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APPENDIX A
e T

MATRIX ALGEBRA

At TERMINOLOGY

A mairix is a rectangular array of numbers, denoted
masx

a1 A2 cee g
a Ivs

A= lag]=[Als= |92 T2 o G|, (A-1)
Gm Gm2 ccc K

The typical element is used to denote the matrix. A subscripted element of a matrix is always
read 85 Grow, column- An example is given in Table A.l. In these data, the rows are identified with
years and the columns with particular variables.

A yector is an ordered set of numbers arranged either in a row or a column. In view of the
preceding, a row vector is also a matrix with one row, whereas a column vector is a matrix with one
cotumn, Thus, in Table A1, the five variables observed for 1972 (mcladmg the date) constifute a
row vector, whereas the time series of nine values for consumption is a column vector,

A matrix can also be viewed as a set of column vectors or as a set of row vectors:y The
dimensions of a matrix are the numbers of rows and columns it contains. “A is an # x X matrix”
(1ead “n by K) will always mean that A has n rows and X columns, If » equals X, then Aisa

Squaren matrix Several particular types of square matrices occur frequently in econometncs.

* A syminefric mafrix is one in which @, = a, for alli and £.

¢ Adiagonaly matrix is a square matrix whose only nonzero efements appear on the main
dingonal, | that is, moving from upper left to lower right.

o A scalar r matrix is a diagonal matrix with the same value ir: all diagonal elements.

¢ An idenﬂty matrix is a scalar matrix with ones on the dlagonal This matrix is always
denoted I. A subscript is sometimes included to indicate its size, or order. For example,
L indicates a 4 x 4 identity matrix.

¢ A trisngular matrlx is one that has only zeros either above or below the main diagonal. If
the zeros are above the diagonal, the matrix is lower triangular,

A.2 ALGEBRAIC MANIPULATION OF MATRICES

AZ1 EQUALITY OF MATRICES

Matrices (or veciors) A and B are equal if and only if they have the same dimensions and each
clement of A equals the corresponding element of B. That is,

A=B ifendonlyifaz=f, foralliandk. (A-2)

[

“YHenceforth, we shall denote a matrix by & boldfaced capital letter, asis A in {A-1), and a vector as a boldfaced
lowercase ietter, as in 5. Uniess atherwise noted, a vector will always be assumed to be a column vector.

045



Greenes-50558

book

June 25, 2007 12:52

946 PART VIl + Appendlces

TABLE A.1 Matrix of Macroeconomic Data

) Colamn
2 3 * 5

b Consumption . GNP 4 Discount Rate

Row  Year  (billions of dollars)  (billions of dollars) GNP Defiwtor  (N.Y Fed., avp.)
1 1972 737.1 11859 1.0000 4.50
2 1973 812.0 1326.4 “LO575 644
3 1974 808.1 1434.2 11508 783
4 1975 976.4 15492 12579 6.25
5 1976 - 10843 171846 13234 5.50
6 1977 1204.4 19183 1.4005 5.46
7 1978 1346.5 2163.9 1.5042 7.46
8 1979 : 1507.2 2417.8 1.6342 1028
9 1980 1667.2 26331 1.7864 11.77

Source: Data from the Economic Report of the President (Washingion, I.C.: US. Government Printing
Office, 1983). -

£.2.2 TRANSPOSITION

The transposc of a makix A. denoted A', is obtained by creating the matrix whose kth row is
the Zth column of the orlgma] matrix. Thus, if B = A/, then each column of A will appear as the
corresponding row of B. If A is n x K, then A" is K X M,

An equivalent definition of the transpose of a matrix is

B=A&by=ay foralliands. {A-3)
The definition of a symmetric matrix implies that
if (and dnly if) A is symmetric. then A = A" {A-4)
It atso followsfrom the definition that for any A,
(A = A (A-5)
Finally, the transpose of a column vector, g, is a Tow vector:

=la; a .-+ a4

A2.3 MATRIX ADDITION
The operations of addition and subtraction are extended to matrices by defining
C=A+B = [ay +byl (A-6)
A~ B = [au — bl {A-T)

Matrices cannot be added unless they have the same dimensions, in which case they are said to be
conformable for addition. A zeroamatrix or nulfl matrix is one whese elements are all zero. In the
addition of matrices, the zero matrix plays the same role as the scatar 0 in scalar addition; that is,

A+0=A (A-8)
It foltows from ( A-6) that matrix addition is commutative,

A+B=B+A (A9
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and associative,

 A+BHC=A+B+O), (A10)

and that N
(A+BY = A’ + P (A-1D)

A.2.4 VECTOR MULTIPLICATION

Matrices are multiplied by using the inner product. The inner product, or det product, of two
vectors, a and b, is a scalar and is written

“b =_alb1 + ﬂ2b2 de- "!“ﬂnbu- (A"IZ)

Note that the inner product is written as the transpose of vector a times vector b a row veclor
times a column vector. In (A-12), each term a,b; equais b a5 hence

ab=b's. (A-13)

£.2.5 A NOTATION FOR ROWS AND COLUMNMNS OF A MATRIX

‘We need a notation for the fth row of a matrix. Throughout this book, an untransposed vector
will ajways be a column vector. However, we will often require a notation for the column vector
that is the transpose of a row of a matrix. This has the potential to create some ambiguity, bat the
following convention based on the subscripts will suffice for our work throughout this text:

* g, OF @y Or 3y, will denote column &, I, or m of the matrix A,
* @01 1j OF 3 OF 8 will denote the column vector formed by the transpose of row  (A-14)
i, j, t.or s of matrix A. Thus, o is row { of A.

For example, from the data in Table A.1 it might be convenient to speak of x;, where i = 1972
asthe 3 x 1 veCtor containing the five variables measured for the year 1972, that is, the transpose
of the 1972 row of the matrix. In our applications, the common association of subscripts “i™ and
* " with individual i or j,and “t* and “s™ with time periods ¢ and 5 will be natural.

A.2.6 MATRIX MULTIPLICATION AND SCALAR MULTIPLICATION

For an n x K matrix A and a K x M matrix B, the product matrix, C = AR, is an # x M matrix
whase ikth element is the inrer product of row i of A and column kof B. Thus. the product matrix
Cis

C= AB = cy = aib;. (A-15)

[Note our use of (A-14) in (A-15).] To multiply two matrices, the number of columns in the first

. must be the same as the number of rows in the second, in which case they are conformable for

A lml!tlpllcai‘icm.2 Multlpllcatmn of matrices is generally not commutative. In some cases, AB may

P exist. but BA may be undefined or, if it does exist, may have different dimensions. Ir gcnela!

however, even if AB and BA do have the same dimensions, they will not be equal. In view of

this, we define premuh:phMon ard postmultiplication of matrices. In the product AB, Bis
premultiplied by A, whereas A is posmulnpixed by B.

2 A simple way to check the conformabiiity of two matrices for multiplication is to write down the dimensions
of the operation, for example, (n.x K) times (K x A). The inner dimensions must be equal; the result has
dimensions equal to the outer values.
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Scalar multiplication of a matrix is the operation of multiplying every element of the matrix
by a given scalar. For scalar ¢ and matrix A,

cA=lcan]. . (A-16)
The product of a matrix and a'vector is writien
£=ab.

The number of elements in b must equal the number of columns in A; the result is a vecior with
number of elements equal to the number of rows in A. For example.

5 4 2

We can interpret this in two ways. First, it is & compact way of writing the three equations

= da +2b + ic,
4 =2a +Qb +1c,
s 1=1la+1b+0c
Second, by writing the set of equations as
s 4 2] 17
4 =ai2l +bis| +ciil,
1 1 1 0

we see that the right-hand side is a linear combination of the columns of the matrix where the
coefficients are the elements of the vector. For the general case,

- ¢=Ab=bm + b+ + bxax (A-17)

In the calcularlon of a matrix product C = AB, each column of € is a linear combination of the
columns of A where the cocfficients are the elements in the conespondmg column of B. That is,

C=AB & = Ab;. (A-18)

Let gx be a column vector that has zeros everywhere except for a one in the kth position.
Then Ag; is a linear combination of the columns of A in which the coefficient on every column
but the kth is zero, whereas that on the &th is one. The result is

B = Ay (A~19)
Combining this resuit with (A-17) produces
B 82 - s)=Al & - ) =Al=A. (A-20)

In matrix muitiplication, the identity matrix is amalogous to the scalar 1. For auy matrix or vector
A, Al = A, In addition, 1A = A, although if A is not a square matrix. the two identity matrices
are of different orders.

A conformable matrix of zeros produces the expected result: AQ = 6.
Some general rules for matrix mutltiplication are as follows:

¢ Associative law: (AB)C = A(BC). {A-21)
¢ Distribuiive law: A(B+C)=AB+AC, (A-22)
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¢ Transpese of a product: (AB)' = B'A". ' (A-23)
] Transpose of an cxtendetl product' (ABC)Y = CB'A". (A-24)

A.27 SUMS OF VALUES -

Denote by i a vector that comtaing a column of ones. Then,

L]
N u=ntnto4x=Ix L (4-25)

=1

1f all elements in x are equal to the same constant a, then x = af and

.
> _xu=ih=adi=na. (A<26)
. i=l .

For any constant @ and vector x.

Eax; _azx, -—ai "x. (A-27)

i=1

If @ = 1/n. then we obtain the arithmetic mean,

=~ EJ‘; 1 . {A‘Zs)

n
=1

from which it follows that

E X = i'x = u¥.

I=l

The sum of squares of the elements in a vector x is

E.g
o =xx (A-29)
=1

while the sum of the products of the 1 elements in vectors x and y is

> my=xy. (A-30)

i=l

By the definition of matrix muitiplication,

X Xw =xxl (A-31)
is the inner product of the kth and /th columns of X. For example, for the data set given in
Table A.1. if we define X as the 9 x 3 matrix containing (year, consumption. GNP}, then

1980
[XX]ss = ): consumption, GNP, = 737.1(1185.9) + - - + 1667.2(2633.1)
=197 i
= 19,743.711.34,

1f X is # x K, then [again using (A-14)]
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This form shows that the X x K matrix X'X is the sum of # X x K matrices, each formed from
a single row (year) of X. For the example given earlier, this sum is of nine 3 x 3 matrices, each

formed from Oone row (yeal } of the original data matrix.

