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DISCRETE CHOICE

17.1 INTRODUCTION N N L

- This is the first of three chapters that will survey models used in microeconometrics.
The analysis of individual choice that is the focus of this field is fundamentally about modeling
discrete outcomes such as purchase decisions, for example whether or not to buy insurance,
voting behavior, choice among a set of alternative brands, travel modes or places to live, and
responses to survey questions about the strength of preferences or about self, assessed health or
well being. In these and any number of other cases, the “dependent variable” is not a quantitative
measure of some economic outcome, but rather an indicator of whether or not some outcome
occurred. It follows that the regression methods we have used up to this point are largely
inappropriate. We turn, instead, to modeling probabilities and using econometric tools to make @
probabilistic statements about the occurrence of these events. We will also examine models for
counts of occurrences. These are closer to familiar regression models, but are, once again, about | 7Y
discrete outcomes of behavioral choices. As such, in this setting as well, we will be modeling| |7
probabilities of events, rather than conditional mean functions. | ) gnaan
The models that are analyzed in this and the next chapter are bullt on a platform of| | f1/, Ty
preferences of decision makers. We take a.random utility, view of the choices that are observed. |
The decision maker is faced with a situation or set of alternatives, and reveals something about J i A
their underlying preferences by the choice that they make The choice(s) made will be affected | i i
by observable influences — this is of course, the ultimate objective of advertising — and by | %]
unobservable characteristics of the chooser. The blend of these fundamental bases for individual | |41 !
choice is at the core of the broad range of models that we will examine here'! | PO TG o 1 0
This chapter and Chapter 18 will describe four broad frameworks for analysis: | T

Binary Choice: The individual faces a pair of choices and makes that choice between the two
that provides the greater utility. Many such settings involve the choice between taking an
action and not takifg that action, for example the decision whether or not to purchase health
insurance. In other cases, the decision might be between two distinctly different choices,
such as the decision whether to travel to and from work via public or private transportation.
In the binary choice case, the 0/1 outcome is merely a label for “nolyes” - -'- the numerical
values are a mere convenience,

Multmomlal Choice: The individual chooses among more than two choices, once again, making
the choice that provides the greatest utility. In the previous example, private travel might
involve a choice of being a driver or passenger while public transport might involve a choice
between bus and train. At one level, this is a minor variation of the binary choice case  the
latter is, of course, a special case of the former. But, more elaborate models of multinomial
choice allow a rich specification of consumer preferences. In the multinomial case, the
observed response is simply a label for the selected choice; it might be a brand, the name of a
place, or the type of travel mode. Numerical assignments are not meaningful in this sefting.

! See Greene and Hensher (2010, Chapter 4) for an historical perspective on this approach to model
specification.
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Ordered Chonce The individual reveals the strength of thelr preferences with respect to a single
outcome. Familiar cases involve survey questions about strength of feelings about a
particular commodity such as a movie, or self assessments of social outcomes such as health
in general or self assessed well being. In the ordered choice setting, opinions are given

. meaningful numeric values, usually 0,1,...,J for some upper limit, J. For example, opinions

" rhight be labelled 0,1,2,3,4 to indicate the strength of preferences, for example, for a product,
a movie, a candidate or a pi@ée_ of legislation. But, in this context, the numerical values are
only a ranking, not a quantitative measure, - Thus a “1” is greater than a “0” in a qualitative
sense, but not by one unit, and the difference between a “2” and a *“1” is not the same as that
between a “1” and a “0.”

In these three cases, although the numerical outcomes are merely labels of some nonquantitative
outcome, the analysis will nonetheless have a regresson—style motivation. Throughout, the
models will be based on the idea that observed‘‘covariates’ are relevant in explalmng the
observed choices. For example, in the binary outcome “did or did not purchase health insurance,”
a conditioning model suggests that covariates such as age, income, and family situation will help
to explain the choice. This chapter will describe a range of models that have been developed
around these considerations. We will also be interested in a fourth application of discrete
outcome models:
T d
Event Counts The observed outcome is a count of the number of occurrences, In many cases,
this is similar to the preceding three settings in that the “dependent variable” measures an
individual choice, such as the number of visits to the physician or the hospital, the number of
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derogatory reports in one’s credit history, or the number of visits to a particular recreation -

site. In other cases, the event count might be the outcome of some natural process, such as
incidence of a disease in a population or the number of defects per unit of time in a
production process. In this setting, we will be doing a more familiar sort of regression
modeling. However, the models will still be constructed specifically to accommodate the
discrete nature of the observed response variable.

We will consider these four cases in turn. The four broad areas have many elements in
common; however, there are also substantive differences between the particular models and
analysis techniques used in each. This chapter will develop the first topic, models for binary
choices. In each section, we will begin with an overview of applications, then present the single
basic model that is the centerpiece of the methodology, and, finally, examine some recently
developed extensions of the model. This chapter contains a very lengthy discussion of models for
binary choices. This analysis is as long as it is because, first, the models discussed are used
throughout microeconometrics — the central model of bmary choice in this area is as ubiquitous as
linear regression. Second, all of the econometric issues and features that are encountered in the
other areas will appear in the analysis of binary choice, where we can examme them in a fairly
straightforward fashion.

It will emerge that, at least in econometric terms, the models for multinomial and ordered
choice considered in Chapter 18 can be built from the two fundamental building blocks, the
model of random utility and the translation of that model into a description of binary choices.
There are relatively few new econometric issues that arise here. Chapter 18 will be largely
devoted to suggesting different approaches to modeling choices among multiple alternatives and
models for ordered choices. Once again, models of preference scales, such as movie or product
ratings, or self assessments of health or well being, can be naturally built up from the fundamental

model of random utility. Finally, Chapter 18 will develop the well known Poisson regression
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model for counts of events. We will then extend the model to demonstrate some recent
applications and innovations.
™ Chapters 17 and 18 are a lengthy. but far from complete survey of topics in estimating

qualltatlve response (QR) models. None of these models can be consmtent]y estimated with. -

linear regression methods. In most cases, the method of estimation is maximum likelihood.
- Therefore, readers interested in the mechanics of estimation may want to review the material in
Appendmes D and E before continuing. The various propemes of maximum likelihood estimators
are discussed in Chapter 14. We shall assume throughout ‘these chapters that the necessary
conditions behind the optimality properties of maximum likelihood estimators are met and,
therefore, we will not derive or establish these properties specifically for the QR models. Detailed
proofs for most of these models can be found in surveys by Amemiya (1981), McFadden (1984),
Maddala (1983), and Dhrymes (1984). Additional commentary on some of the issues of interest
in the contemporary literature is given by Manski and McFadden (1981) and Maddala and Flores-
Lagunes (2001). Agresti (2002) and Cameron and Trivedi (2005) containg numerous theoretical
developments and applications. Greene (2008) and Hensher and Greene (2010) provide, among
many others, general surveys of discrete choice models and methods.*

- *There are dozens of book length surveys of discrete choice models. Two others that are heavily oriented
to application of the methods are Train (2003) and Hensher, Rose and Greene (2005)
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17.2 Models for Binary Outcomes

For purposes of studying individual behavior, we will construct models that link the decision or
outcome to a set of factors, at least in the spirit of regression. Our approach will be to analyze
each of them in the general framework of probability models:

Prob(event j occurs) = Pro_b(Y =J) = Flrelevant effects, parameters]. 17-1)

The study of qualitative choice focuses on é.ppropriate specification, estimation, and use of
models for the probabilities of events, where in most cases, the “event” is an individual’s choice
among a set of two or more alternatives.

Example 17.1 Labor Force Participation Model
In Example 5.2 we estimated an earnings equation for the subsample of 428 married women
who participated in the formal [abor market taken from a full sample of 753 observatlons The
semilog earnings equation is of the form

In earnings = B, + B, age + Bs age® + B4 education + Bs kids + €,

where eamnings is hourly wage times hours worked, education is measured in years of
schooling, and kids is a binary variable which equals one if there are children under 18 in the
household. What of the other 325 individuals? The underlying labor supply model described
a market in which labor force participation was the outcome of a market process whereby the
demanders of labor services were willing to offer a wage based on expected marginal product
and individuals themselves made a decision whether or not to accept the offer depending on
whether it exceeded their own reservation wage. The first of these depends on, among other
things, education, while the second (we assume) depends on such variables as age, the
presence of children in the household, other sources of income (husband’s), and marginal tax
rates on [abor income. The sample we used fo fit the earnings equation contains data on all
these other variables. The models considered in this chapter would be appropriate for
modeling the outcome y = 1 if in the labor force, and 0 if not.

Models for explaining a binary (0/1) dependent variable are typically motivated in two
contexts. The labor force participation model in Example 17.1 describes a process of individual
choice between two alternatives in which the choice is influenced by observable effects (children,
tax rates) and unobservable aspects of the preferences of the individual. The relationship between /|
voting behavior and income is another example. In other cases, the binary choice model arises
in a setting in which the nature of the observed data dictate the special treatment of a binary
dependent variable model. In these cases, the analyst is essentially interested in a regression-like
model of the sort considered in Chapters 2 through 7. With data on the variable of interest and a
set of covariates, they are interested in specifying a relationship between the former and the latter,
more or less along the lines of the models we have already studied. For example, in a model of
the demand for tickets for sporting events, in which the variable of interest is number of tickets, it
could happen that the observation consists only of whether the sports facility was filled to
capacity (demand greater than or equal to capacity so ¥=1) or not (¥=0). It will generally turn out
that the models and techniques used in both cases are the same. Nonetheless, it is useful to
examine both of them.



17.2.1 RANDOM UTILITY MODELS FOR INDIVIDUAL CHOICE

[ KT
An interpretation of data on individual choices is provided by the random utility model. Let U,
and U, represent an individual’s utility of two choices. For example, U, might be the utility of
rental housing and Uj that of home ownership. The observed choice between the two reveals
which one provides the greater utility, but not the unobservable utilitics. Hence, the observed
indicator equals 1 if U, > U, and 0 if U, < Tj. A common formulation is the linear random
utility model, T -
Us=WBa+ 2Ys+ £ and Uy =w'By+ 2, + &4 (17-2)

In (17-2), the observable (measurable) vector of _characftéﬁﬁstics of the individual is denoted w;
this might include gender, age, income and other demographics. The vectors z, and z, denote
features (attributes) of the two choices, that might be choice specific. In a voting context, for
example, the attributes might be indicators of the competing candidates’ positions on important
issues. The random terms, €, and &, represent the stochastic elements that are specific to and
known only by the individual, but not by the observer (analyst). To continue our voting example,
€, might represent an intangible, general *preference/for candidate a.

The completion of the model for the determination of the observed outcome (choice) is
the revelation of the ranking of the preferences by the choice the individual makes. Thus, if we
denote by ¥ = 1 the consumer’s choice of alternative a, we infer from Y =1 that U, > U,. Since
the outcome is ultimately driven by the random elements in the utility functions, we have

Prob[Y=1|w,z,2z]_  =Prob[U, > Uj] _
= Prob[(wP, + 2.V + 22) ~ (xXBs + 2"y, + £) > 0| WoZoZ]
= Prob[(w'(B. — Bs) + 2."Ya — s + £4 — £4) > O | W,20,25)
= Probfx'B +¢ > 0 x],

where x'B collects all the observable elements of the difference of the two utility functions and ¢
denotes the difference between the two random elements.

13-5
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Example 17.2 Structural Equations for a Binary Choice Model
Nakosteen and Zimmer (1980) analyzed a model of migration based on the following
structure'® For a given individual, the market wage that can be earned at the present location
is
Yo" = Wp'Bp + €5

Veariables in the equation include age, sex, race, growth in employment, and growth in per
capita income. If the individual migrates to a new location -then his or her market wage would
be "

Ym" = Wn'Bn + Ep.

Migration entails costs that are related both to the individual and to the labor market:
Cr'=2Z'a+u.
Costs of moving are related to whether the individual is self-employed and whether that

person recently changed his or her industry of employment. They migrate if the benefit
Ym" = Yo" is greater than the cost, C. The net benefit of moving is

M =Ym* =~ Ypt - C*
=Wn'Bm =~ W', —2'a + (£n - €y~ u)
=XP+e

Because M* is unobservable, we cannot treat this equation as an ordinary regression. The
individual either moves or does not. After the fact, we observe only yn* if the individual has
moved or y,* if he or she has not. But we do observe that M = 1 for a move and M = 0 for no
move.

'* A number of other studies have also used variants of this basic formulation. Some important examples are

Willis and Rosen (1979) and Robinson and Tomes (1982). The study by Tunali (1936) examined in
Example 17.6 is another application. The now standard approach, in which “participation” equals one if
wage offer (x,/B,+€.) minus reservation wage (x.'B. +e,) is positive, is also used in Fernandez and
Rodriguez-Poo (1997). Brock and Durlauf (2000) describe a number of models and situations involving
individual behavior that give rise to binary choice models.



17.2.2 A LATENT REGRESSION MODEL

Discrete dependent-variable models aré often cast in the form of index function models.
We view the outcome of a discrete choice as a reflection of an underlying regression. As an often:
cited example, consider the decision to make a large purchase. The theory states that the
.consumer makes a marginal benefit/marginal cost calculation based on the utilities achieved by
making the purchase and by not making the purchase and by using the money for something else.
We model the difference between benefit and cost as an unobserved variable y* such that

y*=xPte

Note that this is the result of the *net utility*’ calculation in the previous section and in Example
17.2. We assume that & has mean zero and has either a standardized logistic with variance 7%/3 or
a standard normal distribution with variance one or some other specific distribution with known
variance. We do not observe the net benefit of the purchase (i.e., net utility), only whether it is
made or not, Therefore, our observation is

y=lify* >0, (17-3)
y=0if y* < 0.

In this formulation, x'p is called the index function. The assumption of known variance of e is an
innocent normalization. Suppose the variance of ¢ is scaled by an unrestricted parameter o°. The
latent regression will be y* = x'B + ce. But, (y*/c) = x'(f/o) + ¢ is the same model with the
same data. The observed data will be unchanged; yissiill 0 or 1, depending only on the sign of y*

not on its scale. This means that there is no information about o in the sample data so ¢ cannot be
estimated. The parameter vector B in this model is only “identified up to scale:* The assumption
of zero for the thresho!d in (17-3) is likewise innocent if the model contains a constant term (and
not if it does not).*” Let a be the supposed nonzero threshold and a be the unknown constant term
and, for the present, x and B contain the rest of the index not including the constant term. Then,
the probability that y equals one is

Prob(y* > a| x) = Prob(a + x'B +¢ > a | x) = Prob[(a ~ a) + xB+£> 0 | x].
o ||| BT
Because o is unknown, the difference (¢=a) remains an unknown parameter. The end result is that
if the model contains a constant term, it is unchanged by the choice of the threshold in (17-3). The
choice of zero is a normalization with no significance. With the two normalizations, then,

Prob(y* > 0 | x) = Prob(e > —x'B | x).

