational achieyefment in the market. The equations
of the form

“‘choice” in
interest were

Ifferent sources of heterogeneity at
ount of choice availabie to students,

e 18th and through the 18th centyfes, and handed down to present-day admi
istraiers by historical precedent. In the fofmative years, the author noted, district boyw@-

she notes, that “the number of djgtricts in a given land area is an increasing finction
of the number of natural barriers”,hence, the number of streams in the physjcal market
area provides the needed instruppental variable. [The controversial topic of the study and
the unconventional choice of ingtruments caught the attention of the populaf press, for ex-
ample, http//www.economicpfincipals.com/issues/05.10.30.html, and acaflemic observers,
see, e.g., Rothsteln (2004).

Example 12.3 Labpr Supply Modet
A leading example of/a model in which corralation between regfessor and disturbance Is
likely to arise is in market equilibrivm models. In Example 9.3 we built a “reduced form”
wage equation,

InWage;, /B« + 82 EXDyy + By Exp?; + s Wkt + s Og¢ + B Indie + 7 Southye
+ By SMSAt 4+ Ba MSit + B1o Uniony; +44+ Ed; + Brg Fem; + fla Bl + &,

eturn to the idea of reduced forms in the gétting of simultaneous equations rhodels
in Chapter 13. For the present, the implication #6r our estimated modal is that thi§ market

(One might prefer a different set of sight-hand-side variables in this strugfural equation. Struc-
tural equations are more difficuli€o specify thar reduged forms, whigfi simply contain all the

[ -

AResults on “optimat instruments” appear in White (2001) and Hanscn (1982). In the other dircetion, there
is a contemporary literature on “weak™ instruments, such as Staiger and Stock (1997), which we will explore
in Section 12.9.
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8.5
Example 8F Instrumental Variable Estimation of a Labor Supply Equation
A leading example of a model in which correlation between a regressor and the disturbance is
likely to arise is in market equilibrium models. Cornwell and Rupert (1988) analyzed the returns
to schooling in a panel data set of 595 observations on heads of households. The sample data
are drawn from years 1976+1982 from the “Non-Survey of Economic Opportunity” from the

In Wagey = B + B2 EXpy + 63 Exp,tz + 34 Whksy + Bs Ocey +8s Ind + 87 Southy +
Ba SMSAg + fo WS +Bio Uniory+ B11 Ed + B, Fem; + B3 Bk, + &

where the variables are

Exp = years of full time work experience, 0 if not,

Wks = weeks worked, 0 if not,

Occ =1 if blue.collar occupation, 0 if not,

Ind =1 if the individual works in a manufacturing industry, 0 if not,

South = 1 if the individual resides in the south, 0 if not,

SMSA =1 if the individual resides in an SMSA, 0 if not,

MS =1 if the individual is married, 0 if not,

Union| = 1 if the individual wage is set by a union contract, 0 if not,

Ed = years of education,
Fem =1 if the individual is female, 0 if not,
Bik =1 ifthe individual is black, 0 if not.

See Appendix Table F8.1 for the data source. The main interest of the study, beyond
comparlng various estimation methods, is 844, the return to education. The equation suggested
Yisa reduced form equation; it contains all the variables in the mode! but does not spectfy the
underlymg structural relationships. In contrast, the three; equation model specified in Section
834 is a structural equation system. The reduced form for this model would consist of
separate regressions of Price and Quantity on (1,income, InputPrice, Ramfaii) We will return to
the idea of reduced forms in the setting of simultaneous equations models in Chapter 10. For
the present, the implication for the suggested model is that this market equilibrium equation
represents the outcome of the interplay of supply and demand in a labor market. Arguably, the
supply side of this market might consist of a household iabor supply equation such as

Wksy = vy + v, nWagey + v; Ed; + yq Uniony + yvs Fem; + uy.