A2B A USEFUL IDEMPOTENT MATRIX
weénder \ng, matri 'X
A fundamental matrix in statistics is the gﬁ%ﬂn! is used to transform data to deviations from

their mean. First,

I'x. (A-32}

| -

The matrix (1 /n)ii' is an n x n matrix with every element equal to 1/a. The set of values in
deviations form is

¥ —X
B == [av- ;’;ﬁ.iixJ- (A-33)
dn —X
Because x = [x.
A = I - Lix| = 1~£§'x«— % (A-34)
Ko =l A= e R =M .

Henceforth, the symbol M” will be used only for this matrix. Its diagonal elements are all
(1 — 1/n). and its off-diagonal elements are —1/r. The matrix M® is primarily useful in com-
puting sums of squared deviations, Some computations are Slmpllﬁed by the result

MO = [g\— 1ii.']. = D) =0,
, il s i

which implies that ¥M° = (/. The sum of deviations about the mean is then

z(x, %) =ﬂ1’[m‘f§] =0y =0

{A-25)
=t
For a single variable X, the sum of squared deviations about the mean is
(A-36)

S u-xp= ( ' xf) -
_f=1 ’ At

In matrix terms,

S 3 = (x—FiY (x - Fih = (MO (M) = XMOMOx,

{=1

Two properues of M are useful at this point. First. because ail off-diagonal elements of M equal
—1/n. M0 is symmetric. Second, as can easily be verified by multiplication, M° is equal to its
square; M"M° M.
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. DEFINITION A.1 ldempotent Matrix
N < Anidempotent matrix, M, is one that is equal to its square, that is M’ = MM = M. ™M
is a symmelric xdemporem matrix {all of the idempoteni matrices we shall encounter are
symmetric), then M’M =M.

Thus, M? is a symmetric idempolent matrix. Combining results, we obtain

-}
E (x —XF =xMx. {A-37)
i=1
Consider constructing a matrix of sums of squares and cross products in deviations from the
column means. For two vectors x ancvlf ¥.
e ¥

3 o —Fn - = 'y, (A-38)
i=1

S50

~* e a
Zl:(xa' xX) Zi(xl' X )‘yi' Y)] lix,wx X’Muy‘l
= fu= / iy {A-39)

Z - WOx .ME’V '
Zm ~ P~ ) E(:v.- -3y MO
_i=1
If we put the two column vectors x and ¥ in an # x 2 matrix Z = [x, y], then M°Z is lhe 2
marix in which the two columns of data are in mean deviation form, Then

(MZyM'Z) = ZM'M°Z = Z’MZ.

A.3 GEOMETRY OF MATRICES

A31 VECTOR SPACES

The K elements of a column vector

RO
2= [®
ag
If,)‘;' 6, can be viewed as the coordinates of a point in a_K-dimensional space, as shown in Figure A.1
) for two dimensions. or as the definition of the line segment connecting the origin and the point
defined by,a.
Tiwo basic arithmetic npt,rauons are defined for vectors, seular multiplication and addition. A
scalar multiple of a vector. 4, is another veclor, s ay #*, whose ‘coordinates : are the scalar multiple
of #'s coordinates. Thus. in Figure A.1,

_ 1 * _ — 2 k. 1 _ _%
a"'{z]‘ Ja.] _2{\'—_[4]’ A _—}%'—— -1 "
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Second coordinate -

First coordinate

5, —1—_ -— —

EIGURE A1 Vestor Space,

The set of all possible scalar multiples of a is the line through the origin, ¢ and a. Any scalar
multiple of a is a segment of this line. The sum of two vectors aand b is a third vector whose
coordinates are the sums of the corr esponding coordinates of a zmd b. For example,

N

Geometrically, ¢ is obtained by moving in the distance and direction defined by b from the tip of

2 or, because addition is commutative, from the tip of b in the distance and direction of 2. No}e

The two-dimensional plane is the set of all vectors with two real-valued coordinates. We label
this set R? (“R two,” not “R squared™). it has two important properties,

® ]R2 is closed under scalar multiplication; every scalar multiple of a vector in R? is also

in IR,
. R2 is cdlosed under addition; the sum of any two vectors in the plane is always a vector

in IR2

DEFINITION A.2  Vector Space

A vector space is any set of vecrors that is closed under scalar multiplication and
addition.

Another example is the set of ali real numbers, that is, B!, that is, the set of vectors with one real

element. In general, that set of K-element vectors all of whose elements are real numbers is a

K-dimensional vector space. denoted RX. The preceding examples are drawn in R2,

=

Uy, aJ—VEC"‘OPS Qre, _s-f-a.cieﬁ- CaSesS o

lte g,

"'ff"nca]:c\ end add k.
~6) for mq i~

Qand (A

=
CE
D
iy
QG

P
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Second coordinate

FIGURE A.2 " Unear Combinations of Vectors,

A.3.2 LINEAR COMBINATIONS OF VECTORS AND BASIS VECTORS

z"',_. ||_:_"| '-._‘I
) In Figure AL ¢=a+ b and d=2a" + b. But since a*=2a,d=2a + b. Also, e=4a + 2b and
I=h+(-a)= b - As this exercise suggesls, any “Vector in | le could be obtainéd as & linear

e
¢ _,,'\.‘_’,}C’Y

o= ‘combmaﬁon of a and b.

DEFINITION A.3 Basis Vectors

A set of vectors in a vector space is a basis for that vector space if any vecior in the vector
space can be wrilten as a linear combination of that set of veclors.

As is suggested by Figure A.2, any pair of two-clement vectors, including a and b, that point
in different directions will form a basis torle Consider an arbitrary set of vectors in R a.b, and
_¢. It aand b are a basis. then we can find numbers cy and a2 such that c=mg +a2b Let

a by <
o] 2B B

Then
€ = ayd; +aaby,
‘ (A-40}

C2 = ayay + azhs.
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The solutians Lo this pair of equations are

bicy — e o =R A0
E a;bz bmz mb’ b:az

This result gives a umque :sO]lIllOI‘l unless (@B — by} = 0. If (@by — byaz) = 0, then
@y /@y = by /by, which means that b is just a multiple ot;g This returns us to our original condition,
that a and b must point in different directions. The implication is that if a and b are any pair of
vectors for which the denominator in {A-41) is not zerg, then any other vector g can be formed
as a upique linear combination of g and k. The basis of a vector space is not unique, since any
set of vectors that satisfies the definition will do. But for any particular basis, only one linear
combination of them will produce another particular vector in the vector space,

oy = (A-41)

A3.2 LINEAR DEPENDENCE

As the preceding should suggest, K vectors are required to form = basis for RX. Although the
basis for a vector space is not unigue, not every set of X vectors will suffice, In Figure A. 2,2 and
b_form a basis for R?, but a and a* do not. The difference between these two pairs is that a andb
are linearly independent, whereas a and a* are linearly dependent.

DEFINITION A.4 Linear Dependence
A sei ofveciors is Nnearly dependent if awy one of the veciors in the sef can be writien as

a lineqy combination of the others.

TRt

Because a* is a multiple of a, a and a* are linearly dependent. For another example, if
13 3 10
el el

ath- %..c =9

then

sog, b, and ¢ are linearty dependent. Any of the three possible pairs of them, however, are linearly
mdependenr

DEFINITEON A.5 Linear Independence

A set of vectors is finearly independent if and only if the only solution to
' @ ooyt - ogig =0

is

o=y =- =g =0

The preceding implies the following equivalent definition of a basis.
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DEFINITION A.6 Basis for a Vector Space
A basis for « vector space of K dimensions is any set of K linearly independent vectors in
that vector space.

Because any (K + 1)st vector can be written as a linear cambination of the K basis vectors, it
follows that any set of more than K vectors in RX must be linearly dependent.

A3.4 SUBSPACES

DEFINITION A7 Spanning Vectors
The set of all linear combinations of a set of vectors is the vector space that is spanned by
those vectors.

For example, by definition, the space spanned by a basis for RE is RE: An implication of this
is that if 2 and b are a basis for R and «© is another vector in ]R2 ‘the space spanned by [a, b, ] is,
again, R%. Of course, £.is superﬂuous Nunelheless, any vector in Rz can be expressed as a ]lﬂbal
combination of a, b, and ¢ {The linear combination will not be 1 unigue. Suppose, for example,
that a and ¢ are ‘alS0 a basis for R2)

COHSId&l the set of three coordinate vectors whose third element is zero. In particular,

=[m a 0] and W =[h b 0]

Vectors & and b do not span the three-dimensional space R*. Every linear combination of a and
b has a third coordinate equal to zero; thus, for instance, c‘ = [1 2 3] could not be written as a
‘linear combination of 2 and b. If (@ by —a:b) is not equql to zero {see (A-41)]; however, then
any vector whose third elemem is zere can be expressed as a linear combmatzon t of & and b, So,
although a and b do not span R’, they do span something, the set of vectors in R* whose third
element is zero. This area is a pl'me (the “floor” of the box in a three-dimensional figure), This
plane in R? is a subspace in this instance, a two-dimensional suhspace Note that if is rot R>;
it is the set of vectors in R? whose third coordinate is 0. Any plane in R® #egardicss of fiow
it is oriented, forms a two-dimensional subspace. Any two independent vectors that lie in that

subspace will span it. But without a third vector that points in some other direction, we can‘n(g____, ?Q les

span any more of B3 than this two-dimensional part of it. By the same logic, any line in R*s a
one-dimensional subspace, in this case, the set of all vectors in R* whose caordinates are multiples
of those of the vector that define the line. A subspace is a vector space in all the respects in which
we have defined it. We emphasize that it is ziof a vecior space of lower dimension. For example,

JR? is not a subspace of R?. The essential difference is the number of dimensions in the vectors.

The vectors in R? that form a two-dimensiona stbspace are still three-element vectors; they all
Just happen to lie in the same plane.

The space spanned by a set of vectors in R¥ has at most X dimensions. If this space has fewer
than K dimensions, it is a subspace, or hyperplane. But the important point in the preceding
discussion is that every set of vectors spans some.space; it may be the entire space in which the
vectors reside, or it may be some subspace of it,
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A.3.5 RANK OF A MATRIX

We view a matrix as a set of colamn vectors, The number of columns in the matrix equals the
“number of vectors in the 5ct and the number of rows equals the number of coordinates in each
column vector. .