A remaining detail in the model is the choice of the specific distribution for e. We will consider
several. The overwhelming majority of applications are based either on the normal or the logistic
distribution. If the distribution is symmetric, as are the normal and logistic, then

Prob(y* > 0| x) = Prob(e < x'B | x) = F(x'p), (17-4)

where F(f) is the cdf of the random variable, €. This provides an underlying structural model for
the probability.

# Unless there is some compelling reason, binomial probability models should not be estimated without
constant terms.

17-37)
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17.2.3 FUNCTIONAL FORM AND REGRESSION

Consider the model of labor force participation suggested in Example 17.1. The respondent either
works or seeks work (¥=1) or does not (¥=0) in the period in which our survey is taken. We
believe that a set of factors, such as age, marital status, education, and work history, gathered in a
vector X, explain the decision, so that

Prob(Y=1|0)=FxB) =
Prob(Y=0|x) =1 - Fix, B). (7-5)

The set of parameters B reflects the impact of changes in x on the probability. For example,
among the factors that might interest us is the marginal effect of marital status on the probability
of [abor force participation. The problem at this point is to devise a suitable model for the right-
hand side of the equation. One possibility is to retain the familiar linear regression, '

Fx, B) = x'B.

Because E[y | x] = 0[1 - F(x, B)] + 1[F(x, B)] = F(x, B), we can construct the regression model,

y =Ely|x]+ y- Ely|x]
=xpte (17-6)
7T
The linear probability model has a number of shortcomings. A minor complication arises
because ¢ is heteroscedastic in a way that depends on_B. Because x' + ¢ must equal 0 or 1, &
equals either —x'B or 1-x’, with probabilities 1-F and F, respectively. Thus, you can easily show
that in this model,

Varfe | x] = XB(1 - x'B). a7-7)

We could manage this tomplication with an FGLS estimator in the fashion of Chapter 9, though
this only solves the estimation problem, not the theoretical one. A more serious flaw is that
without some ad hoc tinkering with the disturbances, we cannot be assured that the predictions
from this model will truly look like probabilities. We cannot constrain x'B to the 011 interval.
Such a model produces both nonsense probabilities and negative variances. For these reasons, the
linear probability model is becoming less frequently used except as a basis for comparison to
some other more appropriate models;”

'#The linear mode! is not beyond redemption. Aldrich and Nelson (1984) analyze the properties of the
model at length. Judge et al. (1985) and Fomby, Hill, and Johnson (1984) give interesting discussions of the
ways we may modify the model to force internal consistency. But the fixes are sample dependent, and the
resulting estimator, such as it is, may have no known sampling properties. Additional discussion of
weighted least squares appears in Amemiya (1977) and Mullahy (1990). Finally, its shortcomings
notwithstanding, the linear probability model is applied by Caudili (1988), Heckman,and MaCurdy (1985),
and Heckman and Snyder (1997). An exchange on the usefulness of the approach is Angrist (2001) and
Moffitt (2001). See Angrist and Pischke (2009) for some applications.
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Our requirement, then, is a model that will produce predictions consistent with the
underlying theory in (17-4). For a given regressor vector, we would expect

;:Blﬂl+oo Prob(Y=1[|x)=1 |

gim__ Prob(Y=1[x)=0. | (17-8)

Xp - -
\ See Figure 17.1. In principle, any proper, continuous probability distribution defined over the real
line will suffice. The normal distribution has been used in many analyses, giving rise to the

/ probit model,

Prob(¥ =1 x) = j_"cf W)t = DXP). (17-9)

The function ®(z) is a commonly used notation for the standard normal distribution function,
Partly because of its mathematical convenience, the logistic distribution,

Prob(Y=1|x) = —M = A(XB): (17-10)
has also been used in many applications. We shall use the notation A(.) to indicate the logistic
cumulative distribution function. This model is called the logit model for reasons we shail discuss
in the next section. Both of these distributions have the' familiar bell shape of symmetric

i
[}
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distributions, Other models which do not assume symmetry, such as the Gumbel model,

Prob(¥Y =1 | x) = exp[—exp(—x'B)],
TN
and complementary log log model,

Prob(¥ = 1) =1 ~ exp[—exp(x'B)],

have also been employed. Still other distributions have been suggested,® but the probit and logit
models are still the most common frameworks used in econometric applications.

The question of which distribution to use is a natural one. The logistic distribution is
similar to the normal except in the tails, which are considerably heavier. (It more closely
resembles a # distribution with seven degrees of freedom.) Therefore, for intermediate values of
x'B (say, between ~1.2 and +1.2), the two distributions tend to give similar probabilities. The
logistic distribution tends to give larger probabilities to ¥ = 1 when x'B is extremely small (and
smaller probabilities to ¥ = 1 when x'B is very large) than the normal distribution. It is difficult to
provide practical generalities on this basis, however, as they would require knowledge of B. We
should expect different predictions from the two models, however, if the sample contains (1) very
few " reSponses"‘(_Y’ s equal to 1) or very few “nonresponses” (¥’s equal to 0) and (2) very wide
variation in an important independent variable, particularly if (1) is also true. There are practical
reasons for favoring one or the other in some casés for mathematical convenience, but it is
difficult to justify the choice of one distribution or another on theoretical grounds. Amemiya
(1981) discusses a number of related issues, but as a general proposition, the question is
unresolved. In most applications the choice between these two seems not to make much
difference. However, as seen in the example below, the symmetric and asymmetric distributions
can give substantively different results, and here, the guidance on how to choose is unfortunately
sparse,

The probability model is a regression:

Fly|x] = F(XP)

Whatever distribution is used, it is important to note that the parameters of the model, like those
of any nonlinear regression model, are not necessarily the marginal effects we are accustomed to
analyzing. In general,

OE[y}x] _| dF(x'B) '
ox [d( 'ﬁ)] B=f(xB)=B, (17-11)

where f(.) is the density function that corresponds to the cumulative distribution, £(.). For the
normal distribution, this result is

OBLYIXI _ 4 mlips
R = 4 Byx B (17-12)

8 See, for example, Maddala (1983, pp. 27-32), Aldrich and Nelson (1984), and Greene (2001).

13-10)
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where ¢(%) is the standard normal density. For the logistic distribution,

dAXPB) __ exp(x’B)
d(xB)  [1+exp(x'B)’

= AGB)1~ A(KB)],

sa, in the logit model,

aE[a);IX]=A(X’B)[1—A(i'ﬁ)1l3-' LR (17-13)

It is obvious that these values will vary with the values of X. In interpreting the estimated model,
it will be useful to calculate this value at, say, the means of the regressors and, where necessary,
other pertinent values. For convenience, it is worth noting that the same scale factor applies to all
the slopes in the model. LN

For computing marginal effects, one can evaluate the expressions at the sample means of
the data or evaluate the marginal effects at every observation and use the sample average of the
individual marginal effects l— this produces the ‘average partial effects.” In large samples these
generally give roughly the same answer (see Section 17.3.2). But that is not so in small, or
moderate sized samples. Current practice favors averaging the individual marginal effects when it
is possible to do so.

Another complication for computing marginal effects in a binary choice model arises
because x will often include dummy variables—for example, a labor force participation equation
will often contain a dummy variable for marital status. Because the derivative is with respect to a
small change, it is not appropriate to apply (17-11) for the effect of a change in a dummy
variable, or a change of state. The appropriate marginal effect for a binary independent variable,
say, d, would be

Marginal effect = Prob[Y=1 [X(4y»4 =1]— Prob[¥ ]'—';Il Xy, d=0],  (17-14)

where X, , denotes the means of all the other variables in the model. Simply taking the derivative

with respect to the binary variable as if it were continuous provides an approximation that is often
surprisingly accurate. In Example 17.3, for the binary variable PSI, the difference in the two
probabilities for the probit model is (0.5702'—TO. 1057) = 0.4645, whereas the derivative
approximation reported in Table 17.1 is 0.468. Nonetheless, it might be optimistic to rely on this
outcome. We will revisit this computation in the examples and discussion to follow.

17.3 ESTIMATION AND INFERENCE IN BINARY CHOICE MODELS

With the exception of the linear probability model, estimation of binary choice models is usually
based on the method of maximum likelihood. Each observation is treated as a single draw from a
Bernoulli distribution (binomial with one draw). The model with success probability F(x'B) and
independent observations leads to the joint probability, or likelihood function, '

Prob(¥, = 11,1, = 3,44, =, 1X) =[] 0-FxI[ | Fx).
¥;=1

=0
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where X denotes [X;]i-1,/,». The likelihood function for a sample of n observations can | ¢

) be conveniently written a;; 1% \
. n e DL |
L3 |_dqta).= [TIFpP - Fogg=». (2516)
"5

Taking logs, we obtain 4
L} g L ) I| [-
InL=Y" {nhFXg+d-yminfl- F(xgﬁ)]}.b\ ' (251D

K3 i=1
The ltkehhoud equations are

i 2}
alnL“Z[“"ﬂl—y) ff} =0 W 1w,
i=1 Fi qr i
where f; is the density, d £ /d(x[8). [In (23’ 18) and later, we will use the subscript i to
indicate that the function has an argument x! f8.] The choice of a particular form for F;
leads to the empirical model. T
Unless we are using the linear probability model. the likelihood equationsin (2"."-'18)
will be nonlinear and require an iterative solution. All of the models we have seen thus
far are relatively straightforward to analyze. For the logit model. by inserting @37y and
-11) in (23%18), we get, after a bit of manipulation. the likelihood equations }

l? "'|1: I! "
¥ BlnL__Z(p ~ A)x; =0, | ;}%’.;19)
1%

Note that if x; contains a constant term, the first-order conditions 1mply that the average

?’__/

of the predicted probabilities must equal the proportion of ones in the sample.] This
implication also bears some Slmllanty to the least squares normal equations if we view

the term v as a residual MFor the normal distribution, the log-likelihcod is
//ﬁ”/z:ln[l - Q(xgﬁ)] +Zln b (x]f). (23/-.20)
i ¥=l , "}/ ]-f

The first-order conditions for maxumzmg In Lare

3luL Z r+z_x,__2mx;+zmx;.
n=0 »i=1

Vj-.-0 V;—l

..,{ )

Using the device suggested in footnoteﬁ we can reduce this to

dlog L Qr¢'(l7:x B
Y I fV—: [ (X B) ] Z M =h ,Mq,zl)

where ¢; = 2y — 1,

4( Iaif the distribution is symmetric, as the normal and logistic are, then 1 — F(x'f) = F(—x'g). There isa further
simplification. Lot g = 2y — 1, Then In L= E; In F(gx! ). See (X3-21).” !

Q #The same result holds for the linear probability model. Although regularly observed in practice, the result
has not been verified for the probit model.

5[ HThis sort of construction arises in many models. The first derivative of the log-likelihood with respect to the
constant term produces the generalized residunl in many settings. argxample, Chesher, Lancaster, and

Trish (1985) and the equivalént restlt for the tobit model in Sectio w

(9,344
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The actual second derivatives for the logit model are quite simple: q'_ .

|

. o © .. 9L \ '
H=mm = WZA,-u — AN, (322

The second derivatives do not involve the random variable y;, so Newton’s method

|y is also the methed of scoring for the logit model. Note that the Hessian is always

negative definite, so the log-likelihood is globally concave. Newton’s method will usually

converge to the maximum of the log-likelihood in just a few iterations unless the data

are especially badly conditioned. The computation is slightly more involved for the

probit model. A useful simplification is obtained by using the variable A(v;, 8'x;) = A;

l ’.} 700 that is defined i (23<2%). The second derivatives can be obtained using the result that
for any z, dg{z)/dz = —~z¢(z). Then, for the probit model,

n

2mL ,’J— -
H = FYITd = Z —hilh; +..’_"§g3)__"1..’.‘§' 1'21(23)

i=1

= _ This matrix is also negative definite for all values of 8. The proof is less obvious than for
ALY J P ~— the logitmodel. 1t suffices to note that the scalar part in the summation is Var[e | £ < ']
L — 1 when y = 1and Var[e|e > —8'x] —~ 1 when y = 0. The unconditional variance
is one. Because truncation always reduces variance}rsee Theorem 24/2—m both cases,
the variance is between zero and one, so the value is negative®4 /3
The asymptotic covariance matrix for the maximum likelihood estimator can be
estimated by using the inverse of the Hessian evaluated at the maximum likelihood
estimates. There are also two other estimators available. The Berndt, Hail, Hall, and w
Hausman estimator {see (}5—18) and Example }l‘i‘f] would be
} n
7 t B=>"gxx,
=y
where g; = (¥; — A;) for the logit model [see (2%-19)] and g; = A; for the probit model
/[s/ee_(la@ﬁ )] The third estimator would be based on the expected value of the Hessian.
‘q_,.; =~ As we saw earlier, the Hessian for the logit model does not involve y;, so H = E[H].
But because A; is a function of _vL[_s?]a:Zl)], this result is not true for the probit model.
| =75 Amemiya (1981) showed That for the probit model,

2 " ! ,} 43
E [3 ’3—’7] =D Ak, 2524)
8 ﬁ probit =l )q/ i

Once again, the scalar part of the expression is always negative [see (23’—-2:1) and note
that Ay, is always negative and A;; is always positive]. The estimator of the asymptotic
covariance matrix for the maximum likelihood estimator is then the negative inverse
of whatever matrix is used to estimate the expected Hessian. Since the actual Hessian
is generally used for the iterations, this option is the usual choice. As we shall see later,
though, for certain hypothesis tests, the BHHH estimator is a more convenient choice.

