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THEOREM B.12 ' Independence of a Linear and a Quadratic Form
3 - Alinear function Lxand a symmetric idempotent quadratic form X' Axin a standard normal
vector are sratzsrzcaﬂy mdependem if | LA 0.

The proof follows the same logic as that for two quadratic forms. Write XAX as X' A'AX =
(Ax) (Ax). The covariance matrix of the variables Lx and Ax |s‘IA =0. which establishes the
mdbpe,ndence of these two random vectors. The mdepc.ndencu of 1he linear function and the
quadratic form follows because functions of independent random vectors are also independent.

The ¢ distribution is defined as the ratio of a standard normal variable to the square root of
a chi-squared variable divided by its degrees of freedom:

N[0, 1}
f[f] =5 [ vk
{17}
A particualar case is
VAE JAE

- 1] = e T ,
= PE DI I A

where s is the standard deviation of the values of x. The distribution of the two variables in z[n— 1]
was shown eatlier; we need only show that they are independent. But
1
nE = —I'sx =j'x,
VBF = =iy =ix

and
XM

. S=n-—-'l'

Tt suffices to show that M®j = 8, which follows [rom

MY = [1 i@ =i~ idh ™ b =o.

APPENDIX C
T BB G e

ESTIMATION AND INFERENCE

C.1 INTRODUCTION

The probability distributions discussed in Appendix B serve as models for the underlying data
genuatmg processes that produce our observed data. The poal of statistical inference in econo-
metrics is to use the principles of mathematical statistics to combine these theoretical distributions
and the observed data into an empirical model of the econamy. This analysis takes place in
-one of two frameworks, classical or Bayesian. The overwhelming majority of empirical study in
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C.

econometrics has been done in the classical framework. Our focus, thereflore, will be on classical
methods of inference. Bayesian methods are discussed in Chapter [8%

, . e
2 SAMPLES AND RANDOM SAMPLING

The classical theory of statistical inference centers on rules for using the sampled data effectively..
These rules. in turn, are based on the properties of samples and sampling distributions.

A sample of n observations on one or more variables, denoted x,, %, . .. . X, is 2 _random
sample if the # observations are drawn independently from the same population, or probability
distribution, f(x;,#). The sample. may be univariate if ¥, is a single random variable or multi- -
variate if cach observalion contains several variables, A random sample of observations, denoted
) T PR «+Xn} OF {Xi}i=1,..n. 18 s21d 10 be independent, identically distributed, which we denote
iid. The vector,# contains one or more unknown pafameters. Dala are generally drawn in one
of two qetlmgs. A cross section is a sample of a number of observational units all drawn at the
same point in time. A time series is a sel of observations drawn on the same observational unit
at a number of (usual!y evenly spaced) poinis in time. Many recent studies have been based
on time-series cross séctions, which generally consist of the same cross-sectional units observed
at several points in time. Because the typical data set of this sort consists of a large number of
cross-sectional units observed at a few points in time, the common term panel data set is usually
more fitting Tor this sort of study.

C.3 DESCRIPTIVE STATISTICS

Before attempting lo estimate parameters of a popalation or fit models to dala, we normally
examine the data themselves. In raw form, the sample data are a disorganized mass of information,
so we will need some orpanizing principles to distill the information into something meaningful.
Consider, first; examining the data on a single variable. In most cases, and particularly if the
number of observations in the sample is large, we shall use some summary, statisties to describe
the sample data. Of most interest are measures of lqgation—that is, the center of the data'—and
seale, or the dispersion of the data. A few measures of centlal tendency are as follows:

- 1
mean: X = - E X
LA n X

==l

medign: M = middle ranked observation, (C-1)
maximum 4 minimum
2

The dispersion of the sample observations is usually measured by the

sample midrange: midrange =

2
X —X
plaugued deviation: s, = {zﬂ" o , : ] - €2
Other measures, such as the average absolute deviation from the sample mean, are also used,
afthough less frequently than the standard deviation. The shape of the distribution of values is
often of inlerest as well. Samples of income or expenditure data, for example. tend to be highly

"}An exceflent reference is Leamer (1978}, A summary of the results as they apply to sconometricsis contained
in Zetlner (19’71) and in Judge et al. (1985). See, as well, Poirier (1991, 1995). Recent textbooks on Bayesian
cconometrics include Koop (2003), Lancaster (2004) and Geweke (2003).