DEFINITION A.8 Column Space
The column space of a matrix is the vector space that is spanned by its column
vectors.

If the matrix contains K rows, its column space might have X dimensions. But, as we have seen,
it might have fewer dlmensmna, the column vectors might be linearly dependent, or there might
be fewer than X of them. Consider the matrix

1 5
;&m 2
7

—_h

6
8
8

1t contains three vectors from R?, but the third is the sum of the first two, 50 the column space of
this matrix cannot have three dimensions. Nor does it have only one, because the three cotumns
are not all scalar multiples of one another. Hence, it has two, and the column space of this matrix
is a two-dimensional subspace of R’.

DEFINITION A.9 Column Rank
The column rank of a matrix is the dimension of the vector space that is spanned by its
column VMOJ:S'

It foltows that the column rank of a matrix is equal to the largest nember of linearly inde-
pendent column vectors it contains. The column rank of ﬁ is 2. For another specific example,
consider

=

N
U NI
Ll - T o ]
T T Y

1t can be shown {we shalil see how later) that this mawix has a column rank equal to 3. Each
column of B is 2 vector inR?, so the column space of B is a three-dimensional subspace of R*.

Consider, instead, the set of vectors obtained by using the rows of B instead of the cotumns.
The new matrix would be

L)

4

This matrix is composed of four column vectors from R?. (Note that € is Br.) The column space of

Cis at most R?, since four vectors in R® must be linearly dependent. In fact, the column space of
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.C.is R?. Although this is not the same as the column space of B, it does have the same dimension.
Thus, the column rank of C and the column rank of 8 are the same. But the columns of C are
the rows of B, Thus, the column rank of € equals the row rank of B, That the column and row
ranks of B are the same is not a ccuncudence The general Fesults (whlch are equivalent) are as
folfows. . :

THEOREM A.1 Equality of Row and Coluinn Rank
The column rank and row rank of a matrix are equal. By the definition of row rank and
its counterpart for column rank, we obtain the coroilary,

the row space and colymn space of a matrix have the same dimension. {A-42)

Theorem A.1 holds regardless of the actual row and column rank. 1f the column rank of a
matrix happens to equal the number of columns it contains, then the matrix is said to have ;’ull
colump rank. Full row rank is defined likewise. Because the row and column ranks of a matrix
are always equal we can speak unambiguously of the rank of a matrix. For either the row rank
or the column rank (and, at this point, we shall drop the distinction),

rank{A) = rank{;_&_') =< min{number of rows, number of columns). {A-43)

In most contexts, we shall be interested in the columns of the matrices we manipulate. We shall
use the term full kank to describe a matrix whose rank is equal to the number of columns it
contains,

Of particular interest will be the distinction between full rank and short rank matrices. The
distinction turns on the solutions to Ax = 0. If a nonzerogg for which Ax =0 exists, then A
does not have full rank. Equivalently, if the nonzero x exists, then the columns of A are linearly
dependeni and at least one of them can be expressed as a linear combination of the others. For
exampie, a nonzero set of solutions to

13 0] _ o
2 3 43 o

X3

is any multiple ofx’ = (2, I, —5)

In a product matrix € = AB, every column of C is a linear combination of the columns of
A, so each column of C is in the column space of A It is possible that the set of columns inC_
‘could span this space, but it is not passible for them to spana higher-dimensional space. At best,
they could be 2 full set of linearly independent vectors in A's column space, We conclude ibat the
column rank of € could not be greater than that of A. Now. apply the same logic tc the rows of
€. which are all imear combinations of the rows of B. For the same reason that the column rank
of C cannot exceed the cofumn rank of A, the row rank of C cannot exceed the row rank of B.
Row and column ranks are always equal, so we can conciude that

rank(AB) < min(rank (A}, rank(E)). (A-44)

A useful corollary to (A-44) iss

If A is M x nand | is a square matrix of rank a, then rank(AB) = rank(A). {A~45)
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Another application (hat plays a central role in the development of regression analysis is,
for any matrix A.

' -rank(A) = rank(A’A) = rank(AA"). {A-46)

A.3.6 DETERMINANT OF A MATRIX

The determinant of a square matrix;'.—delerminants are not defined for nonsquare matrices—is

- 2 function of the elements of the matrix. There are various definitions. most-of which are not
useful for our work, Determinants fgure into our resulls in several ways, however, that we can
enumerate before we need formally to define the compulations,

PROPOSITION
The determinant of @ matrix is nonzero if and only if it has full rank.

Full rank and short rank matrices can be distinguished by whether or not their determinants
are nonzero. There are some settings in which the value of the determinant is also of interest, so
we now consider some algebraic results,

It is most convenient to begin with a dizgonal matrix

4 00 - O
p=|[0 & 0 - 0
0 6 0 ... dy

The column vectols of D define a “box” in RX whose sides are all at right angles to one anothe®”
Its “volume,” or determinant, is simply the product of the lengths of the sides, which we denote

D| = didh ... dg = Hd,,,. (A7)

A special case is the identity matrix, which has, regardless of X, Hgl == 1. Multiplying D by a
scalar ¢ is equivalent to multiplying the length of each side of the box by ¢, which would mu[hply
its volume by ¢X. Thus,

B =¥ D). (A-48)

Continuing with this admittedly special case, we suppose that only one column of I¥ is multiplied
by ¢. In two dimensions, this would make the box wider but rot higher, or vice versa. Hence,
the “volume™ (area) would also be multiplied by ¢, Now, suppose that each side of the box were
multiplied by a different c. the first by ¢;, the second by ¢;, and so on. The volume would, by an
obvious extension, now be ¢10s...cx|D. The matrix with columns defined by feidy od;.. ] is
just DC, where C is a diagonal mamx with ¢; as its ith diagonal element. The computation just
described i is, therefore,

|DC| = |} - |C|. {A-49)

(The determinant of C is the product of the.¢ c,s since €, like ID. is a diagonal matrix.) In particular.
note what happens to the whole thing if one of the c"s is zero,

“*Eich column vector defines a segment on one of the axes.
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For 2 x 2 matrices. the computation of the determinait is

a4 c
b d

Naotice that it is a function of all the elements of the matrix, This statement will be true, in
general. For more than two dimensions. the determinant can be obtained by nsing an expansion
by cofactors. Using any row. say, i. we obtain

= ad - bc. (A-50)

A = Zam(ul WAL k=1,....K, (A-51)

K=

where A, is the matrix obtained from A by deletmg row [ and column £ The determinant of
A is called a minor of A A‘then the correct sign, (=1¥7%, is added, it becomes a cofactor. This
Ay operation can be done s using any column as well. For example. a4 x 4 determinant becomes a
| H /)  samof four3 x 3s, whereas a 5 x 5 is a sum of five 4 x 4s, each of which is a sum of four 3 x 3s,
== and so on. Obviously, it is a good idea to base (A-51) on a row or column with many zeros in
it, if possible. In practice, this rapidly becomes a heavy burden, It is unfikely, though, that you
will ever calculate any determinants over 3 x 3 without a computer. A 3 x 3, however, might be
computed on occasion; if so, the following shortcut will prove useful:
P ° Wer clue. 40 P Sa.r"r‘us

1 A Gp
@ fn  4n) =0ndpdn +dpings +apdnds — dndnds — 810385 — mdnds.
s dn an

Although (A-48) and (A-49) were given for diagonal matrices, they hold for general matrices
C and B, One special case of (A-48) to note is that of ¢ = —1. Multiplying a matrix by —1 does
not necessarily change the sign of its determinant. It does so only if the order of the matrix is odd.
By using the expansion by cofactors formula, an additional result can be shown:

A= 1A (A-52)

A.3.7 A LEAST SQUARES PROBLEM

Given a vector yand a mau:x X, we are interested in expressmgmv as a linear combination of the
" columns of X, There are two pDSblblllties. It y lies in the column space of X, then we shall be able
to find a vectol b such that

y=Xb. (A-53)
i . Figure A.3 illustrates such a case for thnee dimensions in which the two columns of X both have £ e
L 37 a third coordinate equal to zero. Only ) vs whose third coordinate is zero, such as ¥° in the figure, \_ £ ®
can be expressed as Xb for some b. For the general case, assuming thaty is, mdeed in the column  ~
space of X, we can find the coefficients b by solving the set of equations in (A-53). The solution
is discussed in the next section.
Suppose, however. that y is not in the columa space of X. In the context of this example.
suppose that y's third componenrt is not zero. Then there is no b such that (A-33) holds. We can,

however, wute

F=Xb+e, (A-54)

where g is the difference between y and Xb. By this construction, we find an Xb that is in the
column space of X, and g is the ditference, or “residual.” Figure A.3 shows two examples, y and

#If | equals k, then the determinant is a principal minor.
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Second coordinate

Third coordinate

.. First coordinate -

FIGUREAE Least Squares Projections
Y*. For the present we consider on!y y. We are interested in finding the b such that |y is as close

as possible o Xb in the sense that g is as short as possible.

DEFINITION A.10 ' Length of a Vector
The length, or norm, of a vector g is Qiven by the Pythagorea n—ﬂneorem ’
lell = Ve'e. A'55}

The problem is to find the b for which
fiell = fiy — Xb]|
is as small as possible. The solution is that b that makes s ¢ perpendicutar, or orthogonal, to Xb.

DEFINITION A.1T1  Orthogonsi Vectors
Two nonzero vectors a and b are orthogonal, written a Ll b, ifand only if
b =h2=0.

Returning omnce agaim to owr fitting problem, we find that the b we seck is that for which
&1 Xb.

Expanding this sei of equations gives the requirement

(XbYe =
=bXy-bBXXb

= b[X'y - X'Xb],
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or, assuming b is not ), the set of equations

Xy = X'Xb.
The means of solving such a set of equations is the subject of Section A.S.

In Figure A.3, the finear combination Xb is called the projection of fy into the column space
of X. The figure is drawn so that. although, ¥ and y* are different, they are similar in that the
pr o]ectmn of y lies on top of that of y*. The quesuon we wish to pursue here is, Which vector, J
or yhis closer to its projection in the column space of X? Superficially, it would appear that v is
closer, because g is shorter than ¢*. Yet ¥* is much more nearty parallel to its projection than LY. s0
the only reason that its residual vector is longer s that ¥* is longer compared withy. A measure
of comparison that would be unaffected by the ]ength of the vectors is the ang!e between the
vector and its projection (assuming that angle is not zero). By this measure, 6 is smaller than 8,
which would reverse the earlier conclusion.