‘9-‘; See, for example, Amemiya {1985, pp. 273;274) and Maddala (1983, p. 63).
HMSee Johnson and Kotz (1993) and Heckman {1979). We will make repeated use of this result in Chapter 247
2

/7



W

1{ Greene-50558

14

book June 25, 2007 11:6

780 PART VI 4+ Cross Sections, Panel Data, and Microeconometrics

B
. The probit maximum likelihood estimator is often labeled a quasl-maxmlum likeli-

{11 hood estimator (QMLE) in view of the pOSSlblIll’} that the normal probability model
might be mlsspeaﬁed White's (1982a). 10bust dwich” estimator for the asymptotic

ROBUST COVARIANCE MATRIX ESTIMATION |

1#-149

covariance matrix of the QMLE (see Section W
Est. Asy. Var[f] = H]"B[l-l]‘

has been used in a number of recent studies based on the probit model [e.g., Fernandez
and Rodriguez-Poo (1997). Horowitz (1993), and Blundell, Laisney. and Lechner
{1993)]. If the probit model is correctly specified, then phm(l/n)B plim(1 /n)(ml-l)
and either single matrix will suffice, so the robustness issue is moot (of comse) On
the other hand, the probit (Q-) maximum likelihood estimator is n10f consistent in the
presence of any form of heteroscedasticity, unmeasured heterogeneity, omitted vari-
ables (even if they are orthogonal to the included ones), nonlinearity of the functional
form of the index, or an error in the distributional assumption fwith some narrow
exceptions as described by Ruud {1986)]. Thus, in almost any case, the sandwich esti-
mator provides an appropriate asymptotic covariance matrix for an estimator that is
biased in an umﬁ and Freedman (2006).] White raises
this issue explicitly, although it seems to receive little attention in the literature: “It is
the consistency of the QMLE for the parameters of interest in a wide range of situa-
tions which insures its usefulness as the basis for robust estimation techniques” (1982a,
p. 4); His very useful result is that if the quasi-maximum likelihood estimator converges
to a probability limit, then the sandwich estimator can, under certain circumstances,
be used to estimate the asymptotic covariance matrix of that estimator. But there is
no guarantee that the QMLE wilf converge to anything interesting or useful. Simply
computmg a robust covariance matrix for an otherwise inconsistent estimator does not
glve it ledemptlon Consequently, the virtue of a robust covariance matrix in this setting
is unclear.

1}.3-2

23-4-2—~ MARGINAL EFFECTS AND AVERAGE PARTIAL EFFECTS

ia
The predicted probabilities, F(x/ #) = Fandthe estimatedmcffects £ (x’ﬁ) X ﬁ =
18 # are nonlinear functions of the palameter estimates. To compute standard errors, we
can use the linear approximation approach {(delta method) discussed in Section 4. ﬁ 4.
For the predicted probabilities, ‘{

Asy. Var[£] = [aF /381 Y [2 F /3],

where
Y = Asy. Var[ﬁ,_].

The estimated asymptotic covariance matrix of B can be any of the three described
earlier. Let z = x’8. Then the derivative vector is

[3£/88) = [dF/dz[32/98) = fx.
Combining terms gives
Asy. Var[F] = f*x’ Vx,

A

Y
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which depends, of course, on the particular x vector used. This result is useful when a
marginal effect is computed for a dummy variable. In that case, the estimated effect is

AF=Fl@d=1)—-F|d=0). (2525
The asymptotic variance would be g / J=a
Asy. Var[aF] = [8AF/3BYV[aAF /8],

where o (25°26)

5 @ Ry 138
[2AF/2f] = f1( ) fo(' : )
For the other marginal effects, let § = f 8. Then

Asy. Var{p] = P’,] v {;’;]'

The matrix of derivatives is

~f 88 df R df
26 =1 X.
'f(a_fé)”( )( 3) f*+(“'Z)ﬂ
For the probit model, df/dz = —z¢.s0

Asy. Var[p] = (1 - BBX Y1 - (x'B)BxY.
For the logit model, f = A{l — A),s0

df =(1=24) (d’;) =(1—2R)AQ1 - A).

Collecting terms, we obtain
Asy. Var[p] = (A(1 = AF[E+ (1= 28)8x[V[1+ (1 - 2A)x8"].
As before, the value obtained will depend on the x vector used.

?
Example 23?3 Probability M?Lg-.j's// / 7 /

The data listed in Appendix Table F were taken from a study by Specior and Mazzeo
{1980), which examined whether a new method of teaching economics, the Personalized
Systemn of Instruction {PSF), significantly nfluenced performance in later economics courses,
The “dependent variable” used in our application is GRADE, which indicates thie whether
a student’s grade in an intermediate macroeconomics course was higher than that in the
principles course. The other variables are GPA, their grade point average; TUCE, the score
on a pretest that indicates entering knowledge of the material; and PS/, the binary variable
indicator of whether the student was exposed to the new teaching method. (Spector and

Pl Y Mazzeo's specific equation was somewhat different from the one estimated hete.) o 'e m['
W)V F Table ﬁj presents four sets of parameter estimates. The slope paramet d defiva.— € 7P CMe miary
% tives were computed for four prolability models: finear, probit, logit, and > The last 7/ v / o9

three sets of estimates are computed by maximizing the appropriate Iog—llkelihood function.

Inference Betimetion is discussed in the next section, so standard errors are not presented here. The
scale factor given in the last row is the density function evaluated at the means of the vari-
ables. Also, note that the slope given for PSI is the derivative, not the change in the function
with PSf changed from zero to one with other variables held constant.
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VX
TABLE 3941 Estimated Probabilty Models

'(Q;‘pf?ﬂfu ‘lLQ g /’5 /,,_9

Linear Logistic Probit
Variable  Coefficient Slope . Coefficient Siope  Corfficient Slope  Coefficient Slope
Constant —1.498 T — - —13021 — ~7.452 — —10.631 —
GPA 0.464 0464 2826 0.534 1.626  0.533 2293 0477
TUCE 0.0M0 0010 0095 0.018 6052 007 0.041  0.009
PSI 0379 0379 2379 0450 1426 0468 . L5362 0325
f&'d 1,000 0.189 0.328 0208

If one looked only at the cosfficient estimates, then it would be natural to conchude that
the four models had produced radically different estimates. But a comparisen of the columns
of slopes shows that this conclusion is clearly wrong. The models are very similar; in fact,
the logit and probit models results are nearly identical.

The data used in this example are only moderately unbalanced between Os and 1s for
the dependent variable (21 and 11). As such, we might expect simiar resuits for the probit

I3

and logit models.”™ One indicator is a comparison of the coefficients. In view of the different
variances of the distributions, one for the normal and 72/3 for the logistic, we might expect to
obtain comparable estimates by multiplying the probit coefficients by = /+/3 ~ 1.8, Amemiya

{1981} found, through trial and error, that scaling by 1.8 instead produced better results. This
proportionality result is frecuently cited. The result in

=% Y

The indexx’8 is not the random variable. (Bt

{22~gTray help to explain the finding.
brsP@d2a The marginal effect in the probit

model for, say, X is ¢(x'B,) Bk, whereas that for the logit is A(1 — A)Bx. (The subscripts p
and ] are for probit and logit.) Amemiya suggests that his approximation works best at the
center of the distribution, where F = 0.5, or x’# = 0 for either distribution. Supposeitis. Then
$(0) = 0.3989 and A(O)[1 — A(D)] = 0.25. If the marginal effects are to be the same, then
0.3989 oy = 0.258y, or f = 1.6fx, which is the regularity observed by Amemiya. Note,
though, that as we depart from the center of the distribution, the relationship will move away
from 1.6. Because the logistic density descends more slowly than the normal, for unbalanced

samples such as ours, the ratio of the logit coeffic
be larger than 1.6. The ratios for the ones in Table

ients to the probit caaffici will tand to
T are closer to 1.7 than 1.6. I

The computation of the derivatives of the conditional mean function is useful whan the vari-
able in question is continuous and often produces a reasonable approximation for a dummy
variable. Another way to analyze the effect of a dummy variable on the whole distribution is
to compute Prob(Y = 1) over the range of x'g (using the sample estimates) and with the two

values of the binary variable. Using the coefficients from the probit model in Table ;6
have the following probabilities as a function of GPA, at the mean of TUCE:

1, we

17

PSI = 0:Prob{GRADE = 1) = &{—7.452 + 1.626GPA -+ 0.052(21.938)},
PSI = 1: Prob{GRADE = 1) = &[~7.452 +1.626GPA + 0.052(21.938) -+ 1.426).

Figurle

-2 shows these two functions plotted over the range of

GP4
m

sample, 2.0 to 4.0, The marginal effect of PS/ is the difference between the two functions,

which ranges from only about 0.06 at GPA = 2 to about 0.50 at GPA of 3.5. This effect shows

that the probability that a student’s grade will increase after exposure to_PS/ is far greater

for students with high GPAs than for those with iow GPAs. At the sample mean of GPA of ¥
3.117, the effect of PS! on the probability is 0.465. The simple derivative calculation of W

is given in Table

J 1 EOne might be tempted in this case to suggest an asymmetric distribution for the model, such as the Gumbel
np gg

distribution. However, the asymmetry in the model, to the extent that it is present at ali, refers to the values
of &, not to the observed sample of values of the dependent variable.

.1; the estimate is 0.468. But, of course, this calculation does not show
the wide range of differences displayed in Figure 2.3"2
|

)31
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1.0

0.8

L

0.4

i

Prob(GRADE = 1)

Without PSI

0.506 —t —— = o e

0 ; - s
20 2.5 3.0 35 4.0

GPA
FIGURE ;:3/ 2. cffact &t £3/ on Predicted Fmbabﬂittas

e
Tabiegsf presents he estimated coefficients and marginal effects for the probit and
logit models in Table 2. In both cases, the asymptotic covariance matrix is computed R 1M

from the negative inverse of the actual Hessmn of the log-likelihood. The stan
the estimated marginal effect of PS/ are computed using (28< W ) since PSl is a ./
binary variable. In comparison, the simple derivatives produce estimates and standard er

of (0.448, 0,181) for the logit model and (0.464, 0.188) for the probit madel. These differ only

slightly from-the resuits given in the table.

The preceding has emphasized computing the partial effects for the average individ-
ual in the sample. Current practice has many applications based, instead, on “average
partial effects.” [See, e.g., Wooldridge (2002a).] The underlying logic is that the quantity

‘o2 Estimated Coefficianis and Standard Ermrs (standar::l arrars
in parentheses) ;

Logistic Probit

Variable Coefficient & Ratio  Slope t Ratio Coefficient t Ratio  Slope  t Ratio

Constant —-13.021 -2.641 —_ — —~7452 2934 — -
(4.931) (2.542)

GPA 2.826 2238 0534 2252 1.626 2343 0533 2294
(1.263) (0237} (0.654) (0.232)

TUCE 0.095 0672 0018 0685 0.052 0617 0017 0626
{0.142) (0.026) (0.084) (0.027)

Psl 2.379 2234 04356 2521 1.426 2397 0464 2727
(1.065) (0.181) (0.595) {0.170)

log-likelihood ~12.890 ~12.819




Groene-50558  book  June 26,2007  2:34 /7 -/ 8.

784 PART Vi # Cross Sections, Panel Data, and Microeconametrics

of interest is
APE = F, [aﬂyl‘l]

In practical terms, this suggests the computatlon

APE=F =1 }j F BB

This does raise two questions, Because the computatlon is {(marginally) more burden-
some than the simple marginal effects at the means, one might wonder whether this
produces a noticeably different answer. That will depend on the data. Save for small
sample variation, the difference in these two results is likely to be small‘;_l_ﬁ/

- - g~ aPr(y =11x) v
7k=AP£;k=§ET=EZF(_"E§?ﬁ" Zyk(xr

i=1 faml
denote the computation of the average partial effect. We compute thls at the MLE, 8.
Now, expand this function in a second-order Taylor series around the point of sample

means, X, to obtain
1
Z{m )+Z D 1 — T

| Xim

3y (X) . _
+53 § :§ T it I Cim — )| + A,
=1 m=1 - }

where A is the remaining higher-order terms. The first of the three terms is the marginal
effect computed at the sample means. The second term is zero by construction. That
leaves the remainder plus an average of a term that is a function of the variances and
covariances of the data and the curvature of the probability function at the means. Little
can be said tg characterize these two terms in any particular sample, but one might guess
they are likely to be small, We will examine an applicati ))n in Exampl Y
—Lomputmg the mdividual e §, then U
variance of the mean,

may badly estimate the as
Contoyannis et al. (2004,




/?-/7__ |

Based on the sample of observations on the partial effects, a natural estimator of the
variance of the partial effects would seem to be, - LA

n

A l . - 5 I - : T

Umz'.ﬁ:n_IZ(Yk(’_‘:)_Yk) =_Z(PE"‘_APE]¢) - \
=1 i=1

See €. g Contoyanms et al. (2004, p. 498) who Teport that th&y computed the “sample standard

deviation of the partial effects.” Since’ APEk =9, is the mean of a sample, notwithstanding the

consideration below, the preceding estimator should be further divided by the sample size since
we are computing the standard error of the mean of a sample. This seems not-to be the norm in
the literature. This estimator should not be viewed as an alternative to the delta method applied to
the partial effects evaluated at the means of the data, #(X). The delta method produces an

estimator of the asymptotic variance of an estimator of the population parameter, ¥( p.x) that is,
of a function of B The asymptotic covariance matrix computed using the delta method for y(x)
would be G(_ )VG (x) where _G_(;_z) is the matrix of partial derivatives and Y is the estimator of

the asymptotic variance of B. This variance estimator converges to zero because 3 converges to

B and X converges to a vector of constants. The naive estimator above does not converge to
zero; it converges to the variance of the random variable PE; .
The “asymptotic variance” of the partial effects estimator is intended to reflect the

variation of the parameter estimator, B, whereas the naive estimator generates the variation from

the heterogeneity of the sample data while holding the parameter fixed at“[;_. For example, for a
logit model,

Tux) = o (xB)[1-a(xB)|=Bidis

and 8,. is the same for all k. It follows that

A2 4 1 422

Oy :Bkli 12(8 8) }_-Bkl%'
—li= i !

A surprising consequence is that if one computea “¢ ratios” for the average partial effects using

63,& , the values will all equal the same 1/ $; - This might signal that something is amiss. (Thisdis

somewhat apparent in the Contoyannis et al. results on page 498; however not enough digits were
reported to see the effect clearly.)

A search for applications that use the delta method to estimate standard errors for average
partial effects in nonlinear models yields hundreds of occurrences. However, we could not locate
any that document in detail the precise formulas used. (One author, noting the complexity of
computation, recommended bootstrapping instead.) A complicated flaw with the sample variance
estimator (notwithstanding all the preceding) is that the naive estimator (whether scaled by 1/z or
not) neglects the fact that all # observations used to compute the estimated APE are correlated;
they all use the same estimator of B. The preceding estimator treats the estimates of PE as if they
were a random sample They would be if they were based on the true B. But the estimators based

on the same ,.B are not uncorrelated. The delta method will account for the asymptotic
(co)variation of the terms in the sum of functions of ﬁ . To use the delta method to estimate the

asymptotic standard errors for the average partial effects, APE, , we should use


Bill
Sticky Note
ok


(13-20
Est. AsyVar Lﬂ = LE.S't Asy Var [Z ¥, }

i=l

= %Zn:iEstlAsy Cov['YnTJ

noa J=1
=ni;lZG(B)V &) (B) -
Lo ] e " & (p
Le®)e )
where
of (x B)B

G8)==5 =/ S ().