(One might prefer a different set of right-hand-side variables in this structural equation. Structural
equations are more difficult to specify than reduced forms. If the number of weeks worked and
the accepted wage offer are determined jointly, then InWage; and uy in this equation are
correlated. We consider two instrumental variable estimators based on

Z1 =1, Ind;, Ed;, Uniony, Femy;]
and
Zz = [1, INd,;f, Ed;, Union,-,, Fem,-, SMSA,{]

>, Table 8.1 presents the three sets of estimates. The least squares estimates are computed using

the standard results in Chapters 3 and 4. One noteworthy result is the very smali coefficient on
the log wage variable. The second set of results is the instrumental variable estimate developed
in Section 8.3.2. Note that here, the single instrument is /ndy. As might be expected, the log wage
coefficient becomes considerably larger. The other coefficients are, perhaps, contradictory. One
might have different expectations about all three coefficients. The third set of coefficients are the
two-stage least squares estimates based on the larger set of instrumental variables. In this case,
SMSA and Ind are both used as instrumental variables.
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7_ | TABLE 1#1 Estimated Labor Supply Equation iAW
-l g OLS IV with Zy IV with Z,

Variable Estimate  ~ Std. Error Estimate Std. Error Estimate Std. Error
Constant 44.7665 1.2153 ° - - 18.8987 13.0590 - 30.7044 4,9997

In Wage 0.7326 0.1972 5.1828 22454 31518 0.8572
Education —0.1532 0.03206 -04600 . 0.1578 —0.3200 0.06607
Union -1.9960 0.1701 —-2.3602 0.2567 C ~2:1940 0.1860
Female —~1.3498 0.2642 0.6957 1.0650 —0.2378 0.4679

$-19

number of weeks worked and the accepted wage
uation are correlated. We corfsider two

vartiables in the model.} If
determined jointly, theaTh Wage and u;; in this
instrumental variablg estimators based on

Zy =1, Indy,

7, Uniomyy, Fem;}

= [1, Indy, Ed;, Uniony;, Fem,;, SME8A,]

To compare the two matrices in the
of the first is X'Z(Z'Z)1Z'X =
negative definite matrix, it foll
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8.4 TWO SPECIFICATION TESTS

There are two aspects of the model that we would be interested in verifying if possible, rather
than assuming at the outset. First, it will emerge in the derivation in Section 8.4.1 that of the two

estimators considered here, least squares and instrumental variables, the first is unambiguously _

+ ‘more. efficient. The IV estimator is robust; it is consistent whether or not plim(X's/n) = 0.
However, if not needed, that is if y = 0, then least squares would be a better estimator by virtue of
its smaller variance.® For this feason, and:possibly in the interest of a test of the theoretical
specification of the model, a test that reveals information about the bias of least squares will be
useful. Second, the use of two, stage least squares with L > K, that is, with “additional”
instruments, entails L — K restrictions on the relationships among the variables in the model. As
might be apparent from the derivation so thus far, when there are X variables in X, some of which
may be endogenous, then there must be at least X variables in Z in order to identify the
parameters of the model, that is, to obtain consistent estimators of the parameters using the
information in the sample. When there is an excess of instruments, one is actually imposing
additional, arguably superfluous restrictions on the process generating the data. Consider, once
again, the agricultural market example at the beginning of Section 8.3.4. In that structure, it is
certainly safe to assume that Rainfall is an exogenous event that is uncorrelated with the
disturbances in the demand equation. But, it is conceivable that the interplay of the markets
involved might be such that the InputPrice is correlated with the shocks in the demand equation.
In the market for bio:fuels, corn is both an input in the market supply and an output in other
markets.
assutnption that fnputFrice is uncorrelated with €p, at least by some measure unnecessarily since
the parameters of the demand equation can be estimated without this assumption. This section
will describe two specification tests that considers these aspects of the IV estimator.

1t is possible, of course, that even if least squares is inconsistent, it might still be more precise.
If LS is only slightly biased, but has a much smaller variance than IV, then by the expected

squared error criterion, variance plus squared bias, least squares might still prove the preferred

estimator. This turns out to be nearly impossible to verify empirically. We will revisit the issue in
passing at a few points later in the text.