 THEOREM A.2 The Cosine Law
The angle 8 between two vectors a and b satisfies
_Ab
llﬂli !lbli

cosf =

The two vectors in the calculation would be y or y* and Xb or (Xb)*. A zero cosine implies
that the vectors are orthogonal. If the cosine is one, then the angle is zero, which means that the
vectors are the same. (They would be if y were in the column space of ) By dividing by the
]engths. we antomatically compensate for the Ienglh of y. By this measure, we find in Figure A.3
that y is closél to its projection, (Xb)* than y is to its projection, Xh.

A.4 SOLUTION OF A SYSTEM OF LINEAR

EQUATIONS

Consider the set of # linear equations

Ax=h, (A~56)
in which the X elements of x constitute the unknowns. A is a known matrix of coefficients, and b
is a specified vecior of values. We are interested in knowmq whether a solution exists; if so. then
how to obtain it; and finally, if it does exist, then whether it is unique.

A4l SBYSTEMS OF LINEAR EQUATIONS

For most of our applications, we shall consider only square systems of equations, that is, those in
which z} is a square matrix. In what follows, therefore, we take n to equat K. Because the number
of rows in A is the number of equations, whereas the number of columns in A is the number of
variables, this case is the familiar one of * ‘i equations in # unknowns.”

There are two types of systems of equations.
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DEFINITION A.1Z Homogeneous Equation Systerh

= - A homogeneous system is of the form Ax =0,

By definition, a nonzero solution to such a system will exist if and only if A_does not have fult
rank. If so, then for at least one column of A, we can write the preceding as.

This means, as we know, that the columns of A are linearly dependent and that |A] =0,

DEFINITION A.13 Nonhomngencous Egnation System
A nonhomogeneous system of equations is of the form Ax = b, where b is a nonzero
vector,

The vector by is chosen arbitrarily and is to be expressed as a linear combination of the columns

of A. Because b has K elements. this solution wili exist only if the columns of A span the entire
/’J‘, K-dimensional space. R"“? Equivalently, we shall require that ihe columnns of A be linearly
[ = independent or that IAI ot be equal to zero.

A4.2 INVERSE MATRICES

To solve the system Ax = b for x, something akin to division by a matrix is needed. Suppose that
we could find a square matrlx B sut.h that BA = 1. If the equation system is premultiplied by this
B, then the following would be obtained:

BAx=Ix =x =Jb. (A-57)
If the matrix B exists. then it is the inverse of A, denoted
B=A""
From the definition,
AA =}

In addition. by premultiplying by A, postmultiplying by A=, and then canceling terins, we find
AAT =1
L o

as well.
If the inverse exists, then it must be unique. Suppose that it is not and that C is a different
inverse of A Then CAB CAB, but (CA)B = IE B and C(AB) = C which would be a

“SIf A does not have full rank, then the nonhomogensoussystem will have solutions for some vectors b, namely,
anyb in the column space of A. But we are interested in the case in which there are solutions for all nonzero
vectms b, which requires A to have full rank.
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contradiction if C did not equal B. Because, by (A-57), the solution is x = A‘Ib the solution to
- the equation system is unique as well,
S - We now consider the calculation of the inverse matrix. For a 2 x 2 matrix, AB = I implies
that 1. -
R L anbyy +apby =1
an an|ibn | |1 0 or aubuy + by =0
an an|iby bn| [0 1 anby +ooby =0§
anbiz +anbn =1

The solutions are

[bn bu} - 1 [_4_122 —HJZ] ! [aﬂ —an] (A-58)

1 b fr16y —dippdn | =4 _an IAi —dy 1

Notice the presence of the reciprocal of |A| in A"‘ This result is not specmc to the 2 x 2 case,
We infer from it that if the determinant is zero, “then the inverse does not exist.

DEFINITION A.14 Nonsingualar Matrix

A matrix is nonsingular if and only if its inverse exists.

The simplest inverse matrix to compute is that of a diagonal matrix. If

d 0 0 ... 0 1/di G 0 ... ¢
= 0 & 0 .. 0 , then D'= 0 1y 0 ... O !
06 0 ... dk 0 0 o ... ljdg

which shows. incidentally, that I7! = 1.
We shall use a'* to indicate the £kth element of A‘1 The general formula for computing an
inverse matrix is

N ik
ai!f L .
- Al

i

where [C| is the kith cofactor of A. [See (A-51).] It [ollows, therefore, that for A to be non-
singular, Al must be nonzero. Notice the reversal of the subscripts
Some computauonal results involving inverses are

(A-39)

1 :
M= A-60

AT Al (A-60)

(AT =A (A-61)

Ay = AN (A-62)

if A is symmetric, then A~% is symmetric. {A-62)

When both inverse matrices exist,

(ABy ' =B"A" (A-64)
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Note the condition preceding (A-64). It may be that AB is a square, nonsingular matrix when
nelther A nor B a;e even square. (Consider, e.g., A'A ) Exlendlng (A-64), we have

(isy (ABC)“ =CAB) =C'B A, (A-65)

Recall that for a data matrix X, X’X is the sum of the outer products of the rows X. Suppose
that we have already computed § = (IIK"K)'1 for a number of years of data, such as those givenin
Table A.1. The following result. which is calfed an npdating formula, shows how to compute the
new 8 that would result when a new row is added 1o X: For symmetric. nonsingular matr ix A

[atbb] =A% ] ATBbA™ (A-66)

[l:tb’A -1p

Note the reversal of the sign in the inverse. Two more general forms of { A-66) that are occasionally
useful are

- - 1 - -
T <A [ e (<600
[A=BCEI" =A™ FABICT £ BATBIBA™. (A~66b)

A.4.3 NONHOMOGENEOUS SYSTEMS OF EQUATIONS
For the nonhomogeneous system
Ax=b,
if Axxs nonsingular, then the unigue solution is
Xx=A"b.
Ad4.4 SOILVING THE LEAST SQUARES PROBLEM

We now have the tool needed to solve the least squares problem posed in Section A3.7. We found
the solution véctor, b.to be the solution to the nonhomogenous system X'y = X'Xb. Let a equal
the vector X'y and ]et A equal the square matrix X'X, The equation system is then

Ab =2
By the preceding |:esultS, if A is nonsingular. then
h=A"2=XX)"(X'y)

assuming that the matrix to be inverted is nonsingular, We have reached the irreducible minimum.
If the columns of X are linearly independent, that is, if X has full rank, then this is the solution
to the least squares problem. 1f the columns of X are linearly dependent. then this system has no
unigue solution.

A5 PARTITIONED MATRICES

In formulating the elements of a matrm-——!t is sometimes useful to group some of the elements in
submatﬂccs. Let

1 415
A= |2 93 = {‘5-‘11 Au}
B e I B T -
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Aisa partitioned matrix. The subscripts of the submatrices are defined in the same fashion as
‘those for the elements of a matrix. A common special case is the block- (Ilagonal matrix:

A=|Eén ,9,] 2
C A ‘3, A bo\é

F¥h

where Ay and Ay are square matrices.

A.5.1  ADDITION AND MULTIPLICATION

OF PARTITIONED MATRICES

For conformably partitioned matrices A and B,

A +Bu A+ Boe
A+p= [ TR dutBe A-67
[ de 1l oy +,,.;_sn} (A7)
and ‘
Ay A By + A A 1282
AB = [ n | B Bl snbo +AcBa Aubhe+Ach ] (A-68)
VT (An An| By Bn| [AaBu+AnBa AuBr+AnBr

© In alt these, the matrices must be conformable for the operations involved. For addition, the

dimensions of Ay and By must be the same. For multiplication, the number of columns in A,
wiast equal the number of rows in By for all pairsf and §. That s, alf dhe necessary matrix products
of the submatrices must be defined. Two cases frequenily encountered are of the form

Al A . [AL] ,
[ 4:52] f &2] =[A] Al [ As) = [A1A1 +,‘}_5f,§2], (A-6)
and
- ol 0 A 0
. 1t v M1 s = F* 11:&11 W (A_-"})
£ Axn| {0 An 0 Andzn

A.5.2 DETERMINANTS OF PARTITIONED MATRICES

The determinant of 2 block-diagonal matrix is obtained analogously to that of a diagonal matrix:

2 | A" ) (Anl - Azl AT
The determinant of a general 2 x 2 partitioned malrix is
g; ﬁz = |Anl- |An —,Atzx:}{zl;;‘}nl =|A - AnAg A1z| (A-72)
A.53 INVERSES OF PARTITIOMNED MATRICES
The inverse of a block-diagonral matrix is
Aan 017 (AT 8
&2 - o Au’} @

which can be verified by direct multiplication.
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For the general 2 x 2 partitioned matrix, one form of the partitioned fnverse is
{ y -..Au] - Fﬁa‘ (+AcRAzAl) -AnAgE:

: ; (A-T4)
An An ~FAnAy 2

where
E: = (Az - AnAiiae) -
The upper left block could also be written as
Fi = (A - AuATAn) T
A5 4 DEVIATIONS FROM MEANS

Suppose_ that we begin with a column vector of r values x and let
n

roY

e i '
A= ~i=1 = t‘r’i‘ i\x]
7 2 n xi xx|°
2on doa
Jd=1 fa=1

We are interested in the lower-right-hand element of A=, Upon using the definition of F; in

(A-74). this s
-1
B = [Xx~ xDIH @0 = {x {1* i (;1,7)“‘]} :

-1
= {x [J-— (1) i!’];}} = (XM~

Therefore, thelower-right-hand value in the inverse matrix is

‘ i
M%)~ = s = g%,
wop 2?:1 (x—X)P

Now, suppose that we replace x with X, a matrix with several columns. We seek the lower-right
block of (Z'Z)™?, where Z = [i, X]. The anaiagous result is

@? = [X'X - XX = XM,

which implies that the K x K matrix in the lowerright corner of (Z'Z)™! is the inverse of the
K % K matrix whose jkth element is 25;1(&‘} —X¥;){(Xy— Xx). Thus. when a data matrix contains a
column of ones. the elements of the inverse of Lhe matrix of sums of squares and cross products will
bz computed from the original data in the form of deviations from the respective column means.