‘ Greene-50558 book June 25, 2007 12:52

APPENDIX C 4 Estimation and Inference 1021

skewed while financial data such as asset returns and exchange rate movements are relatively
more symmetrically distributed but are also more widely dispersed than other variables that might
i be observed, Two measures used to quantify these effecls are the

- 2o g
skewness = ;L}M -and  Korfosls = Eifl (% —X) .
e _Sx("“'“l) e _S;“{ﬂ—l)

(Benchmark values for these two measures are zero for a symmetric distribution, and three for
one which is “normally” dispersed.} The skewness coefficient has a bit less of the intuitive appeal
of the mean and standard deviation, and the kurtosis measure has very little at ail. The box and
whisker plot is a graphical device which is often used to capture a large amount of information
about the sample in a simple visual display. This plot shows in a figure the median, the range of
values contained in the 251h and 75th percentile. some limits that show the normal range of values
expecied, such as the median plus and minus two standard deviations, and in isolation values that

a/ T {6, could be viewed as outliers. A box and whisker plot is shown in Figure C.1 for the income variable
{ =\ in Example C.1.
| Ry If the sample contains data on more than one variable, we will also be interested in measures

of association among the variables. A seatter (Ilagram is useful in a bivariate sample i the sample
contains a reasonable number of observations. Fi igure C.1 shows an example for a small data set.
If the sample is a multivariate one, then the degree of linear association among the variables can
be measured by the pairwise measures

S =X — v)

soyariance: Sy = w1 {C-»)
. S

correlafion: £, = —%-,

AR T o

I the sample contains daia on several variables, then it is sometimes convenient to arrange the
covariances otcorrelations in a

covariance matrix: $ = [s;;], (C-4)
or
correlation matrix: R = [r;].
Some useful algebraic results for any two variables (x;. 3). £ = 1,..., », and constants @ and
b are
2 52
LX) —n¥
8= M {C-5)
2 n—1
oxn) —nxy
Sy = (El:l i-M) - , (C-6)
: n—1
-1 = Fxy = 1
ax by = b r a,b#£0 (C-7)
ax.!_)y = Iﬂb' xyy 'y
Sax = [at|8y,

C-8
Saxky = @b)sey. (5
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Note that these algebraic results paralie] the theoretical results for bivariate probability distri-
butions. {We note in passing, while the formulas in (C-2) and {C-35) are algebraically the same.
(C-2) will generalty be more accurate in practice. especially when the values in the sample are

very widely clispm%ij . -
Example C.1 scriptive Statistics for a Random Sample
Appendix Table FC1 contains a (hypothetical) sample of observations en income and educa-
tion (The observations all appear in the calculations of the means below.) A scatter diagram
appears in Figure C.1. It suggests a weak positive association between income and educa-
tion in these data. The box and whisker plot for income at the left of the scatter plot shows
the distribution of the income data as well.
1 2054315+ 47.7+2624+4404-828 + 308+
Means:T = —— [17.2+19.94+9.96 +55.8 -+ 252+ 29.0 +85.5+ | = 31.278,
161 +28542144+17.7+6.42+ 849

12416+ 184164+ 12+ 12+ 164+ 12+ 10+ 12
++++++++++]=14.600.

1
E= [16+20+12+16+10+1B+16+20+12+16

Standard deviations:
s = \/ LH(205—81.278)2 + . ..+ (84.9 — 31.278)2] = 22 376,

Se= \/1155(12 ~148)24 ... + (16 - 14.6)7] = 3.118.
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FIGURE G.1  Box and Whisker Plot for Income and Scatter
B0l ‘ Diagram for Income and Education, ..
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Covariance: s,¢ = 5[20.5(12) + - .- + 84.9(16) — 20(31.28)(14.8)] = 23.597,

, - 23.597
M = ——— = (},3382.
Correlation: r;¢ 223763119 0.3382.

The positive correlation is consistent with our observation in the scatter diagram.

The statistics just described will provide the analyst with a more concise description of

the data than a raw tabulation. However, we have not. as yet. suggested-thal these measures
correspond to some underlying characteristic of the process that generated the data. We do
assmne that thete is an underlying mechanism. the data-generating process. that produces the
data in hand. Thus, these serve to do more than describe the data; they characterize that process,
or population. Because we have assumed that there is an uncler!ying probability distribution, it
might be useful to produce a statistic that gives a broader view of the DGP. The histogram is a
simple graphical device that produces this result—see Examples C.3 and C.4 for apphC‘]thl‘lS. For
small samples or widely dispersed data, hOWbVLl‘ histograms tend to be rough and difficult to
make informative. A burgeoning literature [see, e.g., Pagan and Ullah (1999) and Li and Racine
(2007)] has demonstrated the usefulness of the kernel density estimator as a substitute for the
histogram as a descriptive ool for the underlying distribution that produced a sample of data.
The underlying theory of the kernel density estimator is fairly complicated, but the computations
are surprisingly simple. The estimator is computed using