This treats the APE as a pomt estimator of a population parameter —'one that converges in
probability to what we assume is its populatlon counterpart. But, it is conditioned on the sample
data; convergence is with respect to B This looks like a formidable amount of computatlonﬁ
Example 17.4 uses a sample of 27,326 observations, so it appears we need a double sum of
roughly 750 million terms. However, the computation is actually linear in », not quadratic,
because the same matrix is used in the center of each product. The estimator of the asymptotic
covariance matrix for the APE is simply

Est. AsyVar l;_'?-] = G_(ﬁ) \'4 m .

The appropriate covariance matrix is computed by making the same adjustment as in the partial
effects—the derivative matrlces are averaged over the observations rather than being computed at

~ the means of the data.



Example 17.4 Average Partial Effects

Mt A A

(1?-2]

We estimated a binary logit model for y = 1(DocVis > 0) using the German health care
utilization data examined in Example 7.6 (and several later examples). The model is

Prob{DocVisy > 0) = A(B1 + B2 Agey + Bs Incomey + B, Kids, + Bs Educationy + Bs Married).

. No account of the panel nature of the data set was taken for this exercise. The sample

contains 27,326 observations, which should be ‘large enough to reveal the large sample
behavior of the computations. Table 17.3 presents the parameter estimates for the logit
probability model and both the marginal effects and the average partial effects, each with
standard errors computed using the results given earlier. (The partial effects for the two
dummy variables, Kids and Married, are computed using the approximation, rather than using
the discrete differences.) The results do suggest the similarity of the computations. The
values in parentheses in the last column are based on the naive estimator that ignores the
covariances and is not divided by the 1/n for the variance of the mean.

TABLE 17.3 Estimated Parameters and Partial Effects

Parameter Estimates Marginal Effects Average Partial Effects

Variable Estimate | Std.Error | Fstimate | Std.Error | Estimate | Std.Error | Naive S.E.
Constant 0.25112 | 0,09114

Age 0.02071 | 0.00129 0.00497 | 0.00031 0.00471 | 0.0002% 0.00043
Income -0.185%2 ] 0.07506 -0.04466 [ 0.01803 ~0.0422% | 0.01707 0.00386
Kids -0,22947 [ 0.02954 -0.,05512 | 0.00710 -0.05220 [ 0.00669 0.00476
Education | ~0.04559 | 0.00565 -0.01095 | 0.00136 ~0.01037 [ 0.00128 0.00095
Married 0.08529 | 0.03329 0.0204% | 0.00800 0.01940 | 0.00757 0.00177
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17.3.2.b Interaction Effects

i

Models with interaction effects, such as

Prob(DocVis, > 0) = A(P; + B, Age; + B3 Income;, + B4 Kids, .
+ Bs Education, + PBs Married; + B3, Age,-;xEducation,-,),

have attracted considerable atlentlon in recent applications of binary choice models®” A practical
issue concerns the computation of partial effects by standard computer packages. Write the

model as
Prob(DocVisy > 0) = A(Brx1i + P2 Xi + Bs Xau + By Xaie + Bs Xsie + Bo Xou + Br. 27,

Estimation of the model parameters is routine, Rote computatlon of partial effects vsing (17-11)

will produce .
S |l. 1

PE; = 8Prob(DocVis > 0)/3%, = B; AXB)[1 - AG'B)],

which is what common computer packages will dutifully report. The problem is that x; = x,xs,

and PE, above is not the partial effect for x;. Moreover, the partial effects for x; and x5 will also

be mlsreported by the rote computation. To revert back to our original spemﬁcatlon
dProb(DocVis > 0|x)/0Age = A(x ]3)[1 A(x B)](,Bz + B; Education),
OProb(DocVis > 0|x)/0Education = AX'B)1|-AX'B)I(Bs + Br Age),

and what is computed as ~8Prob(DocVis > 0]x)/6AgexEducatzon ‘is meaningless. The practical
problem motivating Ai and Norton (2004) was that the computer package does not know that x- is
Xp%s, 80 it computes a partial effect for x; as if it could vary “partially>*from the other variables.
The (now) obvious solution is for the analyst to force the correct computations of the relevant
partial effects by whatever software they are using, perhaps by programming the computations
themselves.

The practical complication raises a theoretical question that is less clear cut. What is the

{*interaction effect”in the model? In a linear model based on the preceding, we would have

S Ex]/ox0xs = B
which is unambiguous. However in thls nonlinear binary choice model, the correct result is

& ElIx])/Oxa00s = A(X" B){l A(x ‘B)] B7 +
AR - AGBIL ¢ 2A(K'B)](Bz + By Education)(Bs + B Age).
Not only is 3; not the interesting effect, but there is;a comphcated additional term. Loosely, we
can associate the first term as a“dlrect effect - - note that it is the naive term PE; from earlier.
The second part can be attributed to the fact that we are differentiating a nonlinear model -
essentially, the second part of the partlal effect results from the nonlinearity of the function. The @
existence of an” mteractlon effect” in this model is 1nescapable -notice that the second part is

% L

TEY- Gy [ f = Tl |
P See, e.g., Ai and Norton (2004) and Greene (2010). : > X
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nonzero {generally) even if B; does equal zero. Whether this is intended to represent an

“*interaction’in some economtic sense is unclear. In the absence of the product term in the model,

probably not. We can see an implication of this in Figure 17.1. At the point where x'B = 0,

where the probability equals one half, the probability function is linear. At that point, (1-2A) will

....:. 144l b ¢

equal zero and the functional form effect will be zero as well. When x'B departs from zero, the

probability becomes nonlinear. (These same effects can be shown for the problt model — at x'B =
0, the second derivative of the probit probability is ‘x'Bd(x'B) = 0.) '

We developed an extensive application of interaction effects in a nonlinear model in
Example 7.6. In that application, using the same data for the numerical exercise, we analyzed a
nonlinear regression E[y[x] = exp(x'B). The results obtained in that study were general, and will
apply to the application here, where the nonlinear regression is E[y[x] = A(x'B) or ®(x'B).

Example 17.5 Interaction Effect
We added the interaction term, AgexEducation to the model in Example 17.4. The model is
now

Prob(DacVisy > 0) = A(B1 + Bz Ager + Bs Incomey + B4 Kidsy
+ Bs Education; + Bs Mamed,t + B Age;,xEducation,t)
r.1} LiLAY :'
Estimation of the model produces an estimate of pB; of ~0.00112. The naive average partial
effect for X7 is -0.000254. This is the first part in the earlier decomposition. The second,
functional form term (averaged over the sample observations) is 0.0000634, so the estimated
interaction effect, the sum of the two terms is -0.000191. The naive caicuiation errs by about
{-0.000254/-0.000191 - 1)'><I100% = 33%. : ;
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TABLE 23.4 stimated Coefficients
Estimate (Sid, Er)

A30(2.498) —
0.264(0.118)  —0.0088(0.00251)
~0.0036(0.0014)

Constant

0.424(0.222) 0.0552(0.0240)
0.1400.0519) (.0289(0.00869)
—0.879(0.307 ©=(LI6T(0.0779) L
~{L1d1{1),324) —
Income .123) —_
In L —487.6356
Correct Py Os: 115, 1s: 358

*Margirial effect and estimated standard gfror include both mean
. i Wmodel with a correction for heteroscedagficity

LR < 2[-487.6356 — (-490.8478)] = 6.424,
= 2.236 based on the BHHH estimator,
Wald = 6.533(2 restrictions).

The 89 percept critical value for two restrictions is 5.99, so the L
other two,

I}.g. 3 —28745 MEASURING GOODNESS OF FIT

tatistic conflicts with the

There have been many fit measures suggested for QR models At a minimum, one
T, should report the maximized value of the log-likelihood function, In L. Because the

| hypothesis that all the slopes in the model are zero is often interesting. the log-likelihood - 3 D
computed with only a constant term, In Ly [see (23-28]] should also be reported, An ana-
log to the R? in a conventional regression is McFadden's (1974) likelihood ratio index,

LRI=1- ln—'L—
inly

This measure has an intuitive appeal in that it is bounded by zero and one. (See Section
(4 JX66.5.)Ifall the slope coefficients are zero, then it equals zero. There is no way to make
LRI equal 1. although one can come close. If £; is always one when v equals one and
zero when v equals zero, then In L. equals zero (the log of one) and LRI equals one, It
has been suggested that this finding is indicative of a “perfect fit” and that LRI increases
as the fit of the model improves. Toa degree. this point is tru ¢ FRe-the-anatysistrSeetion
2334y Unfortunately. the values between zero and one have no natural interpretation.
If I'(x}$) is a proper pdf. then even with many regressors the model cannot fit perfectly
unless x! 8 goes to 00 or —o0, As a practical matter. it does happen. But when it does, jt

WMSee, for sxample, Cragg and Uhier {1570), Amemiya (1981 ), Maddala (1983), McFadden {1974). Ben-Akiva
and Lerman (1985). Kay and Little (1986). Veall and Zimmermann (1992). Zavoina and McKelvey (1975),
Efron (1978). and Cramer (1999). A survey of techniques appears in Windmeijer (1993),
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indicates a flaw in the model, not a good fit. If the range of one of the independent vari-
ables contains a value, say, x*, such that the sign of (x —x*) predicts v perfectly and vice
— versa, then the model will become a perfect predictor. This result also holds in general
“Zf Ty if the sign of X8 gives a perfect predictor for some vector 8:% For example, one might
¢, | mistakenly include as a regressor a dummy variableXthat isidentical, ornearlyso, tothe ¢~
' dependent variable. In this case, the maximization procedure will break down precisely
because x'8 is diverging during the iterations. [See McKenzie (1998) for an application
and discussion.] Of course, this situation is not at all what we had in mind for a good fit.
Other fit measures have been suggested. Ben-Akiva and Lerman (1983) and Kay
and Little (1986) suggested a fit measure that is keyed to the prediction rule,
1 n N R
2 — L . —— . — .
Rg; = ; [}:F; + (1= (1 .Fr)],
which is the average probability of correct prediction by the prediction rule. The diffi-
culty in this computation is that in unbalanced samples, the less frequent outcome will
usually be predicted very badly by the standard procedwre, and this measure does not
pick up that point. Cramer (1999) has suggested an alternative measure that directly
measures this failure,

A oo (average_ﬁ' l¥=1- (averageﬁ {y=0
= (average(l — £ ¥ =0) — (average(l — ﬁf){_v,- = 1),

Cramer's measure heavily penalizes the incoirect predictions, and because each propor-
tion is taken within the subsample, it is not unduly influenced by the large proportionate
size of the group of more frequent outcomes.JSome of the ether proposed fit m

2 O Pe?
VORI

oina and McKelvey's (1975)

Rﬁ:z=

+ Ea | (B —-%B)

The last of these measures corfesponds to the regression vdriation divided by the te
wlation in the latent ind€x function modet, whetet e disturbance vauancel d

1

Sy e s oy i W) TR = N N

-..__,.,.,.......“—----' ¢ 5 et < o e L ot

r-nm-iﬂlﬁﬁm:mwm:ﬂ-"-'as:"s.mm 1 e
A useful sumn summary of the predictive ability of the model is a 2 x 2 table of the hits |
and misses of a prediction rule such as 13 __—2_’_‘,
§=1 if F> F*and 0 otherwise. @336y |

"158ee McFadden (1984) and Amemiya (1985). I this condition holds, then gradient methods wi// find that §.
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The usual threshold value is 0.5, on the basis that we should predict a one if the model
says a one is more likely than a zero. It is important not to place too much emphasis on
" this measure of goodness of fit, however. Consider, f01 example, the naive predictor

‘?- 8. | __:V .'rl
§= -1 if P> 0.5 and 0 otherwise, 2339

where P is the simple proportion of ones in the sample. This rule will always predict
correctly 100 percent of the observations, which means that the naive model does not
have zero fit. In fact, if the proportion of ones in the sample is very high, it is possible ta
construct examples in which the second model will generate more correct predictions
than the first! Once again, this flaw is not in the model: it is a Baw in the fit measure!l®”
The important element to bear in mind is that the coefficients of the estimated model
are not chosen so as to maximize this (or any other) fit measure, as they are in the linear
1eg1essmn model where b maximizes R?. {Ehe-mosimnun-seore-estimator diseussed-r—

o - e e se T PSS -c e LN -~
Another cons:denatlon isthat 0.5, although the usual choice, may notbea very good
value to use for the threshold. If the sample is unbalamed--that is, has many more ones
than zeros, or vice versa—then by this pledlctlon rule it mlght never predict a one {or
zero). To consider an example suppose that in a sample of 10,000 observations, only
1,000 have Y = 1. We know that the average predicted probability in the sample will be
0.10. As such, it may require an extreme configuration of regressors even to produce
an £ of 0.2, to say nothing of 0.5. In such a setting, the prediction rule may fail every
time to predict when ¥ = 1. The obvious adjustment is to reduce F*. Of course, this
adjustment comes at a cost. If we reduce the threshold /™ so as to predict y = 1 more
often, then we will increase the number of correct classifications of observations that
. dohave y = 1, but we will also increase the number of times that we incorrectly classify
as ones observations that have y = 0:X'In peneral, any prediction rule of the form in
| will make two types of errors: It will incorrectly classify zeros as ones and ones
as zeros. In practice, these errors need not be symmetric in the costs that result. For
example, in a credit scoring model [see Boyes, Hoffman, and Low (1989)], incorrectly
classifying an applicant as a bad risk is not the same as incorrectly classifying a bad E]
risk as a good one. Changing F* will always reduce the probability of one type of error
while increasing the probability of the other. There is no correct answer as to the best | - Jjt. ¢ |
value to choose, It depends on the setting and on the criterion function upon which the ¢
prediction rule depends. Yariovs A a
The likelihood ratio index and Aeall-amck=-Zimmermann's modification of it are -| A
obviously related to the likelihood ratio statistic for testing the hypothesis that the coef-
ficient vector is zero. Efven’sand Cramer ’xmeasul es listeckprervicusly as¢€orientedmore
toward the relationship between the fitted probabilities and the actual values. EimonsTL (5
a-nd-C;-amﬁ:Mm usefully tied to the standald pledlctmn :ule y= l[F > 0. S]

i+ 1S

close 1elatlonshlp to any type of fit in the familiar sense s a question that needs to be

16Sec Amemiya (1981).