A.5.5 KROMECKER PRODUCTS

A calcalation that helps to condense the noiation when dealing with sets of regression models
(see Chapters 10, 11 and 13) is the Kronecker product. For general malrices A and B,
anB apB .- &P

anB axnB ... mxB]

A®B= (A-T5)

ﬂui_!_; ﬂnZE_ ﬂn_K_B


Bill
Sticky Note
change "see Chapters 10,11 and 13" to
"see Chapter 10"
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Notice that there is no requirement for conformability in this operation. The Kronecker product
can be computed for any pair of matrices. If A is X x Landxl} ism>n. then A® B is (Km) x (Ln).
For the Kronecker product, ' .

(AR =g R D, (A-T6)
IfAis Mx MandBisn >< n; th-e.n ! _
IA@B| = |AF|BI¥,
ABRBY =A OB,
trace(r{-\‘ @B = i 5)1(@).
For A. B. C, and ) such that the products are defined is
(AQBXC@D) = ACQBD.

A.86 CHARACTERISTIC ROOTS AND VECTORS

4 useful set of results for analyzing a square matrix A arises from the solutions to the set of
equations
Ar=Ar, (A-77)

The pairs of solutions are the characteristic veetors ¢ and characteristic roots .. If ¢ is anysolution
vector, then ke is also for any value of k. To remove the indeterminancy. ¢ is normalized so that
_t'.‘_cL =1, .
The solution then consists of A and the n — 1 unknown elements in ¢,
A.61 THE CHARACTERISTIC EQUATION
Salving (A-77) can, in principle, proceed as follows, First. {A-77) implies that
=2

or that

(A ~ D) = .

This equation is a homogeneous system that has a nonzero sotution only if the matrix (A — A is
singular or has a zero determinant. Therefore, if A is a solution, then

A —all =0. (A-78)

This polynontial in A is the characteristic equation of A. For example, if

S 1
a=j 4

ihen

S5—i 1

|{§§_}h”=, 74—

A,=(5—;‘)(4_;‘)_2(”312 _ 90 +18.

The two solutions are A = 6and . = 3.

hor\éero
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‘the general » x n case. The characteristic roots of a symmetric matrix;
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In solving the characteristic equation, there is no guarantee that the chapdcteristic roots will
be rezl. In the preceding example, if the 2 in the lowerdeft-hand corner of the matrix were —2
instead. then the solution would be a pair of complex values, The sam¢ result can emerge in
fre real, however$ This
result will be convenient because most of our applications will involve the characteristic roots
and vectors of symrmetric matrices. :

For an # x # matrix. the characteristic equation js an ath-order polynomial in A. Its solutions
may ben distinct values, as in the preceding example, or may contain repeated values of . and
may contain some zeros as well.

AB.2 CHARACTERISTIC VECTORS
With A in hand, the characteristic vectors are derived from the original problem,
Ac=Ae
or
(A ~ADe=0. (A-79)

Neither pair determines the values of ¢; and ¢;. But this result was to be expected; it was the
reason e = 1 was specified at the outset. The additional equation ¢’e = 1, however. produces
complete solutions for the vectors,

A6.2 GENERAL RESULYTS FOR CHARACTERISTIC
ROOTS AND VECTORS

A K x K symmetric matrix has K distinct characteristic vectors, g1, &, .. .¢ k- The corresponding
characteristic roots, Ay, Az, ..., A - although real, need not be distinct. The characteristic vectors of
a symmetric matrix are orthogonal Fwhich implies that for everyi # j, ge ;= = 01t is convenient
to collect the K-characteristic vectors in a K x K matrix whose ith column is the S corresponding
fo l,'.. -

C=[a £ - el

and the K-characteristic roots in the same order, in a diagonal matrix,

A 0 - 0 "
A= |0 2 0p
0 0 . ;,!J
Then, the full set of equations
Ak = hasi
is contained in
AC = CA. {A-80)

e

%A proof may be found in Theil (1571).
For proofs of these propositicns, ses Strang (1988),

EThis statement is not true if the matrix is not symmectric. For instance. it docs not hold for the characteristic
vectors computed in the first example, For nonsymmetric matrices, there is also a distinction between “right™
characteristic vectors, Ac = Ag, and “left” characteristic vectors, @A = Ad’, which may not be squal.
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Because the vectors are orthogonal and ¢¢; = 1, we have

LE L o Ak
o es ge - gk
CCC=1} . =L (A-81}
Sx€1 ExS2 e Lk
Resuit (A-81) implies that
C=C. (A-82)
Consequently,
CC =¢C' =1 (A-83)

as well, so the tows as well as the columns of C are orthogonal.

A6.4 DIAGONALIZATION AND SPECTRAL DECONMPOSITION
OF A MATRIX

By premahtiplying {A-80) by € and using (A-81). we can extract the characteristic roots of A.

DEFINITION A.15 Diagonalization of a Matrix
The diagonalization of « matrix A Is
CAC=CCA=IA =A. | (A-84)

Alternatively. by posrmultiplying { A-80) by C’ and using (A-83), we obtain a useful representation
of A. -

el T e e, e

DEFINITION A.16 Spectral Decomposition of a Matrix
The spectral decomposition of A is

X
A=CAC = Z ARCaT (A-85)
k=1 -

Ir this representation, the K x K matrix A is written as a sum of K rank one matrices. This sum
is afso called the gigenvalue (or, “own™ value) decomposition of A. In this connection, the term
signature of the matrix is sometimes used (o describe the characteristic rools and vectors. Yet
another pair of tertus for the parts of this decomposition are the latent roots and Iatent vectors
of A.

AG.5 RANK OF A MATRIX

The diagonalization result enables us to obtain the rank of a matrix very easily. To do so, we can
use the lollowing result.
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THEOREM A.3 Rank of a Product
B  Forany matrix A and nonsingular matrices B and C, the rank of BAC is equal to the rank  ~
of Al proofzs—szmple. By (A-45), rank(BAC) ——rank[(BA)C]-— rank(BA) By (A-43), ' .|I
FAn BA) = rank(A'®), and applying {A-45) again, rank(A'E’) = rank(A") because B’
is nans:ngu!ar if B is nonsingular {once again, by/A -431 Finaily, applying (A-43} agam to

obtain rank(A") = rank{A) gives the result.

S—‘-a.r‘l‘ e(‘no-p o
G Ny ‘mc

T ndent \ Change
“The proof js

PPDo‘P ¢

Because € and €’ are nonsingular, we can use them to apply this result to (A-84). By an obvious

substitution,

(A-86)

rank(g\\_) = rankl((}).

Finding the rank of A is trivial. Becanse A is a diagonal matrix, its rank is just the number of
nonzero values on its diagonal. By extending this result, we can prove the following theorems.

(Proofs are brief and are left for the reader.)

THEOREM A.4 Rank of 8 Syimmetric Mafrix

The rank of a symmetric mairix is the number of nonzero characteristic roots it

coniqing.

Note how this result enters the spectral decomposition given earlier. If any of the character-
istic roots are zero, then the number of rank one matrices in the sum is reduced correspondingly.

1t would appéar that this simple rule will not be useful if A is not square. But recalt that
rank (A) = rank(A'A). {A-837)

Because A’ A is always square, we can use it instead of A. Indeed. we can use it even if A is square,
which leads toa fully general result.

THEOREM A.5 Rapk of a Mairix

The rank of any matrix A equals the number of nonzero characteristic roots in A'A.

The row rank and column rank of a matrix are equal, so we should be able to apply
Theorem A.S to AA’ as welk This process. however, requires an additional result.

THEOREM A.6 Roots of an Outer Product Matrix

The nonzero characteristic roots of UM' are the same as those of A'A.
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The proofis left as an exercise. A useful special case the reader can examine is the characteristic
roois of aa’ and &a, whenc ais an n x 1 vector,

Ifa charactellsnc root of a matrix is zero, then we have Ac = 8. Thus, if the matrix has azero
root. it must be singular. Otherwise, no nonzero £ would exist. In ﬁeneral therefore, a matrix is
singular: that is. it does not have full rank 1f and only if it has at least one zero root.

AB.6 CONDITION NUMBER OF A MATRIX

As the preceding might suggest, there is a discrete ditference between full tank and short rank’

maltrices, In analyzing data matrices such as the one in Section A2, however, we shall often
encounter cases in which a matrix is not quite short ranked, because it has atl nonzero roots, but
it is close. That is, by some measure, we can come very close to being able to write one column
as a linear combination of the others. This case is important; we shall examine it at length in our
discussion of multicollinearity in Section 4.8.1. Our definitions of rank and determinant will fail
to indicate this possibility, but 2n alternative measure, the conditlon namber, is designed for that
purpose. Formally, the condition number for a square matiix A s

(A-88)

maximum root 2
~ | minimum root

For nonsquare matrices X, such as the data matrix in the example, we use A =X'X. As a further
refinement, because the characteristic roots are affected by the scaling of the columns ol X, we
scale the columns to have length 1 by dividing each column by its norm [see (4-55)]. For the

X in Section A.2, the largest characteristic root of A is 4.9255 and the smallest is 0.0001543.

Therefore, the condition number is 178.67, which is extremely large. (Values greater than 20 are
large.) That the smallest root is close to zero compared wilh the largest means that this matrix is
nearly singular. Matrices with large condition numbers are difficult to invert accarately.

AB.7 TRACGCE OF A MATRIX

The trace of asquare K x K matrix is the sum of its diagonal elements:

K
=3 o
=t

Some easily proven results are

tr{cA) = e(tr{A)), (A-89)
tr{A7) =tr(A}, (A-90)

tr(A + B) = tr(A) + tr(B), (A-91)
trdx) = X. (A-92)

(r(AB) = tr(BA). (A-93)

'z =.tr(a'a) = tl'(aa’)

r(A'A) = Zakak ZZ%

i=1 k=1

The permutation rule can be extended to any eyclic permutation in a product:

tr(ABCD) = tr(BCDA) = t{CDAB) = r(DABC). (A-94)


Bill
Sticky Note
change 4.8.1 to 4.7.1
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By using { A-84), we obtain .
7 tr(C'AC) = ({ACC') = tr(AD = tr(A) = tr(A). (A-95)

Because A is diagenal with the roots of A on its diagonal, the general result is the following.