Faty = hglf[x‘_x:'

where x;, ... x, are the # observations in the sample, f(x*) denotes the estimated density func-
tion. x* is the value at which we wish to evaluate the density, and & and K[-] are the “bandwidth”
and “kerne! function™ that we now consider. The density estimator is rather like a histogram,
in which the bandwidth is the width of the intervals. The kernel function is a weight function
which is generally chosen so that it takes large values when x* is close to_x; and lapers off to
zero in as they diverge in either direction. The weighling function used in the,exampk below is
the logistic density discussed in Section B.4.7. The bandwidth is chosen to be a function of 1 in
so that the intervals can become narrower as the sample becomes larger (and richer). The one
used for Figure C.2 is & = 0.9Min{s, range/3)/n2. {We will revisit this method of estimation in
Chapter 14.) Example C.2 illustrates the computation for the income data used in Example C.1.

Example C.2 Kernel Density Estirnator for the Income Data

Figure C.2 suggests the large skew in the income data that is also suggested by the boxand |

whisker plot {and the scatter plof) in Example C.1.

C.4 STATISTICS AS ESTIMATORS —SAMPLING

DISTRIBUTIONS

The measures described in the preceding section summarize the dala in a random sample. Each
measure has a counterpart in the population, that is. the distribution from which the data were
drawn. Sample quantities such as the means and the correlation coefficient correspond 1o popu-
lation expectations, whereas the kernel density estimator and the values in Table C.1 parallel the
population pdf and edf, In the setting of a random sample, we expect these quanlities 1o mimic
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TABLE'C.1  Incoms Distribution. =

Ruange Relative Frequency Cumulative Frequency
<$10,000 0.15 0.15
10.000:25.000 0.30 0.45

" 25.000550,000 0.40 0.85
>50.000 0.15 100

the population, although not perfectly. The precise manner in which these quantities reflect the
population values defines the sampling distribution of a sample statistic.

DEFINITION C.1 Statistic

A statistic is any function computed from the data in a sample.

If another sample were drawn under identical conditions, different values would be obtained
for the observations. as each one is a random variable. Any statistic is a function of these random
values, soit is also a random variable with a probability distribution called a sampling distribution.
For example, the following shows an exact result for the sampling behavior of a widely used

statistic.
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THEOREM C.1 Sampling Distribution of the Sample Mean
If xy. ... X, are a random sample from a popufaﬁon with mean y and variance o2, then
Fisa mndom variable with mean v. and variance o* /.

Proofi ¥ = (1/m)E,x;. . [x} (1/mEu = p. The observations are independent, so
Var[x] = (1/n) Vat[Zux,] = (1/#°) 30" = o7 /n.

Example (.3 illuslrates the behavior of the sample mean in samples of four observations
drawn from a chi-squared population with one degree of freedom. The crucial concepts illus-
trated in this example are. first, the mean and variance results in Theorem C.1 and, second, the
phenomenon of sampling variability.

Notice that the fundamental result in Theorem C.1 does not assume a distribution for ;.
Indeed, looking back at Section C.3, nothing we have done so far has required any assumption
about a particular distribution.

Example C.3 Sampiing Distribution of a Sample Mean
Figure C.2 shows a frequency plot of the means of 1,000 random samples of four observations
drawn from a chi-squared distribution with one degree of freedom, which has mean 1 and
variance 2.

We are often interested in how a statistic behaves as the sample size increnses. Example C4
illustrates one such case. Figure C.4 shows two sampling distributions, one based on samples of
three and a second. of the same siatistic, but based on samples of six. The effect of increasing
sample size in this figure is unmistakable. [t is easy to visualize the behavior of this statistic if we
extrapolate the experiment in Example C4 to samples of. say, 100,

Example C.4 Sampling Distribution of the Sampile Minimum
if x4, ..., X, are arandom sample from an exponentlal distribution with_f{x) = 8%, then the
sampllng distribution of the sample minimurm in a sample of n observations, denoted | Xt1y, IS

F(x) = (ne)er o,

Because £ [x]=1/6 and Var{x]=1/6%, by analogy E [x(]=1/(nd) and Varxy] =1/(ng)>.
Thus, in increasingly larger samples, the minimum will be arbitrarily close to 0. [The
Chebychav inequality in Theorem D.2 can be used to prove this intuitively appealing resuit,]

Figure C.4 shows the results of a simple sampling experiment you can do to demon-
strate this effect. It recuires software that will allow you to produce pseudorandom num-
bers uniformly distributed in the range zero to one and that will let you plot a histogram
and control the axes. (We used NLOGIT. This can be done with Stata, Excel, or several
other packages.) The experiment consists of drawing 1,000 sets of nine random values,
Uy,i=1,...1,000, j=1,...,9. To transform these unlform draws to exponential with pa-
rameter §—we used 6 = 1 5 use the inverse probability transform L;see Section E.2.3. For
an exponentially distributed variable, the transformation is z;; = —(1 /9) log(t —U};). We then
created zy,| 3 from the first three draws and Ziyy| & from the other six. The two histograms
show clearly the effect on the sampling distribution of increasing sample size from just
3o 6.