""The technique of discriminant apalysis & used to build a procedure around this consideration. In this
seiting, we consider not only the number of correct and incorrect classifications, but, the cost of zach type of i
misclassification.
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studied. In some cases. it appears so. But the maximum likelihood estimator, on which
all the fit measures are based. is not chosen so as to maximize a fitting criterion based

- on prediction of v as it is in the classical regression (which maximizes_Rz). Itis chosento
maximize the joint density of the observed dependent variables. It remains an interest-
ing question for research whether fitting v well or obtaining good parameter estimates
is a preferable estimation criterion. Evidently. they need not be the same thing.

Example ’2‘?.6 Prediction with a Probit Model o

Tunali (1986) estimated a probit model in a study of migration, subsequent remigration, and
earnings for a large sample of observations of male members of households in Turkey. Among
his results, he reports the summary shown here for a probit model: The estimated model is
highly significant, with a likelihood ratio test of the hypothesis that the coefficients (16 of them)
are zero based on a chi-squared value of 62 with 16 degrees of freedom.!® The model predicts
491 of 690, or 71.2 percent, of the observations correctly, although the likelihood ratio index
is only 0,083, A naive model, which always predicts that y = 0 because P < 0.5, predicts
487 of 690, or 70.6 percent, of the observations correctly. This result is hardly suggestive
of no fit. The maximum likelihood estimator produces several significant influences on the
probability but makes only four more correct predictions than the naive predictori®

Predicted
D=0 D=1 Total
Actual D=0 471 16 487
D=1 183 20 203
Total 854 36 690
T f

1e other to achieve a more balanced sapple than random
sampling would produce. The sampling is said to be choice based An the studies noted.
the dependent vapidble measured the occurrence of loan defgult, which is a relatively
rrence, To enrich the sample, observationsAvith v = 1 {default) were
~ Intuition should suggest (correctly) that

samp)e, not the population, which is known to be different. Manski and Lerman (1977)
depived the weighted endogenous sampling maxjrfium likelihood (WESML) estinfator

Inl. Z wi In F(gix!g).

f=l

+*5This view actually understates slightly the significance of his model, because the preceding predictions are
based on a bivariate model. The liketihood ratio test fails to reject the hypothiesis that a untvariate model
applies, however.

Mt is also noteworthy that nearly all the correct predictions of the maximum likelihood estimator are the
zevos. It hits only 10 percent of the ones in the sample, :
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\ \whel'e G,-(,é) = aF (x}ﬁ) and V is the eftimated asynptotic covariance matiix for
{The terms with equal subscripts

sample means.) This looks like

unt of computation—Exa
lush it appears we need a

s > 0) using the German h

in Examples 11.11, 18.10, 16.1Z, 16.13,

reb{DocVis;: > 0} = A(fy + HaAgey,; + B3 incomey + B4 Kids;,

ins 27,326 observations, wifch should be large enough to revea)/'the largs sample
vior of the computations. fable 23.3 presents the parameter espimates for the logit
robability model and both marginal effects and the average paghial effects, sach with
standard errors computed uging the results given earlier. The results gfo suggest the similarity

of the computations. The e estimator that ignores
the covariances.

H’.3-LI 2548 HYPOTHESIS TESTS

For testing hypotheses about the coefficients, the full menu of procedures is available.
'The simplest method for a single restriction would be based on the usual ¢ tests, using
the standard errors from the information matrix. Using the normal distribution of the
estimator, we would use the standard normal table rather than the ¢ table for critical
points. For more involved restrictions, it is possible to use the Wald test. For a set of

T —'———_____-_'.-_—
TABLE 23.3 .Estimated Paraméters and Partigl Pfiects i e ol AT
Pagameter Estimates Marginal Effects Avergge Partial Effects

Variable Estimate  Std. Error Maw Std. Error Esgifiate Std. Error

Consl, 025111

A 0.020709 0.0048133  0.00029819 0.0047109 0.00028727
(0.00042971)

Income 0.075064  —0.043213 0.017 —0.042294 .017069

(0.0038579)

Kids 0.029537 —0.053333 DO6S626 —0.052201

—0.045588  0.0056465 —0.01059 0.0013122 —0.010370

0.085293  0.033286 0.0077362 0.019403
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restrictions Rﬁ =4q, the statistic is .
—'(Rﬁ — Q' {R(Est. Asy. Var[ﬁ])R’}'l(Rﬁ - q).

For example, for testing the hypothesis that a subset of the coefficients, say, the last M,
are zero, the Wald statistic uses R = [@) IM] and g = 0. Collecting terms, we find that

(1#-29)

the test statistic for this hypothess is =y 24

W =8\ ¥ubu - @327

where the subscript M indicates the subvector or submatrix corresponding to the M.

variables and ¥ is the estimated asymptotic covariance matrix of B.
Likelihood ratio and Lagrange multiplier statistics can also be computed. The like-
lihood ratio statistic is

LR = —2{1[\ _LR —In LU]1

where Lg and 1, are the log-likelihood functions evalnated at the restricted and unre-
stricted estimates, respectively. A common test, which is similar to the # test that all the
slopes in a regression are zero, is the likelihood ratio test that all the slope coefficients in
the probit or logit model are zero, For this test, the constant term remains unrestricted.

Nl

In this case, the restricted log-likelihood is the same for both probit and logit models, / ! }-—-?o )

in Ly =#nPin P+ {1 - Pin(l - P}, (23-28)

where { is the proportion of the observations that have dependent variable equal to 1.

It might be tempting to use the likelihood ratio test to choose between the probit
and logit models. But there is no restriction involved, and the test is not valid for this
purpose. To underscore the point, there is nothing in its construction to prevent the

_ chi-squared statistic for this “test” from being negative,

The Lagfange multiplier test statistic is LM = g'Vg, where g is the first derivatives
of the unrestricted model evaluated at the restricted palameter vector and Y is any of
the three estimators of the asymptotic covariance matrix of the maximum likelihood es-
timator, once again computed using the restricted estimates. Davidson and MacKinnon
(1984) find evidence that E[H] is the best of the three estimators to use, which gives

=1 =1

where E[-h;] is defined in %&22) for the logit model and in (23-24) for the probit

&

model. / vt
For the logit model, when the hypothesis is that all the slopes are zero,

LM = nR?,

where R? is the uncentered coefficient of determination in the regression of (y; — ¥) on

x: and ¥ is the proportion of 1s in the sample. An alternative formulation based on the [

BHHH estimator, which we developed in Section 16.6.3 is also convenient. For any of
the models (probit, logit, Gumbel, etc.), the first derivative vector can be written as

anl & ,
= x = X'Gi,
T 'Z:;.g,,x, X'Gi

=

1)

a T n -1 n i 4.-—- ’
= (ng‘-’!‘f-) [Z E[—ir;]!_fi?‘?] ( ' _g:.xf), (wg\
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where G{n x n) = diag[g1,g2...., gs] and i is an 1t x 1 columnn of 1s. The BHHH esti-_

mator of the Hessian is (X' 'GX), so the LM statistic based on this estimator is ‘;IZ
I o
LM =n [ i(GX) (X’G’(‘X)" X'GHi| =nRL 2330)

where R} is the uncentered coefficient of determmatlon in a regression of a column of
ones on the first derivatives of the logs of the individual probabilities,

All the statistics listed here are asymptotically equivalent and under the null
hypothesis of the restricted model have limiting chi-squared distributions with degrees
of freedom equal to the number of restrictions being tested. We consider some examples
in the next section.

23.4.4 SPECIFICATION TESTS FOR BINARY CHOICE MODELS

Inthe linear regression model, we considered two impor tant sp ification problems: the
v. In the classical model,

¥y = X18, + X258, + &, when least squares estimates by 3#€ compuied omitting X,

Unless X; and X3 are orthogonal or 85 = 0, btis biased. If we ignore heteroscedasticity,
then although the least squares estimatop4s still unbiased and consisient, it is inefficiet
and the usual estimate of its samplingAovariance matrix is inappropriate. Yatchew 4nd
Griliches {1984) have examined these same issues in the setting of the probit anglogit
models. Their general results apé far more pessimistic. In the context of a binary choice

model, they find the followjig:
1. If x; is omitted from a model containing x| and xs, (i.e. f5 # 0) the

plimﬁ; =18, + 284,

a large savmg in computﬂnonal ffort. This situation is especmlly true
heteroscedasticity. 2
To reiterate, the Lagr

2The results in this se
on the subject of gpey

cation tests in discrete choice models is Blundeli

12-30



17-3)

Example 17.7 Testing for Structural Break in a Logit Model

The model in Example 17.4, based on Riphahn, Wambach and Million (2003), is

PrOb(DQCVfSﬂ >0) = A(Bs+ B2 Agep + Bs Incomey + B4 Kidsy

+ Bs Education; + Bs Marriedy ).

“ In the original study, the authors split the sample on the basis of gender, and fit separate

models for male and female headed.households. We will use the|results-above to test for the
appropriateness of the sample splitting. This test of the pooling hypotheS|s is a counterpart to
the ‘Chow test’ of structural change in the linear model developed in Section 6.4.1. Since we
are not using least squares (in a linear model), we use the likelihood based procedures rather
than an F test as we did earlier. Estimates of the three models are shown in Table 17.4. The
chi squared statlstlc for the likelihood ratio test is

LR = -2{ 117673.09788 — — (-9541.77802 ~ 7855.96999)] = 550.69744.

The 95"/ crltlcal value for six degrees of freedom is 12.592. To carry out the Wald test for
this hyotheS|s there are two numerically identical ways to proceed. First, using the estimates

for Male and Female samples separately, we can compute a chi,squared statistic to test the

hypothesis that the difference of the two coefficients is zero. This would.be

W= I,:.ﬁMa[e 7—[§§‘emale :I' I:ESII'ASJ'; Far (B.Ma_[e ) + ESL.I_AS}:I'_.IVG}‘ (-ﬁ._l?emaie )}_! I:ﬁ Male T-Q_Femalg]
= 538.13629.

Another way to obtain the same result is to add to the pooled model the original stix variables
now multiplied by the Female dummy variable. We use the augmented X matrix

X* =X, fema!exX] The model with 12 variables is now estimated, and a test of the pooling
hypothesis is done by testing the joint hypotheS|s that the coefficients on these six additional

variables are zero. The Lagrange multiplier test is carried out by using this augmented model

as well. To apply (17-32), the necessary derivatives are in (17- 19). For the logit model, the .

derivative matrix is slmply G* = dlagLy, A(x,*'B)] For the LM test, the vector B that is used is

the one for the restricted model. Thus [5 =(Bpaa,ed,0-00000) The estimated

probabilities that appear in G* are 5|mply those obtained from the pooled model. Then,
LM = i'G*X* x [(X*‘G’*)(G*X)] X"G™i = 548.17052.

The pooling hypothesis is rejected by all three procedures.

TABLE 17.4 Estimated Models for Pooling Hypothesis

Pooled Sample Male Female

Variable Estimate | Std.Error | Estimate | Std.Error | Estimate Std.Error
Constant 0.25112 0.09114 -0.20881 0.11475 0.44767 0.16016
Age 0.02071 ¢.001298 0.02375 0.00178 0.01331 0.00z02z
Income ~-0.18592 0.07506 -0.23059 0.10415 ~0.17182 0.11225
Kids -0.22947 0,02954 -0.26149 0.04054 -0.27153 0.04539
Education | ~0.04559% 0.00565 -0.0425] 0.00737 -0.00170 0.00970Q
Married 0.08529 0.03329 0.17451 0.04833 0.03621 0.04864
InL -17673.09788 -9541.77802 -7855.96998%
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For a particular value z*, we cofnpute a set of # weights using the kernel function,

wi(Z") = K[(z* = z)/ ()],

where Y ‘
k("i) =VP'(f‘i)[1 - P,
and
Piri) =[1 + exp(—crp)] ™.
Theconstaht ¢ = (w/+/3)~! 2 0.55133isused tostandardize the gistic distribution that

is used for the kernel function. (See Section 14.4,1.) The paydimeter A is the smoothing
(bang#vidth) parameter. Large values will flatten the estimated function through ¥,
whefeas values close to zero will allow greater variationvin the function but might cause
ipto be unstable. There is no good theory for the choigé, but some suggestions have been
ade based on descriptive statistics. [See Wong (1983) and Manski (1986).] Finally, the
function value is estimated with

5

1 Wi (20
ied WilZ*)
The nonparametric estimator displays a relationship between x'8 and Ely

blush, this relationship might suggest that we could deduce the marginal effects, but
unfortunately, that is not the cpde. The coefficients in this setting a:mrg/ meaningful,

F(z*y =

so all we can deduce is an esfifnate of the density, f(z). by using first dtfferences of the
estimated regression funcson. It might seem, therefore, that the apdlysis has produced
relatively little payoff for the effort. But that should come ag“no surprise if we re-
consider the assumpfions we have made to reach this poirf. The only assumptions

There is a large and burgeoning litetature on kernel estimation and nonparametric
estimation in econometrics. [A recent-4pplication is Melenberg and van Soest (1996).]
Asthissimple example suggests, with the radically different forms of the specified model,
the information that is culled frbm the data changes radically as well. The general prin-
ciple now made evident ig#fiat the fewer assurptions one makes about the population,
the less precise the information that can be dednced by statistical techniques. That
tradeoff is inherent in the methodology.

— .I. FI_'I..I

|:},3.5 237 ENDOGENOUS RIGHT-HAND-SIDE VARIABLES

IN BINARY CHOICE MODELS | s o

. II
FRIZ The analysis in Exampld23-10 {Magazine Prices Revisited) suggests that the presence '
of endogenous right-hand-side variables in a binary choice model presents familiar

problems for estimation. The problem is made worse in nonlinear models because even
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if one has an instrumental variable readily at hand, it may not be immediately clear
what is to be done with it. The instrumental variable estimator described in Chapter _
: is based on moments of the data, variances, and covariances. In this binary choice setting, :

we are not using any form of least squares to estimate the parameters, so the [V method
would appear not to apply Genelahzed method of moments is a possibility. (BE=H"

¥ =xB+rywi+,
w=1(3 >0
Elei wi] = gwi) # 0.