In treating InputPrice as exogenous in that example, we would be imposing the
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TABLE 121 Estimated Labor SUpply Equation L

_OLS _ 1V with 2, / WVwithZ,
Variable Estimate  Std, Ereor © Estimate mrmr  Estimate Std, Error
Constant 447665 12153 18.8987~" 13.0590 30.7044  4.9997
In Wage 07326 01972 51828 - 22454 . 31518 0.8572
Education -0.1532  0.03206 4600 0.1578 ~0.3200"  0.06607
Union -1.9960  0.1701 —2.3602 0.2567 -2.19 0.1860
Female ~13498 02642 0.6957 1.0650 =02378  (0.4679

variables in the mogdef]} If the number of waeks workeg-dnd the accepted wage offer are
determined jointly;then In Wage and u;; in this eqyation are correfated. We consider two
instrumental yafiable estimators based on

Z1 = [1, h'?dfr, Edf,

o, Fem;]

£o = [14hdy, Ed;, Unionis, Femy, SMSA;]

Table 12.1 presents the
standard results in Ch
log wage variabl

ee sets of estimates. The OLS resylis”are computed using the
ers 3 and 4. Ona noteworthy result istie very small coefficient on the
second set of results is the instru tal variable estimate developed in
Section 12.3.2, As'fnight be expected, the log wage coéfficient becomes considerabiy larger.
The other cogificients are, perhaps, contradictory. One have might different expectations
about all thr€e coefficients. The third set gf-€oefficients are the two-stage least squares
estimates based on the larger set of instruwfiental variables.

ﬂ"‘% TZ24° THE HAUSMAN AND WU SPECIFICATION
TESTS ANDAN-ARRIICATION-FO

2.4/

(L3)

It might not be obvious that the regres in the model are correlated with the dis- e‘S‘é_; Mﬁ"‘[br s
turbances or that the regressors argaficasured with error. If not, there would be some '

benefit to using the least squares¥estimator rather than the IV estimatW’cr—a/

comparison of the two covariance matrices under the hypothesis that both fire consistent,

that is, assuming plim (1/m)X'e = 0. The difference between the asymptotic covatiance
matrices of the two estimators is

2 XZZD X\ o2 XX\
Asy. Var[bry] — Asy. Var[brs] = f—plim(————- { 1) ' X) ~ L plim (___x)
' I ¥ L 1]

2 .
=~ plimn|[(XZZZ) 7 ZX) T - (XX) 1],

To compare the two matrices in the brackets, we can compare their inverses, The inverse
of the first is X'Z(Z/'Z)"'Z'X = X'(1 — Mz)X = X'X ~ X'MzX. Because My is a non-
negative definite matrix, it follows that X'MzX is also. So, X' Z{Z'Z) " Z'X equals X'X
minus a nonnegative definite matrix. Because X'Z(Z'Z) ' Z'X is smaller, in the matrix
sense, than X'X, its inverse is larger. Under the hypothesis, the asymptotic covariance
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matrix of the LS estimator is never larger than that of the IV estimator, and it will

actually be smaller unless all the columns of X are perfectly predicted by regressions on ~ el T
- Z. Thus, we have established that if plim(1/ nX'e = 0—-that is, if LS is consistent-—then

it is a preferred estimator. (Of course, we knew that from all our earlier results on the

virtues of least squares) -

Our interest in the difference between these two estimators goes beyond the ques-
tion of efficiency. The null hypothesis of interest will usually be specifically whether
plim(1/#)X’e = 0. Seeking the covariance between X and g through (1/n)X’e is fruit-
less, of course, because the normal equations produce (1/ nX'e = 0. In a seminal paper,
Hausman (1978) suggested an alternative testing strategy. [Earher work by Wu (1973)
and Durbin (1954) produced what turns out to be the same test.] The logic of Hausman’s
approach is as follows. Under the null hypothesis, we have two consistent estimators of
B, bis and bry. Under the alternative hypothesis, only one of these, bry, is consistent.
The suggestion, then, is to examine d = by —brs. Under the null hypothesis, plimd = 0,
whereas under the alternative, plim d # 0. Using a strategy we have used at various
points before, we might test this hypothesis with a Wald statistic,

H =d'{Est. Asy. Var[d]} " 4.
The asymptotic covariance matrix we need for the test is
Asy. Vai[bry — brs] = Asy. Varbyy] + Asy. Varfbrs]
h — Asy. Cov([biv, brs] — Asy. Covibes, brv].

At this point, the test is straightforward, save for the considerable complication that
we do not have an expression for the covariance term. Hausman gives a fundamental
result that allows us to proceed. Paraphrased slightly,

the covariance between an efficient estimator, b g, of a parameter vector, 8, and its
difference from an inefficient estimator, by, of the same parameter vector, bg — b L
Is zero.