Sampling distributions are used to make inferences about the population. To consider a
perhaps obvious example, because the sampling distribution of the mean of a set of normally
distributed observations has mean . Lhe sample mean is a natural candidate for an estimate of
. The observalion that the sample “mimics™ the population is a statement about the sampling
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distributions of the sample statistics. Consider, for example, the sample data collected in Fig-
ure C.3. The sample mean of four ebservations clearly has a sampling distribution, which appears
10 have a mean roughly equal to the population mean. Our theory of parameter estimation departs
from this point.

C.5 POINT ESTIMATION OF PARAMETERS

Our objective’is to use the sample data to infer the value of a parameter or set of parameters,
which we denote 6. A point estimate is a statistic computed from a sampie that gives a single value
for 8. The standard error of the estimate is the standard deviation of the sampling distribution
of the Stdl‘lSth, the square of this quantity is the sampling varisnce. An interyal estimate is a
range of values that will contain the true parameter with a preasmgned pI‘Ob‘lblhl}’ There wiil be
a connection between the two types of estimates; generally. if 4 is the point estimate, then the
interval estimate will be 8+ a measure of s'ampling error,

An estimator is a rule or strategy for using the data to estimate the parameter. It is defined
before the data are drawn, ()bvmus]y,some. estimators are better than others. To take a simple ex-
ample, your intuition should convince you that the sample mean would be a better estimator of the
population mean than the sample miimum; the minimum is almost certain to underestimate the
mean. Nonetheless, the minimum is not entirely without virtue; it is easy to compute, which is oc-
casionally a relevant criterion. The search for good estimators constitutes much of econometrics.
Estimators are compared on the basis of a variety of attribules. Finite sample propertics of estima-
torsare those attributes that can be compared regardless of the sample size. Some estimation prob-
lems ihvolve characleristics that are not known in finite samples. In these instances, estimators ave
compared on the basis on their large sample. or asymptotic properties. We consider these in turn.

C.5.1 ESTIMATION IN A FINITE SAMPLE

The following are some finite sample estimation criteria for estimating a single parameter. The ex-
tensions Lo the multiparameter case are direct. We shall consider them in passing where necessary.
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DEFINITION C.2 Unbiased Estimator
An estimnator of a parameter 8 is unbiased if the mean_of its sampling distribution is 9.
Formaily, § o
"Elf]=8
or
E[6 — 0] =Bias[§ 6] =0

implies that 8 is unbiased. Note that this implies that the expected sawpling error is zero.
If 0 is a vector of parameters, then the estimator is unbiased if the expected value of every
element of § equals the corresponding element of 6.

If samples of size #are drawn repeatedly and & is computed for each one, then the average
value of these estimates will tend to equal 8. For example, the average of the 1,000 sample means
underlying Figure C.2 is 0.9038, which is reasonably close to the population mean of one. The
sample minimum is dearly a biased estimalor of the mean; it will almost always underestimate

the mean, so it will do so on average as well.

Unbiasedness is a desirable attribute, but it is rarely used by itself as an estimation criterion.
One reason is thai there are many unbiased estimators that are poor uses of the data, For example,
in a sample of size a2, (he first observation drawn is an unbiased estimator of the mean that clearly
wasles a great deal of information. A second criterion used to choose among unbiased estimators

is efficiency.

DEFINITION C.3 Efficient Unbiased Estimator i
An unbiased estimator 8, is more ¢fficient than another unbiased estimator 85 if the sam-
pling variance of 8, is less than that of 65. That is,

Varf#,]) < Var[8,].

In the multiparameter case, the comparison is based on the covariance matrices of the two
estimators; 6, is more efficient than 8 if Var[;] — Var[@]is a positive definite matrix.

By this criterion, the sample meun is obviously to be preferred to the first observation as an

estimator of the population mean. If o2 is the population variance, then

L]

Var[x, ] = 62 > Var[¥] = hd

" .

In discussing efficiency. we have restricted the discussion to unbiased estimators. Cleardy,
there are biased estimators that have smaller variances than the unbiased ones we have consid-
ered. Any constant has a variance of zero. Of course, using a constant as an estimator is not likely
to be an effective use of the sample data. Focusing on unbiasedness may still preclude a tolerably
biased estimator with a much smaller variance. however. A criterion that recognizes this possible

tradeoff is the mean squared etror.
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DEFINITION C.4 Mean Sqtlared Errer

The mean squared error of an estimator is }
MSE(816] = E}(6 - o7
= Varl§] + (B:as[é ItE?])2 if # is a scalar.
MSE[F | 8] = Varl§] + Bias[d | ]Bias|# |#]  if # is a vector.-

(C-9)

Figure C.5 illustrates the effect. In this example, on average, the biased estimator will be

| closer to the true parameter than will the unbiased estimator.