THEOREM A.7 Traceof a Matrix o
The trace of a matrix equals the sum of its characteristic roots. (A-96)

AB.B DETERMINANT OF A MATRIX

Recalling how tedious the caleulation of a determinant promised to be, we find that the following
is particularly useful. Because

CAC = A,
A R T (A97)
ICAC| = |Al.
Using a number of earlier results, we have, for orthogonal matrix C,
ICACE = [C] - |A]- |Cf = IC'|-ICl- Al = [C'Cl- |A] =1} - |Al =1 |A]
= |4 : {495}
= [AL
Because |A| is just the product of its diagonal elements, the following is implied.
THEQREM A.8 Determinant of 2 Matrix
The determinant of @ matrix equals the product of its characteristic roots. i
' (A-99)

Notice that we get the expected result if any of these roots is zero. The determinant is the
product of the roots, so it follows that a matrix is singular if and only if its determinant is zero
and. in turn, if and only if it has at least one zero characteristic root,

A.6.9 POWERS OF A MATRIX

We often use expressions involving powers of matrices, such as AA = Az For positive integer
powers, these expressions can be computed by repeated mu!ttpllcatlon But this does not show
how to handle a problem such as finding a B such that Bz A. that is, the square root of a matrix.

The characteristic roots and vectors provide a solution. Consider first
AA = A% = (CAC'HCAC) = CAC'CAC = CAIAC = CAAC (A-100)
4 LAl HE : . L .10
= CA'C.

Two results follow. Because A? is a diagonal matrix whose nonzero elements are the squares of
those in A, the following is implied.

For any symmetric matrix, the characteristic roots of A? are the squares of those of A,
and the characieristic vectors are the same. (A-101)
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The proof is obtained by observing that the second ling in (A-100} is the spectral decompum-
tion of the matrix B = AA. Because A® = AA and so on, (A-101 Yextends to any positive integer.
By convention. foranyA A’ = 1. Thus, for any symmetric matrix A, AX = CAKC’ K=01,.

" Hence, the characteristic roots. of AK are X, whereas the eharactensuc vectors are the same as

those of A. If A is nonsingular. so that all its roots A; are nonzero, then this proof can be extended
to negative powers as well,
If A~! exists, then

AT =(CAC) =(€yATIC = caTie, (A-102)

where we have used the earlier result, ¢’ = C"1 This gives an important result that is eseful for
analyzing inverse matrices.

THEOREM A.9 Characteristic Roots of an Inverse Matrix
If A~ exists, then the characteristic roots of . A“ are the reczprocals of those of A, and the
characteristic vectors are the same.

By extending the notion of repeated multiplication, we now have a more general result.

THEOREM A.10 Characteristic Roots of a Matrix Pewer
For any nonsingular symunetric matrix A = CAC", 3}" = g;_\“_g',_lg = ..., -2,
—1,0,1,2,....

We now Turn to the general problem of how to compute the square root of a matrix. In the
scalar case, the value would have to be nonnegative. The matrix analog to this requirement is that
all the characteristic roots are nonnegative. Consider. then, the candidate

S0 - D
ar=cprg=g| ® VR 0 e (A-103)
0 0 o A

This equation satisfies the requirement for a square root. because.
AVAV = CAVPECAVIC = CAC = A (a-104)

If we continue in this fashion, we can define the powers of a matrix more generally, still assuming
that all the characteristic roots are nonnegative. For example, Am = QA“ 3C’ if all the roots are
strictly positive, we can go one step further and extend the result to any real power. For reasons
that will be made clear in the next section, we say that a matrix with positive chasacteristic roots
is E“Rit,'te g_lg_l_ilx_ljte. It is the matrix analog to a positive number.

DEFINITION A.17 Real Powers of a Positive Definite Matrix
For a positive definite matrix A, A =CA'C', for any real number, r. {A-105)
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The characteristic roots of A” are the rth power of those of A, and the characteristic vectors
are the same.
7 If A is only nonnegafive dcﬁnitelu—th'\t is. has roots that are either zero or positiveﬂj—lthen
(A- 105) ‘holds only for nonnegatlve r. :

AG10 IDEMPOTENT MATRICES

Idempotent matrices are equal to their squares [see (A-37) to (A-39)]. In view of their importance
in econometrics, we collect a few results related toidempotent matrices.at this point, First, (A-101)
implies that if 1 is a characteristic root of an idempotent matrix, then A = A% for all nonnegative
integers K. As such, if A s a symmetric idempotent matrix, then all its roots are one or zero.
Assume that all the roots of A are one. Then A=Land A = CAC = CIC' = CC' =1, If the
roots are not all one, then one or more are zero. Lonsequcntly we have the fol!nwmg results for

/ [V symmetric idempotent matrices®”

®  The only full rank, symmetric idempotent matrix is the identity matrix ), {A~106)
o Al symmetric idempotent matrices except the identity marrix are singular. (A-107)

"Fhe: final result on idempotent matrices is oblained by observing that the count of the nonzero
roots of A is also equal to their sum. By combining Theorems A.5 and A.7 wilh the result that
for an idempotent matrix, the roots are all zero or one, we oblain this result:

®  The rank of a symmeiric idempotent matrix is equal 10 ifs Irace. {A-108)

A6.11 FACTORING A MATRIX

In some applications, we shall require a matrix P such that

PP=A"
One choice is”
P =A"C,
so that
PP = (CYATY A = CATIC,
f' N as desired¥ Thus, the spectral decomposition of A. A = CAC’ is a useful result for this kind of
ol computation.

/

2 The Cholesky factorization of a symmetric positive definite matrix is an alternative represen-

tation that is useful in regression analysis. Any symmetric positive definite matrix A may be written
as the product of a Jower triangular matrix L and its transpose (which isan upper tnaugular matrix)
E=U.Thus A = LU This result is the Cholesky decomposition of, A The square roots of the
cllagona] clements Of. L, d:, arc the Cholesky values of A By arraying theseina diagonal matrix D,

we may alsowrite A = LI)"’DZI)'JU L*DzU‘ which is similar to the spectrat decompomlon in
(A-85). The usefulness of this formulation arises when the inverse of A is required. Once L is

“*Not all idempotent matrices are symmetric. We shalf not encounter any asymmetric ones in our work,
however,

#PWe say that this is “one” choice because if A is symmetric, as it will be in all our applications, there are
other candidates. The reader can easily verify that CA~Y2C’ = A~'/? works as well
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computed, finding A~ = UL~ is also straightforward as well as extremely fast and accurate.
Most 1ecent]y devdoped econometnc software packages use this technique for inverting positive
definite matrices.

‘A third type of decompos:tmn of a matrix is useful for-numerical analysis when the inverse
is difficult Lo obtain because the coltimns of A are “nearly™ collinear. Any n x K matrix A for
which#t > K can be written in the form A = UWYV", where Uis an orthogonal r x K matux——tlmt
is, U'U = Ix—W is a X x K diagonal matrix such that w; >0 and Visa X x K matrix such

that V’V =l This resull is called the singu]ar value dempnsiﬂon (‘SVD) of A, cand w; are the

smgu!ar values O[VA (Note that if A is square, then the spectral decomposrtlcm is a mngulal
value decomposmon ) As with the Cholesky decomposition, the usefulness of the SVID arises in
inversion, in this case, of A’A. By multiplying it out, we obtain that (A'A)‘1 is simply VW‘ZV’

Onice the SVD of A is computed, the inversion is trivial, The other advantage of this format is its.

numerical stabthty which is discussed at length in Press et al. (1986).

Press et al. (1986) recommend the SVD approach as the method of choice for soly-
ing least squares problems because of its accuracy and numerical stability. A commonly used
alernative method similar to the SVD approach is the QR decomposition. Any n x K matrix,
X, withn > Kcanbe written in the form X = QR in which the columns of Q are orthonormal
(Q'Q =1 md R is an upper triangutar matrix. Decomposing X in this fashion allows an ex-
tremely accurate - solution to the least squares problem that does not invalve inversion or direct
solution of the normal equations. Press et al. suggest that this method may have problems with
rotnding errors in problems when X is nearly of short rank, but based on other published results,
this concern seems relatively minorid?”

£.6.12 THE GENERALIZED INVERSE OF A MATRIX

Inverse matrices are Fundamental in economelrics, Although we shail not require them much
in our treatment in this book, theve are more general forms of inverse matrices than we have
considered thus far. A generalized liaverse of a matrix A is another matrix A* that satisfies the
following requirements:

L AATA =A.
2 ATAM = A*.

3. ATAis symmetric,
4. AATissymmetric.

A unique A" can be found for any matrix, whether Ais smgulal or not, or even if A is not
squarel® The unigue matrix that satisfies all four requirements is called the Muure—l’anose
inverse or pseudoinyerse of A. If A happens to be square and nonsingular, then the generalized
inverse will be the familiar ordinary inverse. But if A~! does not exist, then A* can still be
computed.
An important special case is the overdetermined system of equations
Ab=y,

i)

\Discussion of the singular value decomposition (and listings of comptter programs for the computations)

may be found in Press et al. (1986).

2 The National Institute of Standards and Technology (NIST) has published a suite of benchmark problems |

that test the accuracy of least squares computations (http://www.nist.gov/itl/div898/strd). Using these prob-
lems, which include some extremely difficult, ll-conditioned data sets, we found that the QR method would
reproduce all the NIST certified solutions to 15 digits of accuracy, which suggests that the QR method should
be satisfactory for all but the worst problems.

134 proof of uniqueness, with several other results, may be found in Theil (1983).

-‘r

Fr
R
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whére A has # rows, K < n columns, and column rank equal to R < K. Suppose that R equals
K. sothat (A’A)‘1 extsls Then the Moole—Penrose inverse of A is

AT =AATAL -

which can be verified by multiplication, A “solution” to the system of equations can be
written

B =Al

This is the vector that minimizes the length of Ab — y. Recall this was the solution to the least
squares pnobiem obtained in Section A44.1f h Ties in the colunn space of A, this vector will be
zero, but otherwise, it will not.