Thus, w; is endogenous in this model. The maximum likelihood estimators considered
earlier will not consistently estimate (8, y). [Without an additional specification that
allows us to formalize Prob(y; = 1|X;, w;), we cannot state what the MLE will, in fact,

estimate.] Suppose that we have a “relevant” (see SectionWl/ ¥.2
# such that

Elei [ 2,x:] =0,
E[w;_z,-] £ 0. ,

A natural instrumental variable estimator would be based on the “moment” condition

E [(.Vi* —XiB—yw) ('xf )] =90.
= % 2.0~

However, y? is not observed, y; is. But the “residual,’A4; mx: B — yw;, would have no

=N meaning even if the true parameters were known” One approach that was used in

v e Avery et al. (1983), Butler and Chatterjee (1997), and Bertschek and Lechner (1998) is
to assume that the instrumental variable is orthogonal to the residual | y——tb(x B+ v wi )

that is,
E[[.vf — S +vwl (’;)] =&

Thisform of the moment equation, based on observables, can form the basis of a straight- 13
forward two-step GMM estimator. (See Chapter I3 Tor details.)
i The GMM estimator is not less parametric than the full information maximum
Sk likelihood estimator described following because the probit model based on the nor- . 2
. mal distribution is still invoked to specify the moment equation:® Nothing is gained
A in simplicity or robustness of this approach to full information maximum likelihood
y {.] estimation, which we now consider. (As Bertschek and Lechner argue, however, the
: gains might come in terms of practical implementation and computation time. The same
considerations motivated Avery et al.)
This maximum likelihood estimator requires a full specification of the model, in-
cluding the assumption that underlies the endogeneity of w;. This becormes essentially

7—/‘9 '#One would proceed in precisely this fashion if the central specification were a linear probability model
(LPM) to begin with. See, for example, Eisenberg and Rowe (2006) or Angrist (2001 ) for an application and
some analysis of this case.

23 A¥This is precisely the platform that underlies the GLIM/GEE treatment of binary choice models in, for

= example, the widely used programs SAS and Stata.



1! Greene-50358

book

June 26, 2007 2:34

CHAPTER 23 4+ Models for Discrete Cholce 815

a simultaneous equations model. The model equations are

¥ =XB+ywitey —-1[v > 0],
W,»—-Lu-f*ll,,

- = 70 1 poy
(8,‘,“1’) N[({))’ (PO’:: JE )}

(We are assuming that there is a vector of instrumental variables, z;.)- Probit estimation
based on y; and (x;, w; ) will not consistently estimate (8, v) because of the correlation
between w; and &; induced by the correlation between 4 and &. Several methods have
been proposed for estimation of this model. One possibility is to use the partial reduced
form obtained by inserting the second equation in the first. This becomes a probit model
with probability Prob(y;, = 1 |x, %) = d)(x}'ﬁ' + z’ je*). This w:l] pioduce consistent
estimates of 8* = g/(1 + vial + Z]J't:',,;J)lf’2 and af =ye/(1+ y2a? + 2y0.0)'72 as the
coefficients on x; and Zi, zespectlvely (The pr ocedure will estlmate a mixture of 8* and
a* for any variable that appears ll] both x; and z;.) In addition, linear regression of w; on

‘z, produces estimates of & and oy, 2 but there is no method of moments estimator of p or

v produced by this procedure, so this estimator is incomplete. Newey {1987) suggested
a “minimum chi-squared” estimator that does estimate all parameters. A more direct,
and actually simpler approach is full information maximum likelihood.
The log-likelihood is built up from the joint density of w and w;, which we wiite as
the product of the conditional and the marginal densities,

FOnwi) = FQvi | wi) fwi).
To derive the conditional distribution. we use resuits for the bivariate normal, and write

& |ui = [(pou)/ol] i+,

where y; is normally distributed with Var[y;] = (1 — p?). Inserting this in the first
equation, we have )

Swi =XiB+ywi + (p/odu + i

Therefore, -
' : 13-33
Probly; =1|x;, wi] =@ X8+ YM]’: + (p/a,,)u,] . (
' VI=p? 243
Inserting the expression for u; = (w; — zjer), and using the normal density for the

marginal distribution of w, in the second equation, we obtain the log-likelihood function

for the sample,
r . 1. — ey P
(zyi_l)(x,-§+yw,+(p/a,,)(m ,xzf.t_!))} n [1"5(”‘6;&)}'

H
Inl = In @

i=1
Example 2338 Labor Supply Model

In Examples 4-8-amd-28-+, we examined a labor suppy model for manried women using
Mrecz's (1987) data on labor supply. The wife’s labor force participation equation suggested

in Example-23.+ is
Prob(LFP, = 1} = &(8 + B Age, + PaAge? + B4 Education; + P Kids,).

1.1

13-39
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TABLE 2877 Estimated Labor Supply Model

) Probit Regression Maximum Likelihood
Constant —3.86704 ~ (1.41153) - —5.08405 {1.43134)
Age 0.18681 . (0.065901) 0.1710% {0.063321)
Age? —0.00243  {0.000774) —0.00219 (0.0007629)
Education 0.11098 (0.021663) 0.09037 (0.029041)
Kids —0.42652 (0.13074) —0.40202 {0.12967)
Husband hours —0.00173 (0.0000797) (.00055 (0.000482)
Constant 232538 (167515) 242490 (158.152)
Husband age —6.71056 (2.73573) ~7.3343 (2.57979)
Husband education 929051 (7.87278) 2.1465 (7.28048)
Family income 5572534 {19.14917) 634669 (1861712)
Ty 588.2355 586.994

P 0.0000 —~0.4221 (0.26931)
InL —~489.0766 —~5868.432 —6357.093

A natural extension of this model would be to include the husband's hours in the equation,
Prob(LFP, = 1) = (B + P2 Age; + fz Age? + s Education; + fs Kids; + y HHrs:).

it would also be natural to assume that the husband’s hours would be comrelated with the
dsterminants [observed and unobserved) of the wife’s labor force participation. The auxiliary
equation might be

HHrs; = oy + ap HAge, + a3 HEducation; + a4 Family Income; +u;. 3 5
As before, we use the Mroz (1987) labor supply data described in Examples#a Table 233F
reports the single-equation and maximum likelihood estimates of the parameters of the two
equations. Comparing the two sets of probit estimates, it appears that the (assumed) en-
dogeneity of the husband's hours is not substantially affecting the estimates. There are two
simple ways- to test the hypothesis that p equals zero. The FIML estimator produces an
estimated asymptotic standard eror with the estimate of p, so a Wald test can be carried
out. For the preceding results, the Wald statistic would be (—0.4221/0.26921)2 = 2.458. The
critical value from the chi-squared table for one degree of freedom would be 3.84, so we
would not reject the hypothesis, The second approach would use the likeliheod ratio test.
Under the null hypothesis of exogeneity, the probit model and the regression equation can
be estimated independently. The log-likelihood for the fult model would be the sum of the
two log-likelihoods, which would be —6357,508 based on the following results. Without the
restriction p = 0, the combined log likelihood is —8357.093. Twice the difference is 0.831,
which is also well under the 3.84 critical value, so on this basis as well, we would not reject
the null hypothesis that o = 0.

e
f FT %

Blundell and Powell (2004) label the foregoing the contrel function approach to
accommodating the endogeneity. As noted, the estimator is fully parametric. They pro-
pose an alternative semiparametric approach that retains much of the functional form
specification] but works around the specific distributional assumptions. Adapting their
model to our earlier notation, their departure point is a general specification that pro-
duces, once again, a control function,

EX Elwi | i, wi, tis] = F(x[8 + ywi, ;).
3-33 '
Note that (2333) satisfies the assumption; however, they reach this point without assum-
ing either joint or marginal normality. The authors propose a three-step, semiparametric



13-34)

approach to estimating the structural parameters. In an application somewhat similar to
Example 17.8, they apply the technique to a labor force participation model for British
men in which a variable of interest is 2 dummy variable for education greater than 16
years; the endogenous variable in the participation equation, also .of interest, is earned
income of the spouse, and an instrumental variable is a welfare benefit entitlement. Their
findings are rather more substantial than ours; they find that when the endogeneity of
other family income is accommodated in the equation, the education coefficient increases
by 40 percent and remains significant, but the coefficient on other income increases by
more than tenfold. '

In the control function model noted earlier, where E[y,[x,,w,,u,] F(x, B + ywi,ui)
and w; = z/'e + u;, since the covariance of w; and u; is the issue, it might seem natural to
solve the problem by replacing w; with z; 'a where a is an estimator of @, or some other
prediction of w; based only on exogenous variables. The carlier dcvelopment shows that
the appropriate approach is to add the estimated residual to the equation, instead. The
issue is explored in detail by Terza, Basu and Rathouz (2008), who reach the same
conclusion in a general model.

The residual inclusion method also suggests a two,step approach. Rewrite the log
likelihood function as

nL=3 Wo[Qy -DEB* 1w +5)]+ 3 In { @ﬂ

i=1 i=1

where * = (1/ 1-p )[3 y*—(l/ 1-p ) (p/«/l p )anda =(w, za,)/c
The parameters in the regression, @ and o,.can be consistently estimated by a linear

regression of w on z. The scaled residual & = (w; — \Z;a)/s, can now be computed and

inserted into the log likelihood. Note that the second term in the logﬁhkellhood involves
parameters that have already been estimated at the first step. The second,step log;
likelihood is, then,

InL =i In®d[(2y, —DEP*+7*w, +72)).

i=1

This can be maximized using the methods developed in Section 17.3. The estimator of p

can be recovered from p = 1/(1 + 79" Estimators of B and y follow, and the delta

method can be used to construct standard errors. Since this is a two, step estimator, the
resulting estimator of the asymptotic covariance matrix would be further adjusted using
the Murphy and Topel (2002) results in Section 14.7. Bootstrapping the entire apparatus
(see Section 15.4) would be an alternative way to estimate an asymptotic covariance
matrix. The original (one, step) log, likelihood is not very complicated, and full
information estimation is fairly straightforward. The preceding demonstrates how the
alternative two, step method would proceed and emphasizes once again, the
appropriateness of the*residual inclusion*method.



The case in which the endogenous variable in the main equation is, itself, a binary
variable occupies a large segment of the recent literature. Consider the model

T =za+u, T =1 > 0],

(]

Y =xB+vL+¢, y, =1y >0],

| 0} LI -
g N | 1 p e .

U, 0)ip 1 '

where 7; is a binary variable indicating some kind of program participation (e.g.,
graduating from high school or college, receiving some kind of job training, purchasing
health insurance, etc.). The model in this form (and several similar ones) is a “treatment
effects” model. The subject of treatment effects models is surveyed in many studies,
including Angrist (2001) and Angrist and Pischke (2009, 2010). The main object of .
estimation is y (at least superficially). In these settings, the observed outcome may be y*
(e.g., income or hours) or y; (e.g., labor force participation). We have considered the first
case in Chapter 8, and will revisit it in Chapter 19. The case just examined is that in
which y; and T;* are the observed variables. The preceding analysis has suggested that
problems of endogeneity will intervene in all cases. We will examine this model in some
detail in Section 17.5.5 and in Chapter 19.
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studied. In some cases, it appeanrs so. But thefnaximum likelihood estimator, orrwhich
all the fit measures are based, is not ghsen so as to maximize a fitting critefion based
. on prediction of y as it is in the classical regression (which maximizes B2 It is chosen to

maximize the joint density of+#ie observed dependent variables, I{¥€émains an interest-
ing question for researc ether ﬁttmg v well or obtaining godd parameter estimates
is a preferable estimation criterion. Evidently, they need yet be the same thing.

Prediction with a Probit Mo
estimated a probit modsl in a study of sfigration, subsequent remigration, and
fora large sample of observations of male'members of households in Turkey. Among
esults, he reports the summary shown hera for a probit model: The estimated model is
ighly significant, with a fikelihood ratio tegk6f the hypothesis that the coefficients (16 of the

are zero based on a chi-squared value of 69 with 16 degrees of freedom.® The model pregitts
491 of 690, or 71.2 percent, of the ebiservations correctly, although the likelihcod rati
is only 0.083. A naive modsl, which always predicts that y = 0 because P < 0.5,
487 of 690, or 70.6 percent,of the observations correctly. This result is hardly sliggestive
of no fit. The maximum |ikélihood estimator produces several significant infl
probability but makeg.ohly four more comrect predictions than the naive p

Predicted
D=0 D=1 Y
Actual D=0 471 18 487
D=1 183 20 202
Total 654 3 890
/ T

13.3.6 2338 YCHOICE-BASED SAMPLING  ENDOGLE N OUS

Insome studies [e.g., Boyes, Hoffman, and Low (1989), Greene (1992)], the mix of ones
and zeros in the observed sample of the dependent variable is deliberately skewed in
favor of one putcome or the other to achieve a more bajanced sample than random
sampling would produce. The sampling is said to be dl(m:e hased In the studies noted,
the dependent variable measured the occurrence of loan default, which is a relatively
uncommon occurtence. To enrich the sample, observations with y = 1 (default) were
oversampled. Intuition should suggest (correctly) that the bias in the sample should
be transmitted to the parameter estimates, which will be estimated so as to mimic the
sample, not the population, which is known to be different. Manski and Lerman (1977)
derived the weighted endogenous sampling maximum likelihood (WESML.) estimator
for this situation. The estimator requires that the true population proportions, o) and
wg, be known, Let p; and pg be the sample proportions of ones and zeros. Then the
estimator is obtained by maximizing a weighted log-likelihood,

#
InL=>"wiln Flgxg),

i=1

18'I’h:s view/actually underspates stightly the significanee of his model, bycause the preceding predictiops are
bascd on A bivariate mod¢l. The likelihood ratio tedt fails to reject thé hypothesis that a univariaty’model

197,
it L
zeraf. It hits only I).percent of the ones in the/sample.
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where w; = vi(w1/p1) + (1 — ¥ Xwo/ po). Note that w; takes only two different values.

The derivatives and the Hessian are likewise weighted. A final correction is needed
i after estimation; the appropriate estimator of the asymptatic covariance matrix is the
_ sandwich estimator discussed-in Section 23.4.1, H'BH™! (with welghted B and H).
2EN TS instead of B or H alone: (The weights are not squared in computing B.)%Z &

| LA B SRR y

["23.4.7 DYNAMIC BINARY CHOICE MODELS

A random or fixed effects model that explicitly allows for lagged effects would be

vir = 1B + i + yyal1 + 617 > 0)
Lagged gftfects, or perswtence, in a binar %éce setting can atise from three sources,
serial orrelation in g;,, the heterogengify, o;, or frue state dependence through the
tertd yy; 1. Chiappori (1998) [and gee Arellano (2001)] suggests an application to
the French automobile insurance pfarket in which the incentives built into the pricing
system are such that having ap/accident in one period should lower the probability

dependence.
ditions, v;.

plied to the differences of unequal pairs.df observations in a two period panel with
fixed effects. However, the limitatio
vated research on other approach

this framework, t variables somewhat

narrow assumptions about the independe

Z Z JFYESML and the cheice-based sampling estimator are not the free lunch they may appear to be. That which
S the biased sampling does, the weighting undoes. It is common for the end result to be very large standard
erroxs, which might be viewed as unfortunate, insofar as the purpose of the biased sampling was to balance

the data precisety to avoid this problem.