Which of these criterta should be used in a given situation depends on the particulars of that
setting and our objectives in the study. Unfortunately, the MSE criterion is rarely operational;
minimum mean squared error estimators, when they exist at all, usvally depcnd on unknown
parameters. Thus, we are usually less demanding. A commonly used criterion is minimum mriance

un biascq!ncz-&

o

Examplie C &5 Mean Squared Error of the Sample Variance
In sampling from a normail distribution, the most frequently used estimator for o2 is

E.M‘Xf —X)*
a1

it is straightforward to show that s° is unbiased, so
Varfs?] = —— = MSE[s?| 57

FIGURE C.5 Sampllng DIs*tributIons‘

unbiased 3
e e bised 3

Density
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[A proof is based on the distribution of the idempotent quadratic form {x (x— I;L}'Mu{ —Ju),
which we discussed in Section B11.4.] A less frequently used estimator is

%—Z(x;—x) =[(n—1)/n}é.

fet

This estimator is slightly biased downward:

. i I
El6Y = {n 1’1.‘:'{32) _ {n n1)a ’

so its bias is

El3? - 6% = Bias[6? | 6% = %102.

But it has a smaller variance than 52

2
Var[5?] = ["ni] [ 2241] < Var[s?].

n

To compare the two estimators, we can use the difference in their mean squared errors:

) 2n-1 2
MSE[52 | 0%] — MSE[s? [ 0% = o* {: 112 - _EH— 1] < Q.

The biased estimrator is a bit more precise. The difference will be negligible in a large sample,
but, for example, it is about 1.2 percent in a sample of 16.

C.5.2 EFFICIENT UNBIASED ESTIMATION

In a random sample of 7 observations. the density of each observation is f(x;. 6). Because the n
observations are independent, their joint density is ”

Flx.x, ..., Xar 8) = f0y, 0) (2. 6) - f(x?,,B)
{C-10)

= H 51, 8) = L8 | X1, Xo. o).
i=t

This function. denoted L8 | X). is called the likelihood function for 8 given the data X, H is
frequently abbreviated to I(8). Where no ambiguity can arise, we shali abbreviate it further
to L.
Exampie C.6 Likelihood Functions for Exponential

. and Normal Distributions
If Xy, ..., X, are a sample of n observations from an expenential distribution with parameter -

B, then -~
. ;
L(8) = [Toe* =67 it
J=1 ‘
if x4, ..., %, are a sample of n observations from a normal distribution with mean x and

standard deviation o, then

n
L, 0) = ] Jomo?y 2t -t

=1
= (2rmo?)=2g 2o T -

{C-11)
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il Y =
K }
Lt 'l. '\.l e

THEOREM C.2 Cramcp-Rao Lower Bound
Assuming that the density of x satisfies certain regularity conditions, the variance of an
unbiased estimator of a parameter 8 will always be ar least as large as

. 2L\ [ [/smue\ 1\
f!(g)}t=("5|:—3—9?—]) =(E|:(“""5§“*) ]) . (C-12)

The quantity 1(9) is the information number for the sample. We will prove the result that the
negarive of the expected second derivative equals the expected square of the first derivative in
Chaprter 16. Proof of the main resuit of the theorem is quite involved. See, for example,
Stuart and Ord {1989).

/19

The likelihood function is the cornerstone for most of our theory of parameter estimation. An
important result for efficient estimation is the following,

'I'he regularity conditions are technical in nature. (See Section lg' 4.1.) Loosely, they are

conditions impaosed on the density of the random variable that appears in the likelihood function;
these condilions will ensure that the Lindeber g-—rLe,vy central limit theorem will apply to moments
of the sample of abservations on the rendom veclor y = 2Inf(x |6)/88,71 = 1.,
the conditions are finite moments of x up to order 3. ‘An additional condition normally mcIudeq.
in the set is that the range of the random variable be mdep{,ndenl of the parameters.