Now suppose that A does not have full rank. The previous solution cannot be computed. An
alternative solution can be obtained, however. We continue to use the matrix A'A. In the spectral
decomposition of Section A.6.4, if A has rank R, then there are R terms in the summation in
(A-83). In {A-102), the spectral decomposition using the reciprocals of the characteristic roots is
used to comptite the inverse. To compute the Moore-Penrose inverse, we apply this calculatmn to
A!A, usingonly the nonzero roots, then postmultiply the result by A'. LetCy be the Rchal acteristic
vectms cor respondmg to the nonzero roots, which we array in the dmgonal rmtrlx, A1 Then the
MoorelPenrose inverse is

W

Al =CiAT LA

which is very similar to the previous result.

If A is a symmetric matrix with rank ® < K, the Moore—-l’enrose inverse is computed
pwmsely as in the preceding equation without postmultiplying by A'. Thus, for a symmetric
matrix j\

CAT=GATICL

where A 1‘" is a diagonal matrix containing the reciprocals of the ronzero roots of A.

A.7 QUADRATIC FORMS AND DEFINITE MATRICES

Many optimization problems involve double sums of the form

= L
q= Z ZX:xjajj- (A-109)

=1 j=1
This quadratic form can be written
9 =XA%

where A is a symmetric matrix. In general, ¢ may be positive, negative, or zero; it depends on A
and x. There are some maltrices, however, for which g wili be positive regardless of x, and others
for which g will always be negative (or nonnegative or nonpositive). For a given matrix A,

1. HxAx > (<)0for all honzero x, then A is positive (negative) definite.

2. U X'Ax > (=) 0for all nonzero x, then A is mmnegaﬁvc definite or posifive semidefinite
(ncmposntwe definite).

It might seem that it would be impossible to check a matrix for definiteness, since, x can be
chosen arbitrarily. But we have already used the set of results necessary 1o do so. Recall that a
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symmetric matrix can be decomposed into

A =CAC.
Thel efore, the quadlatlc f0| m carrbe written as -
| YAX= - XCAC'x.
Let y = C'x. Then
XAx=YAy Z ny (A-110)
=]

If x; is positive for all i, then regardless of y———th'ﬂ is. regardtess of x—q will be positive. This case
was identified earlier as a positive definite matrix. Continuing this line of reasoning, we obtain
the following theorem.

THEOREM A.11 Definite Mairices

Let A be a symmetric matrix. If all the characteristic roots of A are positive (neg.mve)
then A is positive definite (negative definite). If some of the roots are zero, then A is
nonnega!ive (nonpoaitixce) definite if the remainder are positive (negative). If A has both
negative and posifive roots, then A is indefinite.

The preceding statements give, in each case, the “if"* parts of the theorem. To establish
the “only if” parts, assume that the condition on the roots does not hold. This must lead to a
contradiction. For example, if some J can be negative, then y' Ay could be negative for some y,
so A cannot be positive definite.
A.7.1 NONNEGATIVE DEFINITE MATRICES

A case of particular interest is that of nonnegative definile matrices. Theorem A.11 implies a
number of related results.

* If Ais nonnegative definite, then |A| > 0. (A-111)
Proof: The determinant is the product of the roots, which are nonnegacive.

The converse, however, is not true. For example, a 2 x 2 matrix with two negative roots is
clearly not positive definite, but it does have a positive determinant.

® If Ais positive definite. so is A", C (A-112)
Proof: The roots are the reciprocals of those of A, which are. therefore positive.

¢  The identity matrix Lis positive definite. {A4-113)
Proof: XIx =x'x > Oifx £4.

A very important result for regression analysis is

& If Ais n x K with full column rank and n > X, then A‘A is positive definite and AA"is
nonnegative definite. (A 114)

Proof: By assumption, Ax #0. So X A’Ax = (AY)'(Ax) = y'y = Ej yf > {0,
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A similar proof establishes the nonnegative definiteness of AA The difference in the latter case is
that because A has more rows than columns there is an x such that A'X = 0. Thus, in the proof. we
only have ¥’y = 0. The case in which A does not have full column rank 15 the same as that of AAL

¢ If A is positive deﬁmte and B is a nonsingular matrix, lhen W AR is positive definite.
i (A-115)

Proof: XB/ABX = y' Ay > 0, where y = Bx. Bui ¥ cannot be 8 because B is nonsingular.
Finally, note that for A to be negative definite, all A’s characteristic roots must be negative. But,
in this case, A | is positive if A is of even order and negative if ' A is of odd order.

A7.2 IDEMPOTENT QUADRATIC FORMS

Quadratic forms in idempotent matrices play an important role in the disiributions of many test
statistics. As such, we shall encounter them fairly often. Two central results are of interest.

¢  Every symmetric idempotent matrix is nonnegative defintte. (A-116)
Proof” All roots are one or zero; hence, the matrix is nonnegative definite by defmition.

Combining this with some earlier results yields a result used in determining the sampling distri-
bution of most of the standard test statistics,

* A is symmetric and idempotent 1 x nwith rank _J. then every quadratic form in A can be
written KAX = }:‘ = 1 (A-117)

Proof: This resull is {Awl 10) with 4 =one or zero.

A.7.3 COMPARING MATRICES

Derivations in econometrics often focus on whether one matrix is “larger™ than another. We now
consider how to make such a comparison. As a starting point, the two matrices must have the
same dimensions. A useful comparison is based on

Ad=xAx-xBx=x(A - B}x

If dis always positive for any nonzero vector, X, then by this criterion, we can say that A is larger
than B. The reverse would apply if d is always negative. It follows from the definition that

if d > 0 for all nonzero x. then & — B is positive definite. (A-118)

If d is only greater than or equat to zero, then A — B is nonm..q'\tive definite. The ordering is not
complete. For some palrs of matrices. d could have either sign, depending on x. In this case, there
is no simple comparison. 2

A particular case of the general result which we will encounter ﬁequenlly is:

If A is positive definite and B is nonnegative definite.
then A+B>A (A-119)

Cousider, for example, the ™ updalmg formula® introduced in { A-66). This uses a matrix
A=BB+bb = BB,

Finally. in comparing matrices, it may be more conventent lo compare their inverses. The result
analogous to a familiar result for scalars is:

1fA>B, then B > A™L ' (A-120)
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To establish this intuitive result, we would make use of the following, which is proved in Gold-
berger (1964, Chapter 2):

THEOREM A.12 Ordering for Positive Definite Mafrices

If A and B are two positive definite matrices with the same dimensions and if every char-
acterisiic root ¢f A is larger than (at icast as large as) the carresponding characteristic raot
of B.when both sets of roots are ordered from largest to smallest, then A — B is positive
(nonnegative) definite.

The roots of the inverse are the reciprocals of the roois of the original matrix, so the theorem can
be applied to the inverse matrices.

A.8 CALCULUS AND MATRIX ALGEBRA1*™

. A.8.1 DIFFERENTIATION AND THE TAYLOR SERIES

A variable y & a function of another variable x written

y=fx) y=gx)n y=px).

and so on, if each value of x is associated with a single value of y. In this relationship, y and x are
sometimes labeled the qepeudem‘ variable and the independent variable, respectively, Assuming
that the function f(x) is continuous and differen tiable, we obtain the followi ng derivatives:

- Fo=2 f”() 42'

and so on.
A frequent vse of the derivatives of f(x) is in the Taylor series approximation. A Taylor
series is a polynomial approximation to f(x), Leltlng x" be an arbitrar ily chosen expansion point

1 dF(x° .
floy~ f2®) + E i -d(f.x(i: (x — x% {A-121)
=1~ -

The choice of the number of terms is arbiirary; the more that are used, the more accurate the
approximation will be. The approximation used most frequently in econometrics is the linear

approximation,

fo) ~e+pa, ] (A-122)

where, by collecting terms in (A-121), & = [f(x%} —_f/(x")x%T and B = f'(x0). The superscript
0 indicates that the function is evaluated at x°. The quadratic approximation is

flx) ~ o+ Bx + yxi, (A-123)
wherea =[f° — 9" + 3 F2E 8= [0 - f"’_xP] and y = 3 f*°,

“!3For a complete exposition, sce Magnus and Neundecker (1988).
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We can regard a function y = f(x,X,...,X,)asa scalar-valued function of a vector; that
is, y = _f(x). The vector of partial derivatives, or gradient - veclor, or sunply gradmm, is

u ayiom] A
i 3”3""’ =] (A-124)

N P B

The vector px) or g is used to represent the gradient. Notice that it is a column vector. The shape
of the derivative is determined by the denominator of the derivative.
A second derjvatives matrix or Hessian is computed as

Fyfoxidn Fy/oxdx: - Fy/oxidx,
2 2 2

H= 3_)’/.3-:(2@.11 3_y/.{-i..1.c23x2 " 3 /3x23x,, — Ul (A-128)
Fy/ozudn  y/0x,0% - alyfaxnax,.

In general, H is a square, symmetric matrix. (The symmetry is obtained for continuous and
cnntmuously differentiable functions from Young s theorem.) Each column of H is the derivative
of g with respect 1o the corresponding variable in x'. Therefore,

w200 s@y/an)  s@y/aw 3ay/B  _ 30y/en) _ &y
Tl o 8% %, | oxx -- X)X 9pOx

A

The first-order. or linear Taylor series approximation is

y fE+ 3 00 (i =), (A-126)

=1
The right-hand side is

(T4

£+ [ v ’] x—x0 = [FO) — 2%+ 2 x = [ £ - 21+ 0%
This produces the linear approximation,
Yo+ fx
The second-order, or quadratic, approximation adds the second-order terms in the expansion,

1o 1
520 £ =) (5 —20) = SR~

i=1 j=1

to the preceding one. Collecting terms in the same manner as in (A-126). we have
yRs e+ BIX+ 1§:rx. (A-127)
¥ 2 P
where

Whee

1
a=f-@x +3XHK. =g -HK and [=H.

A linear function can be written

n
7 fo
y=gx=xa=> ax,

i=1
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30

o By |
- , | | e A (A-128)

Note, in particular. that 3(a°%)/ Qg_:ﬁlgil: nota’. In a set of linear functions
X =Ax

each element y; of y is
W =8
where & is the ith row of A [see (A-14)]. Therefore.