For our case, b is by s and by is brv. By Hausman’s result we have

Covlbg, bz — by] = Var[bg] — Cov[bg, b;] =0
or

Covlbg, bs] = Var{bg],
s0,
Asy. Var[biy — bis] = Asy. Var[bv] — Asy. Var[bys].
Inserting this useful result into our Wald statistic and reverting to our empirical estimates
of these quantities, we have
H = (bry —bysY' {Est. Asy. Var[bry] — Est. Asy. Vaxfbis} " (bry — brs).

Under the null hypothesis, we are using two different, but consistent, estimators of o2,
If we use s° as the common estimator, then the statistic will be
| FIEK) - XXl

H= 3
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It is tempting to invoke our results for the full rank quadratic form in a normal ,

vector and conclude the degrees of freedom for this chi-squared statistic is K. But that e R
- method will usually be incorrect, and worse yet, unless X and Z have no variables in

common, the rank of the matrix in this statistic is less than K, and the ordinary inverse

will not even exist, In most cases, at least some of the variables in X will also appear

in Z. (In almost any application, X and Z will both contain the constant term.) That

is, some of the variables in Xare known to be uncorrelated with the disturbances, For

example, the usual case will involve a single variable that is thought to be problematic

or that is measured with error, In this case, our hypothesis, plim(1/n)X’e = 0, does not

really involve all X variables, because a subset of the elements in this vector, say, Ko,

are known to be zero. As such, the quadratic form in the Wald test is being used to test g

only K* = K — K hypotheses. It is easy (and useful) to show that, in fact, H is a rank '

K* quadratic form. Since Z(Z'Z)~ 17! is an idempotent matrix, (,X’X) X’X Using this

result and expanding d, we find

d= XXXy - X'X)"'Xy
= XXXy - R XXXy
= XXX/ (y - XX'X)IX'y)
= (X'X) X,

where ¢ is the vector of least squares remduals Recall that Ky of the columns in X are
the original variables in X, Suppose that these variables are the first K. Thus, the first
K rows of X'e are the same as the first Ky rows of X'e, which are, of course . (This
statement does not mean that the first Ky elements of d are zero.) So, we can write d as

) et [ 0] et [0
: 4= &R g0, | = &R |1

where X* is the K* variables in x that are not in z.

Finally, denote the entire matrix in H by W. (Because that ordinary inverse may
not exist, this matrix will have to be a generalized inverse; see Section A.6.12.) Then,
denoting the whole matrix product by P, we obtain

H=[0 g"] XX WEXX)™ [;;} ] = [0 g"]P [0 ] = "Puq’,

where P,, is the lower right K* x K* submatrix of P. We now have the end result.
Algebraically, H is actually a quadratic form in a K* vector, so K* is the degrees of
freedom for the test.

The preceding Wald test requires a generalized inverse [see Hausman and
Taylor (1981)], so it is going to be a bit cumbersome. In fact, one need not actually
approach the test in this form, and it can be carried out with any regression program.
The alternative yariable addition test approach devised by Wu (1973) is simpler. An
F statistic with K* and n — K — K* degrees of freedom can be used to test the joint
significance of the elements of y in the augmented regression g1l

y=Xg+X'y +¢", (12-16)
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where X* are the fitted values in regressions of the variables in X* on Z. This result is
eqmvalent to the Hausman test for this model. [Algebraic derivations of this result can Sl
- be found in the articles and in Davidson and MacKinnon (2004, Section 8.7).]

Example 1%:3’ (COntmued) Labor Supply Model 8. s
For the labor supply equation estimated in Example Md the Wu (variable addition)
test to examine the endogeneity of the In Wage variable. For the first step, In Wage,, is
regressed an z4,¢. The predicted value from this equation is then added to the least squares
regression of WKs;; on X;;. The results of this regression are

Wks; = 18.8987 + 0.6938 InWags,, — 0.4600 £c; — 2.3602 Unjony
(12.3284) (0.1980) (0.1490)  (0.2423) s

+ 0.6958 Femn; -+ 4.4891 In Wage,, + us,
(1.0054) (2.1290)

where the estimated standard errors are in parentheses. The ¢ ratio on the fitted log wage
coefficient is 2.108, which is larger than the critical value from the standard normal table of
1.96. Therefore, the hypothesis of exogeneity of the log Wage variable is rejected.