Lo 8 Among

.--\_-

In some cases, the second derivalive of the log likelihood is a constant. so the Cramer—d

Example C.7 Variance Bound for the Poisson Distribution

For the Poisson distribution,
Cal
flx) = “TJ‘“'
n_ _n
InL = —nf + (ZxJ) N~ In(x,

I=1 =1

3Ini X

I

#2mnL -3 . x%
862 ‘

Rao bound is simple to obtain. For instance, in sampling from an exponential distribution, from

Example C.6,
. i
N ]n;:_nInB—GZx,,
=l
3 ln L n &
= e th
=t
s0 # In L/88* = —n/6* and the variance bound is [1(6)]™ = 62/n. In many situations. the second

derivative is a random variable with a distribution of its own. The following examples show two
such cases,
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e e
I [ (Teh=

The sum of n identical Poisson variables has a Poisson distribution with parameter equal
te n.times the parameter of the individual variables. Therefore, the actual distribution of the
first derivative will be that of a linear function of a Poisson distributed variable, Because

_ED 1, x] = nE Ix] = ne, the variance bound for the Paisson distribution is [/ (8)]~" = é/n.
(Note also that the same result implies that £[3InL /39] = 0, which is a result we will use in
Chapter 16. The same result holds for the exponenual distribution.)

Consider, finally, a multivariate case. If @ is a vector of parameters, then J{#) is the information
atrix. The Cramerij-\o theorem states that the difference between the covariance matrix of
any unbiased estimator and the inverse of the information matrix.

2 -1 ] -1
o (o[ ]) -() (g)

will be a nonnegative definite matrix.
In many seltings, numerous estimators are avaitable for the parameters of a dlstnhutlon

£ The usefulness of the Clamel-Rao bound is that if one of these is known to altain (he variance

bound then there is no need to consider any other to seek a more efficient estimator. Regarding
the use of the variance beund, we emphasize that if an unbiased estimator attains it, then that
estimator is efficient. If a given estimator does not attain the variance bound, however. then we
do not know, except in a few special cases, whether this estimator is efficient or not. 1t may be
that no unbiased estimator can attain the C‘mme;-,Rao bound. which can leave the question of
whether a given unbiased estimator is efficient or not unanswered.

We note, finally, thatin some cases we further restrict the set of estimators to linear functions
of the data.

DEF IN ITION C.5 Minimum Variance Linear Unbiased

Estimator (MVLUE)
An estimaior is the minimum variance linear unbiased estimator or best linear unbiased
estimator (BLUE) if it is a linear function of the data and has minimum variance among
linear unbiased estimatofs.

In a few instances, such as the normal mean, there will be an efficient linear unbiased estima-
tor; X is efficient among all unbiased estimators, both tinear and nonlinear. In other cases, such
as the normal variance, there is no linear unbiased estimator. This criterion is useful because we

can sometimes find an MVLUE without having to specily the distribution at all. Thus, by limiting

ourselves (o a somewhat restricted class of estimators, we free ourselves from having to assume
& particular distribution,

C.6 INTERVAL ESTIMATION

Regardless of the properties of an estimator, the estimate oblained will vary from sample to
sample, and there is'some probability that it will be quile erroneans. A point estimate will not
provide any information on the likely range of error. The logic behind an interval estimate is
that we use the sample data to construct an interval, [lower (X). upper (X)] such that we can
expect this interval to contain the true parameter in some specified proportion of samples, or
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equivalently. with some desired level of confidence. Clearly, the wider the interval, the more

confident we can be that it will, in any given sample, contain the parameter being estimated.
The theory of interval estimation is based on a pivotal quamtity, which is a function of both the

parameter and a point estimate that has a known distribution. Consider the following examples.

Example C.8 Conﬁdénéé Intervals for the Normal Mean
tn sampling from a normal distribution with mean x and standard deviation o,

Z= —‘/ﬂ)—is;ﬂ ~tn-1],

and
o {n-1)s?
o2
Given the pivotal gquantity, we can make probability statements about events involving the

parameter and the estimate, Let p(g, #) be the constructed random variable, for example, 2
or ¢. Given a prespecified confidence level, 1 — ¢, we can state that

Prob(lower < p(g, 8) < uppet) =1 —a, (C-14)

whers lower and upper are obtained from the appropriate table. This statement is then ma-
nipulated to make equivalent statements about the endpoints of the Intervals. For example,
the following statements are equivalent:

Prob(—_z < g f_z,) —t—a

~x*n- 11

z8 zZ5
Prob(x— 7 <spsX+ Tﬁ) =1—a

The second of these is a statement about the interval, not the parameter; that is, it is the
Interval thatis random, not the parameter. We attach a probability, or 100{1 — «) percent
confidence level, 1o the interval itself; in repeated sampling, an interval constructed in this
fashion will contain the true parameter 100{1 — &) percent of the time,

In general. the interval constructed by this methad will be of the form
lower(X) =8 — ey,
upper{X) = 6 +es.