21 A survey ofjsome of these resuits if given by Hsmo (2003). Most of Hsiao (2003) 25 devoted to the lin
regression model. A number of stuglies specificatly focused on discrete choice m
appeared péeently, including Beck/Epstein, Jackman and O Halloran (2001),
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Example 17.9 Credit Scoring

in Example 7.9, we examined the spending patterns of a sample of 10,499 cardholders for a
major credit card vendor. The sample of cardholders is a subsample of 13,444 applicants for
the credit card. Applications for credit cards, then (1992) and now are processed by a majer
nationwide processor, Fair Isaacs, Inc. The algeorithm used by the processors is proprietary.
However, conventional wisdom holds that a few variables are important in the process, such

-+ as Age, Income, whether the applicant owns their home, whether they are self; employed and

how long they have lived at their current address. The number of major and minor
derogatory reports (60,day and 30 day delinqguencies) are very influential varlables in credit
scoring. The probit model we will use to ‘model the model’ is

Prob{Cardholder = 1) = Prob(C = 1 | x)
= @(B4 + B2 Age + B3 Income + B, OwnRent
+ Bs Months Living at Current Address
+ B Self Empfoyed
+ By Number of major derogatory repotis
+ s Number of minor derogatory reports).

In the data set, 78.1% of the applicants are cardholders. In the population, at that time, the

'/ true proportion was roughly 23.2%, so the sample is substantially choice based on this

variable. The sample was deliberately skewed in favor of cardholders for purposes of the
original study [Greene (1992})]. The weights {o be applied for the WESML estimator are
0.232/0.781 = 0.297 for the observations with C = 1 and 0.768/0.219 = 3.507 for observations
with C = 0. Table 17.6 presents the unweighted and weighted estimates for this application.
The change in the estimates produced by the weighting is quite modest, save for the constant
term. The results are consistent with the conventional wisdorn that /ncome and OwnRent are
“two important variables in a credit application and self.employment receives a substantial
negative weight. But, as might be expected, the single most significant influence on
cardholder status is major derogatory reports. Since lenders are strongly focused on default
probability, past evidence of default behavior will be a major consideration.

Table 17.6 Estimated Card Application Equation (t.ratios in parentheses)

Unweighted Weighted
Variable Estlmate Standard Error Estimate Standard Error
Constant 0.31783 0.05094  (6.24) -1.13089% 0.04725 (-23.94)
| Age 0.00184 0.00154  (1.20) 0.00156 0.00145  (1.07)
Income 0.00095 0.00025  (3,86) 0.,00094 0.00024  (3.92)

OwnRent 0.18233 0.0308%  (5.96) 0.23967 0.02968  (8.08)

CurrentAddress 0.02237 0.00120 (18.67) 0.02106 0.00109 {19.40)
SelfEmployed -0.43625 0.05585 (-7.81) —0.47650 0.05851 {-8.14)
Major Derogs ~0.69912 0.51920 (-36.42) -0.64792 0.02525 (-25.66)
Minor Derogs -0.04126 0.01865 (-2.21} -0.04285 0.01778 ({-2.41)




17.3.7 SPECIFICATION ANALYSIS

In his survey of qualitative response models, Amemiya (1981) reports the following widely cited
approximations for the linear probability (LP) model: Over the range of probabilities of 30 to 70
pcrcent, ‘ '

E [3 1 = 0.4Bprti for the slopes,

Bp = 0.25pug for the slopes. .

Aside from confirming our intuition that least squares approximates the nonlinear model and
providing a quick comparison for the three models involved, the practical usefulness of the
formula is somewhat limited. Still, it is a striking result®® A series of studies has focused on
reasons why the least squares estimates should be proportional to the probit and logit estimates. A
related question concerns the problems associated with assuming that a probit model applies
when, in fact, a logit model is appropriate or vice versa}®® The approximation would seem to

suggest that with this type of misspecification, we would once again obtain a scaled version of the

correct coefficient vector. (Amemiya also reports the widely observed relationship _I_f_i,.og,-, o~

1.6_[§ orovit » Which follows from the results for the linear probability model. This result is apparent
in Table 17.1 where the ratios of the three slopes range from 1.6 to 1.9.)

2" This result does not imply that it is useful to report 2.5 times the linear probability estimates with the
probit estimates for comparability. The linear probability estimates are already in the form of marginal
effects, whereas the probit coefficients must be scaled dowmward. If the sample proportion happens to be
close to 0.5, then the right scale factor will be roughly ${®'(0.5)] = 0.3989. But the density falls rapidly as
P moves away from 0.5.

#-See Ruud (1986) and Gourieroux et al. (1987).
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where G(n x n) = diag[g|.g2.. ¢ and i is an # x 1 cotuidn of 1s. The BHHH £sti-
mator of the Hessian is (X'GXX). so the LM statistic basgl on this estimator is

HEXXGGX X

 In the tinear regression model, we considered two important specification problems: the
effect of omitted variables and the effect of heteroscedasticity. In the classical model,
¥ =Xi8; + Xo8: + &. when least squares estimates b; are computed omitting X;.

Elbi] =8, + [X1 %] X Xa8,.

Unless X, and X are onhop,onal or B, = 0, by isbiased. If we ignore hetemscedastlmty
then although the least squares estimator is still unbiased and consistent. it is inefficient
and the usuai estimate of its sampling covariance matrix is inappropriate. Yatchew and
Griliches (1984) have examined these same issues in the setting of the probit and logit
models. Their general results are far more pessimistic. In the context of a binary choice
model, they find the following:

L. [f xo is omitted from a model containing ¥; and xa. (i.e. 85 # 0) then
= - plim #1 = 11 + 2,

where ¢; and c3 are complicated functions of the unknown parameters. The
implication is that even if the omitted variable is uncorrelated with the included
one, the coefficient on the included variable will be inconsistent.

2. If the disturbances in the underlying regression are heteroscedastic, then the
maximum likelihcod estimators are inconsistent and the covariance matrix is
inappropriate.

The second result is particularly troubling because the probit madel is most often used
with microeconomic data. which are frequently heteroscedastic,

Any of the three methods of hypothesis testing discussed here can be used to analyze
these specification problems. The Lagrange muitiplier test has the advantage that it can
be carried out using the estimates from the restricted model. which sometimes brings
a large saving in computational effort. This situation is especially true for the test for
hetermcedamclty

To reiterate, the Lagrange multiplier statistic is computed as follows. Let the null

. hypothesis. /fp. be aspecification of the model. and let [1; be the alternative. For example.

iﬁ ﬁ'[‘hc results in this section are based on Davidson and MacKinnon {1984) and Engle (19584). A symposium

an the subject of specification tests in discrete choice models is Blundell (1987).
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Hp might specify that only variables x; appear in the model. wheleas 4 might specify
that X2 appears in the model as well. The statistic is

IM = gnvu B0,

where gg is the vector of der ivatives of the log-likelihood as specified by M, but evaluated
at the maximum likelihood estimator of the parameters assuming that Hp is true, and
¥5! is any of the three consistent estimators of the asymptotic variance matiix of the
maximum likelthood estimator under //;, also computed using the maximum likelihcod
estimators based on Hp. The statistic is asymptotically distributed as chi-squared with
degrees of freedom equal to the number of restrictions.

}}.3,4.01- 287 F- Omitted Variables

The hypothesis to be tested is

, = , (233D
Hyzy* = x84 +x38, +e,
so the test is of the null hypothesis that 8, = 5. The Lagrange muitiplier test would be
carried out as follows:

1. Estimate the model in /)y by maximum likelihood. The restricted coefficient
vector is [ﬁj, 8].

2, Let x be the compound vector, [X;, X2}. g |

13-3) 13-32
The statistic is then computed according to (23729} or (Z39). It is noteworthy that in
this case as in many others, the Lagrange multiplier is the coefficient of deterinination
irva regression. The likelihood ratio test is equally straightforward. Using the estimates
of the two models, the statistic is simply 2(In L; — In Lg).

13.3.3. b 2sn==B Heteroscedasticity iy 26

We use the general formulation analyzed by Harvey (1976) (see Section 169.2.2),8%

Varls] = [exp( y)]

This model can be applied equally to the probit and logit models. We will derive the
results specifically for the probit model: the logit model is essentizlly the same. Thus,

13-y3]

Hy: p* = x{ 8, +&, J?—f%?

50

_v*=x’,6‘+s, 17‘-35'

Var|e | x, {.] "[;’:XP(Z J")]2 (

The presence of heteroscedasticity makes some care necessary in interpreting the
coefficients for a variable wy that could be in x or z or both,

dProb(Y=1|x.2) X8 1B—&'Bn
awe - lesp@y)| exp(zy)
Only the first (second) term applies if wy appears only in x (z). This implies that the

simple coefficient may differ radically from the effect that is of interest in the estimated
model. This effect is clearly visible in the next example.

Q P See Knapp and Scaks (1992) for an application. Other formulations are suggested by Fisher and Nagin
P
© (1981), Hausman and Wise (1978), and Horowitz (1993).
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The log-likelihood is
i=l1

To be able to estimate all the parameters, Zcannot have a constant term. The derivatives
are -

dmL [ fitw—F) . 3
TR Fmeed e
i= (B35

dinl N[5 —F) , ,
a ; [m]e’ip(”?ﬁ}’_lﬁi(ﬁ{,ﬁ),

which implies a difficult log-likelihood to maximize. But if the model is estimated

J?-%?

assunting that y = 0, then we can easily test for homoscedasticity. Let

X;
wi={ ., (233
‘ [Vfﬁﬁkﬁ] i3

computed at the maximum likelthood estimator, assuming that y = (). Then (ZQé_g'or
(23=30) can be used as usual for the Lagrange multiplier statistic. a1k

3 /Davidson and MacKinnon carried out a Monte Carlo study to examine the true sizes

’4/3}

and power functions of these tests. As might be expected, the test for omitted variables
is relatively powerful. The test for heteroscedasticity may well pick up some other form
of misspecification, however, including perhaps the simple omission of 7 from the index
function, so its power may be problematic. It is perhaps not surprising that the same
problem arose earlier in our test for heteroscedasticity in the linear regression model.

Example 2358- Specification Tests in a Labor Force Participation Model
Using the data described in Example 28F, we fit a probit model for labor force participation
based on the specification 7.1

ProblLFP = 1} = F(constant, age, age®, family income, education, kids).

For these data, P = 428/753 = 0.568393. The restricted (all slopes equal zero, free constant
term) log-likelhood is 325 x In(325/753) + 428 x In{428/753) = —514.8732. The urwe-
stricted log-likelihood for the probit model is —490.8478. The chi-squared statistic is, there-
fore, 48.05072, The critical value from the chi-squared distribution with 5 degrees of freedom
is 11.07, so the joint hypothesis that the coefficients on age, age®, family income, and kid's
are all zero is rejacted. B

Consider the altemative hypothesis, that the constant term and the coefficients on age,
age?, family income, and education are the same whether kids equals one or zero, against the
alternative that an altogether different equation applies for the two groups of women, those

with kids = 1 and those with kids = 0. To test this hypothesis, w uld use el to |

the Chow test of Section 6.4 and Example§_2 The restricted model in this instance would
be based on the pooled data set of all 753 observations. The log-ikelihood for the pooled
model—which has a constant term, age, age?, family income, and education is —496.8663.
The log-likelihoods for this model based on the 524 obsarvations with kids = 1 and the 229
observations with kids = O are -347.87441 and —141.60501, respectively. The log-likelihood
for the unrestricted model with separate coefficient vectors is thus the sum, —489.47942.

The chi-squared statistic for testing the five restrictions of the pooled model is twice the

difference, LR = 2[—480.47942 —(—496.8663)] = 14.7738. The 95 percent critical value from
the chi-squared distribution with 5 degrees of freedom is 11.07, $0 at this significance level,
the hypothesis that the constant terms and the coefficients on age, age?, family income, and
education are the same is rejected. (The 99 percent critical value is 15.09.)

i ra’ 1 #-26
- X "x:ﬂ —_— — F ¥i#
i {umr () va-m 1 r(GE]} o
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1.7+ Qo83 ROC2E) (0
TABLE 2%33F Estimated Coefficients )
Estimate (Std. Ery Murg. Effect®f  Estimate (St. Er) Marg. Effecr® 1
Constant B —4157(1.402) — ¥ _6.030(249) — B
Age B OABS(Q0660) - —0.0079(0.0027)  0.264(0.118)  —0.0088(0.00251)
Age? B:  —0.0024(0.00077) - —0.0036(0.0014) —
Income Bs  0.0458(0.0421) 0.0180(0.0165)  0.424(0.222) 0.0552(0.0240)
Education Bs 0.0982(0.0230) 0.0385{0.0090) 0.140(0.0519) 0.0289(0.00869)
Kids Bs  —0.449(0.131) ~0171{0.0480)  —0.879(0.303) - —0.167(0.0779)
Kids w0000 — —0.141(0.324) .
Income » 0.000 —— 0.313(0.123) —
In L, —490.8478 —487.6356
Correct Preds. 0s: 106, 1s: 357 0s: 115, 1s: 358

*Marginal effect and estimated standard error include both mean (8) and variance (y ) effects.

17 |
Table presents estimates of the probit model with a correction for heteroscedasticity
of the form

Var{g] = exp{y1kids + yefamily income).
The three tests for homoscedasticity give
LR = 2[—487.6356 — { —490.8478)] = 6.424,

qé LM = 2.236 based on the BHHH estimator,
» Wald = 6.533(2 restrictions).
The B{percent critical value for two restrictions is 5.99, so the LM statistic conflicts with the
cther two.

23.4.5 MEASURING GOODNESS OF FIT,

el are zerois often interesting, the log-likelihood
JIn Ly [see (23-28)]. should also be reported. An ana-
regression is McFadden’s (1974) likelihood ratio index,

In L.

LRI:—.1-lnLD.