Although most of the preceding results are specific to this test of correlation between
some of the columns of X and the disturbances, g, the Hausman test is general. To
reiterate, when we have 2 situation in which we have a pau: of estimators, 6 g and, ) 1s
such that under Hy: é gand B 1 are both consistent and 8 s efficient relative to ] b while
under Hi: #; remains consistent while § i is 1ncon31stent then we can form a test of the
hypothesis by referring the Hausman statistic, (7

= (0; — 05 {Est. Asy. Var[f;] ~ Est. Asy. Var[§ ]} " 8, — 65 -5 ¥2[7],

to the appropriate critical value for the chi-squared distribution. The appropriate

degrees of freedom for the test, J, will depend on the context. Moreover, some sort
of generalized inverse matrix may be needed for the matrix, although in at least o ﬁ/
common case, the random effects regression model (see Chapte € appropriate I :

approach is to extract some rows and columns from the matrix instead. The short rank
issue is not general. Many applications can be handled directly in this form with a
full rank quadratic form. Moreover, the Wu approach is specific to this application.
Another applications that we will consider, the independence from irrelevant alterna-
tives test for the multinomial logit model, does not lend itself to the regression approach
and is typically handled using the Wald statistic and the full rank quadratic form. As a
final note, observe that the short rank of the matrix in the Wald statistic is an algebraic
resuit. The failure of the matrix in the Wald statistic to be positive definite, however,
is sometimes a finite, sample problem that is not part of the model structure. In such
a case, forcing a solution by using a generalized inverse may be misleading. Hausman
suggests that in this instance, the appropriate conclusion might be simply to take the
result as zer% and, by implication, not reject the null hypothesis.

Example 2= Hausman Test for a Consumption Function
Quarterly data for_1950.1 to 2000.4 on a number of macroeconomic variables appear in

is model is suggmaled-asa candidate for the
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possibility of bias due to correlation between ¥; and &. Gonsider instrumental variables

estimation using Y;..; and C;..1 as the instruments for ¥;, and, of course, the constant term is

its own Instrument. One cbservation is lost because of the lagged values, so the results are
based on 203 quarterly observations. The Hausman statistic can be computed in two ways:

1. Use the Wald statistic for & with the McorerPenrose generalized inverse. The common
s? is the one computed by least squares under the nuil hypotheslis of no correlation. With
this computation, H == 8,481, There s K* = 1 dedree of freedom. The 95 percent critical
value from the chi-squared table is 3.84. Therefore, we reject the null hypothesis of no
correlation between Y; and &;. .7y .

2. Using the Wu statistic based on (4-&1-8), we regress C; on a constant, Y;, and the
predicted value in a regression of ¥; on a consta t—1 and C;_,. The i ratio on the
prediction is 2.968, so the F statistic with 1 and(201 Hegrees of freedom is 8.809. The
critical value for this F distribution is @o, again,the null hypothesis is rejected.

3.84% pde,

VA

12.5 MEASUREMENT ERROR

Thus far, it has been assumed (at least implicitly) thatthe data used to estimate the
parameters of our models are true measurements optheir theoretical counterparts. In
practice, this situation happens only in the best gf€ircumnstances. Al sorts of measure-
ment problems creep into the data that musyBe used in our analyses. Even carefully
constructed survey data do not always cgeform exactly to the varighles the analysts
have in mind for their regressions. Aggpegate statistics such as GD® are only estimates
of their theoretical counterparts, andSome variables, such as defreciation, the services
of capital, and “the interest rate,” 46 not even exist in an agpeed-upon theory. At worst,
there may be no physical meagute corresponding to the #ariable in our model; intelhi-
gence, education, and permgrient income are but a few’examples. Nonetheless, they all

ple asymptotic results fopthe classical regression model.

"The simplest case (o gpélyze is that of a regression modelAvith a single regressor and
no constant term. AlthgGgh this case is admittedly unrealjtic, it Hlustrates the essential
concepts, and we shall generalize it presently. Assume #hat the model,

(12-11)

the assumptions of the classical #ormal regression model. If data on y*
le by least squares. Suppose, however,

conforms to
and x* wer€ available, then § would be esti
that the‘observed data are only imperfecily measured versions of y* and x*. In the
context of an example, suppose that y* j¢'In{output/labor) and x* is In(capital/labor).
Neither factor input can be measured #ith precision, so the observed y and x contain

2See, for example, Imbens and Hyslop (2601).