where X is the sample data, e; and e, are sampling errors, and @ is a point estimale of 8. It is clear
from the preceding example that if the sampling distribution of the pivotal quantity is eithert or
standard norntal, which will be true in the vast majority of cases we encounter in practice, then
the confidence interval will be

b & Ci_pplse(d)]. (C-15)

where se(.) is the {(known or estimated) standard error of the parameter estimate and €y is
the value from the 7 or standard normal distribution that is exceeded with probability 1 —a/2.
The usual values for o are 0.10, 0.03, or 0.01. The theory does not prescribe exactly how (o
choose the endpoints for the confidence interval. An obvious criterion is to minimize the width
of the interval, If the sampling distribution is symmetric, then the symmetric interval is the best
one. If the sampling distribution is not symmetric. however, then this procedure will not be
optimal.
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Example C.9 Estimated Confidence Intervals for a Normal Mean
and Variance

_ Inasample of 25, ¥ = 1.63 and s = 0.51. Construct a 95 percent confidence interval for .

Assuming that the sample of 25 is from a normal distribution,
Prob (42.064 fh'ﬁg%ﬂ < 2.064) =095,

where 2.064 is the critical value from a t distribution with 24 degrees of freedom. Thus, the
confidence interval is 1.63 &+ [2.064(0.51) /5] or [1.4185, 1.8408].

Remark: Had the parent distribution not been specified, it would have been natural to use the
standard normal distribution instead, perhaps relying on the central limit theorem. But a sam-
ple size of 25 is small encugh that the more conservative t distribution might still be preferable.

The chi-squared distribution is used to construct a confidence interval for the variance
of a normal distribution. Using the data from Exarmple C.9, we find that the usual procedurs
would use

Prob(12 4 < gf—z- =< 39. 4) = 005,
O’

where 12.4 and 3.4 are the 0.025 and 0.975 cutoff points from the chi-squared (24) distribu-
tion. This procedure leads to the 95 percent confidence interval [0.1581, 0.5032]. By making
use of the asymmetry of the distribution, a narrower interval can be constructed. Allocating
4 percent to the left-hand tail and 1 percent to the right instead of 2.5 percent to each, the two
cutoff points are 13.4 and 42.9, and the resulting 95 percent confidence interval is [0.1455,
0.4659],

F“na]IIy, the confidence interval can be manipulated to obtain a confidence intervai for
a function of a parameter. For exam Ie based on the preceding, a 95 percent confidence
interval for o would be [+/0.1581, 032] — [0.3976, 0.7004].

C.7 HYPOTHESIS TESTING

The second major group of statistical inference procedures is hypothesis tests. The classical testing
procedures are based on constructing a statistic from a random sample that will enable the
analyst to decide, with reasonabie confidence, whether or not the data in the sample would
have been generated by a hypothesized population. The formal procedure involves a statement
of the hypothesis, usually in terms of a *null” or maintained hypothesis and an “alternative,”
conventionally denoted Hy and Hy. respectively. The procedure itself is a rule, stated in terms
of the data, that dictates whether the null hypothesis should be rejected ar not. For example,
the hypothesis might state a parameler is equal to a specified value. The decision rule might
state that the hypothesis should be rejected if a sample estimate of that parameter is too far
away from that value (where “far” remains to be defined). The classical. or NeymantPearson,
methodology involves partitioning the sample space into two regions. If the abserved data (i.e.,
the Lest statistic) fall in the rejection region (sometimes called the critical region}, then the null

hypothesis is rejected; if lhey fall in the acceptance region, then it is not.

C.7.1 CLASSICAL TESTING PROCEDURES

Since the sample is random, the Lest statistic, however defined, is also random. The same test
procedure can lead to different conclusions in different samples. As such, there are two ways
such a procedure can be in error:

1. T}'ﬂe I error. The procedure may tead to rejection of the null hypothesis when it is true.
2. Tvpc [I error. The procedure may fail (o reject the null hypothesis when it is false.
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To continue the previous example, there is some probability that the estimate of the parameter
will be quite far from the hypothesized value, even if the hypothesis is true. This outcome might
-cause a type | error.

DEFINITHON C.6  Size of a Test
The probability of a type I error is the size of the test. This is conventionally denoted o and

is also called the significance level.

The size of the test is under the control of the analyst, It can be changed just by changing
the decision rute. Indeed, the type T error could be climinated altogether just by making the
rejection region very small, but this would come at a cost. By eliminating the probability of a
type 1 evrorthat is. by making it unlikely that the hypothesis is rejected-—-we must increase the
probability of a type I error. Ideally, we would Fike both probabilities to be as small as possible,
1t is clear. however, that there is a tradeoff between the two. The best we can hope for is that for
a given probability of type I error, the procedure we choose will have as small a probability of
type I1 error as possible.