5 been suggested that this finding is indicative of a “peifect fit” and that LRI increases
as the fit of the model improves. To a degree, this ppifit is true (see the analysis in Section
23.8.4). Unfortunately, the values between zerg-and one have no natural interpretation.
If F(x{B) is a proper pdf, then even with mafy regressors the model cannot fit perfectly
unless x! 8 goes to -+-00 or —00. Asa praetical matter, it does happen. But when it does, i

¥8ee, for example, Crage and Uhier (1974), Amemiva (1981), Maddala (1983), McFadden (1974 Ben-Akiva
and Lerman {1985), Kay and LittlgA1986), Veall and Zinmermann {1992), Zavoina and McKelvey (1975)
Efron (1978), and Cramer (1999)’ A survey of techniques appears in Windmeijer (1995,
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m likelihood progédures we examined earlier,/The appropriate likelihood funcgon is
conspructed by formufaging the probabilities as

using a simulatoy'similar to the GHK simulatgt discussed in 17.2.3. Among Hyslop’s results
are a comparisén of the model fit by the s
i model fit using the maxi

7.4 Z=B BINARY CHOICE MODELS FOR PANEL DATA

Qualitative response models have been a growth industry in econometrics. The recent
literature, particularly in the area of panel data analysis, has produced a number of new
techniques. The availability of high-quality panel data sets on microeconomic behavior __~ )
has maintained an interest in extending the models of Chaptel@o binary (and other
discrete choice) models. In this section, we will survey a few results from this rapidly
growing literature.

The structural model for a possibly unbalanced panel of data would be written

hos =_;;,_g +ey, i=1,...,mt=1..,1, ( i7- Zq)
Yir=1 1 ¥, > 0, and 0 otherwise,
The second line of this definition is often written
Yir =X B+ &y > 0)

to indicate a-variable that equals one when the condition in parentheses is true and

zero when it is not. Ideally, we would like to specify that &, and &5 are freely correlated

within a group, but uncorrelated across groups. But doing so will involve comgLing_,‘_Q 7
joint probabilities from a 7 variate distribution, which is generally problematic (We 7
will return to this issue later.} A more promising approach is an effects model, 51

_1:;=Ix§,§_+v,-,+ul, i:l,._.,}z,f:l,,_”'ﬁ? (14_“"10)

g if v* i
Seedjppy T _ Y =1 if ¥ > 0, and 0 otherwise,

where, as before (see Seet-ron—%? t; is the unobserved, individual specific hetero-

/.
7 and /¥y geneity. Once again, we distinguish between “random” and “fixed” effects models by

the relationship between 4; and Xir. The assumption that ir; is unrelated 1o Xy, 50 that/” /| "
# 7 the conditional distribution f{s; | x;,) is not dependent on X;. produces the randonr
"7 effécts model. Note that this places a restriction on the distribution of the heterogeneity.

2 % /E-EA *limited information” approach based on the GMM estimation method has been suggested by Avery,
' Hal an (1983). With recent advances in simulation-based computation of multinormal integrals

is, 62 . b see SectiolL1.5. \some work onsuch a panel data estimator has appeared in the literature. See, for example,

Geweke, Keane, and Runkle (1994, 1997). The GEE estimator of Diggle, Liang, and Zeger (1994) [see ako,
Liang and Zeger (1986} and Stata (2006)] seems to be another possibility. However, in all these cases, it must
be remembered that the procedure specifies estimation of a correlation matrix for a T; vector of unobserved
variables based on a dependent variable that takes only two values. We should not be too optimistic about
this if 7; is even moderately large.
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If that distribution is unrestricted, so that &; and x; may be correlated, then we have what
is called the fixed effects model The distinction does not relate to any intrinsic
characteristic of the effect itself.

As we shall see shortly, this is a modeling framework that is fraught with
difficulties and unconventional estimation problems, Among them are the following:

- estimation of the random effects model requires very strong assumptions about the, 7
heterogeneity; the fixed effects ‘model encounters an incidental parameters problem —

that renders the maximum likelihood estlmator inconsistent.

17.4.1 The Pooled Estimator

To begin, it is useful to consider the pooled estimator that results if we simply ignore the
heterogeneity, u; in (17- -49) and fit the model as if the cross,section specification of
Section 17.2.2 apphes In this instance, the adage that “ignoring the heterogeneity does
not make it go away,” applies even more forcefully than in the linear regression case.

If the fixed effects model is appropriate, then all of the preceding results for
omitted variables, including the Yatchew and Griliches result (1984) apply. The pooled
MLE that ignores fixed effects will be inconsistent - possibly wildly so. (Note that since
the estimator is ML, not least squares, convertmg the data to deviations from group
means is not a solution 7 converting the binary dependent variable to deviations will
produce a continuous var1ab1e with unknown properties.) 79

The random effects case is more benign. From (17-40), the marginal probability
implied by the model is P

{ prupusd

Prob(y;=1|xs) = Prob(v,+1,>x,B)
= FlxiB/ (1 + 0"
: = F(xi9).

The implication is that based on the marginal distributions, we can consistently estimate

& (but not B or o, separately) by pooled MLE. [This result is explored at length in

Wooldridge (2002).] This would be a “pseudo MLE” since the logalikelihood function is
not the true log likelihood for the full set of observed data, but it is the correct product of
the marginal distributions for yy{x;. (This would be the binary choice case counterpart to
consistent estimation of B in a linear random effects model by pooled ordinary least
squares. ) The 1mp11cat10n which is absent in the linear case, is that i 1gnor1ng the random
effects in a pooled model produces an attenuated (1ncon31stent 7 downward biased)
estimate of B; the scale factor that produces 8 is 1/(1+c, Hi2 which is between zero and
one. The implication for the partial effects is less clear. In the model specification, the
partial effect is

PE(;;-.:;',_U:') = OE[yil%intil/O%y = B * f(XitP + 103),



which is not computable. The useful result would be

EPE(S)] =B Elf (P + u)].

Wooldridge (2002a) shows that the end result, assuming normality of both v and w; is
' Ey[PE(X,,,u;)] = 3¢(xx'd). Thus far, surprisingly, it would seem that simply pooling the
data and using the simple MLE “works.” The estimated standard errors will be incorrect,
so a correction such as the cluster estimator shown in Section 14.8.4 would be
appropriate. Three considerations suggest that one might want to proceed to the full
MLE in spite of these results: (1) The pooled estimator will be inefficient compared to
the full MLE; (2) the pooled estimator does not produce an estimator of o, which might
be of interest in its own right; (3) the FIML estimator is available in contemporary
software and is no more difficult to estimate then the pooled estimator. Note that the
pooled estimator is not justified (over the FIML approach) on robustness considerations
because the same normality and random effects assumptions that are needed to obtain the
FIML estimator will be needed to obtain the preceding results for the pooled estimator.

j?:??:



. Greenc.50558  book  Tne25.2007 11 ' I~7_ (7,9

CHAFTER 23 4+ Models for Discrete Choice 797

rrelated, then we ha
ot relate to any intridsic

modeling framewafk that is fraught with d’i%culties

m . Random Effects Models - /Y. $

A specification that has the same structure as the random effects model of Section@
has been implemented by Butler and Moffitt (1982). We will sketch the derivation to
suggest how random effects can be handled in discrete and limited dependent variable
models such as this one. Full details on estimation and inference may be found in Butler
and Moffitt (1982) and Greene (1995a). We will then examine some extensions of the
Butler and Moffitt model.

The random effects model specifies

&ir == Vit *+ Ui,
where v;; and #; are independent random variables with
Elo 1 X]=0; Cov[v,-,,;_;is | X] = Var{w | X] =1, ifi=jandt=>5;0otherwise,
Efui | X] = 0; Covfg, ;| X] = Varlu | X] = 02, ifi = j; 0 otherwise,
Co.v[_v,-,, uj|X] =0foralli.f, j» 29
f ' < and X indicates all thé exogenous data in the sample, x;; for all i and ;\2“ Then,

E [8,‘; [}5] =0,

Val{e,:, |X] = a_f +03 =14 cr_,?_,
and

GH

1402

i marainal
The new free parameter is o = p/(1 — p).
Recall that in the cross-section case, the probability associated with an observation
o ]

Corr|g;,. &, | X]=p =

is

u;
Pvi | x0) =f flede, (Li, Up) = (—00, ~x!8) if y = Oand (—xB, +o0) ify =1.
This simplifies to ®[(2y; — 1)x; 8] for the normal distribution and A[(2y; — 1)x; 8] for the
logit model. In the fully general case with an unrestricted covariance matrix, the contri-
bution of group / to the likelihood would be the joint probability for alt 7; observations:
Urr; Ui
Li = P(¥1,.... %% IX)=f f(é_‘;l,&',-g,...,E:,-;u;)dsnds,-z...dem. (233%)
L, Ly e TR

9 9 2MSee Wooldridge (1999) for discussion of this assumption.
y
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The integration of the joint density, as it stands, is impractical in most cases. The special
nature of the random effects model allows a simplification. however. We can obtain the
joint density of the v;’s by mteglatmg gy out of the joint denslty of {s,;, oo BT i)

which is N -
Sl gty = f(&i1 -, &g L) fQp).
So,
+oo oo
flen.sn,....aq) = / flein, sias .8 L) Sy dusi.
— .

The advantage of this form is that conditioned on ;. the ;s are independent, so

™

13-
Inserting this result in &33R) produces

Ui Uy ptoo K
L= Plys,.... w51 X] = f f / Hf(suIu:)f(u_,-)dufds,-ldEaz...dsm_-
=1 -

This may not look like much mmphﬁcatim. but in fact, it is. Because the ranges of
integration are independent, we may change the order of integration;

U %
Li= Py, ..., y7 ]X] :/ [f f H Fle ) den dega . ..da‘,_r?;]f(u;) dut;.
—eo o

Conditioned on the common ;. the g's are mdependent, so the term in square brackets

is just the product of the individual probabitities, We can write this as L |

- oo [ pl (}-42
Li = Plyn..... ¥ I,X]=/ [H( f(sniu.)dsn)] S duy.  (2339)

- fzzl L_’"

+oo I .
_f(£i1,£;2’..-,817;)=/ Hf(sui_u,')f(u;)du,-.
e =1 )

Now, consider the individual densities in the product. Conditioned on #;, these are the
now-familiar probabilities for the individual observations, computed now at x, 8 + u;.
This producesa general model for random effects for the binary choice model. Ce ollectm

all the terms, we have reduced it to 42

J7- ‘7’3

+oo [T
Li = Plya,.... w21 X] =/ [HPlob(Yr = \;;IX’ B+un| flu)dy;. (2340)

= L=l

It remains to specify the distributions, but the important result thus far is that the
entire computation requires only one-dimensional integration. The inner probabilities
may be any of the models we have considered so far, such as probit, logit, Gumbel, and

) 1 so on. The intricate part that remains is to determine how to do the outer integration.
‘.~ Builer as Moffitt’s method assuming that #; is normally distributed is detailed in

—_ Sectloé@
[4.2.6.c A number of authors have found the Butler and Moffitt formuliation to be a satis-

factory compromise between a fully unrestricted model and the cross-sectional variant
that ignores the correlation altogether. An application that inctudes both group and
time effects is Tauchen, Witte, and Griesinger’s (1994) study of arrests and criminal
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behavior. The Butler and Moffitt approach has been criticized for the restriction of
equal correlation across periods. But it does have a compelling virtue that the model
can be efficiently estimated even with fairly large 7; using conventional computational
methods. [See Greene (2007b);] -

A remaining problem with the Butler and Moffitt specification is its assumption of
normality. In general, other distributions are problematic because of the difficulty of

finding either a closed form for the integral or a satisfactory method of approximating the-
e method of maximum-—

integral. An alternative approach that aliows some ﬂemblhty is
similated likelihood (MSL), which was discussed in
transformed likelihood we derived in (2340 is an expectation;

Li=

HPI‘Ob( Yio = vie | X}, 8 -i-_.ﬂ;‘):l [ du;

T =]

ra.

= Ly, [H Prob(¥; = yir |.X§;_ﬁ_+ Mi)] .
t=1 Pl , .

This expectation can be approximated by simulation rather than quadrature, First, let 9

now denote the scale parameter in the distribution of 4;. This would be o, for a normal

distribution, for example, or some other scaling for the logistic or uniform distribution.

Then, write the term in the likelihood function as

-Lf = [, [H] (V. X mB +9HJ)J == ﬁm[h(f‘fi)]
=1
The function is smooth, continuous, and continuously differentiable. If this expectation
is finite. then the conditions of the law of large numbers should apply, which would
mean that for a sample of observations w;;, ..., 4 3
R

plim %Eh(ﬁ@;r) = E[h(u:].

r=l1 VA ul
This suggests, based on the results in Chapter }7, an alternative method of maximizing
the log-likelihood for the random effects model, A sample of person-specificdraws from
the population «; can be generated with a random number generator. For the Butler
and Moffitt model with normally distributed ;. the simulated log-likelihood function is

(24;,~1)
In LSImulmrd = Z In { Z [H F x:rﬁ + 0'«“#)]} } . (.[e‘s.:ﬂ(j{i(l 12

' r=1 Lput
This function is maximized w1th respect # and o,. Note that in the preceding, as in

the quadrature approximated log-likelihood. the model can be based on a probit, logit,

or any other functional form desired. fTRere isfan additional degree of flexibility/in this

ysampling
/(1= w;p)].
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We have examined two approaches to estimation of a probit model with random ef-
fects, GMM estimation is another possibility. Avery, Hansen, and Hotz (1983), Bertschek
and Lechner (1998), and Inkmann (2000) examine this approach: the latter two offer

' some comparison with the quadrature and simulation-based estimators considered here.
1. 2 q Our application in Exampl ill use the Bertschek and Lechner data.)

some of its
d of estimation

(3.4.3 =\2 Fixed Effects Models
The fixed effects model is e

\?.* =0!idif -i-_._x‘f,;_gﬁ-é-s,-,, _f=1,...,11, fml,...._?,:, (I?' 1_/.;)

vir =1 if yj; > 0, and 0 otherwise,

where dj, is a dummy variable that takes the value one for individual f and zero otherwise.
For convenience, we have redefined x;, to be the nonconstant variables in the model, The
parameters to be estimated are the K elements of 8 and the s individual constant terms.
Before we consider the several virtues and shortcomings of this model, we consider
the practical aspects of estimation of what are possibly a huge number of parameters,
{11+ K) — n is not limited here, and conld be in the thousands in a typical application.
The log-likelihood function for the fixed effects model is

n 7 LS

InL=3"3"In Plsic oy +%,). (11-4¢)
i=1 t=l

where P(.) is the probability of the observed outcome, for example, ®[q; (; + X, 8)]
for the probit model or Alg;,(e; + x/,8)] for the logit model, What follows can be
extended to any index function model. but for the present, well confine our attention

where ?lt = 2 35_{_"1:__