3% o
ox TR transpose of ith row of A,

and
I fdx. E-

dyafax] 1 #

8u/3X ,

Colleeting all terms, we find that BAX/0x’ = A, whereas the more familiar form will be
BAX.
W = AT =129
A (A-129)
A quadratic form is written )
n o n
XAX= D> Xk (A-130)
= Ji=1_j=1 T
For example, ’
i3
a=f ]
so that
XAX = 11 + 43 + 6.
Then
ax'Ax = 2xy + 6xy _ 2 61 |x _
T [5::, +85| T |6 8| |n| =% (A-131)
witich is the general result when A is a symmelric matrix. If A is not symmelric, then
ax' A
‘-"5:‘-") =(A+ A (A-132)

Referring to the preceding double summalion, we find that for each term, the coefficient on ay
is x,x;. Therefore, -

AN
a‘.?_ij N

XiXj-
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The square matrix whose ijth element is x;x; is ¥x'. s0

-~ . 3(’!*&‘) et

. Derivatives involving delenmnants appear in maximum likelihood estimation. From the
cofactor expansion in { A-51), ‘
Al

il S R | =c:
3‘1:_’, ( ) I,%i}l i

where |Cj| is the jith cofactor in A, The inverse of A can be computed using
[Cul

M A%

(note the reversal of the subscripts), which implies that / ‘adi N

dlnjA|  (=1)HI[Cy

= k3

3.53;} I{’_li

or, collecting terms,

Because the matrices for which we shall make use of this calculation will be symmetric in our
applications, the transposition will be unnecessary.

AB82 OPTIMIZATION

Consider finding the x where f(x) is maximized or minimized. Because f'(x) is the slope of
_ftx). either optimum must occur where _f'(x) = 0. Otherwise, the function wiil be increasing
or decreasing_at_x. This result implies the first-order or necessary condition for an optimum
{maximum or-minimum);

Ay

=
For a maximum, the function must be concave; for a minimum, it must be convex. The sul'ﬁcient
condition for an optimum is:

0. (A-134)

Fora maximum.'}—;‘; <0
g (A-135)

fora minimum,'dz—y > 0.
dx?

Some functions, such as the sine and cosine functions, have many local optima, that is, many
minima and maxima. A function such as (cosx)/(1 4 x%), which is a damped cosine wave, does
as well but differs in that although it has many local maxima, it has one, at x = 0, at which f(x)
is greater than it is at any other point. Thus, x = 0 is the global maximum, whereas the other
maxima are only local imaxjima. Certain functions, suchas a quadratlc, have only asingle optlmum
These funclions are g!(lfhg!iy__pqncgyc if the optimum is a maximum and giobally convex if it is a
minimun.

For maximizing or minimizing a function of several variables, the first-order conditions are

YR _g, (A-136)
a;.x‘ o
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This result is interpreted in the same manner as the necessary condition in the univariate case.
i At the optimum. it must be true that no small change in any variable leads to an improvement
in the function value. In the single-variable case, &2y /dx? must be positive for a minimum and
negative for a maximum. The second-order condition for an optimum in the multivariate case is
that. at the optimizing value, _ L
_ ¥
AT axex
must be positive definite for a minimum and negative definite for a maximum.
In a single-variable problem, the second-order condition can usually be verified by inspection.
This situation will not generally be true in the multivariate case. As discussed earlier, checking the
definiteness of & matrix is. in general, a difficult problem. For most of the problems encountered
in economelrics, however, the second-order condition will be implied by the structure of the
probiem. That is, the matrix H will usually be of such a form that it is always definite.
For an example of the preceding, consider the problem

{A-137)

maximize, R = g'x — ¥’ Ax,
= Wi =

where
_gf =(5 4 2,
and
2 1 3
A=|1 3 2f.
3 2 5

Using some now familiar results, we obtain

SR 51 4 2 67 x] :
roliat B 2Ax= (4] — 12 6 4| x| =0 (A-138)
X ' 2i |6 4 10] |xs)

X 4 2 67175 11.257
Xo| = 2 6 4 [4} = 1.75¢ .
X3 6 4 10 {2 ~7.25]

The sufficient condition is that

The solutions are

(A-139)

R -4 -2 -6
PEY _ ga=|-2 -6 —4
9% dx —6 -4 —10

must be negative definite. The three characteristic roots of this matrix are —15.746, —4, and
—0.25403. Because all three roots are negative, the matrix is negative definite. as required.

In the preceding, it was necessary to compute the characteristic roots of the Hessian to verify
the sufficient condition. For & general matrix of order larger than 2, this will normally require a
comptuter. Suppose, however, that A is of the form

A=pe,

where B is some known matrix. Then, as shown earlier, we know that A will always be positive
definite (assuming that B has full rank). In this case. it is not necessary to calculate the characteristic
roots of A to verify the sufficient conditions.
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A 8.3 CONSTRAINED OPTIMIZATION

g © s often necessary to solve an optimization problem subgect to some copstraints on the solution.
‘One method is merely to “solve out™ the constraints. For example in the maximization problem
considered earlier, suppose that the constraint x; = x, —x3 is imposed on the solution. For a smgle
constraint such as this one. it is possible merely to substitute the right-hand side of this equation
for x in the objective function and solve the resulting problem as a fanction of the remaining two
variables. For more general constraints, however, or when there is more than one constraint, the
method of Lagrange multipliers provides a more straightforward method of solving the prablem.

We
maximize, £(x) subject to ¢i(x) = 0,
Cg(X) ':—:'“G- (A-140)
Cy (x) =

The Lagrangean approach to this problem is to find the stationary pomts-—-that ts, the points at
which the derivatives are zerolof

LAy = £+ 3 hesR) = 00 + Ve, (A-141)
._j'.—"l
The solutions satisfy the equations
aL 3 3?-.'9(:&) -

=1{n x 1),
[
an W (A-142)
8 (x) =0(f x 1}
Y = ex) =0(J x 1}
The second term in 3.L*/8x is
ale(x). _ de(x)¥d | de(n)’ )
: o - e | e 2SS (A-H43)

where C is the matrix of derivatives of the constraints with respect to x. The jth row of the J x
matrix C is the vector of derivatives of the fth constraint. ¢; x), with respect tox'. Upon collecting
terms, 1he first-order conditions are

AL A® |y
”'5,;1 +GA =0,

ax
3:[,* {A-144)
é}; =5 .,gw(x) =J'?'—

There is one very important aspect of the constrained solution to consider. In the unconstrained
solution, we have 8f(x)/ ax = 0. From (A-144), we obtain, for a constrained sotution,

A ;x’ -Ch, (A-145)

which wiil not equal  unless A = (. This result has two important implications:

¢ The constrained solution cannot be superior to the unconstrained solution. This is implied
by the nonzero gradient at the constrained solution. (That is, unless C = 0. which could
happen if the constraints were nonlinear. But, even if so, the solution s still no better than
the unconstrained optimum.)

®  If the Lagrange multipliers are zero, then the constrained solution will equal the
unconstrained solution.
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To continue the example begun earlier, suppose that we add the following conditions:
X =Xa4-x3 =0,
X tXtan= 0 -

To put this in the format of the general protilem, write the constraints as ¢(x) = Cx = 0. where

L

"The Lagrangean function is
R*(x,1) = &'x — XAx +A'Cx.

Note the dimensions and arrangement of the various parts. In particular, C is 2 2 x 3 matrix. with
one row for each constraint and one column for each variabile in Lhe objective function. The vector

- of Lagrange multipliers thus has two elements, one for each constraint. The necessary conditions

are
a—2Ax+ }2’,1 =0 {three equations), (A-146)
and

Lx=0 (iwoequalions).

- These may be combined in the single equation

-1
C 0|} 8l
Using the partitioned inverse of (A-74) produces the solutions
' A=-[ca”'crica™a (A-147)
and

1 ' = g — -
x=5A71-CEATCTCAT . (A-148)

The two resuits, {A-147) and (A-148). yield analytic solutions for ) and x. For the specific matrices
and vectors of the example, these are L = [—0.5 —7.5]'. and the constrained solution vector,

X' =[15 0 —1.5]'". Note that in computing the solution to this sort of problem. it is not necessary

to use the rather cumbersome form of {A-148). Once A is oblained from {A-147). the solution
can be inserted in { A-146) for a much simpler computation. The solation

1 -1 1 —1
A= 5.& a+ 5{\.. Ch
suggests a useful result for the constrained optimum:
constrained sofution = unconstrained solution 4 {ZA}‘“‘E’ A, (A-14%)
Finally, by inserting the two solutions in the original function, we find that R = 24.375 and

R* = 2.25, which illustrates again that the constrained sofution (in this maximization problem)
is inferior to the unconstrained solution.
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A.8.4 TRANSFORMATIONS

If a function is strictly monotonic, then it is a pne-te-onc function. Each_y.is associated with

‘exactly one value of x, and vice versa, In this case, an mverse functmn exists, which expresses x

as a function of y. wr men B
y= 0
and
x=fw.

An exampie is the mverse ielationship between the log and the expenential functions.
The slope of the inverse function,

dc  df '(» -1
Iy, — S AP !
dy dy ok
is the Jacobian of the transtormation from y to x. For example, if
y=a+ bx,
then
X = 4 !
is the inverse transformation and
d i
J =_;~‘C = —I-
dy b

Looking ahead to the statistical application of this concept, we observe that if y= f(x) were

vertical, then this would no longer be a functional relationship. The same x would be associated

with more than one value of y. In this case, at this value of x, we would find that _._i"__—ll 0, indicating
a singularity in the function.
If y is a cglumn vector of functions, ¥ = f(x). then

dx/on Axfowm .- Bx1/8Y,
3 dxa2/Byy  Bx/BYa o 3X2/BVs
J ’4
P ay :
Xa /By OXa/BY2 -+ OXn/OYn

Consider the set of linear functions ¥ = Ax =ftx). The inverse transformation is x= l"l(yz.
which will be

X=A"¥,

[P N P
if A is nonsingular. If A is singular. then there is no inverse transformation. Let J be the matrix
of pal tial derivatives of the inverse functions:

1= {f’i‘-] .
W ay]

The absolute value of the determinant of J,

ax
e X,
abs(}J|) = abs (det ([3":]) ) '

is the Jucobinn determinant of the transformation from y to XIn the nonsingular case,

ab: = N ~1 R —
wbs(l]) = abs(|A-']) aheAD