DEFINITHON C.7 Power of a Test
The power.of a test is the probabiiity that it will correctly lead to rejection of a false null
hypothesis:

power = 1 — 8 = 1 — Prob(type IT errov). (C-16)

For a given significance level . we would like B 10 be as small as possible. Because B is
defined in terms of the afternative hypothesis, it depends on the value of the paramelter.

Exampife C.10 Testing a Hypothesis About a Mean
For testing Hy: i« = 1 in a normal distribution with known variance o2, the decision rule is
to rejact the hypothesis if the absolute value of the z statistic, /A(X — 1% /o, exceeds the
predetermined critical value. For a test at the 5 percent significance level, we set the critical
value at 1.96. The powar of the test, therefore, is the probability that the absolute value of

e the test statistic will exceed 1.96 given that the true value of u is, in fact, not %, This value

AN depends on the alternative value of u, as shown in Figure C.6. Notice that for this test the
[ 4 ls ) poweris aqual to the size at the point where 1 equals . As might be expected, the test
gt becomes more powerful the farther the true mean is from the hypothesized value.

Testing procedures, like estimators, can be compared using a number of criteria.

DEFINITION C.8 Most Powerful Test
A test is most powerful if it has greater power than any other fest of the same size.
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FIGURE G.6 Power Finctionfor a Test

[his :equnemenl is very strong. Because the power depends on the alternative hypothesis, we

anyother test of the same size for all admissible values of the paramciel There are few SIlUdllOnb in
which a UMP test is available. We usually must be Jess siringent in our requirements. Nonetheless,

the criteria for comparing hypothesis testing procedures are generally based on their respective
power functiogts. A common and very modest requirement is that the test be unbiased

DEFINITION C.9 Unbiased Test

A test is unbiased if its power (1 — B) is greater than or equal 1o its size a for all values of
the parameter.

If a test is biased, then, for some values of the parameter, we are more likely ta accept the
nult hypothesis ‘when it is false than when it is true.
The use of the lerm unbiased here is unrelated 1o the concept of an unbiased estimato

Fortunately, there is little chance of confusion. Tests and estimators are clearly connected, how-
ever. The following criterion derives. in general, from the corresponding atiribute of a parameter
eslimale,

DEFINITION C.10 Consistent Test

A test is consistent if ifs power goes to one as the sample size grows lo infinity.
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Example C.11 Consistent Test About a Mean
A confidence interval for the mean of a normal distribution is ¥ + h_qu (s/+/n), where X and
- . s are the usual consistent estimators for z and & (see Section D.2.1), n is the sample sizs,
“and ty_4s2 is the correct eriticatvalue from the ¢ distribution with 1 — 1 degrees of freedom.,
For testing Ho: ju = uo Versus.-Hi: p # po, let the procedure be to reject H, if the confidence
interval does not contain po. Because X'is consistent for ¢, one can discern if Hy is false as
n — oo, with probability 1, because ¥ will be arbitrarily close to the true p. Therefore, this

test is consistent.

As a general rule. a test will be consistent if it is based on a consistent estimator of the
parameter.

C.7.2 TESTS BASED ON CONFIDENCE INTERVALS

There is an obvious link between interval estimation and the sorts of hypothesis tests we have
been discussing here. The confidence interval gives a range of plausible values for the parameter.
Therefore, it stands to reason that if a hypothesized value of the parameter does not Fall in this
range of plausible values, then the data are not consistent with the hypothesis, and it should be
rejected. Consider, then, testing

_Ho: 8= ﬂn.

Hy: 0 5 6.
We form a confidence interval based on 8 as described earlier:
B~ Ci_aplse(®)] < 8 < 8+ Cryplsed)].

Hy is rejected if 6y exceeds the upper limit or is less than the lower limit. Equw-llently Hy is
rejected if

6 — b
Si._(e)
Inwords, the hypothesis is rejected if the estimate is too far from 6. where the distance is measured
in standard error units. The critical value is taken from the ¢ or standard normal distribution,
whichever is appropriate.

> Ci —af2-

Example C.12 Testing a Hypothesis About a Mean with
a Confidence Interval
For the results in Example C.8, test Hy: i = 1.98 versus Hq:u ' 1.98, assuming sampling
from a normal distribution:

=3.43.

t=

x-198| [1.63-198
s/ || 0102

The 95 percent critical value for t(24) is 2.064. Therefore, reject Hy. If the critical value for
the standard normal table of 1.96 is used instead, then the same result is obtained.

If the test is one-sided. as in _
.-HD: 8 = 601

Hy: 8 < 8,

then the critical region must be adjusted. Thus, for this test, Hy will be rejected if a point estimate
of ¢ talls sufficienily below 8y, (Tests can usually be set up by departing trom the decision criterion,
“Whal sample results are inconsistent with the hypothesis?™)



